1 /* 2 * Support PCI/PCIe on PowerNV platforms 3 * 4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/pci.h> 16 #include <linux/crash_dump.h> 17 #include <linux/delay.h> 18 #include <linux/string.h> 19 #include <linux/init.h> 20 #include <linux/bootmem.h> 21 #include <linux/irq.h> 22 #include <linux/io.h> 23 #include <linux/msi.h> 24 #include <linux/memblock.h> 25 #include <linux/iommu.h> 26 #include <linux/rculist.h> 27 #include <linux/sizes.h> 28 29 #include <asm/sections.h> 30 #include <asm/io.h> 31 #include <asm/prom.h> 32 #include <asm/pci-bridge.h> 33 #include <asm/machdep.h> 34 #include <asm/msi_bitmap.h> 35 #include <asm/ppc-pci.h> 36 #include <asm/opal.h> 37 #include <asm/iommu.h> 38 #include <asm/tce.h> 39 #include <asm/xics.h> 40 #include <asm/debugfs.h> 41 #include <asm/firmware.h> 42 #include <asm/pnv-pci.h> 43 #include <asm/mmzone.h> 44 45 #include <misc/cxl-base.h> 46 47 #include "powernv.h" 48 #include "pci.h" 49 #include "../../../../drivers/pci/pci.h" 50 51 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ 52 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ 53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 54 55 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK", 56 "NPU_OCAPI" }; 57 58 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, 59 const char *fmt, ...) 60 { 61 struct va_format vaf; 62 va_list args; 63 char pfix[32]; 64 65 va_start(args, fmt); 66 67 vaf.fmt = fmt; 68 vaf.va = &args; 69 70 if (pe->flags & PNV_IODA_PE_DEV) 71 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); 72 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 73 sprintf(pfix, "%04x:%02x ", 74 pci_domain_nr(pe->pbus), pe->pbus->number); 75 #ifdef CONFIG_PCI_IOV 76 else if (pe->flags & PNV_IODA_PE_VF) 77 sprintf(pfix, "%04x:%02x:%2x.%d", 78 pci_domain_nr(pe->parent_dev->bus), 79 (pe->rid & 0xff00) >> 8, 80 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); 81 #endif /* CONFIG_PCI_IOV*/ 82 83 printk("%spci %s: [PE# %.2x] %pV", 84 level, pfix, pe->pe_number, &vaf); 85 86 va_end(args); 87 } 88 89 static bool pnv_iommu_bypass_disabled __read_mostly; 90 static bool pci_reset_phbs __read_mostly; 91 92 static int __init iommu_setup(char *str) 93 { 94 if (!str) 95 return -EINVAL; 96 97 while (*str) { 98 if (!strncmp(str, "nobypass", 8)) { 99 pnv_iommu_bypass_disabled = true; 100 pr_info("PowerNV: IOMMU bypass window disabled.\n"); 101 break; 102 } 103 str += strcspn(str, ","); 104 if (*str == ',') 105 str++; 106 } 107 108 return 0; 109 } 110 early_param("iommu", iommu_setup); 111 112 static int __init pci_reset_phbs_setup(char *str) 113 { 114 pci_reset_phbs = true; 115 return 0; 116 } 117 118 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup); 119 120 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r) 121 { 122 /* 123 * WARNING: We cannot rely on the resource flags. The Linux PCI 124 * allocation code sometimes decides to put a 64-bit prefetchable 125 * BAR in the 32-bit window, so we have to compare the addresses. 126 * 127 * For simplicity we only test resource start. 128 */ 129 return (r->start >= phb->ioda.m64_base && 130 r->start < (phb->ioda.m64_base + phb->ioda.m64_size)); 131 } 132 133 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags) 134 { 135 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 136 137 return (resource_flags & flags) == flags; 138 } 139 140 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) 141 { 142 s64 rc; 143 144 phb->ioda.pe_array[pe_no].phb = phb; 145 phb->ioda.pe_array[pe_no].pe_number = pe_no; 146 147 /* 148 * Clear the PE frozen state as it might be put into frozen state 149 * in the last PCI remove path. It's not harmful to do so when the 150 * PE is already in unfrozen state. 151 */ 152 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, 153 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 154 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 155 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n", 156 __func__, rc, phb->hose->global_number, pe_no); 157 158 return &phb->ioda.pe_array[pe_no]; 159 } 160 161 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) 162 { 163 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { 164 pr_warn("%s: Invalid PE %x on PHB#%x\n", 165 __func__, pe_no, phb->hose->global_number); 166 return; 167 } 168 169 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) 170 pr_debug("%s: PE %x was reserved on PHB#%x\n", 171 __func__, pe_no, phb->hose->global_number); 172 173 pnv_ioda_init_pe(phb, pe_no); 174 } 175 176 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb) 177 { 178 long pe; 179 180 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { 181 if (!test_and_set_bit(pe, phb->ioda.pe_alloc)) 182 return pnv_ioda_init_pe(phb, pe); 183 } 184 185 return NULL; 186 } 187 188 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) 189 { 190 struct pnv_phb *phb = pe->phb; 191 unsigned int pe_num = pe->pe_number; 192 193 WARN_ON(pe->pdev); 194 195 memset(pe, 0, sizeof(struct pnv_ioda_pe)); 196 clear_bit(pe_num, phb->ioda.pe_alloc); 197 } 198 199 /* The default M64 BAR is shared by all PEs */ 200 static int pnv_ioda2_init_m64(struct pnv_phb *phb) 201 { 202 const char *desc; 203 struct resource *r; 204 s64 rc; 205 206 /* Configure the default M64 BAR */ 207 rc = opal_pci_set_phb_mem_window(phb->opal_id, 208 OPAL_M64_WINDOW_TYPE, 209 phb->ioda.m64_bar_idx, 210 phb->ioda.m64_base, 211 0, /* unused */ 212 phb->ioda.m64_size); 213 if (rc != OPAL_SUCCESS) { 214 desc = "configuring"; 215 goto fail; 216 } 217 218 /* Enable the default M64 BAR */ 219 rc = opal_pci_phb_mmio_enable(phb->opal_id, 220 OPAL_M64_WINDOW_TYPE, 221 phb->ioda.m64_bar_idx, 222 OPAL_ENABLE_M64_SPLIT); 223 if (rc != OPAL_SUCCESS) { 224 desc = "enabling"; 225 goto fail; 226 } 227 228 /* 229 * Exclude the segments for reserved and root bus PE, which 230 * are first or last two PEs. 231 */ 232 r = &phb->hose->mem_resources[1]; 233 if (phb->ioda.reserved_pe_idx == 0) 234 r->start += (2 * phb->ioda.m64_segsize); 235 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 236 r->end -= (2 * phb->ioda.m64_segsize); 237 else 238 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n", 239 phb->ioda.reserved_pe_idx); 240 241 return 0; 242 243 fail: 244 pr_warn(" Failure %lld %s M64 BAR#%d\n", 245 rc, desc, phb->ioda.m64_bar_idx); 246 opal_pci_phb_mmio_enable(phb->opal_id, 247 OPAL_M64_WINDOW_TYPE, 248 phb->ioda.m64_bar_idx, 249 OPAL_DISABLE_M64); 250 return -EIO; 251 } 252 253 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, 254 unsigned long *pe_bitmap) 255 { 256 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 257 struct pnv_phb *phb = hose->private_data; 258 struct resource *r; 259 resource_size_t base, sgsz, start, end; 260 int segno, i; 261 262 base = phb->ioda.m64_base; 263 sgsz = phb->ioda.m64_segsize; 264 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 265 r = &pdev->resource[i]; 266 if (!r->parent || !pnv_pci_is_m64(phb, r)) 267 continue; 268 269 start = _ALIGN_DOWN(r->start - base, sgsz); 270 end = _ALIGN_UP(r->end - base, sgsz); 271 for (segno = start / sgsz; segno < end / sgsz; segno++) { 272 if (pe_bitmap) 273 set_bit(segno, pe_bitmap); 274 else 275 pnv_ioda_reserve_pe(phb, segno); 276 } 277 } 278 } 279 280 static int pnv_ioda1_init_m64(struct pnv_phb *phb) 281 { 282 struct resource *r; 283 int index; 284 285 /* 286 * There are 16 M64 BARs, each of which has 8 segments. So 287 * there are as many M64 segments as the maximum number of 288 * PEs, which is 128. 289 */ 290 for (index = 0; index < PNV_IODA1_M64_NUM; index++) { 291 unsigned long base, segsz = phb->ioda.m64_segsize; 292 int64_t rc; 293 294 base = phb->ioda.m64_base + 295 index * PNV_IODA1_M64_SEGS * segsz; 296 rc = opal_pci_set_phb_mem_window(phb->opal_id, 297 OPAL_M64_WINDOW_TYPE, index, base, 0, 298 PNV_IODA1_M64_SEGS * segsz); 299 if (rc != OPAL_SUCCESS) { 300 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n", 301 rc, phb->hose->global_number, index); 302 goto fail; 303 } 304 305 rc = opal_pci_phb_mmio_enable(phb->opal_id, 306 OPAL_M64_WINDOW_TYPE, index, 307 OPAL_ENABLE_M64_SPLIT); 308 if (rc != OPAL_SUCCESS) { 309 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n", 310 rc, phb->hose->global_number, index); 311 goto fail; 312 } 313 } 314 315 /* 316 * Exclude the segments for reserved and root bus PE, which 317 * are first or last two PEs. 318 */ 319 r = &phb->hose->mem_resources[1]; 320 if (phb->ioda.reserved_pe_idx == 0) 321 r->start += (2 * phb->ioda.m64_segsize); 322 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 323 r->end -= (2 * phb->ioda.m64_segsize); 324 else 325 WARN(1, "Wrong reserved PE#%x on PHB#%x\n", 326 phb->ioda.reserved_pe_idx, phb->hose->global_number); 327 328 return 0; 329 330 fail: 331 for ( ; index >= 0; index--) 332 opal_pci_phb_mmio_enable(phb->opal_id, 333 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); 334 335 return -EIO; 336 } 337 338 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, 339 unsigned long *pe_bitmap, 340 bool all) 341 { 342 struct pci_dev *pdev; 343 344 list_for_each_entry(pdev, &bus->devices, bus_list) { 345 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); 346 347 if (all && pdev->subordinate) 348 pnv_ioda_reserve_m64_pe(pdev->subordinate, 349 pe_bitmap, all); 350 } 351 } 352 353 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) 354 { 355 struct pci_controller *hose = pci_bus_to_host(bus); 356 struct pnv_phb *phb = hose->private_data; 357 struct pnv_ioda_pe *master_pe, *pe; 358 unsigned long size, *pe_alloc; 359 int i; 360 361 /* Root bus shouldn't use M64 */ 362 if (pci_is_root_bus(bus)) 363 return NULL; 364 365 /* Allocate bitmap */ 366 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); 367 pe_alloc = kzalloc(size, GFP_KERNEL); 368 if (!pe_alloc) { 369 pr_warn("%s: Out of memory !\n", 370 __func__); 371 return NULL; 372 } 373 374 /* Figure out reserved PE numbers by the PE */ 375 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); 376 377 /* 378 * the current bus might not own M64 window and that's all 379 * contributed by its child buses. For the case, we needn't 380 * pick M64 dependent PE#. 381 */ 382 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { 383 kfree(pe_alloc); 384 return NULL; 385 } 386 387 /* 388 * Figure out the master PE and put all slave PEs to master 389 * PE's list to form compound PE. 390 */ 391 master_pe = NULL; 392 i = -1; 393 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < 394 phb->ioda.total_pe_num) { 395 pe = &phb->ioda.pe_array[i]; 396 397 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; 398 if (!master_pe) { 399 pe->flags |= PNV_IODA_PE_MASTER; 400 INIT_LIST_HEAD(&pe->slaves); 401 master_pe = pe; 402 } else { 403 pe->flags |= PNV_IODA_PE_SLAVE; 404 pe->master = master_pe; 405 list_add_tail(&pe->list, &master_pe->slaves); 406 } 407 408 /* 409 * P7IOC supports M64DT, which helps mapping M64 segment 410 * to one particular PE#. However, PHB3 has fixed mapping 411 * between M64 segment and PE#. In order to have same logic 412 * for P7IOC and PHB3, we enforce fixed mapping between M64 413 * segment and PE# on P7IOC. 414 */ 415 if (phb->type == PNV_PHB_IODA1) { 416 int64_t rc; 417 418 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 419 pe->pe_number, OPAL_M64_WINDOW_TYPE, 420 pe->pe_number / PNV_IODA1_M64_SEGS, 421 pe->pe_number % PNV_IODA1_M64_SEGS); 422 if (rc != OPAL_SUCCESS) 423 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n", 424 __func__, rc, phb->hose->global_number, 425 pe->pe_number); 426 } 427 } 428 429 kfree(pe_alloc); 430 return master_pe; 431 } 432 433 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) 434 { 435 struct pci_controller *hose = phb->hose; 436 struct device_node *dn = hose->dn; 437 struct resource *res; 438 u32 m64_range[2], i; 439 const __be32 *r; 440 u64 pci_addr; 441 442 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { 443 pr_info(" Not support M64 window\n"); 444 return; 445 } 446 447 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 448 pr_info(" Firmware too old to support M64 window\n"); 449 return; 450 } 451 452 r = of_get_property(dn, "ibm,opal-m64-window", NULL); 453 if (!r) { 454 pr_info(" No <ibm,opal-m64-window> on %pOF\n", 455 dn); 456 return; 457 } 458 459 /* 460 * Find the available M64 BAR range and pickup the last one for 461 * covering the whole 64-bits space. We support only one range. 462 */ 463 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", 464 m64_range, 2)) { 465 /* In absence of the property, assume 0..15 */ 466 m64_range[0] = 0; 467 m64_range[1] = 16; 468 } 469 /* We only support 64 bits in our allocator */ 470 if (m64_range[1] > 63) { 471 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", 472 __func__, m64_range[1], phb->hose->global_number); 473 m64_range[1] = 63; 474 } 475 /* Empty range, no m64 */ 476 if (m64_range[1] <= m64_range[0]) { 477 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", 478 __func__, phb->hose->global_number); 479 return; 480 } 481 482 /* Configure M64 informations */ 483 res = &hose->mem_resources[1]; 484 res->name = dn->full_name; 485 res->start = of_translate_address(dn, r + 2); 486 res->end = res->start + of_read_number(r + 4, 2) - 1; 487 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 488 pci_addr = of_read_number(r, 2); 489 hose->mem_offset[1] = res->start - pci_addr; 490 491 phb->ioda.m64_size = resource_size(res); 492 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; 493 phb->ioda.m64_base = pci_addr; 494 495 /* This lines up nicely with the display from processing OF ranges */ 496 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", 497 res->start, res->end, pci_addr, m64_range[0], 498 m64_range[0] + m64_range[1] - 1); 499 500 /* Mark all M64 used up by default */ 501 phb->ioda.m64_bar_alloc = (unsigned long)-1; 502 503 /* Use last M64 BAR to cover M64 window */ 504 m64_range[1]--; 505 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; 506 507 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); 508 509 /* Mark remaining ones free */ 510 for (i = m64_range[0]; i < m64_range[1]; i++) 511 clear_bit(i, &phb->ioda.m64_bar_alloc); 512 513 /* 514 * Setup init functions for M64 based on IODA version, IODA3 uses 515 * the IODA2 code. 516 */ 517 if (phb->type == PNV_PHB_IODA1) 518 phb->init_m64 = pnv_ioda1_init_m64; 519 else 520 phb->init_m64 = pnv_ioda2_init_m64; 521 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe; 522 phb->pick_m64_pe = pnv_ioda_pick_m64_pe; 523 } 524 525 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) 526 { 527 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; 528 struct pnv_ioda_pe *slave; 529 s64 rc; 530 531 /* Fetch master PE */ 532 if (pe->flags & PNV_IODA_PE_SLAVE) { 533 pe = pe->master; 534 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) 535 return; 536 537 pe_no = pe->pe_number; 538 } 539 540 /* Freeze master PE */ 541 rc = opal_pci_eeh_freeze_set(phb->opal_id, 542 pe_no, 543 OPAL_EEH_ACTION_SET_FREEZE_ALL); 544 if (rc != OPAL_SUCCESS) { 545 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 546 __func__, rc, phb->hose->global_number, pe_no); 547 return; 548 } 549 550 /* Freeze slave PEs */ 551 if (!