1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
44 
45 #include <misc/cxl-base.h>
46 
47 #include "powernv.h"
48 #include "pci.h"
49 
50 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
51 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
52 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
53 
54 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
55 #define POWERNV_IOMMU_MAX_LEVELS	5
56 
57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59 
60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61 			    const char *fmt, ...)
62 {
63 	struct va_format vaf;
64 	va_list args;
65 	char pfix[32];
66 
67 	va_start(args, fmt);
68 
69 	vaf.fmt = fmt;
70 	vaf.va = &args;
71 
72 	if (pe->flags & PNV_IODA_PE_DEV)
73 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75 		sprintf(pfix, "%04x:%02x     ",
76 			pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78 	else if (pe->flags & PNV_IODA_PE_VF)
79 		sprintf(pfix, "%04x:%02x:%2x.%d",
80 			pci_domain_nr(pe->parent_dev->bus),
81 			(pe->rid & 0xff00) >> 8,
82 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84 
85 	printk("%spci %s: [PE# %.2x] %pV",
86 	       level, pfix, pe->pe_number, &vaf);
87 
88 	va_end(args);
89 }
90 
91 static bool pnv_iommu_bypass_disabled __read_mostly;
92 
93 static int __init iommu_setup(char *str)
94 {
95 	if (!str)
96 		return -EINVAL;
97 
98 	while (*str) {
99 		if (!strncmp(str, "nobypass", 8)) {
100 			pnv_iommu_bypass_disabled = true;
101 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
102 			break;
103 		}
104 		str += strcspn(str, ",");
105 		if (*str == ',')
106 			str++;
107 	}
108 
109 	return 0;
110 }
111 early_param("iommu", iommu_setup);
112 
113 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
114 {
115 	/*
116 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
117 	 * allocation code sometimes decides to put a 64-bit prefetchable
118 	 * BAR in the 32-bit window, so we have to compare the addresses.
119 	 *
120 	 * For simplicity we only test resource start.
121 	 */
122 	return (r->start >= phb->ioda.m64_base &&
123 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
124 }
125 
126 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
127 {
128 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
129 
130 	return (resource_flags & flags) == flags;
131 }
132 
133 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
134 {
135 	s64 rc;
136 
137 	phb->ioda.pe_array[pe_no].phb = phb;
138 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
139 
140 	/*
141 	 * Clear the PE frozen state as it might be put into frozen state
142 	 * in the last PCI remove path. It's not harmful to do so when the
143 	 * PE is already in unfrozen state.
144 	 */
145 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
146 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
147 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
148 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
149 			__func__, rc, phb->hose->global_number, pe_no);
150 
151 	return &phb->ioda.pe_array[pe_no];
152 }
153 
154 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
155 {
156 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
157 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
158 			__func__, pe_no, phb->hose->global_number);
159 		return;
160 	}
161 
162 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
163 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
164 			 __func__, pe_no, phb->hose->global_number);
165 
166 	pnv_ioda_init_pe(phb, pe_no);
167 }
168 
169 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
170 {
171 	long pe;
172 
173 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
174 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
175 			return pnv_ioda_init_pe(phb, pe);
176 	}
177 
178 	return NULL;
179 }
180 
181 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
182 {
183 	struct pnv_phb *phb = pe->phb;
184 	unsigned int pe_num = pe->pe_number;
185 
186 	WARN_ON(pe->pdev);
187 
188 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
189 	clear_bit(pe_num, phb->ioda.pe_alloc);
190 }
191 
192 /* The default M64 BAR is shared by all PEs */
193 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
194 {
195 	const char *desc;
196 	struct resource *r;
197 	s64 rc;
198 
199 	/* Configure the default M64 BAR */
200 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
201 					 OPAL_M64_WINDOW_TYPE,
202 					 phb->ioda.m64_bar_idx,
203 					 phb->ioda.m64_base,
204 					 0, /* unused */
205 					 phb->ioda.m64_size);
206 	if (rc != OPAL_SUCCESS) {
207 		desc = "configuring";
208 		goto fail;
209 	}
210 
211 	/* Enable the default M64 BAR */
212 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
213 				      OPAL_M64_WINDOW_TYPE,
214 				      phb->ioda.m64_bar_idx,
215 				      OPAL_ENABLE_M64_SPLIT);
216 	if (rc != OPAL_SUCCESS) {
217 		desc = "enabling";
218 		goto fail;
219 	}
220 
221 	/*
222 	 * Exclude the segments for reserved and root bus PE, which
223 	 * are first or last two PEs.
224 	 */
225 	r = &phb->hose->mem_resources[1];
226 	if (phb->ioda.reserved_pe_idx == 0)
227 		r->start += (2 * phb->ioda.m64_segsize);
228 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
229 		r->end -= (2 * phb->ioda.m64_segsize);
230 	else
231 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
232 			phb->ioda.reserved_pe_idx);
233 
234 	return 0;
235 
236 fail:
237 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
238 		rc, desc, phb->ioda.m64_bar_idx);
239 	opal_pci_phb_mmio_enable(phb->opal_id,
240 				 OPAL_M64_WINDOW_TYPE,
241 				 phb->ioda.m64_bar_idx,
242 				 OPAL_DISABLE_M64);
243 	return -EIO;
244 }
245 
246 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
247 					 unsigned long *pe_bitmap)
248 {
249 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
250 	struct pnv_phb *phb = hose->private_data;
251 	struct resource *r;
252 	resource_size_t base, sgsz, start, end;
253 	int segno, i;
254 
255 	base = phb->ioda.m64_base;
256 	sgsz = phb->ioda.m64_segsize;
257 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
258 		r = &pdev->resource[i];
259 		if (!r->parent || !pnv_pci_is_m64(phb, r))
260 			continue;
261 
262 		start = _ALIGN_DOWN(r->start - base, sgsz);
263 		end = _ALIGN_UP(r->end - base, sgsz);
264 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
265 			if (pe_bitmap)
266 				set_bit(segno, pe_bitmap);
267 			else
268 				pnv_ioda_reserve_pe(phb, segno);
269 		}
270 	}
271 }
272 
273 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
274 {
275 	struct resource *r;
276 	int index;
277 
278 	/*
279 	 * There are 16 M64 BARs, each of which has 8 segments. So
280 	 * there are as many M64 segments as the maximum number of
281 	 * PEs, which is 128.
282 	 */
283 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
284 		unsigned long base, segsz = phb->ioda.m64_segsize;
285 		int64_t rc;
286 
287 		base = phb->ioda.m64_base +
288 		       index * PNV_IODA1_M64_SEGS * segsz;
289 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
290 				OPAL_M64_WINDOW_TYPE, index, base, 0,
291 				PNV_IODA1_M64_SEGS * segsz);
292 		if (rc != OPAL_SUCCESS) {
293 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
294 				rc, phb->hose->global_number, index);
295 			goto fail;
296 		}
297 
298 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
299 				OPAL_M64_WINDOW_TYPE, index,
300 				OPAL_ENABLE_M64_SPLIT);
301 		if (rc != OPAL_SUCCESS) {
302 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
303 				rc, phb->hose->global_number, index);
304 			goto fail;
305 		}
306 	}
307 
308 	/*
309 	 * Exclude the segments for reserved and root bus PE, which
310 	 * are first or last two PEs.
311 	 */
312 	r = &phb->hose->mem_resources[1];
313 	if (phb->ioda.reserved_pe_idx == 0)
314 		r->start += (2 * phb->ioda.m64_segsize);
315 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
316 		r->end -= (2 * phb->ioda.m64_segsize);
317 	else
318 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
319 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
320 
321 	return 0;
322 
323 fail:
324 	for ( ; index >= 0; index--)
325 		opal_pci_phb_mmio_enable(phb->opal_id,
326 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
327 
328 	return -EIO;
329 }
330 
331 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
332 				    unsigned long *pe_bitmap,
333 				    bool all)
334 {
335 	struct pci_dev *pdev;
336 
337 	list_for_each_entry(pdev, &bus->devices, bus_list) {
338 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
339 
340 		if (all && pdev->subordinate)
341 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
342 						pe_bitmap, all);
343 	}
344 }
345 
346 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
347 {
348 	struct pci_controller *hose = pci_bus_to_host(bus);
349 	struct pnv_phb *phb = hose->private_data;
350 	struct pnv_ioda_pe *master_pe, *pe;
351 	unsigned long size, *pe_alloc;
352 	int i;
353 
354 	/* Root bus shouldn't use M64 */
355 	if (pci_is_root_bus(bus))
356 		return NULL;
357 
358 	/* Allocate bitmap */
359 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
360 	pe_alloc = kzalloc(size, GFP_KERNEL);
361 	if (!pe_alloc) {
362 		pr_warn("%s: Out of memory !\n",
363 			__func__);
364 		return NULL;
365 	}
366 
367 	/* Figure out reserved PE numbers by the PE */
368 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
369 
370 	/*
371 	 * the current bus might not own M64 window and that's all
372 	 * contributed by its child buses. For the case, we needn't
373 	 * pick M64 dependent PE#.
374 	 */
375 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
376 		kfree(pe_alloc);
377 		return NULL;
378 	}
379 
380 	/*
381 	 * Figure out the master PE and put all slave PEs to master
382 	 * PE's list to form compound PE.
383 	 */
384 	master_pe = NULL;
385 	i = -1;
386 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
387 		phb->ioda.total_pe_num) {
388 		pe = &phb->ioda.pe_array[i];
389 
390 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
391 		if (!master_pe) {
392 			pe->flags |= PNV_IODA_PE_MASTER;
393 			INIT_LIST_HEAD(&pe->slaves);
394 			master_pe = pe;
395 		} else {
396 			pe->flags |= PNV_IODA_PE_SLAVE;
397 			pe->master = master_pe;
398 			list_add_tail(&pe->list, &master_pe->slaves);
399 		}
400 
401 		/*
402 		 * P7IOC supports M64DT, which helps mapping M64 segment
403 		 * to one particular PE#. However, PHB3 has fixed mapping
404 		 * between M64 segment and PE#. In order to have same logic
405 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
406 		 * segment and PE# on P7IOC.
407 		 */
408 		if (phb->type == PNV_PHB_IODA1) {
409 			int64_t rc;
410 
411 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
412 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
413 					pe->pe_number / PNV_IODA1_M64_SEGS,
414 					pe->pe_number % PNV_IODA1_M64_SEGS);
415 			if (rc != OPAL_SUCCESS)
416 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
417 					__func__, rc, phb->hose->global_number,
418 					pe->pe_number);
419 		}
420 	}
421 
422 	kfree(pe_alloc);
423 	return master_pe;
424 }
425 
426 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
427 {
428 	struct pci_controller *hose = phb->hose;
429 	struct device_node *dn = hose->dn;
430 	struct resource *res;
431 	u32 m64_range[2], i;
432 	const __be32 *r;
433 	u64 pci_addr;
434 
435 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
436 		pr_info("  Not support M64 window\n");
437 		return;
438 	}
439 
440 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
441 		pr_info("  Firmware too old to support M64 window\n");
442 		return;
443 	}
444 
445 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
446 	if (!r) {
447 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
448 			dn);
449 		return;
450 	}
451 
452 	/*
453 	 * Find the available M64 BAR range and pickup the last one for
454 	 * covering the whole 64-bits space. We support only one range.
455 	 */
456 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
457 				       m64_range, 2)) {
458 		/* In absence of the property, assume 0..15 */
459 		m64_range[0] = 0;
460 		m64_range[1] = 16;
461 	}
462 	/* We only support 64 bits in our allocator */
463 	if (m64_range[1] > 63) {
464 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
465 			__func__, m64_range[1], phb->hose->global_number);
466 		m64_range[1] = 63;
467 	}
468 	/* Empty range, no m64 */
469 	if (m64_range[1] <= m64_range[0]) {
470 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
471 			__func__, phb->hose->global_number);
472 		return;
473 	}
474 
475 	/* Configure M64 informations */
476 	res = &hose->mem_resources[1];
477 	res->name = dn->full_name;
478 	res->start = of_translate_address(dn, r + 2);
479 	res->end = res->start + of_read_number(r + 4, 2) - 1;
480 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
481 	pci_addr = of_read_number(r, 2);
482 	hose->mem_offset[1] = res->start - pci_addr;
483 
484 	phb->ioda.m64_size = resource_size(res);
485 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
486 	phb->ioda.m64_base = pci_addr;
487 
488 	/* This lines up nicely with the display from processing OF ranges */
489 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
490 		res->start, res->end, pci_addr, m64_range[0],
491 		m64_range[0] + m64_range[1] - 1);
492 
493 	/* Mark all M64 used up by default */
494 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
495 
496 	/* Use last M64 BAR to cover M64 window */
497 	m64_range[1]--;
498 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
499 
500 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
501 
502 	/* Mark remaining ones free */
503 	for (i = m64_range[0]; i < m64_range[1]; i++)
504 		clear_bit(i, &phb->ioda.m64_bar_alloc);
505 
506 	/*
507 	 * Setup init functions for M64 based on IODA version, IODA3 uses
508 	 * the IODA2 code.
509 	 */
510 	if (phb->type == PNV_PHB_IODA1)
511 		phb->init_m64 = pnv_ioda1_init_m64;
512 	else
513 		phb->init_m64 = pnv_ioda2_init_m64;
514 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
515 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
516 }
517 
518 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
519 {
520 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
521 	struct pnv_ioda_pe *slave;
522 	s64 rc;
523 
524 	/* Fetch master PE */
525 	if (pe->flags & PNV_IODA_PE_SLAVE) {
526 		pe = pe->master;
527 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
528 			return;
529 
530 		pe_no = pe->pe_number;
531 	}
532 
533 	/* Freeze master PE */
534 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
535 				     pe_no,
536 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
537 	if (rc != OPAL_SUCCESS) {
538 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
539 			__func__, rc, phb->hose->global_number, pe_no);
540 		return;
541 	}
542 
543 	/* Freeze slave PEs */
544 	if (!(pe->flags & PNV_IODA_PE_MASTER))
545 		return;
546 
547 	list_for_each_entry(slave, &pe->slaves, list) {
548 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
549 					     slave->pe_number,
550 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
551 		if (rc != OPAL_SUCCESS)
552 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
553 				__func__, rc, phb->hose->global_number,
554 				slave->pe_number);
555 	}
556 }
557 
558 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
559 {
560 	struct pnv_ioda_pe *pe, *slave;
561 	s64 rc;
562 
563 	/* Find master PE */
564 	pe = &phb->ioda.pe_array[pe_no];
565 	if (pe->flags & PNV_IODA_PE_SLAVE) {
566 		pe = pe->master;
567 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
568 		pe_no = pe->pe_number;
569 	}
570 
571 	/* Clear frozen state for master PE */
572 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
573 	if (rc != OPAL_SUCCESS) {
574 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
575 			__func__, rc, opt, phb->hose->global_number, pe_no);
576 		return -EIO;
577 	}
578 
579 	if (!(pe->flags & PNV_IODA_PE_MASTER))
580 		return 0;
581 
582 	/* Clear frozen state for slave PEs */
583 	list_for_each_entry(slave, &pe->slaves, list) {
584 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
585 					     slave->pe_number,
586 					     opt);
587 		if (rc != OPAL_SUCCESS) {
588 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
589 				__func__, rc, opt, phb->hose->global_number,
590 				slave->pe_number);
591 			return -EIO;
592 		}
593 	}
594 
595 	return 0;
596 }
597 
598 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
599 {
600 	struct pnv_ioda_pe *slave, *pe;
601 	u8 fstate, state;
602 	__be16 pcierr;
603 	s64 rc;
604 
605 	/* Sanity check on PE number */
606 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
607 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
608 
609 	/*
610 	 * Fetch the master PE and the PE instance might be
611 	 * not initialized yet.
