1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
52 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54 
55 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
56 #define POWERNV_IOMMU_MAX_LEVELS	5
57 
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60 
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 			    const char *fmt, ...)
63 {
64 	struct va_format vaf;
65 	va_list args;
66 	char pfix[32];
67 
68 	va_start(args, fmt);
69 
70 	vaf.fmt = fmt;
71 	vaf.va = &args;
72 
73 	if (pe->flags & PNV_IODA_PE_DEV)
74 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 		sprintf(pfix, "%04x:%02x     ",
77 			pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79 	else if (pe->flags & PNV_IODA_PE_VF)
80 		sprintf(pfix, "%04x:%02x:%2x.%d",
81 			pci_domain_nr(pe->parent_dev->bus),
82 			(pe->rid & 0xff00) >> 8,
83 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85 
86 	printk("%spci %s: [PE# %.3d] %pV",
87 	       level, pfix, pe->pe_number, &vaf);
88 
89 	va_end(args);
90 }
91 
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93 
94 static int __init iommu_setup(char *str)
95 {
96 	if (!str)
97 		return -EINVAL;
98 
99 	while (*str) {
100 		if (!strncmp(str, "nobypass", 8)) {
101 			pnv_iommu_bypass_disabled = true;
102 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
103 			break;
104 		}
105 		str += strcspn(str, ",");
106 		if (*str == ',')
107 			str++;
108 	}
109 
110 	return 0;
111 }
112 early_param("iommu", iommu_setup);
113 
114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115 {
116 	/*
117 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
118 	 * allocation code sometimes decides to put a 64-bit prefetchable
119 	 * BAR in the 32-bit window, so we have to compare the addresses.
120 	 *
121 	 * For simplicity we only test resource start.
122 	 */
123 	return (r->start >= phb->ioda.m64_base &&
124 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 }
126 
127 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
128 {
129 	phb->ioda.pe_array[pe_no].phb = phb;
130 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
131 
132 	return &phb->ioda.pe_array[pe_no];
133 }
134 
135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
136 {
137 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
138 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
139 			__func__, pe_no, phb->hose->global_number);
140 		return;
141 	}
142 
143 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
144 		pr_debug("%s: PE %d was reserved on PHB#%x\n",
145 			 __func__, pe_no, phb->hose->global_number);
146 
147 	pnv_ioda_init_pe(phb, pe_no);
148 }
149 
150 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
151 {
152 	long pe;
153 
154 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
155 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
156 			return pnv_ioda_init_pe(phb, pe);
157 	}
158 
159 	return NULL;
160 }
161 
162 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
163 {
164 	struct pnv_phb *phb = pe->phb;
165 	unsigned int pe_num = pe->pe_number;
166 
167 	WARN_ON(pe->pdev);
168 
169 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
170 	clear_bit(pe_num, phb->ioda.pe_alloc);
171 }
172 
173 /* The default M64 BAR is shared by all PEs */
174 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
175 {
176 	const char *desc;
177 	struct resource *r;
178 	s64 rc;
179 
180 	/* Configure the default M64 BAR */
181 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
182 					 OPAL_M64_WINDOW_TYPE,
183 					 phb->ioda.m64_bar_idx,
184 					 phb->ioda.m64_base,
185 					 0, /* unused */
186 					 phb->ioda.m64_size);
187 	if (rc != OPAL_SUCCESS) {
188 		desc = "configuring";
189 		goto fail;
190 	}
191 
192 	/* Enable the default M64 BAR */
193 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
194 				      OPAL_M64_WINDOW_TYPE,
195 				      phb->ioda.m64_bar_idx,
196 				      OPAL_ENABLE_M64_SPLIT);
197 	if (rc != OPAL_SUCCESS) {
198 		desc = "enabling";
199 		goto fail;
200 	}
201 
202 	/*
203 	 * Exclude the segments for reserved and root bus PE, which
204 	 * are first or last two PEs.
205 	 */
206 	r = &phb->hose->mem_resources[1];
207 	if (phb->ioda.reserved_pe_idx == 0)
208 		r->start += (2 * phb->ioda.m64_segsize);
209 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
210 		r->end -= (2 * phb->ioda.m64_segsize);
211 	else
212 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
213 			phb->ioda.reserved_pe_idx);
214 
215 	return 0;
216 
217 fail:
218 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
219 		rc, desc, phb->ioda.m64_bar_idx);
220 	opal_pci_phb_mmio_enable(phb->opal_id,
221 				 OPAL_M64_WINDOW_TYPE,
222 				 phb->ioda.m64_bar_idx,
223 				 OPAL_DISABLE_M64);
224 	return -EIO;
225 }
226 
227 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
228 					 unsigned long *pe_bitmap)
229 {
230 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
231 	struct pnv_phb *phb = hose->private_data;
232 	struct resource *r;
233 	resource_size_t base, sgsz, start, end;
234 	int segno, i;
235 
236 	base = phb->ioda.m64_base;
237 	sgsz = phb->ioda.m64_segsize;
238 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
239 		r = &pdev->resource[i];
240 		if (!r->parent || !pnv_pci_is_m64(phb, r))
241 			continue;
242 
243 		start = _ALIGN_DOWN(r->start - base, sgsz);
244 		end = _ALIGN_UP(r->end - base, sgsz);
245 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
246 			if (pe_bitmap)
247 				set_bit(segno, pe_bitmap);
248 			else
249 				pnv_ioda_reserve_pe(phb, segno);
250 		}
251 	}
252 }
253 
254 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
255 {
256 	struct resource *r;
257 	int index;
258 
259 	/*
260 	 * There are 16 M64 BARs, each of which has 8 segments. So
261 	 * there are as many M64 segments as the maximum number of
262 	 * PEs, which is 128.
263 	 */
264 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
265 		unsigned long base, segsz = phb->ioda.m64_segsize;
266 		int64_t rc;
267 
268 		base = phb->ioda.m64_base +
269 		       index * PNV_IODA1_M64_SEGS * segsz;
270 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
271 				OPAL_M64_WINDOW_TYPE, index, base, 0,
272 				PNV_IODA1_M64_SEGS * segsz);
273 		if (rc != OPAL_SUCCESS) {
274 			pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
275 				rc, phb->hose->global_number, index);
276 			goto fail;
277 		}
278 
279 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
280 				OPAL_M64_WINDOW_TYPE, index,
281 				OPAL_ENABLE_M64_SPLIT);
282 		if (rc != OPAL_SUCCESS) {
283 			pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
284 				rc, phb->hose->global_number, index);
285 			goto fail;
286 		}
287 	}
288 
289 	/*
290 	 * Exclude the segments for reserved and root bus PE, which
291 	 * are first or last two PEs.
292 	 */
293 	r = &phb->hose->mem_resources[1];
294 	if (phb->ioda.reserved_pe_idx == 0)
295 		r->start += (2 * phb->ioda.m64_segsize);
296 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
297 		r->end -= (2 * phb->ioda.m64_segsize);
298 	else
299 		WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
300 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
301 
302 	return 0;
303 
304 fail:
305 	for ( ; index >= 0; index--)
306 		opal_pci_phb_mmio_enable(phb->opal_id,
307 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
308 
309 	return -EIO;
310 }
311 
312 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
313 				    unsigned long *pe_bitmap,
314 				    bool all)
315 {
316 	struct pci_dev *pdev;
317 
318 	list_for_each_entry(pdev, &bus->devices, bus_list) {
319 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
320 
321 		if (all && pdev->subordinate)
322 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
323 						pe_bitmap, all);
324 	}
325 }
326 
327 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
328 {
329 	struct pci_controller *hose = pci_bus_to_host(bus);
330 	struct pnv_phb *phb = hose->private_data;
331 	struct pnv_ioda_pe *master_pe, *pe;
332 	unsigned long size, *pe_alloc;
333 	int i;
334 
335 	/* Root bus shouldn't use M64 */
336 	if (pci_is_root_bus(bus))
337 		return NULL;
338 
339 	/* Allocate bitmap */
340 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
341 	pe_alloc = kzalloc(size, GFP_KERNEL);
342 	if (!pe_alloc) {
343 		pr_warn("%s: Out of memory !\n",
344 			__func__);
345 		return NULL;
346 	}
347 
348 	/* Figure out reserved PE numbers by the PE */
349 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
350 
351 	/*
352 	 * the current bus might not own M64 window and that's all
353 	 * contributed by its child buses. For the case, we needn't
354 	 * pick M64 dependent PE#.