(pe->flags & PNV_IODA_PE_MASTER)) 552 return; 553 554 list_for_each_entry(slave, &pe->slaves, list) { 555 rc = opal_pci_eeh_freeze_set(phb->opal_id, 556 slave->pe_number, 557 OPAL_EEH_ACTION_SET_FREEZE_ALL); 558 if (rc != OPAL_SUCCESS) 559 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 560 __func__, rc, phb->hose->global_number, 561 slave->pe_number); 562 } 563 } 564 565 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) 566 { 567 struct pnv_ioda_pe *pe, *slave; 568 s64 rc; 569 570 /* Find master PE */ 571 pe = &phb->ioda.pe_array[pe_no]; 572 if (pe->flags & PNV_IODA_PE_SLAVE) { 573 pe = pe->master; 574 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 575 pe_no = pe->pe_number; 576 } 577 578 /* Clear frozen state for master PE */ 579 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); 580 if (rc != OPAL_SUCCESS) { 581 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 582 __func__, rc, opt, phb->hose->global_number, pe_no); 583 return -EIO; 584 } 585 586 if (!(pe->flags & PNV_IODA_PE_MASTER)) 587 return 0; 588 589 /* Clear frozen state for slave PEs */ 590 list_for_each_entry(slave, &pe->slaves, list) { 591 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 592 slave->pe_number, 593 opt); 594 if (rc != OPAL_SUCCESS) { 595 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 596 __func__, rc, opt, phb->hose->global_number, 597 slave->pe_number); 598 return -EIO; 599 } 600 } 601 602 return 0; 603 } 604 605 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) 606 { 607 struct pnv_ioda_pe *slave, *pe; 608 u8 fstate, state; 609 __be16 pcierr; 610 s64 rc; 611 612 /* Sanity check on PE number */ 613 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) 614 return OPAL_EEH_STOPPED_PERM_UNAVAIL; 615 616 /* 617 * Fetch the master PE and the PE instance might be 618 * not initialized yet. 619 */ 620 pe = &phb->ioda.pe_array[pe_no]; 621 if (pe->flags & PNV_IODA_PE_SLAVE) { 622 pe = pe->master; 623 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 624 pe_no = pe->pe_number; 625 } 626 627 /* Check the master PE */ 628 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, 629 &state, &pcierr, NULL); 630 if (rc != OPAL_SUCCESS) { 631 pr_warn("%s: Failure %lld getting " 632 "PHB#%x-PE#%x state\n", 633 __func__, rc, 634 phb->hose->global_number, pe_no); 635 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 636 } 637 638 /* Check the slave PE */ 639 if (!(pe->flags & PNV_IODA_PE_MASTER)) 640 return state; 641 642 list_for_each_entry(slave, &pe->slaves, list) { 643 rc = opal_pci_eeh_freeze_status(phb->opal_id, 644 slave->pe_number, 645 &fstate, 646 &pcierr, 647 NULL); 648 if (rc != OPAL_SUCCESS) { 649 pr_warn("%s: Failure %lld getting " 650 "PHB#%x-PE#%x state\n", 651 __func__, rc, 652 phb->hose->global_number, slave->pe_number); 653 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 654 } 655 656 /* 657 * Override the result based on the ascending 658 * priority. 659 */ 660 if (fstate > state) 661 state = fstate; 662 } 663 664 return state; 665 } 666 667 /* Currently those 2 are only used when MSIs are enabled, this will change 668 * but in the meantime, we need to protect them to avoid warnings 669 */ 670 #ifdef CONFIG_PCI_MSI 671 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) 672 { 673 struct pci_controller *hose = pci_bus_to_host(dev->bus); 674 struct pnv_phb *phb = hose->private_data; 675 struct pci_dn *pdn = pci_get_pdn(dev); 676 677 if (!pdn) 678 return NULL; 679 if (pdn->pe_number == IODA_INVALID_PE) 680 return NULL; 681 return &phb->ioda.pe_array[pdn->pe_number]; 682 } 683 #endif /* CONFIG_PCI_MSI */ 684 685 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, 686 struct pnv_ioda_pe *parent, 687 struct pnv_ioda_pe *child, 688 bool is_add) 689 { 690 const char *desc = is_add ? "adding" : "removing"; 691 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : 692 OPAL_REMOVE_PE_FROM_DOMAIN; 693 struct pnv_ioda_pe *slave; 694 long rc; 695 696 /* Parent PE affects child PE */ 697 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 698 child->pe_number, op); 699 if (rc != OPAL_SUCCESS) { 700 pe_warn(child, "OPAL error %ld %s to parent PELTV\n", 701 rc, desc); 702 return -ENXIO; 703 } 704 705 if (!(child->flags & PNV_IODA_PE_MASTER)) 706 return 0; 707 708 /* Compound case: parent PE affects slave PEs */ 709 list_for_each_entry(slave, &child->slaves, list) { 710 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 711 slave->pe_number, op); 712 if (rc != OPAL_SUCCESS) { 713 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", 714 rc, desc); 715 return -ENXIO; 716 } 717 } 718 719 return 0; 720 } 721 722 static int pnv_ioda_set_peltv(struct pnv_phb *phb, 723 struct pnv_ioda_pe *pe, 724 bool is_add) 725 { 726 struct pnv_ioda_pe *slave; 727 struct pci_dev *pdev = NULL; 728 int ret; 729 730 /* 731 * Clear PE frozen state. If it's master PE, we need 732 * clear slave PE frozen state as well. 733 */ 734 if (is_add) { 735 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 736 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 737 if (pe->flags & PNV_IODA_PE_MASTER) { 738 list_for_each_entry(slave, &pe->slaves, list) 739 opal_pci_eeh_freeze_clear(phb->opal_id, 740 slave->pe_number, 741 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 742 } 743 } 744 745 /* 746 * Associate PE in PELT. We need add the PE into the 747 * corresponding PELT-V as well. Otherwise, the error 748 * originated from the PE might contribute to other 749 * PEs. 750 */ 751 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); 752 if (ret) 753 return ret; 754 755 /* For compound PEs, any one affects all of them */ 756 if (pe->flags & PNV_IODA_PE_MASTER) { 757 list_for_each_entry(slave, &pe->slaves, list) { 758 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); 759 if (ret) 760 return ret; 761 } 762 } 763 764 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) 765 pdev = pe->pbus->self; 766 else if (pe->flags & PNV_IODA_PE_DEV) 767 pdev = pe->pdev->bus->self; 768 #ifdef CONFIG_PCI_IOV 769 else if (pe->flags & PNV_IODA_PE_VF) 770 pdev = pe->parent_dev; 771 #endif /* CONFIG_PCI_IOV */ 772 while (pdev) { 773 struct pci_dn *pdn = pci_get_pdn(pdev); 774 struct pnv_ioda_pe *parent; 775 776 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 777 parent = &phb->ioda.pe_array[pdn->pe_number]; 778 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); 779 if (ret) 780 return ret; 781 } 782 783 pdev = pdev->bus->self; 784 } 785 786 return 0; 787 } 788 789 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 790 { 791 struct pci_dev *parent; 792 uint8_t bcomp, dcomp, fcomp; 793 int64_t rc; 794 long rid_end, rid; 795 796 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ 797 if (pe->pbus) { 798 int count; 799 800 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 801 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 802 parent = pe->pbus->self; 803 if (pe->flags & PNV_IODA_PE_BUS_ALL) 804 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 805 else 806 count = 1; 807 808 switch(count) { 809 case 1: bcomp = OpalPciBusAll; break; 810 case 2: bcomp = OpalPciBus7Bits; break; 811 case 4: bcomp = OpalPciBus6Bits; break; 812 case 8: bcomp = OpalPciBus5Bits; break; 813 case 16: bcomp = OpalPciBus4Bits; break; 814 case 32: bcomp = OpalPciBus3Bits; break; 815 default: 816 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 817 count); 818 /* Do an exact match only */ 819 bcomp = OpalPciBusAll; 820 } 821 rid_end = pe->rid + (count << 8); 822 } else { 823 #ifdef CONFIG_PCI_IOV 824 if (pe->flags & PNV_IODA_PE_VF) 825 parent = pe->parent_dev; 826 else 827 #endif 828 parent = pe->pdev->bus->self; 829 bcomp = OpalPciBusAll; 830 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 831 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 832 rid_end = pe->rid + 1; 833 } 834 835 /* Clear the reverse map */ 836 for (rid = pe->rid; rid < rid_end; rid++) 837 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; 838 839 /* Release from all parents PELT-V */ 840 while (parent) { 841 struct pci_dn *pdn = pci_get_pdn(parent); 842 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 843 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, 844 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 845 /* XXX What to do in case of error ? */ 846 } 847 parent = parent->bus->self; 848 } 849 850 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 851 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 852 853 /* Disassociate PE in PELT */ 854 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, 855 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 856 if (rc) 857 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc); 858 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 859 bcomp, dcomp, fcomp, OPAL_UNMAP_PE); 860 if (rc) 861 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 862 863 pe->pbus = NULL; 864 pe->pdev = NULL; 865 #ifdef CONFIG_PCI_IOV 866 pe->parent_dev = NULL; 867 #endif 868 869 return 0; 870 } 871 872 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 873 { 874 struct pci_dev *parent; 875 uint8_t bcomp, dcomp, fcomp; 876 long rc, rid_end, rid; 877 878 /* Bus validation ? */ 879 if (pe->pbus) { 880 int count; 881 882 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 883 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 884 parent = pe->pbus->self; 885 if (pe->flags & PNV_IODA_PE_BUS_ALL) 886 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 887 else 888 count = 1; 889 890 switch(count) { 891 case 1: bcomp = OpalPciBusAll; break; 892 case 2: bcomp = OpalPciBus7Bits; break; 893 case 4: bcomp = OpalPciBus6Bits; break; 894 case 8: bcomp = OpalPciBus5Bits; break; 895 case 16: bcomp = OpalPciBus4Bits; break; 896 case 32: bcomp = OpalPciBus3Bits; break; 897 default: 898 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 899 count); 900 /* Do an exact match only */ 901 bcomp = OpalPciBusAll; 902 } 903 rid_end = pe->rid + (count << 8); 904 } else { 905 #ifdef CONFIG_PCI_IOV 906 if (pe->flags & PNV_IODA_PE_VF) 907 parent = pe->parent_dev; 908 else 909 #endif /* CONFIG_PCI_IOV */ 910 parent = pe->pdev->bus->self; 911 bcomp = OpalPciBusAll; 912 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 913 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 914 rid_end = pe->rid + 1; 915 } 916 917 /* 918 * Associate PE in PELT. We need add the PE into the 919 * corresponding PELT-V as well. Otherwise, the error 920 * originated from the PE might contribute to other 921 * PEs. 922 */ 923 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 924 bcomp, dcomp, fcomp, OPAL_MAP_PE); 925 if (rc) { 926 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 927 return -ENXIO; 928 } 929 930 /* 931 * Configure PELTV. NPUs don't have a PELTV table so skip 932 * configuration on them. 933 */ 934 if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI) 935 pnv_ioda_set_peltv(phb, pe, true); 936 937 /* Setup reverse map */ 938 for (rid = pe->rid; rid < rid_end; rid++) 939 phb->ioda.pe_rmap[rid] = pe->pe_number; 940 941 /* Setup one MVTs on IODA1 */ 942 if (phb->type != PNV_PHB_IODA1) { 943 pe->mve_number = 0; 944 goto out; 945 } 946 947 pe->mve_number = pe->pe_number; 948 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); 949 if (rc != OPAL_SUCCESS) { 950 pe_err(pe, "OPAL error %ld setting up MVE %x\n", 951 rc, pe->mve_number); 952 pe->mve_number = -1; 953 } else { 954 rc = opal_pci_set_mve_enable(phb->opal_id, 955 pe->mve_number, OPAL_ENABLE_MVE); 956 if (rc) { 957 pe_err(pe, "OPAL error %ld enabling MVE %x\n", 958 rc, pe->mve_number); 959 pe->mve_number = -1; 960 } 961 } 962 963 out: 964 return 0; 965 } 966 967 #ifdef CONFIG_PCI_IOV 968 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) 969 { 970 struct pci_dn *pdn = pci_get_pdn(dev); 971 int i; 972 struct resource *res, res2; 973 resource_size_t size; 974 u16 num_vfs; 975 976 if (!dev->is_physfn) 977 return -EINVAL; 978 979 /* 980 * "offset" is in VFs. The M64 windows are sized so that when they 981 * are segmented, each segment is the same size as the IOV BAR. 982 * Each segment is in a separate PE, and the high order bits of the 983 * address are the PE number. Therefore, each VF's BAR is in a 984 * separate PE, and changing the IOV BAR start address changes the 985 * range of PEs the VFs are in. 986 */ 987 num_vfs = pdn->num_vfs; 988 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 989 res = &dev->resource[i + PCI_IOV_RESOURCES]; 990 if (!res->flags || !res->parent) 991 continue; 992 993 /* 994 * The actual IOV BAR range is determined by the start address 995 * and the actual size for num_vfs VFs BAR. This check is to 996 * make sure that after shifting, the range will not overlap 997 * with another device. 998 */ 999 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 1000 res2.flags = res->flags; 1001 res2.start = res->start + (size * offset); 1002 res2.end = res2.start + (size * num_vfs) - 1; 1003 1004 if (res2.end > res->end) { 1005 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", 1006 i, &res2, res, num_vfs, offset); 1007 return -EBUSY; 1008 } 1009 } 1010 1011 /* 1012 * Since M64 BAR shares segments among all possible 256 PEs, 1013 * we have to shift the beginning of PF IOV BAR to make it start from 1014 * the segment which belongs to the PE number assigned to the first VF. 1015 * This creates a "hole" in the /proc/iomem which could be used for 1016 * allocating other resources so we reserve this area below and 1017 * release when IOV is released. 1018 */ 1019 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1020 res = &dev->resource[i + PCI_IOV_RESOURCES]; 1021 if (!res->flags || !res->parent) 1022 continue; 1023 1024 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 1025 res2 = *res; 1026 res->start += size * offset; 1027 1028 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", 1029 i, &res2, res, (offset > 0) ? "En" : "Dis", 1030 num_vfs, offset); 1031 1032 if (offset < 0) { 1033 devm_release_resource(&dev->dev, &pdn->holes[i]); 1034 memset(&pdn->holes[i], 0, sizeof(pdn->holes[i])); 1035 } 1036 1037 pci_update_resource(dev, i + PCI_IOV_RESOURCES); 1038 1039 if (offset > 0) { 1040 pdn->holes[i].start = res2.start; 1041 pdn->holes[i].end = res2.start + size * offset - 1; 1042 pdn->holes[i].flags = IORESOURCE_BUS; 1043 pdn->holes[i].name = "pnv_iov_reserved"; 1044 devm_request_resource(&dev->dev, res->parent, 1045 &pdn->holes[i]); 1046 } 1047 } 1048 return 0; 1049 } 1050 #endif /* CONFIG_PCI_IOV */ 1051 1052 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) 1053 { 1054 struct pci_controller *hose = pci_bus_to_host(dev->bus); 1055 struct pnv_phb *phb = hose->private_data; 1056 struct pci_dn *pdn = pci_get_pdn(dev); 1057 struct pnv_ioda_pe *pe; 1058 1059 if (!pdn) { 1060 pr_err("%s: Device tree node not associated properly\n", 1061 pci_name(dev)); 1062 return NULL; 1063 } 1064 if (pdn->pe_number != IODA_INVALID_PE) 1065 return NULL; 1066 1067 pe = pnv_ioda_alloc_pe(phb); 1068 if (!pe) { 1069 pr_warn("%s: Not enough PE# available, disabling device\n", 1070 pci_name(dev)); 1071 return NULL; 1072 } 1073 1074 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the 1075 * pointer in the PE data structure, both should be destroyed at the 1076 * same time. However, this needs to be looked at more closely again 1077 * once we actually start removing things (Hotplug, SR-IOV, ...) 