1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
52 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
53 
54 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
55 #define POWERNV_IOMMU_MAX_LEVELS	5
56 
57 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
58 
59 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
60 			    const char *fmt, ...)
61 {
62 	struct va_format vaf;
63 	va_list args;
64 	char pfix[32];
65 
66 	va_start(args, fmt);
67 
68 	vaf.fmt = fmt;
69 	vaf.va = &args;
70 
71 	if (pe->flags & PNV_IODA_PE_DEV)
72 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
73 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
74 		sprintf(pfix, "%04x:%02x     ",
75 			pci_domain_nr(pe->pbus), pe->pbus->number);
76 #ifdef CONFIG_PCI_IOV
77 	else if (pe->flags & PNV_IODA_PE_VF)
78 		sprintf(pfix, "%04x:%02x:%2x.%d",
79 			pci_domain_nr(pe->parent_dev->bus),
80 			(pe->rid & 0xff00) >> 8,
81 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
82 #endif /* CONFIG_PCI_IOV*/
83 
84 	printk("%spci %s: [PE# %.3d] %pV",
85 	       level, pfix, pe->pe_number, &vaf);
86 
87 	va_end(args);
88 }
89 
90 #define pe_err(pe, fmt, ...)					\
91 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
92 #define pe_warn(pe, fmt, ...)					\
93 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
94 #define pe_info(pe, fmt, ...)					\
95 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
96 
97 static bool pnv_iommu_bypass_disabled __read_mostly;
98 
99 static int __init iommu_setup(char *str)
100 {
101 	if (!str)
102 		return -EINVAL;
103 
104 	while (*str) {
105 		if (!strncmp(str, "nobypass", 8)) {
106 			pnv_iommu_bypass_disabled = true;
107 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
108 			break;
109 		}
110 		str += strcspn(str, ",");
111 		if (*str == ',')
112 			str++;
113 	}
114 
115 	return 0;
116 }
117 early_param("iommu", iommu_setup);
118 
119 /*
120  * stdcix is only supposed to be used in hypervisor real mode as per
121  * the architecture spec
122  */
123 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
124 {
125 	__asm__ __volatile__("stdcix %0,0,%1"
126 		: : "r" (val), "r" (paddr) : "memory");
127 }
128 
129 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
130 {
131 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
132 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
133 }
134 
135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
136 {
137 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
138 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
139 			__func__, pe_no, phb->hose->global_number);
140 		return;
141 	}
142 
143 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
144 		pr_debug("%s: PE %d was reserved on PHB#%x\n",
145 			 __func__, pe_no, phb->hose->global_number);
146 
147 	phb->ioda.pe_array[pe_no].phb = phb;
148 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
149 }
150 
151 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
152 {
153 	unsigned long pe;
154 
155 	do {
156 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
157 					phb->ioda.total_pe, 0);
158 		if (pe >= phb->ioda.total_pe)
159 			return IODA_INVALID_PE;
160 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
161 
162 	phb->ioda.pe_array[pe].phb = phb;
163 	phb->ioda.pe_array[pe].pe_number = pe;
164 	return pe;
165 }
166 
167 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
168 {
169 	WARN_ON(phb->ioda.pe_array[pe].pdev);
170 
171 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
172 	clear_bit(pe, phb->ioda.pe_alloc);
173 }
174 
175 /* The default M64 BAR is shared by all PEs */
176 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
177 {
178 	const char *desc;
179 	struct resource *r;
180 	s64 rc;
181 
182 	/* Configure the default M64 BAR */
183 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
184 					 OPAL_M64_WINDOW_TYPE,
185 					 phb->ioda.m64_bar_idx,
186 					 phb->ioda.m64_base,
187 					 0, /* unused */
188 					 phb->ioda.m64_size);
189 	if (rc != OPAL_SUCCESS) {
190 		desc = "configuring";
191 		goto fail;
192 	}
193 
194 	/* Enable the default M64 BAR */
195 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
196 				      OPAL_M64_WINDOW_TYPE,
197 				      phb->ioda.m64_bar_idx,
198 				      OPAL_ENABLE_M64_SPLIT);
199 	if (rc != OPAL_SUCCESS) {
200 		desc = "enabling";
201 		goto fail;
202 	}
203 
204 	/* Mark the M64 BAR assigned */
205 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
206 
207 	/*
208 	 * Strip off the segment used by the reserved PE, which is
209 	 * expected to be 0 or last one of PE capabicity.
210 	 */
211 	r = &phb->hose->mem_resources[1];
212 	if (phb->ioda.reserved_pe == 0)
213 		r->start += phb->ioda.m64_segsize;
214 	else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
215 		r->end -= phb->ioda.m64_segsize;
216 	else
217 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
218 			phb->ioda.reserved_pe);
219 
220 	return 0;
221 
222 fail:
223 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
224 		rc, desc, phb->ioda.m64_bar_idx);
225 	opal_pci_phb_mmio_enable(phb->opal_id,
226 				 OPAL_M64_WINDOW_TYPE,
227 				 phb->ioda.m64_bar_idx,
228 				 OPAL_DISABLE_M64);
229 	return -EIO;
230 }
231 
232 static void pnv_ioda2_reserve_dev_m64_pe(struct pci_dev *pdev,
233 					 unsigned long *pe_bitmap)
234 {
235 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
236 	struct pnv_phb *phb = hose->private_data;
237 	struct resource *r;
238 	resource_size_t base, sgsz, start, end;
239 	int segno, i;
240 
241 	base = phb->ioda.m64_base;
242 	sgsz = phb->ioda.m64_segsize;
243 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
244 		r = &pdev->resource[i];
245 		if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
246 			continue;
247 
248 		start = _ALIGN_DOWN(r->start - base, sgsz);
249 		end = _ALIGN_UP(r->end - base, sgsz);
250 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
251 			if (pe_bitmap)
252 				set_bit(segno, pe_bitmap);
253 			else
254 				pnv_ioda_reserve_pe(phb, segno);
255 		}
256 	}
257 }
258 
259 static void pnv_ioda2_reserve_m64_pe(struct pci_bus *bus,
260 				     unsigned long *pe_bitmap,
261 				     bool all)
262 {
263 	struct pci_dev *pdev;
264 
265 	list_for_each_entry(pdev, &bus->devices, bus_list) {
266 		pnv_ioda2_reserve_dev_m64_pe(pdev, pe_bitmap);
267 
268 		if (all && pdev->subordinate)
269 			pnv_ioda2_reserve_m64_pe(pdev->subordinate,
270 						 pe_bitmap, all);
271 	}
272 }
273 
274 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
275 				 struct pci_bus *bus, bool all)
276 {
277 	resource_size_t segsz = phb->ioda.m64_segsize;
278 	struct pci_dev *pdev;
279 	struct resource *r;
280 	struct pnv_ioda_pe *master_pe, *pe;
281 	unsigned long size, *pe_alloc;
282 	bool found;
283 	int start, i, j;
284 
285 	/* Root bus shouldn't use M64 */
286 	if (pci_is_root_bus(bus))
287 		return IODA_INVALID_PE;
288 
289 	/* We support only one M64 window on each bus */
290 	found = false;
291 	pci_bus_for_each_resource(bus, r, i) {
292 		if (r && r->parent &&
293 		    pnv_pci_is_mem_pref_64(r->flags)) {
294 			found = true;
295 			break;
296 		}
297 	}
298 
299 	/* No M64 window found ? */
300 	if (!found)
301 		return IODA_INVALID_PE;
302 
303 	/* Allocate bitmap */
304 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
305 	pe_alloc = kzalloc(size, GFP_KERNEL);
306 	if (!pe_alloc) {
307 		pr_warn("%s: Out of memory !\n",
308 			__func__);
309 		return IODA_INVALID_PE;
310 	}
311 
312 	/*
313 	 * Figure out reserved PE numbers by the PE
314 	 * the its child PEs.
315 	 */
316 	start = (r->start - phb->ioda.m64_base) / segsz;
317 	for (i = 0; i < resource_size(r) / segsz; i++)
318 		set_bit(start + i, pe_alloc);
319 
320 	if (all)
321 		goto done;
322 
323 	/*
324 	 * If the PE doesn't cover all subordinate buses,
325 	 * we need subtract from reserved PEs for children.
326 	 */
327 	list_for_each_entry(pdev, &bus->devices, bus_list) {
328 		if (!pdev->subordinate)
329 			continue;
330 
331 		pci_bus_for_each_resource(pdev->subordinate, r, i) {
332 			if (!r || !r->parent ||
333 			    !pnv_pci_is_mem_pref_64(r->flags))
334 				continue;
335 
336 			start = (r->start - phb->ioda.m64_base) / segsz;
337 			for (j = 0; j < resource_size(r) / segsz ; j++)
338 				clear_bit(start + j, pe_alloc);
339                 }
340         }
341 
342 	/*
343 	 * the current bus might not own M64 window and that's all
344 	 * contributed by its child buses. For the case, we needn't
345 	 * pick M64 dependent PE#.
346 	 */
347 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
348 		kfree(pe_alloc);
349 		return IODA_INVALID_PE;
350 	}
351 
352 	/*
353 	 * Figure out the master PE and put all slave PEs to master
354 	 * PE's list to form compound PE.
355 	 */
356 done:
357 	master_pe = NULL;
358 	i = -1;
359 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
360 		phb->ioda.total_pe) {
361 		pe = &phb->ioda.pe_array[i];
362 
363 		if (!master_pe) {
364 			pe->flags |= PNV_IODA_PE_MASTER;
365 			INIT_LIST_HEAD(&pe->slaves);
366 			master_pe = pe;
367 		} else {
368 			pe->flags |= PNV_IODA_PE_SLAVE;
369 			pe->master = master_pe;
370 			list_add_tail(&pe->list, &master_pe->slaves);
371 		}
372 	}
373 
374 	kfree(pe_alloc);
375 	return master_pe->pe_number;
376 }
377 
378 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
379 {
380 	struct pci_controller *hose = phb->hose;
381 	struct device_node *dn = hose->dn;
382 	struct resource *res;
383 	const u32 *r;
384 	u64 pci_addr;
385 
386 	/* FIXME: Support M64 for P7IOC */
387 	if (phb->type != PNV_PHB_IODA2) {
388 		pr_info("  Not support M64 window\n");
389 		return;
390 	}
391 
392 	if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
393 		pr_info("  Firmware too old to support M64 window\n");
394 		return;
395 	}
396 
397 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
398 	if (!r) {
399 		pr_info("  No <ibm,opal-m64-window> on %s\n",
400 			dn->full_name);
401 		return;
402 	}
403 
404 	res = &hose->mem_resources[1];
405 	res->start = of_translate_address(dn, r + 2);
406 	res->end = res->start + of_read_number(r + 4, 2) - 1;
407 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
408 	pci_addr = of_read_number(r, 2);
409 	hose->mem_offset[1] = res->start - pci_addr;
410 
411 	phb->ioda.m64_size = resource_size(res);
412 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
413 	phb->ioda.m64_base = pci_addr;
414 
415 	pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
416 			res->start, res->end, pci_addr);
417 
418 	/* Use last M64 BAR to cover M64 window */
419 	phb->ioda.m64_bar_idx = 15;
420 	phb->init_m64 = pnv_ioda2_init_m64;
421 	phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
422 	phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
423 }
424 
425 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
426 {
427 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
428 	struct pnv_ioda_pe *slave;
429 	s64 rc;
430 
431 	/* Fetch master PE */
432 	if (pe->flags & PNV_IODA_PE_SLAVE) {
433 		pe = pe->master;
434 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
435 			return;
436 
437 		pe_no = pe->pe_number;
438 	}
439 
440 	/* Freeze master PE */
441 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
442 				     pe_no,
443 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
444 	if (rc != OPAL_SUCCESS) {
445 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
446 			__func__, rc, phb->hose->global_number, pe_no);
447 		return;
448 	}
449 
450 	/* Freeze slave PEs */
451 	if (!(pe->flags & PNV_IODA_PE_MASTER))
452 		return;
453 
454 	list_for_each_entry(slave, &pe->slaves, list) {
455 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
456 					     slave->pe_number,
457 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
458 		if (rc != OPAL_SUCCESS)
459 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
460 				__func__, rc, phb->hose->global_number,
461 				slave->pe_number);
462 	}
463 }
464 
465 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
466 {
467 	struct pnv_ioda_pe *pe, *slave;
468 	s64 rc;
469 
470 	/* Find master PE */
471 	pe = &phb->ioda.pe_array[pe_no];
472 	if (pe->flags & PNV_IODA_PE_SLAVE) {
473 		pe = pe->master;
474 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
475 		pe_no = pe->pe_number;
476 	}
477 
478 	/* Clear frozen state for master PE */
479 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
480 	if (rc != OPAL_SUCCESS) {
481 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
482 			__func__, rc, opt, phb->hose->global_number, pe_no);
483 		return -EIO;
484 	}
485 
486 	if (!(pe->flags & PNV_IODA_PE_MASTER))
487 		return 0;
488 
489 	/* Clear frozen state for slave PEs */
490 	list_for_each_entry(slave, &pe->slaves, list) {
491 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
492 					     slave->pe_number,
493 					     opt);
494 		if (rc != OPAL_SUCCESS) {
495 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
496 				__func__, rc, opt, phb->hose->global_number,
497 				slave->pe_number);
498 			return -EIO;
499 		}
500 	}
501 
502 	return 0;
503 }
504 
505 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
506 {
507 	struct pnv_ioda_pe *slave, *pe;
508 	u8 fstate, state;
509 	__be16 pcierr;
510 	s64 rc;
511 
512 	/* Sanity check on PE number */
513 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
514 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
515 
516 	/*
517 	 * Fetch the master PE and the PE instance might be
518 	 * not initialized yet.
