1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7 
8 #undef DEBUG
9 
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 #include <linux/debugfs.h>
24 
25 #include <asm/sections.h>
26 #include <asm/io.h>
27 #include <asm/prom.h>
28 #include <asm/pci-bridge.h>
29 #include <asm/machdep.h>
30 #include <asm/msi_bitmap.h>
31 #include <asm/ppc-pci.h>
32 #include <asm/opal.h>
33 #include <asm/iommu.h>
34 #include <asm/tce.h>
35 #include <asm/xics.h>
36 #include <asm/firmware.h>
37 #include <asm/pnv-pci.h>
38 #include <asm/mmzone.h>
39 #include <asm/xive.h>
40 
41 #include <misc/cxl-base.h>
42 
43 #include "powernv.h"
44 #include "pci.h"
45 #include "../../../../drivers/pci/pci.h"
46 
47 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
48 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
49 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
50 
51 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_OCAPI" };
52 
53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
54 static void pnv_pci_configure_bus(struct pci_bus *bus);
55 
56 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
57 			    const char *fmt, ...)
58 {
59 	struct va_format vaf;
60 	va_list args;
61 	char pfix[32];
62 
63 	va_start(args, fmt);
64 
65 	vaf.fmt = fmt;
66 	vaf.va = &args;
67 
68 	if (pe->flags & PNV_IODA_PE_DEV)
69 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
70 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
71 		sprintf(pfix, "%04x:%02x     ",
72 			pci_domain_nr(pe->pbus), pe->pbus->number);
73 #ifdef CONFIG_PCI_IOV
74 	else if (pe->flags & PNV_IODA_PE_VF)
75 		sprintf(pfix, "%04x:%02x:%2x.%d",
76 			pci_domain_nr(pe->parent_dev->bus),
77 			(pe->rid & 0xff00) >> 8,
78 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
79 #endif /* CONFIG_PCI_IOV*/
80 
81 	printk("%spci %s: [PE# %.2x] %pV",
82 	       level, pfix, pe->pe_number, &vaf);
83 
84 	va_end(args);
85 }
86 
87 static bool pnv_iommu_bypass_disabled __read_mostly;
88 static bool pci_reset_phbs __read_mostly;
89 
90 static int __init iommu_setup(char *str)
91 {
92 	if (!str)
93 		return -EINVAL;
94 
95 	while (*str) {
96 		if (!strncmp(str, "nobypass", 8)) {
97 			pnv_iommu_bypass_disabled = true;
98 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
99 			break;
100 		}
101 		str += strcspn(str, ",");
102 		if (*str == ',')
103 			str++;
104 	}
105 
106 	return 0;
107 }
108 early_param("iommu", iommu_setup);
109 
110 static int __init pci_reset_phbs_setup(char *str)
111 {
112 	pci_reset_phbs = true;
113 	return 0;
114 }
115 
116 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
117 
118 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
119 {
120 	s64 rc;
121 
122 	phb->ioda.pe_array[pe_no].phb = phb;
123 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
124 	phb->ioda.pe_array[pe_no].dma_setup_done = false;
125 
126 	/*
127 	 * Clear the PE frozen state as it might be put into frozen state
128 	 * in the last PCI remove path. It's not harmful to do so when the
129 	 * PE is already in unfrozen state.
130 	 */
131 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
132 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
133 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
134 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
135 			__func__, rc, phb->hose->global_number, pe_no);
136 
137 	return &phb->ioda.pe_array[pe_no];
138 }
139 
140 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
141 {
142 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
143 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
144 			__func__, pe_no, phb->hose->global_number);
145 		return;
146 	}
147 
148 	mutex_lock(&phb->ioda.pe_alloc_mutex);
149 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
150 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
151 			 __func__, pe_no, phb->hose->global_number);
152 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
153 
154 	pnv_ioda_init_pe(phb, pe_no);
155 }
156 
157 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
158 {
159 	struct pnv_ioda_pe *ret = NULL;
160 	int run = 0, pe, i;
161 
162 	mutex_lock(&phb->ioda.pe_alloc_mutex);
163 
164 	/* scan backwards for a run of @count cleared bits */
165 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
166 		if (test_bit(pe, phb->ioda.pe_alloc)) {
167 			run = 0;
168 			continue;
169 		}
170 
171 		run++;
172 		if (run == count)
173 			break;
174 	}
175 	if (run != count)
176 		goto out;
177 
178 	for (i = pe; i < pe + count; i++) {
179 		set_bit(i, phb->ioda.pe_alloc);
180 		pnv_ioda_init_pe(phb, i);
181 	}
182 	ret = &phb->ioda.pe_array[pe];
183 
184 out:
185 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
186 	return ret;
187 }
188 
189 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
190 {
191 	struct pnv_phb *phb = pe->phb;
192 	unsigned int pe_num = pe->pe_number;
193 
194 	WARN_ON(pe->pdev);
195 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
196 
197 	mutex_lock(&phb->ioda.pe_alloc_mutex);
198 	clear_bit(pe_num, phb->ioda.pe_alloc);
199 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
200 }
201 
202 /* The default M64 BAR is shared by all PEs */
203 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
204 {
205 	const char *desc;
206 	struct resource *r;
207 	s64 rc;
208 
209 	/* Configure the default M64 BAR */
210 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
211 					 OPAL_M64_WINDOW_TYPE,
212 					 phb->ioda.m64_bar_idx,
213 					 phb->ioda.m64_base,
214 					 0, /* unused */
215 					 phb->ioda.m64_size);
216 	if (rc != OPAL_SUCCESS) {
217 		desc = "configuring";
218 		goto fail;
219 	}
220 
221 	/* Enable the default M64 BAR */
222 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
223 				      OPAL_M64_WINDOW_TYPE,
224 				      phb->ioda.m64_bar_idx,
225 				      OPAL_ENABLE_M64_SPLIT);
226 	if (rc != OPAL_SUCCESS) {
227 		desc = "enabling";
228 		goto fail;
229 	}
230 
231 	/*
232 	 * Exclude the segments for reserved and root bus PE, which
233 	 * are first or last two PEs.
234 	 */
235 	r = &phb->hose->mem_resources[1];
236 	if (phb->ioda.reserved_pe_idx == 0)
237 		r->start += (2 * phb->ioda.m64_segsize);
238 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
239 		r->end -= (2 * phb->ioda.m64_segsize);
240 	else
241 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
242 			phb->ioda.reserved_pe_idx);
243 
244 	return 0;
245 
246 fail:
247 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
248 		rc, desc, phb->ioda.m64_bar_idx);
249 	opal_pci_phb_mmio_enable(phb->opal_id,
250 				 OPAL_M64_WINDOW_TYPE,
251 				 phb->ioda.m64_bar_idx,
252 				 OPAL_DISABLE_M64);
253 	return -EIO;
254 }
255 
256 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
257 					 unsigned long *pe_bitmap)
258 {
259 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
260 	struct resource *r;
261 	resource_size_t base, sgsz, start, end;
262 	int segno, i;
263 
264 	base = phb->ioda.m64_base;
265 	sgsz = phb->ioda.m64_segsize;
266 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
267 		r = &pdev->resource[i];
268 		if (!r->parent || !pnv_pci_is_m64(phb, r))
269 			continue;
270 
271 		start = ALIGN_DOWN(r->start - base, sgsz);
272 		end = ALIGN(r->end - base, sgsz);
273 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
274 			if (pe_bitmap)
275 				set_bit(segno, pe_bitmap);
276 			else
277 				pnv_ioda_reserve_pe(phb, segno);
278 		}
279 	}
280 }
281 
282 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
283 {
284 	struct resource *r;
285 	int index;
286 
287 	/*
288 	 * There are 16 M64 BARs, each of which has 8 segments. So
289 	 * there are as many M64 segments as the maximum number of
290 	 * PEs, which is 128.
291 	 */
292 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
293 		unsigned long base, segsz = phb->ioda.m64_segsize;
294 		int64_t rc;
295 
296 		base = phb->ioda.m64_base +
297 		       index * PNV_IODA1_M64_SEGS * segsz;
298 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
299 				OPAL_M64_WINDOW_TYPE, index, base, 0,
300 				PNV_IODA1_M64_SEGS * segsz);
301 		if (rc != OPAL_SUCCESS) {
302 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
303 				rc, phb->hose->global_number, index);
304 			goto fail;
305 		}
306 
307 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
308 				OPAL_M64_WINDOW_TYPE, index,
309 				OPAL_ENABLE_M64_SPLIT);
310 		if (rc != OPAL_SUCCESS) {
311 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
312 				rc, phb->hose->global_number, index);
313 			goto fail;
314 		}
315 	}
316 
317 	for (index = 0; index < phb->ioda.total_pe_num; index++) {
318 		int64_t rc;
319 
320 		/*
321 		 * P7IOC supports M64DT, which helps mapping M64 segment
322 		 * to one particular PE#. However, PHB3 has fixed mapping
323 		 * between M64 segment and PE#. In order to have same logic
324 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
325 		 * segment and PE# on P7IOC.
326 		 */
327 		rc = opal_pci_map_pe_mmio_window(phb->opal_id,
328 				index, OPAL_M64_WINDOW_TYPE,
329 				index / PNV_IODA1_M64_SEGS,
330 				index % PNV_IODA1_M64_SEGS);
331 		if (rc != OPAL_SUCCESS) {
332 			pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
333 				__func__, rc, phb->hose->global_number,
334 				index);
335 			goto fail;
336 		}
337 	}
338 
339 	/*
340 	 * Exclude the segments for reserved and root bus PE, which
341 	 * are first or last two PEs.
342 	 */
343 	r = &phb->hose->mem_resources[1];
344 	if (phb->ioda.reserved_pe_idx == 0)
345 		r->start += (2 * phb->ioda.m64_segsize);
346 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
347 		r->end -= (2 * phb->ioda.m64_segsize);
348 	else
349 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
350 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
351 
352 	return 0;
353 
354 fail:
355 	for ( ; index >= 0; index--)
356 		opal_pci_phb_mmio_enable(phb->opal_id,
357 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
358 
359 	return -EIO;
360 }
361 
362 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
363 				    unsigned long *pe_bitmap,
364 				    bool all)
365 {
366 	struct pci_dev *pdev;
367 
368 	list_for_each_entry(pdev, &bus->devices, bus_list) {
369 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
370 
371 		if (all && pdev->subordinate)
372 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
373 						pe_bitmap, all);
374 	}
375 }
376 
377 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
378 {
379 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
380 	struct pnv_ioda_pe *master_pe, *pe;
381 	unsigned long size, *pe_alloc;
382 	int i;
383 
384 	/* Root bus shouldn't use M64 */
385 	if (pci_is_root_bus(bus))
386 		return NULL;
387 
388 	/* Allocate bitmap */
389 	size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
390 	pe_alloc = kzalloc(size, GFP_KERNEL);
391 	if (!pe_alloc) {
392 		pr_warn("%s: Out of memory !\n",
393 			__func__);
394 		return NULL;
395 	}
396 
397 	/* Figure out reserved PE numbers by the PE */
398 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
399 
400 	/*
401 	 * the current bus might not own M64 window and that's all
402 	 * contributed by its child buses. For the case, we needn't
403 	 * pick M64 dependent PE#.
404 	 */
405 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
406 		kfree(pe_alloc);
407 		return NULL;
408 	}
409 
410 	/*
411 	 * Figure out the master PE and put all slave PEs to master
412 	 * PE's list to form compound PE.
413 	 */
414 	master_pe = NULL;
415 	i = -1;
416 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
417 		phb->ioda.total_pe_num) {
418 		pe = &phb->ioda.pe_array[i];
419 
420 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
421 		if (!master_pe) {
422 			pe->flags |= PNV_IODA_PE_MASTER;
423 			INIT_LIST_HEAD(&pe->slaves);
424 			master_pe = pe;
425 		} else {
426 			pe->flags |= PNV_IODA_PE_SLAVE;
427 			pe->master = master_pe;
428 			list_add_tail(&pe->list, &master_pe->slaves);
429 		}
430 	}
431 
432 	kfree(pe_alloc);
433 	return master_pe;
434 }
435 
436 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
437 {
438 	struct pci_controller *hose = phb->hose;
439 	struct device_node *dn = hose->dn;
440 	struct resource *res;
441 	u32 m64_range[2], i;
442 	const __be32 *r;
443 	u64 pci_addr;
444 
445 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
446 		pr_info("  Not support M64 window\n");
447 		return;
448 	}
449 
450 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
451 		pr_info("  Firmware too old to support M64 window\n");
452 		return;
453 	}
454 
455 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
456 	if (!r) {
457 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
458 			dn);
459 		return;
460 	}
461 
462 	/*
463 	 * Find the available M64 BAR range and pickup the last one for
464 	 * covering the whole 64-bits space. We support only one range.