1078 * 1079 * At some point we want to remove the PDN completely anyways 1080 */ 1081 pci_dev_get(dev); 1082 pdn->pe_number = pe->pe_number; 1083 pe->flags = PNV_IODA_PE_DEV; 1084 pe->pdev = dev; 1085 pe->pbus = NULL; 1086 pe->mve_number = -1; 1087 pe->rid = dev->bus->number << 8 | pdn->devfn; 1088 1089 pe_info(pe, "Associated device to PE\n"); 1090 1091 if (pnv_ioda_configure_pe(phb, pe)) { 1092 /* XXX What do we do here ? */ 1093 pnv_ioda_free_pe(pe); 1094 pdn->pe_number = IODA_INVALID_PE; 1095 pe->pdev = NULL; 1096 pci_dev_put(dev); 1097 return NULL; 1098 } 1099 1100 /* Put PE to the list */ 1101 list_add_tail(&pe->list, &phb->ioda.pe_list); 1102 1103 return pe; 1104 } 1105 1106 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe) 1107 { 1108 struct pci_dev *dev; 1109 1110 list_for_each_entry(dev, &bus->devices, bus_list) { 1111 struct pci_dn *pdn = pci_get_pdn(dev); 1112 1113 if (pdn == NULL) { 1114 pr_warn("%s: No device node associated with device !\n", 1115 pci_name(dev)); 1116 continue; 1117 } 1118 1119 /* 1120 * In partial hotplug case, the PCI device might be still 1121 * associated with the PE and needn't attach it to the PE 1122 * again. 1123 */ 1124 if (pdn->pe_number != IODA_INVALID_PE) 1125 continue; 1126 1127 pe->device_count++; 1128 pdn->pe_number = pe->pe_number; 1129 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1130 pnv_ioda_setup_same_PE(dev->subordinate, pe); 1131 } 1132 } 1133 1134 /* 1135 * There're 2 types of PCI bus sensitive PEs: One that is compromised of 1136 * single PCI bus. Another one that contains the primary PCI bus and its 1137 * subordinate PCI devices and buses. The second type of PE is normally 1138 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. 1139 */ 1140 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) 1141 { 1142 struct pci_controller *hose = pci_bus_to_host(bus); 1143 struct pnv_phb *phb = hose->private_data; 1144 struct pnv_ioda_pe *pe = NULL; 1145 unsigned int pe_num; 1146 1147 /* 1148 * In partial hotplug case, the PE instance might be still alive. 1149 * We should reuse it instead of allocating a new one. 1150 */ 1151 pe_num = phb->ioda.pe_rmap[bus->number << 8]; 1152 if (pe_num != IODA_INVALID_PE) { 1153 pe = &phb->ioda.pe_array[pe_num]; 1154 pnv_ioda_setup_same_PE(bus, pe); 1155 return NULL; 1156 } 1157 1158 /* PE number for root bus should have been reserved */ 1159 if (pci_is_root_bus(bus) && 1160 phb->ioda.root_pe_idx != IODA_INVALID_PE) 1161 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; 1162 1163 /* Check if PE is determined by M64 */ 1164 if (!pe && phb->pick_m64_pe) 1165 pe = phb->pick_m64_pe(bus, all); 1166 1167 /* The PE number isn't pinned by M64 */ 1168 if (!pe) 1169 pe = pnv_ioda_alloc_pe(phb); 1170 1171 if (!pe) { 1172 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n", 1173 __func__, pci_domain_nr(bus), bus->number); 1174 return NULL; 1175 } 1176 1177 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); 1178 pe->pbus = bus; 1179 pe->pdev = NULL; 1180 pe->mve_number = -1; 1181 pe->rid = bus->busn_res.start << 8; 1182 1183 if (all) 1184 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n", 1185 bus->busn_res.start, bus->busn_res.end, pe->pe_number); 1186 else 1187 pe_info(pe, "Secondary bus %d associated with PE#%x\n", 1188 bus->busn_res.start, pe->pe_number); 1189 1190 if (pnv_ioda_configure_pe(phb, pe)) { 1191 /* XXX What do we do here ? */ 1192 pnv_ioda_free_pe(pe); 1193 pe->pbus = NULL; 1194 return NULL; 1195 } 1196 1197 /* Associate it with all child devices */ 1198 pnv_ioda_setup_same_PE(bus, pe); 1199 1200 /* Put PE to the list */ 1201 list_add_tail(&pe->list, &phb->ioda.pe_list); 1202 1203 return pe; 1204 } 1205 1206 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev) 1207 { 1208 int pe_num, found_pe = false, rc; 1209 long rid; 1210 struct pnv_ioda_pe *pe; 1211 struct pci_dev *gpu_pdev; 1212 struct pci_dn *npu_pdn; 1213 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus); 1214 struct pnv_phb *phb = hose->private_data; 1215 1216 /* 1217 * Due to a hardware errata PE#0 on the NPU is reserved for 1218 * error handling. This means we only have three PEs remaining 1219 * which need to be assigned to four links, implying some 1220 * links must share PEs. 1221 * 1222 * To achieve this we assign PEs such that NPUs linking the 1223 * same GPU get assigned the same PE. 1224 */ 1225 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev); 1226 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 1227 pe = &phb->ioda.pe_array[pe_num]; 1228 if (!pe->pdev) 1229 continue; 1230 1231 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) { 1232 /* 1233 * This device has the same peer GPU so should 1234 * be assigned the same PE as the existing 1235 * peer NPU. 1236 */ 1237 dev_info(&npu_pdev->dev, 1238 "Associating to existing PE %x\n", pe_num); 1239 pci_dev_get(npu_pdev); 1240 npu_pdn = pci_get_pdn(npu_pdev); 1241 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn; 1242 npu_pdn->pe_number = pe_num; 1243 phb->ioda.pe_rmap[rid] = pe->pe_number; 1244 1245 /* Map the PE to this link */ 1246 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid, 1247 OpalPciBusAll, 1248 OPAL_COMPARE_RID_DEVICE_NUMBER, 1249 OPAL_COMPARE_RID_FUNCTION_NUMBER, 1250 OPAL_MAP_PE); 1251 WARN_ON(rc != OPAL_SUCCESS); 1252 found_pe = true; 1253 break; 1254 } 1255 } 1256 1257 if (!found_pe) 1258 /* 1259 * Could not find an existing PE so allocate a new 1260 * one. 1261 */ 1262 return pnv_ioda_setup_dev_PE(npu_pdev); 1263 else 1264 return pe; 1265 } 1266 1267 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus) 1268 { 1269 struct pci_dev *pdev; 1270 1271 list_for_each_entry(pdev, &bus->devices, bus_list) 1272 pnv_ioda_setup_npu_PE(pdev); 1273 } 1274 1275 static void pnv_pci_ioda_setup_PEs(void) 1276 { 1277 struct pci_controller *hose, *tmp; 1278 struct pnv_phb *phb; 1279 struct pci_bus *bus; 1280 struct pci_dev *pdev; 1281 1282 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 1283 phb = hose->private_data; 1284 if (phb->type == PNV_PHB_NPU_NVLINK) { 1285 /* PE#0 is needed for error reporting */ 1286 pnv_ioda_reserve_pe(phb, 0); 1287 pnv_ioda_setup_npu_PEs(hose->bus); 1288 if (phb->model == PNV_PHB_MODEL_NPU2) 1289 pnv_npu2_init(phb); 1290 } 1291 if (phb->type == PNV_PHB_NPU_OCAPI) { 1292 bus = hose->bus; 1293 list_for_each_entry(pdev, &bus->devices, bus_list) 1294 pnv_ioda_setup_dev_PE(pdev); 1295 } 1296 } 1297 } 1298 1299 #ifdef CONFIG_PCI_IOV 1300 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) 1301 { 1302 struct pci_bus *bus; 1303 struct pci_controller *hose; 1304 struct pnv_phb *phb; 1305 struct pci_dn *pdn; 1306 int i, j; 1307 int m64_bars; 1308 1309 bus = pdev->bus; 1310 hose = pci_bus_to_host(bus); 1311 phb = hose->private_data; 1312 pdn = pci_get_pdn(pdev); 1313 1314 if (pdn->m64_single_mode) 1315 m64_bars = num_vfs; 1316 else 1317 m64_bars = 1; 1318 1319 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) 1320 for (j = 0; j < m64_bars; j++) { 1321 if (pdn->m64_map[j][i] == IODA_INVALID_M64) 1322 continue; 1323 opal_pci_phb_mmio_enable(phb->opal_id, 1324 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0); 1325 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc); 1326 pdn->m64_map[j][i] = IODA_INVALID_M64; 1327 } 1328 1329 kfree(pdn->m64_map); 1330 return 0; 1331 } 1332 1333 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) 1334 { 1335 struct pci_bus *bus; 1336 struct pci_controller *hose; 1337 struct pnv_phb *phb; 1338 struct pci_dn *pdn; 1339 unsigned int win; 1340 struct resource *res; 1341 int i, j; 1342 int64_t rc; 1343 int total_vfs; 1344 resource_size_t size, start; 1345 int pe_num; 1346 int m64_bars; 1347 1348 bus = pdev->bus; 1349 hose = pci_bus_to_host(bus); 1350 phb = hose->private_data; 1351 pdn = pci_get_pdn(pdev); 1352 total_vfs = pci_sriov_get_totalvfs(pdev); 1353 1354 if (pdn->m64_single_mode) 1355 m64_bars = num_vfs; 1356 else 1357 m64_bars = 1; 1358 1359 pdn->m64_map = kmalloc_array(m64_bars, 1360 sizeof(*pdn->m64_map), 1361 GFP_KERNEL); 1362 if (!pdn->m64_map) 1363 return -ENOMEM; 1364 /* Initialize the m64_map to IODA_INVALID_M64 */ 1365 for (i = 0; i < m64_bars ; i++) 1366 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++) 1367 pdn->m64_map[i][j] = IODA_INVALID_M64; 1368 1369 1370 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1371 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 1372 if (!res->flags || !res->parent) 1373 continue; 1374 1375 for (j = 0; j < m64_bars; j++) { 1376 do { 1377 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, 1378 phb->ioda.m64_bar_idx + 1, 0); 1379 1380 if (win >= phb->ioda.m64_bar_idx + 1) 1381 goto m64_failed; 1382 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); 1383 1384 pdn->m64_map[j][i] = win; 1385 1386 if (pdn->m64_single_mode) { 1387 size = pci_iov_resource_size(pdev, 1388 PCI_IOV_RESOURCES + i); 1389 start = res->start + size * j; 1390 } else { 1391 size = resource_size(res); 1392 start = res->start; 1393 } 1394 1395 /* Map the M64 here */ 1396 if (pdn->m64_single_mode) { 1397 pe_num = pdn->pe_num_map[j]; 1398 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 1399 pe_num, OPAL_M64_WINDOW_TYPE, 1400 pdn->m64_map[j][i], 0); 1401 } 1402 1403 rc = opal_pci_set_phb_mem_window(phb->opal_id, 1404 OPAL_M64_WINDOW_TYPE, 1405 pdn->m64_map[j][i], 1406 start, 1407 0, /* unused */ 1408 size); 1409 1410 1411 if (rc != OPAL_SUCCESS) { 1412 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n", 1413 win, rc); 1414 goto m64_failed; 1415 } 1416 1417 if (pdn->m64_single_mode) 1418 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1419 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2); 1420 else 1421 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1422 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1); 1423 1424 if (rc != OPAL_SUCCESS) { 1425 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n", 1426 win, rc); 1427 goto m64_failed; 1428 } 1429 } 1430 } 1431 return 0; 1432 1433 m64_failed: 1434 pnv_pci_vf_release_m64(pdev, num_vfs); 1435 return -EBUSY; 1436 } 1437 1438 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 1439 int num); 1440 1441 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe) 1442 { 1443 struct iommu_table *tbl; 1444 int64_t rc; 1445 1446 tbl = pe->table_group.tables[0]; 1447 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 1448 if (rc) 1449 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 1450 1451 pnv_pci_ioda2_set_bypass(pe, false); 1452 if (pe->table_group.group) { 1453 iommu_group_put(pe->table_group.group); 1454 BUG_ON(pe->table_group.group); 1455 } 1456 iommu_tce_table_put(tbl); 1457 } 1458 1459 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev) 1460 { 1461 struct pci_bus *bus; 1462 struct pci_controller *hose; 1463 struct pnv_phb *phb; 1464 struct pnv_ioda_pe *pe, *pe_n; 1465 struct pci_dn *pdn; 1466 1467 bus = pdev->bus; 1468 hose = pci_bus_to_host(bus); 1469 phb = hose->private_data; 1470 pdn = pci_get_pdn(pdev); 1471 1472 if (!pdev->is_physfn) 1473 return; 1474 1475 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { 1476 if (pe->parent_dev != pdev) 1477 continue; 1478 1479 pnv_pci_ioda2_release_dma_pe(pdev, pe); 1480 1481 /* Remove from list */ 1482 mutex_lock(&phb->ioda.pe_list_mutex); 1483 list_del(&pe->list); 1484 mutex_unlock(&phb->ioda.pe_list_mutex); 1485 1486 pnv_ioda_deconfigure_pe(phb, pe); 1487 1488 pnv_ioda_free_pe(pe); 1489 } 1490 } 1491 1492 void pnv_pci_sriov_disable(struct pci_dev *pdev) 1493 { 1494 struct pci_bus *bus; 1495 struct pci_controller *hose; 1496 struct pnv_phb *phb; 1497 struct pnv_ioda_pe *pe; 1498 struct pci_dn *pdn; 1499 u16 num_vfs, i; 1500 1501 bus = pdev->bus; 1502 hose = pci_bus_to_host(bus); 1503 phb = hose->private_data; 1504 pdn = pci_get_pdn(pdev); 1505 num_vfs = pdn->num_vfs; 1506 1507 /* Release VF PEs */ 1508 pnv_ioda_release_vf_PE(pdev); 1509 1510 if (phb->type == PNV_PHB_IODA2) { 1511 if (!pdn->m64_single_mode) 1512 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map); 1513 1514 /* Release M64 windows */ 1515 pnv_pci_vf_release_m64(pdev, num_vfs); 1516 1517 /* Release PE numbers */ 1518 if (pdn->m64_single_mode) { 1519 for (i = 0; i < num_vfs; i++) { 1520 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1521 continue; 1522 1523 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1524 pnv_ioda_free_pe(pe); 1525 } 1526 } else 1527 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1528 /* Releasing pe_num_map */ 1529 kfree(pdn->pe_num_map); 1530 } 1531 } 1532 1533 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 1534 struct pnv_ioda_pe *pe); 1535 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) 1536 { 1537 struct pci_bus *bus; 1538 struct pci_controller *hose; 1539 struct pnv_phb *phb; 1540 struct pnv_ioda_pe *pe; 1541 int pe_num; 1542 u16 vf_index; 1543 struct pci_dn *pdn; 1544 1545 bus = pdev->bus; 1546 hose = pci_bus_to_host(bus); 1547 phb = hose->private_data; 1548 pdn = pci_get_pdn(pdev); 1549 1550 if (!pdev->is_physfn) 1551 return; 1552 1553 /* Reserve PE for each VF */ 1554 for (vf_index = 0; vf_index < num_vfs; vf_index++) { 1555 if (pdn->m64_single_mode) 1556 pe_num = pdn->pe_num_map[vf_index]; 1557 else 1558 pe_num = *pdn->pe_num_map + vf_index; 1559 1560 pe = &phb->ioda.pe_array[pe_num]; 1561 pe->pe_number = pe_num; 1562 pe->phb = phb; 1563 pe->flags = PNV_IODA_PE_VF; 1564 pe->pbus = NULL; 1565 pe->parent_dev = pdev; 1566 pe->mve_number = -1; 1567 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) | 1568 pci_iov_virtfn_devfn(pdev, vf_index); 1569 1570 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n", 1571 hose->global_number, pdev->bus->number, 1572 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)), 1573 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num); 1574 1575 if (pnv_ioda_configure_pe(phb, pe)) { 1576 /* XXX What do we do here ? */ 1577 pnv_ioda_free_pe(pe); 1578 pe->pdev = NULL; 1579 continue; 1580 } 1581 1582 /* Put PE to the list */ 1583 mutex_lock(&phb->ioda.pe_list_mutex); 1584 list_add_tail(&pe->list, &phb->ioda.pe_list); 1585 mutex_unlock(&phb->ioda.pe_list_mutex); 1586 1587 pnv_pci_ioda2_setup_dma_pe(phb, pe); 1588 } 1589 } 1590 1591 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1592 { 1593 struct pci_bus *bus; 1594 struct pci_controller *hose; 1595 struct pnv_phb *phb; 1596 struct pnv_ioda_pe *pe; 1597 struct pci_dn *pdn; 1598 int ret; 1599 u16 i; 1600 1601 bus = pdev->bus; 1602 hose = pci_bus_to_host(bus); 1603 phb = hose->private_data; 1604 pdn = pci_get_pdn(pdev); 1605 1606 if (phb->type == PNV_PHB_IODA2) { 1607 if (!pdn->vfs_expanded) { 1608 dev_info(&pdev->dev, "don't support this SRIOV device" 1609 " with non 64bit-prefetchable IOV BAR\n"); 1610 return -ENOSPC; 1611 } 1612 1613 /* 1614 * When M64 BARs functions in Single PE mode, the number of VFs 1615 * could be enabled must be less than the number of M64 BARs. 1616 */ 1617 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) { 1618 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n"); 1619 return -EBUSY; 1620 } 1621 1622 /* Allocating pe_num_map */ 1623 if (pdn->m64_single_mode) 1624 pdn->pe_num_map = kmalloc_array(num_vfs, 1625 sizeof(*pdn->pe_num_map), 1626 GFP_KERNEL); 1627 else 1628 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL); 1629 1630 if (!pdn->pe_num_map) 1631 return -ENOMEM; 1632 1633 if (pdn->m64_single_mode) 1634 for (i = 0; i < num_vfs; i++) 1635 pdn->pe_num_map[i] = IODA_INVALID_PE; 1636 1637 /* Calculate available PE for required VFs */ 1638 if (pdn->m64_single_mode) { 1639 for (i = 0; i < num_vfs; i++) { 1640 pe = pnv_ioda_alloc_pe(phb); 1641 if (!pe) { 1642 ret = -EBUSY; 1643 goto m64_failed; 1644 } 1645 1646 pdn->pe_num_map[i] = pe->pe_number; 1647 } 1648 } else { 1649 mutex_lock(&phb->ioda.pe_alloc_mutex); 1650 *pdn->pe_num_map = bitmap_find_next_zero_area( 1651 phb->ioda.pe_alloc, phb->ioda.total_pe_num, 1652 0, num_vfs, 0); 1653 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) { 1654 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1655 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs); 1656 kfree(pdn->pe_num_map); 1657 return -EBUSY; 1658 } 1659 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1660 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1661 } 1662 pdn->num_vfs = num_vfs; 1663 1664 /* Assign M64 window accordingly */ 1665 ret = pnv_pci_vf_assign_m64(pdev, num_vfs); 1666 if (ret) { 1667 dev_info(&pdev->dev, "Not enough M64 window resources\n"); 1668 goto m64_failed; 1669 } 1670 1671 /* 1672 * When using one M64 BAR to map one IOV BAR, we need to shift 1673 * the IOV BAR according to the PE# allocated to the VFs. 1674 * Otherwise, the PE# for the VF will conflict with others. 