612 	 */
613 	pe = &phb->ioda.pe_array[pe_no];
614 	if (pe->flags & PNV_IODA_PE_SLAVE) {
615 		pe = pe->master;
616 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
617 		pe_no = pe->pe_number;
618 	}
619 
620 	/* Check the master PE */
621 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
622 					&state, &pcierr, NULL);
623 	if (rc != OPAL_SUCCESS) {
624 		pr_warn("%s: Failure %lld getting "
625 			"PHB#%x-PE#%x state\n",
626 			__func__, rc,
627 			phb->hose->global_number, pe_no);
628 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
629 	}
630 
631 	/* Check the slave PE */
632 	if (!(pe->flags & PNV_IODA_PE_MASTER))
633 		return state;
634 
635 	list_for_each_entry(slave, &pe->slaves, list) {
636 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
637 						slave->pe_number,
638 						&fstate,
639 						&pcierr,
640 						NULL);
641 		if (rc != OPAL_SUCCESS) {
642 			pr_warn("%s: Failure %lld getting "
643 				"PHB#%x-PE#%x state\n",
644 				__func__, rc,
645 				phb->hose->global_number, slave->pe_number);
646 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
647 		}
648 
649 		/*
650 		 * Override the result based on the ascending
651 		 * priority.
652 		 */
653 		if (fstate > state)
654 			state = fstate;
655 	}
656 
657 	return state;
658 }
659 
660 /* Currently those 2 are only used when MSIs are enabled, this will change
661  * but in the meantime, we need to protect them to avoid warnings
662  */
663 #ifdef CONFIG_PCI_MSI
664 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
665 {
666 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
667 	struct pnv_phb *phb = hose->private_data;
668 	struct pci_dn *pdn = pci_get_pdn(dev);
669 
670 	if (!pdn)
671 		return NULL;
672 	if (pdn->pe_number == IODA_INVALID_PE)
673 		return NULL;
674 	return &phb->ioda.pe_array[pdn->pe_number];
675 }
676 #endif /* CONFIG_PCI_MSI */
677 
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679 				  struct pnv_ioda_pe *parent,
680 				  struct pnv_ioda_pe *child,
681 				  bool is_add)
682 {
683 	const char *desc = is_add ? "adding" : "removing";
684 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685 			      OPAL_REMOVE_PE_FROM_DOMAIN;
686 	struct pnv_ioda_pe *slave;
687 	long rc;
688 
689 	/* Parent PE affects child PE */
690 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691 				child->pe_number, op);
692 	if (rc != OPAL_SUCCESS) {
693 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694 			rc, desc);
695 		return -ENXIO;
696 	}
697 
698 	if (!(child->flags & PNV_IODA_PE_MASTER))
699 		return 0;
700 
701 	/* Compound case: parent PE affects slave PEs */
702 	list_for_each_entry(slave, &child->slaves, list) {
703 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704 					slave->pe_number, op);
705 		if (rc != OPAL_SUCCESS) {
706 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707 				rc, desc);
708 			return -ENXIO;
709 		}
710 	}
711 
712 	return 0;
713 }
714 
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716 			      struct pnv_ioda_pe *pe,
717 			      bool is_add)
718 {
719 	struct pnv_ioda_pe *slave;
720 	struct pci_dev *pdev = NULL;
721 	int ret;
722 
723 	/*
724 	 * Clear PE frozen state. If it's master PE, we need
725 	 * clear slave PE frozen state as well.
726 	 */
727 	if (is_add) {
728 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730 		if (pe->flags & PNV_IODA_PE_MASTER) {
731 			list_for_each_entry(slave, &pe->slaves, list)
732 				opal_pci_eeh_freeze_clear(phb->opal_id,
733 							  slave->pe_number,
734 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735 		}
736 	}
737 
738 	/*
739 	 * Associate PE in PELT. We need add the PE into the
740 	 * corresponding PELT-V as well. Otherwise, the error
741 	 * originated from the PE might contribute to other
742 	 * PEs.
743 	 */
744 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745 	if (ret)
746 		return ret;
747 
748 	/* For compound PEs, any one affects all of them */
749 	if (pe->flags & PNV_IODA_PE_MASTER) {
750 		list_for_each_entry(slave, &pe->slaves, list) {
751 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752 			if (ret)
753 				return ret;
754 		}
755 	}
756 
757 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758 		pdev = pe->pbus->self;
759 	else if (pe->flags & PNV_IODA_PE_DEV)
760 		pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762 	else if (pe->flags & PNV_IODA_PE_VF)
763 		pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765 	while (pdev) {
766 		struct pci_dn *pdn = pci_get_pdn(pdev);
767 		struct pnv_ioda_pe *parent;
768 
769 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 			parent = &phb->ioda.pe_array[pdn->pe_number];
771 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772 			if (ret)
773 				return ret;
774 		}
775 
776 		pdev = pdev->bus->self;
777 	}
778 
779 	return 0;
780 }
781 
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784 	struct pci_dev *parent;
785 	uint8_t bcomp, dcomp, fcomp;
786 	int64_t rc;
787 	long rid_end, rid;
788 
789 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790 	if (pe->pbus) {
791 		int count;
792 
793 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795 		parent = pe->pbus->self;
796 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
797 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798 		else
799 			count = 1;
800 
801 		switch(count) {
802 		case  1: bcomp = OpalPciBusAll;         break;
803 		case  2: bcomp = OpalPciBus7Bits;       break;
804 		case  4: bcomp = OpalPciBus6Bits;       break;
805 		case  8: bcomp = OpalPciBus5Bits;       break;
806 		case 16: bcomp = OpalPciBus4Bits;       break;
807 		case 32: bcomp = OpalPciBus3Bits;       break;
808 		default:
809 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810 			        count);
811 			/* Do an exact match only */
812 			bcomp = OpalPciBusAll;
813 		}
814 		rid_end = pe->rid + (count << 8);
815 	} else {
816 #ifdef CONFIG_PCI_IOV
817 		if (pe->flags & PNV_IODA_PE_VF)
818 			parent = pe->parent_dev;
819 		else
820 #endif
821 			parent = pe->pdev->bus->self;
822 		bcomp = OpalPciBusAll;
823 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825 		rid_end = pe->rid + 1;
826 	}
827 
828 	/* Clear the reverse map */
829 	for (rid = pe->rid; rid < rid_end; rid++)
830 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831 
832 	/* Release from all parents PELT-V */
833 	while (parent) {
834 		struct pci_dn *pdn = pci_get_pdn(parent);
835 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838 			/* XXX What to do in case of error ? */
839 		}
840 		parent = parent->bus->self;
841 	}
842 
843 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845 
846 	/* Disassociate PE in PELT */
847 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849 	if (rc)
850 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
851 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853 	if (rc)
854 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855 
856 	pe->pbus = NULL;
857 	pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859 	pe->parent_dev = NULL;
860 #endif
861 
862 	return 0;
863 }
864 
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867 	struct pci_dev *parent;
868 	uint8_t bcomp, dcomp, fcomp;
869 	long rc, rid_end, rid;
870 
871 	/* Bus validation ? */
872 	if (pe->pbus) {
873 		int count;
874 
875 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877 		parent = pe->pbus->self;
878 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
879 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880 		else
881 			count = 1;
882 
883 		switch(count) {
884 		case  1: bcomp = OpalPciBusAll;		break;
885 		case  2: bcomp = OpalPciBus7Bits;	break;
886 		case  4: bcomp = OpalPciBus6Bits;	break;
887 		case  8: bcomp = OpalPciBus5Bits;	break;
888 		case 16: bcomp = OpalPciBus4Bits;	break;
889 		case 32: bcomp = OpalPciBus3Bits;	break;
890 		default:
891 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892 			        count);
893 			/* Do an exact match only */
894 			bcomp = OpalPciBusAll;
895 		}
896 		rid_end = pe->rid + (count << 8);
897 	} else {
898 #ifdef CONFIG_PCI_IOV
899 		if (pe->flags & PNV_IODA_PE_VF)
900 			parent = pe->parent_dev;
901 		else
902 #endif /* CONFIG_PCI_IOV */
903 			parent = pe->pdev->bus->self;
904 		bcomp = OpalPciBusAll;
905 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907 		rid_end = pe->rid + 1;
908 	}
909 
910 	/*
911 	 * Associate PE in PELT. We need add the PE into the
912 	 * corresponding PELT-V as well. Otherwise, the error
913 	 * originated from the PE might contribute to other
914 	 * PEs.
915 	 */
916 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
918 	if (rc) {
919 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920 		return -ENXIO;
921 	}
922 
923 	/*
924 	 * Configure PELTV. NPUs don't have a PELTV table so skip
925 	 * configuration on them.
926 	 */
927 	if (phb->type != PNV_PHB_NPU)
928 		pnv_ioda_set_peltv(phb, pe, true);
929 
930 	/* Setup reverse map */
931 	for (rid = pe->rid; rid < rid_end; rid++)
932 		phb->ioda.pe_rmap[rid] = pe->pe_number;
933 
934 	/* Setup one MVTs on IODA1 */
935 	if (phb->type != PNV_PHB_IODA1) {
936 		pe->mve_number = 0;
937 		goto out;
938 	}
939 
940 	pe->mve_number = pe->pe_number;
941 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942 	if (rc != OPAL_SUCCESS) {
943 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944 		       rc, pe->mve_number);
945 		pe->mve_number = -1;
946 	} else {
947 		rc = opal_pci_set_mve_enable(phb->opal_id,
948 					     pe->mve_number, OPAL_ENABLE_MVE);
949 		if (rc) {
950 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951 			       rc, pe->mve_number);
952 			pe->mve_number = -1;
953 		}
954 	}
955 
956 out:
957 	return 0;
958 }
959 
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963 	struct pci_dn *pdn = pci_get_pdn(dev);
964 	int i;
965 	struct resource *res, res2;
966 	resource_size_t size;
967 	u16 num_vfs;
968 
969 	if (!dev->is_physfn)
970 		return -EINVAL;
971 
972 	/*
973 	 * "offset" is in VFs.  The M64 windows are sized so that when they
974 	 * are segmented, each segment is the same size as the IOV BAR.
975 	 * Each segment is in a separate PE, and the high order bits of the
976 	 * address are the PE number.  Therefore, each VF's BAR is in a
977 	 * separate PE, and changing the IOV BAR start address changes the
978 	 * range of PEs the VFs are in.
979 	 */
980 	num_vfs = pdn->num_vfs;
981 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982 		res = &dev->resource[i + PCI_IOV_RESOURCES];
983 		if (!res->flags || !res->parent)
984 			continue;
985 
986 		/*
987 		 * The actual IOV BAR range is determined by the start address
988 		 * and the actual size for num_vfs VFs BAR.  This check is to
989 		 * make sure that after shifting, the range will not overlap
990 		 * with another device.
991 		 */
992 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993 		res2.flags = res->flags;
994 		res2.start = res->start + (size * offset);
995 		res2.end = res2.start + (size * num_vfs) - 1;
996 
997 		if (res2.end > res->end) {
998 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999 				i, &res2, res, num_vfs, offset);
1000 			return -EBUSY;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * After doing so, there would be a "hole" in the /proc/iomem when
1006 	 * offset is a positive value. It looks like the device return some
1007 	 * mmio back to the system, which actually no one could use it.
1008 	 */
1009 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1010 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1011 		if (!res->flags || !res->parent)
1012 			continue;
1013 
1014 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1015 		res2 = *res;
1016 		res->start += size * offset;
1017 
1018 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1019 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1020 			 num_vfs, offset);
1021 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1022 	}
1023 	return 0;
1024 }
1025 #endif /* CONFIG_PCI_IOV */
1026 
1027 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1028 {
1029 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1030 	struct pnv_phb *phb = hose->private_data;
1031 	struct pci_dn *pdn = pci_get_pdn(dev);
1032 	struct pnv_ioda_pe *pe;
1033 
1034 	if (!pdn) {
1035 		pr_err("%s: Device tree node not associated properly\n",
1036 			   pci_name(dev));
1037 		return NULL;
1038 	}
1039 	if (pdn->pe_number != IODA_INVALID_PE)
1040 		return NULL;
1041 
1042 	pe = pnv_ioda_alloc_pe(phb);
1043 	if (!pe) {
1044 		pr_warning("%s: Not enough PE# available, disabling device\n",
1045 			   pci_name(dev));
1046 		return NULL;
1047 	}
1048 
1049 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1050 	 * pointer in the PE data structure, both should be destroyed at the
1051 	 * same time. However, this needs to be looked at more closely again
1052 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1053 	 *
1054 	 * At some point we want to remove the PDN completely anyways
1055 	 */
1056 	pci_dev_get(dev);
1057 	pdn->pcidev = dev;
1058 	pdn->pe_number = pe->pe_number;
1059 	pe->flags = PNV_IODA_PE_DEV;
1060 	pe->pdev = dev;
1061 	pe->pbus = NULL;
1062 	pe->mve_number = -1;
1063 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1064 
1065 	pe_info(pe, "Associated device to PE\n");
1066 
1067 	if (pnv_ioda_configure_pe(phb, pe)) {
1068 		/* XXX What do we do here ? */
1069 		pnv_ioda_free_pe(pe);
1070 		pdn->pe_number = IODA_INVALID_PE;
1071 		pe->pdev = NULL;
1072 		pci_dev_put(dev);
1073 		return NULL;
1074 	}
1075 
1076 	/* Put PE to the list */
1077 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1078 
1079 	return pe;
1080 }
1081 
1082 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1083 {
1084 	struct pci_dev *dev;
1085 
1086 	list_for_each_entry(dev, &bus->devices, bus_list) {
1087 		struct pci_dn *pdn = pci_get_pdn(dev);
1088 
1089 		if (pdn == NULL) {
1090 			pr_warn("%s: No device node associated with device !\n",
1091 				pci_name(dev));
1092 			continue;
1093 		}
1094 
1095 		/*
1096 		 * In partial hotplug case, the PCI device might be still
1097 		 * associated with the PE and needn't attach it to the PE
1098 		 * again.