465 	 */
466 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
467 				       m64_range, 2)) {
468 		/* In absence of the property, assume 0..15 */
469 		m64_range[0] = 0;
470 		m64_range[1] = 16;
471 	}
472 	/* We only support 64 bits in our allocator */
473 	if (m64_range[1] > 63) {
474 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
475 			__func__, m64_range[1], phb->hose->global_number);
476 		m64_range[1] = 63;
477 	}
478 	/* Empty range, no m64 */
479 	if (m64_range[1] <= m64_range[0]) {
480 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
481 			__func__, phb->hose->global_number);
482 		return;
483 	}
484 
485 	/* Configure M64 informations */
486 	res = &hose->mem_resources[1];
487 	res->name = dn->full_name;
488 	res->start = of_translate_address(dn, r + 2);
489 	res->end = res->start + of_read_number(r + 4, 2) - 1;
490 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
491 	pci_addr = of_read_number(r, 2);
492 	hose->mem_offset[1] = res->start - pci_addr;
493 
494 	phb->ioda.m64_size = resource_size(res);
495 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
496 	phb->ioda.m64_base = pci_addr;
497 
498 	/* This lines up nicely with the display from processing OF ranges */
499 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
500 		res->start, res->end, pci_addr, m64_range[0],
501 		m64_range[0] + m64_range[1] - 1);
502 
503 	/* Mark all M64 used up by default */
504 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
505 
506 	/* Use last M64 BAR to cover M64 window */
507 	m64_range[1]--;
508 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
509 
510 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
511 
512 	/* Mark remaining ones free */
513 	for (i = m64_range[0]; i < m64_range[1]; i++)
514 		clear_bit(i, &phb->ioda.m64_bar_alloc);
515 
516 	/*
517 	 * Setup init functions for M64 based on IODA version, IODA3 uses
518 	 * the IODA2 code.
519 	 */
520 	if (phb->type == PNV_PHB_IODA1)
521 		phb->init_m64 = pnv_ioda1_init_m64;
522 	else
523 		phb->init_m64 = pnv_ioda2_init_m64;
524 }
525 
526 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
527 {
528 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
529 	struct pnv_ioda_pe *slave;
530 	s64 rc;
531 
532 	/* Fetch master PE */
533 	if (pe->flags & PNV_IODA_PE_SLAVE) {
534 		pe = pe->master;
535 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
536 			return;
537 
538 		pe_no = pe->pe_number;
539 	}
540 
541 	/* Freeze master PE */
542 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
543 				     pe_no,
544 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
545 	if (rc != OPAL_SUCCESS) {
546 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
547 			__func__, rc, phb->hose->global_number, pe_no);
548 		return;
549 	}
550 
551 	/* Freeze slave PEs */
552 	if (!(pe->flags & PNV_IODA_PE_MASTER))
553 		return;
554 
555 	list_for_each_entry(slave, &pe->slaves, list) {
556 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
557 					     slave->pe_number,
558 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
559 		if (rc != OPAL_SUCCESS)
560 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
561 				__func__, rc, phb->hose->global_number,
562 				slave->pe_number);
563 	}
564 }
565 
566 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
567 {
568 	struct pnv_ioda_pe *pe, *slave;
569 	s64 rc;
570 
571 	/* Find master PE */
572 	pe = &phb->ioda.pe_array[pe_no];
573 	if (pe->flags & PNV_IODA_PE_SLAVE) {
574 		pe = pe->master;
575 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
576 		pe_no = pe->pe_number;
577 	}
578 
579 	/* Clear frozen state for master PE */
580 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
581 	if (rc != OPAL_SUCCESS) {
582 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
583 			__func__, rc, opt, phb->hose->global_number, pe_no);
584 		return -EIO;
585 	}
586 
587 	if (!(pe->flags & PNV_IODA_PE_MASTER))
588 		return 0;
589 
590 	/* Clear frozen state for slave PEs */
591 	list_for_each_entry(slave, &pe->slaves, list) {
592 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
593 					     slave->pe_number,
594 					     opt);
595 		if (rc != OPAL_SUCCESS) {
596 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
597 				__func__, rc, opt, phb->hose->global_number,
598 				slave->pe_number);
599 			return -EIO;
600 		}
601 	}
602 
603 	return 0;
604 }
605 
606 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
607 {
608 	struct pnv_ioda_pe *slave, *pe;
609 	u8 fstate = 0, state;
610 	__be16 pcierr = 0;
611 	s64 rc;
612 
613 	/* Sanity check on PE number */
614 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
615 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
616 
617 	/*
618 	 * Fetch the master PE and the PE instance might be
619 	 * not initialized yet.
620 	 */
621 	pe = &phb->ioda.pe_array[pe_no];
622 	if (pe->flags & PNV_IODA_PE_SLAVE) {
623 		pe = pe->master;
624 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
625 		pe_no = pe->pe_number;
626 	}
627 
628 	/* Check the master PE */
629 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
630 					&state, &pcierr, NULL);
631 	if (rc != OPAL_SUCCESS) {
632 		pr_warn("%s: Failure %lld getting "
633 			"PHB#%x-PE#%x state\n",
634 			__func__, rc,
635 			phb->hose->global_number, pe_no);
636 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
637 	}
638 
639 	/* Check the slave PE */
640 	if (!(pe->flags & PNV_IODA_PE_MASTER))
641 		return state;
642 
643 	list_for_each_entry(slave, &pe->slaves, list) {
644 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
645 						slave->pe_number,
646 						&fstate,
647 						&pcierr,
648 						NULL);
649 		if (rc != OPAL_SUCCESS) {
650 			pr_warn("%s: Failure %lld getting "
651 				"PHB#%x-PE#%x state\n",
652 				__func__, rc,
653 				phb->hose->global_number, slave->pe_number);
654 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
655 		}
656 
657 		/*
658 		 * Override the result based on the ascending
659 		 * priority.
660 		 */
661 		if (fstate > state)
662 			state = fstate;
663 	}
664 
665 	return state;
666 }
667 
668 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
669 {
670 	int pe_number = phb->ioda.pe_rmap[bdfn];
671 
672 	if (pe_number == IODA_INVALID_PE)
673 		return NULL;
674 
675 	return &phb->ioda.pe_array[pe_number];
676 }
677 
678 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
679 {
680 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
681 	struct pci_dn *pdn = pci_get_pdn(dev);
682 
683 	if (!pdn)
684 		return NULL;
685 	if (pdn->pe_number == IODA_INVALID_PE)
686 		return NULL;
687 	return &phb->ioda.pe_array[pdn->pe_number];
688 }
689 
690 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
691 				  struct pnv_ioda_pe *parent,
692 				  struct pnv_ioda_pe *child,
693 				  bool is_add)
694 {
695 	const char *desc = is_add ? "adding" : "removing";
696 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
697 			      OPAL_REMOVE_PE_FROM_DOMAIN;
698 	struct pnv_ioda_pe *slave;
699 	long rc;
700 
701 	/* Parent PE affects child PE */
702 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
703 				child->pe_number, op);
704 	if (rc != OPAL_SUCCESS) {
705 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
706 			rc, desc);
707 		return -ENXIO;
708 	}
709 
710 	if (!(child->flags & PNV_IODA_PE_MASTER))
711 		return 0;
712 
713 	/* Compound case: parent PE affects slave PEs */
714 	list_for_each_entry(slave, &child->slaves, list) {
715 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
716 					slave->pe_number, op);
717 		if (rc != OPAL_SUCCESS) {
718 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
719 				rc, desc);
720 			return -ENXIO;
721 		}
722 	}
723 
724 	return 0;
725 }
726 
727 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
728 			      struct pnv_ioda_pe *pe,
729 			      bool is_add)
730 {
731 	struct pnv_ioda_pe *slave;
732 	struct pci_dev *pdev = NULL;
733 	int ret;
734 
735 	/*
736 	 * Clear PE frozen state. If it's master PE, we need
737 	 * clear slave PE frozen state as well.
738 	 */
739 	if (is_add) {
740 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
741 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
742 		if (pe->flags & PNV_IODA_PE_MASTER) {
743 			list_for_each_entry(slave, &pe->slaves, list)
744 				opal_pci_eeh_freeze_clear(phb->opal_id,
745 							  slave->pe_number,
746 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
747 		}
748 	}
749 
750 	/*
751 	 * Associate PE in PELT. We need add the PE into the
752 	 * corresponding PELT-V as well. Otherwise, the error
753 	 * originated from the PE might contribute to other
754 	 * PEs.
755 	 */
756 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
757 	if (ret)
758 		return ret;
759 
760 	/* For compound PEs, any one affects all of them */
761 	if (pe->flags & PNV_IODA_PE_MASTER) {
762 		list_for_each_entry(slave, &pe->slaves, list) {
763 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
764 			if (ret)
765 				return ret;
766 		}
767 	}
768 
769 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
770 		pdev = pe->pbus->self;
771 	else if (pe->flags & PNV_IODA_PE_DEV)
772 		pdev = pe->pdev->bus->self;
773 #ifdef CONFIG_PCI_IOV
774 	else if (pe->flags & PNV_IODA_PE_VF)
775 		pdev = pe->parent_dev;
776 #endif /* CONFIG_PCI_IOV */
777 	while (pdev) {
778 		struct pci_dn *pdn = pci_get_pdn(pdev);
779 		struct pnv_ioda_pe *parent;
780 
781 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
782 			parent = &phb->ioda.pe_array[pdn->pe_number];
783 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
784 			if (ret)
785 				return ret;
786 		}
787 
788 		pdev = pdev->bus->self;
789 	}
790 
791 	return 0;
792 }
793 
794 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
795 				 struct pnv_ioda_pe *pe,
796 				 struct pci_dev *parent)
797 {
798 	int64_t rc;
799 
800 	while (parent) {
801 		struct pci_dn *pdn = pci_get_pdn(parent);
802 
803 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
804 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
805 						pe->pe_number,
806 						OPAL_REMOVE_PE_FROM_DOMAIN);
807 			/* XXX What to do in case of error ? */
808 		}
809 		parent = parent->bus->self;
810 	}
811 
812 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
813 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
814 
815 	/* Disassociate PE in PELT */
816 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
817 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
818 	if (rc)
819 		pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
820 }
821 
822 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
823 {
824 	struct pci_dev *parent;
825 	uint8_t bcomp, dcomp, fcomp;
826 	int64_t rc;
827 	long rid_end, rid;
828 
829 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
830 	if (pe->pbus) {
831 		int count;
832 
833 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
834 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
835 		parent = pe->pbus->self;
836 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
837 			count = resource_size(&pe->pbus->busn_res);
838 		else
839 			count = 1;
840 
841 		switch(count) {
842 		case  1: bcomp = OpalPciBusAll;         break;
843 		case  2: bcomp = OpalPciBus7Bits;       break;
844 		case  4: bcomp = OpalPciBus6Bits;       break;
845 		case  8: bcomp = OpalPciBus5Bits;       break;
846 		case 16: bcomp = OpalPciBus4Bits;       break;
847 		case 32: bcomp = OpalPciBus3Bits;       break;
848 		default:
849 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
850 			        count);
851 			/* Do an exact match only */
852 			bcomp = OpalPciBusAll;
853 		}
854 		rid_end = pe->rid + (count << 8);
855 	} else {
856 #ifdef CONFIG_PCI_IOV
857 		if (pe->flags & PNV_IODA_PE_VF)
858 			parent = pe->parent_dev;
859 		else
860 #endif
861 			parent = pe->pdev->bus->self;
862 		bcomp = OpalPciBusAll;
863 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
864 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
865 		rid_end = pe->rid + 1;
866 	}
867 
868 	/* Clear the reverse map */
869 	for (rid = pe->rid; rid < rid_end; rid++)
870 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
871 
872 	/*
873 	 * Release from all parents PELT-V. NPUs don't have a PELTV
874 	 * table
875 	 */
876 	if (phb->type != PNV_PHB_NPU_OCAPI)
877 		pnv_ioda_unset_peltv(phb, pe, parent);
878 
879 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
880 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
881 	if (rc)
882 		pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
883 
884 	pe->pbus = NULL;
885 	pe->pdev = NULL;
886 #ifdef CONFIG_PCI_IOV
887 	pe->parent_dev = NULL;
888 #endif
889 
890 	return 0;
891 }
892 
893 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
894 {
895 	uint8_t bcomp, dcomp, fcomp;
896 	long rc, rid_end, rid;
897 
898 	/* Bus validation ? */
899 	if (pe->pbus) {
900 		int count;
901 
902 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
903 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
904 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
905 			count = resource_size(&pe->pbus->busn_res);
906 		else
907 			count = 1;
908 
909 		switch(count) {
910 		case  1: bcomp = OpalPciBusAll;		break;
911 		case  2: bcomp = OpalPciBus7Bits;	break;
912 		case  4: bcomp = OpalPciBus6Bits;	break;
913 		case  8: bcomp = OpalPciBus5Bits;	break;
914 		case 16: bcomp = OpalPciBus4Bits;	break;
915 		case 32: bcomp = OpalPciBus3Bits;	break;
916 		default:
917 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
918 			        count);
919 			/* Do an exact match only */
920 			bcomp = OpalPciBusAll;
921 		}
922 		rid_end = pe->rid + (count << 8);
923 	} else {
924 		bcomp = OpalPciBusAll;
925 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
926 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
927 		rid_end = pe->rid + 1;
928 	}
929 
930 	/*
931 	 * Associate PE in PELT. We need add the PE into the
932 	 * corresponding PELT-V as well. Otherwise, the error
933 	 * originated from the PE might contribute to other
934 	 * PEs.