1675 */ 1676 if (!pdn->m64_single_mode) { 1677 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map); 1678 if (ret) 1679 goto m64_failed; 1680 } 1681 } 1682 1683 /* Setup VF PEs */ 1684 pnv_ioda_setup_vf_PE(pdev, num_vfs); 1685 1686 return 0; 1687 1688 m64_failed: 1689 if (pdn->m64_single_mode) { 1690 for (i = 0; i < num_vfs; i++) { 1691 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1692 continue; 1693 1694 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1695 pnv_ioda_free_pe(pe); 1696 } 1697 } else 1698 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1699 1700 /* Releasing pe_num_map */ 1701 kfree(pdn->pe_num_map); 1702 1703 return ret; 1704 } 1705 1706 int pnv_pcibios_sriov_disable(struct pci_dev *pdev) 1707 { 1708 pnv_pci_sriov_disable(pdev); 1709 1710 /* Release PCI data */ 1711 remove_dev_pci_data(pdev); 1712 return 0; 1713 } 1714 1715 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1716 { 1717 /* Allocate PCI data */ 1718 add_dev_pci_data(pdev); 1719 1720 return pnv_pci_sriov_enable(pdev, num_vfs); 1721 } 1722 #endif /* CONFIG_PCI_IOV */ 1723 1724 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev) 1725 { 1726 struct pci_dn *pdn = pci_get_pdn(pdev); 1727 struct pnv_ioda_pe *pe; 1728 1729 /* 1730 * The function can be called while the PE# 1731 * hasn't been assigned. Do nothing for the 1732 * case. 1733 */ 1734 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 1735 return; 1736 1737 pe = &phb->ioda.pe_array[pdn->pe_number]; 1738 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); 1739 set_dma_offset(&pdev->dev, pe->tce_bypass_base); 1740 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); 1741 /* 1742 * Note: iommu_add_device() will fail here as 1743 * for physical PE: the device is already added by now; 1744 * for virtual PE: sysfs entries are not ready yet and 1745 * tce_iommu_bus_notifier will add the device to a group later. 1746 */ 1747 } 1748 1749 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe) 1750 { 1751 unsigned short vendor = 0; 1752 struct pci_dev *pdev; 1753 1754 if (pe->device_count == 1) 1755 return true; 1756 1757 /* pe->pdev should be set if it's a single device, pe->pbus if not */ 1758 if (!pe->pbus) 1759 return true; 1760 1761 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 1762 if (!vendor) { 1763 vendor = pdev->vendor; 1764 continue; 1765 } 1766 1767 if (pdev->vendor != vendor) 1768 return false; 1769 } 1770 1771 return true; 1772 } 1773 1774 /* 1775 * Reconfigure TVE#0 to be usable as 64-bit DMA space. 1776 * 1777 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses. 1778 * Devices can only access more than that if bit 59 of the PCI address is set 1779 * by hardware, which indicates TVE#1 should be used instead of TVE#0. 1780 * Many PCI devices are not capable of addressing that many bits, and as a 1781 * result are limited to the 4GB of virtual memory made available to 32-bit 1782 * devices in TVE#0. 1783 * 1784 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit 1785 * devices by configuring the virtual memory past the first 4GB inaccessible 1786 * by 64-bit DMAs. This should only be used by devices that want more than 1787 * 4GB, and only on PEs that have no 32-bit devices. 1788 * 1789 * Currently this will only work on PHB3 (POWER8). 1790 */ 1791 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe) 1792 { 1793 u64 window_size, table_size, tce_count, addr; 1794 struct page *table_pages; 1795 u64 tce_order = 28; /* 256MB TCEs */ 1796 __be64 *tces; 1797 s64 rc; 1798 1799 /* 1800 * Window size needs to be a power of two, but needs to account for 1801 * shifting memory by the 4GB offset required to skip 32bit space. 1802 */ 1803 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32)); 1804 tce_count = window_size >> tce_order; 1805 table_size = tce_count << 3; 1806 1807 if (table_size < PAGE_SIZE) 1808 table_size = PAGE_SIZE; 1809 1810 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL, 1811 get_order(table_size)); 1812 if (!table_pages) 1813 goto err; 1814 1815 tces = page_address(table_pages); 1816 if (!tces) 1817 goto err; 1818 1819 memset(tces, 0, table_size); 1820 1821 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) { 1822 tces[(addr + (1ULL << 32)) >> tce_order] = 1823 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE); 1824 } 1825 1826 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id, 1827 pe->pe_number, 1828 /* reconfigure window 0 */ 1829 (pe->pe_number << 1) + 0, 1830 1, 1831 __pa(tces), 1832 table_size, 1833 1 << tce_order); 1834 if (rc == OPAL_SUCCESS) { 1835 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n"); 1836 return 0; 1837 } 1838 err: 1839 pe_err(pe, "Error configuring 64-bit DMA bypass\n"); 1840 return -EIO; 1841 } 1842 1843 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask) 1844 { 1845 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1846 struct pnv_phb *phb = hose->private_data; 1847 struct pci_dn *pdn = pci_get_pdn(pdev); 1848 struct pnv_ioda_pe *pe; 1849 uint64_t top; 1850 bool bypass = false; 1851 s64 rc; 1852 1853 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1854 return -ENODEV; 1855 1856 pe = &phb->ioda.pe_array[pdn->pe_number]; 1857 if (pe->tce_bypass_enabled) { 1858 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; 1859 bypass = (dma_mask >= top); 1860 } 1861 1862 if (bypass) { 1863 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n"); 1864 set_dma_ops(&pdev->dev, &dma_nommu_ops); 1865 } else { 1866 /* 1867 * If the device can't set the TCE bypass bit but still wants 1868 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to 1869 * bypass the 32-bit region and be usable for 64-bit DMAs. 1870 * The device needs to be able to address all of this space. 1871 */ 1872 if (dma_mask >> 32 && 1873 dma_mask > (memory_hotplug_max() + (1ULL << 32)) && 1874 pnv_pci_ioda_pe_single_vendor(pe) && 1875 phb->model == PNV_PHB_MODEL_PHB3) { 1876 /* Configure the bypass mode */ 1877 rc = pnv_pci_ioda_dma_64bit_bypass(pe); 1878 if (rc) 1879 return rc; 1880 /* 4GB offset bypasses 32-bit space */ 1881 set_dma_offset(&pdev->dev, (1ULL << 32)); 1882 set_dma_ops(&pdev->dev, &dma_nommu_ops); 1883 } else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) { 1884 /* 1885 * Fail the request if a DMA mask between 32 and 64 bits 1886 * was requested but couldn't be fulfilled. Ideally we 1887 * would do this for 64-bits but historically we have 1888 * always fallen back to 32-bits. 1889 */ 1890 return -ENOMEM; 1891 } else { 1892 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n"); 1893 set_dma_ops(&pdev->dev, &dma_iommu_ops); 1894 } 1895 } 1896 *pdev->dev.dma_mask = dma_mask; 1897 1898 /* Update peer npu devices */ 1899 pnv_npu_try_dma_set_bypass(pdev, bypass); 1900 1901 return 0; 1902 } 1903 1904 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev) 1905 { 1906 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1907 struct pnv_phb *phb = hose->private_data; 1908 struct pci_dn *pdn = pci_get_pdn(pdev); 1909 struct pnv_ioda_pe *pe; 1910 u64 end, mask; 1911 1912 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1913 return 0; 1914 1915 pe = &phb->ioda.pe_array[pdn->pe_number]; 1916 if (!pe->tce_bypass_enabled) 1917 return __dma_get_required_mask(&pdev->dev); 1918 1919 1920 end = pe->tce_bypass_base + memblock_end_of_DRAM(); 1921 mask = 1ULL << (fls64(end) - 1); 1922 mask += mask - 1; 1923 1924 return mask; 1925 } 1926 1927 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, 1928 struct pci_bus *bus, 1929 bool add_to_group) 1930 { 1931 struct pci_dev *dev; 1932 1933 list_for_each_entry(dev, &bus->devices, bus_list) { 1934 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); 1935 set_dma_offset(&dev->dev, pe->tce_bypass_base); 1936 if (add_to_group) 1937 iommu_add_device(&dev->dev); 1938 1939 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1940 pnv_ioda_setup_bus_dma(pe, dev->subordinate, 1941 add_to_group); 1942 } 1943 } 1944 1945 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, 1946 bool real_mode) 1947 { 1948 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : 1949 (phb->regs + 0x210); 1950 } 1951 1952 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, 1953 unsigned long index, unsigned long npages, bool rm) 1954 { 1955 struct iommu_table_group_link *tgl = list_first_entry_or_null( 1956 &tbl->it_group_list, struct iommu_table_group_link, 1957 next); 1958 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1959 struct pnv_ioda_pe, table_group); 1960 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1961 unsigned long start, end, inc; 1962 1963 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); 1964 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + 1965 npages - 1); 1966 1967 /* p7ioc-style invalidation, 2 TCEs per write */ 1968 start |= (1ull << 63); 1969 end |= (1ull << 63); 1970 inc = 16; 1971 end |= inc - 1; /* round up end to be different than start */ 1972 1973 mb(); /* Ensure above stores are visible */ 1974 while (start <= end) { 1975 if (rm) 1976 __raw_rm_writeq_be(start, invalidate); 1977 else 1978 __raw_writeq_be(start, invalidate); 1979 1980 start += inc; 1981 } 1982 1983 /* 1984 * The iommu layer will do another mb() for us on build() 1985 * and we don't care on free() 1986 */ 1987 } 1988 1989 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, 1990 long npages, unsigned long uaddr, 1991 enum dma_data_direction direction, 1992 unsigned long attrs) 1993 { 1994 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1995 attrs); 1996 1997 if (!ret) 1998 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1999 2000 return ret; 2001 } 2002 2003 #ifdef CONFIG_IOMMU_API 2004 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index, 2005 unsigned long *hpa, enum dma_data_direction *direction) 2006 { 2007 long ret = pnv_tce_xchg(tbl, index, hpa, direction, true); 2008 2009 if (!ret) 2010 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false); 2011 2012 return ret; 2013 } 2014 2015 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index, 2016 unsigned long *hpa, enum dma_data_direction *direction) 2017 { 2018 long ret = pnv_tce_xchg(tbl, index, hpa, direction, false); 2019 2020 if (!ret) 2021 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true); 2022 2023 return ret; 2024 } 2025 #endif 2026 2027 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, 2028 long npages) 2029 { 2030 pnv_tce_free(tbl, index, npages); 2031 2032 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 2033 } 2034 2035 static struct iommu_table_ops pnv_ioda1_iommu_ops = { 2036 .set = pnv_ioda1_tce_build, 2037 #ifdef CONFIG_IOMMU_API 2038 .exchange = pnv_ioda1_tce_xchg, 2039 .exchange_rm = pnv_ioda1_tce_xchg_rm, 2040 .useraddrptr = pnv_tce_useraddrptr, 2041 #endif 2042 .clear = pnv_ioda1_tce_free, 2043 .get = pnv_tce_get, 2044 }; 2045 2046 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) 2047 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) 2048 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) 2049 2050 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 2051 { 2052 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm); 2053 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL; 2054 2055 mb(); /* Ensure previous TCE table stores are visible */ 2056 if (rm) 2057 __raw_rm_writeq_be(val, invalidate); 2058 else 2059 __raw_writeq_be(val, invalidate); 2060 } 2061 2062 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) 2063 { 2064 /* 01xb - invalidate TCEs that match the specified PE# */ 2065 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); 2066 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); 2067 2068 mb(); /* Ensure above stores are visible */ 2069 __raw_writeq_be(val, invalidate); 2070 } 2071 2072 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, 2073 unsigned shift, unsigned long index, 2074 unsigned long npages) 2075 { 2076 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 2077 unsigned long start, end, inc; 2078 2079 /* We'll invalidate DMA address in PE scope */ 2080 start = PHB3_TCE_KILL_INVAL_ONE; 2081 start |= (pe->pe_number & 0xFF); 2082 end = start; 2083 2084 /* Figure out the start, end and step */ 2085 start |= (index << shift); 2086 end |= ((index + npages - 1) << shift); 2087 inc = (0x1ull << shift); 2088 mb(); 2089 2090 while (start <= end) { 2091 if (rm) 2092 __raw_rm_writeq_be(start, invalidate); 2093 else 2094 __raw_writeq_be(start, invalidate); 2095 start += inc; 2096 } 2097 } 2098 2099 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) 2100 { 2101 struct pnv_phb *phb = pe->phb; 2102 2103 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 2104 pnv_pci_phb3_tce_invalidate_pe(pe); 2105 else 2106 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, 2107 pe->pe_number, 0, 0, 0); 2108 } 2109 2110 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, 2111 unsigned long index, unsigned long npages, bool rm) 2112 { 2113 struct