1099 		 */
1100 		if (pdn->pe_number != IODA_INVALID_PE)
1101 			continue;
1102 
1103 		pe->device_count++;
1104 		pdn->pcidev = dev;
1105 		pdn->pe_number = pe->pe_number;
1106 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1107 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1108 	}
1109 }
1110 
1111 /*
1112  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1113  * single PCI bus. Another one that contains the primary PCI bus and its
1114  * subordinate PCI devices and buses. The second type of PE is normally
1115  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1116  */
1117 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1118 {
1119 	struct pci_controller *hose = pci_bus_to_host(bus);
1120 	struct pnv_phb *phb = hose->private_data;
1121 	struct pnv_ioda_pe *pe = NULL;
1122 	unsigned int pe_num;
1123 
1124 	/*
1125 	 * In partial hotplug case, the PE instance might be still alive.
1126 	 * We should reuse it instead of allocating a new one.
1127 	 */
1128 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1129 	if (pe_num != IODA_INVALID_PE) {
1130 		pe = &phb->ioda.pe_array[pe_num];
1131 		pnv_ioda_setup_same_PE(bus, pe);
1132 		return NULL;
1133 	}
1134 
1135 	/* PE number for root bus should have been reserved */
1136 	if (pci_is_root_bus(bus) &&
1137 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1138 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1139 
1140 	/* Check if PE is determined by M64 */
1141 	if (!pe && phb->pick_m64_pe)
1142 		pe = phb->pick_m64_pe(bus, all);
1143 
1144 	/* The PE number isn't pinned by M64 */
1145 	if (!pe)
1146 		pe = pnv_ioda_alloc_pe(phb);
1147 
1148 	if (!pe) {
1149 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1150 			__func__, pci_domain_nr(bus), bus->number);
1151 		return NULL;
1152 	}
1153 
1154 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1155 	pe->pbus = bus;
1156 	pe->pdev = NULL;
1157 	pe->mve_number = -1;
1158 	pe->rid = bus->busn_res.start << 8;
1159 
1160 	if (all)
1161 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1162 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1163 	else
1164 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1165 			bus->busn_res.start, pe->pe_number);
1166 
1167 	if (pnv_ioda_configure_pe(phb, pe)) {
1168 		/* XXX What do we do here ? */
1169 		pnv_ioda_free_pe(pe);
1170 		pe->pbus = NULL;
1171 		return NULL;
1172 	}
1173 
1174 	/* Associate it with all child devices */
1175 	pnv_ioda_setup_same_PE(bus, pe);
1176 
1177 	/* Put PE to the list */
1178 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1179 
1180 	return pe;
1181 }
1182 
1183 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1184 {
1185 	int pe_num, found_pe = false, rc;
1186 	long rid;
1187 	struct pnv_ioda_pe *pe;
1188 	struct pci_dev *gpu_pdev;
1189 	struct pci_dn *npu_pdn;
1190 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1191 	struct pnv_phb *phb = hose->private_data;
1192 
1193 	/*
1194 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1195 	 * error handling. This means we only have three PEs remaining
1196 	 * which need to be assigned to four links, implying some
1197 	 * links must share PEs.
1198 	 *
1199 	 * To achieve this we assign PEs such that NPUs linking the
1200 	 * same GPU get assigned the same PE.
1201 	 */
1202 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1203 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1204 		pe = &phb->ioda.pe_array[pe_num];
1205 		if (!pe->pdev)
1206 			continue;
1207 
1208 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1209 			/*
1210 			 * This device has the same peer GPU so should
1211 			 * be assigned the same PE as the existing
1212 			 * peer NPU.
1213 			 */
1214 			dev_info(&npu_pdev->dev,
1215 				"Associating to existing PE %x\n", pe_num);
1216 			pci_dev_get(npu_pdev);
1217 			npu_pdn = pci_get_pdn(npu_pdev);
1218 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1219 			npu_pdn->pcidev = npu_pdev;
1220 			npu_pdn->pe_number = pe_num;
1221 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1222 
1223 			/* Map the PE to this link */
1224 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1225 					OpalPciBusAll,
1226 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1227 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1228 					OPAL_MAP_PE);
1229 			WARN_ON(rc != OPAL_SUCCESS);
1230 			found_pe = true;
1231 			break;
1232 		}
1233 	}
1234 
1235 	if (!found_pe)
1236 		/*
1237 		 * Could not find an existing PE so allocate a new
1238 		 * one.
1239 		 */
1240 		return pnv_ioda_setup_dev_PE(npu_pdev);
1241 	else
1242 		return pe;
1243 }
1244 
1245 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1246 {
1247 	struct pci_dev *pdev;
1248 
1249 	list_for_each_entry(pdev, &bus->devices, bus_list)
1250 		pnv_ioda_setup_npu_PE(pdev);
1251 }
1252 
1253 static void pnv_pci_ioda_setup_PEs(void)
1254 {
1255 	struct pci_controller *hose, *tmp;
1256 	struct pnv_phb *phb;
1257 
1258 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1259 		phb = hose->private_data;
1260 		if (phb->type == PNV_PHB_NPU) {
1261 			/* PE#0 is needed for error reporting */
1262 			pnv_ioda_reserve_pe(phb, 0);
1263 			pnv_ioda_setup_npu_PEs(hose->bus);
1264 			if (phb->model == PNV_PHB_MODEL_NPU2)
1265 				pnv_npu2_init(phb);
1266 		}
1267 	}
1268 }
1269 
1270 #ifdef CONFIG_PCI_IOV
1271 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1272 {
1273 	struct pci_bus        *bus;
1274 	struct pci_controller *hose;
1275 	struct pnv_phb        *phb;
1276 	struct pci_dn         *pdn;
1277 	int                    i, j;
1278 	int                    m64_bars;
1279 
1280 	bus = pdev->bus;
1281 	hose = pci_bus_to_host(bus);
1282 	phb = hose->private_data;
1283 	pdn = pci_get_pdn(pdev);
1284 
1285 	if (pdn->m64_single_mode)
1286 		m64_bars = num_vfs;
1287 	else
1288 		m64_bars = 1;
1289 
1290 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1291 		for (j = 0; j < m64_bars; j++) {
1292 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1293 				continue;
1294 			opal_pci_phb_mmio_enable(phb->opal_id,
1295 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1296 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1297 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1298 		}
1299 
1300 	kfree(pdn->m64_map);
1301 	return 0;
1302 }
1303 
1304 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1305 {
1306 	struct pci_bus        *bus;
1307 	struct pci_controller *hose;
1308 	struct pnv_phb        *phb;
1309 	struct pci_dn         *pdn;
1310 	unsigned int           win;
1311 	struct resource       *res;
1312 	int                    i, j;
1313 	int64_t                rc;
1314 	int                    total_vfs;
1315 	resource_size_t        size, start;
1316 	int                    pe_num;
1317 	int                    m64_bars;
1318 
1319 	bus = pdev->bus;
1320 	hose = pci_bus_to_host(bus);
1321 	phb = hose->private_data;
1322 	pdn = pci_get_pdn(pdev);
1323 	total_vfs = pci_sriov_get_totalvfs(pdev);
1324 
1325 	if (pdn->m64_single_mode)
1326 		m64_bars = num_vfs;
1327 	else
1328 		m64_bars = 1;
1329 
1330 	pdn->m64_map = kmalloc_array(m64_bars,
1331 				     sizeof(*pdn->m64_map),
1332 				     GFP_KERNEL);
1333 	if (!pdn->m64_map)
1334 		return -ENOMEM;
1335 	/* Initialize the m64_map to IODA_INVALID_M64 */
1336 	for (i = 0; i < m64_bars ; i++)
1337 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1338 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1339 
1340 
1341 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1342 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1343 		if (!res->flags || !res->parent)
1344 			continue;
1345 
1346 		for (j = 0; j < m64_bars; j++) {
1347 			do {
1348 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1349 						phb->ioda.m64_bar_idx + 1, 0);
1350 
1351 				if (win >= phb->ioda.m64_bar_idx + 1)
1352 					goto m64_failed;
1353 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1354 
1355 			pdn->m64_map[j][i] = win;
1356 
1357 			if (pdn->m64_single_mode) {
1358 				size = pci_iov_resource_size(pdev,
1359 							PCI_IOV_RESOURCES + i);
1360 				start = res->start + size * j;
1361 			} else {
1362 				size = resource_size(res);
1363 				start = res->start;
1364 			}
1365 
1366 			/* Map the M64 here */
1367 			if (pdn->m64_single_mode) {
1368 				pe_num = pdn->pe_num_map[j];
1369 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1370 						pe_num, OPAL_M64_WINDOW_TYPE,
1371 						pdn->m64_map[j][i], 0);
1372 			}
1373 
1374 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1375 						 OPAL_M64_WINDOW_TYPE,
1376 						 pdn->m64_map[j][i],
1377 						 start,
1378 						 0, /* unused */
1379 						 size);
1380 
1381 
1382 			if (rc != OPAL_SUCCESS) {
1383 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1384 					win, rc);
1385 				goto m64_failed;
1386 			}
1387 
1388 			if (pdn->m64_single_mode)
1389 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1390 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1391 			else
1392 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1393 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1394 
1395 			if (rc != OPAL_SUCCESS) {
1396 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1397 					win, rc);
1398 				goto m64_failed;
1399 			}
1400 		}
1401 	}
1402 	return 0;
1403 
1404 m64_failed:
1405 	pnv_pci_vf_release_m64(pdev, num_vfs);
1406 	return -EBUSY;
1407 }
1408 
1409 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1410 		int num);
1411 
1412 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1413 {
1414 	struct iommu_table    *tbl;
1415 	int64_t               rc;
1416 
1417 	tbl = pe->table_group.tables[0];
1418 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1419 	if (rc)
1420 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1421 
1422 	pnv_pci_ioda2_set_bypass(pe, false);
1423 	if (pe->table_group.group) {
1424 		iommu_group_put(pe->table_group.group);
1425 		BUG_ON(pe->table_group.group);
1426 	}
1427 	iommu_tce_table_put(tbl);
1428 }
1429 
1430 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1431 {
1432 	struct pci_bus        *bus;
1433 	struct pci_controller *hose;
1434 	struct pnv_phb        *phb;
1435 	struct pnv_ioda_pe    *pe, *pe_n;
1436 	struct pci_dn         *pdn;
1437 
1438 	bus = pdev->bus;
1439 	hose = pci_bus_to_host(bus);
1440 	phb = hose->private_data;
1441 	pdn = pci_get_pdn(pdev);
1442 
1443 	if (!pdev->is_physfn)
1444 		return;
1445 
1446 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1447 		if (pe->parent_dev != pdev)
1448 			continue;
1449 
1450 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1451 
1452 		/* Remove from list */
1453 		mutex_lock(&phb->ioda.pe_list_mutex);
1454 		list_del(&pe->list);
1455 		mutex_unlock(&phb->ioda.pe_list_mutex);
1456 
1457 		pnv_ioda_deconfigure_pe(phb, pe);
1458 
1459 		pnv_ioda_free_pe(pe);
1460 	}
1461 }
1462 
1463 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1464 {
1465 	struct pci_bus        *bus;
1466 	struct pci_controller *hose;
1467 	struct pnv_phb        *phb;
1468 	struct pnv_ioda_pe    *pe;
1469 	struct pci_dn         *pdn;
1470 	u16                    num_vfs, i;
1471 
1472 	bus = pdev->bus;
1473 	hose = pci_bus_to_host(bus);
1474 	phb = hose->private_data;
1475 	pdn = pci_get_pdn(pdev);
1476 	num_vfs = pdn->num_vfs;
1477 
1478 	/* Release VF PEs */
1479 	pnv_ioda_release_vf_PE(pdev);
1480 
1481 	if (phb->type == PNV_PHB_IODA2) {
1482 		if (!pdn->m64_single_mode)
1483 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1484 
1485 		/* Release M64 windows */
1486 		pnv_pci_vf_release_m64(pdev, num_vfs);
1487 
1488 		/* Release PE numbers */
1489 		if (pdn->m64_single_mode) {
1490 			for (i = 0; i < num_vfs; i++) {
1491 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1492 					continue;
1493 
1494 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1495 				pnv_ioda_free_pe(pe);
1496 			}
1497 		} else
1498 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1499 		/* Releasing pe_num_map */
1500 		kfree(pdn->pe_num_map);
1501 	}
1502 }
1503 
1504 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1505 				       struct pnv_ioda_pe *pe);
1506 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1507 {
1508 	struct pci_bus        *bus;
1509 	struct pci_controller *hose;
1510 	struct pnv_phb        *phb;
1511 	struct pnv_ioda_pe    *pe;
1512 	int                    pe_num;
1513 	u16                    vf_index;
1514 	struct pci_dn         *pdn;
1515 
1516 	bus = pdev->bus;
1517 	hose = pci_bus_to_host(bus);
1518 	phb = hose->private_data;
1519 	pdn = pci_get_pdn(pdev);
1520 
1521 	if (!pdev->is_physfn)
1522 		return;
1523 
1524 	/* Reserve PE for each VF */
1525 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1526 		if (pdn->m64_single_mode)
1527 			pe_num = pdn->pe_num_map[vf_index];
1528 		else
1529 			pe_num = *pdn->pe_num_map + vf_index;
1530 
1531 		pe = &phb->ioda.pe_array[pe_num];
1532 		pe->pe_number = pe_num;
1533 		pe->phb = phb;
1534 		pe->flags = PNV_IODA_PE_VF;
1535 		pe->pbus = NULL;
1536 		pe->parent_dev = pdev;
1537 		pe->mve_number = -1;
1538 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1539 			   pci_iov_virtfn_devfn(pdev, vf_index);
1540 
1541 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1542 			hose->global_number, pdev->bus->number,
1543 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1544 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1545 
1546 		if (pnv_ioda_configure_pe(phb, pe)) {
1547 			/* XXX What do we do here ? */
1548 			pnv_ioda_free_pe(pe);
1549 			pe->pdev = NULL;
1550 			continue;
1551 		}
1552 
1553 		/* Put PE to the list */
1554 		mutex_lock(&phb->ioda.pe_list_mutex);
1555 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1556 		mutex_unlock(&phb->ioda.pe_list_mutex);
1557 
1558 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1559 	}
1560 }
1561 
1562 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1563 {
1564 	struct pci_bus        *bus;
1565 	struct pci_controller *hose;
1566 	struct pnv_phb        *phb;
1567 	struct pnv_ioda_pe    *pe;
1568 	struct pci_dn         *pdn;
1569 	int                    ret;
1570 	u16                    i;
1571 
1572 	bus = pdev->bus;
1573 	hose = pci_bus_to_host(bus);
1574 	phb = hose->private_data;
1575 	pdn = pci_get_pdn(pdev);
1576 
1577 	if (phb->type == PNV_PHB_IODA2) {
1578 		if (!pdn->vfs_expanded) {
1579 			dev_info(&pdev->dev, "don't support this SRIOV device"
1580 				" with non 64bit-prefetchable IOV BAR\n");
1581 			return -ENOSPC;
1582 		}
1583 
1584 		/*
1585 		 * When M64 BARs functions in Single PE mode, the number of VFs
1586 		 * could be enabled must be less than the number of M64 BARs.