355 	 */
356 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
357 		kfree(pe_alloc);
358 		return NULL;
359 	}
360 
361 	/*
362 	 * Figure out the master PE and put all slave PEs to master
363 	 * PE's list to form compound PE.
364 	 */
365 	master_pe = NULL;
366 	i = -1;
367 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
368 		phb->ioda.total_pe_num) {
369 		pe = &phb->ioda.pe_array[i];
370 
371 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
372 		if (!master_pe) {
373 			pe->flags |= PNV_IODA_PE_MASTER;
374 			INIT_LIST_HEAD(&pe->slaves);
375 			master_pe = pe;
376 		} else {
377 			pe->flags |= PNV_IODA_PE_SLAVE;
378 			pe->master = master_pe;
379 			list_add_tail(&pe->list, &master_pe->slaves);
380 		}
381 
382 		/*
383 		 * P7IOC supports M64DT, which helps mapping M64 segment
384 		 * to one particular PE#. However, PHB3 has fixed mapping
385 		 * between M64 segment and PE#. In order to have same logic
386 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
387 		 * segment and PE# on P7IOC.
388 		 */
389 		if (phb->type == PNV_PHB_IODA1) {
390 			int64_t rc;
391 
392 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
393 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
394 					pe->pe_number / PNV_IODA1_M64_SEGS,
395 					pe->pe_number % PNV_IODA1_M64_SEGS);
396 			if (rc != OPAL_SUCCESS)
397 				pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
398 					__func__, rc, phb->hose->global_number,
399 					pe->pe_number);
400 		}
401 	}
402 
403 	kfree(pe_alloc);
404 	return master_pe;
405 }
406 
407 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
408 {
409 	struct pci_controller *hose = phb->hose;
410 	struct device_node *dn = hose->dn;
411 	struct resource *res;
412 	u32 m64_range[2], i;
413 	const u32 *r;
414 	u64 pci_addr;
415 
416 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
417 		pr_info("  Not support M64 window\n");
418 		return;
419 	}
420 
421 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
422 		pr_info("  Firmware too old to support M64 window\n");
423 		return;
424 	}
425 
426 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
427 	if (!r) {
428 		pr_info("  No <ibm,opal-m64-window> on %s\n",
429 			dn->full_name);
430 		return;
431 	}
432 
433 	/*
434 	 * Find the available M64 BAR range and pickup the last one for
435 	 * covering the whole 64-bits space. We support only one range.
436 	 */
437 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
438 				       m64_range, 2)) {
439 		/* In absence of the property, assume 0..15 */
440 		m64_range[0] = 0;
441 		m64_range[1] = 16;
442 	}
443 	/* We only support 64 bits in our allocator */
444 	if (m64_range[1] > 63) {
445 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
446 			__func__, m64_range[1], phb->hose->global_number);
447 		m64_range[1] = 63;
448 	}
449 	/* Empty range, no m64 */
450 	if (m64_range[1] <= m64_range[0]) {
451 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
452 			__func__, phb->hose->global_number);
453 		return;
454 	}
455 
456 	/* Configure M64 informations */
457 	res = &hose->mem_resources[1];
458 	res->name = dn->full_name;
459 	res->start = of_translate_address(dn, r + 2);
460 	res->end = res->start + of_read_number(r + 4, 2) - 1;
461 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
462 	pci_addr = of_read_number(r, 2);
463 	hose->mem_offset[1] = res->start - pci_addr;
464 
465 	phb->ioda.m64_size = resource_size(res);
466 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
467 	phb->ioda.m64_base = pci_addr;
468 
469 	/* This lines up nicely with the display from processing OF ranges */
470 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
471 		res->start, res->end, pci_addr, m64_range[0],
472 		m64_range[0] + m64_range[1] - 1);
473 
474 	/* Mark all M64 used up by default */
475 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
476 
477 	/* Use last M64 BAR to cover M64 window */
478 	m64_range[1]--;
479 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
480 
481 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
482 
483 	/* Mark remaining ones free */
484 	for (i = m64_range[0]; i < m64_range[1]; i++)
485 		clear_bit(i, &phb->ioda.m64_bar_alloc);
486 
487 	/*
488 	 * Setup init functions for M64 based on IODA version, IODA3 uses
489 	 * the IODA2 code.
490 	 */
491 	if (phb->type == PNV_PHB_IODA1)
492 		phb->init_m64 = pnv_ioda1_init_m64;
493 	else
494 		phb->init_m64 = pnv_ioda2_init_m64;
495 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
496 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
497 }
498 
499 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
500 {
501 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
502 	struct pnv_ioda_pe *slave;
503 	s64 rc;
504 
505 	/* Fetch master PE */
506 	if (pe->flags & PNV_IODA_PE_SLAVE) {
507 		pe = pe->master;
508 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
509 			return;
510 
511 		pe_no = pe->pe_number;
512 	}
513 
514 	/* Freeze master PE */
515 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
516 				     pe_no,
517 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
518 	if (rc != OPAL_SUCCESS) {
519 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
520 			__func__, rc, phb->hose->global_number, pe_no);
521 		return;
522 	}
523 
524 	/* Freeze slave PEs */
525 	if (!(pe->flags & PNV_IODA_PE_MASTER))
526 		return;
527 
528 	list_for_each_entry(slave, &pe->slaves, list) {
529 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
530 					     slave->pe_number,
531 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
532 		if (rc != OPAL_SUCCESS)
533 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
534 				__func__, rc, phb->hose->global_number,
535 				slave->pe_number);
536 	}
537 }
538 
539 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
540 {
541 	struct pnv_ioda_pe *pe, *slave;
542 	s64 rc;
543 
544 	/* Find master PE */
545 	pe = &phb->ioda.pe_array[pe_no];
546 	if (pe->flags & PNV_IODA_PE_SLAVE) {
547 		pe = pe->master;
548 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
549 		pe_no = pe->pe_number;
550 	}
551 
552 	/* Clear frozen state for master PE */
553 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
554 	if (rc != OPAL_SUCCESS) {
555 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
556 			__func__, rc, opt, phb->hose->global_number, pe_no);
557 		return -EIO;
558 	}
559 
560 	if (!(pe->flags & PNV_IODA_PE_MASTER))
561 		return 0;
562 
563 	/* Clear frozen state for slave PEs */
564 	list_for_each_entry(slave, &pe->slaves, list) {
565 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
566 					     slave->pe_number,
567 					     opt);
568 		if (rc != OPAL_SUCCESS) {
569 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
570 				__func__, rc, opt, phb->hose->global_number,
571 				slave->pe_number);
572 			return -EIO;
573 		}
574 	}
575 
576 	return 0;
577 }
578 
579 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
580 {
581 	struct pnv_ioda_pe *slave, *pe;
582 	u8 fstate, state;
583 	__be16 pcierr;
584 	s64 rc;
585 
586 	/* Sanity check on PE number */
587 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
588 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
589 
590 	/*
591 	 * Fetch the master PE and the PE instance might be
592 	 * not initialized yet.