519 	 */
520 	pe = &phb->ioda.pe_array[pe_no];
521 	if (pe->flags & PNV_IODA_PE_SLAVE) {
522 		pe = pe->master;
523 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
524 		pe_no = pe->pe_number;
525 	}
526 
527 	/* Check the master PE */
528 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
529 					&state, &pcierr, NULL);
530 	if (rc != OPAL_SUCCESS) {
531 		pr_warn("%s: Failure %lld getting "
532 			"PHB#%x-PE#%x state\n",
533 			__func__, rc,
534 			phb->hose->global_number, pe_no);
535 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
536 	}
537 
538 	/* Check the slave PE */
539 	if (!(pe->flags & PNV_IODA_PE_MASTER))
540 		return state;
541 
542 	list_for_each_entry(slave, &pe->slaves, list) {
543 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
544 						slave->pe_number,
545 						&fstate,
546 						&pcierr,
547 						NULL);
548 		if (rc != OPAL_SUCCESS) {
549 			pr_warn("%s: Failure %lld getting "
550 				"PHB#%x-PE#%x state\n",
551 				__func__, rc,
552 				phb->hose->global_number, slave->pe_number);
553 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
554 		}
555 
556 		/*
557 		 * Override the result based on the ascending
558 		 * priority.
559 		 */
560 		if (fstate > state)
561 			state = fstate;
562 	}
563 
564 	return state;
565 }
566 
567 /* Currently those 2 are only used when MSIs are enabled, this will change
568  * but in the meantime, we need to protect them to avoid warnings
569  */
570 #ifdef CONFIG_PCI_MSI
571 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
572 {
573 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
574 	struct pnv_phb *phb = hose->private_data;
575 	struct pci_dn *pdn = pci_get_pdn(dev);
576 
577 	if (!pdn)
578 		return NULL;
579 	if (pdn->pe_number == IODA_INVALID_PE)
580 		return NULL;
581 	return &phb->ioda.pe_array[pdn->pe_number];
582 }
583 #endif /* CONFIG_PCI_MSI */
584 
585 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
586 				  struct pnv_ioda_pe *parent,
587 				  struct pnv_ioda_pe *child,
588 				  bool is_add)
589 {
590 	const char *desc = is_add ? "adding" : "removing";
591 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
592 			      OPAL_REMOVE_PE_FROM_DOMAIN;
593 	struct pnv_ioda_pe *slave;
594 	long rc;
595 
596 	/* Parent PE affects child PE */
597 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
598 				child->pe_number, op);
599 	if (rc != OPAL_SUCCESS) {
600 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
601 			rc, desc);
602 		return -ENXIO;
603 	}
604 
605 	if (!(child->flags & PNV_IODA_PE_MASTER))
606 		return 0;
607 
608 	/* Compound case: parent PE affects slave PEs */
609 	list_for_each_entry(slave, &child->slaves, list) {
610 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
611 					slave->pe_number, op);
612 		if (rc != OPAL_SUCCESS) {
613 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
614 				rc, desc);
615 			return -ENXIO;
616 		}
617 	}
618 
619 	return 0;
620 }
621 
622 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
623 			      struct pnv_ioda_pe *pe,
624 			      bool is_add)
625 {
626 	struct pnv_ioda_pe *slave;
627 	struct pci_dev *pdev = NULL;
628 	int ret;
629 
630 	/*
631 	 * Clear PE frozen state. If it's master PE, we need
632 	 * clear slave PE frozen state as well.
633 	 */
634 	if (is_add) {
635 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
636 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
637 		if (pe->flags & PNV_IODA_PE_MASTER) {
638 			list_for_each_entry(slave, &pe->slaves, list)
639 				opal_pci_eeh_freeze_clear(phb->opal_id,
640 							  slave->pe_number,
641 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
642 		}
643 	}
644 
645 	/*
646 	 * Associate PE in PELT. We need add the PE into the
647 	 * corresponding PELT-V as well. Otherwise, the error
648 	 * originated from the PE might contribute to other
649 	 * PEs.
650 	 */
651 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
652 	if (ret)
653 		return ret;
654 
655 	/* For compound PEs, any one affects all of them */
656 	if (pe->flags & PNV_IODA_PE_MASTER) {
657 		list_for_each_entry(slave, &pe->slaves, list) {
658 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
659 			if (ret)
660 				return ret;
661 		}
662 	}
663 
664 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
665 		pdev = pe->pbus->self;
666 	else if (pe->flags & PNV_IODA_PE_DEV)
667 		pdev = pe->pdev->bus->self;
668 #ifdef CONFIG_PCI_IOV
669 	else if (pe->flags & PNV_IODA_PE_VF)
670 		pdev = pe->parent_dev->bus->self;
671 #endif /* CONFIG_PCI_IOV */
672 	while (pdev) {
673 		struct pci_dn *pdn = pci_get_pdn(pdev);
674 		struct pnv_ioda_pe *parent;
675 
676 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
677 			parent = &phb->ioda.pe_array[pdn->pe_number];
678 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
679 			if (ret)
680 				return ret;
681 		}
682 
683 		pdev = pdev->bus->self;
684 	}
685 
686 	return 0;
687 }
688 
689 #ifdef CONFIG_PCI_IOV
690 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
691 {
692 	struct pci_dev *parent;
693 	uint8_t bcomp, dcomp, fcomp;
694 	int64_t rc;
695 	long rid_end, rid;
696 
697 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
698 	if (pe->pbus) {
699 		int count;
700 
701 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
702 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
703 		parent = pe->pbus->self;
704 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
705 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
706 		else
707 			count = 1;
708 
709 		switch(count) {
710 		case  1: bcomp = OpalPciBusAll;         break;
711 		case  2: bcomp = OpalPciBus7Bits;       break;
712 		case  4: bcomp = OpalPciBus6Bits;       break;
713 		case  8: bcomp = OpalPciBus5Bits;       break;
714 		case 16: bcomp = OpalPciBus4Bits;       break;
715 		case 32: bcomp = OpalPciBus3Bits;       break;
716 		default:
717 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
718 			        count);
719 			/* Do an exact match only */
720 			bcomp = OpalPciBusAll;
721 		}
722 		rid_end = pe->rid + (count << 8);
723 	} else {
724 		if (pe->flags & PNV_IODA_PE_VF)
725 			parent = pe->parent_dev;
726 		else
727 			parent = pe->pdev->bus->self;
728 		bcomp = OpalPciBusAll;
729 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
730 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
731 		rid_end = pe->rid + 1;
732 	}
733 
734 	/* Clear the reverse map */
735 	for (rid = pe->rid; rid < rid_end; rid++)
736 		phb->ioda.pe_rmap[rid] = 0;
737 
738 	/* Release from all parents PELT-V */
739 	while (parent) {
740 		struct pci_dn *pdn = pci_get_pdn(parent);
741 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
742 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
743 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
744 			/* XXX What to do in case of error ? */
745 		}
746 		parent = parent->bus->self;
747 	}
748 
749 	opal_pci_eeh_freeze_set(phb->opal_id, pe->pe_number,
750 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
751 
752 	/* Disassociate PE in PELT */
753 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
754 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
755 	if (rc)
756 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
757 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
758 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
759 	if (rc)
760 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
761 
762 	pe->pbus = NULL;
763 	pe->pdev = NULL;
764 	pe->parent_dev = NULL;
765 
766 	return 0;
767 }
768 #endif /* CONFIG_PCI_IOV */
769 
770 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
771 {
772 	struct pci_dev *parent;
773 	uint8_t bcomp, dcomp, fcomp;
774 	long rc, rid_end, rid;
775 
776 	/* Bus validation ? */
777 	if (pe->pbus) {
778 		int count;
779 
780 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
781 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
782 		parent = pe->pbus->self;
783 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
784 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
785 		else
786 			count = 1;
787 
788 		switch(count) {
789 		case  1: bcomp = OpalPciBusAll;		break;
790 		case  2: bcomp = OpalPciBus7Bits;	break;
791 		case  4: bcomp = OpalPciBus6Bits;	break;
792 		case  8: bcomp = OpalPciBus5Bits;	break;
793 		case 16: bcomp = OpalPciBus4Bits;	break;
794 		case 32: bcomp = OpalPciBus3Bits;	break;
795 		default:
796 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
797 			        count);
798 			/* Do an exact match only */
799 			bcomp = OpalPciBusAll;
800 		}
801 		rid_end = pe->rid + (count << 8);
802 	} else {
803 #ifdef CONFIG_PCI_IOV
804 		if (pe->flags & PNV_IODA_PE_VF)
805 			parent = pe->parent_dev;
806 		else
807 #endif /* CONFIG_PCI_IOV */
808 			parent = pe->pdev->bus->self;
809 		bcomp = OpalPciBusAll;
810 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
811 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
812 		rid_end = pe->rid + 1;
813 	}
814 
815 	/*
816 	 * Associate PE in PELT. We need add the PE into the
817 	 * corresponding PELT-V as well. Otherwise, the error
818 	 * originated from the PE might contribute to other
819 	 * PEs.
820 	 */
821 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
822 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
823 	if (rc) {
824 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
825 		return -ENXIO;
826 	}
827 
828 	/* Configure PELTV */
829 	pnv_ioda_set_peltv(phb, pe, true);
830 
831 	/* Setup reverse map */
832 	for (rid = pe->rid; rid < rid_end; rid++)
833 		phb->ioda.pe_rmap[rid] = pe->pe_number;
834 
835 	/* Setup one MVTs on IODA1 */
836 	if (phb->type != PNV_PHB_IODA1) {
837 		pe->mve_number = 0;
838 		goto out;
839 	}
840 
841 	pe->mve_number = pe->pe_number;
842 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
843 	if (rc != OPAL_SUCCESS) {
844 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
845 		       rc, pe->mve_number);
846 		pe->mve_number = -1;
847 	} else {
848 		rc = opal_pci_set_mve_enable(phb->opal_id,
849 					     pe->mve_number, OPAL_ENABLE_MVE);
850 		if (rc) {
851 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
852 			       rc, pe->mve_number);
853 			pe->mve_number = -1;
854 		}
855 	}
856 
857 out:
858 	return 0;
859 }
860 
861 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
862 				       struct pnv_ioda_pe *pe)
863 {
864 	struct pnv_ioda_pe *lpe;
865 
866 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
867 		if (lpe->dma_weight < pe->dma_weight) {
868 			list_add_tail(&pe->dma_link, &lpe->dma_link);
869 			return;
870 		}
871 	}
872 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
873 }
874 
875 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
876 {
877 	/* This is quite simplistic. The "base" weight of a device
878 	 * is 10. 0 means no DMA is to be accounted for it.
