1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
44 
45 #include <misc/cxl-base.h>
46 
47 #include "powernv.h"
48 #include "pci.h"
49 #include "../../../../drivers/pci/pci.h"
50 
51 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
52 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54 
55 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
56 					      "NPU_OCAPI" };
57 
58 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
59 			    const char *fmt, ...)
60 {
61 	struct va_format vaf;
62 	va_list args;
63 	char pfix[32];
64 
65 	va_start(args, fmt);
66 
67 	vaf.fmt = fmt;
68 	vaf.va = &args;
69 
70 	if (pe->flags & PNV_IODA_PE_DEV)
71 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
72 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
73 		sprintf(pfix, "%04x:%02x     ",
74 			pci_domain_nr(pe->pbus), pe->pbus->number);
75 #ifdef CONFIG_PCI_IOV
76 	else if (pe->flags & PNV_IODA_PE_VF)
77 		sprintf(pfix, "%04x:%02x:%2x.%d",
78 			pci_domain_nr(pe->parent_dev->bus),
79 			(pe->rid & 0xff00) >> 8,
80 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
81 #endif /* CONFIG_PCI_IOV*/
82 
83 	printk("%spci %s: [PE# %.2x] %pV",
84 	       level, pfix, pe->pe_number, &vaf);
85 
86 	va_end(args);
87 }
88 
89 static bool pnv_iommu_bypass_disabled __read_mostly;
90 static bool pci_reset_phbs __read_mostly;
91 
92 static int __init iommu_setup(char *str)
93 {
94 	if (!str)
95 		return -EINVAL;
96 
97 	while (*str) {
98 		if (!strncmp(str, "nobypass", 8)) {
99 			pnv_iommu_bypass_disabled = true;
100 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
101 			break;
102 		}
103 		str += strcspn(str, ",");
104 		if (*str == ',')
105 			str++;
106 	}
107 
108 	return 0;
109 }
110 early_param("iommu", iommu_setup);
111 
112 static int __init pci_reset_phbs_setup(char *str)
113 {
114 	pci_reset_phbs = true;
115 	return 0;
116 }
117 
118 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
119 
120 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
121 {
122 	/*
123 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
124 	 * allocation code sometimes decides to put a 64-bit prefetchable
125 	 * BAR in the 32-bit window, so we have to compare the addresses.
126 	 *
127 	 * For simplicity we only test resource start.
128 	 */
129 	return (r->start >= phb->ioda.m64_base &&
130 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
131 }
132 
133 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
134 {
135 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
136 
137 	return (resource_flags & flags) == flags;
138 }
139 
140 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
141 {
142 	s64 rc;
143 
144 	phb->ioda.pe_array[pe_no].phb = phb;
145 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
146 
147 	/*
148 	 * Clear the PE frozen state as it might be put into frozen state
149 	 * in the last PCI remove path. It's not harmful to do so when the
150 	 * PE is already in unfrozen state.
151 	 */
152 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
153 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
154 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
155 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
156 			__func__, rc, phb->hose->global_number, pe_no);
157 
158 	return &phb->ioda.pe_array[pe_no];
159 }
160 
161 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
162 {
163 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
164 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
165 			__func__, pe_no, phb->hose->global_number);
166 		return;
167 	}
168 
169 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
170 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
171 			 __func__, pe_no, phb->hose->global_number);
172 
173 	pnv_ioda_init_pe(phb, pe_no);
174 }
175 
176 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
177 {
178 	long pe;
179 
180 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
181 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
182 			return pnv_ioda_init_pe(phb, pe);
183 	}
184 
185 	return NULL;
186 }
187 
188 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
189 {
190 	struct pnv_phb *phb = pe->phb;
191 	unsigned int pe_num = pe->pe_number;
192 
193 	WARN_ON(pe->pdev);
194 
195 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
196 	clear_bit(pe_num, phb->ioda.pe_alloc);
197 }
198 
199 /* The default M64 BAR is shared by all PEs */
200 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
201 {
202 	const char *desc;
203 	struct resource *r;
204 	s64 rc;
205 
206 	/* Configure the default M64 BAR */
207 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
208 					 OPAL_M64_WINDOW_TYPE,
209 					 phb->ioda.m64_bar_idx,
210 					 phb->ioda.m64_base,
211 					 0, /* unused */
212 					 phb->ioda.m64_size);
213 	if (rc != OPAL_SUCCESS) {
214 		desc = "configuring";
215 		goto fail;
216 	}
217 
218 	/* Enable the default M64 BAR */
219 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
220 				      OPAL_M64_WINDOW_TYPE,
221 				      phb->ioda.m64_bar_idx,
222 				      OPAL_ENABLE_M64_SPLIT);
223 	if (rc != OPAL_SUCCESS) {
224 		desc = "enabling";
225 		goto fail;
226 	}
227 
228 	/*
229 	 * Exclude the segments for reserved and root bus PE, which
230 	 * are first or last two PEs.
231 	 */
232 	r = &phb->hose->mem_resources[1];
233 	if (phb->ioda.reserved_pe_idx == 0)
234 		r->start += (2 * phb->ioda.m64_segsize);
235 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
236 		r->end -= (2 * phb->ioda.m64_segsize);
237 	else
238 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
239 			phb->ioda.reserved_pe_idx);
240 
241 	return 0;
242 
243 fail:
244 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
245 		rc, desc, phb->ioda.m64_bar_idx);
246 	opal_pci_phb_mmio_enable(phb->opal_id,
247 				 OPAL_M64_WINDOW_TYPE,
248 				 phb->ioda.m64_bar_idx,
249 				 OPAL_DISABLE_M64);
250 	return -EIO;
251 }
252 
253 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
254 					 unsigned long *pe_bitmap)
255 {
256 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
257 	struct pnv_phb *phb = hose->private_data;
258 	struct resource *r;
259 	resource_size_t base, sgsz, start, end;
260 	int segno, i;
261 
262 	base = phb->ioda.m64_base;
263 	sgsz = phb->ioda.m64_segsize;
264 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
265 		r = &pdev->resource[i];
266 		if (!r->parent || !pnv_pci_is_m64(phb, r))
267 			continue;
268 
269 		start = _ALIGN_DOWN(r->start - base, sgsz);
270 		end = _ALIGN_UP(r->end - base, sgsz);
271 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
272 			if (pe_bitmap)
273 				set_bit(segno, pe_bitmap);
274 			else
275 				pnv_ioda_reserve_pe(phb, segno);
276 		}
277 	}
278 }
279 
280 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
281 {
282 	struct resource *r;
283 	int index;
284 
285 	/*
286 	 * There are 16 M64 BARs, each of which has 8 segments. So
287 	 * there are as many M64 segments as the maximum number of
288 	 * PEs, which is 128.
289 	 */
290 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
291 		unsigned long base, segsz = phb->ioda.m64_segsize;
292 		int64_t rc;
293 
294 		base = phb->ioda.m64_base +
295 		       index * PNV_IODA1_M64_SEGS * segsz;
296 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
297 				OPAL_M64_WINDOW_TYPE, index, base, 0,
298 				PNV_IODA1_M64_SEGS * segsz);
299 		if (rc != OPAL_SUCCESS) {
300 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
301 				rc, phb->hose->global_number, index);
302 			goto fail;
303 		}
304 
305 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
306 				OPAL_M64_WINDOW_TYPE, index,
307 				OPAL_ENABLE_M64_SPLIT);
308 		if (rc != OPAL_SUCCESS) {
309 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
310 				rc, phb->hose->global_number, index);
311 			goto fail;
312 		}
313 	}
314 
315 	/*
316 	 * Exclude the segments for reserved and root bus PE, which
317 	 * are first or last two PEs.
318 	 */
319 	r = &phb->hose->mem_resources[1];
320 	if (phb->ioda.reserved_pe_idx == 0)
321 		r->start += (2 * phb->ioda.m64_segsize);
322 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
323 		r->end -= (2 * phb->ioda.m64_segsize);
324 	else
325 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
326 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
327 
328 	return 0;
329 
330 fail:
331 	for ( ; index >= 0; index--)
332 		opal_pci_phb_mmio_enable(phb->opal_id,
333 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
334 
335 	return -EIO;
336 }
337 
338 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
339 				    unsigned long *pe_bitmap,
340 				    bool all)
341 {
342 	struct pci_dev *pdev;
343 
344 	list_for_each_entry(pdev, &bus->devices, bus_list) {
345 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
346 
347 		if (all && pdev->subordinate)
348 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
349 						pe_bitmap, all);
350 	}
351 }
352 
353 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
354 {
355 	struct pci_controller *hose = pci_bus_to_host(bus);
356 	struct pnv_phb *phb = hose->private_data;
357 	struct pnv_ioda_pe *master_pe, *pe;
358 	unsigned long size, *pe_alloc;
359 	int i;
360 
361 	/* Root bus shouldn't use M64 */
362 	if (pci_is_root_bus(bus))
363 		return NULL;
364 
365 	/* Allocate bitmap */
366 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
367 	pe_alloc = kzalloc(size, GFP_KERNEL);
368 	if (!pe_alloc) {
369 		pr_warn("%s: Out of memory !\n",
370 			__func__);
371 		return NULL;
372 	}
373 
374 	/* Figure out reserved PE numbers by the PE */
375 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
376 
377 	/*
378 	 * the current bus might not own M64 window and that's all
379 	 * contributed by its child buses. For the case, we needn't
380 	 * pick M64 dependent PE#.
381 	 */
382 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
383 		kfree(pe_alloc);
384 		return NULL;
385 	}
386 
387 	/*
388 	 * Figure out the master PE and put all slave PEs to master
389 	 * PE's list to form compound PE.
390 	 */
391 	master_pe = NULL;
392 	i = -1;
393 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
394 		phb->ioda.total_pe_num) {
395 		pe = &phb->ioda.pe_array[i];
396 
397 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
398 		if (!master_pe) {
399 			pe->flags |= PNV_IODA_PE_MASTER;
400 			INIT_LIST_HEAD(&pe->slaves);
401 			master_pe = pe;
402 		} else {
403 			pe->flags |= PNV_IODA_PE_SLAVE;
404 			pe->master = master_pe;
405 			list_add_tail(&pe->list, &master_pe->slaves);
406 		}
407 
408 		/*
409 		 * P7IOC supports M64DT, which helps mapping M64 segment
410 		 * to one particular PE#. However, PHB3 has fixed mapping
411 		 * between M64 segment and PE#. In order to have same logic
412 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
413 		 * segment and PE# on P7IOC.
414 		 */
415 		if (phb->type == PNV_PHB_IODA1) {
416 			int64_t rc;
417 
418 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
419 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
420 					pe->pe_number / PNV_IODA1_M64_SEGS,
421 					pe->pe_number % PNV_IODA1_M64_SEGS);
422 			if (rc != OPAL_SUCCESS)
423 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
424 					__func__, rc, phb->hose->global_number,
425 					pe->pe_number);
426 		}
427 	}
428 
429 	kfree(pe_alloc);
430 	return master_pe;
431 }
432 
433 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
434 {
435 	struct pci_controller *hose = phb->hose;
436 	struct device_node *dn = hose->dn;
437 	struct resource *res;
438 	u32 m64_range[2], i;
439 	const __be32 *r;
440 	u64 pci_addr;
441 
442 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
443 		pr_info("  Not support M64 window\n");
444 		return;
445 	}
446 
447 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
448 		pr_info("  Firmware too old to support M64 window\n");
449 		return;
450 	}
451 
452 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
453 	if (!r) {
454 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
455 			dn);
456 		return;
457 	}
458 
459 	/*
460 	 * Find the available M64 BAR range and pickup the last one for
461 	 * covering the whole 64-bits space. We support only one range.
462 	 */
463 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
464 				       m64_range, 2)) {
465 		/* In absence of the property, assume 0..15 */
466 		m64_range[0] = 0;
467 		m64_range[1] = 16;
468 	}
469 	/* We only support 64 bits in our allocator */
470 	if (m64_range[1] > 63) {
471 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
472 			__func__, m64_range[1], phb->hose->global_number);
473 		m64_range[1] = 63;
474 	}
475 	/* Empty range, no m64 */
476 	if (m64_range[1] <= m64_range[0]) {
477 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
478 			__func__, phb->hose->global_number);
479 		return;
480 	}
481 
482 	/* Configure M64 informations */
483 	res = &hose->mem_resources[1];
484 	res->name = dn->full_name;
485 	res->start = of_translate_address(dn, r + 2);
486 	res->end = res->start + of_read_number(r + 4, 2) - 1;
487 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
488 	pci_addr = of_read_number(r, 2);
489 	hose->mem_offset[1] = res->start - pci_addr;
490 
491 	phb->ioda.m64_size = resource_size(res);
492 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
493 	phb->ioda.m64_base = pci_addr;
494 
495 	/* This lines up nicely with the display from processing OF ranges */
496 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
497 		res->start, res->end, pci_addr, m64_range[0],
498 		m64_range[0] + m64_range[1] - 1);
499 
500 	/* Mark all M64 used up by default */
501 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
502 
503 	/* Use last M64 BAR to cover M64 window */
504 	m64_range[1]--;
505 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
506 
507 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
508 
509 	/* Mark remaining ones free */
510 	for (i = m64_range[0]; i < m64_range[1]; i++)
511 		clear_bit(i, &phb->ioda.m64_bar_alloc);
512 
513 	/*
514 	 * Setup init functions for M64 based on IODA version, IODA3 uses
515 	 * the IODA2 code.