593 	 */
594 	pe = &phb->ioda.pe_array[pe_no];
595 	if (pe->flags & PNV_IODA_PE_SLAVE) {
596 		pe = pe->master;
597 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
598 		pe_no = pe->pe_number;
599 	}
600 
601 	/* Check the master PE */
602 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
603 					&state, &pcierr, NULL);
604 	if (rc != OPAL_SUCCESS) {
605 		pr_warn("%s: Failure %lld getting "
606 			"PHB#%x-PE#%x state\n",
607 			__func__, rc,
608 			phb->hose->global_number, pe_no);
609 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
610 	}
611 
612 	/* Check the slave PE */
613 	if (!(pe->flags & PNV_IODA_PE_MASTER))
614 		return state;
615 
616 	list_for_each_entry(slave, &pe->slaves, list) {
617 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
618 						slave->pe_number,
619 						&fstate,
620 						&pcierr,
621 						NULL);
622 		if (rc != OPAL_SUCCESS) {
623 			pr_warn("%s: Failure %lld getting "
624 				"PHB#%x-PE#%x state\n",
625 				__func__, rc,
626 				phb->hose->global_number, slave->pe_number);
627 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
628 		}
629 
630 		/*
631 		 * Override the result based on the ascending
632 		 * priority.
633 		 */
634 		if (fstate > state)
635 			state = fstate;
636 	}
637 
638 	return state;
639 }
640 
641 /* Currently those 2 are only used when MSIs are enabled, this will change
642  * but in the meantime, we need to protect them to avoid warnings
643  */
644 #ifdef CONFIG_PCI_MSI
645 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
646 {
647 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
648 	struct pnv_phb *phb = hose->private_data;
649 	struct pci_dn *pdn = pci_get_pdn(dev);
650 
651 	if (!pdn)
652 		return NULL;
653 	if (pdn->pe_number == IODA_INVALID_PE)
654 		return NULL;
655 	return &phb->ioda.pe_array[pdn->pe_number];
656 }
657 #endif /* CONFIG_PCI_MSI */
658 
659 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
660 				  struct pnv_ioda_pe *parent,
661 				  struct pnv_ioda_pe *child,
662 				  bool is_add)
663 {
664 	const char *desc = is_add ? "adding" : "removing";
665 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
666 			      OPAL_REMOVE_PE_FROM_DOMAIN;
667 	struct pnv_ioda_pe *slave;
668 	long rc;
669 
670 	/* Parent PE affects child PE */
671 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
672 				child->pe_number, op);
673 	if (rc != OPAL_SUCCESS) {
674 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
675 			rc, desc);
676 		return -ENXIO;
677 	}
678 
679 	if (!(child->flags & PNV_IODA_PE_MASTER))
680 		return 0;
681 
682 	/* Compound case: parent PE affects slave PEs */
683 	list_for_each_entry(slave, &child->slaves, list) {
684 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
685 					slave->pe_number, op);
686 		if (rc != OPAL_SUCCESS) {
687 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
688 				rc, desc);
689 			return -ENXIO;
690 		}
691 	}
692 
693 	return 0;
694 }
695 
696 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
697 			      struct pnv_ioda_pe *pe,
698 			      bool is_add)
699 {
700 	struct pnv_ioda_pe *slave;
701 	struct pci_dev *pdev = NULL;
702 	int ret;
703 
704 	/*
705 	 * Clear PE frozen state. If it's master PE, we need
706 	 * clear slave PE frozen state as well.
707 	 */
708 	if (is_add) {
709 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
710 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
711 		if (pe->flags & PNV_IODA_PE_MASTER) {
712 			list_for_each_entry(slave, &pe->slaves, list)
713 				opal_pci_eeh_freeze_clear(phb->opal_id,
714 							  slave->pe_number,
715 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
716 		}
717 	}
718 
719 	/*
720 	 * Associate PE in PELT. We need add the PE into the
721 	 * corresponding PELT-V as well. Otherwise, the error
722 	 * originated from the PE might contribute to other
723 	 * PEs.
724 	 */
725 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
726 	if (ret)
727 		return ret;
728 
729 	/* For compound PEs, any one affects all of them */
730 	if (pe->flags & PNV_IODA_PE_MASTER) {
731 		list_for_each_entry(slave, &pe->slaves, list) {
732 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
733 			if (ret)
734 				return ret;
735 		}
736 	}
737 
738 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
739 		pdev = pe->pbus->self;
740 	else if (pe->flags & PNV_IODA_PE_DEV)
741 		pdev = pe->pdev->bus->self;
742 #ifdef CONFIG_PCI_IOV
743 	else if (pe->flags & PNV_IODA_PE_VF)
744 		pdev = pe->parent_dev;
745 #endif /* CONFIG_PCI_IOV */
746 	while (pdev) {
747 		struct pci_dn *pdn = pci_get_pdn(pdev);
748 		struct pnv_ioda_pe *parent;
749 
750 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
751 			parent = &phb->ioda.pe_array[pdn->pe_number];
752 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
753 			if (ret)
754 				return ret;
755 		}
756 
757 		pdev = pdev->bus->self;
758 	}
759 
760 	return 0;
761 }
762 
763 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
764 {
765 	struct pci_dev *parent;
766 	uint8_t bcomp, dcomp, fcomp;
767 	int64_t rc;
768 	long rid_end, rid;
769 
770 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
771 	if (pe->pbus) {
772 		int count;
773 
774 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
775 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
776 		parent = pe->pbus->self;
777 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
778 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
779 		else
780 			count = 1;
781 
782 		switch(count) {
783 		case  1: bcomp = OpalPciBusAll;         break;
784 		case  2: bcomp = OpalPciBus7Bits;       break;
785 		case  4: bcomp = OpalPciBus6Bits;       break;
786 		case  8: bcomp = OpalPciBus5Bits;       break;
787 		case 16: bcomp = OpalPciBus4Bits;       break;
788 		case 32: bcomp = OpalPciBus3Bits;       break;
789 		default:
790 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
791 			        count);
792 			/* Do an exact match only */
793 			bcomp = OpalPciBusAll;
794 		}
795 		rid_end = pe->rid + (count << 8);
796 	} else {
797 #ifdef CONFIG_PCI_IOV
798 		if (pe->flags & PNV_IODA_PE_VF)
799 			parent = pe->parent_dev;
800 		else
801 #endif
802 			parent = pe->pdev->bus->self;
803 		bcomp = OpalPciBusAll;
804 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
805 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
806 		rid_end = pe->rid + 1;
807 	}
808 
809 	/* Clear the reverse map */
810 	for (rid = pe->rid; rid < rid_end; rid++)
811 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
812 
813 	/* Release from all parents PELT-V */
814 	while (parent) {
815 		struct pci_dn *pdn = pci_get_pdn(parent);
816 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
817 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
818 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
819 			/* XXX What to do in case of error ? */
820 		}
821 		parent = parent->bus->self;
822 	}
823 
824 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
825 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
826 
827 	/* Disassociate PE in PELT */
828 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
829 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
830 	if (rc)
831 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
832 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
833 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
834 	if (rc)
835 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
836 
837 	pe->pbus = NULL;
838 	pe->pdev = NULL;
839 #ifdef CONFIG_PCI_IOV
840 	pe->parent_dev = NULL;
841 #endif
842 
843 	return 0;
844 }
845 
846 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
847 {
848 	struct pci_dev *parent;
849 	uint8_t bcomp, dcomp, fcomp;
850 	long rc, rid_end, rid;
851 
852 	/* Bus validation ? */
853 	if (pe->pbus) {
854 		int count;
855 
856 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
857 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
858 		parent = pe->pbus->self;
859 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
860 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
861 		else
862 			count = 1;
863 
864 		switch(count) {
865 		case  1: bcomp = OpalPciBusAll;		break;
866 		case  2: bcomp = OpalPciBus7Bits;	break;
867 		case  4: bcomp = OpalPciBus6Bits;	break;
868 		case  8: bcomp = OpalPciBus5Bits;	break;
869 		case 16: bcomp = OpalPciBus4Bits;	break;
870 		case 32: bcomp = OpalPciBus3Bits;	break;
871 		default:
872 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
873 			        count);
874 			/* Do an exact match only */
875 			bcomp = OpalPciBusAll;
876 		}
877 		rid_end = pe->rid + (count << 8);
878 	} else {
879 #ifdef CONFIG_PCI_IOV
880 		if (pe->flags & PNV_IODA_PE_VF)
881 			parent = pe->parent_dev;
882 		else
883 #endif /* CONFIG_PCI_IOV */
884 			parent = pe->pdev->bus->self;
885 		bcomp = OpalPciBusAll;
886 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
887 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
888 		rid_end = pe->rid + 1;
889 	}
890 
891 	/*
892 	 * Associate PE in PELT. We need add the PE into the
893 	 * corresponding PELT-V as well. Otherwise, the error
894 	 * originated from the PE might contribute to other
895 	 * PEs.