iommu_table_group_link *tgl; 2114 2115 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) { 2116 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 2117 struct pnv_ioda_pe, table_group); 2118 struct pnv_phb *phb = pe->phb; 2119 unsigned int shift = tbl->it_page_shift; 2120 2121 /* 2122 * NVLink1 can use the TCE kill register directly as 2123 * it's the same as PHB3. NVLink2 is different and 2124 * should go via the OPAL call. 2125 */ 2126 if (phb->model == PNV_PHB_MODEL_NPU) { 2127 /* 2128 * The NVLink hardware does not support TCE kill 2129 * per TCE entry so we have to invalidate 2130 * the entire cache for it. 2131 */ 2132 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 2133 continue; 2134 } 2135 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 2136 pnv_pci_phb3_tce_invalidate(pe, rm, shift, 2137 index, npages); 2138 else 2139 opal_pci_tce_kill(phb->opal_id, 2140 OPAL_PCI_TCE_KILL_PAGES, 2141 pe->pe_number, 1u << shift, 2142 index << shift, npages); 2143 } 2144 } 2145 2146 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 2147 { 2148 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3) 2149 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 2150 else 2151 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0); 2152 } 2153 2154 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, 2155 long npages, unsigned long uaddr, 2156 enum dma_data_direction direction, 2157 unsigned long attrs) 2158 { 2159 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 2160 attrs); 2161 2162 if (!ret) 2163 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2164 2165 return ret; 2166 } 2167 2168 #ifdef CONFIG_IOMMU_API 2169 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index, 2170 unsigned long *hpa, enum dma_data_direction *direction) 2171 { 2172 long ret = pnv_tce_xchg(tbl, index, hpa, direction, true); 2173 2174 if (!ret) 2175 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false); 2176 2177 return ret; 2178 } 2179 2180 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index, 2181 unsigned long *hpa, enum dma_data_direction *direction) 2182 { 2183 long ret = pnv_tce_xchg(tbl, index, hpa, direction, false); 2184 2185 if (!ret) 2186 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true); 2187 2188 return ret; 2189 } 2190 #endif 2191 2192 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, 2193 long npages) 2194 { 2195 pnv_tce_free(tbl, index, npages); 2196 2197 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2198 } 2199 2200 static struct iommu_table_ops pnv_ioda2_iommu_ops = { 2201 .set = pnv_ioda2_tce_build, 2202 #ifdef CONFIG_IOMMU_API 2203 .exchange = pnv_ioda2_tce_xchg, 2204 .exchange_rm = pnv_ioda2_tce_xchg_rm, 2205 .useraddrptr = pnv_tce_useraddrptr, 2206 #endif 2207 .clear = pnv_ioda2_tce_free, 2208 .get = pnv_tce_get, 2209 .free = pnv_pci_ioda2_table_free_pages, 2210 }; 2211 2212 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) 2213 { 2214 unsigned int *weight = (unsigned int *)data; 2215 2216 /* This is quite simplistic. The "base" weight of a device 2217 * is 10. 0 means no DMA is to be accounted for it. 2218 */ 2219 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2220 return 0; 2221 2222 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || 2223 dev->class == PCI_CLASS_SERIAL_USB_OHCI || 2224 dev->class == PCI_CLASS_SERIAL_USB_EHCI) 2225 *weight += 3; 2226 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) 2227 *weight += 15; 2228 else 2229 *weight += 10; 2230 2231 return 0; 2232 } 2233 2234 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) 2235 { 2236 unsigned int weight = 0; 2237 2238 /* SRIOV VF has same DMA32 weight as its PF */ 2239 #ifdef CONFIG_PCI_IOV 2240 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { 2241 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); 2242 return weight; 2243 } 2244 #endif 2245 2246 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { 2247 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); 2248 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { 2249 struct pci_dev *pdev; 2250 2251 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) 2252 pnv_pci_ioda_dev_dma_weight(pdev, &weight); 2253 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { 2254 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); 2255 } 2256 2257 return weight; 2258 } 2259 2260 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, 2261 struct pnv_ioda_pe *pe) 2262 { 2263 2264 struct page *tce_mem = NULL; 2265 struct iommu_table *tbl; 2266 unsigned int weight, total_weight = 0; 2267 unsigned int tce32_segsz, base, segs, avail, i; 2268 int64_t rc; 2269 void *addr; 2270 2271 /* XXX FIXME: Handle 64-bit only DMA devices */ 2272 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ 2273 /* XXX FIXME: Allocate multi-level tables on PHB3 */ 2274 weight = pnv_pci_ioda_pe_dma_weight(pe); 2275 if (!weight) 2276 return; 2277 2278 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, 2279 &total_weight); 2280 segs = (weight * phb->ioda.dma32_count) / total_weight; 2281 if (!segs) 2282 segs = 1; 2283 2284 /* 2285 * Allocate contiguous DMA32 segments. We begin with the expected 2286 * number of segments. With one more attempt, the number of DMA32 2287 * segments to be allocated is decreased by one until one segment 2288 * is allocated successfully. 2289 */ 2290 do { 2291 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { 2292 for (avail = 0, i = base; i < base + segs; i++) { 2293 if (phb->ioda.dma32_segmap[i] == 2294 IODA_INVALID_PE) 2295 avail++; 2296 } 2297 2298 if (avail == segs) 2299 goto found; 2300 } 2301 } while (--segs); 2302 2303 if (!segs) { 2304 pe_warn(pe, "No available DMA32 segments\n"); 2305 return; 2306 } 2307 2308 found: 2309 tbl = pnv_pci_table_alloc(phb->hose->node); 2310 if (WARN_ON(!tbl)) 2311 return; 2312 2313 iommu_register_group(&pe->table_group, phb->hose->global_number, 2314 pe->pe_number); 2315 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); 2316 2317 /* Grab a 32-bit TCE table */ 2318 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", 2319 weight, total_weight, base, segs); 2320 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", 2321 base * PNV_IODA1_DMA32_SEGSIZE, 2322 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); 2323 2324 /* XXX Currently, we allocate one big contiguous table for the 2325 * TCEs. We only really need one chunk per 256M of TCE space 2326 * (ie per segment) but that's an optimization for later, it 2327 * requires some added smarts with our get/put_tce implementation 2328 * 2329 * Each TCE page is 4KB in size and each TCE entry occupies 8 2330 * bytes 2331 */ 2332 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); 2333 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, 2334 get_order(tce32_segsz * segs)); 2335 if (!tce_mem) { 2336 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); 2337 goto fail; 2338 } 2339 addr = page_address(tce_mem); 2340 memset(addr, 0, tce32_segsz * segs); 2341 2342 /* Configure HW */ 2343 for (i = 0; i < segs; i++) { 2344 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2345 pe->pe_number, 2346 base + i, 1, 2347 __pa(addr) + tce32_segsz * i, 2348 tce32_segsz, IOMMU_PAGE_SIZE_4K); 2349 if (rc) { 2350 pe_err(pe, " Failed to configure 32-bit TCE table," 2351 " err %ld\n", rc); 2352 goto fail; 2353 } 2354 } 2355 2356 /* Setup DMA32 segment mapping */ 2357 for (i = base; i < base + segs; i++) 2358 phb->ioda.dma32_segmap[i] = pe->pe_number; 2359 2360 /* Setup linux iommu table */ 2361 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, 2362 base * PNV_IODA1_DMA32_SEGSIZE, 2363 IOMMU_PAGE_SHIFT_4K); 2364 2365 tbl->it_ops = &pnv_ioda1_iommu_ops; 2366 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; 2367 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; 2368 iommu_init_table(tbl, phb->hose->node); 2369 2370 if (pe->flags & PNV_IODA_PE_DEV) { 2371 /* 2372 * Setting table base here only for carrying iommu_group 2373 * further down to let iommu_add_device() do the job. 2374 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2375 */ 2376 set_iommu_table_base(&pe->pdev->dev, tbl); 2377 iommu_add_device(&pe->pdev->dev); 2378 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2379 pnv_ioda_setup_bus_dma(pe, pe->pbus, true); 2380 2381 return; 2382 fail: 2383 /* XXX Failure: Try to fallback to 64-bit only ? */ 2384 if (tce_mem) 2385 __free_pages(tce_mem, get_order(tce32_segsz * segs)); 2386 if (tbl) { 2387 pnv_pci_unlink_table_and_group(tbl, &pe->table_group); 2388 iommu_tce_table_put(tbl); 2389 } 2390 } 2391 2392 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, 2393 int num, struct iommu_table *tbl) 2394 { 2395 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2396 table_group); 2397 struct pnv_phb *phb = pe->phb; 2398 int64_t rc; 2399 const unsigned long size = tbl->it_indirect_levels ? 2400 tbl->it_level_size : tbl->it_size; 2401 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; 2402 const __u64 win_size = tbl->it_size << tbl->it_page_shift; 2403 2404 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num, 2405 start_addr, start_addr + win_size - 1, 2406 IOMMU_PAGE_SIZE(tbl)); 2407 2408 /* 2409 * Map TCE table through TVT. The TVE index is the PE number 2410 * shifted by 1 bit for 32-bits DMA space. 2411 */ 2412 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2413 pe->pe_number, 2414 (pe->pe_number << 1) + num, 2415 tbl->it_indirect_levels + 1, 2416 __pa(tbl->it_base), 2417 size << 3, 2418 IOMMU_PAGE_SIZE(tbl)); 2419 if (rc) { 2420 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc); 2421 return rc; 2422 } 2423 2424 pnv_pci_link_table_and_group(phb->hose->node, num, 2425 tbl, &pe->table_group); 2426 pnv_pci_ioda2_tce_invalidate_pe(pe); 2427 2428 return 0; 2429 } 2430 2431 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) 2432 { 2433 uint16_t window_id = (pe->pe_number << 1 ) + 1; 2434 int64_t rc; 2435 2436 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); 2437 if (enable) { 2438 phys_addr_t top = memblock_end_of_DRAM(); 2439 2440 top = roundup_pow_of_two(top); 2441 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2442 pe->pe_number, 2443 window_id, 2444 pe->tce_bypass_base, 2445 top); 2446 } else { 2447 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2448 pe->pe_number, 2449 window_id, 2450 pe->tce_bypass_base, 2451 0); 2452 } 2453 if (rc) 2454 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); 2455 else 2456 pe->tce_bypass_enabled = enable; 2457 } 2458 2459 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, 2460 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2461 bool alloc_userspace_copy, struct iommu_table **ptbl) 2462 { 2463 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2464 table_group); 2465 int nid = pe->phb->hose->node; 2466 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; 2467 long ret; 2468 struct iommu_table *tbl; 2469 2470 tbl = pnv_pci_table_alloc(nid); 2471 if (!tbl) 2472 return -ENOMEM; 2473 2474 tbl->it_ops = &pnv_ioda2_iommu_ops; 2475 2476 ret = pnv_pci_ioda2_table_alloc_pages(nid, 2477 bus_offset, page_shift, window_size, 2478 levels, alloc_userspace_copy, tbl); 2479 if (ret) { 2480 iommu_tce_table_put(tbl); 2481 return ret; 2482 } 2483 2484 *ptbl = tbl; 2485 2486 return 0; 2487 } 2488 2489 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) 2490 { 2491 struct iommu_table *tbl = NULL; 2492 long rc; 2493 2494 /* 2495 * crashkernel= specifies the kdump kernel's maximum memory at 2496 * some offset and there is no guaranteed the result is a power 2497 * of 2, which will cause errors later. 2498 */ 2499 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); 2500 2501 /* 2502 * In memory constrained environments, e.g. kdump kernel, the 2503 * DMA window can be larger than available memory, which will 2504 * cause errors later. 2505 */ 2506 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory); 2507 2508 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, 2509 IOMMU_PAGE_SHIFT_4K, 2510 window_size, 2511 POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl); 2512 if (rc) { 2513 pe_err(pe, "Failed to create 32-bit TCE table, err %ld", 2514 rc); 2515 return rc; 2516 } 2517 2518 iommu_init_table(tbl, pe->phb->hose->node); 2519 2520 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); 2521 if (rc) { 2522 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", 2523 rc); 2524 iommu_tce_table_put(tbl); 2525 return rc; 2526 } 2527 2528 if (!pnv_iommu_bypass_disabled) 2529 pnv_pci_ioda2_set_bypass(pe, true); 2530 2531 /* 2532 * Setting table base here only for carrying iommu_group 2533 * further down to let iommu_add_device() do the job. 2534 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2535 */ 2536 if (pe->flags & PNV_IODA_PE_DEV) 2537 set_iommu_table_base(&pe->pdev->dev, tbl); 2538 2539 return 0; 2540 } 2541 2542 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV) 2543 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 2544 int num) 2545 { 2546 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2547 table_group); 2548 struct pnv_phb *phb = pe->phb; 2549 long ret; 2550 2551 pe_info(pe, "Removing DMA window #%d\n", num); 2552 2553 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 2554 (pe->pe_number << 1) + num, 2555 0/* levels */, 0/* table address */, 2556 0/* table size */, 0/* page size */); 2557 if (ret) 2558 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); 2559 else 2560 pnv_pci_ioda2_tce_invalidate_pe(pe); 2561 2562 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 2563 2564 return ret; 2565 } 2566 #endif 2567 2568 #ifdef CONFIG_IOMMU_API 2569 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, 2570 __u64 window_size, __u32 levels) 2571 { 2572 unsigned long bytes = 0; 2573 const unsigned window_shift = ilog2(window_size); 2574 unsigned entries_shift = window_shift - page_shift; 2575 unsigned table_shift = entries_shift + 3; 2576 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); 2577 unsigned long direct_table_size; 2578 2579 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || 2580 !is_power_of_2(window_size)) 2581 return 0; 2582 2583 /* Calculate a direct table size from window_size and levels */ 2584 entries_shift = (entries_shift + levels - 1) / levels; 2585 table_shift = entries_shift + 3; 2586 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); 2587 direct_table_size = 1UL << table_shift; 2588 2589 for ( ; levels; --levels) { 2590 bytes += _ALIGN_UP(tce_table_size, direct_table_size); 2591 2592 tce_table_size /= direct_table_size; 2593 tce_table_size <<= 3; 2594 tce_table_size = max_t(unsigned long, 2595 tce_table_size, direct_table_size); 2596 } 2597 2598 return bytes + bytes; /* one for HW table, one for userspace copy */ 2599 } 2600 2601 static long pnv_pci_ioda2_create_table_userspace( 2602 struct iommu_table_group *table_group, 2603 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2604 struct iommu_table **ptbl) 2605 { 2606 return pnv_pci_ioda2_create_table(table_group, 2607 num, page_shift, window_size, levels, true, ptbl); 