1587 		 */
1588 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1589 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1590 			return -EBUSY;
1591 		}
1592 
1593 		/* Allocating pe_num_map */
1594 		if (pdn->m64_single_mode)
1595 			pdn->pe_num_map = kmalloc_array(num_vfs,
1596 							sizeof(*pdn->pe_num_map),
1597 							GFP_KERNEL);
1598 		else
1599 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1600 
1601 		if (!pdn->pe_num_map)
1602 			return -ENOMEM;
1603 
1604 		if (pdn->m64_single_mode)
1605 			for (i = 0; i < num_vfs; i++)
1606 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1607 
1608 		/* Calculate available PE for required VFs */
1609 		if (pdn->m64_single_mode) {
1610 			for (i = 0; i < num_vfs; i++) {
1611 				pe = pnv_ioda_alloc_pe(phb);
1612 				if (!pe) {
1613 					ret = -EBUSY;
1614 					goto m64_failed;
1615 				}
1616 
1617 				pdn->pe_num_map[i] = pe->pe_number;
1618 			}
1619 		} else {
1620 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1621 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1622 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1623 				0, num_vfs, 0);
1624 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1625 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1626 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1627 				kfree(pdn->pe_num_map);
1628 				return -EBUSY;
1629 			}
1630 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1631 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1632 		}
1633 		pdn->num_vfs = num_vfs;
1634 
1635 		/* Assign M64 window accordingly */
1636 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1637 		if (ret) {
1638 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1639 			goto m64_failed;
1640 		}
1641 
1642 		/*
1643 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1644 		 * the IOV BAR according to the PE# allocated to the VFs.
1645 		 * Otherwise, the PE# for the VF will conflict with others.
1646 		 */
1647 		if (!pdn->m64_single_mode) {
1648 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1649 			if (ret)
1650 				goto m64_failed;
1651 		}
1652 	}
1653 
1654 	/* Setup VF PEs */
1655 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1656 
1657 	return 0;
1658 
1659 m64_failed:
1660 	if (pdn->m64_single_mode) {
1661 		for (i = 0; i < num_vfs; i++) {
1662 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1663 				continue;
1664 
1665 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1666 			pnv_ioda_free_pe(pe);
1667 		}
1668 	} else
1669 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1670 
1671 	/* Releasing pe_num_map */
1672 	kfree(pdn->pe_num_map);
1673 
1674 	return ret;
1675 }
1676 
1677 int pcibios_sriov_disable(struct pci_dev *pdev)
1678 {
1679 	pnv_pci_sriov_disable(pdev);
1680 
1681 	/* Release PCI data */
1682 	remove_dev_pci_data(pdev);
1683 	return 0;
1684 }
1685 
1686 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1687 {
1688 	/* Allocate PCI data */
1689 	add_dev_pci_data(pdev);
1690 
1691 	return pnv_pci_sriov_enable(pdev, num_vfs);
1692 }
1693 #endif /* CONFIG_PCI_IOV */
1694 
1695 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1696 {
1697 	struct pci_dn *pdn = pci_get_pdn(pdev);
1698 	struct pnv_ioda_pe *pe;
1699 
1700 	/*
1701 	 * The function can be called while the PE#
1702 	 * hasn't been assigned. Do nothing for the
1703 	 * case.
1704 	 */
1705 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1706 		return;
1707 
1708 	pe = &phb->ioda.pe_array[pdn->pe_number];
1709 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1710 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1711 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1712 	/*
1713 	 * Note: iommu_add_device() will fail here as
1714 	 * for physical PE: the device is already added by now;
1715 	 * for virtual PE: sysfs entries are not ready yet and
1716 	 * tce_iommu_bus_notifier will add the device to a group later.
1717 	 */
1718 }
1719 
1720 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1721 {
1722 	unsigned short vendor = 0;
1723 	struct pci_dev *pdev;
1724 
1725 	if (pe->device_count == 1)
1726 		return true;
1727 
1728 	/* pe->pdev should be set if it's a single device, pe->pbus if not */
1729 	if (!pe->pbus)
1730 		return true;
1731 
1732 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1733 		if (!vendor) {
1734 			vendor = pdev->vendor;
1735 			continue;
1736 		}
1737 
1738 		if (pdev->vendor != vendor)
1739 			return false;
1740 	}
1741 
1742 	return true;
1743 }
1744 
1745 /*
1746  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1747  *
1748  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1749  * Devices can only access more than that if bit 59 of the PCI address is set
1750  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1751  * Many PCI devices are not capable of addressing that many bits, and as a
1752  * result are limited to the 4GB of virtual memory made available to 32-bit
1753  * devices in TVE#0.
1754  *
1755  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1756  * devices by configuring the virtual memory past the first 4GB inaccessible
1757  * by 64-bit DMAs.  This should only be used by devices that want more than
1758  * 4GB, and only on PEs that have no 32-bit devices.
1759  *
1760  * Currently this will only work on PHB3 (POWER8).
1761  */
1762 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1763 {
1764 	u64 window_size, table_size, tce_count, addr;
1765 	struct page *table_pages;
1766 	u64 tce_order = 28; /* 256MB TCEs */
1767 	__be64 *tces;
1768 	s64 rc;
1769 
1770 	/*
1771 	 * Window size needs to be a power of two, but needs to account for
1772 	 * shifting memory by the 4GB offset required to skip 32bit space.
1773 	 */
1774 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1775 	tce_count = window_size >> tce_order;
1776 	table_size = tce_count << 3;
1777 
1778 	if (table_size < PAGE_SIZE)
1779 		table_size = PAGE_SIZE;
1780 
1781 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1782 				       get_order(table_size));
1783 	if (!table_pages)
1784 		goto err;
1785 
1786 	tces = page_address(table_pages);
1787 	if (!tces)
1788 		goto err;
1789 
1790 	memset(tces, 0, table_size);
1791 
1792 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1793 		tces[(addr + (1ULL << 32)) >> tce_order] =
1794 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1795 	}
1796 
1797 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1798 					pe->pe_number,
1799 					/* reconfigure window 0 */
1800 					(pe->pe_number << 1) + 0,
1801 					1,
1802 					__pa(tces),
1803 					table_size,
1804 					1 << tce_order);
1805 	if (rc == OPAL_SUCCESS) {
1806 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1807 		return 0;
1808 	}
1809 err:
1810 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1811 	return -EIO;
1812 }
1813 
1814 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1815 {
1816 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1817 	struct pnv_phb *phb = hose->private_data;
1818 	struct pci_dn *pdn = pci_get_pdn(pdev);
1819 	struct pnv_ioda_pe *pe;
1820 	uint64_t top;
1821 	bool bypass = false;
1822 	s64 rc;
1823 
1824 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1825 		return -ENODEV;;
1826 
1827 	pe = &phb->ioda.pe_array[pdn->pe_number];
1828 	if (pe->tce_bypass_enabled) {
1829 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1830 		bypass = (dma_mask >= top);
1831 	}
1832 
1833 	if (bypass) {
1834 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1835 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1836 	} else {
1837 		/*
1838 		 * If the device can't set the TCE bypass bit but still wants
1839 		 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1840 		 * bypass the 32-bit region and be usable for 64-bit DMAs.
1841 		 * The device needs to be able to address all of this space.
1842 		 */
1843 		if (dma_mask >> 32 &&
1844 		    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1845 		    pnv_pci_ioda_pe_single_vendor(pe) &&
1846 		    phb->model == PNV_PHB_MODEL_PHB3) {
1847 			/* Configure the bypass mode */
1848 			rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1849 			if (rc)
1850 				return rc;
1851 			/* 4GB offset bypasses 32-bit space */
1852 			set_dma_offset(&pdev->dev, (1ULL << 32));
1853 			set_dma_ops(&pdev->dev, &dma_direct_ops);
1854 		} else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1855 			/*
1856 			 * Fail the request if a DMA mask between 32 and 64 bits
1857 			 * was requested but couldn't be fulfilled. Ideally we
1858 			 * would do this for 64-bits but historically we have
1859 			 * always fallen back to 32-bits.
1860 			 */
1861 			return -ENOMEM;
1862 		} else {
1863 			dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1864 			set_dma_ops(&pdev->dev, &dma_iommu_ops);
1865 		}
1866 	}
1867 	*pdev->dev.dma_mask = dma_mask;
1868 
1869 	/* Update peer npu devices */
1870 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1871 
1872 	return 0;
1873 }
1874 
1875 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1876 {
1877 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1878 	struct pnv_phb *phb = hose->private_data;
1879 	struct pci_dn *pdn = pci_get_pdn(pdev);
1880 	struct pnv_ioda_pe *pe;
1881 	u64 end, mask;
1882 
1883 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1884 		return 0;
1885 
1886 	pe = &phb->ioda.pe_array[pdn->pe_number];
1887 	if (!pe->tce_bypass_enabled)
1888 		return __dma_get_required_mask(&pdev->dev);
1889 
1890 
1891 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1892 	mask = 1ULL << (fls64(end) - 1);
1893 	mask += mask - 1;
1894 
1895 	return mask;
1896 }
1897 
1898 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1899 				   struct pci_bus *bus,
1900 				   bool add_to_group)
1901 {
1902 	struct pci_dev *dev;
1903 
1904 	list_for_each_entry(dev, &bus->devices, bus_list) {
1905 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1906 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1907 		if (add_to_group)
1908 			iommu_add_device(&dev->dev);
1909 
1910 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1911 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1912 					add_to_group);
1913 	}
1914 }
1915 
1916 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1917 						     bool real_mode)
1918 {
1919 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1920 		(phb->regs + 0x210);
1921 }
1922 
1923 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1924 		unsigned long index, unsigned long npages, bool rm)
1925 {
1926 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1927 			&tbl->it_group_list, struct iommu_table_group_link,
1928 			next);
1929 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1930 			struct pnv_ioda_pe, table_group);
1931 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1932 	unsigned long start, end, inc;
1933 
1934 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1935 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1936 			npages - 1);
1937 
1938 	/* p7ioc-style invalidation, 2 TCEs per write */
1939 	start |= (1ull << 63);
1940 	end |= (1ull << 63);
1941 	inc = 16;
1942         end |= inc - 1;	/* round up end to be different than start */
1943 
1944         mb(); /* Ensure above stores are visible */
1945         while (start <= end) {
1946 		if (rm)
1947 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1948 		else
1949 			__raw_writeq(cpu_to_be64(start), invalidate);
1950                 start += inc;
1951         }
1952 
1953 	/*
1954 	 * The iommu layer will do another mb() for us on build()
1955 	 * and we don't care on free()
1956 	 */
1957 }
1958 
1959 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1960 		long npages, unsigned long uaddr,
1961 		enum dma_data_direction direction,
1962 		unsigned long attrs)
1963 {
1964 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1965 			attrs);
1966 
1967 	if (!ret)
1968 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1969 
1970 	return ret;
1971 }
1972 
1973 #ifdef CONFIG_IOMMU_API
1974 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1975 		unsigned long *hpa, enum dma_data_direction *direction)
1976 {
1977 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1978 
1979 	if (!ret)
1980 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1981 
1982 	return ret;
1983 }
1984 
1985 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
1986 		unsigned long *hpa, enum dma_data_direction *direction)
1987 {
1988 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1989 
1990 	if (!ret)
1991 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
1992 
1993 	return ret;
1994 }
1995 #endif
1996 
1997 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1998 		long npages)
1999 {
2000 	pnv_tce_free(tbl, index, npages);
2001 
2002 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2003 }
2004 
2005 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2006 	.set = pnv_ioda1_tce_build,
2007 #ifdef CONFIG_IOMMU_API
2008 	.exchange = pnv_ioda1_tce_xchg,
2009 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
2010 #endif
2011 	.clear = pnv_ioda1_tce_free,
2012 	.get = pnv_tce_get,
2013 };
2014 
2015 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
2016 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
2017 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
2018 
2019 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2020 {
2021 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2022 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2023 
2024 	mb(); /* Ensure previous TCE table stores are visible */
2025 	if (rm)
2026 		__raw_rm_writeq(cpu_to_be64(val), invalidate);
2027 	else
2028 		__raw_writeq(cpu_to_be64(val), invalidate);
2029 }
2030 
2031 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2032 {
2033 	/* 01xb - invalidate TCEs that match the specified PE# */
2034 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2035 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2036 
2037 	mb(); /* Ensure above stores are visible */
2038 	__raw_writeq(cpu_to_be64(val), invalidate);
2039 }
2040 
2041 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2042 					unsigned shift, unsigned long index,
2043 					unsigned long npages)
2044 {
2045 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2046 	unsigned long start, end, inc;
2047 
2048 	/* We'll invalidate DMA address in PE scope */
2049 	start = PHB3_TCE_KILL_INVAL_ONE;
2050 	start |= (pe->pe_number & 0xFF);
2051 	end = start;
2052 
2053 	/* Figure out the start, end and step */
2054 	start |= (index << shift);
2055 	end |= ((index + npages - 1) << shift);
2056 	inc = (0x1ull << shift);
2057 	mb();
2058 
2059 	while (start <= end) {
2060 		if (rm)
2061 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
2062 		else
2063 			__raw_writeq(cpu_to_be64(start), invalidate);
2064 		start += inc;
2065 	}
2066 }
2067 
2068 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2069 {
2070 	struct pnv_phb *phb = pe->phb;
2071 
2072 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2073 		pnv_pci_phb3_tce_invalidate_pe(pe);
2074 	else
2075 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2076 				  pe->pe_number, 0, 0, 0);
2077 }
2078 
2079 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2080 		unsigned long index, unsigned long npages, bool rm)
2081 {
2082 	struct iommu_table_group_link *tgl;
2083 
2084 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2085 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2086 				struct pnv_ioda_pe, table_group);
2087 		struct pnv_phb *phb = pe->phb;
2088 		unsigned int shift = tbl->it_page_shift;
2089 
2090 		/*
2091 		 * NVLink1 can use the TCE kill register directly as
2092 		 * it's the same as PHB3. NVLink2 is different and
2093 		 * should go via the OPAL call.