896 	 */
897 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
898 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
899 	if (rc) {
900 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
901 		return -ENXIO;
902 	}
903 
904 	/*
905 	 * Configure PELTV. NPUs don't have a PELTV table so skip
906 	 * configuration on them.
907 	 */
908 	if (phb->type != PNV_PHB_NPU)
909 		pnv_ioda_set_peltv(phb, pe, true);
910 
911 	/* Setup reverse map */
912 	for (rid = pe->rid; rid < rid_end; rid++)
913 		phb->ioda.pe_rmap[rid] = pe->pe_number;
914 
915 	/* Setup one MVTs on IODA1 */
916 	if (phb->type != PNV_PHB_IODA1) {
917 		pe->mve_number = 0;
918 		goto out;
919 	}
920 
921 	pe->mve_number = pe->pe_number;
922 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
923 	if (rc != OPAL_SUCCESS) {
924 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
925 		       rc, pe->mve_number);
926 		pe->mve_number = -1;
927 	} else {
928 		rc = opal_pci_set_mve_enable(phb->opal_id,
929 					     pe->mve_number, OPAL_ENABLE_MVE);
930 		if (rc) {
931 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
932 			       rc, pe->mve_number);
933 			pe->mve_number = -1;
934 		}
935 	}
936 
937 out:
938 	return 0;
939 }
940 
941 #ifdef CONFIG_PCI_IOV
942 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
943 {
944 	struct pci_dn *pdn = pci_get_pdn(dev);
945 	int i;
946 	struct resource *res, res2;
947 	resource_size_t size;
948 	u16 num_vfs;
949 
950 	if (!dev->is_physfn)
951 		return -EINVAL;
952 
953 	/*
954 	 * "offset" is in VFs.  The M64 windows are sized so that when they
955 	 * are segmented, each segment is the same size as the IOV BAR.
956 	 * Each segment is in a separate PE, and the high order bits of the
957 	 * address are the PE number.  Therefore, each VF's BAR is in a
958 	 * separate PE, and changing the IOV BAR start address changes the
959 	 * range of PEs the VFs are in.
960 	 */
961 	num_vfs = pdn->num_vfs;
962 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
963 		res = &dev->resource[i + PCI_IOV_RESOURCES];
964 		if (!res->flags || !res->parent)
965 			continue;
966 
967 		/*
968 		 * The actual IOV BAR range is determined by the start address
969 		 * and the actual size for num_vfs VFs BAR.  This check is to
970 		 * make sure that after shifting, the range will not overlap
971 		 * with another device.
972 		 */
973 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
974 		res2.flags = res->flags;
975 		res2.start = res->start + (size * offset);
976 		res2.end = res2.start + (size * num_vfs) - 1;
977 
978 		if (res2.end > res->end) {
979 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
980 				i, &res2, res, num_vfs, offset);
981 			return -EBUSY;
982 		}
983 	}
984 
985 	/*
986 	 * After doing so, there would be a "hole" in the /proc/iomem when
987 	 * offset is a positive value. It looks like the device return some
988 	 * mmio back to the system, which actually no one could use it.
989 	 */
990 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
991 		res = &dev->resource[i + PCI_IOV_RESOURCES];
992 		if (!res->flags || !res->parent)
993 			continue;
994 
995 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
996 		res2 = *res;
997 		res->start += size * offset;
998 
999 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1000 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1001 			 num_vfs, offset);
1002 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1003 	}
1004 	return 0;
1005 }
1006 #endif /* CONFIG_PCI_IOV */
1007 
1008 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1009 {
1010 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1011 	struct pnv_phb *phb = hose->private_data;
1012 	struct pci_dn *pdn = pci_get_pdn(dev);
1013 	struct pnv_ioda_pe *pe;
1014 
1015 	if (!pdn) {
1016 		pr_err("%s: Device tree node not associated properly\n",
1017 			   pci_name(dev));
1018 		return NULL;
1019 	}
1020 	if (pdn->pe_number != IODA_INVALID_PE)
1021 		return NULL;
1022 
1023 	pe = pnv_ioda_alloc_pe(phb);
1024 	if (!pe) {
1025 		pr_warning("%s: Not enough PE# available, disabling device\n",
1026 			   pci_name(dev));
1027 		return NULL;
1028 	}
1029 
1030 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1031 	 * pointer in the PE data structure, both should be destroyed at the
1032 	 * same time. However, this needs to be looked at more closely again
1033 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1034 	 *
1035 	 * At some point we want to remove the PDN completely anyways
1036 	 */
1037 	pci_dev_get(dev);
1038 	pdn->pcidev = dev;
1039 	pdn->pe_number = pe->pe_number;
1040 	pe->flags = PNV_IODA_PE_DEV;
1041 	pe->pdev = dev;
1042 	pe->pbus = NULL;
1043 	pe->mve_number = -1;
1044 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1045 
1046 	pe_info(pe, "Associated device to PE\n");
1047 
1048 	if (pnv_ioda_configure_pe(phb, pe)) {
1049 		/* XXX What do we do here ? */
1050 		pnv_ioda_free_pe(pe);
1051 		pdn->pe_number = IODA_INVALID_PE;
1052 		pe->pdev = NULL;
1053 		pci_dev_put(dev);
1054 		return NULL;
1055 	}
1056 
1057 	/* Put PE to the list */
1058 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1059 
1060 	return pe;
1061 }
1062 
1063 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1064 {
1065 	struct pci_dev *dev;
1066 
1067 	list_for_each_entry(dev, &bus->devices, bus_list) {
1068 		struct pci_dn *pdn = pci_get_pdn(dev);
1069 
1070 		if (pdn == NULL) {
1071 			pr_warn("%s: No device node associated with device !\n",
1072 				pci_name(dev));
1073 			continue;
1074 		}
1075 
1076 		/*
1077 		 * In partial hotplug case, the PCI device might be still
1078 		 * associated with the PE and needn't attach it to the PE
1079 		 * again.
1080 		 */
1081 		if (pdn->pe_number != IODA_INVALID_PE)
1082 			continue;
1083 
1084 		pe->device_count++;
1085 		pdn->pcidev = dev;
1086 		pdn->pe_number = pe->pe_number;
1087 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1088 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1089 	}
1090 }
1091 
1092 /*
1093  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1094  * single PCI bus. Another one that contains the primary PCI bus and its
1095  * subordinate PCI devices and buses. The second type of PE is normally
1096  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1097  */
1098 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1099 {
1100 	struct pci_controller *hose = pci_bus_to_host(bus);
1101 	struct pnv_phb *phb = hose->private_data;
1102 	struct pnv_ioda_pe *pe = NULL;
1103 	unsigned int pe_num;
1104 
1105 	/*
1106 	 * In partial hotplug case, the PE instance might be still alive.
1107 	 * We should reuse it instead of allocating a new one.