935 	 */
936 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
937 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
938 	if (rc) {
939 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
940 		return -ENXIO;
941 	}
942 
943 	/*
944 	 * Configure PELTV. NPUs don't have a PELTV table so skip
945 	 * configuration on them.
946 	 */
947 	if (phb->type != PNV_PHB_NPU_OCAPI)
948 		pnv_ioda_set_peltv(phb, pe, true);
949 
950 	/* Setup reverse map */
951 	for (rid = pe->rid; rid < rid_end; rid++)
952 		phb->ioda.pe_rmap[rid] = pe->pe_number;
953 
954 	/* Setup one MVTs on IODA1 */
955 	if (phb->type != PNV_PHB_IODA1) {
956 		pe->mve_number = 0;
957 		goto out;
958 	}
959 
960 	pe->mve_number = pe->pe_number;
961 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
962 	if (rc != OPAL_SUCCESS) {
963 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
964 		       rc, pe->mve_number);
965 		pe->mve_number = -1;
966 	} else {
967 		rc = opal_pci_set_mve_enable(phb->opal_id,
968 					     pe->mve_number, OPAL_ENABLE_MVE);
969 		if (rc) {
970 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
971 			       rc, pe->mve_number);
972 			pe->mve_number = -1;
973 		}
974 	}
975 
976 out:
977 	return 0;
978 }
979 
980 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
981 {
982 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
983 	struct pci_dn *pdn = pci_get_pdn(dev);
984 	struct pnv_ioda_pe *pe;
985 
986 	if (!pdn) {
987 		pr_err("%s: Device tree node not associated properly\n",
988 			   pci_name(dev));
989 		return NULL;
990 	}
991 	if (pdn->pe_number != IODA_INVALID_PE)
992 		return NULL;
993 
994 	pe = pnv_ioda_alloc_pe(phb, 1);
995 	if (!pe) {
996 		pr_warn("%s: Not enough PE# available, disabling device\n",
997 			pci_name(dev));
998 		return NULL;
999 	}
1000 
1001 	/* NOTE: We don't get a reference for the pointer in the PE
1002 	 * data structure, both the device and PE structures should be
1003 	 * destroyed at the same time.
1004 	 *
1005 	 * At some point we want to remove the PDN completely anyways
1006 	 */
1007 	pdn->pe_number = pe->pe_number;
1008 	pe->flags = PNV_IODA_PE_DEV;
1009 	pe->pdev = dev;
1010 	pe->pbus = NULL;
1011 	pe->mve_number = -1;
1012 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1013 	pe->device_count++;
1014 
1015 	pe_info(pe, "Associated device to PE\n");
1016 
1017 	if (pnv_ioda_configure_pe(phb, pe)) {
1018 		/* XXX What do we do here ? */
1019 		pnv_ioda_free_pe(pe);
1020 		pdn->pe_number = IODA_INVALID_PE;
1021 		pe->pdev = NULL;
1022 		return NULL;
1023 	}
1024 
1025 	/* Put PE to the list */
1026 	mutex_lock(&phb->ioda.pe_list_mutex);
1027 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1028 	mutex_unlock(&phb->ioda.pe_list_mutex);
1029 	return pe;
1030 }
1031 
1032 /*
1033  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1034  * single PCI bus. Another one that contains the primary PCI bus and its
1035  * subordinate PCI devices and buses. The second type of PE is normally
1036  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1037  */
1038 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1039 {
1040 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
1041 	struct pnv_ioda_pe *pe = NULL;
1042 	unsigned int pe_num;
1043 
1044 	/*
1045 	 * In partial hotplug case, the PE instance might be still alive.
1046 	 * We should reuse it instead of allocating a new one.
1047 	 */
1048 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1049 	if (WARN_ON(pe_num != IODA_INVALID_PE)) {
1050 		pe = &phb->ioda.pe_array[pe_num];
1051 		return NULL;
1052 	}
1053 
1054 	/* PE number for root bus should have been reserved */
1055 	if (pci_is_root_bus(bus))
1056 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1057 
1058 	/* Check if PE is determined by M64 */
1059 	if (!pe)
1060 		pe = pnv_ioda_pick_m64_pe(bus, all);
1061 
1062 	/* The PE number isn't pinned by M64 */
1063 	if (!pe)
1064 		pe = pnv_ioda_alloc_pe(phb, 1);
1065 
1066 	if (!pe) {
1067 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1068 			__func__, pci_domain_nr(bus), bus->number);
1069 		return NULL;
1070 	}
1071 
1072 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1073 	pe->pbus = bus;
1074 	pe->pdev = NULL;
1075 	pe->mve_number = -1;
1076 	pe->rid = bus->busn_res.start << 8;
1077 
1078 	if (all)
1079 		pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1080 			&bus->busn_res.start, &bus->busn_res.end,
1081 			pe->pe_number);
1082 	else
1083 		pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1084 			&bus->busn_res.start, pe->pe_number);
1085 
1086 	if (pnv_ioda_configure_pe(phb, pe)) {
1087 		/* XXX What do we do here ? */
1088 		pnv_ioda_free_pe(pe);
1089 		pe->pbus = NULL;
1090 		return NULL;
1091 	}
1092 
1093 	/* Put PE to the list */
1094 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1095 
1096 	return pe;
1097 }
1098 
1099 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1100 				       struct pnv_ioda_pe *pe);
1101 
1102 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1103 {
1104 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1105 	struct pci_dn *pdn = pci_get_pdn(pdev);
1106 	struct pnv_ioda_pe *pe;
1107 
1108 	/* Check if the BDFN for this device is associated with a PE yet */
1109 	pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1110 	if (!pe) {
1111 		/* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1112 		if (WARN_ON(pdev->is_virtfn))
1113 			return;
1114 
1115 		pnv_pci_configure_bus(pdev->bus);
1116 		pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1117 		pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1118 
1119 
1120 		/*
1121 		 * If we can't setup the IODA PE something has gone horribly
1122 		 * wrong and we can't enable DMA for the device.
1123 		 */
1124 		if (WARN_ON(!pe))
1125 			return;
1126 	} else {
1127 		pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1128 	}
1129 
1130 	/*
1131 	 * We assume that bridges *probably* don't need to do any DMA so we can
1132 	 * skip allocating a TCE table, etc unless we get a non-bridge device.
1133 	 */
1134 	if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1135 		switch (phb->type) {
1136 		case PNV_PHB_IODA1:
1137 			pnv_pci_ioda1_setup_dma_pe(phb, pe);
1138 			break;
1139 		case PNV_PHB_IODA2:
1140 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
1141 			break;
1142 		default:
1143 			pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1144 				__func__, phb->hose->global_number, phb->type);
1145 		}
1146 	}
1147 
1148 	if (pdn)
1149 		pdn->pe_number = pe->pe_number;
1150 	pe->device_count++;
1151 
1152 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1153 	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1154 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1155 
1156 	/* PEs with a DMA weight of zero won't have a group */
1157 	if (pe->table_group.group)
1158 		iommu_add_device(&pe->table_group, &pdev->dev);
1159 }
1160 
1161 /*
1162  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1163  *
1164  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1165  * Devices can only access more than that if bit 59 of the PCI address is set
1166  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1167  * Many PCI devices are not capable of addressing that many bits, and as a
1168  * result are limited to the 4GB of virtual memory made available to 32-bit
1169  * devices in TVE#0.
1170  *
1171  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1172  * devices by configuring the virtual memory past the first 4GB inaccessible
1173  * by 64-bit DMAs.  This should only be used by devices that want more than
1174  * 4GB, and only on PEs that have no 32-bit devices.
1175  *
1176  * Currently this will only work on PHB3 (POWER8).
1177  */
1178 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1179 {
1180 	u64 window_size, table_size, tce_count, addr;
1181 	struct page *table_pages;
1182 	u64 tce_order = 28; /* 256MB TCEs */
1183 	__be64 *tces;
1184 	s64 rc;
1185 
1186 	/*
1187 	 * Window size needs to be a power of two, but needs to account for
1188 	 * shifting memory by the 4GB offset required to skip 32bit space.
1189 	 */
1190 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1191 	tce_count = window_size >> tce_order;
1192 	table_size = tce_count << 3;
1193 
1194 	if (table_size < PAGE_SIZE)
1195 		table_size = PAGE_SIZE;
1196 
1197 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1198 				       get_order(table_size));
1199 	if (!table_pages)
1200 		goto err;
1201 
1202 	tces = page_address(table_pages);
1203 	if (!tces)
1204 		goto err;
1205 
1206 	memset(tces, 0, table_size);
1207 
1208 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1209 		tces[(addr + (1ULL << 32)) >> tce_order] =
1210 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1211 	}
1212 
1213 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1214 					pe->pe_number,
1215 					/* reconfigure window 0 */
1216 					(pe->pe_number << 1) + 0,
1217 					1,
1218 					__pa(tces),
1219 					table_size,
1220 					1 << tce_order);
1221 	if (rc == OPAL_SUCCESS) {
1222 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1223 		return 0;
1224 	}
1225 err:
1226 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1227 	return -EIO;
1228 }
1229 
1230 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1231 		u64 dma_mask)
1232 {
1233 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1234 	struct pci_dn *pdn = pci_get_pdn(pdev);
1235 	struct pnv_ioda_pe *pe;
1236 
1237 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1238 		return false;
1239 
1240 	pe = &phb->ioda.pe_array[pdn->pe_number];
1241 	if (pe->tce_bypass_enabled) {
1242 		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1243 		if (dma_mask >= top)
1244 			return true;
1245 	}
1246 
1247 	/*
1248 	 * If the device can't set the TCE bypass bit but still wants
1249 	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1250 	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1251 	 * The device needs to be able to address all of this space.