2094 		 */
2095 		if (phb->model == PNV_PHB_MODEL_NPU) {
2096 			/*
2097 			 * The NVLink hardware does not support TCE kill
2098 			 * per TCE entry so we have to invalidate
2099 			 * the entire cache for it.
2100 			 */
2101 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2102 			continue;
2103 		}
2104 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2105 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2106 						    index, npages);
2107 		else
2108 			opal_pci_tce_kill(phb->opal_id,
2109 					  OPAL_PCI_TCE_KILL_PAGES,
2110 					  pe->pe_number, 1u << shift,
2111 					  index << shift, npages);
2112 	}
2113 }
2114 
2115 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2116 {
2117 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2118 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2119 	else
2120 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2121 }
2122 
2123 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2124 		long npages, unsigned long uaddr,
2125 		enum dma_data_direction direction,
2126 		unsigned long attrs)
2127 {
2128 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2129 			attrs);
2130 
2131 	if (!ret)
2132 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2133 
2134 	return ret;
2135 }
2136 
2137 #ifdef CONFIG_IOMMU_API
2138 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2139 		unsigned long *hpa, enum dma_data_direction *direction)
2140 {
2141 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2142 
2143 	if (!ret)
2144 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2145 
2146 	return ret;
2147 }
2148 
2149 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2150 		unsigned long *hpa, enum dma_data_direction *direction)
2151 {
2152 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2153 
2154 	if (!ret)
2155 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2156 
2157 	return ret;
2158 }
2159 #endif
2160 
2161 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2162 		long npages)
2163 {
2164 	pnv_tce_free(tbl, index, npages);
2165 
2166 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2167 }
2168 
2169 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2170 {
2171 	pnv_pci_ioda2_table_free_pages(tbl);
2172 }
2173 
2174 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2175 	.set = pnv_ioda2_tce_build,
2176 #ifdef CONFIG_IOMMU_API
2177 	.exchange = pnv_ioda2_tce_xchg,
2178 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2179 #endif
2180 	.clear = pnv_ioda2_tce_free,
2181 	.get = pnv_tce_get,
2182 	.free = pnv_ioda2_table_free,
2183 };
2184 
2185 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2186 {
2187 	unsigned int *weight = (unsigned int *)data;
2188 
2189 	/* This is quite simplistic. The "base" weight of a device
2190 	 * is 10. 0 means no DMA is to be accounted for it.
2191 	 */
2192 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2193 		return 0;
2194 
2195 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2196 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2197 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2198 		*weight += 3;
2199 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2200 		*weight += 15;
2201 	else
2202 		*weight += 10;
2203 
2204 	return 0;
2205 }
2206 
2207 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2208 {
2209 	unsigned int weight = 0;
2210 
2211 	/* SRIOV VF has same DMA32 weight as its PF */
2212 #ifdef CONFIG_PCI_IOV
2213 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2214 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2215 		return weight;
2216 	}
2217 #endif
2218 
2219 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2220 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2221 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2222 		struct pci_dev *pdev;
2223 
2224 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2225 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2226 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2227 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2228 	}
2229 
2230 	return weight;
2231 }
2232 
2233 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2234 				       struct pnv_ioda_pe *pe)
2235 {
2236 
2237 	struct page *tce_mem = NULL;
2238 	struct iommu_table *tbl;
2239 	unsigned int weight, total_weight = 0;
2240 	unsigned int tce32_segsz, base, segs, avail, i;
2241 	int64_t rc;
2242 	void *addr;
2243 
2244 	/* XXX FIXME: Handle 64-bit only DMA devices */
2245 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2246 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2247 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2248 	if (!weight)
2249 		return;
2250 
2251 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2252 		     &total_weight);
2253 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2254 	if (!segs)
2255 		segs = 1;
2256 
2257 	/*
2258 	 * Allocate contiguous DMA32 segments. We begin with the expected
2259 	 * number of segments. With one more attempt, the number of DMA32
2260 	 * segments to be allocated is decreased by one until one segment
2261 	 * is allocated successfully.
2262 	 */
2263 	do {
2264 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2265 			for (avail = 0, i = base; i < base + segs; i++) {
2266 				if (phb->ioda.dma32_segmap[i] ==
2267 				    IODA_INVALID_PE)
2268 					avail++;
2269 			}
2270 
2271 			if (avail == segs)
2272 				goto found;
2273 		}
2274 	} while (--segs);
2275 
2276 	if (!segs) {
2277 		pe_warn(pe, "No available DMA32 segments\n");
2278 		return;
2279 	}
2280 
2281 found:
2282 	tbl = pnv_pci_table_alloc(phb->hose->node);
2283 	if (WARN_ON(!tbl))
2284 		return;
2285 
2286 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2287 			pe->pe_number);
2288 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2289 
2290 	/* Grab a 32-bit TCE table */
2291 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2292 		weight, total_weight, base, segs);
2293 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2294 		base * PNV_IODA1_DMA32_SEGSIZE,
2295 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2296 
2297 	/* XXX Currently, we allocate one big contiguous table for the
2298 	 * TCEs. We only really need one chunk per 256M of TCE space
2299 	 * (ie per segment) but that's an optimization for later, it
2300 	 * requires some added smarts with our get/put_tce implementation
2301 	 *
2302 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2303 	 * bytes
2304 	 */
2305 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2306 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2307 				   get_order(tce32_segsz * segs));
2308 	if (!tce_mem) {
2309 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2310 		goto fail;
2311 	}
2312 	addr = page_address(tce_mem);
2313 	memset(addr, 0, tce32_segsz * segs);
2314 
2315 	/* Configure HW */
2316 	for (i = 0; i < segs; i++) {
2317 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2318 					      pe->pe_number,
2319 					      base + i, 1,
2320 					      __pa(addr) + tce32_segsz * i,
2321 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2322 		if (rc) {
2323 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2324 			       " err %ld\n", rc);
2325 			goto fail;
2326 		}
2327 	}
2328 
2329 	/* Setup DMA32 segment mapping */
2330 	for (i = base; i < base + segs; i++)
2331 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2332 
2333 	/* Setup linux iommu table */
2334 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2335 				  base * PNV_IODA1_DMA32_SEGSIZE,
2336 				  IOMMU_PAGE_SHIFT_4K);
2337 
2338 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2339 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2340 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2341 	iommu_init_table(tbl, phb->hose->node);
2342 
2343 	if (pe->flags & PNV_IODA_PE_DEV) {
2344 		/*
2345 		 * Setting table base here only for carrying iommu_group
2346 		 * further down to let iommu_add_device() do the job.
2347 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2348 		 */
2349 		set_iommu_table_base(&pe->pdev->dev, tbl);
2350 		iommu_add_device(&pe->pdev->dev);
2351 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2352 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2353 
2354 	return;
2355  fail:
2356 	/* XXX Failure: Try to fallback to 64-bit only ? */
2357 	if (tce_mem)
2358 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2359 	if (tbl) {
2360 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2361 		iommu_tce_table_put(tbl);
2362 	}
2363 }
2364 
2365 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2366 		int num, struct iommu_table *tbl)
2367 {
2368 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2369 			table_group);
2370 	struct pnv_phb *phb = pe->phb;
2371 	int64_t rc;
2372 	const unsigned long size = tbl->it_indirect_levels ?
2373 			tbl->it_level_size : tbl->it_size;
2374 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2375 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2376 
2377 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2378 			start_addr, start_addr + win_size - 1,
2379 			IOMMU_PAGE_SIZE(tbl));
2380 
2381 	/*
2382 	 * Map TCE table through TVT. The TVE index is the PE number
2383 	 * shifted by 1 bit for 32-bits DMA space.
2384 	 */
2385 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2386 			pe->pe_number,
2387 			(pe->pe_number << 1) + num,
2388 			tbl->it_indirect_levels + 1,
2389 			__pa(tbl->it_base),
2390 			size << 3,
2391 			IOMMU_PAGE_SIZE(tbl));
2392 	if (rc) {
2393 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2394 		return rc;
2395 	}
2396 
2397 	pnv_pci_link_table_and_group(phb->hose->node, num,
2398 			tbl, &pe->table_group);
2399 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2400 
2401 	return 0;
2402 }
2403 
2404 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2405 {
2406 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2407 	int64_t rc;
2408 
2409 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2410 	if (enable) {
2411 		phys_addr_t top = memblock_end_of_DRAM();
2412 
2413 		top = roundup_pow_of_two(top);
2414 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2415 						     pe->pe_number,
2416 						     window_id,
2417 						     pe->tce_bypass_base,
2418 						     top);
2419 	} else {
2420 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2421 						     pe->pe_number,
2422 						     window_id,
2423 						     pe->tce_bypass_base,
2424 						     0);
2425 	}
2426 	if (rc)
2427 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2428 	else
2429 		pe->tce_bypass_enabled = enable;
2430 }
2431 
2432 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2433 		__u32 page_shift, __u64 window_size, __u32 levels,
2434 		struct iommu_table *tbl);
2435 
2436 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2437 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2438 		struct iommu_table **ptbl)
2439 {
2440 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2441 			table_group);
2442 	int nid = pe->phb->hose->node;
2443 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2444 	long ret;
2445 	struct iommu_table *tbl;
2446 
2447 	tbl = pnv_pci_table_alloc(nid);
2448 	if (!tbl)
2449 		return -ENOMEM;
2450 
2451 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2452 
2453 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2454 			bus_offset, page_shift, window_size,
2455 			levels, tbl);
2456 	if (ret) {
2457 		iommu_tce_table_put(tbl);
2458 		return ret;
2459 	}
2460 
2461 	*ptbl = tbl;
2462 
2463 	return 0;
2464 }
2465 
2466 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2467 {
2468 	struct iommu_table *tbl = NULL;
2469 	long rc;
2470 
2471 	/*
2472 	 * crashkernel= specifies the kdump kernel's maximum memory at
2473 	 * some offset and there is no guaranteed the result is a power
2474 	 * of 2, which will cause errors later.
2475 	 */
2476 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2477 
2478 	/*
2479 	 * In memory constrained environments, e.g. kdump kernel, the
2480 	 * DMA window can be larger than available memory, which will
2481 	 * cause errors later.
2482 	 */
2483 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2484 
2485 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2486 			IOMMU_PAGE_SHIFT_4K,
2487 			window_size,
2488 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2489 	if (rc) {
2490 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2491 				rc);
2492 		return rc;
2493 	}
2494 
2495 	iommu_init_table(tbl, pe->phb->hose->node);
2496 
2497 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2498 	if (rc) {
2499 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2500 				rc);
2501 		iommu_tce_table_put(tbl);
2502 		return rc;
2503 	}
2504 
2505 	if (!pnv_iommu_bypass_disabled)
2506 		pnv_pci_ioda2_set_bypass(pe, true);
2507 
2508 	/*
2509 	 * Setting table base here only for carrying iommu_group
2510 	 * further down to let iommu_add_device() do the job.
2511 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2512 	 */
2513 	if (pe->flags & PNV_IODA_PE_DEV)
2514 		set_iommu_table_base(&pe->pdev->dev, tbl);
2515 
2516 	return 0;
2517 }
2518 
2519 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2520 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2521 		int num)
2522 {
2523 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2524 			table_group);
2525 	struct pnv_phb *phb = pe->phb;
2526 	long ret;
2527 
2528 	pe_info(pe, "Removing DMA window #%d\n", num);
2529 
2530 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2531 			(pe->pe_number << 1) + num,
2532 			0/* levels */, 0/* table address */,
2533 			0/* table size */, 0/* page size */);
2534 	if (ret)
2535 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2536 	else
2537 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2538 
2539 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2540 
2541 	return ret;
2542 }
2543 #endif
2544 
2545 #ifdef CONFIG_IOMMU_API
2546 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2547 		__u64 window_size, __u32 levels)
2548 {
2549 	unsigned long bytes = 0;
2550 	const unsigned window_shift = ilog2(window_size);
2551 	unsigned entries_shift = window_shift - page_shift;
2552 	unsigned table_shift = entries_shift + 3;
2553 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2554 	unsigned long direct_table_size;
2555 
2556 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2557 			(window_size > memory_hotplug_max()) ||
2558 			!is_power_of_2(window_size))
2559 		return 0;
2560 
2561 	/* Calculate a direct table size from window_size and levels */
2562 	entries_shift = (entries_shift + levels - 1) / levels;
2563 	table_shift = entries_shift + 3;
2564 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2565 	direct_table_size =  1UL << table_shift;
2566 
2567 	for ( ; levels; --levels) {
2568 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2569 
2570 		tce_table_size /= direct_table_size;
2571 		tce_table_size <<= 3;
2572 		tce_table_size = max_t(unsigned long,
2573 				tce_table_size, direct_table_size);
2574 	}
2575 
2576 	return bytes;
2577 }
2578 
2579 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2580 {
2581 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2582 						table_group);
2583 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2584 	struct iommu_table *tbl = pe->table_group.tables[0];
2585 
2586 	pnv_pci_ioda2_set_bypass(pe, false);
2587 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2588 	if (pe->pbus)
2589 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2590 	iommu_tce_table_put(tbl);
2591 }
2592 
2593 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2594 {
2595 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2596 						table_group);
2597 
2598 	pnv_pci_ioda2_setup_default_config(pe);
2599 	if (pe->pbus)
2600 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2601 }
2602 
2603 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2604 	.get_table_size = pnv_pci_ioda2_get_table_size,
2605 	.create_table = pnv_pci_ioda2_create_table,
2606 	.set_window = pnv_pci_ioda2_set_window,
2607 	.unset_window = pnv_pci_ioda2_unset_window,
2608 	.take_ownership = pnv_ioda2_take_ownership,
2609 	.release_ownership = pnv_ioda2_release_ownership,
2610 };
2611 
2612 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2613 {
2614 	struct pci_controller *hose;
2615 	struct pnv_phb *phb;
2616 	struct pnv_ioda_pe **ptmppe = opaque;
2617 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2618 	struct pci_dn *pdn = pci_get_pdn(pdev);
2619 
2620 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2621 		return 0;
2622 
2623 	hose = pci_bus_to_host(pdev->bus);
2624 	phb = hose->private_data;
2625 	if (phb->type != PNV_PHB_NPU)
2626 		return 0;
2627 
2628 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2629 
2630 	return 1;
2631 }
2632 
2633 /*
2634  * This returns PE of associated NPU.