2608 } 2609 2610 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) 2611 { 2612 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2613 table_group); 2614 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ 2615 struct iommu_table *tbl = pe->table_group.tables[0]; 2616 2617 pnv_pci_ioda2_set_bypass(pe, false); 2618 pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2619 if (pe->pbus) 2620 pnv_ioda_setup_bus_dma(pe, pe->pbus, false); 2621 iommu_tce_table_put(tbl); 2622 } 2623 2624 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) 2625 { 2626 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2627 table_group); 2628 2629 pnv_pci_ioda2_setup_default_config(pe); 2630 if (pe->pbus) 2631 pnv_ioda_setup_bus_dma(pe, pe->pbus, false); 2632 } 2633 2634 static struct iommu_table_group_ops pnv_pci_ioda2_ops = { 2635 .get_table_size = pnv_pci_ioda2_get_table_size, 2636 .create_table = pnv_pci_ioda2_create_table_userspace, 2637 .set_window = pnv_pci_ioda2_set_window, 2638 .unset_window = pnv_pci_ioda2_unset_window, 2639 .take_ownership = pnv_ioda2_take_ownership, 2640 .release_ownership = pnv_ioda2_release_ownership, 2641 }; 2642 2643 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque) 2644 { 2645 struct pci_controller *hose; 2646 struct pnv_phb *phb; 2647 struct pnv_ioda_pe **ptmppe = opaque; 2648 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev); 2649 struct pci_dn *pdn = pci_get_pdn(pdev); 2650 2651 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 2652 return 0; 2653 2654 hose = pci_bus_to_host(pdev->bus); 2655 phb = hose->private_data; 2656 if (phb->type != PNV_PHB_NPU_NVLINK) 2657 return 0; 2658 2659 *ptmppe = &phb->ioda.pe_array[pdn->pe_number]; 2660 2661 return 1; 2662 } 2663 2664 /* 2665 * This returns PE of associated NPU. 2666 * This assumes that NPU is in the same IOMMU group with GPU and there is 2667 * no other PEs. 2668 */ 2669 static struct pnv_ioda_pe *gpe_table_group_to_npe( 2670 struct iommu_table_group *table_group) 2671 { 2672 struct pnv_ioda_pe *npe = NULL; 2673 int ret = iommu_group_for_each_dev(table_group->group, &npe, 2674 gpe_table_group_to_npe_cb); 2675 2676 BUG_ON(!ret || !npe); 2677 2678 return npe; 2679 } 2680 2681 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group, 2682 int num, struct iommu_table *tbl) 2683 { 2684 struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group); 2685 int num2 = (num == 0) ? 1 : 0; 2686 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl); 2687 2688 if (ret) 2689 return ret; 2690 2691 if (table_group->tables[num2]) 2692 pnv_npu_unset_window(npe, num2); 2693 2694 ret = pnv_npu_set_window(npe, num, tbl); 2695 if (ret) { 2696 pnv_pci_ioda2_unset_window(table_group, num); 2697 if (table_group->tables[num2]) 2698 pnv_npu_set_window(npe, num2, 2699 table_group->tables[num2]); 2700 } 2701 2702 return ret; 2703 } 2704 2705 static long pnv_pci_ioda2_npu_unset_window( 2706 struct iommu_table_group *table_group, 2707 int num) 2708 { 2709 struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group); 2710 int num2 = (num == 0) ? 1 : 0; 2711 long ret = pnv_pci_ioda2_unset_window(table_group, num); 2712 2713 if (ret) 2714 return ret; 2715 2716 if (!npe->table_group.tables[num]) 2717 return 0; 2718 2719 ret = pnv_npu_unset_window(npe, num); 2720 if (ret) 2721 return ret; 2722 2723 if (table_group->tables[num2]) 2724 ret = pnv_npu_set_window(npe, num2, table_group->tables[num2]); 2725 2726 return ret; 2727 } 2728 2729 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group) 2730 { 2731 /* 2732 * Detach NPU first as pnv_ioda2_take_ownership() will destroy 2733 * the iommu_table if 32bit DMA is enabled. 2734 */ 2735 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group)); 2736 pnv_ioda2_take_ownership(table_group); 2737 } 2738 2739 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = { 2740 .get_table_size = pnv_pci_ioda2_get_table_size, 2741 .create_table = pnv_pci_ioda2_create_table_userspace, 2742 .set_window = pnv_pci_ioda2_npu_set_window, 2743 .unset_window = pnv_pci_ioda2_npu_unset_window, 2744 .take_ownership = pnv_ioda2_npu_take_ownership, 2745 .release_ownership = pnv_ioda2_release_ownership, 2746 }; 2747 2748 static void pnv_pci_ioda_setup_iommu_api(void) 2749 { 2750 struct pci_controller *hose, *tmp; 2751 struct pnv_phb *phb; 2752 struct pnv_ioda_pe *pe, *gpe; 2753 2754 /* 2755 * Now we have all PHBs discovered, time to add NPU devices to 2756 * the corresponding IOMMU groups. 2757 */ 2758 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 2759 phb = hose->private_data; 2760 2761 if (phb->type != PNV_PHB_NPU_NVLINK) 2762 continue; 2763 2764 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2765 gpe = pnv_pci_npu_setup_iommu(pe); 2766 if (gpe) 2767 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops; 2768 } 2769 } 2770 } 2771 #else /* !CONFIG_IOMMU_API */ 2772 static void pnv_pci_ioda_setup_iommu_api(void) { }; 2773 #endif 2774 2775 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb) 2776 { 2777 struct pci_controller *hose = phb->hose; 2778 struct device_node *dn = hose->dn; 2779 unsigned long mask = 0; 2780 int i, rc, count; 2781 u32 val; 2782 2783 count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes"); 2784 if (count <= 0) { 2785 mask = SZ_4K | SZ_64K; 2786 /* Add 16M for POWER8 by default */ 2787 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 2788 !cpu_has_feature(CPU_FTR_ARCH_300)) 2789 mask |= SZ_16M | SZ_256M; 2790 return mask; 2791 } 2792 2793 for (i = 0; i < count; i++) { 2794 rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes", 2795 i, &val); 2796 if (rc == 0) 2797 mask |= 1ULL << val; 2798 } 2799 2800 return mask; 2801 } 2802 2803 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 2804 struct pnv_ioda_pe *pe) 2805 { 2806 int64_t rc; 2807 2808 if (!pnv_pci_ioda_pe_dma_weight(pe)) 2809 return; 2810 2811 /* TVE #1 is selected by PCI address bit 59 */ 2812 pe->tce_bypass_base = 1ull << 59; 2813 2814 iommu_register_group(&pe->table_group, phb->hose->global_number, 2815 pe->pe_number); 2816 2817 /* The PE will reserve all possible 32-bits space */ 2818 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", 2819 phb->ioda.m32_pci_base); 2820 2821 /* Setup linux iommu table */ 2822 pe->table_group.tce32_start = 0; 2823 pe->table_group.tce32_size = phb->ioda.m32_pci_base; 2824 pe->table_group.max_dynamic_windows_supported = 2825 IOMMU_TABLE_GROUP_MAX_TABLES; 2826 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; 2827 pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb); 2828 #ifdef CONFIG_IOMMU_API 2829 pe->table_group.ops = &pnv_pci_ioda2_ops; 2830 #endif 2831 2832 rc = pnv_pci_ioda2_setup_default_config(pe); 2833 if (rc) 2834 return; 2835 2836 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2837 pnv_ioda_setup_bus_dma(pe, pe->pbus, true); 2838 } 2839 2840 #ifdef CONFIG_PCI_MSI 2841 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq) 2842 { 2843 struct pnv_phb *phb = container_of(chip, struct pnv_phb, 2844 ioda.irq_chip); 2845 2846 return opal_pci_msi_eoi(phb->opal_id, hw_irq); 2847 } 2848 2849 static void pnv_ioda2_msi_eoi(struct irq_data *d) 2850 { 2851 int64_t rc; 2852 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 2853 struct irq_chip *chip = irq_data_get_irq_chip(d); 2854 2855 rc = pnv_opal_pci_msi_eoi(chip, hw_irq); 2856 WARN_ON_ONCE(rc); 2857 2858 icp_native_eoi(d); 2859 } 2860 2861 2862 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) 2863 { 2864 struct irq_data *idata; 2865 struct irq_chip *ichip; 2866 2867 /* The MSI EOI OPAL call is only needed on PHB3 */ 2868 if (phb->model != PNV_PHB_MODEL_PHB3) 2869 return; 2870 2871 if (!phb->ioda.irq_chip_init) { 2872 /* 2873 * First time we setup an MSI IRQ, we need to setup the 2874 * corresponding IRQ chip to route correctly. 2875 */ 2876 idata = irq_get_irq_data(virq); 2877 ichip = irq_data_get_irq_chip(idata); 2878 phb->ioda.irq_chip_init = 1; 2879 phb->ioda.irq_chip = *ichip; 2880 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; 2881 } 2882 irq_set_chip(virq, &phb->ioda.irq_chip); 2883 } 2884 2885 /* 2886 * Returns true iff chip is something that we could call 2887 * pnv_opal_pci_msi_eoi for. 2888 */ 2889 bool is_pnv_opal_msi(struct irq_chip *chip) 2890 { 2891 return chip->irq_eoi == pnv_ioda2_msi_eoi; 2892 } 2893 EXPORT_SYMBOL_GPL(is_pnv_opal_msi); 2894 2895 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, 2896 unsigned int hwirq, unsigned int virq, 2897 unsigned int is_64, struct msi_msg *msg) 2898 { 2899 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); 2900 unsigned int xive_num = hwirq - phb->msi_base; 2901 __be32 data; 2902 int rc; 2903 2904 /* No PE assigned ? bail out ... no MSI for you ! */ 2905 if (pe == NULL) 2906 return -ENXIO; 2907 2908 /* Check if we have an MVE */ 2909 if (pe->mve_number < 0) 2910 return -ENXIO; 2911 2912 /* Force 32-bit MSI on some broken devices */ 2913 if (dev->no_64bit_msi) 2914 is_64 = 0; 2915 2916 /* Assign XIVE to PE */ 2917 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); 2918 if (rc) { 2919 pr_warn("%s: OPAL error %d setting XIVE %d PE\n", 2920 pci_name(dev), rc, xive_num); 2921 return -EIO; 2922 } 2923 2924 if (is_64) { 2925 __be64 addr64; 2926 2927 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, 2928 &addr64, &data); 2929 if (rc) { 2930 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", 2931 pci_name(dev), rc); 2932 return -EIO; 2933 } 2934 msg->address_hi = be64_to_cpu(addr64) >> 32; 2935 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; 2936 } else { 2937 __be32 addr32; 2938 2939 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, 2940 &addr32, &data); 2941 if (rc) { 2942 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", 2943 pci_name(dev), rc); 2944 return -EIO; 2945 } 2946 msg->address_hi = 0; 2947 msg->address_lo = be32_to_cpu(addr32); 2948 } 2949 msg->data = be32_to_cpu(data); 2950 2951 pnv_set_msi_irq_chip(phb, virq); 2952 2953 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," 2954 " address=%x_%08x data=%x PE# %x\n", 2955 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, 2956 msg->address_hi, msg->address_lo, data, pe->pe_number); 2957 2958 return 0; 2959 } 2960 2961 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) 2962 { 2963 unsigned int count; 2964 const __be32 *prop = of_get_property(phb->hose->dn, 2965 "ibm,opal-msi-ranges", NULL); 2966 if (!prop) { 2967 /* BML Fallback */ 2968 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); 2969 } 2970 if (!prop) 2971 return; 2972 2973 phb->msi_base = be32_to_cpup(prop); 2974 count = be32_to_cpup(prop + 1); 2975 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { 2976 pr_err("PCI %d: Failed to allocate MSI bitmap !\n", 2977 phb->hose->global_number); 2978 return; 2979 } 2980 2981 phb->msi_setup = pnv_pci_ioda_msi_setup; 2982 phb->msi32_support = 1; 2983 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", 2984 count, phb->msi_base); 2985 } 2986 #else 2987 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { } 2988 #endif /* CONFIG_PCI_MSI */ 2989 2990 #ifdef CONFIG_PCI_IOV 2991 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) 2992 { 2993 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 2994 struct pnv_phb *phb = hose->private_data; 2995 const resource_size_t gate = phb->ioda.m64_segsize >> 2; 2996 struct resource *res; 2997 int i; 2998 resource_size_t size, total_vf_bar_sz; 2999 struct pci_dn *pdn; 3000 int mul, total_vfs; 3001 3002 if (!pdev->is_physfn || pci_dev_is_added(pdev)) 3003 return; 3004 3005 pdn = pci_get_pdn(pdev); 3006 pdn->vfs_expanded = 0; 3007 pdn->m64_single_mode = false; 3008 3009 total_vfs = pci_sriov_get_totalvfs(pdev); 3010 mul = phb->ioda.total_pe_num; 3011 total_vf_bar_sz = 0; 3012 3013 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 3014 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 3015 if (!res->flags || res->parent) 3016 continue; 3017 if (!pnv_pci_is_m64_flags(res->flags)) { 3018 dev_warn(&pdev->dev, "Don't support SR-IOV with" 3019 " non M64 VF BAR%d: %pR. \n", 3020 i, res); 3021 goto truncate_iov; 3022 } 3023 3024 total_vf_bar_sz += pci_iov_resource_size(pdev, 3025 i + PCI_IOV_RESOURCES); 3026 3027 /* 3028 * If bigger than quarter of M64 segment size, just round up 3029 * power of two. 3030 * 3031 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict 3032 * with other devices, IOV BAR size is expanded to be 3033 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64 3034 * segment size , the expanded size would equal to half of the 3035 * whole M64 space size, which will exhaust the M64 Space and 3036 * limit the system flexibility. This is a design decision to 3037 * set the boundary to quarter of the M64 segment size. 3038 */ 3039 if (total_vf_bar_sz > gate) { 3040 mul = roundup_pow_of_two(total_vfs); 3041 dev_info(&pdev->dev, 3042 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n", 3043 total_vf_bar_sz, gate, mul); 3044 pdn->m64_single_mode = true; 3045 break; 3046 } 3047 } 3048 3049 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 3050 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 3051 if (!res->flags || res->parent) 3052 continue; 3053 3054 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); 3055 /* 3056 * On PHB3, the minimum size alignment of M64 BAR in single 3057 * mode is 32MB. 3058 */ 3059 if (pdn->m64_single_mode && (size < SZ_32M)) 3060 goto truncate_iov; 3061 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res); 3062 res->end = res->start + size * mul - 1; 3063 dev_dbg(&pdev->dev, " %pR\n", res); 3064 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", 3065 i, res, mul); 3066 } 3067 pdn->vfs_expanded = mul; 3068 3069 return; 3070 3071 truncate_iov: 3072 /* To save MMIO space, IOV BAR is truncated. */ 3073 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 3074 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 3075 res->flags = 0; 3076 res->end = res->start - 1; 3077 } 3078 } 3079 #endif /* CONFIG_PCI_IOV */ 3080 3081 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, 3082 struct resource *res) 3083 { 3084 struct pnv_phb *phb = pe->phb; 3085 struct pci_bus_region region; 3086 int index; 3087 int64_t rc; 3088 3089 if (!res || !res->flags || res->start > res->end) 3090 return; 3091 3092 if (res->flags & IORESOURCE_IO) { 3093 region.start = res->start - phb->ioda.io_pci_base; 3094 region.end = res->end - phb->ioda.io_pci_base; 3095 index = region.start / phb->ioda.io_segsize; 3096 3097 while (index < phb->ioda.total_pe_num && 3098 region.start <= region.end) { 3099 phb->ioda.io_segmap[index] = pe->pe_number; 3100 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3101 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); 3102 if (rc != OPAL_SUCCESS) { 3103 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n", 3104 __func__, rc, index, pe->pe_number); 3105 break; 3106 } 3107 3108 region.start += phb->ioda.io_segsize; 3109 index++; 3110 } 3111 } else if ((res->flags & IORESOURCE_MEM) && 3112 !pnv_pci_is_m64(phb, res)) { 3113 region.start = res->start - 3114 phb->hose->mem_offset[0] - 3115 phb->ioda.m32_pci_base; 3116 region.end = res->end - 3117 phb->hose->mem_offset[0] - 3118 phb->ioda.m32_pci_base; 3119 index = region.start / phb->ioda.m32_segsize; 3120 3121 while (index < phb->ioda.total_pe_num && 3122 region.start <= region.end) { 3123 phb->ioda.m32_segmap[index] = pe->pe_number; 3124 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3125 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); 3126 if (rc != OPAL_SUCCESS) { 3127 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x", 3128 __func__, rc, index, pe->pe_number); 3129 break; 3130 } 3131 3132 region.start += phb->ioda.m32_segsize; 3133 index++; 3134 } 3135 } 3136 } 3137 3138 /* 3139 * This function is supposed to be called on basis of PE from top 3140 * to bottom style. So the the I/O or MMIO segment assigned to 3141 * parent PE could be overridden by its child PEs if necessary. 