516 	 */
517 	if (phb->type == PNV_PHB_IODA1)
518 		phb->init_m64 = pnv_ioda1_init_m64;
519 	else
520 		phb->init_m64 = pnv_ioda2_init_m64;
521 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
522 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
523 }
524 
525 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
526 {
527 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
528 	struct pnv_ioda_pe *slave;
529 	s64 rc;
530 
531 	/* Fetch master PE */
532 	if (pe->flags & PNV_IODA_PE_SLAVE) {
533 		pe = pe->master;
534 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
535 			return;
536 
537 		pe_no = pe->pe_number;
538 	}
539 
540 	/* Freeze master PE */
541 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
542 				     pe_no,
543 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
544 	if (rc != OPAL_SUCCESS) {
545 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
546 			__func__, rc, phb->hose->global_number, pe_no);
547 		return;
548 	}
549 
550 	/* Freeze slave PEs */
551 	if (!(pe->flags & PNV_IODA_PE_MASTER))
552 		return;
553 
554 	list_for_each_entry(slave, &pe->slaves, list) {
555 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
556 					     slave->pe_number,
557 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
558 		if (rc != OPAL_SUCCESS)
559 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
560 				__func__, rc, phb->hose->global_number,
561 				slave->pe_number);
562 	}
563 }
564 
565 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
566 {
567 	struct pnv_ioda_pe *pe, *slave;
568 	s64 rc;
569 
570 	/* Find master PE */
571 	pe = &phb->ioda.pe_array[pe_no];
572 	if (pe->flags & PNV_IODA_PE_SLAVE) {
573 		pe = pe->master;
574 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
575 		pe_no = pe->pe_number;
576 	}
577 
578 	/* Clear frozen state for master PE */
579 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
580 	if (rc != OPAL_SUCCESS) {
581 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
582 			__func__, rc, opt, phb->hose->global_number, pe_no);
583 		return -EIO;
584 	}
585 
586 	if (!(pe->flags & PNV_IODA_PE_MASTER))
587 		return 0;
588 
589 	/* Clear frozen state for slave PEs */
590 	list_for_each_entry(slave, &pe->slaves, list) {
591 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
592 					     slave->pe_number,
593 					     opt);
594 		if (rc != OPAL_SUCCESS) {
595 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
596 				__func__, rc, opt, phb->hose->global_number,
597 				slave->pe_number);
598 			return -EIO;
599 		}
600 	}
601 
602 	return 0;
603 }
604 
605 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
606 {
607 	struct pnv_ioda_pe *slave, *pe;
608 	u8 fstate, state;
609 	__be16 pcierr;
610 	s64 rc;
611 
612 	/* Sanity check on PE number */
613 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
614 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
615 
616 	/*
617 	 * Fetch the master PE and the PE instance might be
618 	 * not initialized yet.
619 	 */
620 	pe = &phb->ioda.pe_array[pe_no];
621 	if (pe->flags & PNV_IODA_PE_SLAVE) {
622 		pe = pe->master;
623 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
624 		pe_no = pe->pe_number;
625 	}
626 
627 	/* Check the master PE */
628 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
629 					&state, &pcierr, NULL);
630 	if (rc != OPAL_SUCCESS) {
631 		pr_warn("%s: Failure %lld getting "
632 			"PHB#%x-PE#%x state\n",
633 			__func__, rc,
634 			phb->hose->global_number, pe_no);
635 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
636 	}
637 
638 	/* Check the slave PE */
639 	if (!(pe->flags & PNV_IODA_PE_MASTER))
640 		return state;
641 
642 	list_for_each_entry(slave, &pe->slaves, list) {
643 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
644 						slave->pe_number,
645 						&fstate,
646 						&pcierr,
647 						NULL);
648 		if (rc != OPAL_SUCCESS) {
649 			pr_warn("%s: Failure %lld getting "
650 				"PHB#%x-PE#%x state\n",
651 				__func__, rc,
652 				phb->hose->global_number, slave->pe_number);
653 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
654 		}
655 
656 		/*
657 		 * Override the result based on the ascending
658 		 * priority.
659 		 */
660 		if (fstate > state)
661 			state = fstate;
662 	}
663 
664 	return state;
665 }
666 
667 /* Currently those 2 are only used when MSIs are enabled, this will change
668  * but in the meantime, we need to protect them to avoid warnings
669  */
670 #ifdef CONFIG_PCI_MSI
671 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
672 {
673 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
674 	struct pnv_phb *phb = hose->private_data;
675 	struct pci_dn *pdn = pci_get_pdn(dev);
676 
677 	if (!pdn)
678 		return NULL;
679 	if (pdn->pe_number == IODA_INVALID_PE)
680 		return NULL;
681 	return &phb->ioda.pe_array[pdn->pe_number];
682 }
683 #endif /* CONFIG_PCI_MSI */
684 
685 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
686 				  struct pnv_ioda_pe *parent,
687 				  struct pnv_ioda_pe *child,
688 				  bool is_add)
689 {
690 	const char *desc = is_add ? "adding" : "removing";
691 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
692 			      OPAL_REMOVE_PE_FROM_DOMAIN;
693 	struct pnv_ioda_pe *slave;
694 	long rc;
695 
696 	/* Parent PE affects child PE */
697 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
698 				child->pe_number, op);
699 	if (rc != OPAL_SUCCESS) {
700 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
701 			rc, desc);
702 		return -ENXIO;
703 	}
704 
705 	if (!(child->flags & PNV_IODA_PE_MASTER))
706 		return 0;
707 
708 	/* Compound case: parent PE affects slave PEs */
709 	list_for_each_entry(slave, &child->slaves, list) {
710 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
711 					slave->pe_number, op);
712 		if (rc != OPAL_SUCCESS) {
713 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
714 				rc, desc);
715 			return -ENXIO;
716 		}
717 	}
718 
719 	return 0;
720 }
721 
722 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
723 			      struct pnv_ioda_pe *pe,
724 			      bool is_add)
725 {
726 	struct pnv_ioda_pe *slave;
727 	struct pci_dev *pdev = NULL;
728 	int ret;
729 
730 	/*
731 	 * Clear PE frozen state. If it's master PE, we need
732 	 * clear slave PE frozen state as well.
733 	 */
734 	if (is_add) {
735 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
736 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
737 		if (pe->flags & PNV_IODA_PE_MASTER) {
738 			list_for_each_entry(slave, &pe->slaves, list)
739 				opal_pci_eeh_freeze_clear(phb->opal_id,
740 							  slave->pe_number,
741 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
742 		}
743 	}
744 
745 	/*
746 	 * Associate PE in PELT. We need add the PE into the
747 	 * corresponding PELT-V as well. Otherwise, the error
748 	 * originated from the PE might contribute to other
749 	 * PEs.
750 	 */
751 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
752 	if (ret)
753 		return ret;
754 
755 	/* For compound PEs, any one affects all of them */
756 	if (pe->flags & PNV_IODA_PE_MASTER) {
757 		list_for_each_entry(slave, &pe->slaves, list) {
758 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
759 			if (ret)
760 				return ret;
761 		}
762 	}
763 
764 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
765 		pdev = pe->pbus->self;
766 	else if (pe->flags & PNV_IODA_PE_DEV)
767 		pdev = pe->pdev->bus->self;
768 #ifdef CONFIG_PCI_IOV
769 	else if (pe->flags & PNV_IODA_PE_VF)
770 		pdev = pe->parent_dev;
771 #endif /* CONFIG_PCI_IOV */
772 	while (pdev) {
773 		struct pci_dn *pdn = pci_get_pdn(pdev);
774 		struct pnv_ioda_pe *parent;
775 
776 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
777 			parent = &phb->ioda.pe_array[pdn->pe_number];
778 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
779 			if (ret)
780 				return ret;
781 		}
782 
783 		pdev = pdev->bus->self;
784 	}
785 
786 	return 0;
787 }
788 
789 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
790 {
791 	struct pci_dev *parent;
792 	uint8_t bcomp, dcomp, fcomp;
793 	int64_t rc;
794 	long rid_end, rid;
795 
796 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
797 	if (pe->pbus) {
798 		int count;
799 
800 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
801 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
802 		parent = pe->pbus->self;
803 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
804 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
805 		else
806 			count = 1;
807 
808 		switch(count) {
809 		case  1: bcomp = OpalPciBusAll;         break;
810 		case  2: bcomp = OpalPciBus7Bits;       break;
811 		case  4: bcomp = OpalPciBus6Bits;       break;
812 		case  8: bcomp = OpalPciBus5Bits;       break;
813 		case 16: bcomp = OpalPciBus4Bits;       break;
814 		case 32: bcomp = OpalPciBus3Bits;       break;
815 		default:
816 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
817 			        count);
818 			/* Do an exact match only */
819 			bcomp = OpalPciBusAll;
820 		}
821 		rid_end = pe->rid + (count << 8);
822 	} else {
823 #ifdef CONFIG_PCI_IOV
824 		if (pe->flags & PNV_IODA_PE_VF)
825 			parent = pe->parent_dev;
826 		else
827 #endif
828 			parent = pe->pdev->bus->self;
829 		bcomp = OpalPciBusAll;
830 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
831 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
832 		rid_end = pe->rid + 1;
833 	}
834 
835 	/* Clear the reverse map */
836 	for (rid = pe->rid; rid < rid_end; rid++)
837 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
838 
839 	/* Release from all parents PELT-V */
840 	while (parent) {
841 		struct pci_dn *pdn = pci_get_pdn(parent);
842 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
843 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
844 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
845 			/* XXX What to do in case of error ? */
846 		}
847 		parent = parent->bus->self;
848 	}
849 
850 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
851 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
852 
853 	/* Disassociate PE in PELT */
854 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
855 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
856 	if (rc)
857 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
858 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
859 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
860 	if (rc)
861 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
862 
863 	pe->pbus = NULL;
864 	pe->pdev = NULL;
865 #ifdef CONFIG_PCI_IOV
866 	pe->parent_dev = NULL;
867 #endif
868 
869 	return 0;
870 }
871 
872 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
873 {
874 	struct pci_dev *parent;
875 	uint8_t bcomp, dcomp, fcomp;
876 	long rc, rid_end, rid;
877 
878 	/* Bus validation ? */
879 	if (pe->pbus) {
880 		int count;
881 
882 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
883 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
884 		parent = pe->pbus->self;
885 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
886 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
887 		else
888 			count = 1;
889 
890 		switch(count) {
891 		case  1: bcomp = OpalPciBusAll;		break;
892 		case  2: bcomp = OpalPciBus7Bits;	break;
893 		case  4: bcomp = OpalPciBus6Bits;	break;
894 		case  8: bcomp = OpalPciBus5Bits;	break;
895 		case 16: bcomp = OpalPciBus4Bits;	break;
896 		case 32: bcomp = OpalPciBus3Bits;	break;
897 		default:
898 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
899 			        count);
900 			/* Do an exact match only */
901 			bcomp = OpalPciBusAll;
902 		}
903 		rid_end = pe->rid + (count << 8);
904 	} else {
905 #ifdef CONFIG_PCI_IOV
906 		if (pe->flags & PNV_IODA_PE_VF)
907 			parent = pe->parent_dev;
908 		else
909 #endif /* CONFIG_PCI_IOV */
910 			parent = pe->pdev->bus->self;
911 		bcomp = OpalPciBusAll;
912 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
913 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
914 		rid_end = pe->rid + 1;
915 	}
916 
917 	/*
918 	 * Associate PE in PELT. We need add the PE into the
919 	 * corresponding PELT-V as well. Otherwise, the error
920 	 * originated from the PE might contribute to other
921 	 * PEs.
922 	 */
923 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
924 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
925 	if (rc) {
926 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
927 		return -ENXIO;
928 	}
929 
930 	/*
931 	 * Configure PELTV. NPUs don't have a PELTV table so skip
932 	 * configuration on them.
933 	 */
934 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
935 		pnv_ioda_set_peltv(phb, pe, true);
936 
937 	/* Setup reverse map */
938 	for (rid = pe->rid; rid < rid_end; rid++)
939 		phb->ioda.pe_rmap[rid] = pe->pe_number;
940 
941 	/* Setup one MVTs on IODA1 */
942 	if (phb->type != PNV_PHB_IODA1) {
943 		pe->mve_number = 0;
944 		goto out;
945 	}
946 
947 	pe->mve_number = pe->pe_number;
948 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
949 	if (rc != OPAL_SUCCESS) {
950 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
951 		       rc, pe->mve_number);
952 		pe->mve_number = -1;
953 	} else {
954 		rc = opal_pci_set_mve_enable(phb->opal_id,
955 					     pe->mve_number, OPAL_ENABLE_MVE);
956 		if (rc) {
957 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
958 			       rc, pe->mve_number);
959 			pe->mve_number = -1;
960 		}
961 	}
962 
963 out:
964 	return 0;
965 }
966 
967 #ifdef CONFIG_PCI_IOV
968 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
969 {
970 	struct pci_dn *pdn = pci_get_pdn(dev);
971 	int i;
972 	struct resource *res, res2;
973 	resource_size_t size;
974 	u16 num_vfs;
975 
976 	if (!dev->is_physfn)
977 		return -EINVAL;
978 
979 	/*
980 	 * "offset" is in VFs.  The M64 windows are sized so that when they
981 	 * are segmented, each segment is the same size as the IOV BAR.
982 	 * Each segment is in a separate PE, and the high order bits of the
983 	 * address are the PE number.  Therefore, each VF's BAR is in a
984 	 * separate PE, and changing the IOV BAR start address changes the
985 	 * range of PEs the VFs are in.
986 	 */
987 	num_vfs = pdn->num_vfs;
988 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
989 		res = &dev->resource[i + PCI_IOV_RESOURCES];
990 		if (!res->flags || !res->parent)
991 			continue;
992 
993 		/*
994 		 * The actual IOV BAR range is determined by the start address
995 		 * and the actual size for num_vfs VFs BAR.  This check is to
996 		 * make sure that after shifting, the range will not overlap
997 		 * with another device.
998 		 */
999 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1000 		res2.flags = res->flags;
1001 		res2.start = res->start + (size * offset);
1002 		res2.end = res2.start + (size * num_vfs) - 1;
1003 
1004 		if (res2.end > res->end) {
1005 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1006 				i, &res2, res, num_vfs, offset);
1007 			return -EBUSY;
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * Since M64 BAR shares segments among all possible 256 PEs,
1013 	 * we have to shift the beginning of PF IOV BAR to make it start from
1014 	 * the segment which belongs to the PE number assigned to the first VF.
1015 	 * This creates a "hole" in the /proc/iomem which could be used for
1016 	 * allocating other resources so we reserve this area below and
1017 	 * release when IOV is released.