879 	 */
880 
881 	/* If it's a bridge, no DMA */
882 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
883 		return 0;
884 
885 	/* Reduce the weight of slow USB controllers */
886 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
887 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
888 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
889 		return 3;
890 
891 	/* Increase the weight of RAID (includes Obsidian) */
892 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
893 		return 15;
894 
895 	/* Default */
896 	return 10;
897 }
898 
899 #ifdef CONFIG_PCI_IOV
900 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
901 {
902 	struct pci_dn *pdn = pci_get_pdn(dev);
903 	int i;
904 	struct resource *res, res2;
905 	resource_size_t size;
906 	u16 num_vfs;
907 
908 	if (!dev->is_physfn)
909 		return -EINVAL;
910 
911 	/*
912 	 * "offset" is in VFs.  The M64 windows are sized so that when they
913 	 * are segmented, each segment is the same size as the IOV BAR.
914 	 * Each segment is in a separate PE, and the high order bits of the
915 	 * address are the PE number.  Therefore, each VF's BAR is in a
916 	 * separate PE, and changing the IOV BAR start address changes the
917 	 * range of PEs the VFs are in.
918 	 */
919 	num_vfs = pdn->num_vfs;
920 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
921 		res = &dev->resource[i + PCI_IOV_RESOURCES];
922 		if (!res->flags || !res->parent)
923 			continue;
924 
925 		if (!pnv_pci_is_mem_pref_64(res->flags))
926 			continue;
927 
928 		/*
929 		 * The actual IOV BAR range is determined by the start address
930 		 * and the actual size for num_vfs VFs BAR.  This check is to
931 		 * make sure that after shifting, the range will not overlap
932 		 * with another device.
933 		 */
934 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
935 		res2.flags = res->flags;
936 		res2.start = res->start + (size * offset);
937 		res2.end = res2.start + (size * num_vfs) - 1;
938 
939 		if (res2.end > res->end) {
940 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
941 				i, &res2, res, num_vfs, offset);
942 			return -EBUSY;
943 		}
944 	}
945 
946 	/*
947 	 * After doing so, there would be a "hole" in the /proc/iomem when
948 	 * offset is a positive value. It looks like the device return some
949 	 * mmio back to the system, which actually no one could use it.
950 	 */
951 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
952 		res = &dev->resource[i + PCI_IOV_RESOURCES];
953 		if (!res->flags || !res->parent)
954 			continue;
955 
956 		if (!pnv_pci_is_mem_pref_64(res->flags))
957 			continue;
958 
959 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
960 		res2 = *res;
961 		res->start += size * offset;
962 
963 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (enabling %d VFs shifted by %d)\n",
964 			 i, &res2, res, num_vfs, offset);
965 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
966 	}
967 	return 0;
968 }
969 #endif /* CONFIG_PCI_IOV */
970 
971 #if 0
972 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
973 {
974 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
975 	struct pnv_phb *phb = hose->private_data;
976 	struct pci_dn *pdn = pci_get_pdn(dev);
977 	struct pnv_ioda_pe *pe;
978 	int pe_num;
979 
980 	if (!pdn) {
981 		pr_err("%s: Device tree node not associated properly\n",
982 			   pci_name(dev));
983 		return NULL;
984 	}
985 	if (pdn->pe_number != IODA_INVALID_PE)
986 		return NULL;
987 
988 	/* PE#0 has been pre-set */
989 	if (dev->bus->number == 0)
990 		pe_num = 0;
991 	else
992 		pe_num = pnv_ioda_alloc_pe(phb);
993 	if (pe_num == IODA_INVALID_PE) {
994 		pr_warning("%s: Not enough PE# available, disabling device\n",
995 			   pci_name(dev));
996 		return NULL;
997 	}
998 
999 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1000 	 * pointer in the PE data structure, both should be destroyed at the
1001 	 * same time. However, this needs to be looked at more closely again
1002 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1003 	 *
1004 	 * At some point we want to remove the PDN completely anyways
1005 	 */
1006 	pe = &phb->ioda.pe_array[pe_num];
1007 	pci_dev_get(dev);
1008 	pdn->pcidev = dev;
1009 	pdn->pe_number = pe_num;
1010 	pe->pdev = dev;
1011 	pe->pbus = NULL;
1012 	pe->tce32_seg = -1;
1013 	pe->mve_number = -1;
1014 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1015 
1016 	pe_info(pe, "Associated device to PE\n");
1017 
1018 	if (pnv_ioda_configure_pe(phb, pe)) {
1019 		/* XXX What do we do here ? */
1020 		if (pe_num)
1021 			pnv_ioda_free_pe(phb, pe_num);
1022 		pdn->pe_number = IODA_INVALID_PE;
1023 		pe->pdev = NULL;
1024 		pci_dev_put(dev);
1025 		return NULL;
1026 	}
1027 
1028 	/* Assign a DMA weight to the device */
1029 	pe->dma_weight = pnv_ioda_dma_weight(dev);
1030 	if (pe->dma_weight != 0) {
1031 		phb->ioda.dma_weight += pe->dma_weight;
1032 		phb->ioda.dma_pe_count++;
1033 	}
1034 
1035 	/* Link the PE */
1036 	pnv_ioda_link_pe_by_weight(phb, pe);
1037 
1038 	return pe;
1039 }
1040 #endif /* Useful for SRIOV case */
1041 
1042 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1043 {
1044 	struct pci_dev *dev;
1045 
1046 	list_for_each_entry(dev, &bus->devices, bus_list) {
1047 		struct pci_dn *pdn = pci_get_pdn(dev);
1048 
1049 		if (pdn == NULL) {
1050 			pr_warn("%s: No device node associated with device !\n",
1051 				pci_name(dev));
1052 			continue;
1053 		}
1054 		pdn->pe_number = pe->pe_number;
1055 		pe->dma_weight += pnv_ioda_dma_weight(dev);
1056 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1057 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1058 	}
1059 }
1060 
1061 /*
1062  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1063  * single PCI bus. Another one that contains the primary PCI bus and its
1064  * subordinate PCI devices and buses. The second type of PE is normally
1065  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1066  */
1067 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1068 {
1069 	struct pci_controller *hose = pci_bus_to_host(bus);
1070 	struct pnv_phb *phb = hose->private_data;
1071 	struct pnv_ioda_pe *pe;
1072 	int pe_num = IODA_INVALID_PE;
1073 
1074 	/* Check if PE is determined by M64 */
1075 	if (phb->pick_m64_pe)
1076 		pe_num = phb->pick_m64_pe(phb, bus, all);
1077 
1078 	/* The PE number isn't pinned by M64 */
1079 	if (pe_num == IODA_INVALID_PE)
1080 		pe_num = pnv_ioda_alloc_pe(phb);
1081 
1082 	if (pe_num == IODA_INVALID_PE) {
1083 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1084 			__func__, pci_domain_nr(bus), bus->number);
1085 		return;
1086 	}
1087 
1088 	pe = &phb->ioda.pe_array[pe_num];
1089 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1090 	pe->pbus = bus;
1091 	pe->pdev = NULL;
1092 	pe->tce32_seg = -1;
1093 	pe->mve_number = -1;
1094 	pe->rid = bus->busn_res.start << 8;
1095 	pe->dma_weight = 0;
1096 
1097 	if (all)
1098 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1099 			bus->busn_res.start, bus->busn_res.end, pe_num);
1100 	else
1101 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1102 			bus->busn_res.start, pe_num);
1103 
1104 	if (pnv_ioda_configure_pe(phb, pe)) {
1105 		/* XXX What do we do here ? */
1106 		if (pe_num)
1107 			pnv_ioda_free_pe(phb, pe_num);
1108 		pe->pbus = NULL;
1109 		return;
1110 	}
1111 
1112 	/* Associate it with all child devices */
1113 	pnv_ioda_setup_same_PE(bus, pe);
1114 
1115 	/* Put PE to the list */
1116 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1117 
1118 	/* Account for one DMA PE if at least one DMA capable device exist
1119 	 * below the bridge
1120 	 */
1121 	if (pe->dma_weight != 0) {
1122 		phb->ioda.dma_weight += pe->dma_weight;
1123 		phb->ioda.dma_pe_count++;
1124 	}
1125 
1126 	/* Link the PE */
1127 	pnv_ioda_link_pe_by_weight(phb, pe);
1128 }
1129 
1130 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1131 {
1132 	struct pci_dev *dev;
1133 
1134 	pnv_ioda_setup_bus_PE(bus, false);
1135 
1136 	list_for_each_entry(dev, &bus->devices, bus_list) {
1137 		if (dev->subordinate) {
1138 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1139 				pnv_ioda_setup_bus_PE(dev->subordinate, true);
1140 			else
1141 				pnv_ioda_setup_PEs(dev->subordinate);
1142 		}
1143 	}
1144 }
1145 
1146 /*
1147  * Configure PEs so that the downstream PCI buses and devices
1148  * could have their associated PE#. Unfortunately, we didn't
1149  * figure out the way to identify the PLX bridge yet. So we
1150  * simply put the PCI bus and the subordinate behind the root
1151  * port to PE# here. The game rule here is expected to be changed
1152  * as soon as we can detected PLX bridge correctly.