2635  * This assumes that NPU is in the same IOMMU group with GPU and there is
2636  * no other PEs.
2637  */
2638 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2639 		struct iommu_table_group *table_group)
2640 {
2641 	struct pnv_ioda_pe *npe = NULL;
2642 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2643 			gpe_table_group_to_npe_cb);
2644 
2645 	BUG_ON(!ret || !npe);
2646 
2647 	return npe;
2648 }
2649 
2650 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2651 		int num, struct iommu_table *tbl)
2652 {
2653 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2654 
2655 	if (ret)
2656 		return ret;
2657 
2658 	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2659 	if (ret)
2660 		pnv_pci_ioda2_unset_window(table_group, num);
2661 
2662 	return ret;
2663 }
2664 
2665 static long pnv_pci_ioda2_npu_unset_window(
2666 		struct iommu_table_group *table_group,
2667 		int num)
2668 {
2669 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2670 
2671 	if (ret)
2672 		return ret;
2673 
2674 	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2675 }
2676 
2677 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2678 {
2679 	/*
2680 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2681 	 * the iommu_table if 32bit DMA is enabled.
2682 	 */
2683 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2684 	pnv_ioda2_take_ownership(table_group);
2685 }
2686 
2687 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2688 	.get_table_size = pnv_pci_ioda2_get_table_size,
2689 	.create_table = pnv_pci_ioda2_create_table,
2690 	.set_window = pnv_pci_ioda2_npu_set_window,
2691 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2692 	.take_ownership = pnv_ioda2_npu_take_ownership,
2693 	.release_ownership = pnv_ioda2_release_ownership,
2694 };
2695 
2696 static void pnv_pci_ioda_setup_iommu_api(void)
2697 {
2698 	struct pci_controller *hose, *tmp;
2699 	struct pnv_phb *phb;
2700 	struct pnv_ioda_pe *pe, *gpe;
2701 
2702 	/*
2703 	 * Now we have all PHBs discovered, time to add NPU devices to
2704 	 * the corresponding IOMMU groups.
2705 	 */
2706 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2707 		phb = hose->private_data;
2708 
2709 		if (phb->type != PNV_PHB_NPU)
2710 			continue;
2711 
2712 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2713 			gpe = pnv_pci_npu_setup_iommu(pe);
2714 			if (gpe)
2715 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2716 		}
2717 	}
2718 }
2719 #else /* !CONFIG_IOMMU_API */
2720 static void pnv_pci_ioda_setup_iommu_api(void) { };
2721 #endif
2722 
2723 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2724 		unsigned levels, unsigned long limit,
2725 		unsigned long *current_offset, unsigned long *total_allocated)
2726 {
2727 	struct page *tce_mem = NULL;
2728 	__be64 *addr, *tmp;
2729 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2730 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2731 	unsigned entries = 1UL << (shift - 3);
2732 	long i;
2733 
2734 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2735 	if (!tce_mem) {
2736 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2737 		return NULL;
2738 	}
2739 	addr = page_address(tce_mem);
2740 	memset(addr, 0, allocated);
2741 	*total_allocated += allocated;
2742 
2743 	--levels;
2744 	if (!levels) {
2745 		*current_offset += allocated;
2746 		return addr;
2747 	}
2748 
2749 	for (i = 0; i < entries; ++i) {
2750 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2751 				levels, limit, current_offset, total_allocated);
2752 		if (!tmp)
2753 			break;
2754 
2755 		addr[i] = cpu_to_be64(__pa(tmp) |
2756 				TCE_PCI_READ | TCE_PCI_WRITE);
2757 
2758 		if (*current_offset >= limit)
2759 			break;
2760 	}
2761 
2762 	return addr;
2763 }
2764 
2765 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2766 		unsigned long size, unsigned level);
2767 
2768 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2769 		__u32 page_shift, __u64 window_size, __u32 levels,
2770 		struct iommu_table *tbl)
2771 {
2772 	void *addr;
2773 	unsigned long offset = 0, level_shift, total_allocated = 0;
2774 	const unsigned window_shift = ilog2(window_size);
2775 	unsigned entries_shift = window_shift - page_shift;
2776 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2777 	const unsigned long tce_table_size = 1UL << table_shift;
2778 
2779 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2780 		return -EINVAL;
2781 
2782 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2783 		return -EINVAL;
2784 
2785 	/* Adjust direct table size from window_size and levels */
2786 	entries_shift = (entries_shift + levels - 1) / levels;
2787 	level_shift = entries_shift + 3;
2788 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2789 
2790 	if ((level_shift - 3) * levels + page_shift >= 60)
2791 		return -EINVAL;
2792 
2793 	/* Allocate TCE table */
2794 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2795 			levels, tce_table_size, &offset, &total_allocated);
2796 
2797 	/* addr==NULL means that the first level allocation failed */
2798 	if (!addr)
2799 		return -ENOMEM;
2800 
2801 	/*
2802 	 * First level was allocated but some lower level failed as
2803 	 * we did not allocate as much as we wanted,
2804 	 * release partially allocated table.
2805 	 */
2806 	if (offset < tce_table_size) {
2807 		pnv_pci_ioda2_table_do_free_pages(addr,
2808 				1ULL << (level_shift - 3), levels - 1);
2809 		return -ENOMEM;
2810 	}
2811 
2812 	/* Setup linux iommu table */
2813 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2814 			page_shift);
2815 	tbl->it_level_size = 1ULL << (level_shift - 3);
2816 	tbl->it_indirect_levels = levels - 1;
2817 	tbl->it_allocated_size = total_allocated;
2818 
2819 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2820 			window_size, tce_table_size, bus_offset);
2821 
2822 	return 0;
2823 }
2824 
2825 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2826 		unsigned long size, unsigned level)
2827 {
2828 	const unsigned long addr_ul = (unsigned long) addr &
2829 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2830 
2831 	if (level) {
2832 		long i;
2833 		u64 *tmp = (u64 *) addr_ul;
2834 
2835 		for (i = 0; i < size; ++i) {
2836 			unsigned long hpa = be64_to_cpu(tmp[i]);
2837 
2838 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2839 				continue;
2840 
2841 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2842 					level - 1);
2843 		}
2844 	}
2845 
2846 	free_pages(addr_ul, get_order(size << 3));
2847 }
2848 
2849 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2850 {
2851 	const unsigned long size = tbl->it_indirect_levels ?
2852 			tbl->it_level_size : tbl->it_size;
2853 
2854 	if (!tbl->it_size)
2855 		return;
2856 
2857 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2858 			tbl->it_indirect_levels);
2859 }
2860 
2861 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2862 				       struct pnv_ioda_pe *pe)
2863 {
2864 	int64_t rc;
2865 
2866 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2867 		return;
2868 
2869 	/* TVE #1 is selected by PCI address bit 59 */
2870 	pe->tce_bypass_base = 1ull << 59;
2871 
2872 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2873 			pe->pe_number);
2874 
2875 	/* The PE will reserve all possible 32-bits space */
2876 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2877 		phb->ioda.m32_pci_base);
2878 
2879 	/* Setup linux iommu table */
2880 	pe->table_group.tce32_start = 0;
2881 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2882 	pe->table_group.max_dynamic_windows_supported =
2883 			IOMMU_TABLE_GROUP_MAX_TABLES;
2884 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2885 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2886 #ifdef CONFIG_IOMMU_API
2887 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2888 #endif
2889 
2890 	rc = pnv_pci_ioda2_setup_default_config(pe);
2891 	if (rc)
2892 		return;
2893 
2894 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2895 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2896 }
2897 
2898 #ifdef CONFIG_PCI_MSI
2899 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2900 {
2901 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2902 					   ioda.irq_chip);
2903 
2904 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2905 }
2906 
2907 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2908 {
2909 	int64_t rc;
2910 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2911 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2912 
2913 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2914 	WARN_ON_ONCE(rc);
2915 
2916 	icp_native_eoi(d);
2917 }
2918 
2919 
2920 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2921 {
2922 	struct irq_data *idata;
2923 	struct irq_chip *ichip;
2924 
2925 	/* The MSI EOI OPAL call is only needed on PHB3 */
2926 	if (phb->model != PNV_PHB_MODEL_PHB3)
2927 		return;
2928 
2929 	if (!phb->ioda.irq_chip_init) {
2930 		/*
2931 		 * First time we setup an MSI IRQ, we need to setup the
2932 		 * corresponding IRQ chip to route correctly.
2933 		 */
2934 		idata = irq_get_irq_data(virq);
2935 		ichip = irq_data_get_irq_chip(idata);
2936 		phb->ioda.irq_chip_init = 1;
2937 		phb->ioda.irq_chip = *ichip;
2938 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2939 	}
2940 	irq_set_chip(virq, &phb->ioda.irq_chip);
2941 }
2942 
2943 /*
2944  * Returns true iff chip is something that we could call
2945  * pnv_opal_pci_msi_eoi for.
2946  */
2947 bool is_pnv_opal_msi(struct irq_chip *chip)
2948 {
2949 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2950 }
2951 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2952 
2953 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2954 				  unsigned int hwirq, unsigned int virq,
2955 				  unsigned int is_64, struct msi_msg *msg)
2956 {
2957 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2958 	unsigned int xive_num = hwirq - phb->msi_base;
2959 	__be32 data;
2960 	int rc;
2961 
2962 	/* No PE assigned ? bail out ... no MSI for you ! */
2963 	if (pe == NULL)
2964 		return -ENXIO;
2965 
2966 	/* Check if we have an MVE */
2967 	if (pe->mve_number < 0)
2968 		return -ENXIO;
2969 
2970 	/* Force 32-bit MSI on some broken devices */
2971 	if (dev->no_64bit_msi)
2972 		is_64 = 0;
2973 
2974 	/* Assign XIVE to PE */
2975 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2976 	if (rc) {
2977 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2978 			pci_name(dev), rc, xive_num);
2979 		return -EIO;
2980 	}
2981 
2982 	if (is_64) {
2983 		__be64 addr64;
2984 
2985 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2986 				     &addr64, &data);
2987 		if (rc) {
2988 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2989 				pci_name(dev), rc);
2990 			return -EIO;
2991 		}
2992 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2993 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2994 	} else {
2995 		__be32 addr32;
2996 
2997 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2998 				     &addr32, &data);
2999 		if (rc) {
3000 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
3001 				pci_name(dev), rc);
3002 			return -EIO;
3003 		}
3004 		msg->address_hi = 0;
3005 		msg->address_lo = be32_to_cpu(addr32);
3006 	}
3007 	msg->data = be32_to_cpu(data);
3008 
3009 	pnv_set_msi_irq_chip(phb, virq);
3010 
3011 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
3012 		 " address=%x_%08x data=%x PE# %x\n",
3013 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
3014 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
3015 
3016 	return 0;
3017 }
3018 
3019 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
3020 {
3021 	unsigned int count;
3022 	const __be32 *prop = of_get_property(phb->hose->dn,
3023 					     "ibm,opal-msi-ranges", NULL);
3024 	if (!prop) {
3025 		/* BML Fallback */
3026 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
3027 	}
3028 	if (!prop)
3029 		return;
3030 
3031 	phb->msi_base = be32_to_cpup(prop);
3032 	count = be32_to_cpup(prop + 1);
3033 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
3034 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3035 		       phb->hose->global_number);
3036 		return;
3037 	}
3038 
3039 	phb->msi_setup = pnv_pci_ioda_msi_setup;
3040 	phb->msi32_support = 1;
3041 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3042 		count, phb->msi_base);
3043 }
3044 #else
3045 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3046 #endif /* CONFIG_PCI_MSI */
3047 
3048 #ifdef CONFIG_PCI_IOV
3049 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3050 {
3051 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3052 	struct pnv_phb *phb = hose->private_data;
3053 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3054 	struct resource *res;
3055 	int i;
3056 	resource_size_t size, total_vf_bar_sz;
3057 	struct pci_dn *pdn;
3058 	int mul, total_vfs;
3059 
3060 	if (!pdev->is_physfn || pdev->is_added)
3061 		return;
3062 
3063 	pdn = pci_get_pdn(pdev);
3064 	pdn->vfs_expanded = 0;
3065 	pdn->m64_single_mode = false;
3066 
3067 	total_vfs = pci_sriov_get_totalvfs(pdev);
3068 	mul = phb->ioda.total_pe_num;
3069 	total_vf_bar_sz = 0;
3070 
3071 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3072 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3073 		if (!res->flags || res->parent)
3074 			continue;
3075 		if (!pnv_pci_is_m64_flags(res->flags)) {
3076 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
3077 					" non M64 VF BAR%d: %pR. \n",
3078 				 i, res);
3079 			goto truncate_iov;
3080 		}
3081 
3082 		total_vf_bar_sz += pci_iov_resource_size(pdev,
3083 				i + PCI_IOV_RESOURCES);
3084 
3085 		/*
3086 		 * If bigger than quarter of M64 segment size, just round up
3087 		 * power of two.
3088 		 *
3089 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3090 		 * with other devices, IOV BAR size is expanded to be
3091 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3092 		 * segment size , the expanded size would equal to half of the
3093 		 * whole M64 space size, which will exhaust the M64 Space and
3094 		 * limit the system flexibility.  This is a design decision to
3095 		 * set the boundary to quarter of the M64 segment size.
3096 		 */
3097 		if (total_vf_bar_sz > gate) {
3098 			mul = roundup_pow_of_two(total_vfs);
3099 			dev_info(&pdev->dev,
3100 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3101 				total_vf_bar_sz, gate, mul);
3102 			pdn->m64_single_mode = true;
3103 			break;
3104 		}
3105 	}
3106 
3107 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3108 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3109 		if (!res->flags || res->parent)
3110 			continue;
3111 
3112 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3113 		/*
3114 		 * On PHB3, the minimum size alignment of M64 BAR in single
3115 		 * mode is 32MB.