1018 	 */
1019 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1020 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1021 		if (!res->flags || !res->parent)
1022 			continue;
1023 
1024 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1025 		res2 = *res;
1026 		res->start += size * offset;
1027 
1028 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1029 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1030 			 num_vfs, offset);
1031 
1032 		if (offset < 0) {
1033 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1034 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1035 		}
1036 
1037 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1038 
1039 		if (offset > 0) {
1040 			pdn->holes[i].start = res2.start;
1041 			pdn->holes[i].end = res2.start + size * offset - 1;
1042 			pdn->holes[i].flags = IORESOURCE_BUS;
1043 			pdn->holes[i].name = "pnv_iov_reserved";
1044 			devm_request_resource(&dev->dev, res->parent,
1045 					&pdn->holes[i]);
1046 		}
1047 	}
1048 	return 0;
1049 }
1050 #endif /* CONFIG_PCI_IOV */
1051 
1052 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1053 {
1054 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1055 	struct pnv_phb *phb = hose->private_data;
1056 	struct pci_dn *pdn = pci_get_pdn(dev);
1057 	struct pnv_ioda_pe *pe;
1058 
1059 	if (!pdn) {
1060 		pr_err("%s: Device tree node not associated properly\n",
1061 			   pci_name(dev));
1062 		return NULL;
1063 	}
1064 	if (pdn->pe_number != IODA_INVALID_PE)
1065 		return NULL;
1066 
1067 	pe = pnv_ioda_alloc_pe(phb);
1068 	if (!pe) {
1069 		pr_warn("%s: Not enough PE# available, disabling device\n",
1070 			pci_name(dev));
1071 		return NULL;
1072 	}
1073 
1074 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1075 	 * pointer in the PE data structure, both should be destroyed at the
1076 	 * same time. However, this needs to be looked at more closely again
1077 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1078 	 *
1079 	 * At some point we want to remove the PDN completely anyways
1080 	 */
1081 	pci_dev_get(dev);
1082 	pdn->pe_number = pe->pe_number;
1083 	pe->flags = PNV_IODA_PE_DEV;
1084 	pe->pdev = dev;
1085 	pe->pbus = NULL;
1086 	pe->mve_number = -1;
1087 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1088 
1089 	pe_info(pe, "Associated device to PE\n");
1090 
1091 	if (pnv_ioda_configure_pe(phb, pe)) {
1092 		/* XXX What do we do here ? */
1093 		pnv_ioda_free_pe(pe);
1094 		pdn->pe_number = IODA_INVALID_PE;
1095 		pe->pdev = NULL;
1096 		pci_dev_put(dev);
1097 		return NULL;
1098 	}
1099 
1100 	/* Put PE to the list */
1101 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1102 
1103 	return pe;
1104 }
1105 
1106 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1107 {
1108 	struct pci_dev *dev;
1109 
1110 	list_for_each_entry(dev, &bus->devices, bus_list) {
1111 		struct pci_dn *pdn = pci_get_pdn(dev);
1112 
1113 		if (pdn == NULL) {
1114 			pr_warn("%s: No device node associated with device !\n",
1115 				pci_name(dev));
1116 			continue;
1117 		}
1118 
1119 		/*
1120 		 * In partial hotplug case, the PCI device might be still
1121 		 * associated with the PE and needn't attach it to the PE
1122 		 * again.
1123 		 */
1124 		if (pdn->pe_number != IODA_INVALID_PE)
1125 			continue;
1126 
1127 		pe->device_count++;
1128 		pdn->pe_number = pe->pe_number;
1129 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1130 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1131 	}
1132 }
1133 
1134 /*
1135  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1136  * single PCI bus. Another one that contains the primary PCI bus and its
1137  * subordinate PCI devices and buses. The second type of PE is normally
1138  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1139  */
1140 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1141 {
1142 	struct pci_controller *hose = pci_bus_to_host(bus);
1143 	struct pnv_phb *phb = hose->private_data;
1144 	struct pnv_ioda_pe *pe = NULL;
1145 	unsigned int pe_num;
1146 
1147 	/*
1148 	 * In partial hotplug case, the PE instance might be still alive.
1149 	 * We should reuse it instead of allocating a new one.
1150 	 */
1151 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1152 	if (pe_num != IODA_INVALID_PE) {
1153 		pe = &phb->ioda.pe_array[pe_num];
1154 		pnv_ioda_setup_same_PE(bus, pe);
1155 		return NULL;
1156 	}
1157 
1158 	/* PE number for root bus should have been reserved */
1159 	if (pci_is_root_bus(bus) &&
1160 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1161 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1162 
1163 	/* Check if PE is determined by M64 */
1164 	if (!pe && phb->pick_m64_pe)
1165 		pe = phb->pick_m64_pe(bus, all);
1166 
1167 	/* The PE number isn't pinned by M64 */
1168 	if (!pe)
1169 		pe = pnv_ioda_alloc_pe(phb);
1170 
1171 	if (!pe) {
1172 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1173 			__func__, pci_domain_nr(bus), bus->number);
1174 		return NULL;
1175 	}
1176 
1177 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1178 	pe->pbus = bus;
1179 	pe->pdev = NULL;
1180 	pe->mve_number = -1;
1181 	pe->rid = bus->busn_res.start << 8;
1182 
1183 	if (all)
1184 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1185 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1186 	else
1187 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1188 			bus->busn_res.start, pe->pe_number);
1189 
1190 	if (pnv_ioda_configure_pe(phb, pe)) {
1191 		/* XXX What do we do here ? */
1192 		pnv_ioda_free_pe(pe);
1193 		pe->pbus = NULL;
1194 		return NULL;
1195 	}
1196 
1197 	/* Associate it with all child devices */
1198 	pnv_ioda_setup_same_PE(bus, pe);
1199 
1200 	/* Put PE to the list */
1201 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1202 
1203 	return pe;
1204 }
1205 
1206 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1207 {
1208 	int pe_num, found_pe = false, rc;
1209 	long rid;
1210 	struct pnv_ioda_pe *pe;
1211 	struct pci_dev *gpu_pdev;
1212 	struct pci_dn *npu_pdn;
1213 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1214 	struct pnv_phb *phb = hose->private_data;
1215 
1216 	/*
1217 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1218 	 * error handling. This means we only have three PEs remaining
1219 	 * which need to be assigned to four links, implying some
1220 	 * links must share PEs.
1221 	 *
1222 	 * To achieve this we assign PEs such that NPUs linking the
1223 	 * same GPU get assigned the same PE.
1224 	 */
1225 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1226 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1227 		pe = &phb->ioda.pe_array[pe_num];
1228 		if (!pe->pdev)
1229 			continue;
1230 
1231 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1232 			/*
1233 			 * This device has the same peer GPU so should
1234 			 * be assigned the same PE as the existing
1235 			 * peer NPU.
1236 			 */
1237 			dev_info(&npu_pdev->dev,
1238 				"Associating to existing PE %x\n", pe_num);
1239 			pci_dev_get(npu_pdev);
1240 			npu_pdn = pci_get_pdn(npu_pdev);
1241 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1242 			npu_pdn->pe_number = pe_num;
1243 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1244 
1245 			/* Map the PE to this link */
1246 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1247 					OpalPciBusAll,
1248 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1249 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1250 					OPAL_MAP_PE);
1251 			WARN_ON(rc != OPAL_SUCCESS);
1252 			found_pe = true;
1253 			break;
1254 		}
1255 	}
1256 
1257 	if (!found_pe)
1258 		/*
1259 		 * Could not find an existing PE so allocate a new
1260 		 * one.
1261 		 */
1262 		return pnv_ioda_setup_dev_PE(npu_pdev);
1263 	else
1264 		return pe;
1265 }
1266 
1267 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1268 {
1269 	struct pci_dev *pdev;
1270 
1271 	list_for_each_entry(pdev, &bus->devices, bus_list)
1272 		pnv_ioda_setup_npu_PE(pdev);
1273 }
1274 
1275 static void pnv_pci_ioda_setup_PEs(void)
1276 {
1277 	struct pci_controller *hose, *tmp;
1278 	struct pnv_phb *phb;
1279 	struct pci_bus *bus;
1280 	struct pci_dev *pdev;
1281 
1282 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1283 		phb = hose->private_data;
1284 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1285 			/* PE#0 is needed for error reporting */
1286 			pnv_ioda_reserve_pe(phb, 0);
1287 			pnv_ioda_setup_npu_PEs(hose->bus);
1288 			if (phb->model == PNV_PHB_MODEL_NPU2)
1289 				pnv_npu2_init(phb);
1290 		}
1291 		if (phb->type == PNV_PHB_NPU_OCAPI) {
1292 			bus = hose->bus;
1293 			list_for_each_entry(pdev, &bus->devices, bus_list)
1294 				pnv_ioda_setup_dev_PE(pdev);
1295 		}
1296 	}
1297 }
1298 
1299 #ifdef CONFIG_PCI_IOV
1300 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1301 {
1302 	struct pci_bus        *bus;
1303 	struct pci_controller *hose;
1304 	struct pnv_phb        *phb;
1305 	struct pci_dn         *pdn;
1306 	int                    i, j;
1307 	int                    m64_bars;
1308 
1309 	bus = pdev->bus;
1310 	hose = pci_bus_to_host(bus);
1311 	phb = hose->private_data;
1312 	pdn = pci_get_pdn(pdev);
1313 
1314 	if (pdn->m64_single_mode)
1315 		m64_bars = num_vfs;
1316 	else
1317 		m64_bars = 1;
1318 
1319 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1320 		for (j = 0; j < m64_bars; j++) {
1321 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1322 				continue;
1323 			opal_pci_phb_mmio_enable(phb->opal_id,
1324 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1325 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1326 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1327 		}
1328 
1329 	kfree(pdn->m64_map);
1330 	return 0;
1331 }
1332 
1333 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1334 {
1335 	struct pci_bus        *bus;
1336 	struct pci_controller *hose;
1337 	struct pnv_phb        *phb;
1338 	struct pci_dn         *pdn;
1339 	unsigned int           win;
1340 	struct resource       *res;
1341 	int                    i, j;
1342 	int64_t                rc;
1343 	int                    total_vfs;
1344 	resource_size_t        size, start;
1345 	int                    pe_num;
1346 	int                    m64_bars;
1347 
1348 	bus = pdev->bus;
1349 	hose = pci_bus_to_host(bus);
1350 	phb = hose->private_data;
1351 	pdn = pci_get_pdn(pdev);
1352 	total_vfs = pci_sriov_get_totalvfs(pdev);
1353 
1354 	if (pdn->m64_single_mode)
1355 		m64_bars = num_vfs;
1356 	else
1357 		m64_bars = 1;
1358 
1359 	pdn->m64_map = kmalloc_array(m64_bars,
1360 				     sizeof(*pdn->m64_map),
1361 				     GFP_KERNEL);
1362 	if (!pdn->m64_map)
1363 		return -ENOMEM;
1364 	/* Initialize the m64_map to IODA_INVALID_M64 */
1365 	for (i = 0; i < m64_bars ; i++)
1366 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1367 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1368 
1369 
1370 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1371 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1372 		if (!res->flags || !res->parent)
1373 			continue;
1374 
1375 		for (j = 0; j < m64_bars; j++) {
1376 			do {
1377 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1378 						phb->ioda.m64_bar_idx + 1, 0);
1379 
1380 				if (win >= phb->ioda.m64_bar_idx + 1)
1381 					goto m64_failed;
1382 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1383 
1384 			pdn->m64_map[j][i] = win;
1385 
1386 			if (pdn->m64_single_mode) {
1387 				size = pci_iov_resource_size(pdev,
1388 							PCI_IOV_RESOURCES + i);
1389 				start = res->start + size * j;
1390 			} else {
1391 				size = resource_size(res);
1392 				start = res->start;
1393 			}
1394 
1395 			/* Map the M64 here */
1396 			if (pdn->m64_single_mode) {
1397 				pe_num = pdn->pe_num_map[j];
1398 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1399 						pe_num, OPAL_M64_WINDOW_TYPE,
1400 						pdn->m64_map[j][i], 0);
1401 			}
1402 
1403 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1404 						 OPAL_M64_WINDOW_TYPE,
1405 						 pdn->m64_map[j][i],
1406 						 start,
1407 						 0, /* unused */
1408 						 size);
1409 
1410 
1411 			if (rc != OPAL_SUCCESS) {
1412 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1413 					win, rc);
1414 				goto m64_failed;
1415 			}
1416 
1417 			if (pdn->m64_single_mode)
1418 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1419 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1420 			else
1421 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1422 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1423 
1424 			if (rc != OPAL_SUCCESS) {
1425 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1426 					win, rc);
1427 				goto m64_failed;
1428 			}
1429 		}
1430 	}
1431 	return 0;
1432 
1433 m64_failed:
1434 	pnv_pci_vf_release_m64(pdev, num_vfs);
1435 	return -EBUSY;
1436 }
1437 
1438 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1439 		int num);
1440 
1441 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1442 {
1443 	struct iommu_table    *tbl;
1444 	int64_t               rc;
1445 
1446 	tbl = pe->table_group.tables[0];
1447 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1448 	if (rc)
1449 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1450 
1451 	pnv_pci_ioda2_set_bypass(pe, false);
1452 	if (pe->table_group.group) {
1453 		iommu_group_put(pe->table_group.group);
1454 		BUG_ON(pe->table_group.group);
1455 	}
1456 	iommu_tce_table_put(tbl);
1457 }
1458 
1459 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1460 {
1461 	struct pci_bus        *bus;
1462 	struct pci_controller *hose;
1463 	struct pnv_phb        *phb;
1464 	struct pnv_ioda_pe    *pe, *pe_n;
1465 	struct pci_dn         *pdn;
1466 
1467 	bus = pdev->bus;
1468 	hose = pci_bus_to_host(bus);
1469 	phb = hose->private_data;
1470 	pdn = pci_get_pdn(pdev);
1471 
1472 	if (!pdev->is_physfn)
1473 		return;
1474 
1475 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1476 		if (pe->parent_dev != pdev)
1477 			continue;
1478 
1479 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1480 
1481 		/* Remove from list */
1482 		mutex_lock(&phb->ioda.pe_list_mutex);
1483 		list_del(&pe->list);
1484 		mutex_unlock(&phb->ioda.pe_list_mutex);
1485 
1486 		pnv_ioda_deconfigure_pe(phb, pe);
1487 
1488 		pnv_ioda_free_pe(pe);
1489 	}
1490 }
1491 
1492 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1493 {
1494 	struct pci_bus        *bus;
1495 	struct pci_controller *hose;
1496 	struct pnv_phb        *phb;
1497 	struct pnv_ioda_pe    *pe;
1498 	struct pci_dn         *pdn;
1499 	u16                    num_vfs, i;
1500 
1501 	bus = pdev->bus;
1502 	hose = pci_bus_to_host(bus);
1503 	phb = hose->private_data;
1504 	pdn = pci_get_pdn(pdev);
1505 	num_vfs = pdn->num_vfs;
1506 
1507 	/* Release VF PEs */
1508 	pnv_ioda_release_vf_PE(pdev);
1509 
1510 	if (phb->type == PNV_PHB_IODA2) {
1511 		if (!pdn->m64_single_mode)
1512 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1513 
1514 		/* Release M64 windows */
1515 		pnv_pci_vf_release_m64(pdev, num_vfs);
1516 
1517 		/* Release PE numbers */
1518 		if (pdn->m64_single_mode) {
1519 			for (i = 0; i < num_vfs; i++) {
1520 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1521 					continue;
1522 
1523 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1524 				pnv_ioda_free_pe(pe);
1525 			}
1526 		} else
1527 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1528 		/* Releasing pe_num_map */
1529 		kfree(pdn->pe_num_map);
1530 	}
1531 }
1532 
1533 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1534 				       struct pnv_ioda_pe *pe);
1535 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1536 {
1537 	struct pci_bus        *bus;
1538 	struct pci_controller *hose;
1539 	struct pnv_phb        *phb;
1540 	struct pnv_ioda_pe    *pe;
1541 	int                    pe_num;
1542 	u16                    vf_index;
1543 	struct pci_dn         *pdn;
1544 
1545 	bus = pdev->bus;
1546 	hose = pci_bus_to_host(bus);
1547 	phb = hose->private_data;
1548 	pdn = pci_get_pdn(pdev);
1549 
1550 	if (!pdev->is_physfn)
1551 		return;
1552 
1553 	/* Reserve PE for each VF */
1554 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1555 		if (pdn->m64_single_mode)
1556 			pe_num = pdn->pe_num_map[vf_index];
1557 		else
1558 			pe_num = *pdn->pe_num_map + vf_index;
1559 
1560 		pe = &phb->ioda.pe_array[pe_num];
1561 		pe->pe_number = pe_num;
1562 		pe->phb = phb;
1563 		pe->flags = PNV_IODA_PE_VF;
1564 		pe->pbus = NULL;
1565 		pe->parent_dev = pdev;
1566 		pe->mve_number = -1;
1567 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1568 			   pci_iov_virtfn_devfn(pdev, vf_index);
1569 
1570 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1571 			hose->global_number, pdev->bus->number,
1572 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1573 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1574 
1575 		if (pnv_ioda_configure_pe(phb, pe)) {
1576 			/* XXX What do we do here ? */
1577 			pnv_ioda_free_pe(pe);
1578 			pe->pdev = NULL;
1579 			continue;
1580 		}
1581 
1582 		/* Put PE to the list */
1583 		mutex_lock(&phb->ioda.pe_list_mutex);
1584 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1585 		mutex_unlock(&phb->ioda.pe_list_mutex);
1586 
1587 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1588 	}
1589 }
1590 
1591 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1592 {
1593 	struct pci_bus        *bus;
1594 	struct pci_controller *hose;
1595 	struct pnv_phb        *phb;
1596 	struct pnv_ioda_pe    *pe;
1597 	struct pci_dn         *pdn;
1598 	int                    ret;
1599 	u16                    i;
1600 
1601 	bus = pdev->bus;
1602 	hose = pci_bus_to_host(bus);
1603 	phb = hose->private_data;
1604 	pdn = pci_get_pdn(pdev);
1605 
1606 	if (phb->type == PNV_PHB_IODA2) {
1607 		if (!pdn->vfs_expanded) {
1608 			dev_info(&pdev->dev, "don't support this SRIOV device"
1609 				" with non 64bit-prefetchable IOV BAR\n");
1610 			return -ENOSPC;
1611 		}
1612 
1613 		/*
1614 		 * When M64 BARs functions in Single PE mode, the number of VFs
1615 		 * could be enabled must be less than the number of M64 BARs.