1108 	 */
1109 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1110 	if (pe_num != IODA_INVALID_PE) {
1111 		pe = &phb->ioda.pe_array[pe_num];
1112 		pnv_ioda_setup_same_PE(bus, pe);
1113 		return NULL;
1114 	}
1115 
1116 	/* PE number for root bus should have been reserved */
1117 	if (pci_is_root_bus(bus) &&
1118 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1119 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1120 
1121 	/* Check if PE is determined by M64 */
1122 	if (!pe && phb->pick_m64_pe)
1123 		pe = phb->pick_m64_pe(bus, all);
1124 
1125 	/* The PE number isn't pinned by M64 */
1126 	if (!pe)
1127 		pe = pnv_ioda_alloc_pe(phb);
1128 
1129 	if (!pe) {
1130 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1131 			__func__, pci_domain_nr(bus), bus->number);
1132 		return NULL;
1133 	}
1134 
1135 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1136 	pe->pbus = bus;
1137 	pe->pdev = NULL;
1138 	pe->mve_number = -1;
1139 	pe->rid = bus->busn_res.start << 8;
1140 
1141 	if (all)
1142 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1143 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1144 	else
1145 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1146 			bus->busn_res.start, pe->pe_number);
1147 
1148 	if (pnv_ioda_configure_pe(phb, pe)) {
1149 		/* XXX What do we do here ? */
1150 		pnv_ioda_free_pe(pe);
1151 		pe->pbus = NULL;
1152 		return NULL;
1153 	}
1154 
1155 	/* Associate it with all child devices */
1156 	pnv_ioda_setup_same_PE(bus, pe);
1157 
1158 	/* Put PE to the list */
1159 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1160 
1161 	return pe;
1162 }
1163 
1164 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1165 {
1166 	int pe_num, found_pe = false, rc;
1167 	long rid;
1168 	struct pnv_ioda_pe *pe;
1169 	struct pci_dev *gpu_pdev;
1170 	struct pci_dn *npu_pdn;
1171 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1172 	struct pnv_phb *phb = hose->private_data;
1173 
1174 	/*
1175 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1176 	 * error handling. This means we only have three PEs remaining
1177 	 * which need to be assigned to four links, implying some
1178 	 * links must share PEs.
1179 	 *
1180 	 * To achieve this we assign PEs such that NPUs linking the
1181 	 * same GPU get assigned the same PE.
1182 	 */
1183 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1184 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1185 		pe = &phb->ioda.pe_array[pe_num];
1186 		if (!pe->pdev)
1187 			continue;
1188 
1189 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1190 			/*
1191 			 * This device has the same peer GPU so should
1192 			 * be assigned the same PE as the existing
1193 			 * peer NPU.
1194 			 */
1195 			dev_info(&npu_pdev->dev,
1196 				"Associating to existing PE %d\n", pe_num);
1197 			pci_dev_get(npu_pdev);
1198 			npu_pdn = pci_get_pdn(npu_pdev);
1199 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1200 			npu_pdn->pcidev = npu_pdev;
1201 			npu_pdn->pe_number = pe_num;
1202 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1203 
1204 			/* Map the PE to this link */
1205 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1206 					OpalPciBusAll,
1207 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1208 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1209 					OPAL_MAP_PE);
1210 			WARN_ON(rc != OPAL_SUCCESS);
1211 			found_pe = true;
1212 			break;
1213 		}
1214 	}
1215 
1216 	if (!found_pe)
1217 		/*
1218 		 * Could not find an existing PE so allocate a new
1219 		 * one.
1220 		 */
1221 		return pnv_ioda_setup_dev_PE(npu_pdev);
1222 	else
1223 		return pe;
1224 }
1225 
1226 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1227 {
1228 	struct pci_dev *pdev;
1229 
1230 	list_for_each_entry(pdev, &bus->devices, bus_list)
1231 		pnv_ioda_setup_npu_PE(pdev);
1232 }
1233 
1234 static void pnv_pci_ioda_setup_PEs(void)
1235 {
1236 	struct pci_controller *hose, *tmp;
1237 	struct pnv_phb *phb;
1238 
1239 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1240 		phb = hose->private_data;
1241 		if (phb->type == PNV_PHB_NPU) {
1242 			/* PE#0 is needed for error reporting */
1243 			pnv_ioda_reserve_pe(phb, 0);
1244 			pnv_ioda_setup_npu_PEs(hose->bus);
1245 		}
1246 	}
1247 }
1248 
1249 #ifdef CONFIG_PCI_IOV
1250 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1251 {
1252 	struct pci_bus        *bus;
1253 	struct pci_controller *hose;
1254 	struct pnv_phb        *phb;
1255 	struct pci_dn         *pdn;
1256 	int                    i, j;
1257 	int                    m64_bars;
1258 
1259 	bus = pdev->bus;
1260 	hose = pci_bus_to_host(bus);
1261 	phb = hose->private_data;
1262 	pdn = pci_get_pdn(pdev);
1263 
1264 	if (pdn->m64_single_mode)
1265 		m64_bars = num_vfs;
1266 	else
1267 		m64_bars = 1;
1268 
1269 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1270 		for (j = 0; j < m64_bars; j++) {
1271 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1272 				continue;
1273 			opal_pci_phb_mmio_enable(phb->opal_id,
1274 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1275 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1276 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1277 		}
1278 
1279 	kfree(pdn->m64_map);
1280 	return 0;
1281 }
1282 
1283 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1284 {
1285 	struct pci_bus        *bus;
1286 	struct pci_controller *hose;
1287 	struct pnv_phb        *phb;
1288 	struct pci_dn         *pdn;
1289 	unsigned int           win;
1290 	struct resource       *res;
1291 	int                    i, j;
1292 	int64_t                rc;
1293 	int                    total_vfs;
1294 	resource_size_t        size, start;
1295 	int                    pe_num;
1296 	int                    m64_bars;
1297 
1298 	bus = pdev->bus;
1299 	hose = pci_bus_to_host(bus);
1300 	phb = hose->private_data;
1301 	pdn = pci_get_pdn(pdev);
1302 	total_vfs = pci_sriov_get_totalvfs(pdev);
1303 
1304 	if (pdn->m64_single_mode)
1305 		m64_bars = num_vfs;
1306 	else
1307 		m64_bars = 1;
1308 
1309 	pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1310 	if (!pdn->m64_map)
1311 		return -ENOMEM;
1312 	/* Initialize the m64_map to IODA_INVALID_M64 */
1313 	for (i = 0; i < m64_bars ; i++)
1314 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1315 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1316 
1317 
1318 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1319 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1320 		if (!res->flags || !res->parent)
1321 			continue;
1322 
1323 		for (j = 0; j < m64_bars; j++) {
1324 			do {
1325 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1326 						phb->ioda.m64_bar_idx + 1, 0);
1327 
1328 				if (win >= phb->ioda.m64_bar_idx + 1)
1329 					goto m64_failed;
1330 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1331 
1332 			pdn->m64_map[j][i] = win;
1333 
1334 			if (pdn->m64_single_mode) {
1335 				size = pci_iov_resource_size(pdev,
1336 							PCI_IOV_RESOURCES + i);
1337 				start = res->start + size * j;
1338 			} else {
1339 				size = resource_size(res);
1340 				start = res->start;
1341 			}
1342 
1343 			/* Map the M64 here */
1344 			if (pdn->m64_single_mode) {
1345 				pe_num = pdn->pe_num_map[j];
1346 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1347 						pe_num, OPAL_M64_WINDOW_TYPE,
1348 						pdn->m64_map[j][i], 0);
1349 			}
1350 
1351 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1352 						 OPAL_M64_WINDOW_TYPE,
1353 						 pdn->m64_map[j][i],
1354 						 start,
1355 						 0, /* unused */
1356 						 size);
1357 
1358 
1359 			if (rc != OPAL_SUCCESS) {
1360 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1361 					win, rc);
1362 				goto m64_failed;
1363 			}
1364 
1365 			if (pdn->m64_single_mode)