3142 */ 3143 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) 3144 { 3145 struct pci_dev *pdev; 3146 int i; 3147 3148 /* 3149 * NOTE: We only care PCI bus based PE for now. For PCI 3150 * device based PE, for example SRIOV sensitive VF should 3151 * be figured out later. 3152 */ 3153 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); 3154 3155 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 3156 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 3157 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); 3158 3159 /* 3160 * If the PE contains all subordinate PCI buses, the 3161 * windows of the child bridges should be mapped to 3162 * the PE as well. 3163 */ 3164 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) 3165 continue; 3166 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) 3167 pnv_ioda_setup_pe_res(pe, 3168 &pdev->resource[PCI_BRIDGE_RESOURCES + i]); 3169 } 3170 } 3171 3172 #ifdef CONFIG_DEBUG_FS 3173 static int pnv_pci_diag_data_set(void *data, u64 val) 3174 { 3175 struct pci_controller *hose; 3176 struct pnv_phb *phb; 3177 s64 ret; 3178 3179 if (val != 1ULL) 3180 return -EINVAL; 3181 3182 hose = (struct pci_controller *)data; 3183 if (!hose || !hose->private_data) 3184 return -ENODEV; 3185 3186 phb = hose->private_data; 3187 3188 /* Retrieve the diag data from firmware */ 3189 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data, 3190 phb->diag_data_size); 3191 if (ret != OPAL_SUCCESS) 3192 return -EIO; 3193 3194 /* Print the diag data to the kernel log */ 3195 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data); 3196 return 0; 3197 } 3198 3199 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, 3200 pnv_pci_diag_data_set, "%llu\n"); 3201 3202 #endif /* CONFIG_DEBUG_FS */ 3203 3204 static void pnv_pci_ioda_create_dbgfs(void) 3205 { 3206 #ifdef CONFIG_DEBUG_FS 3207 struct pci_controller *hose, *tmp; 3208 struct pnv_phb *phb; 3209 char name[16]; 3210 3211 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 3212 phb = hose->private_data; 3213 3214 /* Notify initialization of PHB done */ 3215 phb->initialized = 1; 3216 3217 sprintf(name, "PCI%04x", hose->global_number); 3218 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); 3219 if (!phb->dbgfs) { 3220 pr_warn("%s: Error on creating debugfs on PHB#%x\n", 3221 __func__, hose->global_number); 3222 continue; 3223 } 3224 3225 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose, 3226 &pnv_pci_diag_data_fops); 3227 } 3228 #endif /* CONFIG_DEBUG_FS */ 3229 } 3230 3231 static void pnv_pci_enable_bridge(struct pci_bus *bus) 3232 { 3233 struct pci_dev *dev = bus->self; 3234 struct pci_bus *child; 3235 3236 /* Empty bus ? bail */ 3237 if (list_empty(&bus->devices)) 3238 return; 3239 3240 /* 3241 * If there's a bridge associated with that bus enable it. This works 3242 * around races in the generic code if the enabling is done during 3243 * parallel probing. This can be removed once those races have been 3244 * fixed. 3245 */ 3246 if (dev) { 3247 int rc = pci_enable_device(dev); 3248 if (rc) 3249 pci_err(dev, "Error enabling bridge (%d)\n", rc); 3250 pci_set_master(dev); 3251 } 3252 3253 /* Perform the same to child busses */ 3254 list_for_each_entry(child, &bus->children, node) 3255 pnv_pci_enable_bridge(child); 3256 } 3257 3258 static void pnv_pci_enable_bridges(void) 3259 { 3260 struct pci_controller *hose; 3261 3262 list_for_each_entry(hose, &hose_list, list_node) 3263 pnv_pci_enable_bridge(hose->bus); 3264 } 3265 3266 static void pnv_pci_ioda_fixup(void) 3267 { 3268 pnv_pci_ioda_setup_PEs(); 3269 pnv_pci_ioda_setup_iommu_api(); 3270 pnv_pci_ioda_create_dbgfs(); 3271 3272 pnv_pci_enable_bridges(); 3273 3274 #ifdef CONFIG_EEH 3275 pnv_eeh_post_init(); 3276 #endif 3277 } 3278 3279 /* 3280 * Returns the alignment for I/O or memory windows for P2P 3281 * bridges. That actually depends on how PEs are segmented. 3282 * For now, we return I/O or M32 segment size for PE sensitive 3283 * P2P bridges. Otherwise, the default values (4KiB for I/O, 3284 * 1MiB for memory) will be returned. 3285 * 3286 * The current PCI bus might be put into one PE, which was 3287 * create against the parent PCI bridge. For that case, we 3288 * needn't enlarge the alignment so that we can save some 3289 * resources. 3290 */ 3291 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, 3292 unsigned long type) 3293 { 3294 struct pci_dev *bridge; 3295 struct pci_controller *hose = pci_bus_to_host(bus); 3296 struct pnv_phb *phb = hose->private_data; 3297 int num_pci_bridges = 0; 3298 3299 bridge = bus->self; 3300 while (bridge) { 3301 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { 3302 num_pci_bridges++; 3303 if (num_pci_bridges >= 2) 3304 return 1; 3305 } 3306 3307 bridge = bridge->bus->self; 3308 } 3309 3310 /* 3311 * We fall back to M32 if M64 isn't supported. We enforce the M64 3312 * alignment for any 64-bit resource, PCIe doesn't care and 3313 * bridges only do 64-bit prefetchable anyway. 3314 */ 3315 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type)) 3316 return phb->ioda.m64_segsize; 3317 if (type & IORESOURCE_MEM) 3318 return phb->ioda.m32_segsize; 3319 3320 return phb->ioda.io_segsize; 3321 } 3322 3323 /* 3324 * We are updating root port or the upstream port of the 3325 * bridge behind the root port with PHB's windows in order 3326 * to accommodate the changes on required resources during 3327 * PCI (slot) hotplug, which is connected to either root 3328 * port or the downstream ports of PCIe switch behind the 3329 * root port. 3330 */ 3331 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, 3332 unsigned long type) 3333 { 3334 struct pci_controller *hose = pci_bus_to_host(bus); 3335 struct pnv_phb *phb = hose->private_data; 3336 struct pci_dev *bridge = bus->self; 3337 struct resource *r, *w; 3338 bool msi_region = false; 3339 int i; 3340 3341 /* Check if we need apply fixup to the bridge's windows */ 3342 if (!pci_is_root_bus(bridge->bus) && 3343 !pci_is_root_bus(bridge->bus->self->bus)) 3344 return; 3345 3346 /* Fixup the resources */ 3347 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { 3348 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; 3349 if (!r->flags || !r->parent) 3350 continue; 3351 3352 w = NULL; 3353 if (r->flags & type & IORESOURCE_IO) 3354 w = &hose->io_resource; 3355 else if (pnv_pci_is_m64(phb, r) && 3356 (type & IORESOURCE_PREFETCH) && 3357 phb->ioda.m64_segsize) 3358 w = &hose->mem_resources[1]; 3359 else if (r->flags & type & IORESOURCE_MEM) { 3360 w = &hose->mem_resources[0]; 3361 msi_region = true; 3362 } 3363 3364 r->start = w->start; 3365 r->end = w->end; 3366 3367 /* The 64KB 32-bits MSI region shouldn't be included in 3368 * the 32-bits bridge window. Otherwise, we can see strange 3369 * issues. One of them is EEH error observed on Garrison. 3370 * 3371 * Exclude top 1MB region which is the minimal alignment of 3372 * 32-bits bridge window. 3373 */ 3374 if (msi_region) { 3375 r->end += 0x10000; 3376 r->end -= 0x100000; 3377 } 3378 } 3379 } 3380 3381 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type) 3382 { 3383 struct pci_controller *hose = pci_bus_to_host(bus); 3384 struct pnv_phb *phb = hose->private_data; 3385 struct pci_dev *bridge = bus->self; 3386 struct pnv_ioda_pe *pe; 3387 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); 3388 3389 /* Extend bridge's windows if necessary */ 3390 pnv_pci_fixup_bridge_resources(bus, type); 3391 3392 /* The PE for root bus should be realized before any one else */ 3393 if (!phb->ioda.root_pe_populated) { 3394 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false); 3395 if (pe) { 3396 phb->ioda.root_pe_idx = pe->pe_number; 3397 phb->ioda.root_pe_populated = true; 3398 } 3399 } 3400 3401 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ 3402 if (list_empty(&bus->devices)) 3403 return; 3404 3405 /* Reserve PEs according to used M64 resources */ 3406 if (phb->reserve_m64_pe) 3407 phb->reserve_m64_pe(bus, NULL, all); 3408 3409 /* 3410 * Assign PE. We might run here because of partial hotplug. 3411 * For the case, we just pick up the existing PE and should 3412 * not allocate resources again. 3413 */ 3414 pe = pnv_ioda_setup_bus_PE(bus, all); 3415 if (!pe) 3416 return; 3417 3418 pnv_ioda_setup_pe_seg(pe); 3419 switch (phb->type) { 3420 case PNV_PHB_IODA1: 3421 pnv_pci_ioda1_setup_dma_pe(phb, pe); 3422 break; 3423 case PNV_PHB_IODA2: 3424 pnv_pci_ioda2_setup_dma_pe(phb, pe); 3425 break; 3426 default: 3427 pr_warn("%s: No DMA for PHB#%x (type %d)\n", 3428 __func__, phb->hose->global_number, phb->type); 3429 } 3430 } 3431 3432 static resource_size_t pnv_pci_default_alignment(void) 3433 { 3434 return PAGE_SIZE; 3435 } 3436 3437 #ifdef CONFIG_PCI_IOV 3438 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, 3439 int resno) 3440 { 3441 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3442 struct pnv_phb *phb = hose->private_data; 3443 struct pci_dn *pdn = pci_get_pdn(pdev); 3444 resource_size_t align; 3445 3446 /* 3447 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the 3448 * SR-IOV. While from hardware perspective, the range mapped by M64 3449 * BAR should be size aligned. 3450 * 3451 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra 3452 * powernv-specific hardware restriction is gone. But if just use the 3453 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with 3454 * in one segment of M64 #15, which introduces the PE conflict between 3455 * PF and VF. Based on this, the minimum alignment of an IOV BAR is 3456 * m64_segsize. 3457 * 3458 * This function returns the total IOV BAR size if M64 BAR is in 3459 * Shared PE mode or just VF BAR size if not. 3460 * If the M64 BAR is in Single PE mode, return the VF BAR size or 3461 * M64 segment size if IOV BAR size is less. 3462 */ 3463 align = pci_iov_resource_size(pdev, resno); 3464 if (!pdn->vfs_expanded) 3465 return align; 3466 if (pdn->m64_single_mode) 3467 return max(align, (resource_size_t)phb->ioda.m64_segsize); 3468 3469 return pdn->vfs_expanded * align; 3470 } 3471 #endif /* CONFIG_PCI_IOV */ 3472 3473 /* Prevent enabling devices for which we couldn't properly 3474 * assign a PE 3475 */ 3476 static bool pnv_pci_enable_device_hook(struct pci_dev *dev) 3477 { 3478 struct pci_controller *hose = pci_bus_to_host(dev->bus); 3479 struct pnv_phb *phb = hose->private_data; 3480 struct pci_dn *pdn; 3481 3482 /* The function is probably called while the PEs have 3483 * not be created yet. For example, resource reassignment 3484 * during PCI probe period. We just skip the check if 3485 * PEs isn't ready. 3486 */ 3487 if (!phb->initialized) 3488 return true; 3489 3490 pdn = pci_get_pdn(dev); 3491 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3492 return false; 3493 3494 return true; 3495 } 3496 3497 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, 3498 int num) 3499 { 3500 struct pnv_ioda_pe *pe = container_of(table_group, 3501 struct pnv_ioda_pe, table_group); 3502 struct pnv_phb *phb = pe->phb; 3503 unsigned int idx; 3504 long rc; 3505 3506 pe_info(pe, "Removing DMA window #%d\n", num); 3507 for (idx = 0; idx < phb->ioda.dma32_count; idx++) { 3508 if (phb->ioda.dma32_segmap[idx] != pe->pe_number) 3509 continue; 3510 3511 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 3512 idx, 0, 0ul, 0ul, 0ul); 3513 if (rc != OPAL_SUCCESS) { 3514 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", 3515 rc, idx); 3516 return rc; 3517 } 3518 3519 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; 3520 } 3521 3522 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 3523 return OPAL_SUCCESS; 3524 } 3525 3526 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) 3527 { 3528 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3529 struct iommu_table *tbl = pe->table_group.tables[0]; 3530 int64_t rc; 3531 3532 if (!weight) 3533 return; 3534 3535 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); 3536 if (rc != OPAL_SUCCESS) 3537 return; 3538 3539 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); 3540 if (pe->table_group.group) { 3541 iommu_group_put(pe->table_group.group); 3542 WARN_ON(pe->table_group.group); 3543 } 3544 3545 free_pages(tbl->it_base, get_order(tbl->it_size << 3)); 3546 iommu_tce_table_put(tbl); 3547 } 3548 3549 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) 3550 { 3551 struct iommu_table *tbl = pe->table_group.tables[0]; 3552 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3553 #ifdef CONFIG_IOMMU_API 3554 int64_t rc; 3555 #endif 3556 3557 if (!weight) 3558 return; 3559 3560 #ifdef CONFIG_IOMMU_API 3561 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 3562 if (rc) 3563 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 3564 #endif 3565 3566 pnv_pci_ioda2_set_bypass(pe, false); 3567 if (pe->table_group.group) { 3568 iommu_group_put(pe->table_group.group); 3569 WARN_ON(pe->table_group.group); 3570 } 3571 3572 iommu_tce_table_put(tbl); 3573 } 3574 3575 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, 3576 unsigned short win, 3577 unsigned int *map) 3578 { 3579 struct pnv_phb *phb = pe->phb; 3580 int idx; 3581 int64_t rc; 3582 3583 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { 3584 if (map[idx] != pe->pe_number) 3585 continue; 3586 3587 if (win == OPAL_M64_WINDOW_TYPE) 3588 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3589 phb->ioda.reserved_pe_idx, win, 3590 idx / PNV_IODA1_M64_SEGS, 3591 idx % PNV_IODA1_M64_SEGS); 3592 else 3593 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3594 phb->ioda.reserved_pe_idx, win, 0, idx); 3595 3596 if (rc != OPAL_SUCCESS) 3597 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n", 3598 rc, win, idx); 3599 3600 map[idx] = IODA_INVALID_PE; 3601 } 3602 } 3603 3604 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) 3605 { 3606 struct pnv_phb *phb = pe->phb; 3607 3608 if (phb->type == PNV_PHB_IODA1) { 3609 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, 3610 phb->ioda.io_segmap); 3611 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3612 phb->ioda.m32_segmap); 3613 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE, 3614 phb->ioda.m64_segmap); 3615 } else if (phb->type == PNV_PHB_IODA2) { 3616 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3617 phb->ioda.m32_segmap); 3618 } 3619 } 3620 3621 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) 3622 { 3623 struct pnv_phb *phb = pe->phb; 3624 struct pnv_ioda_pe *slave, *tmp; 3625 3626 list_del(&pe->list); 3627 switch (phb->type) { 3628 case PNV_PHB_IODA1: 3629 pnv_pci_ioda1_release_pe_dma(pe); 3630 break; 3631 case PNV_PHB_IODA2: 3632 pnv_pci_ioda2_release_pe_dma(pe); 3633 break; 3634 default: 3635 WARN_ON(1); 3636 } 3637 3638 pnv_ioda_release_pe_seg(pe); 3639 pnv_ioda_deconfigure_pe(pe->phb, pe); 3640 3641 /* Release slave PEs in the compound PE */ 3642 if (pe->flags & PNV_IODA_PE_MASTER) { 3643 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { 3644 list_del(&slave->list); 3645 pnv_ioda_free_pe(slave); 3646 } 3647 } 3648 3649 /* 3650 * The PE for root bus can be removed because of hotplug in EEH 3651 * recovery for fenced PHB error. We need to mark the PE dead so 3652 * that it can be populated again in PCI hot add path. The PE 3653 * shouldn't be destroyed as it's the global reserved resource. 