1252 	 */
1253 	if (dma_mask >> 32 &&
1254 	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1255 	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1256 	    (pe->device_count == 1 || !pe->pbus) &&
1257 	    phb->model == PNV_PHB_MODEL_PHB3) {
1258 		/* Configure the bypass mode */
1259 		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1260 		if (rc)
1261 			return false;
1262 		/* 4GB offset bypasses 32-bit space */
1263 		pdev->dev.archdata.dma_offset = (1ULL << 32);
1264 		return true;
1265 	}
1266 
1267 	return false;
1268 }
1269 
1270 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb)
1271 {
1272 	return phb->regs + 0x210;
1273 }
1274 
1275 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1276 		unsigned long index, unsigned long npages)
1277 {
1278 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1279 			&tbl->it_group_list, struct iommu_table_group_link,
1280 			next);
1281 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1282 			struct pnv_ioda_pe, table_group);
1283 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1284 	unsigned long start, end, inc;
1285 
1286 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1287 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1288 			npages - 1);
1289 
1290 	/* p7ioc-style invalidation, 2 TCEs per write */
1291 	start |= (1ull << 63);
1292 	end |= (1ull << 63);
1293 	inc = 16;
1294         end |= inc - 1;	/* round up end to be different than start */
1295 
1296         mb(); /* Ensure above stores are visible */
1297         while (start <= end) {
1298 		__raw_writeq_be(start, invalidate);
1299                 start += inc;
1300         }
1301 
1302 	/*
1303 	 * The iommu layer will do another mb() for us on build()
1304 	 * and we don't care on free()
1305 	 */
1306 }
1307 
1308 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1309 		long npages, unsigned long uaddr,
1310 		enum dma_data_direction direction,
1311 		unsigned long attrs)
1312 {
1313 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1314 			attrs);
1315 
1316 	if (!ret)
1317 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages);
1318 
1319 	return ret;
1320 }
1321 
1322 #ifdef CONFIG_IOMMU_API
1323 /* Common for IODA1 and IODA2 */
1324 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1325 		unsigned long *hpa, enum dma_data_direction *direction)
1326 {
1327 	return pnv_tce_xchg(tbl, index, hpa, direction);
1328 }
1329 #endif
1330 
1331 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1332 		long npages)
1333 {
1334 	pnv_tce_free(tbl, index, npages);
1335 
1336 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages);
1337 }
1338 
1339 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1340 	.set = pnv_ioda1_tce_build,
1341 #ifdef CONFIG_IOMMU_API
1342 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1343 	.tce_kill = pnv_pci_p7ioc_tce_invalidate,
1344 	.useraddrptr = pnv_tce_useraddrptr,
1345 #endif
1346 	.clear = pnv_ioda1_tce_free,
1347 	.get = pnv_tce_get,
1348 };
1349 
1350 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1351 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1352 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1353 
1354 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1355 {
1356 	/* 01xb - invalidate TCEs that match the specified PE# */
1357 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1358 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1359 
1360 	mb(); /* Ensure above stores are visible */
1361 	__raw_writeq_be(val, invalidate);
1362 }
1363 
1364 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe,
1365 					unsigned shift, unsigned long index,
1366 					unsigned long npages)
1367 {
1368 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1369 	unsigned long start, end, inc;
1370 
1371 	/* We'll invalidate DMA address in PE scope */
1372 	start = PHB3_TCE_KILL_INVAL_ONE;
1373 	start |= (pe->pe_number & 0xFF);
1374 	end = start;
1375 
1376 	/* Figure out the start, end and step */
1377 	start |= (index << shift);
1378 	end |= ((index + npages - 1) << shift);
1379 	inc = (0x1ull << shift);
1380 	mb();
1381 
1382 	while (start <= end) {
1383 		__raw_writeq_be(start, invalidate);
1384 		start += inc;
1385 	}
1386 }
1387 
1388 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1389 {
1390 	struct pnv_phb *phb = pe->phb;
1391 
1392 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1393 		pnv_pci_phb3_tce_invalidate_pe(pe);
1394 	else
1395 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1396 				  pe->pe_number, 0, 0, 0);
1397 }
1398 
1399 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1400 		unsigned long index, unsigned long npages)
1401 {
1402 	struct iommu_table_group_link *tgl;
1403 
1404 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1405 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1406 				struct pnv_ioda_pe, table_group);
1407 		struct pnv_phb *phb = pe->phb;
1408 		unsigned int shift = tbl->it_page_shift;
1409 
1410 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1411 			pnv_pci_phb3_tce_invalidate(pe, shift,
1412 						    index, npages);
1413 		else
1414 			opal_pci_tce_kill(phb->opal_id,
1415 					  OPAL_PCI_TCE_KILL_PAGES,
1416 					  pe->pe_number, 1u << shift,
1417 					  index << shift, npages);
1418 	}
1419 }
1420 
1421 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1422 		long npages, unsigned long uaddr,
1423 		enum dma_data_direction direction,
1424 		unsigned long attrs)
1425 {
1426 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1427 			attrs);
1428 
1429 	if (!ret)
1430 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1431 
1432 	return ret;
1433 }
1434 
1435 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1436 		long npages)
1437 {
1438 	pnv_tce_free(tbl, index, npages);
1439 
1440 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1441 }
1442 
1443 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1444 	.set = pnv_ioda2_tce_build,
1445 #ifdef CONFIG_IOMMU_API
1446 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1447 	.tce_kill = pnv_pci_ioda2_tce_invalidate,
1448 	.useraddrptr = pnv_tce_useraddrptr,
1449 #endif
1450 	.clear = pnv_ioda2_tce_free,
1451 	.get = pnv_tce_get,
1452 	.free = pnv_pci_ioda2_table_free_pages,
1453 };
1454 
1455 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1456 {
1457 	unsigned int *weight = (unsigned int *)data;
1458 
1459 	/* This is quite simplistic. The "base" weight of a device
1460 	 * is 10. 0 means no DMA is to be accounted for it.
1461 	 */
1462 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1463 		return 0;
1464 
1465 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1466 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1467 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1468 		*weight += 3;
1469 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1470 		*weight += 15;
1471 	else
1472 		*weight += 10;
1473 
1474 	return 0;
1475 }
1476 
1477 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1478 {
1479 	unsigned int weight = 0;
1480 
1481 	/* SRIOV VF has same DMA32 weight as its PF */
1482 #ifdef CONFIG_PCI_IOV
1483 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1484 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1485 		return weight;
1486 	}
1487 #endif
1488 
1489 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1490 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1491 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1492 		struct pci_dev *pdev;
1493 
1494 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1495 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1496 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
1497 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
1498 	}
1499 
1500 	return weight;
1501 }
1502 
1503 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1504 				       struct pnv_ioda_pe *pe)
1505 {
1506 
1507 	struct page *tce_mem = NULL;
1508 	struct iommu_table *tbl;
1509 	unsigned int weight, total_weight = 0;
1510 	unsigned int tce32_segsz, base, segs, avail, i;
1511 	int64_t rc;
1512 	void *addr;
1513 
1514 	/* XXX FIXME: Handle 64-bit only DMA devices */
1515 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1516 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1517 	weight = pnv_pci_ioda_pe_dma_weight(pe);
1518 	if (!weight)
1519 		return;
1520 
1521 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
1522 		     &total_weight);
1523 	segs = (weight * phb->ioda.dma32_count) / total_weight;
1524 	if (!segs)
1525 		segs = 1;
1526 
1527 	/*
1528 	 * Allocate contiguous DMA32 segments. We begin with the expected
1529 	 * number of segments. With one more attempt, the number of DMA32
1530 	 * segments to be allocated is decreased by one until one segment
1531 	 * is allocated successfully.
1532 	 */
1533 	do {
1534 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
1535 			for (avail = 0, i = base; i < base + segs; i++) {
1536 				if (phb->ioda.dma32_segmap[i] ==
1537 				    IODA_INVALID_PE)
1538 					avail++;
1539 			}
1540 
1541 			if (avail == segs)
1542 				goto found;
1543 		}
1544 	} while (--segs);
1545 
1546 	if (!segs) {
1547 		pe_warn(pe, "No available DMA32 segments\n");
1548 		return;
1549 	}
1550 
1551 found:
1552 	tbl = pnv_pci_table_alloc(phb->hose->node);
1553 	if (WARN_ON(!tbl))
1554 		return;
1555 
1556 	iommu_register_group(&pe->table_group, phb->hose->global_number,
1557 			pe->pe_number);
1558 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1559 
1560 	/* Grab a 32-bit TCE table */
1561 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
1562 		weight, total_weight, base, segs);
1563 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1564 		base * PNV_IODA1_DMA32_SEGSIZE,
1565 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
1566 
1567 	/* XXX Currently, we allocate one big contiguous table for the
1568 	 * TCEs. We only really need one chunk per 256M of TCE space
1569 	 * (ie per segment) but that's an optimization for later, it
1570 	 * requires some added smarts with our get/put_tce implementation
1571 	 *
1572 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
1573 	 * bytes
1574 	 */
1575 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
1576 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1577 				   get_order(tce32_segsz * segs));
1578 	if (!tce_mem) {
1579 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1580 		goto fail;
1581 	}
1582 	addr = page_address(tce_mem);
1583 	memset(addr, 0, tce32_segsz * segs);
1584 
1585 	/* Configure HW */
1586 	for (i = 0; i < segs; i++) {
1587 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1588 					      pe->pe_number,
1589 					      base + i, 1,
1590 					      __pa(addr) + tce32_segsz * i,
1591 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
1592 		if (rc) {
1593 			pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
1594 			       rc);
1595 			goto fail;
1596 		}
1597 	}
1598 
1599 	/* Setup DMA32 segment mapping */
1600 	for (i = base; i < base + segs; i++)
1601 		phb->ioda.dma32_segmap[i] = pe->pe_number;
1602 
1603 	/* Setup linux iommu table */
1604 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
1605 				  base * PNV_IODA1_DMA32_SEGSIZE,
1606 				  IOMMU_PAGE_SHIFT_4K);
1607 
1608 	tbl->it_ops = &pnv_ioda1_iommu_ops;
1609 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1610 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1611 	if (!iommu_init_table(tbl, phb->hose->node, 0, 0))
1612 		panic("Failed to initialize iommu table");
1613 
1614 	pe->dma_setup_done = true;
1615 	return;
1616  fail:
1617 	/* XXX Failure: Try to fallback to 64-bit only ? */
1618 	if (tce_mem)
1619 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
1620 	if (tbl) {
1621 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1622 		iommu_tce_table_put(tbl);
1623 	}
1624 }
1625 
1626 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1627 		int num, struct iommu_table *tbl)
1628 {
1629 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1630 			table_group);
1631 	struct pnv_phb *phb = pe->phb;
1632 	int64_t rc;
1633 	const unsigned long size = tbl->it_indirect_levels ?
1634 			tbl->it_level_size : tbl->it_size;
1635 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1636 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1637 
1638 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1639 		num, start_addr, start_addr + win_size - 1,
1640 		IOMMU_PAGE_SIZE(tbl));
1641 
1642 	/*
1643 	 * Map TCE table through TVT. The TVE index is the PE number
1644 	 * shifted by 1 bit for 32-bits DMA space.