1616 		 */
1617 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1618 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1619 			return -EBUSY;
1620 		}
1621 
1622 		/* Allocating pe_num_map */
1623 		if (pdn->m64_single_mode)
1624 			pdn->pe_num_map = kmalloc_array(num_vfs,
1625 							sizeof(*pdn->pe_num_map),
1626 							GFP_KERNEL);
1627 		else
1628 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1629 
1630 		if (!pdn->pe_num_map)
1631 			return -ENOMEM;
1632 
1633 		if (pdn->m64_single_mode)
1634 			for (i = 0; i < num_vfs; i++)
1635 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1636 
1637 		/* Calculate available PE for required VFs */
1638 		if (pdn->m64_single_mode) {
1639 			for (i = 0; i < num_vfs; i++) {
1640 				pe = pnv_ioda_alloc_pe(phb);
1641 				if (!pe) {
1642 					ret = -EBUSY;
1643 					goto m64_failed;
1644 				}
1645 
1646 				pdn->pe_num_map[i] = pe->pe_number;
1647 			}
1648 		} else {
1649 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1650 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1651 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1652 				0, num_vfs, 0);
1653 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1654 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1655 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1656 				kfree(pdn->pe_num_map);
1657 				return -EBUSY;
1658 			}
1659 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1660 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1661 		}
1662 		pdn->num_vfs = num_vfs;
1663 
1664 		/* Assign M64 window accordingly */
1665 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1666 		if (ret) {
1667 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1668 			goto m64_failed;
1669 		}
1670 
1671 		/*
1672 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1673 		 * the IOV BAR according to the PE# allocated to the VFs.
1674 		 * Otherwise, the PE# for the VF will conflict with others.
1675 		 */
1676 		if (!pdn->m64_single_mode) {
1677 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1678 			if (ret)
1679 				goto m64_failed;
1680 		}
1681 	}
1682 
1683 	/* Setup VF PEs */
1684 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1685 
1686 	return 0;
1687 
1688 m64_failed:
1689 	if (pdn->m64_single_mode) {
1690 		for (i = 0; i < num_vfs; i++) {
1691 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1692 				continue;
1693 
1694 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1695 			pnv_ioda_free_pe(pe);
1696 		}
1697 	} else
1698 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1699 
1700 	/* Releasing pe_num_map */
1701 	kfree(pdn->pe_num_map);
1702 
1703 	return ret;
1704 }
1705 
1706 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1707 {
1708 	pnv_pci_sriov_disable(pdev);
1709 
1710 	/* Release PCI data */
1711 	remove_dev_pci_data(pdev);
1712 	return 0;
1713 }
1714 
1715 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1716 {
1717 	/* Allocate PCI data */
1718 	add_dev_pci_data(pdev);
1719 
1720 	return pnv_pci_sriov_enable(pdev, num_vfs);
1721 }
1722 #endif /* CONFIG_PCI_IOV */
1723 
1724 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1725 {
1726 	struct pci_dn *pdn = pci_get_pdn(pdev);
1727 	struct pnv_ioda_pe *pe;
1728 
1729 	/*
1730 	 * The function can be called while the PE#
1731 	 * hasn't been assigned. Do nothing for the
1732 	 * case.
1733 	 */
1734 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1735 		return;
1736 
1737 	pe = &phb->ioda.pe_array[pdn->pe_number];
1738 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1739 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1740 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1741 	/*
1742 	 * Note: iommu_add_device() will fail here as
1743 	 * for physical PE: the device is already added by now;
1744 	 * for virtual PE: sysfs entries are not ready yet and
1745 	 * tce_iommu_bus_notifier will add the device to a group later.
1746 	 */
1747 }
1748 
1749 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1750 {
1751 	unsigned short vendor = 0;
1752 	struct pci_dev *pdev;
1753 
1754 	if (pe->device_count == 1)
1755 		return true;
1756 
1757 	/* pe->pdev should be set if it's a single device, pe->pbus if not */
1758 	if (!pe->pbus)
1759 		return true;
1760 
1761 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1762 		if (!vendor) {
1763 			vendor = pdev->vendor;
1764 			continue;
1765 		}
1766 
1767 		if (pdev->vendor != vendor)
1768 			return false;
1769 	}
1770 
1771 	return true;
1772 }
1773 
1774 /*
1775  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1776  *
1777  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1778  * Devices can only access more than that if bit 59 of the PCI address is set
1779  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1780  * Many PCI devices are not capable of addressing that many bits, and as a
1781  * result are limited to the 4GB of virtual memory made available to 32-bit
1782  * devices in TVE#0.
1783  *
1784  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1785  * devices by configuring the virtual memory past the first 4GB inaccessible
1786  * by 64-bit DMAs.  This should only be used by devices that want more than
1787  * 4GB, and only on PEs that have no 32-bit devices.
1788  *
1789  * Currently this will only work on PHB3 (POWER8).
1790  */
1791 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1792 {
1793 	u64 window_size, table_size, tce_count, addr;
1794 	struct page *table_pages;
1795 	u64 tce_order = 28; /* 256MB TCEs */
1796 	__be64 *tces;
1797 	s64 rc;
1798 
1799 	/*
1800 	 * Window size needs to be a power of two, but needs to account for
1801 	 * shifting memory by the 4GB offset required to skip 32bit space.
1802 	 */
1803 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1804 	tce_count = window_size >> tce_order;
1805 	table_size = tce_count << 3;
1806 
1807 	if (table_size < PAGE_SIZE)
1808 		table_size = PAGE_SIZE;
1809 
1810 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1811 				       get_order(table_size));
1812 	if (!table_pages)
1813 		goto err;
1814 
1815 	tces = page_address(table_pages);
1816 	if (!tces)
1817 		goto err;
1818 
1819 	memset(tces, 0, table_size);
1820 
1821 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1822 		tces[(addr + (1ULL << 32)) >> tce_order] =
1823 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1824 	}
1825 
1826 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1827 					pe->pe_number,
1828 					/* reconfigure window 0 */
1829 					(pe->pe_number << 1) + 0,
1830 					1,
1831 					__pa(tces),
1832 					table_size,
1833 					1 << tce_order);
1834 	if (rc == OPAL_SUCCESS) {
1835 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1836 		return 0;
1837 	}
1838 err:
1839 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1840 	return -EIO;
1841 }
1842 
1843 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1844 {
1845 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1846 	struct pnv_phb *phb = hose->private_data;
1847 	struct pci_dn *pdn = pci_get_pdn(pdev);
1848 	struct pnv_ioda_pe *pe;
1849 	uint64_t top;
1850 	bool bypass = false;
1851 	s64 rc;
1852 
1853 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1854 		return -ENODEV;
1855 
1856 	pe = &phb->ioda.pe_array[pdn->pe_number];
1857 	if (pe->tce_bypass_enabled) {
1858 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1859 		bypass = (dma_mask >= top);
1860 	}
1861 
1862 	if (bypass) {
1863 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1864 		set_dma_ops(&pdev->dev, &dma_nommu_ops);
1865 	} else {
1866 		/*
1867 		 * If the device can't set the TCE bypass bit but still wants
1868 		 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1869 		 * bypass the 32-bit region and be usable for 64-bit DMAs.
1870 		 * The device needs to be able to address all of this space.
1871 		 */
1872 		if (dma_mask >> 32 &&
1873 		    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1874 		    pnv_pci_ioda_pe_single_vendor(pe) &&
1875 		    phb->model == PNV_PHB_MODEL_PHB3) {
1876 			/* Configure the bypass mode */
1877 			rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1878 			if (rc)
1879 				return rc;
1880 			/* 4GB offset bypasses 32-bit space */
1881 			set_dma_offset(&pdev->dev, (1ULL << 32));
1882 			set_dma_ops(&pdev->dev, &dma_nommu_ops);
1883 		} else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1884 			/*
1885 			 * Fail the request if a DMA mask between 32 and 64 bits
1886 			 * was requested but couldn't be fulfilled. Ideally we
1887 			 * would do this for 64-bits but historically we have
1888 			 * always fallen back to 32-bits.
1889 			 */
1890 			return -ENOMEM;
1891 		} else {
1892 			dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1893 			set_dma_ops(&pdev->dev, &dma_iommu_ops);
1894 		}
1895 	}
1896 	*pdev->dev.dma_mask = dma_mask;
1897 
1898 	/* Update peer npu devices */
1899 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1900 
1901 	return 0;
1902 }
1903 
1904 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1905 {
1906 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1907 	struct pnv_phb *phb = hose->private_data;
1908 	struct pci_dn *pdn = pci_get_pdn(pdev);
1909 	struct pnv_ioda_pe *pe;
1910 	u64 end, mask;
1911 
1912 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1913 		return 0;
1914 
1915 	pe = &phb->ioda.pe_array[pdn->pe_number];
1916 	if (!pe->tce_bypass_enabled)
1917 		return __dma_get_required_mask(&pdev->dev);
1918 
1919 
1920 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1921 	mask = 1ULL << (fls64(end) - 1);
1922 	mask += mask - 1;
1923 
1924 	return mask;
1925 }
1926 
1927 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1928 				   struct pci_bus *bus,
1929 				   bool add_to_group)
1930 {
1931 	struct pci_dev *dev;
1932 
1933 	list_for_each_entry(dev, &bus->devices, bus_list) {
1934 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1935 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1936 		if (add_to_group)
1937 			iommu_add_device(&dev->dev);
1938 
1939 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1940 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1941 					add_to_group);
1942 	}
1943 }
1944 
1945 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1946 						     bool real_mode)
1947 {
1948 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1949 		(phb->regs + 0x210);
1950 }
1951 
1952 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1953 		unsigned long index, unsigned long npages, bool rm)
1954 {
1955 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1956 			&tbl->it_group_list, struct iommu_table_group_link,
1957 			next);
1958 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1959 			struct pnv_ioda_pe, table_group);
1960 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1961 	unsigned long start, end, inc;
1962 
1963 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1964 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1965 			npages - 1);
1966 
1967 	/* p7ioc-style invalidation, 2 TCEs per write */
1968 	start |= (1ull << 63);
1969 	end |= (1ull << 63);
1970 	inc = 16;
1971         end |= inc - 1;	/* round up end to be different than start */
1972 
1973         mb(); /* Ensure above stores are visible */
1974         while (start <= end) {
1975 		if (rm)
1976 			__raw_rm_writeq_be(start, invalidate);
1977 		else
1978 			__raw_writeq_be(start, invalidate);
1979 
1980                 start += inc;
1981         }
1982 
1983 	/*
1984 	 * The iommu layer will do another mb() for us on build()
1985 	 * and we don't care on free()
1986 	 */
1987 }
1988 
1989 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1990 		long npages, unsigned long uaddr,
1991 		enum dma_data_direction direction,
1992 		unsigned long attrs)
1993 {
1994 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1995 			attrs);
1996 
1997 	if (!ret)
1998 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1999 
2000 	return ret;
2001 }
2002 
2003 #ifdef CONFIG_IOMMU_API
2004 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
2005 		unsigned long *hpa, enum dma_data_direction *direction)
2006 {
2007 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2008 
2009 	if (!ret)
2010 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
2011 
2012 	return ret;
2013 }
2014 
2015 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2016 		unsigned long *hpa, enum dma_data_direction *direction)
2017 {
2018 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2019 
2020 	if (!ret)
2021 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2022 
2023 	return ret;
2024 }
2025 #endif
2026 
2027 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2028 		long npages)
2029 {
2030 	pnv_tce_free(tbl, index, npages);
2031 
2032 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2033 }
2034 
2035 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2036 	.set = pnv_ioda1_tce_build,
2037 #ifdef CONFIG_IOMMU_API
2038 	.exchange = pnv_ioda1_tce_xchg,
2039 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
2040 	.useraddrptr = pnv_tce_useraddrptr,
2041 #endif
2042 	.clear = pnv_ioda1_tce_free,
2043 	.get = pnv_tce_get,
2044 };
2045 
2046 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
2047 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
2048 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
2049 
2050 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2051 {
2052 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2053 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2054 
2055 	mb(); /* Ensure previous TCE table stores are visible */
2056 	if (rm)
2057 		__raw_rm_writeq_be(val, invalidate);
2058 	else
2059 		__raw_writeq_be(val, invalidate);
2060 }
2061 
2062 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2063 {
2064 	/* 01xb - invalidate TCEs that match the specified PE# */
2065 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2066 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2067 
2068 	mb(); /* Ensure above stores are visible */
2069 	__raw_writeq_be(val, invalidate);
2070 }
2071 
2072 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2073 					unsigned shift, unsigned long index,
2074 					unsigned long npages)
2075 {
2076 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2077 	unsigned long start, end, inc;
2078 
2079 	/* We'll invalidate DMA address in PE scope */
2080 	start = PHB3_TCE_KILL_INVAL_ONE;
2081 	start |= (pe->pe_number & 0xFF);
2082 	end = start;
2083 
2084 	/* Figure out the start, end and step */
2085 	start |= (index << shift);
2086 	end |= ((index + npages - 1) << shift);
2087 	inc = (0x1ull << shift);
2088 	mb();
2089 
2090 	while (start <= end) {
2091 		if (rm)
2092 			__raw_rm_writeq_be(start, invalidate);
2093 		else
2094 			__raw_writeq_be(start, invalidate);
2095 		start += inc;
2096 	}
2097 }
2098 
2099 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2100 {
2101 	struct pnv_phb *phb = pe->phb;
2102 
2103 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2104 		pnv_pci_phb3_tce_invalidate_pe(pe);
2105 	else
2106 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2107 				  pe->pe_number, 0, 0, 0);
2108 }
2109 
2110 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2111 		unsigned long index, unsigned long npages, bool rm)
2112 {
2113 	struct iommu_table_group_link *tgl;
2114 
2115 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2116 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2117 				struct pnv_ioda_pe, table_group);
2118 		struct pnv_phb *phb = pe->phb;
2119 		unsigned int shift = tbl->it_page_shift;
2120 
2121 		/*
2122 		 * NVLink1 can use the TCE kill register directly as
2123 		 * it's the same as PHB3. NVLink2 is different and
2124 		 * should go via the OPAL call.