3654 */ 3655 if (phb->ioda.root_pe_populated && 3656 phb->ioda.root_pe_idx == pe->pe_number) 3657 phb->ioda.root_pe_populated = false; 3658 else 3659 pnv_ioda_free_pe(pe); 3660 } 3661 3662 static void pnv_pci_release_device(struct pci_dev *pdev) 3663 { 3664 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3665 struct pnv_phb *phb = hose->private_data; 3666 struct pci_dn *pdn = pci_get_pdn(pdev); 3667 struct pnv_ioda_pe *pe; 3668 3669 if (pdev->is_virtfn) 3670 return; 3671 3672 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3673 return; 3674 3675 /* 3676 * PCI hotplug can happen as part of EEH error recovery. The @pdn 3677 * isn't removed and added afterwards in this scenario. We should 3678 * set the PE number in @pdn to an invalid one. Otherwise, the PE's 3679 * device count is decreased on removing devices while failing to 3680 * be increased on adding devices. It leads to unbalanced PE's device 3681 * count and eventually make normal PCI hotplug path broken. 3682 */ 3683 pe = &phb->ioda.pe_array[pdn->pe_number]; 3684 pdn->pe_number = IODA_INVALID_PE; 3685 3686 WARN_ON(--pe->device_count < 0); 3687 if (pe->device_count == 0) 3688 pnv_ioda_release_pe(pe); 3689 } 3690 3691 static void pnv_pci_ioda_shutdown(struct pci_controller *hose) 3692 { 3693 struct pnv_phb *phb = hose->private_data; 3694 3695 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, 3696 OPAL_ASSERT_RESET); 3697 } 3698 3699 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { 3700 .dma_dev_setup = pnv_pci_dma_dev_setup, 3701 .dma_bus_setup = pnv_pci_dma_bus_setup, 3702 #ifdef CONFIG_PCI_MSI 3703 .setup_msi_irqs = pnv_setup_msi_irqs, 3704 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3705 #endif 3706 .enable_device_hook = pnv_pci_enable_device_hook, 3707 .release_device = pnv_pci_release_device, 3708 .window_alignment = pnv_pci_window_alignment, 3709 .setup_bridge = pnv_pci_setup_bridge, 3710 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3711 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3712 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3713 .shutdown = pnv_pci_ioda_shutdown, 3714 }; 3715 3716 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask) 3717 { 3718 dev_err_once(&npdev->dev, 3719 "%s operation unsupported for NVLink devices\n", 3720 __func__); 3721 return -EPERM; 3722 } 3723 3724 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = { 3725 .dma_dev_setup = pnv_pci_dma_dev_setup, 3726 #ifdef CONFIG_PCI_MSI 3727 .setup_msi_irqs = pnv_setup_msi_irqs, 3728 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3729 #endif 3730 .enable_device_hook = pnv_pci_enable_device_hook, 3731 .window_alignment = pnv_pci_window_alignment, 3732 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3733 .dma_set_mask = pnv_npu_dma_set_mask, 3734 .shutdown = pnv_pci_ioda_shutdown, 3735 }; 3736 3737 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = { 3738 .enable_device_hook = pnv_pci_enable_device_hook, 3739 .window_alignment = pnv_pci_window_alignment, 3740 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3741 .shutdown = pnv_pci_ioda_shutdown, 3742 }; 3743 3744 static void __init pnv_pci_init_ioda_phb(struct device_node *np, 3745 u64 hub_id, int ioda_type) 3746 { 3747 struct pci_controller *hose; 3748 struct pnv_phb *phb; 3749 unsigned long size, m64map_off, m32map_off, pemap_off; 3750 unsigned long iomap_off = 0, dma32map_off = 0; 3751 struct resource r; 3752 const __be64 *prop64; 3753 const __be32 *prop32; 3754 int len; 3755 unsigned int segno; 3756 u64 phb_id; 3757 void *aux; 3758 long rc; 3759 3760 if (!of_device_is_available(np)) 3761 return; 3762 3763 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np); 3764 3765 prop64 = of_get_property(np, "ibm,opal-phbid", NULL); 3766 if (!prop64) { 3767 pr_err(" Missing \"ibm,opal-phbid\" property !\n"); 3768 return; 3769 } 3770 phb_id = be64_to_cpup(prop64); 3771 pr_debug(" PHB-ID : 0x%016llx\n", phb_id); 3772 3773 phb = memblock_virt_alloc(sizeof(*phb), 0); 3774 3775 /* Allocate PCI controller */ 3776 phb->hose = hose = pcibios_alloc_controller(np); 3777 if (!phb->hose) { 3778 pr_err(" Can't allocate PCI controller for %pOF\n", 3779 np); 3780 memblock_free(__pa(phb), sizeof(struct pnv_phb)); 3781 return; 3782 } 3783 3784 spin_lock_init(&phb->lock); 3785 prop32 = of_get_property(np, "bus-range", &len); 3786 if (prop32 && len == 8) { 3787 hose->first_busno = be32_to_cpu(prop32[0]); 3788 hose->last_busno = be32_to_cpu(prop32[1]); 3789 } else { 3790 pr_warn(" Broken <bus-range> on %pOF\n", np); 3791 hose->first_busno = 0; 3792 hose->last_busno = 0xff; 3793 } 3794 hose->private_data = phb; 3795 phb->hub_id = hub_id; 3796 phb->opal_id = phb_id; 3797 phb->type = ioda_type; 3798 mutex_init(&phb->ioda.pe_alloc_mutex); 3799 3800 /* Detect specific models for error handling */ 3801 if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) 3802 phb->model = PNV_PHB_MODEL_P7IOC; 3803 else if (of_device_is_compatible(np, "ibm,power8-pciex")) 3804 phb->model = PNV_PHB_MODEL_PHB3; 3805 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex")) 3806 phb->model = PNV_PHB_MODEL_NPU; 3807 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex")) 3808 phb->model = PNV_PHB_MODEL_NPU2; 3809 else 3810 phb->model = PNV_PHB_MODEL_UNKNOWN; 3811 3812 /* Initialize diagnostic data buffer */ 3813 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL); 3814 if (prop32) 3815 phb->diag_data_size = be32_to_cpup(prop32); 3816 else 3817 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE; 3818 3819 phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0); 3820 3821 /* Parse 32-bit and IO ranges (if any) */ 3822 pci_process_bridge_OF_ranges(hose, np, !hose->global_number); 3823 3824 /* Get registers */ 3825 if (!of_address_to_resource(np, 0, &r)) { 3826 phb->regs_phys = r.start; 3827 phb->regs = ioremap(r.start, resource_size(&r)); 3828 if (phb->regs == NULL) 3829 pr_err(" Failed to map registers !\n"); 3830 } 3831 3832 /* Initialize more IODA stuff */ 3833 phb->ioda.total_pe_num = 1; 3834 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); 3835 if (prop32) 3836 phb->ioda.total_pe_num = be32_to_cpup(prop32); 3837 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); 3838 if (prop32) 3839 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); 3840 3841 /* Invalidate RID to PE# mapping */ 3842 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) 3843 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; 3844 3845 /* Parse 64-bit MMIO range */ 3846 pnv_ioda_parse_m64_window(phb); 3847 3848 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); 3849 /* FW Has already off top 64k of M32 space (MSI space) */ 3850 phb->ioda.m32_size += 0x10000; 3851 3852 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; 3853 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; 3854 phb->ioda.io_size = hose->pci_io_size; 3855 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; 3856 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ 3857 3858 /* Calculate how many 32-bit TCE segments we have */ 3859 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3860 PNV_IODA1_DMA32_SEGSIZE; 3861 3862 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ 3863 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, 3864 sizeof(unsigned long)); 3865 m64map_off = size; 3866 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); 3867 m32map_off = size; 3868 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); 3869 if (phb->type == PNV_PHB_IODA1) { 3870 iomap_off = size; 3871 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); 3872 dma32map_off = size; 3873 size += phb->ioda.dma32_count * 3874 sizeof(phb->ioda.dma32_segmap[0]); 3875 } 3876 pemap_off = size; 3877 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); 3878 aux = memblock_virt_alloc(size, 0); 3879 phb->ioda.pe_alloc = aux; 3880 phb->ioda.m64_segmap = aux + m64map_off; 3881 phb->ioda.m32_segmap = aux + m32map_off; 3882 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { 3883 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; 3884 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; 3885 } 3886 if (phb->type == PNV_PHB_IODA1) { 3887 phb->ioda.io_segmap = aux + iomap_off; 3888 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) 3889 phb->ioda.io_segmap[segno] = IODA_INVALID_PE; 3890 3891 phb->ioda.dma32_segmap = aux + dma32map_off; 3892 for (segno = 0; segno < phb->ioda.dma32_count; segno++) 3893 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; 3894 } 3895 phb->ioda.pe_array = aux + pemap_off; 3896 3897 /* 3898 * Choose PE number for root bus, which shouldn't have 3899 * M64 resources consumed by its child devices. To pick 3900 * the PE number adjacent to the reserved one if possible. 3901 */ 3902 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); 3903 if (phb->ioda.reserved_pe_idx == 0) { 3904 phb->ioda.root_pe_idx = 1; 3905 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3906 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { 3907 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; 3908 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3909 } else { 3910 phb->ioda.root_pe_idx = IODA_INVALID_PE; 3911 } 3912 3913 INIT_LIST_HEAD(&phb->ioda.pe_list); 3914 mutex_init(&phb->ioda.pe_list_mutex); 3915 3916 /* Calculate how many 32-bit TCE segments we have */ 3917 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3918 PNV_IODA1_DMA32_SEGSIZE; 3919 3920 #if 0 /* We should really do that ... */ 3921 rc = opal_pci_set_phb_mem_window(opal->phb_id, 3922 window_type, 3923 window_num, 3924 starting_real_address, 3925 starting_pci_address, 3926 segment_size); 3927 #endif 3928 3929 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", 3930 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, 3931 phb->ioda.m32_size, phb->ioda.m32_segsize); 3932 if (phb->ioda.m64_size) 3933 pr_info(" M64: 0x%lx [segment=0x%lx]\n", 3934 phb->ioda.m64_size, phb->ioda.m64_segsize); 3935 if (phb->ioda.io_size) 3936 pr_info(" IO: 0x%x [segment=0x%x]\n", 3937 phb->ioda.io_size, phb->ioda.io_segsize); 3938 3939 3940 phb->hose->ops = &pnv_pci_ops; 3941 phb->get_pe_state = pnv_ioda_get_pe_state; 3942 phb->freeze_pe = pnv_ioda_freeze_pe; 3943 phb->unfreeze_pe = pnv_ioda_unfreeze_pe; 3944 3945 /* Setup MSI support */ 3946 pnv_pci_init_ioda_msis(phb); 3947 3948 /* 3949 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here 3950 * to let the PCI core do resource assignment. It's supposed 3951 * that the PCI core will do correct I/O and MMIO alignment 3952 * for the P2P bridge bars so that each PCI bus (excluding 3953 * the child P2P bridges) can form individual PE. 3954 */ 3955 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; 3956 3957 switch (phb->type) { 3958 case PNV_PHB_NPU_NVLINK: 3959 hose->controller_ops = pnv_npu_ioda_controller_ops; 3960 break; 3961 case PNV_PHB_NPU_OCAPI: 3962 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops; 3963 break; 3964 default: 3965 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup; 3966 hose->controller_ops = pnv_pci_ioda_controller_ops; 3967 } 3968 3969 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment; 3970 3971 #ifdef CONFIG_PCI_IOV 3972 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources; 3973 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; 3974 ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable; 3975 ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable; 3976 #endif 3977 3978 pci_add_flags(PCI_REASSIGN_ALL_RSRC); 3979 3980 /* Reset IODA tables to a clean state */ 3981 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); 3982 if (rc) 3983 pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc); 3984 3985 /* 3986 * If we're running in kdump kernel, the previous kernel never 3987 * shutdown PCI devices correctly. We already got IODA table 3988 * cleaned out. So we have to issue PHB reset to stop all PCI 3989 * transactions from previous kernel. The ppc_pci_reset_phbs 3990 * kernel parameter will force this reset too. 3991 */ 3992 if (is_kdump_kernel() || pci_reset_phbs) { 3993 pr_info(" Issue PHB reset ...\n"); 3994 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); 3995 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); 3996 } 3997 3998 /* Remove M64 resource if we can't configure it successfully */ 3999 if (!phb->init_m64 || phb->init_m64(phb)) 4000 hose->mem_resources[1].flags = 0; 4001 } 4002 4003 void __init pnv_pci_init_ioda2_phb(struct device_node *np) 4004 { 4005 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); 4006 } 4007 4008 void __init pnv_pci_init_npu_phb(struct device_node *np) 4009 { 4010 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK); 4011 } 4012 4013 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np) 4014 { 4015 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI); 4016 } 4017 4018 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev) 4019 { 4020 struct pci_controller *hose = pci_bus_to_host(dev->bus); 4021 struct pnv_phb *phb = hose->private_data; 4022 4023 if (!machine_is(powernv)) 4024 return; 4025 4026 if (phb->type == PNV_PHB_NPU_OCAPI) 4027 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE; 4028 } 4029 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup); 4030 4031 void __init pnv_pci_init_ioda_hub(struct device_node *np) 4032 { 4033 struct device_node *phbn; 4034 const __be64 *prop64; 4035 u64 hub_id; 4036 4037 pr_info("Probing IODA IO-Hub %pOF\n", np); 4038 4039 prop64 = of_get_property(np, "ibm,opal-hubid", NULL); 4040 if (!prop64) { 4041 pr_err(" Missing \"ibm,opal-hubid\" property !\n"); 4042 return; 4043 } 4044 hub_id = be64_to_cpup(prop64); 4045 pr_devel(" HUB-ID : 0x%016llx\n", hub_id); 4046 4047 /* Count child PHBs */ 4048 for_each_child_of_node(np, phbn) { 4049 /* Look for IODA1 PHBs */ 4050 if (of_device_is_compatible(phbn, "ibm,ioda-phb")) 4051 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); 4052 } 4053 } 4054