1153  */
1154 static void pnv_pci_ioda_setup_PEs(void)
1155 {
1156 	struct pci_controller *hose, *tmp;
1157 	struct pnv_phb *phb;
1158 
1159 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1160 		phb = hose->private_data;
1161 
1162 		/* M64 layout might affect PE allocation */
1163 		if (phb->reserve_m64_pe)
1164 			phb->reserve_m64_pe(hose->bus, NULL, true);
1165 
1166 		pnv_ioda_setup_PEs(hose->bus);
1167 	}
1168 }
1169 
1170 #ifdef CONFIG_PCI_IOV
1171 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1172 {
1173 	struct pci_bus        *bus;
1174 	struct pci_controller *hose;
1175 	struct pnv_phb        *phb;
1176 	struct pci_dn         *pdn;
1177 	int                    i, j;
1178 
1179 	bus = pdev->bus;
1180 	hose = pci_bus_to_host(bus);
1181 	phb = hose->private_data;
1182 	pdn = pci_get_pdn(pdev);
1183 
1184 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1185 		for (j = 0; j < M64_PER_IOV; j++) {
1186 			if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1187 				continue;
1188 			opal_pci_phb_mmio_enable(phb->opal_id,
1189 				OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1190 			clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1191 			pdn->m64_wins[i][j] = IODA_INVALID_M64;
1192 		}
1193 
1194 	return 0;
1195 }
1196 
1197 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1198 {
1199 	struct pci_bus        *bus;
1200 	struct pci_controller *hose;
1201 	struct pnv_phb        *phb;
1202 	struct pci_dn         *pdn;
1203 	unsigned int           win;
1204 	struct resource       *res;
1205 	int                    i, j;
1206 	int64_t                rc;
1207 	int                    total_vfs;
1208 	resource_size_t        size, start;
1209 	int                    pe_num;
1210 	int                    vf_groups;
1211 	int                    vf_per_group;
1212 
1213 	bus = pdev->bus;
1214 	hose = pci_bus_to_host(bus);
1215 	phb = hose->private_data;
1216 	pdn = pci_get_pdn(pdev);
1217 	total_vfs = pci_sriov_get_totalvfs(pdev);
1218 
1219 	/* Initialize the m64_wins to IODA_INVALID_M64 */
1220 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1221 		for (j = 0; j < M64_PER_IOV; j++)
1222 			pdn->m64_wins[i][j] = IODA_INVALID_M64;
1223 
1224 	if (pdn->m64_per_iov == M64_PER_IOV) {
1225 		vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1226 		vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1227 			roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1228 	} else {
1229 		vf_groups = 1;
1230 		vf_per_group = 1;
1231 	}
1232 
1233 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1234 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1235 		if (!res->flags || !res->parent)
1236 			continue;
1237 
1238 		if (!pnv_pci_is_mem_pref_64(res->flags))
1239 			continue;
1240 
1241 		for (j = 0; j < vf_groups; j++) {
1242 			do {
1243 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1244 						phb->ioda.m64_bar_idx + 1, 0);
1245 
1246 				if (win >= phb->ioda.m64_bar_idx + 1)
1247 					goto m64_failed;
1248 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1249 
1250 			pdn->m64_wins[i][j] = win;
1251 
1252 			if (pdn->m64_per_iov == M64_PER_IOV) {
1253 				size = pci_iov_resource_size(pdev,
1254 							PCI_IOV_RESOURCES + i);
1255 				size = size * vf_per_group;
1256 				start = res->start + size * j;
1257 			} else {
1258 				size = resource_size(res);
1259 				start = res->start;
1260 			}
1261 
1262 			/* Map the M64 here */
1263 			if (pdn->m64_per_iov == M64_PER_IOV) {
1264 				pe_num = pdn->offset + j;
1265 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1266 						pe_num, OPAL_M64_WINDOW_TYPE,
1267 						pdn->m64_wins[i][j], 0);
1268 			}
1269 
1270 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1271 						 OPAL_M64_WINDOW_TYPE,
1272 						 pdn->m64_wins[i][j],
1273 						 start,
1274 						 0, /* unused */
1275 						 size);
1276 
1277 
1278 			if (rc != OPAL_SUCCESS) {
1279 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1280 					win, rc);
1281 				goto m64_failed;
1282 			}
1283 
1284 			if (pdn->m64_per_iov == M64_PER_IOV)
1285 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1286 				     OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1287 			else
1288 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1289 				     OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1290 
1291 			if (rc != OPAL_SUCCESS) {
1292 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1293 					win, rc);
1294 				goto m64_failed;
1295 			}
1296 		}
1297 	}
1298 	return 0;
1299 
1300 m64_failed:
1301 	pnv_pci_vf_release_m64(pdev);
1302 	return -EBUSY;
1303 }
1304 
1305 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1306 		int num);
1307 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1308 
1309 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1310 {
1311 	struct iommu_table    *tbl;
1312 	int64_t               rc;
1313 
1314 	tbl = pe->table_group.tables[0];
1315 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1316 	if (rc)
1317 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1318 
1319 	pnv_pci_ioda2_set_bypass(pe, false);
1320 	if (pe->table_group.group) {
1321 		iommu_group_put(pe->table_group.group);
1322 		BUG_ON(pe->table_group.group);
1323 	}
1324 	pnv_pci_ioda2_table_free_pages(tbl);
1325 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1326 }
1327 
1328 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1329 {
1330 	struct pci_bus        *bus;
1331 	struct pci_controller *hose;
1332 	struct pnv_phb        *phb;
1333 	struct pnv_ioda_pe    *pe, *pe_n;
1334 	struct pci_dn         *pdn;
1335 	u16                    vf_index;
1336 	int64_t                rc;
1337 
1338 	bus = pdev->bus;
1339 	hose = pci_bus_to_host(bus);
1340 	phb = hose->private_data;
1341 	pdn = pci_get_pdn(pdev);
1342 
1343 	if (!pdev->is_physfn)
1344 		return;
1345 
1346 	if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1347 		int   vf_group;
1348 		int   vf_per_group;
1349 		int   vf_index1;
1350 
1351 		vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1352 
1353 		for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1354 			for (vf_index = vf_group * vf_per_group;
1355 				vf_index < (vf_group + 1) * vf_per_group &&
1356 				vf_index < num_vfs;
1357 				vf_index++)
1358 				for (vf_index1 = vf_group * vf_per_group;
1359 					vf_index1 < (vf_group + 1) * vf_per_group &&
1360 					vf_index1 < num_vfs;
1361 					vf_index1++){
1362 
1363 					rc = opal_pci_set_peltv(phb->opal_id,
1364 						pdn->offset + vf_index,
1365 						pdn->offset + vf_index1,
1366 						OPAL_REMOVE_PE_FROM_DOMAIN);
1367 
1368 					if (rc)
1369 					    dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1370 						__func__,
1371 						pdn->offset + vf_index1, rc);
1372 				}
1373 	}
1374 
1375 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1376 		if (pe->parent_dev != pdev)
1377 			continue;
1378 
1379 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1380 
1381 		/* Remove from list */
1382 		mutex_lock(&phb->ioda.pe_list_mutex);
1383 		list_del(&pe->list);
1384 		mutex_unlock(&phb->ioda.pe_list_mutex);
1385 
1386 		pnv_ioda_deconfigure_pe(phb, pe);
1387 
1388 		pnv_ioda_free_pe(phb, pe->pe_number);
1389 	}
1390 }
1391 
1392 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1393 {
1394 	struct pci_bus        *bus;
1395 	struct pci_controller *hose;
1396 	struct pnv_phb        *phb;
1397 	struct pci_dn         *pdn;
1398 	struct pci_sriov      *iov;
1399 	u16 num_vfs;
1400 
1401 	bus = pdev->bus;
1402 	hose = pci_bus_to_host(bus);
1403 	phb = hose->private_data;
1404 	pdn = pci_get_pdn(pdev);
1405 	iov = pdev->sriov;
1406 	num_vfs = pdn->num_vfs;
1407 
1408 	/* Release VF PEs */
1409 	pnv_ioda_release_vf_PE(pdev, num_vfs);
1410 
1411 	if (phb->type == PNV_PHB_IODA2) {
1412 		if (pdn->m64_per_iov == 1)
1413 			pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1414 
1415 		/* Release M64 windows */
1416 		pnv_pci_vf_release_m64(pdev);
1417 
1418 		/* Release PE numbers */
1419 		bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1420 		pdn->offset = 0;
1421 	}
1422 }
1423 
1424 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1425 				       struct pnv_ioda_pe *pe);
1426 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1427 {
1428 	struct pci_bus        *bus;
1429 	struct pci_controller *hose;
1430 	struct pnv_phb        *phb;
1431 	struct pnv_ioda_pe    *pe;
1432 	int                    pe_num;
1433 	u16                    vf_index;
1434 	struct pci_dn         *pdn;
1435 	int64_t                rc;
1436 
1437 	bus = pdev->bus;
1438 	hose = pci_bus_to_host(bus);
1439 	phb = hose->private_data;
1440 	pdn = pci_get_pdn(pdev);
1441 
1442 	if (!pdev->is_physfn)
1443 		return;
1444 
1445 	/* Reserve PE for each VF */
1446 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1447 		pe_num = pdn->offset + vf_index;
1448 
1449 		pe = &phb->ioda.pe_array[pe_num];
1450 		pe->pe_number = pe_num;
1451 		pe->phb = phb;
1452 		pe->flags = PNV_IODA_PE_VF;
1453 		pe->pbus = NULL;
1454 		pe->parent_dev = pdev;
1455 		pe->tce32_seg = -1;
1456 		pe->mve_number = -1;
1457 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1458 			   pci_iov_virtfn_devfn(pdev, vf_index);
1459 
1460 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1461 			hose->global_number, pdev->bus->number,
1462 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1463 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1464 
1465 		if (pnv_ioda_configure_pe(phb, pe)) {
1466 			/* XXX What do we do here ? */
1467 			if (pe_num)
1468 				pnv_ioda_free_pe(phb, pe_num);
1469 			pe->pdev = NULL;
1470 			continue;
1471 		}
1472 
1473 		/* Put PE to the list */
1474 		mutex_lock(&phb->ioda.pe_list_mutex);
1475 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1476 		mutex_unlock(&phb->ioda.pe_list_mutex);
1477 
1478 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1479 	}
1480 
1481 	if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1482 		int   vf_group;
1483 		int   vf_per_group;
1484 		int   vf_index1;
1485 
1486 		vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1487 
1488 		for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1489 			for (vf_index = vf_group * vf_per_group;
1490 			     vf_index < (vf_group + 1) * vf_per_group &&
1491 			     vf_index < num_vfs;
1492 			     vf_index++) {
1493 				for (vf_index1 = vf_group * vf_per_group;
1494 				     vf_index1 < (vf_group + 1) * vf_per_group &&
1495 				     vf_index1 < num_vfs;
1496 				     vf_index1++) {
1497 
1498 					rc = opal_pci_set_peltv(phb->opal_id,
1499 						pdn->offset + vf_index,
1500 						pdn->offset + vf_index1,
1501 						OPAL_ADD_PE_TO_DOMAIN);
1502 
1503 					if (rc)
1504 					    dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1505 						__func__,
1506 						pdn->offset + vf_index1, rc);
1507 				}
1508 			}
1509 		}
1510 	}
1511 }
1512 
1513 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1514 {
1515 	struct pci_bus        *bus;
1516 	struct pci_controller *hose;
1517 	struct pnv_phb        *phb;
1518 	struct pci_dn         *pdn;
1519 	int                    ret;
1520 
1521 	bus = pdev->bus;
1522 	hose = pci_bus_to_host(bus);
1523 	phb = hose->private_data;
1524 	pdn = pci_get_pdn(pdev);
1525 
1526 	if (phb->type == PNV_PHB_IODA2) {
1527 		/* Calculate available PE for required VFs */
1528 		mutex_lock(&phb->ioda.pe_alloc_mutex);
1529 		pdn->offset = bitmap_find_next_zero_area(
1530 			phb->ioda.pe_alloc, phb->ioda.total_pe,
1531 			0, num_vfs, 0);
1532 		if (pdn->offset >= phb->ioda.total_pe) {
1533 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1534 			dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1535 			pdn->offset = 0;
1536 			return -EBUSY;
1537 		}
1538 		bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1539 		pdn->num_vfs = num_vfs;
1540 		mutex_unlock(&phb->ioda.pe_alloc_mutex);
1541 
1542 		/* Assign M64 window accordingly */
1543 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1544 		if (ret) {
1545 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1546 			goto m64_failed;
1547 		}
1548 
1549 		/*
1550 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1551 		 * the IOV BAR according to the PE# allocated to the VFs.
1552 		 * Otherwise, the PE# for the VF will conflict with others.
1553 		 */
1554 		if (pdn->m64_per_iov == 1) {
1555 			ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1556 			if (ret)
1557 				goto m64_failed;
1558 		}
1559 	}
1560 
1561 	/* Setup VF PEs */
1562 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1563 
1564 	return 0;
1565 
1566 m64_failed:
1567 	bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1568 	pdn->offset = 0;
1569 
1570 	return ret;
1571 }
1572 
1573 int pcibios_sriov_disable(struct pci_dev *pdev)
1574 {
1575 	pnv_pci_sriov_disable(pdev);
1576 
1577 	/* Release PCI data */
1578 	remove_dev_pci_data(pdev);
1579 	return 0;
1580 }
1581 
1582 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1583 {
1584 	/* Allocate PCI data */
1585 	add_dev_pci_data(pdev);
1586 
1587 	pnv_pci_sriov_enable(pdev, num_vfs);
1588 	return 0;
1589 }
1590 #endif /* CONFIG_PCI_IOV */
1591 
1592 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1593 {
1594 	struct pci_dn *pdn = pci_get_pdn(pdev);
1595 	struct pnv_ioda_pe *pe;
1596 
1597 	/*
1598 	 * The function can be called while the PE#
1599 	 * hasn't been assigned. Do nothing for the
1600 	 * case.
1601 	 */
1602 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1603 		return;
1604 
1605 	pe = &phb->ioda.pe_array[pdn->pe_number];
1606 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1607 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1608 	/*
1609 	 * Note: iommu_add_device() will fail here as
1610 	 * for physical PE: the device is already added by now;
1611 	 * for virtual PE: sysfs entries are not ready yet and
1612 	 * tce_iommu_bus_notifier will add the device to a group later.