2125 		 */
2126 		if (phb->model == PNV_PHB_MODEL_NPU) {
2127 			/*
2128 			 * The NVLink hardware does not support TCE kill
2129 			 * per TCE entry so we have to invalidate
2130 			 * the entire cache for it.
2131 			 */
2132 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2133 			continue;
2134 		}
2135 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2136 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2137 						    index, npages);
2138 		else
2139 			opal_pci_tce_kill(phb->opal_id,
2140 					  OPAL_PCI_TCE_KILL_PAGES,
2141 					  pe->pe_number, 1u << shift,
2142 					  index << shift, npages);
2143 	}
2144 }
2145 
2146 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2147 {
2148 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2149 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2150 	else
2151 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2152 }
2153 
2154 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2155 		long npages, unsigned long uaddr,
2156 		enum dma_data_direction direction,
2157 		unsigned long attrs)
2158 {
2159 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2160 			attrs);
2161 
2162 	if (!ret)
2163 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2164 
2165 	return ret;
2166 }
2167 
2168 #ifdef CONFIG_IOMMU_API
2169 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2170 		unsigned long *hpa, enum dma_data_direction *direction)
2171 {
2172 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2173 
2174 	if (!ret)
2175 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2176 
2177 	return ret;
2178 }
2179 
2180 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2181 		unsigned long *hpa, enum dma_data_direction *direction)
2182 {
2183 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2184 
2185 	if (!ret)
2186 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2187 
2188 	return ret;
2189 }
2190 #endif
2191 
2192 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2193 		long npages)
2194 {
2195 	pnv_tce_free(tbl, index, npages);
2196 
2197 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2198 }
2199 
2200 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2201 	.set = pnv_ioda2_tce_build,
2202 #ifdef CONFIG_IOMMU_API
2203 	.exchange = pnv_ioda2_tce_xchg,
2204 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2205 	.useraddrptr = pnv_tce_useraddrptr,
2206 #endif
2207 	.clear = pnv_ioda2_tce_free,
2208 	.get = pnv_tce_get,
2209 	.free = pnv_pci_ioda2_table_free_pages,
2210 };
2211 
2212 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2213 {
2214 	unsigned int *weight = (unsigned int *)data;
2215 
2216 	/* This is quite simplistic. The "base" weight of a device
2217 	 * is 10. 0 means no DMA is to be accounted for it.
2218 	 */
2219 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2220 		return 0;
2221 
2222 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2223 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2224 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2225 		*weight += 3;
2226 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2227 		*weight += 15;
2228 	else
2229 		*weight += 10;
2230 
2231 	return 0;
2232 }
2233 
2234 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2235 {
2236 	unsigned int weight = 0;
2237 
2238 	/* SRIOV VF has same DMA32 weight as its PF */
2239 #ifdef CONFIG_PCI_IOV
2240 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2241 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2242 		return weight;
2243 	}
2244 #endif
2245 
2246 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2247 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2248 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2249 		struct pci_dev *pdev;
2250 
2251 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2252 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2253 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2254 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2255 	}
2256 
2257 	return weight;
2258 }
2259 
2260 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2261 				       struct pnv_ioda_pe *pe)
2262 {
2263 
2264 	struct page *tce_mem = NULL;
2265 	struct iommu_table *tbl;
2266 	unsigned int weight, total_weight = 0;
2267 	unsigned int tce32_segsz, base, segs, avail, i;
2268 	int64_t rc;
2269 	void *addr;
2270 
2271 	/* XXX FIXME: Handle 64-bit only DMA devices */
2272 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2273 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2274 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2275 	if (!weight)
2276 		return;
2277 
2278 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2279 		     &total_weight);
2280 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2281 	if (!segs)
2282 		segs = 1;
2283 
2284 	/*
2285 	 * Allocate contiguous DMA32 segments. We begin with the expected
2286 	 * number of segments. With one more attempt, the number of DMA32
2287 	 * segments to be allocated is decreased by one until one segment
2288 	 * is allocated successfully.
2289 	 */
2290 	do {
2291 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2292 			for (avail = 0, i = base; i < base + segs; i++) {
2293 				if (phb->ioda.dma32_segmap[i] ==
2294 				    IODA_INVALID_PE)
2295 					avail++;
2296 			}
2297 
2298 			if (avail == segs)
2299 				goto found;
2300 		}
2301 	} while (--segs);
2302 
2303 	if (!segs) {
2304 		pe_warn(pe, "No available DMA32 segments\n");
2305 		return;
2306 	}
2307 
2308 found:
2309 	tbl = pnv_pci_table_alloc(phb->hose->node);
2310 	if (WARN_ON(!tbl))
2311 		return;
2312 
2313 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2314 			pe->pe_number);
2315 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2316 
2317 	/* Grab a 32-bit TCE table */
2318 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2319 		weight, total_weight, base, segs);
2320 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2321 		base * PNV_IODA1_DMA32_SEGSIZE,
2322 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2323 
2324 	/* XXX Currently, we allocate one big contiguous table for the
2325 	 * TCEs. We only really need one chunk per 256M of TCE space
2326 	 * (ie per segment) but that's an optimization for later, it
2327 	 * requires some added smarts with our get/put_tce implementation
2328 	 *
2329 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2330 	 * bytes
2331 	 */
2332 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2333 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2334 				   get_order(tce32_segsz * segs));
2335 	if (!tce_mem) {
2336 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2337 		goto fail;
2338 	}
2339 	addr = page_address(tce_mem);
2340 	memset(addr, 0, tce32_segsz * segs);
2341 
2342 	/* Configure HW */
2343 	for (i = 0; i < segs; i++) {
2344 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2345 					      pe->pe_number,
2346 					      base + i, 1,
2347 					      __pa(addr) + tce32_segsz * i,
2348 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2349 		if (rc) {
2350 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2351 			       " err %ld\n", rc);
2352 			goto fail;
2353 		}
2354 	}
2355 
2356 	/* Setup DMA32 segment mapping */
2357 	for (i = base; i < base + segs; i++)
2358 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2359 
2360 	/* Setup linux iommu table */
2361 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2362 				  base * PNV_IODA1_DMA32_SEGSIZE,
2363 				  IOMMU_PAGE_SHIFT_4K);
2364 
2365 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2366 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2367 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2368 	iommu_init_table(tbl, phb->hose->node);
2369 
2370 	if (pe->flags & PNV_IODA_PE_DEV) {
2371 		/*
2372 		 * Setting table base here only for carrying iommu_group
2373 		 * further down to let iommu_add_device() do the job.
2374 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2375 		 */
2376 		set_iommu_table_base(&pe->pdev->dev, tbl);
2377 		iommu_add_device(&pe->pdev->dev);
2378 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2379 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2380 
2381 	return;
2382  fail:
2383 	/* XXX Failure: Try to fallback to 64-bit only ? */
2384 	if (tce_mem)
2385 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2386 	if (tbl) {
2387 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2388 		iommu_tce_table_put(tbl);
2389 	}
2390 }
2391 
2392 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2393 		int num, struct iommu_table *tbl)
2394 {
2395 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2396 			table_group);
2397 	struct pnv_phb *phb = pe->phb;
2398 	int64_t rc;
2399 	const unsigned long size = tbl->it_indirect_levels ?
2400 			tbl->it_level_size : tbl->it_size;
2401 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2402 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2403 
2404 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2405 			start_addr, start_addr + win_size - 1,
2406 			IOMMU_PAGE_SIZE(tbl));
2407 
2408 	/*
2409 	 * Map TCE table through TVT. The TVE index is the PE number
2410 	 * shifted by 1 bit for 32-bits DMA space.
2411 	 */
2412 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2413 			pe->pe_number,
2414 			(pe->pe_number << 1) + num,
2415 			tbl->it_indirect_levels + 1,
2416 			__pa(tbl->it_base),
2417 			size << 3,
2418 			IOMMU_PAGE_SIZE(tbl));
2419 	if (rc) {
2420 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2421 		return rc;
2422 	}
2423 
2424 	pnv_pci_link_table_and_group(phb->hose->node, num,
2425 			tbl, &pe->table_group);
2426 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2427 
2428 	return 0;
2429 }
2430 
2431 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2432 {
2433 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2434 	int64_t rc;
2435 
2436 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2437 	if (enable) {
2438 		phys_addr_t top = memblock_end_of_DRAM();
2439 
2440 		top = roundup_pow_of_two(top);
2441 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2442 						     pe->pe_number,
2443 						     window_id,
2444 						     pe->tce_bypass_base,
2445 						     top);
2446 	} else {
2447 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2448 						     pe->pe_number,
2449 						     window_id,
2450 						     pe->tce_bypass_base,
2451 						     0);
2452 	}
2453 	if (rc)
2454 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2455 	else
2456 		pe->tce_bypass_enabled = enable;
2457 }
2458 
2459 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2460 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2461 		bool alloc_userspace_copy, struct iommu_table **ptbl)
2462 {
2463 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2464 			table_group);
2465 	int nid = pe->phb->hose->node;
2466 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2467 	long ret;
2468 	struct iommu_table *tbl;
2469 
2470 	tbl = pnv_pci_table_alloc(nid);
2471 	if (!tbl)
2472 		return -ENOMEM;
2473 
2474 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2475 
2476 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2477 			bus_offset, page_shift, window_size,
2478 			levels, alloc_userspace_copy, tbl);
2479 	if (ret) {
2480 		iommu_tce_table_put(tbl);
2481 		return ret;
2482 	}
2483 
2484 	*ptbl = tbl;
2485 
2486 	return 0;
2487 }
2488 
2489 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2490 {
2491 	struct iommu_table *tbl = NULL;
2492 	long rc;
2493 
2494 	/*
2495 	 * crashkernel= specifies the kdump kernel's maximum memory at
2496 	 * some offset and there is no guaranteed the result is a power
2497 	 * of 2, which will cause errors later.
2498 	 */
2499 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2500 
2501 	/*
2502 	 * In memory constrained environments, e.g. kdump kernel, the
2503 	 * DMA window can be larger than available memory, which will
2504 	 * cause errors later.
2505 	 */
2506 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2507 
2508 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2509 			IOMMU_PAGE_SHIFT_4K,
2510 			window_size,
2511 			POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl);
2512 	if (rc) {
2513 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2514 				rc);
2515 		return rc;
2516 	}
2517 
2518 	iommu_init_table(tbl, pe->phb->hose->node);
2519 
2520 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2521 	if (rc) {
2522 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2523 				rc);
2524 		iommu_tce_table_put(tbl);
2525 		return rc;
2526 	}
2527 
2528 	if (!pnv_iommu_bypass_disabled)
2529 		pnv_pci_ioda2_set_bypass(pe, true);
2530 
2531 	/*
2532 	 * Setting table base here only for carrying iommu_group
2533 	 * further down to let iommu_add_device() do the job.