3116 		 */
3117 		if (pdn->m64_single_mode && (size < SZ_32M))
3118 			goto truncate_iov;
3119 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3120 		res->end = res->start + size * mul - 1;
3121 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3122 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3123 			 i, res, mul);
3124 	}
3125 	pdn->vfs_expanded = mul;
3126 
3127 	return;
3128 
3129 truncate_iov:
3130 	/* To save MMIO space, IOV BAR is truncated. */
3131 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3132 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3133 		res->flags = 0;
3134 		res->end = res->start - 1;
3135 	}
3136 }
3137 #endif /* CONFIG_PCI_IOV */
3138 
3139 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3140 				  struct resource *res)
3141 {
3142 	struct pnv_phb *phb = pe->phb;
3143 	struct pci_bus_region region;
3144 	int index;
3145 	int64_t rc;
3146 
3147 	if (!res || !res->flags || res->start > res->end)
3148 		return;
3149 
3150 	if (res->flags & IORESOURCE_IO) {
3151 		region.start = res->start - phb->ioda.io_pci_base;
3152 		region.end   = res->end - phb->ioda.io_pci_base;
3153 		index = region.start / phb->ioda.io_segsize;
3154 
3155 		while (index < phb->ioda.total_pe_num &&
3156 		       region.start <= region.end) {
3157 			phb->ioda.io_segmap[index] = pe->pe_number;
3158 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3159 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3160 			if (rc != OPAL_SUCCESS) {
3161 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3162 				       __func__, rc, index, pe->pe_number);
3163 				break;
3164 			}
3165 
3166 			region.start += phb->ioda.io_segsize;
3167 			index++;
3168 		}
3169 	} else if ((res->flags & IORESOURCE_MEM) &&
3170 		   !pnv_pci_is_m64(phb, res)) {
3171 		region.start = res->start -
3172 			       phb->hose->mem_offset[0] -
3173 			       phb->ioda.m32_pci_base;
3174 		region.end   = res->end -
3175 			       phb->hose->mem_offset[0] -
3176 			       phb->ioda.m32_pci_base;
3177 		index = region.start / phb->ioda.m32_segsize;
3178 
3179 		while (index < phb->ioda.total_pe_num &&
3180 		       region.start <= region.end) {
3181 			phb->ioda.m32_segmap[index] = pe->pe_number;
3182 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3183 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3184 			if (rc != OPAL_SUCCESS) {
3185 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3186 				       __func__, rc, index, pe->pe_number);
3187 				break;
3188 			}
3189 
3190 			region.start += phb->ioda.m32_segsize;
3191 			index++;
3192 		}
3193 	}
3194 }
3195 
3196 /*
3197  * This function is supposed to be called on basis of PE from top
3198  * to bottom style. So the the I/O or MMIO segment assigned to
3199  * parent PE could be overridden by its child PEs if necessary.
3200  */
3201 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3202 {
3203 	struct pci_dev *pdev;
3204 	int i;
3205 
3206 	/*
3207 	 * NOTE: We only care PCI bus based PE for now. For PCI
3208 	 * device based PE, for example SRIOV sensitive VF should
3209 	 * be figured out later.
3210 	 */
3211 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3212 
3213 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3214 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3215 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3216 
3217 		/*
3218 		 * If the PE contains all subordinate PCI buses, the
3219 		 * windows of the child bridges should be mapped to
3220 		 * the PE as well.
3221 		 */
3222 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3223 			continue;
3224 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3225 			pnv_ioda_setup_pe_res(pe,
3226 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3227 	}
3228 }
3229 
3230 #ifdef CONFIG_DEBUG_FS
3231 static int pnv_pci_diag_data_set(void *data, u64 val)
3232 {
3233 	struct pci_controller *hose;
3234 	struct pnv_phb *phb;
3235 	s64 ret;
3236 
3237 	if (val != 1ULL)
3238 		return -EINVAL;
3239 
3240 	hose = (struct pci_controller *)data;
3241 	if (!hose || !hose->private_data)
3242 		return -ENODEV;
3243 
3244 	phb = hose->private_data;
3245 
3246 	/* Retrieve the diag data from firmware */
3247 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3248 					  phb->diag_data_size);
3249 	if (ret != OPAL_SUCCESS)
3250 		return -EIO;
3251 
3252 	/* Print the diag data to the kernel log */
3253 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3254 	return 0;
3255 }
3256 
3257 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3258 			pnv_pci_diag_data_set, "%llu\n");
3259 
3260 #endif /* CONFIG_DEBUG_FS */
3261 
3262 static void pnv_pci_ioda_create_dbgfs(void)
3263 {
3264 #ifdef CONFIG_DEBUG_FS
3265 	struct pci_controller *hose, *tmp;
3266 	struct pnv_phb *phb;
3267 	char name[16];
3268 
3269 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3270 		phb = hose->private_data;
3271 
3272 		/* Notify initialization of PHB done */
3273 		phb->initialized = 1;
3274 
3275 		sprintf(name, "PCI%04x", hose->global_number);
3276 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3277 		if (!phb->dbgfs) {
3278 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3279 				__func__, hose->global_number);
3280 			continue;
3281 		}
3282 
3283 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3284 				    &pnv_pci_diag_data_fops);
3285 	}
3286 #endif /* CONFIG_DEBUG_FS */
3287 }
3288 
3289 static void pnv_pci_ioda_fixup(void)
3290 {
3291 	pnv_pci_ioda_setup_PEs();
3292 	pnv_pci_ioda_setup_iommu_api();
3293 	pnv_pci_ioda_create_dbgfs();
3294 
3295 #ifdef CONFIG_EEH
3296 	eeh_init();
3297 	eeh_addr_cache_build();
3298 #endif
3299 }
3300 
3301 /*
3302  * Returns the alignment for I/O or memory windows for P2P
3303  * bridges. That actually depends on how PEs are segmented.
3304  * For now, we return I/O or M32 segment size for PE sensitive
3305  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3306  * 1MiB for memory) will be returned.
3307  *
3308  * The current PCI bus might be put into one PE, which was
3309  * create against the parent PCI bridge. For that case, we
3310  * needn't enlarge the alignment so that we can save some
3311  * resources.
3312  */
3313 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3314 						unsigned long type)
3315 {
3316 	struct pci_dev *bridge;
3317 	struct pci_controller *hose = pci_bus_to_host(bus);
3318 	struct pnv_phb *phb = hose->private_data;
3319 	int num_pci_bridges = 0;
3320 
3321 	bridge = bus->self;
3322 	while (bridge) {
3323 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3324 			num_pci_bridges++;
3325 			if (num_pci_bridges >= 2)
3326 				return 1;
3327 		}
3328 
3329 		bridge = bridge->bus->self;
3330 	}
3331 
3332 	/*
3333 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3334 	 * alignment for any 64-bit resource, PCIe doesn't care and
3335 	 * bridges only do 64-bit prefetchable anyway.
3336 	 */
3337 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3338 		return phb->ioda.m64_segsize;
3339 	if (type & IORESOURCE_MEM)
3340 		return phb->ioda.m32_segsize;
3341 
3342 	return phb->ioda.io_segsize;
3343 }
3344 
3345 /*
3346  * We are updating root port or the upstream port of the
3347  * bridge behind the root port with PHB's windows in order
3348  * to accommodate the changes on required resources during
3349  * PCI (slot) hotplug, which is connected to either root
3350  * port or the downstream ports of PCIe switch behind the
3351  * root port.
3352  */
3353 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3354 					   unsigned long type)
3355 {
3356 	struct pci_controller *hose = pci_bus_to_host(bus);
3357 	struct pnv_phb *phb = hose->private_data;
3358 	struct pci_dev *bridge = bus->self;
3359 	struct resource *r, *w;
3360 	bool msi_region = false;
3361 	int i;
3362 
3363 	/* Check if we need apply fixup to the bridge's windows */
3364 	if (!pci_is_root_bus(bridge->bus) &&
3365 	    !pci_is_root_bus(bridge->bus->self->bus))
3366 		return;
3367 
3368 	/* Fixup the resources */
3369 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3370 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3371 		if (!r->flags || !r->parent)
3372 			continue;
3373 
3374 		w = NULL;
3375 		if (r->flags & type & IORESOURCE_IO)
3376 			w = &hose->io_resource;
3377 		else if (pnv_pci_is_m64(phb, r) &&
3378 			 (type & IORESOURCE_PREFETCH) &&
3379 			 phb->ioda.m64_segsize)
3380 			w = &hose->mem_resources[1];
3381 		else if (r->flags & type & IORESOURCE_MEM) {
3382 			w = &hose->mem_resources[0];
3383 			msi_region = true;
3384 		}
3385 
3386 		r->start = w->start;
3387 		r->end = w->end;
3388 
3389 		/* The 64KB 32-bits MSI region shouldn't be included in
3390 		 * the 32-bits bridge window. Otherwise, we can see strange
3391 		 * issues. One of them is EEH error observed on Garrison.
3392 		 *
3393 		 * Exclude top 1MB region which is the minimal alignment of
3394 		 * 32-bits bridge window.
3395 		 */
3396 		if (msi_region) {
3397 			r->end += 0x10000;
3398 			r->end -= 0x100000;
3399 		}
3400 	}
3401 }
3402 
3403 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3404 {
3405 	struct pci_controller *hose = pci_bus_to_host(bus);
3406 	struct pnv_phb *phb = hose->private_data;
3407 	struct pci_dev *bridge = bus->self;
3408 	struct pnv_ioda_pe *pe;
3409 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3410 
3411 	/* Extend bridge's windows if necessary */
3412 	pnv_pci_fixup_bridge_resources(bus, type);
3413 
3414 	/* The PE for root bus should be realized before any one else */
3415 	if (!phb->ioda.root_pe_populated) {
3416 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3417 		if (pe) {
3418 			phb->ioda.root_pe_idx = pe->pe_number;
3419 			phb->ioda.root_pe_populated = true;
3420 		}
3421 	}
3422 
3423 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3424 	if (list_empty(&bus->devices))
3425 		return;
3426 
3427 	/* Reserve PEs according to used M64 resources */
3428 	if (phb->reserve_m64_pe)
3429 		phb->reserve_m64_pe(bus, NULL, all);
3430 
3431 	/*
3432 	 * Assign PE. We might run here because of partial hotplug.
3433 	 * For the case, we just pick up the existing PE and should
3434 	 * not allocate resources again.
3435 	 */
3436 	pe = pnv_ioda_setup_bus_PE(bus, all);
3437 	if (!pe)
3438 		return;
3439 
3440 	pnv_ioda_setup_pe_seg(pe);
3441 	switch (phb->type) {
3442 	case PNV_PHB_IODA1:
3443 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3444 		break;
3445 	case PNV_PHB_IODA2:
3446 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3447 		break;
3448 	default:
3449 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3450 			__func__, phb->hose->global_number, phb->type);
3451 	}
3452 }
3453 
3454 static resource_size_t pnv_pci_default_alignment(void)
3455 {
3456 	return PAGE_SIZE;
3457 }
3458 
3459 #ifdef CONFIG_PCI_IOV
3460 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3461 						      int resno)
3462 {
3463 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3464 	struct pnv_phb *phb = hose->private_data;
3465 	struct pci_dn *pdn = pci_get_pdn(pdev);
3466 	resource_size_t align;
3467 
3468 	/*
3469 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3470 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3471 	 * BAR should be size aligned.
3472 	 *
3473 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3474 	 * powernv-specific hardware restriction is gone. But if just use the
3475 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3476 	 * in one segment of M64 #15, which introduces the PE conflict between
3477 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3478 	 * m64_segsize.
3479 	 *
3480 	 * This function returns the total IOV BAR size if M64 BAR is in
3481 	 * Shared PE mode or just VF BAR size if not.
3482 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3483 	 * M64 segment size if IOV BAR size is less.
3484 	 */
3485 	align = pci_iov_resource_size(pdev, resno);
3486 	if (!pdn->vfs_expanded)
3487 		return align;
3488 	if (pdn->m64_single_mode)
3489 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3490 
3491 	return pdn->vfs_expanded * align;
3492 }
3493 #endif /* CONFIG_PCI_IOV */
3494 
3495 /* Prevent enabling devices for which we couldn't properly
3496  * assign a PE
3497  */
3498 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3499 {
3500 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3501 	struct pnv_phb *phb = hose->private_data;
3502 	struct pci_dn *pdn;
3503 
3504 	/* The function is probably called while the PEs have
3505 	 * not be created yet. For example, resource reassignment
3506 	 * during PCI probe period. We just skip the check if
3507 	 * PEs isn't ready.