1366 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1367 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1368 			else
1369 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1370 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1371 
1372 			if (rc != OPAL_SUCCESS) {
1373 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1374 					win, rc);
1375 				goto m64_failed;
1376 			}
1377 		}
1378 	}
1379 	return 0;
1380 
1381 m64_failed:
1382 	pnv_pci_vf_release_m64(pdev, num_vfs);
1383 	return -EBUSY;
1384 }
1385 
1386 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1387 		int num);
1388 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1389 
1390 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1391 {
1392 	struct iommu_table    *tbl;
1393 	int64_t               rc;
1394 
1395 	tbl = pe->table_group.tables[0];
1396 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1397 	if (rc)
1398 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1399 
1400 	pnv_pci_ioda2_set_bypass(pe, false);
1401 	if (pe->table_group.group) {
1402 		iommu_group_put(pe->table_group.group);
1403 		BUG_ON(pe->table_group.group);
1404 	}
1405 	pnv_pci_ioda2_table_free_pages(tbl);
1406 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1407 }
1408 
1409 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1410 {
1411 	struct pci_bus        *bus;
1412 	struct pci_controller *hose;
1413 	struct pnv_phb        *phb;
1414 	struct pnv_ioda_pe    *pe, *pe_n;
1415 	struct pci_dn         *pdn;
1416 
1417 	bus = pdev->bus;
1418 	hose = pci_bus_to_host(bus);
1419 	phb = hose->private_data;
1420 	pdn = pci_get_pdn(pdev);
1421 
1422 	if (!pdev->is_physfn)
1423 		return;
1424 
1425 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1426 		if (pe->parent_dev != pdev)
1427 			continue;
1428 
1429 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1430 
1431 		/* Remove from list */
1432 		mutex_lock(&phb->ioda.pe_list_mutex);
1433 		list_del(&pe->list);
1434 		mutex_unlock(&phb->ioda.pe_list_mutex);
1435 
1436 		pnv_ioda_deconfigure_pe(phb, pe);
1437 
1438 		pnv_ioda_free_pe(pe);
1439 	}
1440 }
1441 
1442 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1443 {
1444 	struct pci_bus        *bus;
1445 	struct pci_controller *hose;
1446 	struct pnv_phb        *phb;
1447 	struct pnv_ioda_pe    *pe;
1448 	struct pci_dn         *pdn;
1449 	struct pci_sriov      *iov;
1450 	u16                    num_vfs, i;
1451 
1452 	bus = pdev->bus;
1453 	hose = pci_bus_to_host(bus);
1454 	phb = hose->private_data;
1455 	pdn = pci_get_pdn(pdev);
1456 	iov = pdev->sriov;
1457 	num_vfs = pdn->num_vfs;
1458 
1459 	/* Release VF PEs */
1460 	pnv_ioda_release_vf_PE(pdev);
1461 
1462 	if (phb->type == PNV_PHB_IODA2) {
1463 		if (!pdn->m64_single_mode)
1464 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1465 
1466 		/* Release M64 windows */
1467 		pnv_pci_vf_release_m64(pdev, num_vfs);
1468 
1469 		/* Release PE numbers */
1470 		if (pdn->m64_single_mode) {
1471 			for (i = 0; i < num_vfs; i++) {
1472 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1473 					continue;
1474 
1475 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1476 				pnv_ioda_free_pe(pe);
1477 			}
1478 		} else
1479 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1480 		/* Releasing pe_num_map */
1481 		kfree(pdn->pe_num_map);
1482 	}
1483 }
1484 
1485 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1486 				       struct pnv_ioda_pe *pe);
1487 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1488 {
1489 	struct pci_bus        *bus;
1490 	struct pci_controller *hose;
1491 	struct pnv_phb        *phb;
1492 	struct pnv_ioda_pe    *pe;
1493 	int                    pe_num;
1494 	u16                    vf_index;
1495 	struct pci_dn         *pdn;
1496 
1497 	bus = pdev->bus;
1498 	hose = pci_bus_to_host(bus);
1499 	phb = hose->private_data;
1500 	pdn = pci_get_pdn(pdev);
1501 
1502 	if (!pdev->is_physfn)
1503 		return;
1504 
1505 	/* Reserve PE for each VF */
1506 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1507 		if (pdn->m64_single_mode)
1508 			pe_num = pdn->pe_num_map[vf_index];
1509 		else
1510 			pe_num = *pdn->pe_num_map + vf_index;
1511 
1512 		pe = &phb->ioda.pe_array[pe_num];
1513 		pe->pe_number = pe_num;
1514 		pe->phb = phb;
1515 		pe->flags = PNV_IODA_PE_VF;
1516 		pe->pbus = NULL;
1517 		pe->parent_dev = pdev;
1518 		pe->mve_number = -1;
1519 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1520 			   pci_iov_virtfn_devfn(pdev, vf_index);
1521 
1522 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1523 			hose->global_number, pdev->bus->number,
1524 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1525 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1526 
1527 		if (pnv_ioda_configure_pe(phb, pe)) {
1528 			/* XXX What do we do here ? */
1529 			pnv_ioda_free_pe(pe);
1530 			pe->pdev = NULL;
1531 			continue;
1532 		}
1533 
1534 		/* Put PE to the list */
1535 		mutex_lock(&phb->ioda.pe_list_mutex);
1536 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1537 		mutex_unlock(&phb->ioda.pe_list_mutex);
1538 
1539 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1540 	}
1541 }
1542 
1543 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1544 {
1545 	struct pci_bus        *bus;
1546 	struct pci_controller *hose;
1547 	struct pnv_phb        *phb;
1548 	struct pnv_ioda_pe    *pe;
1549 	struct pci_dn         *pdn;
1550 	int                    ret;
1551 	u16                    i;
1552 
1553 	bus = pdev->bus;
1554 	hose = pci_bus_to_host(bus);
1555 	phb = hose->private_data;
1556 	pdn = pci_get_pdn(pdev);
1557 
1558 	if (phb->type == PNV_PHB_IODA2) {
1559 		if (!pdn->vfs_expanded) {
1560 			dev_info(&pdev->dev, "don't support this SRIOV device"
1561 				" with non 64bit-prefetchable IOV BAR\n");
1562 			return -ENOSPC;
1563 		}
1564 
1565 		/*
1566 		 * When M64 BARs functions in Single PE mode, the number of VFs
1567 		 * could be enabled must be less than the number of M64 BARs.
1568 		 */
1569 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1570 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1571 			return -EBUSY;
1572 		}
1573 
1574 		/* Allocating pe_num_map */
1575 		if (pdn->m64_single_mode)
1576 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1577 					GFP_KERNEL);
1578 		else
1579 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1580 
1581 		if (!pdn->pe_num_map)
1582 			return -ENOMEM;
1583 
1584 		if (pdn->m64_single_mode)
1585 			for (i = 0; i < num_vfs; i++)
1586 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1587 
1588 		/* Calculate available PE for required VFs */
1589 		if (pdn->m64_single_mode) {
1590 			for (i = 0; i < num_vfs; i++) {
1591 				pe = pnv_ioda_alloc_pe(phb);
1592 				if (!pe) {
1593 					ret = -EBUSY;
1594 					goto m64_failed;
1595 				}
1596 
1597 				pdn->pe_num_map[i] = pe->pe_number;
1598 			}
1599 		} else {
1600 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1601 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1602 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1603 				0, num_vfs, 0);
1604 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1605 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1606 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1607 				kfree(pdn->pe_num_map);
1608 				return -EBUSY;
1609 			}
1610 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1611 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1612 		}
1613 		pdn->num_vfs = num_vfs;
1614 
1615 		/* Assign M64 window accordingly */
1616 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1617 		if (ret) {
1618 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1619 			goto m64_failed;
1620 		}
1621 
1622 		/*
1623 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1624 		 * the IOV BAR according to the PE# allocated to the VFs.
1625 		 * Otherwise, the PE# for the VF will conflict with others.