2534 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2535 	 */
2536 	if (pe->flags & PNV_IODA_PE_DEV)
2537 		set_iommu_table_base(&pe->pdev->dev, tbl);
2538 
2539 	return 0;
2540 }
2541 
2542 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2543 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2544 		int num)
2545 {
2546 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2547 			table_group);
2548 	struct pnv_phb *phb = pe->phb;
2549 	long ret;
2550 
2551 	pe_info(pe, "Removing DMA window #%d\n", num);
2552 
2553 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2554 			(pe->pe_number << 1) + num,
2555 			0/* levels */, 0/* table address */,
2556 			0/* table size */, 0/* page size */);
2557 	if (ret)
2558 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2559 	else
2560 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2561 
2562 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2563 
2564 	return ret;
2565 }
2566 #endif
2567 
2568 #ifdef CONFIG_IOMMU_API
2569 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2570 		__u64 window_size, __u32 levels)
2571 {
2572 	unsigned long bytes = 0;
2573 	const unsigned window_shift = ilog2(window_size);
2574 	unsigned entries_shift = window_shift - page_shift;
2575 	unsigned table_shift = entries_shift + 3;
2576 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2577 	unsigned long direct_table_size;
2578 
2579 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2580 			!is_power_of_2(window_size))
2581 		return 0;
2582 
2583 	/* Calculate a direct table size from window_size and levels */
2584 	entries_shift = (entries_shift + levels - 1) / levels;
2585 	table_shift = entries_shift + 3;
2586 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2587 	direct_table_size =  1UL << table_shift;
2588 
2589 	for ( ; levels; --levels) {
2590 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2591 
2592 		tce_table_size /= direct_table_size;
2593 		tce_table_size <<= 3;
2594 		tce_table_size = max_t(unsigned long,
2595 				tce_table_size, direct_table_size);
2596 	}
2597 
2598 	return bytes + bytes; /* one for HW table, one for userspace copy */
2599 }
2600 
2601 static long pnv_pci_ioda2_create_table_userspace(
2602 		struct iommu_table_group *table_group,
2603 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2604 		struct iommu_table **ptbl)
2605 {
2606 	return pnv_pci_ioda2_create_table(table_group,
2607 			num, page_shift, window_size, levels, true, ptbl);
2608 }
2609 
2610 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2611 {
2612 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2613 						table_group);
2614 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2615 	struct iommu_table *tbl = pe->table_group.tables[0];
2616 
2617 	pnv_pci_ioda2_set_bypass(pe, false);
2618 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2619 	if (pe->pbus)
2620 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2621 	iommu_tce_table_put(tbl);
2622 }
2623 
2624 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2625 {
2626 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2627 						table_group);
2628 
2629 	pnv_pci_ioda2_setup_default_config(pe);
2630 	if (pe->pbus)
2631 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2632 }
2633 
2634 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2635 	.get_table_size = pnv_pci_ioda2_get_table_size,
2636 	.create_table = pnv_pci_ioda2_create_table_userspace,
2637 	.set_window = pnv_pci_ioda2_set_window,
2638 	.unset_window = pnv_pci_ioda2_unset_window,
2639 	.take_ownership = pnv_ioda2_take_ownership,
2640 	.release_ownership = pnv_ioda2_release_ownership,
2641 };
2642 
2643 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2644 {
2645 	struct pci_controller *hose;
2646 	struct pnv_phb *phb;
2647 	struct pnv_ioda_pe **ptmppe = opaque;
2648 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2649 	struct pci_dn *pdn = pci_get_pdn(pdev);
2650 
2651 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2652 		return 0;
2653 
2654 	hose = pci_bus_to_host(pdev->bus);
2655 	phb = hose->private_data;
2656 	if (phb->type != PNV_PHB_NPU_NVLINK)
2657 		return 0;
2658 
2659 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2660 
2661 	return 1;
2662 }
2663 
2664 /*
2665  * This returns PE of associated NPU.
2666  * This assumes that NPU is in the same IOMMU group with GPU and there is
2667  * no other PEs.
2668  */
2669 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2670 		struct iommu_table_group *table_group)
2671 {
2672 	struct pnv_ioda_pe *npe = NULL;
2673 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2674 			gpe_table_group_to_npe_cb);
2675 
2676 	BUG_ON(!ret || !npe);
2677 
2678 	return npe;
2679 }
2680 
2681 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2682 		int num, struct iommu_table *tbl)
2683 {
2684 	struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2685 	int num2 = (num == 0) ? 1 : 0;
2686 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2687 
2688 	if (ret)
2689 		return ret;
2690 
2691 	if (table_group->tables[num2])
2692 		pnv_npu_unset_window(npe, num2);
2693 
2694 	ret = pnv_npu_set_window(npe, num, tbl);
2695 	if (ret) {
2696 		pnv_pci_ioda2_unset_window(table_group, num);
2697 		if (table_group->tables[num2])
2698 			pnv_npu_set_window(npe, num2,
2699 					table_group->tables[num2]);
2700 	}
2701 
2702 	return ret;
2703 }
2704 
2705 static long pnv_pci_ioda2_npu_unset_window(
2706 		struct iommu_table_group *table_group,
2707 		int num)
2708 {
2709 	struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2710 	int num2 = (num == 0) ? 1 : 0;
2711 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2712 
2713 	if (ret)
2714 		return ret;
2715 
2716 	if (!npe->table_group.tables[num])
2717 		return 0;
2718 
2719 	ret = pnv_npu_unset_window(npe, num);
2720 	if (ret)
2721 		return ret;
2722 
2723 	if (table_group->tables[num2])
2724 		ret = pnv_npu_set_window(npe, num2, table_group->tables[num2]);
2725 
2726 	return ret;
2727 }
2728 
2729 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2730 {
2731 	/*
2732 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2733 	 * the iommu_table if 32bit DMA is enabled.
2734 	 */
2735 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2736 	pnv_ioda2_take_ownership(table_group);
2737 }
2738 
2739 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2740 	.get_table_size = pnv_pci_ioda2_get_table_size,
2741 	.create_table = pnv_pci_ioda2_create_table_userspace,
2742 	.set_window = pnv_pci_ioda2_npu_set_window,
2743 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2744 	.take_ownership = pnv_ioda2_npu_take_ownership,
2745 	.release_ownership = pnv_ioda2_release_ownership,
2746 };
2747 
2748 static void pnv_pci_ioda_setup_iommu_api(void)
2749 {
2750 	struct pci_controller *hose, *tmp;
2751 	struct pnv_phb *phb;
2752 	struct pnv_ioda_pe *pe, *gpe;
2753 
2754 	/*
2755 	 * Now we have all PHBs discovered, time to add NPU devices to
2756 	 * the corresponding IOMMU groups.
2757 	 */
2758 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2759 		phb = hose->private_data;
2760 
2761 		if (phb->type != PNV_PHB_NPU_NVLINK)
2762 			continue;
2763 
2764 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2765 			gpe = pnv_pci_npu_setup_iommu(pe);
2766 			if (gpe)
2767 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2768 		}
2769 	}
2770 }
2771 #else /* !CONFIG_IOMMU_API */
2772 static void pnv_pci_ioda_setup_iommu_api(void) { };
2773 #endif
2774 
2775 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2776 {
2777 	struct pci_controller *hose = phb->hose;
2778 	struct device_node *dn = hose->dn;
2779 	unsigned long mask = 0;
2780 	int i, rc, count;
2781 	u32 val;
2782 
2783 	count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2784 	if (count <= 0) {
2785 		mask = SZ_4K | SZ_64K;
2786 		/* Add 16M for POWER8 by default */
2787 		if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2788 				!cpu_has_feature(CPU_FTR_ARCH_300))
2789 			mask |= SZ_16M | SZ_256M;
2790 		return mask;
2791 	}
2792 
2793 	for (i = 0; i < count; i++) {
2794 		rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2795 						i, &val);
2796 		if (rc == 0)
2797 			mask |= 1ULL << val;
2798 	}
2799 
2800 	return mask;
2801 }
2802 
2803 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2804 				       struct pnv_ioda_pe *pe)
2805 {
2806 	int64_t rc;
2807 
2808 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2809 		return;
2810 
2811 	/* TVE #1 is selected by PCI address bit 59 */
2812 	pe->tce_bypass_base = 1ull << 59;
2813 
2814 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2815 			pe->pe_number);
2816 
2817 	/* The PE will reserve all possible 32-bits space */
2818 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2819 		phb->ioda.m32_pci_base);
2820 
2821 	/* Setup linux iommu table */
2822 	pe->table_group.tce32_start = 0;
2823 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2824 	pe->table_group.max_dynamic_windows_supported =
2825 			IOMMU_TABLE_GROUP_MAX_TABLES;
2826 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2827 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2828 #ifdef CONFIG_IOMMU_API
2829 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2830 #endif
2831 
2832 	rc = pnv_pci_ioda2_setup_default_config(pe);
2833 	if (rc)
2834 		return;
2835 
2836 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2837 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2838 }
2839 
2840 #ifdef CONFIG_PCI_MSI
2841 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2842 {
2843 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2844 					   ioda.irq_chip);
2845 
2846 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2847 }
2848 
2849 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2850 {
2851 	int64_t rc;
2852 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2853 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2854 
2855 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2856 	WARN_ON_ONCE(rc);
2857 
2858 	icp_native_eoi(d);
2859 }
2860 
2861 
2862 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2863 {
2864 	struct irq_data *idata;
2865 	struct irq_chip *ichip;
2866 
2867 	/* The MSI EOI OPAL call is only needed on PHB3 */
2868 	if (phb->model != PNV_PHB_MODEL_PHB3)
2869 		return;
2870 
2871 	if (!phb->ioda.irq_chip_init) {
2872 		/*
2873 		 * First time we setup an MSI IRQ, we need to setup the
2874 		 * corresponding IRQ chip to route correctly.
2875 		 */
2876 		idata = irq_get_irq_data(virq);
2877 		ichip = irq_data_get_irq_chip(idata);
2878 		phb->ioda.irq_chip_init = 1;
2879 		phb->ioda.irq_chip = *ichip;
2880 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2881 	}
2882 	irq_set_chip(virq, &phb->ioda.irq_chip);
2883 }
2884 
2885 /*
2886  * Returns true iff chip is something that we could call
2887  * pnv_opal_pci_msi_eoi for.
2888  */
2889 bool is_pnv_opal_msi(struct irq_chip *chip)
2890 {
2891 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2892 }
2893 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2894 
2895 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2896 				  unsigned int hwirq, unsigned int virq,
2897 				  unsigned int is_64, struct msi_msg *msg)
2898 {
2899 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2900 	unsigned int xive_num = hwirq - phb->msi_base;
2901 	__be32 data;
2902 	int rc;
2903 
2904 	/* No PE assigned ? bail out ... no MSI for you ! */
2905 	if (pe == NULL)
2906 		return -ENXIO;
2907 
2908 	/* Check if we have an MVE */
2909 	if (pe->mve_number < 0)
2910 		return -ENXIO;
2911 
2912 	/* Force 32-bit MSI on some broken devices */
2913 	if (dev->no_64bit_msi)
2914 		is_64 = 0;
2915 
2916 	/* Assign XIVE to PE */
2917 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2918 	if (rc) {
2919 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2920 			pci_name(dev), rc, xive_num);
2921 		return -EIO;
2922 	}
2923 
2924 	if (is_64) {
2925 		__be64 addr64;
2926 
2927 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2928 				     &addr64, &data);
2929 		if (rc) {
2930 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2931 				pci_name(dev), rc);
2932 			return -EIO;
2933 		}
2934 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2935 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2936 	} else {
2937 		__be32 addr32;
2938 
2939 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2940 				     &addr32, &data);
2941 		if (rc) {
2942 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2943 				pci_name(dev), rc);
2944 			return -EIO;
2945 		}
2946 		msg->address_hi = 0;
2947 		msg->address_lo = be32_to_cpu(addr32);
2948 	}
2949 	msg->data = be32_to_cpu(data);
2950 
2951 	pnv_set_msi_irq_chip(phb, virq);
2952 
2953 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2954 		 " address=%x_%08x data=%x PE# %x\n",
2955 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2956 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2957 
2958 	return 0;
2959 }
2960 
2961 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2962 {
2963 	unsigned int count;
2964 	const __be32 *prop = of_get_property(phb->hose->dn,
2965 					     "ibm,opal-msi-ranges", NULL);
2966 	if (!prop) {
2967 		/* BML Fallback */
2968 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2969 	}
2970 	if (!prop)
2971 		return;
2972 
2973 	phb->msi_base = be32_to_cpup(prop);
2974 	count = be32_to_cpup(prop + 1);
2975 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2976 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2977 		       phb->hose->global_number);
2978 		return;
2979 	}
2980 
2981 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2982 	phb->msi32_support = 1;
2983 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2984 		count, phb->msi_base);
2985 }
2986 #else
2987 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2988 #endif /* CONFIG_PCI_MSI */
2989 
2990 #ifdef CONFIG_PCI_IOV
2991 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2992 {
2993 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2994 	struct pnv_phb *phb = hose->private_data;
2995 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2996 	struct resource *res;
2997 	int i;
2998 	resource_size_t size, total_vf_bar_sz;
2999 	struct pci_dn *pdn;
3000 	int mul, total_vfs;
3001 
3002 	if (!pdev->is_physfn || pci_dev_is_added(pdev))
3003 		return;
3004 
3005 	pdn = pci_get_pdn(pdev);
3006 	pdn->vfs_expanded = 0;
3007 	pdn->m64_single_mode = false;
3008 
3009 	total_vfs = pci_sriov_get_totalvfs(pdev);
3010 	mul = phb->ioda.total_pe_num;
3011 	total_vf_bar_sz = 0;
3012 
3013 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3014 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3015 		if (!res->flags || res->parent)
3016 			continue;
3017 		if (!pnv_pci_is_m64_flags(res->flags)) {
3018 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
3019 					" non M64 VF BAR%d: %pR. \n",
3020 				 i, res);
3021 			goto truncate_iov;
3022 		}
3023 
3024 		total_vf_bar_sz += pci_iov_resource_size(pdev,
3025 				i + PCI_IOV_RESOURCES);
3026 
3027 		/*
3028 		 * If bigger than quarter of M64 segment size, just round up
3029 		 * power of two.
3030 		 *
3031 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3032 		 * with other devices, IOV BAR size is expanded to be
3033 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3034 		 * segment size , the expanded size would equal to half of the
3035 		 * whole M64 space size, which will exhaust the M64 Space and
3036 		 * limit the system flexibility.  This is a design decision to
3037 		 * set the boundary to quarter of the M64 segment size.
3038 		 */
3039 		if (total_vf_bar_sz > gate) {
3040 			mul = roundup_pow_of_two(total_vfs);
3041 			dev_info(&pdev->dev,
3042 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3043 				total_vf_bar_sz, gate, mul);
3044 			pdn->m64_single_mode = true;
3045 			break;
3046 		}
3047 	}
3048 
3049 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3050 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3051 		if (!res->flags || res->parent)
3052 			continue;
3053 
3054 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3055 		/*
3056 		 * On PHB3, the minimum size alignment of M64 BAR in single
3057 		 * mode is 32MB.