1613 	 */
1614 }
1615 
1616 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1617 {
1618 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1619 	struct pnv_phb *phb = hose->private_data;
1620 	struct pci_dn *pdn = pci_get_pdn(pdev);
1621 	struct pnv_ioda_pe *pe;
1622 	uint64_t top;
1623 	bool bypass = false;
1624 
1625 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1626 		return -ENODEV;;
1627 
1628 	pe = &phb->ioda.pe_array[pdn->pe_number];
1629 	if (pe->tce_bypass_enabled) {
1630 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1631 		bypass = (dma_mask >= top);
1632 	}
1633 
1634 	if (bypass) {
1635 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1636 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1637 	} else {
1638 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1639 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1640 	}
1641 	*pdev->dev.dma_mask = dma_mask;
1642 	return 0;
1643 }
1644 
1645 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1646 					      struct pci_dev *pdev)
1647 {
1648 	struct pci_dn *pdn = pci_get_pdn(pdev);
1649 	struct pnv_ioda_pe *pe;
1650 	u64 end, mask;
1651 
1652 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1653 		return 0;
1654 
1655 	pe = &phb->ioda.pe_array[pdn->pe_number];
1656 	if (!pe->tce_bypass_enabled)
1657 		return __dma_get_required_mask(&pdev->dev);
1658 
1659 
1660 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1661 	mask = 1ULL << (fls64(end) - 1);
1662 	mask += mask - 1;
1663 
1664 	return mask;
1665 }
1666 
1667 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1668 				   struct pci_bus *bus)
1669 {
1670 	struct pci_dev *dev;
1671 
1672 	list_for_each_entry(dev, &bus->devices, bus_list) {
1673 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1674 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1675 		iommu_add_device(&dev->dev);
1676 
1677 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1678 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1679 	}
1680 }
1681 
1682 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1683 		unsigned long index, unsigned long npages, bool rm)
1684 {
1685 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1686 			&tbl->it_group_list, struct iommu_table_group_link,
1687 			next);
1688 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1689 			struct pnv_ioda_pe, table_group);
1690 	__be64 __iomem *invalidate = rm ?
1691 		(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1692 		pe->phb->ioda.tce_inval_reg;
1693 	unsigned long start, end, inc;
1694 	const unsigned shift = tbl->it_page_shift;
1695 
1696 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1697 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1698 			npages - 1);
1699 
1700 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1701 	if (tbl->it_busno) {
1702 		start <<= shift;
1703 		end <<= shift;
1704 		inc = 128ull << shift;
1705 		start |= tbl->it_busno;
1706 		end |= tbl->it_busno;
1707 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1708 		/* p7ioc-style invalidation, 2 TCEs per write */
1709 		start |= (1ull << 63);
1710 		end |= (1ull << 63);
1711 		inc = 16;
1712         } else {
1713 		/* Default (older HW) */
1714                 inc = 128;
1715 	}
1716 
1717         end |= inc - 1;	/* round up end to be different than start */
1718 
1719         mb(); /* Ensure above stores are visible */
1720         while (start <= end) {
1721 		if (rm)
1722 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1723 		else
1724 			__raw_writeq(cpu_to_be64(start), invalidate);
1725                 start += inc;
1726         }
1727 
1728 	/*
1729 	 * The iommu layer will do another mb() for us on build()
1730 	 * and we don't care on free()
1731 	 */
1732 }
1733 
1734 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1735 		long npages, unsigned long uaddr,
1736 		enum dma_data_direction direction,
1737 		struct dma_attrs *attrs)
1738 {
1739 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1740 			attrs);
1741 
1742 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1743 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1744 
1745 	return ret;
1746 }
1747 
1748 #ifdef CONFIG_IOMMU_API
1749 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1750 		unsigned long *hpa, enum dma_data_direction *direction)
1751 {
1752 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1753 
1754 	if (!ret && (tbl->it_type &
1755 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1756 		pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1757 
1758 	return ret;
1759 }
1760 #endif
1761 
1762 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1763 		long npages)
1764 {
1765 	pnv_tce_free(tbl, index, npages);
1766 
1767 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1768 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1769 }
1770 
1771 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1772 	.set = pnv_ioda1_tce_build,
1773 #ifdef CONFIG_IOMMU_API
1774 	.exchange = pnv_ioda1_tce_xchg,
1775 #endif
1776 	.clear = pnv_ioda1_tce_free,
1777 	.get = pnv_tce_get,
1778 };
1779 
1780 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1781 {
1782 	/* 01xb - invalidate TCEs that match the specified PE# */
1783 	unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1784 	struct pnv_phb *phb = pe->phb;
1785 
1786 	if (!phb->ioda.tce_inval_reg)
1787 		return;
1788 
1789 	mb(); /* Ensure above stores are visible */
1790 	__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1791 }
1792 
1793 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1794 		__be64 __iomem *invalidate, unsigned shift,
1795 		unsigned long index, unsigned long npages)
1796 {
1797 	unsigned long start, end, inc;
1798 
1799 	/* We'll invalidate DMA address in PE scope */
1800 	start = 0x2ull << 60;
1801 	start |= (pe_number & 0xFF);
1802 	end = start;
1803 
1804 	/* Figure out the start, end and step */
1805 	start |= (index << shift);
1806 	end |= ((index + npages - 1) << shift);
1807 	inc = (0x1ull << shift);
1808 	mb();
1809 
1810 	while (start <= end) {
1811 		if (rm)
1812 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1813 		else
1814 			__raw_writeq(cpu_to_be64(start), invalidate);
1815 		start += inc;
1816 	}
1817 }
1818 
1819 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1820 		unsigned long index, unsigned long npages, bool rm)
1821 {
1822 	struct iommu_table_group_link *tgl;
1823 
1824 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1825 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1826 				struct pnv_ioda_pe, table_group);
1827 		__be64 __iomem *invalidate = rm ?
1828 			(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1829 			pe->phb->ioda.tce_inval_reg;
1830 
1831 		pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1832 			invalidate, tbl->it_page_shift,
1833 			index, npages);
1834 	}
1835 }
1836 
1837 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1838 		long npages, unsigned long uaddr,
1839 		enum dma_data_direction direction,
1840 		struct dma_attrs *attrs)
1841 {
1842 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1843 			attrs);
1844 
1845 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1846 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1847 
1848 	return ret;
1849 }
1850 
1851 #ifdef CONFIG_IOMMU_API
1852 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1853 		unsigned long *hpa, enum dma_data_direction *direction)
1854 {
1855 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1856 
1857 	if (!ret && (tbl->it_type &
1858 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1859 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1860 
1861 	return ret;
1862 }
1863 #endif
1864 
1865 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1866 		long npages)
1867 {
1868 	pnv_tce_free(tbl, index, npages);
1869 
1870 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1871 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1872 }
1873 
1874 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1875 {
1876 	pnv_pci_ioda2_table_free_pages(tbl);
1877 	iommu_free_table(tbl, "pnv");
1878 }
1879 
1880 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1881 	.set = pnv_ioda2_tce_build,
1882 #ifdef CONFIG_IOMMU_API
1883 	.exchange = pnv_ioda2_tce_xchg,
1884 #endif
1885 	.clear = pnv_ioda2_tce_free,
1886 	.get = pnv_tce_get,
1887 	.free = pnv_ioda2_table_free,
1888 };
1889 
1890 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1891 				      struct pnv_ioda_pe *pe, unsigned int base,
1892 				      unsigned int segs)
1893 {
1894 
1895 	struct page *tce_mem = NULL;
1896 	struct iommu_table *tbl;
1897 	unsigned int i;
1898 	int64_t rc;
1899 	void *addr;
1900 
1901 	/* XXX FIXME: Handle 64-bit only DMA devices */
1902 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1903 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1904 
1905 	/* We shouldn't already have a 32-bit DMA associated */
1906 	if (WARN_ON(pe->tce32_seg >= 0))
1907 		return;
1908 
1909 	tbl = pnv_pci_table_alloc(phb->hose->node);
1910 	iommu_register_group(&pe->table_group, phb->hose->global_number,
1911 			pe->pe_number);
1912 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1913 
1914 	/* Grab a 32-bit TCE table */
1915 	pe->tce32_seg = base;
1916 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1917 		(base << 28), ((base + segs) << 28) - 1);
1918 
1919 	/* XXX Currently, we allocate one big contiguous table for the
1920 	 * TCEs. We only really need one chunk per 256M of TCE space
1921 	 * (ie per segment) but that's an optimization for later, it
1922 	 * requires some added smarts with our get/put_tce implementation
1923 	 */
1924 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1925 				   get_order(TCE32_TABLE_SIZE * segs));
1926 	if (!tce_mem) {
1927 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1928 		goto fail;
1929 	}
1930 	addr = page_address(tce_mem);
1931 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
1932 
1933 	/* Configure HW */
1934 	for (i = 0; i < segs; i++) {
1935 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1936 					      pe->pe_number,
1937 					      base + i, 1,
1938 					      __pa(addr) + TCE32_TABLE_SIZE * i,
1939 					      TCE32_TABLE_SIZE, 0x1000);
1940 		if (rc) {
1941 			pe_err(pe, " Failed to configure 32-bit TCE table,"
1942 			       " err %ld\n", rc);
1943 			goto fail;
1944 		}
1945 	}
1946 
1947 	/* Setup linux iommu table */
1948 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1949 				  base << 28, IOMMU_PAGE_SHIFT_4K);
1950 
1951 	/* OPAL variant of P7IOC SW invalidated TCEs */
1952 	if (phb->ioda.tce_inval_reg)
1953 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1954 				 TCE_PCI_SWINV_FREE   |
1955 				 TCE_PCI_SWINV_PAIR);
1956 
1957 	tbl->it_ops = &pnv_ioda1_iommu_ops;
1958 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1959 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1960 	iommu_init_table(tbl, phb->hose->node);
1961 
1962 	if (pe->flags & PNV_IODA_PE_DEV) {
1963 		/*
1964 		 * Setting table base here only for carrying iommu_group
1965 		 * further down to let iommu_add_device() do the job.
1966 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1967 		 */
1968 		set_iommu_table_base(&pe->pdev->dev, tbl);
1969 		iommu_add_device(&pe->pdev->dev);
1970 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1971 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1972 
1973 	return;
1974  fail:
1975 	/* XXX Failure: Try to fallback to 64-bit only ? */
1976 	if (pe->tce32_seg >= 0)
1977 		pe->tce32_seg = -1;
1978 	if (tce_mem)
1979 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1980 	if (tbl) {
1981 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1982 		iommu_free_table(tbl, "pnv");
1983 	}
1984 }
1985 
1986 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1987 		int num, struct iommu_table *tbl)
1988 {
1989 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1990 			table_group);
1991 	struct pnv_phb *phb = pe->phb;
1992 	int64_t rc;
1993 	const unsigned long size = tbl->it_indirect_levels ?
1994 			tbl->it_level_size : tbl->it_size;
1995 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1996 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1997 
1998 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
1999 			start_addr, start_addr + win_size - 1,
2000 			IOMMU_PAGE_SIZE(tbl));
2001 
2002 	/*
2003 	 * Map TCE table through TVT. The TVE index is the PE number
2004 	 * shifted by 1 bit for 32-bits DMA space.