1626 		 */
1627 		if (!pdn->m64_single_mode) {
1628 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1629 			if (ret)
1630 				goto m64_failed;
1631 		}
1632 	}
1633 
1634 	/* Setup VF PEs */
1635 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1636 
1637 	return 0;
1638 
1639 m64_failed:
1640 	if (pdn->m64_single_mode) {
1641 		for (i = 0; i < num_vfs; i++) {
1642 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1643 				continue;
1644 
1645 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1646 			pnv_ioda_free_pe(pe);
1647 		}
1648 	} else
1649 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1650 
1651 	/* Releasing pe_num_map */
1652 	kfree(pdn->pe_num_map);
1653 
1654 	return ret;
1655 }
1656 
1657 int pcibios_sriov_disable(struct pci_dev *pdev)
1658 {
1659 	pnv_pci_sriov_disable(pdev);
1660 
1661 	/* Release PCI data */
1662 	remove_dev_pci_data(pdev);
1663 	return 0;
1664 }
1665 
1666 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1667 {
1668 	/* Allocate PCI data */
1669 	add_dev_pci_data(pdev);
1670 
1671 	return pnv_pci_sriov_enable(pdev, num_vfs);
1672 }
1673 #endif /* CONFIG_PCI_IOV */
1674 
1675 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1676 {
1677 	struct pci_dn *pdn = pci_get_pdn(pdev);
1678 	struct pnv_ioda_pe *pe;
1679 
1680 	/*
1681 	 * The function can be called while the PE#
1682 	 * hasn't been assigned. Do nothing for the
1683 	 * case.
1684 	 */
1685 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1686 		return;
1687 
1688 	pe = &phb->ioda.pe_array[pdn->pe_number];
1689 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1690 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1691 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1692 	/*
1693 	 * Note: iommu_add_device() will fail here as
1694 	 * for physical PE: the device is already added by now;
1695 	 * for virtual PE: sysfs entries are not ready yet and
1696 	 * tce_iommu_bus_notifier will add the device to a group later.
1697 	 */
1698 }
1699 
1700 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1701 {
1702 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1703 	struct pnv_phb *phb = hose->private_data;
1704 	struct pci_dn *pdn = pci_get_pdn(pdev);
1705 	struct pnv_ioda_pe *pe;
1706 	uint64_t top;
1707 	bool bypass = false;
1708 
1709 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1710 		return -ENODEV;;
1711 
1712 	pe = &phb->ioda.pe_array[pdn->pe_number];
1713 	if (pe->tce_bypass_enabled) {
1714 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1715 		bypass = (dma_mask >= top);
1716 	}
1717 
1718 	if (bypass) {
1719 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1720 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1721 	} else {
1722 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1723 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1724 	}
1725 	*pdev->dev.dma_mask = dma_mask;
1726 
1727 	/* Update peer npu devices */
1728 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1729 
1730 	return 0;
1731 }
1732 
1733 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1734 {
1735 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1736 	struct pnv_phb *phb = hose->private_data;
1737 	struct pci_dn *pdn = pci_get_pdn(pdev);
1738 	struct pnv_ioda_pe *pe;
1739 	u64 end, mask;
1740 
1741 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1742 		return 0;
1743 
1744 	pe = &phb->ioda.pe_array[pdn->pe_number];
1745 	if (!pe->tce_bypass_enabled)
1746 		return __dma_get_required_mask(&pdev->dev);
1747 
1748 
1749 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1750 	mask = 1ULL << (fls64(end) - 1);
1751 	mask += mask - 1;
1752 
1753 	return mask;
1754 }
1755 
1756 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1757 				   struct pci_bus *bus)
1758 {
1759 	struct pci_dev *dev;
1760 
1761 	list_for_each_entry(dev, &bus->devices, bus_list) {
1762 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1763 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1764 		iommu_add_device(&dev->dev);
1765 
1766 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1767 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1768 	}
1769 }
1770 
1771 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1772 						     bool real_mode)
1773 {
1774 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1775 		(phb->regs + 0x210);
1776 }
1777 
1778 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1779 		unsigned long index, unsigned long npages, bool rm)
1780 {
1781 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1782 			&tbl->it_group_list, struct iommu_table_group_link,
1783 			next);
1784 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1785 			struct pnv_ioda_pe, table_group);
1786 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1787 	unsigned long start, end, inc;
1788 
1789 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1790 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1791 			npages - 1);
1792 
1793 	/* p7ioc-style invalidation, 2 TCEs per write */
1794 	start |= (1ull << 63);
1795 	end |= (1ull << 63);
1796 	inc = 16;
1797         end |= inc - 1;	/* round up end to be different than start */
1798 
1799         mb(); /* Ensure above stores are visible */
1800         while (start <= end) {
1801 		if (rm)
1802 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1803 		else
1804 			__raw_writeq(cpu_to_be64(start), invalidate);
1805                 start += inc;
1806         }
1807 
1808 	/*
1809 	 * The iommu layer will do another mb() for us on build()
1810 	 * and we don't care on free()
1811 	 */
1812 }
1813 
1814 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1815 		long npages, unsigned long uaddr,
1816 		enum dma_data_direction direction,
1817 		unsigned long attrs)
1818 {
1819 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1820 			attrs);
1821 
1822 	if (!ret)
1823 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1824 
1825 	return ret;
1826 }
1827 
1828 #ifdef CONFIG_IOMMU_API
1829 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1830 		unsigned long *hpa, enum dma_data_direction *direction)
1831 {
1832 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1833 
1834 	if (!ret)
1835 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1836 
1837 	return ret;
1838 }
1839 #endif
1840 
1841 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1842 		long npages)
1843 {
1844 	pnv_tce_free(tbl, index, npages);
1845 
1846 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1847 }
1848 
1849 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1850 	.set = pnv_ioda1_tce_build,
1851 #ifdef CONFIG_IOMMU_API
1852 	.exchange = pnv_ioda1_tce_xchg,
1853 #endif
1854 	.clear = pnv_ioda1_tce_free,
1855 	.get = pnv_tce_get,
1856 };
1857 
1858 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1859 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1860 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1861 
1862 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1863 {
1864 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1865 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1866 
1867 	mb(); /* Ensure previous TCE table stores are visible */
1868 	if (rm)
1869 		__raw_rm_writeq(cpu_to_be64(val), invalidate);
1870 	else
1871 		__raw_writeq(cpu_to_be64(val), invalidate);
1872 }
1873 
1874 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1875 {
1876 	/* 01xb - invalidate TCEs that match the specified PE# */
1877 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1878 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1879 
1880 	mb(); /* Ensure above stores are visible */
1881 	__raw_writeq(cpu_to_be64(val), invalidate);
1882 }
1883 
1884 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1885 					unsigned shift, unsigned long index,
1886 					unsigned long npages)
1887 {
1888 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1889 	unsigned long start, end, inc;
1890 
1891 	/* We'll invalidate DMA address in PE scope */
1892 	start = PHB3_TCE_KILL_INVAL_ONE;
1893 	start |= (pe->pe_number & 0xFF);
1894 	end = start;
1895 
1896 	/* Figure out the start, end and step */
1897 	start |= (index << shift);
1898 	end |= ((index + npages - 1) << shift);
1899 	inc = (0x1ull << shift);
1900 	mb();
1901 
1902 	while (start <= end) {
1903 		if (rm)
1904 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1905 		else
1906 			__raw_writeq(cpu_to_be64(start), invalidate);
1907 		start += inc;
1908 	}
1909 }
1910 
1911 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1912 {
1913 	struct pnv_phb *phb = pe->phb;
1914 
1915 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1916 		pnv_pci_phb3_tce_invalidate_pe(pe);
1917 	else
1918 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1919 				  pe->pe_number, 0, 0, 0);
1920 }
1921 
1922 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1923 		unsigned long index, unsigned long npages, bool rm)
1924 {
1925 	struct iommu_table_group_link *tgl;
1926 
1927 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1928 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1929 				struct pnv_ioda_pe, table_group);
1930 		struct pnv_phb *phb = pe->phb;
1931 		unsigned int shift = tbl->it_page_shift;
1932 
1933 		if (phb->type == PNV_PHB_NPU) {
1934 			/*
1935 			 * The NVLink hardware does not support TCE kill
1936 			 * per TCE entry so we have to invalidate
1937 			 * the entire cache for it.