1645 	 */
1646 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
1647 			pe->pe_number,
1648 			(pe->pe_number << 1) + num,
1649 			tbl->it_indirect_levels + 1,
1650 			__pa(tbl->it_base),
1651 			size << 3,
1652 			IOMMU_PAGE_SIZE(tbl));
1653 	if (rc) {
1654 		pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1655 		return rc;
1656 	}
1657 
1658 	pnv_pci_link_table_and_group(phb->hose->node, num,
1659 			tbl, &pe->table_group);
1660 	pnv_pci_ioda2_tce_invalidate_pe(pe);
1661 
1662 	return 0;
1663 }
1664 
1665 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1666 {
1667 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
1668 	int64_t rc;
1669 
1670 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1671 	if (enable) {
1672 		phys_addr_t top = memblock_end_of_DRAM();
1673 
1674 		top = roundup_pow_of_two(top);
1675 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1676 						     pe->pe_number,
1677 						     window_id,
1678 						     pe->tce_bypass_base,
1679 						     top);
1680 	} else {
1681 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1682 						     pe->pe_number,
1683 						     window_id,
1684 						     pe->tce_bypass_base,
1685 						     0);
1686 	}
1687 	if (rc)
1688 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1689 	else
1690 		pe->tce_bypass_enabled = enable;
1691 }
1692 
1693 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1694 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
1695 		bool alloc_userspace_copy, struct iommu_table **ptbl)
1696 {
1697 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1698 			table_group);
1699 	int nid = pe->phb->hose->node;
1700 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1701 	long ret;
1702 	struct iommu_table *tbl;
1703 
1704 	tbl = pnv_pci_table_alloc(nid);
1705 	if (!tbl)
1706 		return -ENOMEM;
1707 
1708 	tbl->it_ops = &pnv_ioda2_iommu_ops;
1709 
1710 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
1711 			bus_offset, page_shift, window_size,
1712 			levels, alloc_userspace_copy, tbl);
1713 	if (ret) {
1714 		iommu_tce_table_put(tbl);
1715 		return ret;
1716 	}
1717 
1718 	*ptbl = tbl;
1719 
1720 	return 0;
1721 }
1722 
1723 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1724 {
1725 	struct iommu_table *tbl = NULL;
1726 	long rc;
1727 	unsigned long res_start, res_end;
1728 
1729 	/*
1730 	 * crashkernel= specifies the kdump kernel's maximum memory at
1731 	 * some offset and there is no guaranteed the result is a power
1732 	 * of 2, which will cause errors later.
1733 	 */
1734 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1735 
1736 	/*
1737 	 * In memory constrained environments, e.g. kdump kernel, the
1738 	 * DMA window can be larger than available memory, which will
1739 	 * cause errors later.
1740 	 */
1741 	const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
1742 
1743 	/*
1744 	 * We create the default window as big as we can. The constraint is
1745 	 * the max order of allocation possible. The TCE table is likely to
1746 	 * end up being multilevel and with on-demand allocation in place,
1747 	 * the initial use is not going to be huge as the default window aims
1748 	 * to support crippled devices (i.e. not fully 64bit DMAble) only.
1749 	 */
1750 	/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1751 	const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1752 	/* Each TCE level cannot exceed maxblock so go multilevel if needed */
1753 	unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1754 	unsigned long tcelevel_order = ilog2(maxblock >> 3);
1755 	unsigned int levels = tces_order / tcelevel_order;
1756 
1757 	if (tces_order % tcelevel_order)
1758 		levels += 1;
1759 	/*
1760 	 * We try to stick to default levels (which is >1 at the moment) in
1761 	 * order to save memory by relying on on-demain TCE level allocation.
1762 	 */
1763 	levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1764 
1765 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1766 			window_size, levels, false, &tbl);
1767 	if (rc) {
1768 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1769 				rc);
1770 		return rc;
1771 	}
1772 
1773 	/* We use top part of 32bit space for MMIO so exclude it from DMA */
1774 	res_start = 0;
1775 	res_end = 0;
1776 	if (window_size > pe->phb->ioda.m32_pci_base) {
1777 		res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1778 		res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1779 	}
1780 
1781 	if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end))
1782 		rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1783 	else
1784 		rc = -ENOMEM;
1785 	if (rc) {
1786 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc);
1787 		iommu_tce_table_put(tbl);
1788 		tbl = NULL; /* This clears iommu_table_base below */
1789 	}
1790 	if (!pnv_iommu_bypass_disabled)
1791 		pnv_pci_ioda2_set_bypass(pe, true);
1792 
1793 	/*
1794 	 * Set table base for the case of IOMMU DMA use. Usually this is done
1795 	 * from dma_dev_setup() which is not called when a device is returned
1796 	 * from VFIO so do it here.
1797 	 */
1798 	if (pe->pdev)
1799 		set_iommu_table_base(&pe->pdev->dev, tbl);
1800 
1801 	return 0;
1802 }
1803 
1804 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1805 		int num)
1806 {
1807 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1808 			table_group);
1809 	struct pnv_phb *phb = pe->phb;
1810 	long ret;
1811 
1812 	pe_info(pe, "Removing DMA window #%d\n", num);
1813 
1814 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1815 			(pe->pe_number << 1) + num,
1816 			0/* levels */, 0/* table address */,
1817 			0/* table size */, 0/* page size */);
1818 	if (ret)
1819 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1820 	else
1821 		pnv_pci_ioda2_tce_invalidate_pe(pe);
1822 
1823 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1824 
1825 	return ret;
1826 }
1827 
1828 #ifdef CONFIG_IOMMU_API
1829 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1830 		__u64 window_size, __u32 levels)
1831 {
1832 	unsigned long bytes = 0;
1833 	const unsigned window_shift = ilog2(window_size);
1834 	unsigned entries_shift = window_shift - page_shift;
1835 	unsigned table_shift = entries_shift + 3;
1836 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1837 	unsigned long direct_table_size;
1838 
1839 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1840 			!is_power_of_2(window_size))
1841 		return 0;
1842 
1843 	/* Calculate a direct table size from window_size and levels */
1844 	entries_shift = (entries_shift + levels - 1) / levels;
1845 	table_shift = entries_shift + 3;
1846 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
1847 	direct_table_size =  1UL << table_shift;
1848 
1849 	for ( ; levels; --levels) {
1850 		bytes += ALIGN(tce_table_size, direct_table_size);
1851 
1852 		tce_table_size /= direct_table_size;
1853 		tce_table_size <<= 3;
1854 		tce_table_size = max_t(unsigned long,
1855 				tce_table_size, direct_table_size);
1856 	}
1857 
1858 	return bytes + bytes; /* one for HW table, one for userspace copy */
1859 }
1860 
1861 static long pnv_pci_ioda2_create_table_userspace(
1862 		struct iommu_table_group *table_group,
1863 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
1864 		struct iommu_table **ptbl)
1865 {
1866 	long ret = pnv_pci_ioda2_create_table(table_group,
1867 			num, page_shift, window_size, levels, true, ptbl);
1868 
1869 	if (!ret)
1870 		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
1871 				page_shift, window_size, levels);
1872 	return ret;
1873 }
1874 
1875 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1876 {
1877 	struct pci_dev *dev;
1878 
1879 	list_for_each_entry(dev, &bus->devices, bus_list) {
1880 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1881 		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1882 
1883 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1884 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1885 	}
1886 }
1887 
1888 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
1889 {
1890 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1891 						table_group);
1892 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
1893 	struct iommu_table *tbl = pe->table_group.tables[0];
1894 
1895 	pnv_pci_ioda2_set_bypass(pe, false);
1896 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1897 	if (pe->pbus)
1898 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1899 	else if (pe->pdev)
1900 		set_iommu_table_base(&pe->pdev->dev, NULL);
1901 	iommu_tce_table_put(tbl);
1902 }
1903 
1904 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
1905 {
1906 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1907 						table_group);
1908 
1909 	pnv_pci_ioda2_setup_default_config(pe);
1910 	if (pe->pbus)
1911 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1912 }
1913 
1914 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1915 	.get_table_size = pnv_pci_ioda2_get_table_size,
1916 	.create_table = pnv_pci_ioda2_create_table_userspace,
1917 	.set_window = pnv_pci_ioda2_set_window,
1918 	.unset_window = pnv_pci_ioda2_unset_window,
1919 	.take_ownership = pnv_ioda2_take_ownership,
1920 	.release_ownership = pnv_ioda2_release_ownership,
1921 };
1922 #endif
1923 
1924 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1925 				struct pnv_ioda_pe *pe)
1926 {
1927 	int64_t rc;
1928 
1929 	/* TVE #1 is selected by PCI address bit 59 */
1930 	pe->tce_bypass_base = 1ull << 59;
1931 
1932 	/* The PE will reserve all possible 32-bits space */
1933 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1934 		phb->ioda.m32_pci_base);
1935 
1936 	/* Setup linux iommu table */
1937 	pe->table_group.tce32_start = 0;
1938 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
1939 	pe->table_group.max_dynamic_windows_supported =
1940 			IOMMU_TABLE_GROUP_MAX_TABLES;
1941 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
1942 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
1943 
1944 	rc = pnv_pci_ioda2_setup_default_config(pe);
1945 	if (rc)
1946 		return;
1947 
1948 #ifdef CONFIG_IOMMU_API
1949 	pe->table_group.ops = &pnv_pci_ioda2_ops;
1950 	iommu_register_group(&pe->table_group, phb->hose->global_number,
1951 			     pe->pe_number);
1952 #endif
1953 	pe->dma_setup_done = true;
1954 }
1955 
1956 /*
1957  * Called from KVM in real mode to EOI passthru interrupts. The ICP
1958  * EOI is handled directly in KVM in kvmppc_deliver_irq_passthru().
1959  *
1960  * The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call
1961  * needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ
1962  * numbers of the in-the-middle MSI domain are vector numbers and it's
1963  * good enough for OPAL. Use that.
1964  */
1965 int64_t pnv_opal_pci_msi_eoi(struct irq_data *d)
1966 {
1967 	struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data);
1968 	struct pnv_phb *phb = hose->private_data;
1969 
1970 	return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq);
1971 }
1972 
1973 /*
1974  * The IRQ data is mapped in the XICS domain, with OPAL HW IRQ numbers
1975  */
1976 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1977 {
1978 	int64_t rc;
1979 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1980 	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1981 	struct pnv_phb *phb = hose->private_data;
1982 
1983 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1984 	WARN_ON_ONCE(rc);
1985 
1986 	icp_native_eoi(d);
1987 }
1988 
1989 /* P8/CXL only */
1990 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1991 {
1992 	struct irq_data *idata;
1993 	struct irq_chip *ichip;
1994 
1995 	/* The MSI EOI OPAL call is only needed on PHB3 */
1996 	if (phb->model != PNV_PHB_MODEL_PHB3)
1997 		return;
1998 
1999 	if (!phb->ioda.irq_chip_init) {
2000 		/*
2001 		 * First time we setup an MSI IRQ, we need to setup the
2002 		 * corresponding IRQ chip to route correctly.
2003 		 */
2004 		idata = irq_get_irq_data(virq);
2005 		ichip = irq_data_get_irq_chip(idata);
2006 		phb->ioda.irq_chip_init = 1;
2007 		phb->ioda.irq_chip = *ichip;
2008 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2009 	}
2010 	irq_set_chip(virq, &phb->ioda.irq_chip);
2011 	irq_set_chip_data(virq, phb->hose);
2012 }
2013 
2014 static struct irq_chip pnv_pci_msi_irq_chip;
2015 
2016 /*
2017  * Returns true iff chip is something that we could call
2018  * pnv_opal_pci_msi_eoi for.
2019  */
2020 bool is_pnv_opal_msi(struct irq_chip *chip)
2021 {
2022 	return chip == &pnv_pci_msi_irq_chip;
2023 }
2024 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2025 
2026 static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2027 				    unsigned int xive_num,
2028 				    unsigned int is_64, struct msi_msg *msg)
2029 {
2030 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2031 	__be32 data;
2032 	int rc;
2033 
2034 	dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__,
2035 		is_64 ? "64" : "32", xive_num);
2036 
2037 	/* No PE assigned ? bail out ... no MSI for you ! */
2038 	if (pe == NULL)
2039 		return -ENXIO;
2040 
2041 	/* Check if we have an MVE */
2042 	if (pe->mve_number < 0)
2043 		return -ENXIO;
2044 
2045 	/* Force 32-bit MSI on some broken devices */
2046 	if (dev->no_64bit_msi)
2047 		is_64 = 0;
2048 
2049 	/* Assign XIVE to PE */
2050 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2051 	if (rc) {
2052 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2053 			pci_name(dev), rc, xive_num);
2054 		return -EIO;
2055 	}
2056 
2057 	if (is_64) {
2058 		__be64 addr64;
2059 
2060 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2061 				     &addr64, &data);
2062 		if (rc) {
2063 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2064 				pci_name(dev), rc);
2065 			return -EIO;
2066 		}
2067 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2068 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2069 	} else {
2070 		__be32 addr32;
2071 
2072 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2073 				     &addr32, &data);
2074 		if (rc) {
2075 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2076 				pci_name(dev), rc);
2077 			return -EIO;
2078 		}
2079 		msg->address_hi = 0;
2080 		msg->address_lo = be32_to_cpu(addr32);
2081 	}
2082 	msg->data = be32_to_cpu(data);
2083 
2084 	return 0;
2085 }
2086 
2087 /*
2088  * The msi_free() op is called before irq_domain_free_irqs_top() when
2089  * the handler data is still available. Use that to clear the XIVE
2090  * controller.