2005 	 */
2006 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2007 			pe->pe_number,
2008 			(pe->pe_number << 1) + num,
2009 			tbl->it_indirect_levels + 1,
2010 			__pa(tbl->it_base),
2011 			size << 3,
2012 			IOMMU_PAGE_SIZE(tbl));
2013 	if (rc) {
2014 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2015 		return rc;
2016 	}
2017 
2018 	pnv_pci_link_table_and_group(phb->hose->node, num,
2019 			tbl, &pe->table_group);
2020 	pnv_pci_ioda2_tce_invalidate_entire(pe);
2021 
2022 	return 0;
2023 }
2024 
2025 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2026 {
2027 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2028 	int64_t rc;
2029 
2030 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2031 	if (enable) {
2032 		phys_addr_t top = memblock_end_of_DRAM();
2033 
2034 		top = roundup_pow_of_two(top);
2035 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2036 						     pe->pe_number,
2037 						     window_id,
2038 						     pe->tce_bypass_base,
2039 						     top);
2040 	} else {
2041 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2042 						     pe->pe_number,
2043 						     window_id,
2044 						     pe->tce_bypass_base,
2045 						     0);
2046 	}
2047 	if (rc)
2048 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2049 	else
2050 		pe->tce_bypass_enabled = enable;
2051 }
2052 
2053 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2054 		__u32 page_shift, __u64 window_size, __u32 levels,
2055 		struct iommu_table *tbl);
2056 
2057 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2058 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2059 		struct iommu_table **ptbl)
2060 {
2061 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2062 			table_group);
2063 	int nid = pe->phb->hose->node;
2064 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2065 	long ret;
2066 	struct iommu_table *tbl;
2067 
2068 	tbl = pnv_pci_table_alloc(nid);
2069 	if (!tbl)
2070 		return -ENOMEM;
2071 
2072 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2073 			bus_offset, page_shift, window_size,
2074 			levels, tbl);
2075 	if (ret) {
2076 		iommu_free_table(tbl, "pnv");
2077 		return ret;
2078 	}
2079 
2080 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2081 	if (pe->phb->ioda.tce_inval_reg)
2082 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2083 
2084 	*ptbl = tbl;
2085 
2086 	return 0;
2087 }
2088 
2089 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2090 {
2091 	struct iommu_table *tbl = NULL;
2092 	long rc;
2093 
2094 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2095 			IOMMU_PAGE_SHIFT_4K,
2096 			pe->table_group.tce32_size,
2097 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2098 	if (rc) {
2099 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2100 				rc);
2101 		return rc;
2102 	}
2103 
2104 	iommu_init_table(tbl, pe->phb->hose->node);
2105 
2106 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2107 	if (rc) {
2108 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2109 				rc);
2110 		pnv_ioda2_table_free(tbl);
2111 		return rc;
2112 	}
2113 
2114 	if (!pnv_iommu_bypass_disabled)
2115 		pnv_pci_ioda2_set_bypass(pe, true);
2116 
2117 	/* OPAL variant of PHB3 invalidated TCEs */
2118 	if (pe->phb->ioda.tce_inval_reg)
2119 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2120 
2121 	/*
2122 	 * Setting table base here only for carrying iommu_group
2123 	 * further down to let iommu_add_device() do the job.
2124 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2125 	 */
2126 	if (pe->flags & PNV_IODA_PE_DEV)
2127 		set_iommu_table_base(&pe->pdev->dev, tbl);
2128 
2129 	return 0;
2130 }
2131 
2132 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2133 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2134 		int num)
2135 {
2136 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2137 			table_group);
2138 	struct pnv_phb *phb = pe->phb;
2139 	long ret;
2140 
2141 	pe_info(pe, "Removing DMA window #%d\n", num);
2142 
2143 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2144 			(pe->pe_number << 1) + num,
2145 			0/* levels */, 0/* table address */,
2146 			0/* table size */, 0/* page size */);
2147 	if (ret)
2148 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2149 	else
2150 		pnv_pci_ioda2_tce_invalidate_entire(pe);
2151 
2152 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2153 
2154 	return ret;
2155 }
2156 #endif
2157 
2158 #ifdef CONFIG_IOMMU_API
2159 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2160 		__u64 window_size, __u32 levels)
2161 {
2162 	unsigned long bytes = 0;
2163 	const unsigned window_shift = ilog2(window_size);
2164 	unsigned entries_shift = window_shift - page_shift;
2165 	unsigned table_shift = entries_shift + 3;
2166 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2167 	unsigned long direct_table_size;
2168 
2169 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2170 			(window_size > memory_hotplug_max()) ||
2171 			!is_power_of_2(window_size))
2172 		return 0;
2173 
2174 	/* Calculate a direct table size from window_size and levels */
2175 	entries_shift = (entries_shift + levels - 1) / levels;
2176 	table_shift = entries_shift + 3;
2177 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2178 	direct_table_size =  1UL << table_shift;
2179 
2180 	for ( ; levels; --levels) {
2181 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2182 
2183 		tce_table_size /= direct_table_size;
2184 		tce_table_size <<= 3;
2185 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2186 	}
2187 
2188 	return bytes;
2189 }
2190 
2191 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2192 {
2193 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2194 						table_group);
2195 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2196 	struct iommu_table *tbl = pe->table_group.tables[0];
2197 
2198 	pnv_pci_ioda2_set_bypass(pe, false);
2199 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2200 	pnv_ioda2_table_free(tbl);
2201 }
2202 
2203 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2204 {
2205 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2206 						table_group);
2207 
2208 	pnv_pci_ioda2_setup_default_config(pe);
2209 }
2210 
2211 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2212 	.get_table_size = pnv_pci_ioda2_get_table_size,
2213 	.create_table = pnv_pci_ioda2_create_table,
2214 	.set_window = pnv_pci_ioda2_set_window,
2215 	.unset_window = pnv_pci_ioda2_unset_window,
2216 	.take_ownership = pnv_ioda2_take_ownership,
2217 	.release_ownership = pnv_ioda2_release_ownership,
2218 };
2219 #endif
2220 
2221 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2222 {
2223 	const __be64 *swinvp;
2224 
2225 	/* OPAL variant of PHB3 invalidated TCEs */
2226 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2227 	if (!swinvp)
2228 		return;
2229 
2230 	phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2231 	phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2232 }
2233 
2234 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2235 		unsigned levels, unsigned long limit,
2236 		unsigned long *current_offset)
2237 {
2238 	struct page *tce_mem = NULL;
2239 	__be64 *addr, *tmp;
2240 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2241 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2242 	unsigned entries = 1UL << (shift - 3);
2243 	long i;
2244 
2245 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2246 	if (!tce_mem) {
2247 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2248 		return NULL;
2249 	}
2250 	addr = page_address(tce_mem);
2251 	memset(addr, 0, allocated);
2252 
2253 	--levels;
2254 	if (!levels) {
2255 		*current_offset += allocated;
2256 		return addr;
2257 	}
2258 
2259 	for (i = 0; i < entries; ++i) {
2260 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2261 				levels, limit, current_offset);
2262 		if (!tmp)
2263 			break;
2264 
2265 		addr[i] = cpu_to_be64(__pa(tmp) |
2266 				TCE_PCI_READ | TCE_PCI_WRITE);
2267 
2268 		if (*current_offset >= limit)
2269 			break;
2270 	}
2271 
2272 	return addr;
2273 }
2274 
2275 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2276 		unsigned long size, unsigned level);
2277 
2278 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2279 		__u32 page_shift, __u64 window_size, __u32 levels,
2280 		struct iommu_table *tbl)
2281 {
2282 	void *addr;
2283 	unsigned long offset = 0, level_shift;
2284 	const unsigned window_shift = ilog2(window_size);
2285 	unsigned entries_shift = window_shift - page_shift;
2286 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2287 	const unsigned long tce_table_size = 1UL << table_shift;
2288 
2289 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2290 		return -EINVAL;
2291 
2292 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2293 		return -EINVAL;
2294 
2295 	/* Adjust direct table size from window_size and levels */
2296 	entries_shift = (entries_shift + levels - 1) / levels;
2297 	level_shift = entries_shift + 3;
2298 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2299 
2300 	/* Allocate TCE table */
2301 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2302 			levels, tce_table_size, &offset);
2303 
2304 	/* addr==NULL means that the first level allocation failed */
2305 	if (!addr)
2306 		return -ENOMEM;
2307 
2308 	/*
2309 	 * First level was allocated but some lower level failed as
2310 	 * we did not allocate as much as we wanted,
2311 	 * release partially allocated table.
2312 	 */
2313 	if (offset < tce_table_size) {
2314 		pnv_pci_ioda2_table_do_free_pages(addr,
2315 				1ULL << (level_shift - 3), levels - 1);
2316 		return -ENOMEM;
2317 	}
2318 
2319 	/* Setup linux iommu table */
2320 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2321 			page_shift);
2322 	tbl->it_level_size = 1ULL << (level_shift - 3);
2323 	tbl->it_indirect_levels = levels - 1;
2324 	tbl->it_allocated_size = offset;
2325 
2326 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2327 			window_size, tce_table_size, bus_offset);
2328 
2329 	return 0;
2330 }
2331 
2332 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2333 		unsigned long size, unsigned level)
2334 {
2335 	const unsigned long addr_ul = (unsigned long) addr &
2336 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2337 
2338 	if (level) {
2339 		long i;
2340 		u64 *tmp = (u64 *) addr_ul;
2341 
2342 		for (i = 0; i < size; ++i) {
2343 			unsigned long hpa = be64_to_cpu(tmp[i]);
2344 
2345 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2346 				continue;
2347 
2348 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2349 					level - 1);
2350 		}
2351 	}
2352 
2353 	free_pages(addr_ul, get_order(size << 3));
2354 }
2355 
2356 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2357 {
2358 	const unsigned long size = tbl->it_indirect_levels ?
2359 			tbl->it_level_size : tbl->it_size;
2360 
2361 	if (!tbl->it_size)
2362 		return;
2363 
2364 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2365 			tbl->it_indirect_levels);
2366 }
2367 
2368 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2369 				       struct pnv_ioda_pe *pe)
2370 {
2371 	int64_t rc;
2372 
2373 	/* We shouldn't already have a 32-bit DMA associated */
2374 	if (WARN_ON(pe->tce32_seg >= 0))
2375 		return;
2376 
2377 	/* TVE #1 is selected by PCI address bit 59 */
2378 	pe->tce_bypass_base = 1ull << 59;
2379 
2380 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2381 			pe->pe_number);
2382 
2383 	/* The PE will reserve all possible 32-bits space */
2384 	pe->tce32_seg = 0;
2385 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2386 		phb->ioda.m32_pci_base);
2387 
2388 	/* Setup linux iommu table */
2389 	pe->table_group.tce32_start = 0;
2390 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2391 	pe->table_group.max_dynamic_windows_supported =
2392 			IOMMU_TABLE_GROUP_MAX_TABLES;
2393 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2394 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2395 #ifdef CONFIG_IOMMU_API
2396 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2397 #endif
2398 
2399 	rc = pnv_pci_ioda2_setup_default_config(pe);
2400 	if (rc) {
2401 		if (pe->tce32_seg >= 0)
2402 			pe->tce32_seg = -1;
2403 		return;
2404 	}
2405 
2406 	if (pe->flags & PNV_IODA_PE_DEV)
2407 		iommu_add_device(&pe->pdev->dev);
2408 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2409 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2410 }
2411 
2412 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2413 {
2414 	struct pci_controller *hose = phb->hose;
2415 	unsigned int residual, remaining, segs, tw, base;
2416 	struct pnv_ioda_pe *pe;
2417 
2418 	/* If we have more PE# than segments available, hand out one
2419 	 * per PE until we run out and let the rest fail. If not,
2420 	 * then we assign at least one segment per PE, plus more based
2421 	 * on the amount of devices under that PE
2422 	 */
2423 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2424 		residual = 0;
2425 	else
2426 		residual = phb->ioda.tce32_count -
2427 			phb->ioda.dma_pe_count;
2428 
2429 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2430 		hose->global_number, phb->ioda.tce32_count);
2431 	pr_info("PCI: %d PE# for a total weight of %d\n",
2432 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2433 
2434 	pnv_pci_ioda_setup_opal_tce_kill(phb);
2435 
2436 	/* Walk our PE list and configure their DMA segments, hand them
2437 	 * out one base segment plus any residual segments based on
2438 	 * weight
2439 	 */
2440 	remaining = phb->ioda.tce32_count;
2441 	tw = phb->ioda.dma_weight;
2442 	base = 0;
2443 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2444 		if (!pe->dma_weight)
2445 			continue;
2446 		if (!remaining) {
2447 			pe_warn(pe, "No DMA32 resources available\n");
2448 			continue;
2449 		}
2450 		segs = 1;
2451 		if (residual) {
2452 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2453 			if (segs > remaining)
2454 				segs = remaining;
2455 		}
2456 
2457 		/*
2458 		 * For IODA2 compliant PHB3, we needn't care about the weight.