3058 		 */
3059 		if (pdn->m64_single_mode && (size < SZ_32M))
3060 			goto truncate_iov;
3061 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3062 		res->end = res->start + size * mul - 1;
3063 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3064 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3065 			 i, res, mul);
3066 	}
3067 	pdn->vfs_expanded = mul;
3068 
3069 	return;
3070 
3071 truncate_iov:
3072 	/* To save MMIO space, IOV BAR is truncated. */
3073 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3074 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3075 		res->flags = 0;
3076 		res->end = res->start - 1;
3077 	}
3078 }
3079 #endif /* CONFIG_PCI_IOV */
3080 
3081 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3082 				  struct resource *res)
3083 {
3084 	struct pnv_phb *phb = pe->phb;
3085 	struct pci_bus_region region;
3086 	int index;
3087 	int64_t rc;
3088 
3089 	if (!res || !res->flags || res->start > res->end)
3090 		return;
3091 
3092 	if (res->flags & IORESOURCE_IO) {
3093 		region.start = res->start - phb->ioda.io_pci_base;
3094 		region.end   = res->end - phb->ioda.io_pci_base;
3095 		index = region.start / phb->ioda.io_segsize;
3096 
3097 		while (index < phb->ioda.total_pe_num &&
3098 		       region.start <= region.end) {
3099 			phb->ioda.io_segmap[index] = pe->pe_number;
3100 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3101 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3102 			if (rc != OPAL_SUCCESS) {
3103 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3104 				       __func__, rc, index, pe->pe_number);
3105 				break;
3106 			}
3107 
3108 			region.start += phb->ioda.io_segsize;
3109 			index++;
3110 		}
3111 	} else if ((res->flags & IORESOURCE_MEM) &&
3112 		   !pnv_pci_is_m64(phb, res)) {
3113 		region.start = res->start -
3114 			       phb->hose->mem_offset[0] -
3115 			       phb->ioda.m32_pci_base;
3116 		region.end   = res->end -
3117 			       phb->hose->mem_offset[0] -
3118 			       phb->ioda.m32_pci_base;
3119 		index = region.start / phb->ioda.m32_segsize;
3120 
3121 		while (index < phb->ioda.total_pe_num &&
3122 		       region.start <= region.end) {
3123 			phb->ioda.m32_segmap[index] = pe->pe_number;
3124 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3125 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3126 			if (rc != OPAL_SUCCESS) {
3127 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3128 				       __func__, rc, index, pe->pe_number);
3129 				break;
3130 			}
3131 
3132 			region.start += phb->ioda.m32_segsize;
3133 			index++;
3134 		}
3135 	}
3136 }
3137 
3138 /*
3139  * This function is supposed to be called on basis of PE from top
3140  * to bottom style. So the the I/O or MMIO segment assigned to
3141  * parent PE could be overridden by its child PEs if necessary.
3142  */
3143 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3144 {
3145 	struct pci_dev *pdev;
3146 	int i;
3147 
3148 	/*
3149 	 * NOTE: We only care PCI bus based PE for now. For PCI
3150 	 * device based PE, for example SRIOV sensitive VF should
3151 	 * be figured out later.
3152 	 */
3153 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3154 
3155 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3156 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3157 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3158 
3159 		/*
3160 		 * If the PE contains all subordinate PCI buses, the
3161 		 * windows of the child bridges should be mapped to
3162 		 * the PE as well.
3163 		 */
3164 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3165 			continue;
3166 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3167 			pnv_ioda_setup_pe_res(pe,
3168 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3169 	}
3170 }
3171 
3172 #ifdef CONFIG_DEBUG_FS
3173 static int pnv_pci_diag_data_set(void *data, u64 val)
3174 {
3175 	struct pci_controller *hose;
3176 	struct pnv_phb *phb;
3177 	s64 ret;
3178 
3179 	if (val != 1ULL)
3180 		return -EINVAL;
3181 
3182 	hose = (struct pci_controller *)data;
3183 	if (!hose || !hose->private_data)
3184 		return -ENODEV;
3185 
3186 	phb = hose->private_data;
3187 
3188 	/* Retrieve the diag data from firmware */
3189 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3190 					  phb->diag_data_size);
3191 	if (ret != OPAL_SUCCESS)
3192 		return -EIO;
3193 
3194 	/* Print the diag data to the kernel log */
3195 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3196 	return 0;
3197 }
3198 
3199 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3200 			pnv_pci_diag_data_set, "%llu\n");
3201 
3202 #endif /* CONFIG_DEBUG_FS */
3203 
3204 static void pnv_pci_ioda_create_dbgfs(void)
3205 {
3206 #ifdef CONFIG_DEBUG_FS
3207 	struct pci_controller *hose, *tmp;
3208 	struct pnv_phb *phb;
3209 	char name[16];
3210 
3211 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3212 		phb = hose->private_data;
3213 
3214 		/* Notify initialization of PHB done */
3215 		phb->initialized = 1;
3216 
3217 		sprintf(name, "PCI%04x", hose->global_number);
3218 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3219 		if (!phb->dbgfs) {
3220 			pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3221 				__func__, hose->global_number);
3222 			continue;
3223 		}
3224 
3225 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3226 				    &pnv_pci_diag_data_fops);
3227 	}
3228 #endif /* CONFIG_DEBUG_FS */
3229 }
3230 
3231 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3232 {
3233 	struct pci_dev *dev = bus->self;
3234 	struct pci_bus *child;
3235 
3236 	/* Empty bus ? bail */
3237 	if (list_empty(&bus->devices))
3238 		return;
3239 
3240 	/*
3241 	 * If there's a bridge associated with that bus enable it. This works
3242 	 * around races in the generic code if the enabling is done during
3243 	 * parallel probing. This can be removed once those races have been
3244 	 * fixed.
3245 	 */
3246 	if (dev) {
3247 		int rc = pci_enable_device(dev);
3248 		if (rc)
3249 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
3250 		pci_set_master(dev);
3251 	}
3252 
3253 	/* Perform the same to child busses */
3254 	list_for_each_entry(child, &bus->children, node)
3255 		pnv_pci_enable_bridge(child);
3256 }
3257 
3258 static void pnv_pci_enable_bridges(void)
3259 {
3260 	struct pci_controller *hose;
3261 
3262 	list_for_each_entry(hose, &hose_list, list_node)
3263 		pnv_pci_enable_bridge(hose->bus);
3264 }
3265 
3266 static void pnv_pci_ioda_fixup(void)
3267 {
3268 	pnv_pci_ioda_setup_PEs();
3269 	pnv_pci_ioda_setup_iommu_api();
3270 	pnv_pci_ioda_create_dbgfs();
3271 
3272 	pnv_pci_enable_bridges();
3273 
3274 #ifdef CONFIG_EEH
3275 	pnv_eeh_post_init();
3276 #endif
3277 }
3278 
3279 /*
3280  * Returns the alignment for I/O or memory windows for P2P
3281  * bridges. That actually depends on how PEs are segmented.
3282  * For now, we return I/O or M32 segment size for PE sensitive
3283  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3284  * 1MiB for memory) will be returned.
3285  *
3286  * The current PCI bus might be put into one PE, which was
3287  * create against the parent PCI bridge. For that case, we
3288  * needn't enlarge the alignment so that we can save some
3289  * resources.
3290  */
3291 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3292 						unsigned long type)
3293 {
3294 	struct pci_dev *bridge;
3295 	struct pci_controller *hose = pci_bus_to_host(bus);
3296 	struct pnv_phb *phb = hose->private_data;
3297 	int num_pci_bridges = 0;
3298 
3299 	bridge = bus->self;
3300 	while (bridge) {
3301 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3302 			num_pci_bridges++;
3303 			if (num_pci_bridges >= 2)
3304 				return 1;
3305 		}
3306 
3307 		bridge = bridge->bus->self;
3308 	}
3309 
3310 	/*
3311 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3312 	 * alignment for any 64-bit resource, PCIe doesn't care and
3313 	 * bridges only do 64-bit prefetchable anyway.
3314 	 */
3315 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3316 		return phb->ioda.m64_segsize;
3317 	if (type & IORESOURCE_MEM)
3318 		return phb->ioda.m32_segsize;
3319 
3320 	return phb->ioda.io_segsize;
3321 }
3322 
3323 /*
3324  * We are updating root port or the upstream port of the
3325  * bridge behind the root port with PHB's windows in order
3326  * to accommodate the changes on required resources during
3327  * PCI (slot) hotplug, which is connected to either root
3328  * port or the downstream ports of PCIe switch behind the
3329  * root port.
3330  */
3331 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3332 					   unsigned long type)
3333 {
3334 	struct pci_controller *hose = pci_bus_to_host(bus);
3335 	struct pnv_phb *phb = hose->private_data;
3336 	struct pci_dev *bridge = bus->self;
3337 	struct resource *r, *w;
3338 	bool msi_region = false;
3339 	int i;
3340 
3341 	/* Check if we need apply fixup to the bridge's windows */
3342 	if (!pci_is_root_bus(bridge->bus) &&
3343 	    !pci_is_root_bus(bridge->bus->self->bus))
3344 		return;
3345 
3346 	/* Fixup the resources */
3347 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3348 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3349 		if (!r->flags || !r->parent)
3350 			continue;
3351 
3352 		w = NULL;
3353 		if (r->flags & type & IORESOURCE_IO)
3354 			w = &hose->io_resource;
3355 		else if (pnv_pci_is_m64(phb, r) &&
3356 			 (type & IORESOURCE_PREFETCH) &&
3357 			 phb->ioda.m64_segsize)
3358 			w = &hose->mem_resources[1];
3359 		else if (r->flags & type & IORESOURCE_MEM) {
3360 			w = &hose->mem_resources[0];
3361 			msi_region = true;
3362 		}
3363 
3364 		r->start = w->start;
3365 		r->end = w->end;
3366 
3367 		/* The 64KB 32-bits MSI region shouldn't be included in
3368 		 * the 32-bits bridge window. Otherwise, we can see strange
3369 		 * issues. One of them is EEH error observed on Garrison.
3370 		 *
3371 		 * Exclude top 1MB region which is the minimal alignment of
3372 		 * 32-bits bridge window.
3373 		 */
3374 		if (msi_region) {
3375 			r->end += 0x10000;
3376 			r->end -= 0x100000;
3377 		}
3378 	}
3379 }
3380 
3381 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3382 {
3383 	struct pci_controller *hose = pci_bus_to_host(bus);
3384 	struct pnv_phb *phb = hose->private_data;
3385 	struct pci_dev *bridge = bus->self;
3386 	struct pnv_ioda_pe *pe;
3387 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3388 
3389 	/* Extend bridge's windows if necessary */
3390 	pnv_pci_fixup_bridge_resources(bus, type);
3391 
3392 	/* The PE for root bus should be realized before any one else */
3393 	if (!phb->ioda.root_pe_populated) {
3394 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3395 		if (pe) {
3396 			phb->ioda.root_pe_idx = pe->pe_number;
3397 			phb->ioda.root_pe_populated = true;
3398 		}
3399 	}
3400 
3401 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3402 	if (list_empty(&bus->devices))
3403 		return;
3404 
3405 	/* Reserve PEs according to used M64 resources */
3406 	if (phb->reserve_m64_pe)
3407 		phb->reserve_m64_pe(bus, NULL, all);
3408 
3409 	/*
3410 	 * Assign PE. We might run here because of partial hotplug.
3411 	 * For the case, we just pick up the existing PE and should
3412 	 * not allocate resources again.
3413 	 */
3414 	pe = pnv_ioda_setup_bus_PE(bus, all);
3415 	if (!pe)
3416 		return;
3417 
3418 	pnv_ioda_setup_pe_seg(pe);
3419 	switch (phb->type) {
3420 	case PNV_PHB_IODA1:
3421 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3422 		break;
3423 	case PNV_PHB_IODA2:
3424 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3425 		break;
3426 	default:
3427 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3428 			__func__, phb->hose->global_number, phb->type);
3429 	}
3430 }
3431 
3432 static resource_size_t pnv_pci_default_alignment(void)
3433 {
3434 	return PAGE_SIZE;
3435 }
3436 
3437 #ifdef CONFIG_PCI_IOV
3438 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3439 						      int resno)
3440 {
3441 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3442 	struct pnv_phb *phb = hose->private_data;
3443 	struct pci_dn *pdn = pci_get_pdn(pdev);
3444 	resource_size_t align;
3445 
3446 	/*
3447 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3448 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3449 	 * BAR should be size aligned.
3450 	 *
3451 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3452 	 * powernv-specific hardware restriction is gone. But if just use the
3453 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3454 	 * in one segment of M64 #15, which introduces the PE conflict between
3455 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3456 	 * m64_segsize.
3457 	 *
3458 	 * This function returns the total IOV BAR size if M64 BAR is in
3459 	 * Shared PE mode or just VF BAR size if not.
3460 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3461 	 * M64 segment size if IOV BAR size is less.
3462 	 */
3463 	align = pci_iov_resource_size(pdev, resno);
3464 	if (!pdn->vfs_expanded)
3465 		return align;
3466 	if (pdn->m64_single_mode)
3467 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3468 
3469 	return pdn->vfs_expanded * align;
3470 }
3471 #endif /* CONFIG_PCI_IOV */
3472 
3473 /* Prevent enabling devices for which we couldn't properly
3474  * assign a PE
3475  */
3476 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3477 {
3478 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3479 	struct pnv_phb *phb = hose->private_data;
3480 	struct pci_dn *pdn;
3481 
3482 	/* The function is probably called while the PEs have
3483 	 * not be created yet. For example, resource reassignment
3484 	 * during PCI probe period. We just skip the check if
3485 	 * PEs isn't ready.