2091  */
2092 static void pnv_msi_ops_msi_free(struct irq_domain *domain,
2093 				 struct msi_domain_info *info,
2094 				 unsigned int irq)
2095 {
2096 	if (xive_enabled())
2097 		xive_irq_free_data(irq);
2098 }
2099 
2100 static struct msi_domain_ops pnv_pci_msi_domain_ops = {
2101 	.msi_free	= pnv_msi_ops_msi_free,
2102 };
2103 
2104 static void pnv_msi_shutdown(struct irq_data *d)
2105 {
2106 	d = d->parent_data;
2107 	if (d->chip->irq_shutdown)
2108 		d->chip->irq_shutdown(d);
2109 }
2110 
2111 static void pnv_msi_mask(struct irq_data *d)
2112 {
2113 	pci_msi_mask_irq(d);
2114 	irq_chip_mask_parent(d);
2115 }
2116 
2117 static void pnv_msi_unmask(struct irq_data *d)
2118 {
2119 	pci_msi_unmask_irq(d);
2120 	irq_chip_unmask_parent(d);
2121 }
2122 
2123 static struct irq_chip pnv_pci_msi_irq_chip = {
2124 	.name		= "PNV-PCI-MSI",
2125 	.irq_shutdown	= pnv_msi_shutdown,
2126 	.irq_mask	= pnv_msi_mask,
2127 	.irq_unmask	= pnv_msi_unmask,
2128 	.irq_eoi	= irq_chip_eoi_parent,
2129 };
2130 
2131 static struct msi_domain_info pnv_msi_domain_info = {
2132 	.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
2133 		  MSI_FLAG_MULTI_PCI_MSI  | MSI_FLAG_PCI_MSIX),
2134 	.ops   = &pnv_pci_msi_domain_ops,
2135 	.chip  = &pnv_pci_msi_irq_chip,
2136 };
2137 
2138 static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg)
2139 {
2140 	struct msi_desc *entry = irq_data_get_msi_desc(d);
2141 	struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
2142 	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2143 	struct pnv_phb *phb = hose->private_data;
2144 	int rc;
2145 
2146 	rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq,
2147 				      entry->pci.msi_attrib.is_64, msg);
2148 	if (rc)
2149 		dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n",
2150 			entry->pci.msi_attrib.is_64 ? "64" : "32", d->hwirq, rc);
2151 }
2152 
2153 /*
2154  * The IRQ data is mapped in the MSI domain in which HW IRQ numbers
2155  * correspond to vector numbers.
2156  */
2157 static void pnv_msi_eoi(struct irq_data *d)
2158 {
2159 	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2160 	struct pnv_phb *phb = hose->private_data;
2161 
2162 	if (phb->model == PNV_PHB_MODEL_PHB3) {
2163 		/*
2164 		 * The EOI OPAL call takes an OPAL HW IRQ number but
2165 		 * since it is translated into a vector number in
2166 		 * OPAL, use that directly.
2167 		 */
2168 		WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq));
2169 	}
2170 
2171 	irq_chip_eoi_parent(d);
2172 }
2173 
2174 static struct irq_chip pnv_msi_irq_chip = {
2175 	.name			= "PNV-MSI",
2176 	.irq_shutdown		= pnv_msi_shutdown,
2177 	.irq_mask		= irq_chip_mask_parent,
2178 	.irq_unmask		= irq_chip_unmask_parent,
2179 	.irq_eoi		= pnv_msi_eoi,
2180 	.irq_set_affinity	= irq_chip_set_affinity_parent,
2181 	.irq_compose_msi_msg	= pnv_msi_compose_msg,
2182 };
2183 
2184 static int pnv_irq_parent_domain_alloc(struct irq_domain *domain,
2185 				       unsigned int virq, int hwirq)
2186 {
2187 	struct irq_fwspec parent_fwspec;
2188 	int ret;
2189 
2190 	parent_fwspec.fwnode = domain->parent->fwnode;
2191 	parent_fwspec.param_count = 2;
2192 	parent_fwspec.param[0] = hwirq;
2193 	parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2194 
2195 	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
2196 	if (ret)
2197 		return ret;
2198 
2199 	return 0;
2200 }
2201 
2202 static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2203 				unsigned int nr_irqs, void *arg)
2204 {
2205 	struct pci_controller *hose = domain->host_data;
2206 	struct pnv_phb *phb = hose->private_data;
2207 	msi_alloc_info_t *info = arg;
2208 	struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc);
2209 	int hwirq;
2210 	int i, ret;
2211 
2212 	hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs);
2213 	if (hwirq < 0) {
2214 		dev_warn(&pdev->dev, "failed to find a free MSI\n");
2215 		return -ENOSPC;
2216 	}
2217 
2218 	dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
2219 		hose->dn, virq, hwirq, nr_irqs);
2220 
2221 	for (i = 0; i < nr_irqs; i++) {
2222 		ret = pnv_irq_parent_domain_alloc(domain, virq + i,
2223 						  phb->msi_base + hwirq + i);
2224 		if (ret)
2225 			goto out;
2226 
2227 		irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
2228 					      &pnv_msi_irq_chip, hose);
2229 	}
2230 
2231 	return 0;
2232 
2233 out:
2234 	irq_domain_free_irqs_parent(domain, virq, i - 1);
2235 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs);
2236 	return ret;
2237 }
2238 
2239 static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2240 				unsigned int nr_irqs)
2241 {
2242 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2243 	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2244 	struct pnv_phb *phb = hose->private_data;
2245 
2246 	pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn,
2247 		 virq, d->hwirq, nr_irqs);
2248 
2249 	msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs);
2250 	/* XIVE domain is cleared through ->msi_free() */
2251 }
2252 
2253 static const struct irq_domain_ops pnv_irq_domain_ops = {
2254 	.alloc  = pnv_irq_domain_alloc,
2255 	.free   = pnv_irq_domain_free,
2256 };
2257 
2258 static int __init pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count)
2259 {
2260 	struct pnv_phb *phb = hose->private_data;
2261 	struct irq_domain *parent = irq_get_default_host();
2262 
2263 	hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id);
2264 	if (!hose->fwnode)
2265 		return -ENOMEM;
2266 
2267 	hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
2268 						       hose->fwnode,
2269 						       &pnv_irq_domain_ops, hose);
2270 	if (!hose->dev_domain) {
2271 		pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
2272 		       hose->dn, hose->global_number);
2273 		irq_domain_free_fwnode(hose->fwnode);
2274 		return -ENOMEM;
2275 	}
2276 
2277 	hose->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(hose->dn),
2278 						     &pnv_msi_domain_info,
2279 						     hose->dev_domain);
2280 	if (!hose->msi_domain) {
2281 		pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
2282 		       hose->dn, hose->global_number);
2283 		irq_domain_free_fwnode(hose->fwnode);
2284 		irq_domain_remove(hose->dev_domain);
2285 		return -ENOMEM;
2286 	}
2287 
2288 	return 0;
2289 }
2290 
2291 static void __init pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2292 {
2293 	unsigned int count;
2294 	const __be32 *prop = of_get_property(phb->hose->dn,
2295 					     "ibm,opal-msi-ranges", NULL);
2296 	if (!prop) {
2297 		/* BML Fallback */
2298 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2299 	}
2300 	if (!prop)
2301 		return;
2302 
2303 	phb->msi_base = be32_to_cpup(prop);
2304 	count = be32_to_cpup(prop + 1);
2305 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2306 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2307 		       phb->hose->global_number);
2308 		return;
2309 	}
2310 
2311 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2312 		count, phb->msi_base);
2313 
2314 	pnv_msi_allocate_domains(phb->hose, count);
2315 }
2316 
2317 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2318 				  struct resource *res)
2319 {
2320 	struct pnv_phb *phb = pe->phb;
2321 	struct pci_bus_region region;
2322 	int index;
2323 	int64_t rc;
2324 
2325 	if (!res || !res->flags || res->start > res->end)
2326 		return;
2327 
2328 	if (res->flags & IORESOURCE_IO) {
2329 		region.start = res->start - phb->ioda.io_pci_base;
2330 		region.end   = res->end - phb->ioda.io_pci_base;
2331 		index = region.start / phb->ioda.io_segsize;
2332 
2333 		while (index < phb->ioda.total_pe_num &&
2334 		       region.start <= region.end) {
2335 			phb->ioda.io_segmap[index] = pe->pe_number;
2336 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2337 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2338 			if (rc != OPAL_SUCCESS) {
2339 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2340 				       __func__, rc, index, pe->pe_number);
2341 				break;
2342 			}
2343 
2344 			region.start += phb->ioda.io_segsize;
2345 			index++;
2346 		}
2347 	} else if ((res->flags & IORESOURCE_MEM) &&
2348 		   !pnv_pci_is_m64(phb, res)) {
2349 		region.start = res->start -
2350 			       phb->hose->mem_offset[0] -
2351 			       phb->ioda.m32_pci_base;
2352 		region.end   = res->end -
2353 			       phb->hose->mem_offset[0] -
2354 			       phb->ioda.m32_pci_base;
2355 		index = region.start / phb->ioda.m32_segsize;
2356 
2357 		while (index < phb->ioda.total_pe_num &&
2358 		       region.start <= region.end) {
2359 			phb->ioda.m32_segmap[index] = pe->pe_number;
2360 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2361 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2362 			if (rc != OPAL_SUCCESS) {
2363 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2364 				       __func__, rc, index, pe->pe_number);
2365 				break;
2366 			}
2367 
2368 			region.start += phb->ioda.m32_segsize;
2369 			index++;
2370 		}
2371 	}
2372 }
2373 
2374 /*
2375  * This function is supposed to be called on basis of PE from top
2376  * to bottom style. So the the I/O or MMIO segment assigned to
2377  * parent PE could be overridden by its child PEs if necessary.
2378  */
2379 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2380 {
2381 	struct pci_dev *pdev;
2382 	int i;
2383 
2384 	/*
2385 	 * NOTE: We only care PCI bus based PE for now. For PCI
2386 	 * device based PE, for example SRIOV sensitive VF should
2387 	 * be figured out later.
2388 	 */
2389 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2390 
2391 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2392 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2393 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2394 
2395 		/*
2396 		 * If the PE contains all subordinate PCI buses, the
2397 		 * windows of the child bridges should be mapped to
2398 		 * the PE as well.
2399 		 */
2400 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2401 			continue;
2402 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2403 			pnv_ioda_setup_pe_res(pe,
2404 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2405 	}
2406 }
2407 
2408 #ifdef CONFIG_DEBUG_FS
2409 static int pnv_pci_diag_data_set(void *data, u64 val)
2410 {
2411 	struct pnv_phb *phb = data;
2412 	s64 ret;
2413 
2414 	/* Retrieve the diag data from firmware */
2415 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2416 					  phb->diag_data_size);
2417 	if (ret != OPAL_SUCCESS)
2418 		return -EIO;
2419 
2420 	/* Print the diag data to the kernel log */
2421 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2422 	return 0;
2423 }
2424 
2425 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2426 			 "%llu\n");
2427 
2428 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2429 {
2430 	struct pnv_phb *phb = data;
2431 	int pe_num;
2432 
2433 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2434 		struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2435 
2436 		if (!test_bit(pe_num, phb->ioda.pe_alloc))
2437 			continue;
2438 
2439 		pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2440 			pe->rid, pe->device_count,
2441 			(pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2442 			(pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2443 			(pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2444 			(pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2445 			(pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2446 			(pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2447 	}
2448 
2449 	return 0;
2450 }
2451 
2452 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2453 			 pnv_pci_ioda_pe_dump, "%llu\n");
2454 
2455 #endif /* CONFIG_DEBUG_FS */
2456 
2457 static void pnv_pci_ioda_create_dbgfs(void)
2458 {
2459 #ifdef CONFIG_DEBUG_FS
2460 	struct pci_controller *hose, *tmp;
2461 	struct pnv_phb *phb;
2462 	char name[16];
2463 
2464 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2465 		phb = hose->private_data;
2466 
2467 		sprintf(name, "PCI%04x", hose->global_number);
2468 		phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir);
2469 
2470 		debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2471 					   phb, &pnv_pci_diag_data_fops);
2472 		debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2473 					   phb, &pnv_pci_ioda_pe_dump_fops);
2474 	}
2475 #endif /* CONFIG_DEBUG_FS */
2476 }
2477 
2478 static void pnv_pci_enable_bridge(struct pci_bus *bus)
2479 {
2480 	struct pci_dev *dev = bus->self;
2481 	struct pci_bus *child;
2482 
2483 	/* Empty bus ? bail */
2484 	if (list_empty(&bus->devices))
2485 		return;
2486 
2487 	/*
2488 	 * If there's a bridge associated with that bus enable it. This works
2489 	 * around races in the generic code if the enabling is done during
2490 	 * parallel probing. This can be removed once those races have been
2491 	 * fixed.