2459 		 * The all available 32-bits DMA space will be assigned to
2460 		 * the specific PE.
2461 		 */
2462 		if (phb->type == PNV_PHB_IODA1) {
2463 			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2464 				pe->dma_weight, segs);
2465 			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2466 		} else {
2467 			pe_info(pe, "Assign DMA32 space\n");
2468 			segs = 0;
2469 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
2470 		}
2471 
2472 		remaining -= segs;
2473 		base += segs;
2474 	}
2475 }
2476 
2477 #ifdef CONFIG_PCI_MSI
2478 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2479 {
2480 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2481 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2482 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2483 					   ioda.irq_chip);
2484 	int64_t rc;
2485 
2486 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2487 	WARN_ON_ONCE(rc);
2488 
2489 	icp_native_eoi(d);
2490 }
2491 
2492 
2493 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2494 {
2495 	struct irq_data *idata;
2496 	struct irq_chip *ichip;
2497 
2498 	if (phb->type != PNV_PHB_IODA2)
2499 		return;
2500 
2501 	if (!phb->ioda.irq_chip_init) {
2502 		/*
2503 		 * First time we setup an MSI IRQ, we need to setup the
2504 		 * corresponding IRQ chip to route correctly.
2505 		 */
2506 		idata = irq_get_irq_data(virq);
2507 		ichip = irq_data_get_irq_chip(idata);
2508 		phb->ioda.irq_chip_init = 1;
2509 		phb->ioda.irq_chip = *ichip;
2510 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2511 	}
2512 	irq_set_chip(virq, &phb->ioda.irq_chip);
2513 }
2514 
2515 #ifdef CONFIG_CXL_BASE
2516 
2517 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2518 {
2519 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2520 
2521 	return of_node_get(hose->dn);
2522 }
2523 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2524 
2525 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2526 {
2527 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2528 	struct pnv_phb *phb = hose->private_data;
2529 	struct pnv_ioda_pe *pe;
2530 	int rc;
2531 
2532 	pe = pnv_ioda_get_pe(dev);
2533 	if (!pe)
2534 		return -ENODEV;
2535 
2536 	pe_info(pe, "Switching PHB to CXL\n");
2537 
2538 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2539 	if (rc)
2540 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2541 
2542 	return rc;
2543 }
2544 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2545 
2546 /* Find PHB for cxl dev and allocate MSI hwirqs?
2547  * Returns the absolute hardware IRQ number
2548  */
2549 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2550 {
2551 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2552 	struct pnv_phb *phb = hose->private_data;
2553 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2554 
2555 	if (hwirq < 0) {
2556 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
2557 		return -ENOSPC;
2558 	}
2559 
2560 	return phb->msi_base + hwirq;
2561 }
2562 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2563 
2564 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2565 {
2566 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2567 	struct pnv_phb *phb = hose->private_data;
2568 
2569 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2570 }
2571 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2572 
2573 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2574 				  struct pci_dev *dev)
2575 {
2576 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2577 	struct pnv_phb *phb = hose->private_data;
2578 	int i, hwirq;
2579 
2580 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
2581 		if (!irqs->range[i])
2582 			continue;
2583 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2584 			 i, irqs->offset[i],
2585 			 irqs->range[i]);
2586 		hwirq = irqs->offset[i] - phb->msi_base;
2587 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2588 				       irqs->range[i]);
2589 	}
2590 }
2591 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2592 
2593 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2594 			       struct pci_dev *dev, int num)
2595 {
2596 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2597 	struct pnv_phb *phb = hose->private_data;
2598 	int i, hwirq, try;
2599 
2600 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2601 
2602 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
2603 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2604 		try = num;
2605 		while (try) {
2606 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2607 			if (hwirq >= 0)
2608 				break;
2609 			try /= 2;
2610 		}
2611 		if (!try)
2612 			goto fail;
2613 
2614 		irqs->offset[i] = phb->msi_base + hwirq;
2615 		irqs->range[i] = try;
2616 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2617 			 i, irqs->offset[i], irqs->range[i]);
2618 		num -= try;
2619 	}
2620 	if (num)
2621 		goto fail;
2622 
2623 	return 0;
2624 fail:
2625 	pnv_cxl_release_hwirq_ranges(irqs, dev);
2626 	return -ENOSPC;
2627 }
2628 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2629 
2630 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2631 {
2632 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2633 	struct pnv_phb *phb = hose->private_data;
2634 
2635 	return phb->msi_bmp.irq_count;
2636 }
2637 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2638 
2639 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2640 			   unsigned int virq)
2641 {
2642 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2643 	struct pnv_phb *phb = hose->private_data;
2644 	unsigned int xive_num = hwirq - phb->msi_base;
2645 	struct pnv_ioda_pe *pe;
2646 	int rc;
2647 
2648 	if (!(pe = pnv_ioda_get_pe(dev)))
2649 		return -ENODEV;
2650 
2651 	/* Assign XIVE to PE */
2652 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2653 	if (rc) {
2654 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2655 			"hwirq 0x%x XIVE 0x%x PE\n",
2656 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2657 		return -EIO;
2658 	}
2659 	set_msi_irq_chip(phb, virq);
2660 
2661 	return 0;
2662 }
2663 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2664 #endif
2665 
2666 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2667 				  unsigned int hwirq, unsigned int virq,
2668 				  unsigned int is_64, struct msi_msg *msg)
2669 {
2670 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2671 	unsigned int xive_num = hwirq - phb->msi_base;
2672 	__be32 data;
2673 	int rc;
2674 
2675 	/* No PE assigned ? bail out ... no MSI for you ! */
2676 	if (pe == NULL)
2677 		return -ENXIO;
2678 
2679 	/* Check if we have an MVE */
2680 	if (pe->mve_number < 0)
2681 		return -ENXIO;
2682 
2683 	/* Force 32-bit MSI on some broken devices */
2684 	if (dev->no_64bit_msi)
2685 		is_64 = 0;
2686 
2687 	/* Assign XIVE to PE */
2688 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2689 	if (rc) {
2690 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2691 			pci_name(dev), rc, xive_num);
2692 		return -EIO;
2693 	}
2694 
2695 	if (is_64) {
2696 		__be64 addr64;
2697 
2698 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2699 				     &addr64, &data);
2700 		if (rc) {
2701 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2702 				pci_name(dev), rc);
2703 			return -EIO;
2704 		}
2705 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2706 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2707 	} else {
2708 		__be32 addr32;
2709 
2710 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2711 				     &addr32, &data);
2712 		if (rc) {
2713 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2714 				pci_name(dev), rc);
2715 			return -EIO;
2716 		}
2717 		msg->address_hi = 0;
2718 		msg->address_lo = be32_to_cpu(addr32);
2719 	}
2720 	msg->data = be32_to_cpu(data);
2721 
2722 	set_msi_irq_chip(phb, virq);
2723 
2724 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2725 		 " address=%x_%08x data=%x PE# %d\n",
2726 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2727 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2728 
2729 	return 0;
2730 }
2731 
2732 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2733 {
2734 	unsigned int count;
2735 	const __be32 *prop = of_get_property(phb->hose->dn,
2736 					     "ibm,opal-msi-ranges", NULL);
2737 	if (!prop) {
2738 		/* BML Fallback */
2739 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2740 	}
2741 	if (!prop)
2742 		return;
2743 
2744 	phb->msi_base = be32_to_cpup(prop);
2745 	count = be32_to_cpup(prop + 1);
2746 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2747 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2748 		       phb->hose->global_number);
2749 		return;
2750 	}
2751 
2752 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2753 	phb->msi32_support = 1;
2754 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2755 		count, phb->msi_base);
2756 }
2757 #else
2758 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2759 #endif /* CONFIG_PCI_MSI */
2760 
2761 #ifdef CONFIG_PCI_IOV
2762 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2763 {
2764 	struct pci_controller *hose;
2765 	struct pnv_phb *phb;
2766 	struct resource *res;
2767 	int i;
2768 	resource_size_t size;
2769 	struct pci_dn *pdn;
2770 	int mul, total_vfs;
2771 
2772 	if (!pdev->is_physfn || pdev->is_added)
2773 		return;
2774 
2775 	hose = pci_bus_to_host(pdev->bus);
2776 	phb = hose->private_data;
2777 
2778 	pdn = pci_get_pdn(pdev);
2779 	pdn->vfs_expanded = 0;
2780 
2781 	total_vfs = pci_sriov_get_totalvfs(pdev);
2782 	pdn->m64_per_iov = 1;
2783 	mul = phb->ioda.total_pe;
2784 
2785 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2786 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2787 		if (!res->flags || res->parent)
2788 			continue;
2789 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2790 			dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2791 				 i, res);
2792 			continue;
2793 		}
2794 
2795 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2796 
2797 		/* bigger than 64M */
2798 		if (size > (1 << 26)) {
2799 			dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2800 				 i, res);
2801 			pdn->m64_per_iov = M64_PER_IOV;
2802 			mul = roundup_pow_of_two(total_vfs);
2803 			break;
2804 		}
2805 	}
2806 
2807 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2808 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2809 		if (!res->flags || res->parent)
2810 			continue;
2811 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2812 			dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2813 				 i, res);
2814 			continue;
2815 		}
2816 
2817 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2818 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2819 		res->end = res->start + size * mul - 1;
2820 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2821 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2822 			 i, res, mul);
2823 	}
2824 	pdn->vfs_expanded = mul;
2825 }
2826 #endif /* CONFIG_PCI_IOV */
2827 
2828 /*
2829  * This function is supposed to be called on basis of PE from top
2830  * to bottom style. So the the I/O or MMIO segment assigned to
2831  * parent PE could be overrided by its child PEs if necessary.
2832  */
2833 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2834 				  struct pnv_ioda_pe *pe)
2835 {
2836 	struct pnv_phb *phb = hose->private_data;
2837 	struct pci_bus_region region;
2838 	struct resource *res;
2839 	int i, index;
2840 	int rc;
2841 
2842 	/*
2843 	 * NOTE: We only care PCI bus based PE for now. For PCI
2844 	 * device based PE, for example SRIOV sensitive VF should
2845 	 * be figured out later.