3508 	 */
3509 	if (!phb->initialized)
3510 		return true;
3511 
3512 	pdn = pci_get_pdn(dev);
3513 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3514 		return false;
3515 
3516 	return true;
3517 }
3518 
3519 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3520 				       int num)
3521 {
3522 	struct pnv_ioda_pe *pe = container_of(table_group,
3523 					      struct pnv_ioda_pe, table_group);
3524 	struct pnv_phb *phb = pe->phb;
3525 	unsigned int idx;
3526 	long rc;
3527 
3528 	pe_info(pe, "Removing DMA window #%d\n", num);
3529 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3530 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3531 			continue;
3532 
3533 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3534 						idx, 0, 0ul, 0ul, 0ul);
3535 		if (rc != OPAL_SUCCESS) {
3536 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3537 				rc, idx);
3538 			return rc;
3539 		}
3540 
3541 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3542 	}
3543 
3544 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3545 	return OPAL_SUCCESS;
3546 }
3547 
3548 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3549 {
3550 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3551 	struct iommu_table *tbl = pe->table_group.tables[0];
3552 	int64_t rc;
3553 
3554 	if (!weight)
3555 		return;
3556 
3557 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3558 	if (rc != OPAL_SUCCESS)
3559 		return;
3560 
3561 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3562 	if (pe->table_group.group) {
3563 		iommu_group_put(pe->table_group.group);
3564 		WARN_ON(pe->table_group.group);
3565 	}
3566 
3567 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3568 	iommu_tce_table_put(tbl);
3569 }
3570 
3571 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3572 {
3573 	struct iommu_table *tbl = pe->table_group.tables[0];
3574 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3575 #ifdef CONFIG_IOMMU_API
3576 	int64_t rc;
3577 #endif
3578 
3579 	if (!weight)
3580 		return;
3581 
3582 #ifdef CONFIG_IOMMU_API
3583 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3584 	if (rc)
3585 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3586 #endif
3587 
3588 	pnv_pci_ioda2_set_bypass(pe, false);
3589 	if (pe->table_group.group) {
3590 		iommu_group_put(pe->table_group.group);
3591 		WARN_ON(pe->table_group.group);
3592 	}
3593 
3594 	pnv_pci_ioda2_table_free_pages(tbl);
3595 	iommu_tce_table_put(tbl);
3596 }
3597 
3598 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3599 				 unsigned short win,
3600 				 unsigned int *map)
3601 {
3602 	struct pnv_phb *phb = pe->phb;
3603 	int idx;
3604 	int64_t rc;
3605 
3606 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3607 		if (map[idx] != pe->pe_number)
3608 			continue;
3609 
3610 		if (win == OPAL_M64_WINDOW_TYPE)
3611 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3612 					phb->ioda.reserved_pe_idx, win,
3613 					idx / PNV_IODA1_M64_SEGS,
3614 					idx % PNV_IODA1_M64_SEGS);
3615 		else
3616 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3617 					phb->ioda.reserved_pe_idx, win, 0, idx);
3618 
3619 		if (rc != OPAL_SUCCESS)
3620 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3621 				rc, win, idx);
3622 
3623 		map[idx] = IODA_INVALID_PE;
3624 	}
3625 }
3626 
3627 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3628 {
3629 	struct pnv_phb *phb = pe->phb;
3630 
3631 	if (phb->type == PNV_PHB_IODA1) {
3632 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3633 				     phb->ioda.io_segmap);
3634 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3635 				     phb->ioda.m32_segmap);
3636 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3637 				     phb->ioda.m64_segmap);
3638 	} else if (phb->type == PNV_PHB_IODA2) {
3639 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3640 				     phb->ioda.m32_segmap);
3641 	}
3642 }
3643 
3644 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3645 {
3646 	struct pnv_phb *phb = pe->phb;
3647 	struct pnv_ioda_pe *slave, *tmp;
3648 
3649 	list_del(&pe->list);
3650 	switch (phb->type) {
3651 	case PNV_PHB_IODA1:
3652 		pnv_pci_ioda1_release_pe_dma(pe);
3653 		break;
3654 	case PNV_PHB_IODA2:
3655 		pnv_pci_ioda2_release_pe_dma(pe);
3656 		break;
3657 	default:
3658 		WARN_ON(1);
3659 	}
3660 
3661 	pnv_ioda_release_pe_seg(pe);
3662 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3663 
3664 	/* Release slave PEs in the compound PE */
3665 	if (pe->flags & PNV_IODA_PE_MASTER) {
3666 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3667 			list_del(&slave->list);
3668 			pnv_ioda_free_pe(slave);
3669 		}
3670 	}
3671 
3672 	/*
3673 	 * The PE for root bus can be removed because of hotplug in EEH
3674 	 * recovery for fenced PHB error. We need to mark the PE dead so
3675 	 * that it can be populated again in PCI hot add path. The PE
3676 	 * shouldn't be destroyed as it's the global reserved resource.
3677 	 */
3678 	if (phb->ioda.root_pe_populated &&
3679 	    phb->ioda.root_pe_idx == pe->pe_number)
3680 		phb->ioda.root_pe_populated = false;
3681 	else
3682 		pnv_ioda_free_pe(pe);
3683 }
3684 
3685 static void pnv_pci_release_device(struct pci_dev *pdev)
3686 {
3687 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3688 	struct pnv_phb *phb = hose->private_data;
3689 	struct pci_dn *pdn = pci_get_pdn(pdev);
3690 	struct pnv_ioda_pe *pe;
3691 
3692 	if (pdev->is_virtfn)
3693 		return;
3694 
3695 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3696 		return;
3697 
3698 	/*
3699 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3700 	 * isn't removed and added afterwards in this scenario. We should
3701 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3702 	 * device count is decreased on removing devices while failing to
3703 	 * be increased on adding devices. It leads to unbalanced PE's device
3704 	 * count and eventually make normal PCI hotplug path broken.
3705 	 */
3706 	pe = &phb->ioda.pe_array[pdn->pe_number];
3707 	pdn->pe_number = IODA_INVALID_PE;
3708 
3709 	WARN_ON(--pe->device_count < 0);
3710 	if (pe->device_count == 0)
3711 		pnv_ioda_release_pe(pe);
3712 }
3713 
3714 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3715 {
3716 	struct pnv_phb *phb = hose->private_data;
3717 
3718 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3719 		       OPAL_ASSERT_RESET);
3720 }
3721 
3722 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3723 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3724 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3725 #ifdef CONFIG_PCI_MSI
3726 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3727 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3728 #endif
3729 	.enable_device_hook	= pnv_pci_enable_device_hook,
3730 	.release_device		= pnv_pci_release_device,
3731 	.window_alignment	= pnv_pci_window_alignment,
3732 	.setup_bridge		= pnv_pci_setup_bridge,
3733 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3734 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3735 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3736 	.shutdown		= pnv_pci_ioda_shutdown,
3737 };
3738 
3739 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3740 {
3741 	dev_err_once(&npdev->dev,
3742 			"%s operation unsupported for NVLink devices\n",
3743 			__func__);
3744 	return -EPERM;
3745 }
3746 
3747 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3748 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3749 #ifdef CONFIG_PCI_MSI
3750 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3751 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3752 #endif
3753 	.enable_device_hook	= pnv_pci_enable_device_hook,
3754 	.window_alignment	= pnv_pci_window_alignment,
3755 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3756 	.dma_set_mask		= pnv_npu_dma_set_mask,
3757 	.shutdown		= pnv_pci_ioda_shutdown,
3758 };
3759 
3760 #ifdef CONFIG_CXL_BASE
3761 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3762 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3763 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3764 #ifdef CONFIG_PCI_MSI
3765 	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
3766 	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
3767 #endif
3768 	.enable_device_hook	= pnv_cxl_enable_device_hook,
3769 	.disable_device		= pnv_cxl_disable_device,
3770 	.release_device		= pnv_pci_release_device,
3771 	.window_alignment	= pnv_pci_window_alignment,
3772 	.setup_bridge		= pnv_pci_setup_bridge,
3773 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3774 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3775 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3776 	.shutdown		= pnv_pci_ioda_shutdown,
3777 };
3778 #endif
3779 
3780 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3781 					 u64 hub_id, int ioda_type)
3782 {
3783 	struct pci_controller *hose;
3784 	struct pnv_phb *phb;
3785 	unsigned long size, m64map_off, m32map_off, pemap_off;
3786 	unsigned long iomap_off = 0, dma32map_off = 0;
3787 	struct resource r;
3788 	const __be64 *prop64;
3789 	const __be32 *prop32;
3790 	int len;
3791 	unsigned int segno;
3792 	u64 phb_id;
3793 	void *aux;
3794 	long rc;
3795 
3796 	if (!of_device_is_available(np))
3797 		return;
3798 
3799 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3800 
3801 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3802 	if (!prop64) {
3803 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3804 		return;
3805 	}
3806 	phb_id = be64_to_cpup(prop64);
3807 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3808 
3809 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3810 
3811 	/* Allocate PCI controller */
3812 	phb->hose = hose = pcibios_alloc_controller(np);
3813 	if (!phb->hose) {
3814 		pr_err("  Can't allocate PCI controller for %pOF\n",
3815 		       np);
3816 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3817 		return;
3818 	}
3819 
3820 	spin_lock_init(&phb->lock);
3821 	prop32 = of_get_property(np, "bus-range", &len);
3822 	if (prop32 && len == 8) {
3823 		hose->first_busno = be32_to_cpu(prop32[0]);
3824 		hose->last_busno = be32_to_cpu(prop32[1]);
3825 	} else {
3826 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3827 		hose->first_busno = 0;
3828 		hose->last_busno = 0xff;
3829 	}
3830 	hose->private_data = phb;
3831 	phb->hub_id = hub_id;
3832 	phb->opal_id = phb_id;
3833 	phb->type = ioda_type;
3834 	mutex_init(&phb->ioda.pe_alloc_mutex);
3835 
3836 	/* Detect specific models for error handling */
3837 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3838 		phb->model = PNV_PHB_MODEL_P7IOC;
3839 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3840 		phb->model = PNV_PHB_MODEL_PHB3;
3841 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3842 		phb->model = PNV_PHB_MODEL_NPU;
3843 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3844 		phb->model = PNV_PHB_MODEL_NPU2;
3845 	else
3846 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3847 
3848 	/* Initialize diagnostic data buffer */
3849 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3850 	if (prop32)
3851 		phb->diag_data_size = be32_to_cpup(prop32);
3852 	else
3853 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3854 
3855 	phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3856 
3857 	/* Parse 32-bit and IO ranges (if any) */
3858 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3859 
3860 	/* Get registers */
3861 	if (!of_address_to_resource(np, 0, &r)) {
3862 		phb->regs_phys = r.start;
3863 		phb->regs = ioremap(r.start, resource_size(&r));
3864 		if (phb->regs == NULL)
3865 			pr_err("  Failed to map registers !\n");
3866 	}
3867 
3868 	/* Initialize more IODA stuff */
3869 	phb->ioda.total_pe_num = 1;
3870 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3871 	if (prop32)
3872 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3873 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3874 	if (prop32)
3875 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3876 
3877 	/* Invalidate RID to PE# mapping */
3878 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3879 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3880 
3881 	/* Parse 64-bit MMIO range */
3882 	pnv_ioda_parse_m64_window(phb);
3883 
3884 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3885 	/* FW Has already off top 64k of M32 space (MSI space) */
3886 	phb->ioda.m32_size += 0x10000;
3887 
3888 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3889 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3890 	phb->ioda.io_size = hose->pci_io_size;
3891 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3892 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3893 
3894 	/* Calculate how many 32-bit TCE segments we have */
3895 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3896 				PNV_IODA1_DMA32_SEGSIZE;
3897 
3898 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3899 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3900 			sizeof(unsigned long));
3901 	m64map_off = size;
3902 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3903 	m32map_off = size;
3904 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3905 	if (phb->type == PNV_PHB_IODA1) {
3906 		iomap_off = size;
3907 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3908 		dma32map_off = size;
3909 		size += phb->ioda.dma32_count *
3910 			sizeof(phb->ioda.dma32_segmap[0]);
3911 	}
3912 	pemap_off = size;
3913 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3914 	aux = memblock_virt_alloc(size, 0);
3915 	phb->ioda.pe_alloc = aux;
3916 	phb->ioda.m64_segmap = aux + m64map_off;
3917 	phb->ioda.m32_segmap = aux + m32map_off;
3918 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3919 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3920 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3921 	}
3922 	if (phb->type == PNV_PHB_IODA1) {
3923 		phb->ioda.io_segmap = aux + iomap_off;
3924 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3925 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3926 
3927 		phb->ioda.dma32_segmap = aux + dma32map_off;
3928 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3929 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3930 	}
3931 	phb->ioda.pe_array = aux + pemap_off;
3932 
3933 	/*
3934 	 * Choose PE number for root bus, which shouldn't have
3935 	 * M64 resources consumed by its child devices. To pick
3936 	 * the PE number adjacent to the reserved one if possible.
3937 	 */
3938 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3939 	if (phb->ioda.reserved_pe_idx == 0) {
3940 		phb->ioda.root_pe_idx = 1;
3941 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3942 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3943 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3944 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3945 	} else {
3946 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3947 	}
3948 
3949 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3950 	mutex_init(&phb->ioda.pe_list_mutex);
3951 
3952 	/* Calculate how many 32-bit TCE segments we have */
3953 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3954 				PNV_IODA1_DMA32_SEGSIZE;
3955 
3956 #if 0 /* We should really do that ... */
3957 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3958 					 window_type,
3959 					 window_num,
3960 					 starting_real_address,
3961 					 starting_pci_address,
3962 					 segment_size);
3963 #endif
3964 
3965 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3966 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3967 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3968 	if (phb->ioda.m64_size)
3969 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3970 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3971 	if (phb->ioda.io_size)
3972 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3973 			phb->ioda.io_size, phb->ioda.io_segsize);
3974 
3975 
3976 	phb->hose->ops = &pnv_pci_ops;
3977 	phb->get_pe_state = pnv_ioda_get_pe_state;
3978 	phb->freeze_pe = pnv_ioda_freeze_pe;
3979 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3980 
3981 	/* Setup MSI support */
3982 	pnv_pci_init_ioda_msis(phb);
3983 
3984 	/*
3985 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3986 	 * to let the PCI core do resource assignment. It's supposed
3987 	 * that the PCI core will do correct I/O and MMIO alignment
3988 	 * for the P2P bridge bars so that each PCI bus (excluding
3989 	 * the child P2P bridges) can form individual PE.
3990 	 */
3991 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3992 
3993 	if (phb->type == PNV_PHB_NPU) {
3994 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3995 	} else {
3996 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3997 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3998 	}
3999 
4000 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
4001 
4002 #ifdef CONFIG_PCI_IOV
4003 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
4004 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
4005 #endif
4006 
4007 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
4008 
4009 	/* Reset IODA tables to a clean state */
4010 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
4011 	if (rc)
4012 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
4013 
4014 	/*
4015 	 * If we're running in kdump kernel, the previous kernel never
4016 	 * shutdown PCI devices correctly. We already got IODA table
4017 	 * cleaned out. So we have to issue PHB reset to stop all PCI
4018 	 * transactions from previous kernel.
4019 	 */
4020 	if (is_kdump_kernel()) {
4021 		pr_info("  Issue PHB reset ...\n");
4022 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
4023 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
4024 	}
4025 
4026 	/* Remove M64 resource if we can't configure it successfully */
4027 	if (!phb->init_m64 || phb->init_m64(phb))
4028 		hose->mem_resources[1].flags = 0;
4029 }
4030 
4031 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4032 {
4033 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4034 }
4035 
4036 void __init pnv_pci_init_npu_phb(struct device_node *np)
4037 {
4038 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
4039 }
4040 
4041 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4042 {
4043 	struct device_node *phbn;
4044 	const __be64 *prop64;
4045 	u64 hub_id;
4046 
4047 	pr_info("Probing IODA IO-Hub %pOF\n", np);
4048 
4049 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4050 	if (!prop64) {
4051 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4052 		return;
4053 	}
4054 	hub_id = be64_to_cpup(prop64);
4055 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4056 
4057 	/* Count child PHBs */
4058 	for_each_child_of_node(np, phbn) {
4059 		/* Look for IODA1 PHBs */
4060 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4061 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4062 	}
4063 }
4064