2492 	 */
2493 	if (dev) {
2494 		int rc = pci_enable_device(dev);
2495 		if (rc)
2496 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
2497 		pci_set_master(dev);
2498 	}
2499 
2500 	/* Perform the same to child busses */
2501 	list_for_each_entry(child, &bus->children, node)
2502 		pnv_pci_enable_bridge(child);
2503 }
2504 
2505 static void pnv_pci_enable_bridges(void)
2506 {
2507 	struct pci_controller *hose;
2508 
2509 	list_for_each_entry(hose, &hose_list, list_node)
2510 		pnv_pci_enable_bridge(hose->bus);
2511 }
2512 
2513 static void pnv_pci_ioda_fixup(void)
2514 {
2515 	pnv_pci_ioda_create_dbgfs();
2516 
2517 	pnv_pci_enable_bridges();
2518 
2519 #ifdef CONFIG_EEH
2520 	pnv_eeh_post_init();
2521 #endif
2522 }
2523 
2524 /*
2525  * Returns the alignment for I/O or memory windows for P2P
2526  * bridges. That actually depends on how PEs are segmented.
2527  * For now, we return I/O or M32 segment size for PE sensitive
2528  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2529  * 1MiB for memory) will be returned.
2530  *
2531  * The current PCI bus might be put into one PE, which was
2532  * create against the parent PCI bridge. For that case, we
2533  * needn't enlarge the alignment so that we can save some
2534  * resources.
2535  */
2536 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2537 						unsigned long type)
2538 {
2539 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2540 	int num_pci_bridges = 0;
2541 	struct pci_dev *bridge;
2542 
2543 	bridge = bus->self;
2544 	while (bridge) {
2545 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2546 			num_pci_bridges++;
2547 			if (num_pci_bridges >= 2)
2548 				return 1;
2549 		}
2550 
2551 		bridge = bridge->bus->self;
2552 	}
2553 
2554 	/*
2555 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
2556 	 * alignment for any 64-bit resource, PCIe doesn't care and
2557 	 * bridges only do 64-bit prefetchable anyway.
2558 	 */
2559 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2560 		return phb->ioda.m64_segsize;
2561 	if (type & IORESOURCE_MEM)
2562 		return phb->ioda.m32_segsize;
2563 
2564 	return phb->ioda.io_segsize;
2565 }
2566 
2567 /*
2568  * We are updating root port or the upstream port of the
2569  * bridge behind the root port with PHB's windows in order
2570  * to accommodate the changes on required resources during
2571  * PCI (slot) hotplug, which is connected to either root
2572  * port or the downstream ports of PCIe switch behind the
2573  * root port.
2574  */
2575 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2576 					   unsigned long type)
2577 {
2578 	struct pci_controller *hose = pci_bus_to_host(bus);
2579 	struct pnv_phb *phb = hose->private_data;
2580 	struct pci_dev *bridge = bus->self;
2581 	struct resource *r, *w;
2582 	bool msi_region = false;
2583 	int i;
2584 
2585 	/* Check if we need apply fixup to the bridge's windows */
2586 	if (!pci_is_root_bus(bridge->bus) &&
2587 	    !pci_is_root_bus(bridge->bus->self->bus))
2588 		return;
2589 
2590 	/* Fixup the resources */
2591 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2592 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2593 		if (!r->flags || !r->parent)
2594 			continue;
2595 
2596 		w = NULL;
2597 		if (r->flags & type & IORESOURCE_IO)
2598 			w = &hose->io_resource;
2599 		else if (pnv_pci_is_m64(phb, r) &&
2600 			 (type & IORESOURCE_PREFETCH) &&
2601 			 phb->ioda.m64_segsize)
2602 			w = &hose->mem_resources[1];
2603 		else if (r->flags & type & IORESOURCE_MEM) {
2604 			w = &hose->mem_resources[0];
2605 			msi_region = true;
2606 		}
2607 
2608 		r->start = w->start;
2609 		r->end = w->end;
2610 
2611 		/* The 64KB 32-bits MSI region shouldn't be included in
2612 		 * the 32-bits bridge window. Otherwise, we can see strange
2613 		 * issues. One of them is EEH error observed on Garrison.
2614 		 *
2615 		 * Exclude top 1MB region which is the minimal alignment of
2616 		 * 32-bits bridge window.
2617 		 */
2618 		if (msi_region) {
2619 			r->end += 0x10000;
2620 			r->end -= 0x100000;
2621 		}
2622 	}
2623 }
2624 
2625 static void pnv_pci_configure_bus(struct pci_bus *bus)
2626 {
2627 	struct pci_dev *bridge = bus->self;
2628 	struct pnv_ioda_pe *pe;
2629 	bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2630 
2631 	dev_info(&bus->dev, "Configuring PE for bus\n");
2632 
2633 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2634 	if (WARN_ON(list_empty(&bus->devices)))
2635 		return;
2636 
2637 	/* Reserve PEs according to used M64 resources */
2638 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
2639 
2640 	/*
2641 	 * Assign PE. We might run here because of partial hotplug.
2642 	 * For the case, we just pick up the existing PE and should
2643 	 * not allocate resources again.
2644 	 */
2645 	pe = pnv_ioda_setup_bus_PE(bus, all);
2646 	if (!pe)
2647 		return;
2648 
2649 	pnv_ioda_setup_pe_seg(pe);
2650 }
2651 
2652 static resource_size_t pnv_pci_default_alignment(void)
2653 {
2654 	return PAGE_SIZE;
2655 }
2656 
2657 /* Prevent enabling devices for which we couldn't properly
2658  * assign a PE
2659  */
2660 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2661 {
2662 	struct pci_dn *pdn;
2663 
2664 	pdn = pci_get_pdn(dev);
2665 	if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
2666 		pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
2667 		return false;
2668 	}
2669 
2670 	return true;
2671 }
2672 
2673 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2674 {
2675 	struct pci_dn *pdn;
2676 	struct pnv_ioda_pe *pe;
2677 
2678 	pdn = pci_get_pdn(dev);
2679 	if (!pdn)
2680 		return false;
2681 
2682 	if (pdn->pe_number == IODA_INVALID_PE) {
2683 		pe = pnv_ioda_setup_dev_PE(dev);
2684 		if (!pe)
2685 			return false;
2686 	}
2687 	return true;
2688 }
2689 
2690 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
2691 				       int num)
2692 {
2693 	struct pnv_ioda_pe *pe = container_of(table_group,
2694 					      struct pnv_ioda_pe, table_group);
2695 	struct pnv_phb *phb = pe->phb;
2696 	unsigned int idx;
2697 	long rc;
2698 
2699 	pe_info(pe, "Removing DMA window #%d\n", num);
2700 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
2701 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
2702 			continue;
2703 
2704 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2705 						idx, 0, 0ul, 0ul, 0ul);
2706 		if (rc != OPAL_SUCCESS) {
2707 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
2708 				rc, idx);
2709 			return rc;
2710 		}
2711 
2712 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
2713 	}
2714 
2715 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2716 	return OPAL_SUCCESS;
2717 }
2718 
2719 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
2720 {
2721 	struct iommu_table *tbl = pe->table_group.tables[0];
2722 	int64_t rc;
2723 
2724 	if (!pe->dma_setup_done)
2725 		return;
2726 
2727 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
2728 	if (rc != OPAL_SUCCESS)
2729 		return;
2730 
2731 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size);
2732 	if (pe->table_group.group) {
2733 		iommu_group_put(pe->table_group.group);
2734 		WARN_ON(pe->table_group.group);
2735 	}
2736 
2737 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
2738 	iommu_tce_table_put(tbl);
2739 }
2740 
2741 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2742 {
2743 	struct iommu_table *tbl = pe->table_group.tables[0];
2744 	int64_t rc;
2745 
2746 	if (!pe->dma_setup_done)
2747 		return;
2748 
2749 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2750 	if (rc)
2751 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2752 
2753 	pnv_pci_ioda2_set_bypass(pe, false);
2754 	if (pe->table_group.group) {
2755 		iommu_group_put(pe->table_group.group);
2756 		WARN_ON(pe->table_group.group);
2757 	}
2758 
2759 	iommu_tce_table_put(tbl);
2760 }
2761 
2762 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2763 				 unsigned short win,
2764 				 unsigned int *map)
2765 {
2766 	struct pnv_phb *phb = pe->phb;
2767 	int idx;
2768 	int64_t rc;
2769 
2770 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2771 		if (map[idx] != pe->pe_number)
2772 			continue;
2773 
2774 		rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2775 				phb->ioda.reserved_pe_idx, win, 0, idx);
2776 
2777 		if (rc != OPAL_SUCCESS)
2778 			pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2779 				rc, win, idx);
2780 
2781 		map[idx] = IODA_INVALID_PE;
2782 	}
2783 }
2784 
2785 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2786 {
2787 	struct pnv_phb *phb = pe->phb;
2788 
2789 	if (phb->type == PNV_PHB_IODA1) {
2790 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
2791 				     phb->ioda.io_segmap);
2792 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2793 				     phb->ioda.m32_segmap);
2794 		/* M64 is pre-configured by pnv_ioda1_init_m64() */
2795 	} else if (phb->type == PNV_PHB_IODA2) {
2796 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2797 				     phb->ioda.m32_segmap);
2798 	}
2799 }
2800 
2801 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2802 {
2803 	struct pnv_phb *phb = pe->phb;
2804 	struct pnv_ioda_pe *slave, *tmp;
2805 
2806 	pe_info(pe, "Releasing PE\n");
2807 
2808 	mutex_lock(&phb->ioda.pe_list_mutex);
2809 	list_del(&pe->list);
2810 	mutex_unlock(&phb->ioda.pe_list_mutex);
2811 
2812 	switch (phb->type) {
2813 	case PNV_PHB_IODA1:
2814 		pnv_pci_ioda1_release_pe_dma(pe);
2815 		break;
2816 	case PNV_PHB_IODA2:
2817 		pnv_pci_ioda2_release_pe_dma(pe);
2818 		break;
2819 	case PNV_PHB_NPU_OCAPI:
2820 		break;
2821 	default:
2822 		WARN_ON(1);
2823 	}
2824 
2825 	pnv_ioda_release_pe_seg(pe);
2826 	pnv_ioda_deconfigure_pe(pe->phb, pe);
2827 
2828 	/* Release slave PEs in the compound PE */
2829 	if (pe->flags & PNV_IODA_PE_MASTER) {
2830 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2831 			list_del(&slave->list);
2832 			pnv_ioda_free_pe(slave);
2833 		}
2834 	}
2835 
2836 	/*
2837 	 * The PE for root bus can be removed because of hotplug in EEH
2838 	 * recovery for fenced PHB error. We need to mark the PE dead so
2839 	 * that it can be populated again in PCI hot add path. The PE
2840 	 * shouldn't be destroyed as it's the global reserved resource.