2846 	 */
2847 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2848 
2849 	pci_bus_for_each_resource(pe->pbus, res, i) {
2850 		if (!res || !res->flags ||
2851 		    res->start > res->end)
2852 			continue;
2853 
2854 		if (res->flags & IORESOURCE_IO) {
2855 			region.start = res->start - phb->ioda.io_pci_base;
2856 			region.end   = res->end - phb->ioda.io_pci_base;
2857 			index = region.start / phb->ioda.io_segsize;
2858 
2859 			while (index < phb->ioda.total_pe &&
2860 			       region.start <= region.end) {
2861 				phb->ioda.io_segmap[index] = pe->pe_number;
2862 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2863 					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2864 				if (rc != OPAL_SUCCESS) {
2865 					pr_err("%s: OPAL error %d when mapping IO "
2866 					       "segment #%d to PE#%d\n",
2867 					       __func__, rc, index, pe->pe_number);
2868 					break;
2869 				}
2870 
2871 				region.start += phb->ioda.io_segsize;
2872 				index++;
2873 			}
2874 		} else if ((res->flags & IORESOURCE_MEM) &&
2875 			   !pnv_pci_is_mem_pref_64(res->flags)) {
2876 			region.start = res->start -
2877 				       hose->mem_offset[0] -
2878 				       phb->ioda.m32_pci_base;
2879 			region.end   = res->end -
2880 				       hose->mem_offset[0] -
2881 				       phb->ioda.m32_pci_base;
2882 			index = region.start / phb->ioda.m32_segsize;
2883 
2884 			while (index < phb->ioda.total_pe &&
2885 			       region.start <= region.end) {
2886 				phb->ioda.m32_segmap[index] = pe->pe_number;
2887 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2888 					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2889 				if (rc != OPAL_SUCCESS) {
2890 					pr_err("%s: OPAL error %d when mapping M32 "
2891 					       "segment#%d to PE#%d",
2892 					       __func__, rc, index, pe->pe_number);
2893 					break;
2894 				}
2895 
2896 				region.start += phb->ioda.m32_segsize;
2897 				index++;
2898 			}
2899 		}
2900 	}
2901 }
2902 
2903 static void pnv_pci_ioda_setup_seg(void)
2904 {
2905 	struct pci_controller *tmp, *hose;
2906 	struct pnv_phb *phb;
2907 	struct pnv_ioda_pe *pe;
2908 
2909 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2910 		phb = hose->private_data;
2911 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2912 			pnv_ioda_setup_pe_seg(hose, pe);
2913 		}
2914 	}
2915 }
2916 
2917 static void pnv_pci_ioda_setup_DMA(void)
2918 {
2919 	struct pci_controller *hose, *tmp;
2920 	struct pnv_phb *phb;
2921 
2922 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2923 		pnv_ioda_setup_dma(hose->private_data);
2924 
2925 		/* Mark the PHB initialization done */
2926 		phb = hose->private_data;
2927 		phb->initialized = 1;
2928 	}
2929 }
2930 
2931 static void pnv_pci_ioda_create_dbgfs(void)
2932 {
2933 #ifdef CONFIG_DEBUG_FS
2934 	struct pci_controller *hose, *tmp;
2935 	struct pnv_phb *phb;
2936 	char name[16];
2937 
2938 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2939 		phb = hose->private_data;
2940 
2941 		sprintf(name, "PCI%04x", hose->global_number);
2942 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2943 		if (!phb->dbgfs)
2944 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2945 				__func__, hose->global_number);
2946 	}
2947 #endif /* CONFIG_DEBUG_FS */
2948 }
2949 
2950 static void pnv_pci_ioda_fixup(void)
2951 {
2952 	pnv_pci_ioda_setup_PEs();
2953 	pnv_pci_ioda_setup_seg();
2954 	pnv_pci_ioda_setup_DMA();
2955 
2956 	pnv_pci_ioda_create_dbgfs();
2957 
2958 #ifdef CONFIG_EEH
2959 	eeh_init();
2960 	eeh_addr_cache_build();
2961 #endif
2962 }
2963 
2964 /*
2965  * Returns the alignment for I/O or memory windows for P2P
2966  * bridges. That actually depends on how PEs are segmented.
2967  * For now, we return I/O or M32 segment size for PE sensitive
2968  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2969  * 1MiB for memory) will be returned.
2970  *
2971  * The current PCI bus might be put into one PE, which was
2972  * create against the parent PCI bridge. For that case, we
2973  * needn't enlarge the alignment so that we can save some
2974  * resources.
2975  */
2976 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2977 						unsigned long type)
2978 {
2979 	struct pci_dev *bridge;
2980 	struct pci_controller *hose = pci_bus_to_host(bus);
2981 	struct pnv_phb *phb = hose->private_data;
2982 	int num_pci_bridges = 0;
2983 
2984 	bridge = bus->self;
2985 	while (bridge) {
2986 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2987 			num_pci_bridges++;
2988 			if (num_pci_bridges >= 2)
2989 				return 1;
2990 		}
2991 
2992 		bridge = bridge->bus->self;
2993 	}
2994 
2995 	/* We fail back to M32 if M64 isn't supported */
2996 	if (phb->ioda.m64_segsize &&
2997 	    pnv_pci_is_mem_pref_64(type))
2998 		return phb->ioda.m64_segsize;
2999 	if (type & IORESOURCE_MEM)
3000 		return phb->ioda.m32_segsize;
3001 
3002 	return phb->ioda.io_segsize;
3003 }
3004 
3005 #ifdef CONFIG_PCI_IOV
3006 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3007 						      int resno)
3008 {
3009 	struct pci_dn *pdn = pci_get_pdn(pdev);
3010 	resource_size_t align, iov_align;
3011 
3012 	iov_align = resource_size(&pdev->resource[resno]);
3013 	if (iov_align)
3014 		return iov_align;
3015 
3016 	align = pci_iov_resource_size(pdev, resno);
3017 	if (pdn->vfs_expanded)
3018 		return pdn->vfs_expanded * align;
3019 
3020 	return align;
3021 }
3022 #endif /* CONFIG_PCI_IOV */
3023 
3024 /* Prevent enabling devices for which we couldn't properly
3025  * assign a PE
3026  */
3027 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3028 {
3029 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3030 	struct pnv_phb *phb = hose->private_data;
3031 	struct pci_dn *pdn;
3032 
3033 	/* The function is probably called while the PEs have
3034 	 * not be created yet. For example, resource reassignment
3035 	 * during PCI probe period. We just skip the check if
3036 	 * PEs isn't ready.
3037 	 */
3038 	if (!phb->initialized)
3039 		return true;
3040 
3041 	pdn = pci_get_pdn(dev);
3042 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3043 		return false;
3044 
3045 	return true;
3046 }
3047 
3048 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
3049 			       u32 devfn)
3050 {
3051 	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
3052 }
3053 
3054 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3055 {
3056 	struct pnv_phb *phb = hose->private_data;
3057 
3058 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3059 		       OPAL_ASSERT_RESET);
3060 }
3061 
3062 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3063        .dma_dev_setup = pnv_pci_dma_dev_setup,
3064 #ifdef CONFIG_PCI_MSI
3065        .setup_msi_irqs = pnv_setup_msi_irqs,
3066        .teardown_msi_irqs = pnv_teardown_msi_irqs,
3067 #endif
3068        .enable_device_hook = pnv_pci_enable_device_hook,
3069        .window_alignment = pnv_pci_window_alignment,
3070        .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3071        .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3072        .shutdown = pnv_pci_ioda_shutdown,
3073 };
3074 
3075 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3076 					 u64 hub_id, int ioda_type)
3077 {
3078 	struct pci_controller *hose;
3079 	struct pnv_phb *phb;
3080 	unsigned long size, m32map_off, pemap_off, iomap_off = 0;
3081 	const __be64 *prop64;
3082 	const __be32 *prop32;
3083 	int len;
3084 	u64 phb_id;
3085 	void *aux;
3086 	long rc;
3087 
3088 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3089 
3090 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3091 	if (!prop64) {
3092 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3093 		return;
3094 	}
3095 	phb_id = be64_to_cpup(prop64);
3096 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3097 
3098 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3099 
3100 	/* Allocate PCI controller */
3101 	phb->hose = hose = pcibios_alloc_controller(np);
3102 	if (!phb->hose) {
3103 		pr_err("  Can't allocate PCI controller for %s\n",
3104 		       np->full_name);
3105 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3106 		return;
3107 	}
3108 
3109 	spin_lock_init(&phb->lock);
3110 	prop32 = of_get_property(np, "bus-range", &len);
3111 	if (prop32 && len == 8) {
3112 		hose->first_busno = be32_to_cpu(prop32[0]);
3113 		hose->last_busno = be32_to_cpu(prop32[1]);
3114 	} else {
3115 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3116 		hose->first_busno = 0;
3117 		hose->last_busno = 0xff;
3118 	}
3119 	hose->private_data = phb;
3120 	phb->hub_id = hub_id;
3121 	phb->opal_id = phb_id;
3122 	phb->type = ioda_type;
3123 	mutex_init(&phb->ioda.pe_alloc_mutex);
3124 
3125 	/* Detect specific models for error handling */
3126 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3127 		phb->model = PNV_PHB_MODEL_P7IOC;
3128 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3129 		phb->model = PNV_PHB_MODEL_PHB3;
3130 	else
3131 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3132 
3133 	/* Parse 32-bit and IO ranges (if any) */
3134 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3135 
3136 	/* Get registers */
3137 	phb->regs = of_iomap(np, 0);
3138 	if (phb->regs == NULL)
3139 		pr_err("  Failed to map registers !\n");
3140 
3141 	/* Initialize more IODA stuff */
3142 	phb->ioda.total_pe = 1;
3143 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3144 	if (prop32)
3145 		phb->ioda.total_pe = be32_to_cpup(prop32);
3146 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3147 	if (prop32)
3148 		phb->ioda.reserved_pe = be32_to_cpup(prop32);
3149 
3150 	/* Parse 64-bit MMIO range */
3151 	pnv_ioda_parse_m64_window(phb);
3152 
3153 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3154 	/* FW Has already off top 64k of M32 space (MSI space) */
3155 	phb->ioda.m32_size += 0x10000;
3156 
3157 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
3158 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3159 	phb->ioda.io_size = hose->pci_io_size;
3160 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
3161 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3162 
3163 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3164 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
3165 	m32map_off = size;
3166 	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
3167 	if (phb->type == PNV_PHB_IODA1) {
3168 		iomap_off = size;
3169 		size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
3170 	}
3171 	pemap_off = size;
3172 	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
3173 	aux = memblock_virt_alloc(size, 0);
3174 	phb->ioda.pe_alloc = aux;
3175 	phb->ioda.m32_segmap = aux + m32map_off;
3176 	if (phb->type == PNV_PHB_IODA1)
3177 		phb->ioda.io_segmap = aux + iomap_off;
3178 	phb->ioda.pe_array = aux + pemap_off;
3179 	set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
3180 
3181 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
3182 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3183 	mutex_init(&phb->ioda.pe_list_mutex);
3184 
3185 	/* Calculate how many 32-bit TCE segments we have */
3186 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
3187 
3188 #if 0 /* We should really do that ... */
3189 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3190 					 window_type,
3191 					 window_num,
3192 					 starting_real_address,
3193 					 starting_pci_address,
3194 					 segment_size);
3195 #endif
3196 
3197 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3198 		phb->ioda.total_pe, phb->ioda.reserved_pe,
3199 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3200 	if (phb->ioda.m64_size)
3201 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3202 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3203 	if (phb->ioda.io_size)
3204 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3205 			phb->ioda.io_size, phb->ioda.io_segsize);
3206 
3207 
3208 	phb->hose->ops = &pnv_pci_ops;
3209 	phb->get_pe_state = pnv_ioda_get_pe_state;
3210 	phb->freeze_pe = pnv_ioda_freeze_pe;
3211 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3212 
3213 	/* Setup RID -> PE mapping function */
3214 	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
3215 
3216 	/* Setup TCEs */
3217 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3218 	phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
3219 
3220 	/* Setup MSI support */
3221 	pnv_pci_init_ioda_msis(phb);
3222 
3223 	/*
3224 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3225 	 * to let the PCI core do resource assignment. It's supposed
3226 	 * that the PCI core will do correct I/O and MMIO alignment
3227 	 * for the P2P bridge bars so that each PCI bus (excluding
3228 	 * the child P2P bridges) can form individual PE.
3229 	 */
3230 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3231 	hose->controller_ops = pnv_pci_ioda_controller_ops;
3232 
3233 #ifdef CONFIG_PCI_IOV
3234 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3235 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3236 #endif
3237 
3238 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3239 
3240 	/* Reset IODA tables to a clean state */
3241 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3242 	if (rc)
3243 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3244 
3245 	/* If we're running in kdump kerenl, the previous kerenl never
3246 	 * shutdown PCI devices correctly. We already got IODA table
3247 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3248 	 * transactions from previous kerenl.
3249 	 */
3250 	if (is_kdump_kernel()) {
3251 		pr_info("  Issue PHB reset ...\n");
3252 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3253 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3254 	}
3255 
3256 	/* Remove M64 resource if we can't configure it successfully */
3257 	if (!phb->init_m64 || phb->init_m64(phb))
3258 		hose->mem_resources[1].flags = 0;
3259 }
3260 
3261 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3262 {
3263 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3264 }
3265 
3266 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3267 {
3268 	struct device_node *phbn;
3269 	const __be64 *prop64;
3270 	u64 hub_id;
3271 
3272 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3273 
3274 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3275 	if (!prop64) {
3276 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3277 		return;
3278 	}
3279 	hub_id = be64_to_cpup(prop64);
3280 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3281 
3282 	/* Count child PHBs */
3283 	for_each_child_of_node(np, phbn) {
3284 		/* Look for IODA1 PHBs */
3285 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3286 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3287 	}
3288 }
3289