3486 	 */
3487 	if (!phb->initialized)
3488 		return true;
3489 
3490 	pdn = pci_get_pdn(dev);
3491 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3492 		return false;
3493 
3494 	return true;
3495 }
3496 
3497 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3498 				       int num)
3499 {
3500 	struct pnv_ioda_pe *pe = container_of(table_group,
3501 					      struct pnv_ioda_pe, table_group);
3502 	struct pnv_phb *phb = pe->phb;
3503 	unsigned int idx;
3504 	long rc;
3505 
3506 	pe_info(pe, "Removing DMA window #%d\n", num);
3507 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3508 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3509 			continue;
3510 
3511 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3512 						idx, 0, 0ul, 0ul, 0ul);
3513 		if (rc != OPAL_SUCCESS) {
3514 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3515 				rc, idx);
3516 			return rc;
3517 		}
3518 
3519 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3520 	}
3521 
3522 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3523 	return OPAL_SUCCESS;
3524 }
3525 
3526 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3527 {
3528 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3529 	struct iommu_table *tbl = pe->table_group.tables[0];
3530 	int64_t rc;
3531 
3532 	if (!weight)
3533 		return;
3534 
3535 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3536 	if (rc != OPAL_SUCCESS)
3537 		return;
3538 
3539 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3540 	if (pe->table_group.group) {
3541 		iommu_group_put(pe->table_group.group);
3542 		WARN_ON(pe->table_group.group);
3543 	}
3544 
3545 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3546 	iommu_tce_table_put(tbl);
3547 }
3548 
3549 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3550 {
3551 	struct iommu_table *tbl = pe->table_group.tables[0];
3552 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3553 #ifdef CONFIG_IOMMU_API
3554 	int64_t rc;
3555 #endif
3556 
3557 	if (!weight)
3558 		return;
3559 
3560 #ifdef CONFIG_IOMMU_API
3561 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3562 	if (rc)
3563 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3564 #endif
3565 
3566 	pnv_pci_ioda2_set_bypass(pe, false);
3567 	if (pe->table_group.group) {
3568 		iommu_group_put(pe->table_group.group);
3569 		WARN_ON(pe->table_group.group);
3570 	}
3571 
3572 	iommu_tce_table_put(tbl);
3573 }
3574 
3575 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3576 				 unsigned short win,
3577 				 unsigned int *map)
3578 {
3579 	struct pnv_phb *phb = pe->phb;
3580 	int idx;
3581 	int64_t rc;
3582 
3583 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3584 		if (map[idx] != pe->pe_number)
3585 			continue;
3586 
3587 		if (win == OPAL_M64_WINDOW_TYPE)
3588 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3589 					phb->ioda.reserved_pe_idx, win,
3590 					idx / PNV_IODA1_M64_SEGS,
3591 					idx % PNV_IODA1_M64_SEGS);
3592 		else
3593 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3594 					phb->ioda.reserved_pe_idx, win, 0, idx);
3595 
3596 		if (rc != OPAL_SUCCESS)
3597 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3598 				rc, win, idx);
3599 
3600 		map[idx] = IODA_INVALID_PE;
3601 	}
3602 }
3603 
3604 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3605 {
3606 	struct pnv_phb *phb = pe->phb;
3607 
3608 	if (phb->type == PNV_PHB_IODA1) {
3609 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3610 				     phb->ioda.io_segmap);
3611 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3612 				     phb->ioda.m32_segmap);
3613 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3614 				     phb->ioda.m64_segmap);
3615 	} else if (phb->type == PNV_PHB_IODA2) {
3616 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3617 				     phb->ioda.m32_segmap);
3618 	}
3619 }
3620 
3621 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3622 {
3623 	struct pnv_phb *phb = pe->phb;
3624 	struct pnv_ioda_pe *slave, *tmp;
3625 
3626 	list_del(&pe->list);
3627 	switch (phb->type) {
3628 	case PNV_PHB_IODA1:
3629 		pnv_pci_ioda1_release_pe_dma(pe);
3630 		break;
3631 	case PNV_PHB_IODA2:
3632 		pnv_pci_ioda2_release_pe_dma(pe);
3633 		break;
3634 	default:
3635 		WARN_ON(1);
3636 	}
3637 
3638 	pnv_ioda_release_pe_seg(pe);
3639 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3640 
3641 	/* Release slave PEs in the compound PE */
3642 	if (pe->flags & PNV_IODA_PE_MASTER) {
3643 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3644 			list_del(&slave->list);
3645 			pnv_ioda_free_pe(slave);
3646 		}
3647 	}
3648 
3649 	/*
3650 	 * The PE for root bus can be removed because of hotplug in EEH
3651 	 * recovery for fenced PHB error. We need to mark the PE dead so
3652 	 * that it can be populated again in PCI hot add path. The PE
3653 	 * shouldn't be destroyed as it's the global reserved resource.
3654 	 */
3655 	if (phb->ioda.root_pe_populated &&
3656 	    phb->ioda.root_pe_idx == pe->pe_number)
3657 		phb->ioda.root_pe_populated = false;
3658 	else
3659 		pnv_ioda_free_pe(pe);
3660 }
3661 
3662 static void pnv_pci_release_device(struct pci_dev *pdev)
3663 {
3664 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3665 	struct pnv_phb *phb = hose->private_data;
3666 	struct pci_dn *pdn = pci_get_pdn(pdev);
3667 	struct pnv_ioda_pe *pe;
3668 
3669 	if (pdev->is_virtfn)
3670 		return;
3671 
3672 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3673 		return;
3674 
3675 	/*
3676 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3677 	 * isn't removed and added afterwards in this scenario. We should
3678 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3679 	 * device count is decreased on removing devices while failing to
3680 	 * be increased on adding devices. It leads to unbalanced PE's device
3681 	 * count and eventually make normal PCI hotplug path broken.
3682 	 */
3683 	pe = &phb->ioda.pe_array[pdn->pe_number];
3684 	pdn->pe_number = IODA_INVALID_PE;
3685 
3686 	WARN_ON(--pe->device_count < 0);
3687 	if (pe->device_count == 0)
3688 		pnv_ioda_release_pe(pe);
3689 }
3690 
3691 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3692 {
3693 	struct pnv_phb *phb = hose->private_data;
3694 
3695 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3696 		       OPAL_ASSERT_RESET);
3697 }
3698 
3699 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3700 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3701 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3702 #ifdef CONFIG_PCI_MSI
3703 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3704 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3705 #endif
3706 	.enable_device_hook	= pnv_pci_enable_device_hook,
3707 	.release_device		= pnv_pci_release_device,
3708 	.window_alignment	= pnv_pci_window_alignment,
3709 	.setup_bridge		= pnv_pci_setup_bridge,
3710 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3711 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3712 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3713 	.shutdown		= pnv_pci_ioda_shutdown,
3714 };
3715 
3716 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3717 {
3718 	dev_err_once(&npdev->dev,
3719 			"%s operation unsupported for NVLink devices\n",
3720 			__func__);
3721 	return -EPERM;
3722 }
3723 
3724 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3725 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3726 #ifdef CONFIG_PCI_MSI
3727 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3728 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3729 #endif
3730 	.enable_device_hook	= pnv_pci_enable_device_hook,
3731 	.window_alignment	= pnv_pci_window_alignment,
3732 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3733 	.dma_set_mask		= pnv_npu_dma_set_mask,
3734 	.shutdown		= pnv_pci_ioda_shutdown,
3735 };
3736 
3737 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3738 	.enable_device_hook	= pnv_pci_enable_device_hook,
3739 	.window_alignment	= pnv_pci_window_alignment,
3740 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3741 	.shutdown		= pnv_pci_ioda_shutdown,
3742 };
3743 
3744 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3745 					 u64 hub_id, int ioda_type)
3746 {
3747 	struct pci_controller *hose;
3748 	struct pnv_phb *phb;
3749 	unsigned long size, m64map_off, m32map_off, pemap_off;
3750 	unsigned long iomap_off = 0, dma32map_off = 0;
3751 	struct resource r;
3752 	const __be64 *prop64;
3753 	const __be32 *prop32;
3754 	int len;
3755 	unsigned int segno;
3756 	u64 phb_id;
3757 	void *aux;
3758 	long rc;
3759 
3760 	if (!of_device_is_available(np))
3761 		return;
3762 
3763 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3764 
3765 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3766 	if (!prop64) {
3767 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3768 		return;
3769 	}
3770 	phb_id = be64_to_cpup(prop64);
3771 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3772 
3773 	phb = memblock_virt_alloc(sizeof(*phb), 0);
3774 
3775 	/* Allocate PCI controller */
3776 	phb->hose = hose = pcibios_alloc_controller(np);
3777 	if (!phb->hose) {
3778 		pr_err("  Can't allocate PCI controller for %pOF\n",
3779 		       np);
3780 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3781 		return;
3782 	}
3783 
3784 	spin_lock_init(&phb->lock);
3785 	prop32 = of_get_property(np, "bus-range", &len);
3786 	if (prop32 && len == 8) {
3787 		hose->first_busno = be32_to_cpu(prop32[0]);
3788 		hose->last_busno = be32_to_cpu(prop32[1]);
3789 	} else {
3790 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3791 		hose->first_busno = 0;
3792 		hose->last_busno = 0xff;
3793 	}
3794 	hose->private_data = phb;
3795 	phb->hub_id = hub_id;
3796 	phb->opal_id = phb_id;
3797 	phb->type = ioda_type;
3798 	mutex_init(&phb->ioda.pe_alloc_mutex);
3799 
3800 	/* Detect specific models for error handling */
3801 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3802 		phb->model = PNV_PHB_MODEL_P7IOC;
3803 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3804 		phb->model = PNV_PHB_MODEL_PHB3;
3805 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3806 		phb->model = PNV_PHB_MODEL_NPU;
3807 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3808 		phb->model = PNV_PHB_MODEL_NPU2;
3809 	else
3810 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3811 
3812 	/* Initialize diagnostic data buffer */
3813 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3814 	if (prop32)
3815 		phb->diag_data_size = be32_to_cpup(prop32);
3816 	else
3817 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3818 
3819 	phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3820 
3821 	/* Parse 32-bit and IO ranges (if any) */
3822 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3823 
3824 	/* Get registers */
3825 	if (!of_address_to_resource(np, 0, &r)) {
3826 		phb->regs_phys = r.start;
3827 		phb->regs = ioremap(r.start, resource_size(&r));
3828 		if (phb->regs == NULL)
3829 			pr_err("  Failed to map registers !\n");
3830 	}
3831 
3832 	/* Initialize more IODA stuff */
3833 	phb->ioda.total_pe_num = 1;
3834 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3835 	if (prop32)
3836 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3837 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3838 	if (prop32)
3839 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3840 
3841 	/* Invalidate RID to PE# mapping */
3842 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3843 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3844 
3845 	/* Parse 64-bit MMIO range */
3846 	pnv_ioda_parse_m64_window(phb);
3847 
3848 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3849 	/* FW Has already off top 64k of M32 space (MSI space) */
3850 	phb->ioda.m32_size += 0x10000;
3851 
3852 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3853 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3854 	phb->ioda.io_size = hose->pci_io_size;
3855 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3856 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3857 
3858 	/* Calculate how many 32-bit TCE segments we have */
3859 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3860 				PNV_IODA1_DMA32_SEGSIZE;
3861 
3862 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3863 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3864 			sizeof(unsigned long));
3865 	m64map_off = size;
3866 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3867 	m32map_off = size;
3868 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3869 	if (phb->type == PNV_PHB_IODA1) {
3870 		iomap_off = size;
3871 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3872 		dma32map_off = size;
3873 		size += phb->ioda.dma32_count *
3874 			sizeof(phb->ioda.dma32_segmap[0]);
3875 	}
3876 	pemap_off = size;
3877 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3878 	aux = memblock_virt_alloc(size, 0);
3879 	phb->ioda.pe_alloc = aux;
3880 	phb->ioda.m64_segmap = aux + m64map_off;
3881 	phb->ioda.m32_segmap = aux + m32map_off;
3882 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3883 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3884 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3885 	}
3886 	if (phb->type == PNV_PHB_IODA1) {
3887 		phb->ioda.io_segmap = aux + iomap_off;
3888 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3889 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3890 
3891 		phb->ioda.dma32_segmap = aux + dma32map_off;
3892 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3893 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3894 	}
3895 	phb->ioda.pe_array = aux + pemap_off;
3896 
3897 	/*
3898 	 * Choose PE number for root bus, which shouldn't have
3899 	 * M64 resources consumed by its child devices. To pick
3900 	 * the PE number adjacent to the reserved one if possible.
3901 	 */
3902 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3903 	if (phb->ioda.reserved_pe_idx == 0) {
3904 		phb->ioda.root_pe_idx = 1;
3905 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3906 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3907 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3908 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3909 	} else {
3910 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3911 	}
3912 
3913 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3914 	mutex_init(&phb->ioda.pe_list_mutex);
3915 
3916 	/* Calculate how many 32-bit TCE segments we have */
3917 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3918 				PNV_IODA1_DMA32_SEGSIZE;
3919 
3920 #if 0 /* We should really do that ... */
3921 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3922 					 window_type,
3923 					 window_num,
3924 					 starting_real_address,
3925 					 starting_pci_address,
3926 					 segment_size);
3927 #endif
3928 
3929 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3930 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3931 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3932 	if (phb->ioda.m64_size)
3933 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3934 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3935 	if (phb->ioda.io_size)
3936 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3937 			phb->ioda.io_size, phb->ioda.io_segsize);
3938 
3939 
3940 	phb->hose->ops = &pnv_pci_ops;
3941 	phb->get_pe_state = pnv_ioda_get_pe_state;
3942 	phb->freeze_pe = pnv_ioda_freeze_pe;
3943 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3944 
3945 	/* Setup MSI support */
3946 	pnv_pci_init_ioda_msis(phb);
3947 
3948 	/*
3949 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3950 	 * to let the PCI core do resource assignment. It's supposed
3951 	 * that the PCI core will do correct I/O and MMIO alignment
3952 	 * for the P2P bridge bars so that each PCI bus (excluding
3953 	 * the child P2P bridges) can form individual PE.
3954 	 */
3955 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3956 
3957 	switch (phb->type) {
3958 	case PNV_PHB_NPU_NVLINK:
3959 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3960 		break;
3961 	case PNV_PHB_NPU_OCAPI:
3962 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3963 		break;
3964 	default:
3965 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3966 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3967 	}
3968 
3969 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3970 
3971 #ifdef CONFIG_PCI_IOV
3972 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3973 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3974 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3975 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3976 #endif
3977 
3978 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3979 
3980 	/* Reset IODA tables to a clean state */
3981 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3982 	if (rc)
3983 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3984 
3985 	/*
3986 	 * If we're running in kdump kernel, the previous kernel never
3987 	 * shutdown PCI devices correctly. We already got IODA table
3988 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3989 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3990 	 * kernel parameter will force this reset too.
3991 	 */
3992 	if (is_kdump_kernel() || pci_reset_phbs) {
3993 		pr_info("  Issue PHB reset ...\n");
3994 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3995 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3996 	}
3997 
3998 	/* Remove M64 resource if we can't configure it successfully */
3999 	if (!phb->init_m64 || phb->init_m64(phb))
4000 		hose->mem_resources[1].flags = 0;
4001 }
4002 
4003 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4004 {
4005 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4006 }
4007 
4008 void __init pnv_pci_init_npu_phb(struct device_node *np)
4009 {
4010 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
4011 }
4012 
4013 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
4014 {
4015 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
4016 }
4017 
4018 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
4019 {
4020 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
4021 	struct pnv_phb *phb = hose->private_data;
4022 
4023 	if (!machine_is(powernv))
4024 		return;
4025 
4026 	if (phb->type == PNV_PHB_NPU_OCAPI)
4027 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
4028 }
4029 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
4030 
4031 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4032 {
4033 	struct device_node *phbn;
4034 	const __be64 *prop64;
4035 	u64 hub_id;
4036 
4037 	pr_info("Probing IODA IO-Hub %pOF\n", np);
4038 
4039 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4040 	if (!prop64) {
4041 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4042 		return;
4043 	}
4044 	hub_id = be64_to_cpup(prop64);
4045 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4046 
4047 	/* Count child PHBs */
4048 	for_each_child_of_node(np, phbn) {
4049 		/* Look for IODA1 PHBs */
4050 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4051 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4052 	}
4053 }
4054