2841 	 */
2842 	if (phb->ioda.root_pe_idx == pe->pe_number)
2843 		return;
2844 
2845 	pnv_ioda_free_pe(pe);
2846 }
2847 
2848 static void pnv_pci_release_device(struct pci_dev *pdev)
2849 {
2850 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2851 	struct pci_dn *pdn = pci_get_pdn(pdev);
2852 	struct pnv_ioda_pe *pe;
2853 
2854 	/* The VF PE state is torn down when sriov_disable() is called */
2855 	if (pdev->is_virtfn)
2856 		return;
2857 
2858 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2859 		return;
2860 
2861 #ifdef CONFIG_PCI_IOV
2862 	/*
2863 	 * FIXME: Try move this to sriov_disable(). It's here since we allocate
2864 	 * the iov state at probe time since we need to fiddle with the IOV
2865 	 * resources.
2866 	 */
2867 	if (pdev->is_physfn)
2868 		kfree(pdev->dev.archdata.iov_data);
2869 #endif
2870 
2871 	/*
2872 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
2873 	 * isn't removed and added afterwards in this scenario. We should
2874 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2875 	 * device count is decreased on removing devices while failing to
2876 	 * be increased on adding devices. It leads to unbalanced PE's device
2877 	 * count and eventually make normal PCI hotplug path broken.
2878 	 */
2879 	pe = &phb->ioda.pe_array[pdn->pe_number];
2880 	pdn->pe_number = IODA_INVALID_PE;
2881 
2882 	WARN_ON(--pe->device_count < 0);
2883 	if (pe->device_count == 0)
2884 		pnv_ioda_release_pe(pe);
2885 }
2886 
2887 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2888 {
2889 	struct pnv_phb *phb = hose->private_data;
2890 
2891 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2892 		       OPAL_ASSERT_RESET);
2893 }
2894 
2895 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2896 {
2897 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2898 	struct pnv_ioda_pe *pe;
2899 
2900 	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2901 		if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2902 			continue;
2903 
2904 		if (!pe->pbus)
2905 			continue;
2906 
2907 		if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2908 			pe->pbus = bus;
2909 			break;
2910 		}
2911 	}
2912 }
2913 
2914 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2915 	.dma_dev_setup		= pnv_pci_ioda_dma_dev_setup,
2916 	.dma_bus_setup		= pnv_pci_ioda_dma_bus_setup,
2917 	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
2918 	.enable_device_hook	= pnv_pci_enable_device_hook,
2919 	.release_device		= pnv_pci_release_device,
2920 	.window_alignment	= pnv_pci_window_alignment,
2921 	.setup_bridge		= pnv_pci_fixup_bridge_resources,
2922 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2923 	.shutdown		= pnv_pci_ioda_shutdown,
2924 };
2925 
2926 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2927 	.enable_device_hook	= pnv_ocapi_enable_device_hook,
2928 	.release_device		= pnv_pci_release_device,
2929 	.window_alignment	= pnv_pci_window_alignment,
2930 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2931 	.shutdown		= pnv_pci_ioda_shutdown,
2932 };
2933 
2934 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2935 					 u64 hub_id, int ioda_type)
2936 {
2937 	struct pci_controller *hose;
2938 	struct pnv_phb *phb;
2939 	unsigned long size, m64map_off, m32map_off, pemap_off;
2940 	unsigned long iomap_off = 0, dma32map_off = 0;
2941 	struct pnv_ioda_pe *root_pe;
2942 	struct resource r;
2943 	const __be64 *prop64;
2944 	const __be32 *prop32;
2945 	int len;
2946 	unsigned int segno;
2947 	u64 phb_id;
2948 	void *aux;
2949 	long rc;
2950 
2951 	if (!of_device_is_available(np))
2952 		return;
2953 
2954 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
2955 
2956 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2957 	if (!prop64) {
2958 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2959 		return;
2960 	}
2961 	phb_id = be64_to_cpup(prop64);
2962 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2963 
2964 	phb = kzalloc(sizeof(*phb), GFP_KERNEL);
2965 	if (!phb)
2966 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2967 		      sizeof(*phb));
2968 
2969 	/* Allocate PCI controller */
2970 	phb->hose = hose = pcibios_alloc_controller(np);
2971 	if (!phb->hose) {
2972 		pr_err("  Can't allocate PCI controller for %pOF\n",
2973 		       np);
2974 		memblock_free(phb, sizeof(struct pnv_phb));
2975 		return;
2976 	}
2977 
2978 	spin_lock_init(&phb->lock);
2979 	prop32 = of_get_property(np, "bus-range", &len);
2980 	if (prop32 && len == 8) {
2981 		hose->first_busno = be32_to_cpu(prop32[0]);
2982 		hose->last_busno = be32_to_cpu(prop32[1]);
2983 	} else {
2984 		pr_warn("  Broken <bus-range> on %pOF\n", np);
2985 		hose->first_busno = 0;
2986 		hose->last_busno = 0xff;
2987 	}
2988 	hose->private_data = phb;
2989 	phb->hub_id = hub_id;
2990 	phb->opal_id = phb_id;
2991 	phb->type = ioda_type;
2992 	mutex_init(&phb->ioda.pe_alloc_mutex);
2993 
2994 	/* Detect specific models for error handling */
2995 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2996 		phb->model = PNV_PHB_MODEL_P7IOC;
2997 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2998 		phb->model = PNV_PHB_MODEL_PHB3;
2999 	else
3000 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3001 
3002 	/* Initialize diagnostic data buffer */
3003 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3004 	if (prop32)
3005 		phb->diag_data_size = be32_to_cpup(prop32);
3006 	else
3007 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3008 
3009 	phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL);
3010 	if (!phb->diag_data)
3011 		panic("%s: Failed to allocate %u bytes\n", __func__,
3012 		      phb->diag_data_size);
3013 
3014 	/* Parse 32-bit and IO ranges (if any) */
3015 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3016 
3017 	/* Get registers */
3018 	if (!of_address_to_resource(np, 0, &r)) {
3019 		phb->regs_phys = r.start;
3020 		phb->regs = ioremap(r.start, resource_size(&r));
3021 		if (phb->regs == NULL)
3022 			pr_err("  Failed to map registers !\n");
3023 	}
3024 
3025 	/* Initialize more IODA stuff */
3026 	phb->ioda.total_pe_num = 1;
3027 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3028 	if (prop32)
3029 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3030 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3031 	if (prop32)
3032 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3033 
3034 	/* Invalidate RID to PE# mapping */
3035 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3036 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3037 
3038 	/* Parse 64-bit MMIO range */
3039 	pnv_ioda_parse_m64_window(phb);
3040 
3041 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3042 	/* FW Has already off top 64k of M32 space (MSI space) */
3043 	phb->ioda.m32_size += 0x10000;
3044 
3045 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3046 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3047 	phb->ioda.io_size = hose->pci_io_size;
3048 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3049 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3050 
3051 	/* Calculate how many 32-bit TCE segments we have */
3052 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3053 				PNV_IODA1_DMA32_SEGSIZE;
3054 
3055 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3056 	size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3057 			sizeof(unsigned long));
3058 	m64map_off = size;
3059 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3060 	m32map_off = size;
3061 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3062 	if (phb->type == PNV_PHB_IODA1) {
3063 		iomap_off = size;
3064 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3065 		dma32map_off = size;
3066 		size += phb->ioda.dma32_count *
3067 			sizeof(phb->ioda.dma32_segmap[0]);
3068 	}
3069 	pemap_off = size;
3070 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3071 	aux = kzalloc(size, GFP_KERNEL);
3072 	if (!aux)
3073 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3074 
3075 	phb->ioda.pe_alloc = aux;
3076 	phb->ioda.m64_segmap = aux + m64map_off;
3077 	phb->ioda.m32_segmap = aux + m32map_off;
3078 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3079 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3080 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3081 	}
3082 	if (phb->type == PNV_PHB_IODA1) {
3083 		phb->ioda.io_segmap = aux + iomap_off;
3084 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3085 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3086 
3087 		phb->ioda.dma32_segmap = aux + dma32map_off;
3088 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3089 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3090 	}
3091 	phb->ioda.pe_array = aux + pemap_off;
3092 
3093 	/*
3094 	 * Choose PE number for root bus, which shouldn't have
3095 	 * M64 resources consumed by its child devices. To pick
3096 	 * the PE number adjacent to the reserved one if possible.
3097 	 */
3098 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3099 	if (phb->ioda.reserved_pe_idx == 0) {
3100 		phb->ioda.root_pe_idx = 1;
3101 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3102 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3103 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3104 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3105 	} else {
3106 		/* otherwise just allocate one */
3107 		root_pe = pnv_ioda_alloc_pe(phb, 1);
3108 		phb->ioda.root_pe_idx = root_pe->pe_number;
3109 	}
3110 
3111 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3112 	mutex_init(&phb->ioda.pe_list_mutex);
3113 
3114 	/* Calculate how many 32-bit TCE segments we have */
3115 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3116 				PNV_IODA1_DMA32_SEGSIZE;
3117 
3118 #if 0 /* We should really do that ... */
3119 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3120 					 window_type,
3121 					 window_num,
3122 					 starting_real_address,
3123 					 starting_pci_address,
3124 					 segment_size);
3125 #endif
3126 
3127 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3128 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3129 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3130 	if (phb->ioda.m64_size)
3131 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3132 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3133 	if (phb->ioda.io_size)
3134 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3135 			phb->ioda.io_size, phb->ioda.io_segsize);
3136 
3137 
3138 	phb->hose->ops = &pnv_pci_ops;
3139 	phb->get_pe_state = pnv_ioda_get_pe_state;
3140 	phb->freeze_pe = pnv_ioda_freeze_pe;
3141 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3142 
3143 	/* Setup MSI support */
3144 	pnv_pci_init_ioda_msis(phb);
3145 
3146 	/*
3147 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3148 	 * to let the PCI core do resource assignment. It's supposed
3149 	 * that the PCI core will do correct I/O and MMIO alignment
3150 	 * for the P2P bridge bars so that each PCI bus (excluding
3151 	 * the child P2P bridges) can form individual PE.
3152 	 */
3153 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3154 
3155 	switch (phb->type) {
3156 	case PNV_PHB_NPU_OCAPI:
3157 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3158 		break;
3159 	default:
3160 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3161 	}
3162 
3163 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3164 
3165 #ifdef CONFIG_PCI_IOV
3166 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
3167 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3168 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3169 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3170 #endif
3171 
3172 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3173 
3174 	/* Reset IODA tables to a clean state */
3175 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3176 	if (rc)
3177 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3178 
3179 	/*
3180 	 * If we're running in kdump kernel, the previous kernel never
3181 	 * shutdown PCI devices correctly. We already got IODA table
3182 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3183 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3184 	 * kernel parameter will force this reset too. Additionally,
3185 	 * if the IODA reset above failed then use a bigger hammer.
3186 	 * This can happen if we get a PHB fatal error in very early
3187 	 * boot.
3188 	 */
3189 	if (is_kdump_kernel() || pci_reset_phbs || rc) {
3190 		pr_info("  Issue PHB reset ...\n");
3191 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3192 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3193 	}
3194 
3195 	/* Remove M64 resource if we can't configure it successfully */
3196 	if (!phb->init_m64 || phb->init_m64(phb))
3197 		hose->mem_resources[1].flags = 0;
3198 
3199 	/* create pci_dn's for DT nodes under this PHB */
3200 	pci_devs_phb_init_dynamic(hose);
3201 }
3202 
3203 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3204 {
3205 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3206 }
3207 
3208 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3209 {
3210 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3211 }
3212 
3213 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3214 {
3215 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
3216 
3217 	if (!machine_is(powernv))
3218 		return;
3219 
3220 	if (phb->type == PNV_PHB_NPU_OCAPI)
3221 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3222 }
3223 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3224 
3225 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3226 {
3227 	struct device_node *phbn;
3228 	const __be64 *prop64;
3229 	u64 hub_id;
3230 
3231 	pr_info("Probing IODA IO-Hub %pOF\n", np);
3232 
3233 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3234 	if (!prop64) {
3235 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3236 		return;
3237 	}
3238 	hub_id = be64_to_cpup(prop64);
3239 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3240 
3241 	/* Count child PHBs */
3242 	for_each_child_of_node(np, phbn) {
3243 		/* Look for IODA1 PHBs */
3244 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3245 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3246 	}
3247 }
3248