1938 			 */
1939 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1940 			continue;
1941 		}
1942 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1943 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1944 						    index, npages);
1945 		else if (rm)
1946 			opal_rm_pci_tce_kill(phb->opal_id,
1947 					     OPAL_PCI_TCE_KILL_PAGES,
1948 					     pe->pe_number, 1u << shift,
1949 					     index << shift, npages);
1950 		else
1951 			opal_pci_tce_kill(phb->opal_id,
1952 					  OPAL_PCI_TCE_KILL_PAGES,
1953 					  pe->pe_number, 1u << shift,
1954 					  index << shift, npages);
1955 	}
1956 }
1957 
1958 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1959 		long npages, unsigned long uaddr,
1960 		enum dma_data_direction direction,
1961 		unsigned long attrs)
1962 {
1963 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1964 			attrs);
1965 
1966 	if (!ret)
1967 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1968 
1969 	return ret;
1970 }
1971 
1972 #ifdef CONFIG_IOMMU_API
1973 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1974 		unsigned long *hpa, enum dma_data_direction *direction)
1975 {
1976 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1977 
1978 	if (!ret)
1979 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1980 
1981 	return ret;
1982 }
1983 #endif
1984 
1985 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1986 		long npages)
1987 {
1988 	pnv_tce_free(tbl, index, npages);
1989 
1990 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1991 }
1992 
1993 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1994 {
1995 	pnv_pci_ioda2_table_free_pages(tbl);
1996 	iommu_free_table(tbl, "pnv");
1997 }
1998 
1999 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2000 	.set = pnv_ioda2_tce_build,
2001 #ifdef CONFIG_IOMMU_API
2002 	.exchange = pnv_ioda2_tce_xchg,
2003 #endif
2004 	.clear = pnv_ioda2_tce_free,
2005 	.get = pnv_tce_get,
2006 	.free = pnv_ioda2_table_free,
2007 };
2008 
2009 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2010 {
2011 	unsigned int *weight = (unsigned int *)data;
2012 
2013 	/* This is quite simplistic. The "base" weight of a device
2014 	 * is 10. 0 means no DMA is to be accounted for it.
2015 	 */
2016 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2017 		return 0;
2018 
2019 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2020 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2021 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2022 		*weight += 3;
2023 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2024 		*weight += 15;
2025 	else
2026 		*weight += 10;
2027 
2028 	return 0;
2029 }
2030 
2031 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2032 {
2033 	unsigned int weight = 0;
2034 
2035 	/* SRIOV VF has same DMA32 weight as its PF */
2036 #ifdef CONFIG_PCI_IOV
2037 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2038 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2039 		return weight;
2040 	}
2041 #endif
2042 
2043 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2044 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2045 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2046 		struct pci_dev *pdev;
2047 
2048 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2049 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2050 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2051 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2052 	}
2053 
2054 	return weight;
2055 }
2056 
2057 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2058 				       struct pnv_ioda_pe *pe)
2059 {
2060 
2061 	struct page *tce_mem = NULL;
2062 	struct iommu_table *tbl;
2063 	unsigned int weight, total_weight = 0;
2064 	unsigned int tce32_segsz, base, segs, avail, i;
2065 	int64_t rc;
2066 	void *addr;
2067 
2068 	/* XXX FIXME: Handle 64-bit only DMA devices */
2069 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2070 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2071 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2072 	if (!weight)
2073 		return;
2074 
2075 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2076 		     &total_weight);
2077 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2078 	if (!segs)
2079 		segs = 1;
2080 
2081 	/*
2082 	 * Allocate contiguous DMA32 segments. We begin with the expected
2083 	 * number of segments. With one more attempt, the number of DMA32
2084 	 * segments to be allocated is decreased by one until one segment
2085 	 * is allocated successfully.
2086 	 */
2087 	do {
2088 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2089 			for (avail = 0, i = base; i < base + segs; i++) {
2090 				if (phb->ioda.dma32_segmap[i] ==
2091 				    IODA_INVALID_PE)
2092 					avail++;
2093 			}
2094 
2095 			if (avail == segs)
2096 				goto found;
2097 		}
2098 	} while (--segs);
2099 
2100 	if (!segs) {
2101 		pe_warn(pe, "No available DMA32 segments\n");
2102 		return;
2103 	}
2104 
2105 found:
2106 	tbl = pnv_pci_table_alloc(phb->hose->node);
2107 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2108 			pe->pe_number);
2109 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2110 
2111 	/* Grab a 32-bit TCE table */
2112 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2113 		weight, total_weight, base, segs);
2114 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2115 		base * PNV_IODA1_DMA32_SEGSIZE,
2116 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2117 
2118 	/* XXX Currently, we allocate one big contiguous table for the
2119 	 * TCEs. We only really need one chunk per 256M of TCE space
2120 	 * (ie per segment) but that's an optimization for later, it
2121 	 * requires some added smarts with our get/put_tce implementation
2122 	 *
2123 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2124 	 * bytes
2125 	 */
2126 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2127 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2128 				   get_order(tce32_segsz * segs));
2129 	if (!tce_mem) {
2130 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2131 		goto fail;
2132 	}
2133 	addr = page_address(tce_mem);
2134 	memset(addr, 0, tce32_segsz * segs);
2135 
2136 	/* Configure HW */
2137 	for (i = 0; i < segs; i++) {
2138 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2139 					      pe->pe_number,
2140 					      base + i, 1,
2141 					      __pa(addr) + tce32_segsz * i,
2142 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2143 		if (rc) {
2144 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2145 			       " err %ld\n", rc);
2146 			goto fail;
2147 		}
2148 	}
2149 
2150 	/* Setup DMA32 segment mapping */
2151 	for (i = base; i < base + segs; i++)
2152 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2153 
2154 	/* Setup linux iommu table */
2155 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2156 				  base * PNV_IODA1_DMA32_SEGSIZE,
2157 				  IOMMU_PAGE_SHIFT_4K);
2158 
2159 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2160 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2161 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2162 	iommu_init_table(tbl, phb->hose->node);
2163 
2164 	if (pe->flags & PNV_IODA_PE_DEV) {
2165 		/*
2166 		 * Setting table base here only for carrying iommu_group
2167 		 * further down to let iommu_add_device() do the job.
2168 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2169 		 */
2170 		set_iommu_table_base(&pe->pdev->dev, tbl);
2171 		iommu_add_device(&pe->pdev->dev);
2172 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2173 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2174 
2175 	return;
2176  fail:
2177 	/* XXX Failure: Try to fallback to 64-bit only ? */
2178 	if (tce_mem)
2179 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2180 	if (tbl) {
2181 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2182 		iommu_free_table(tbl, "pnv");
2183 	}
2184 }
2185 
2186 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2187 		int num, struct iommu_table *tbl)
2188 {
2189 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2190 			table_group);
2191 	struct pnv_phb *phb = pe->phb;
2192 	int64_t rc;
2193 	const unsigned long size = tbl->it_indirect_levels ?
2194 			tbl->it_level_size : tbl->it_size;
2195 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2196 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2197 
2198 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2199 			start_addr, start_addr + win_size - 1,
2200 			IOMMU_PAGE_SIZE(tbl));
2201 
2202 	/*
2203 	 * Map TCE table through TVT. The TVE index is the PE number
2204 	 * shifted by 1 bit for 32-bits DMA space.
2205 	 */
2206 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2207 			pe->pe_number,
2208 			(pe->pe_number << 1) + num,
2209 			tbl->it_indirect_levels + 1,
2210 			__pa(tbl->it_base),
2211 			size << 3,
2212 			IOMMU_PAGE_SIZE(tbl));
2213 	if (rc) {
2214 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2215 		return rc;
2216 	}
2217 
2218 	pnv_pci_link_table_and_group(phb->hose->node, num,
2219 			tbl, &pe->table_group);
2220 	pnv_pci_phb3_tce_invalidate_pe(pe);
2221 
2222 	return 0;
2223 }
2224 
2225 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2226 {
2227 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2228 	int64_t rc;
2229 
2230 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2231 	if (enable) {
2232 		phys_addr_t top = memblock_end_of_DRAM();
2233 
2234 		top = roundup_pow_of_two(top);
2235 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2236 						     pe->pe_number,
2237 						     window_id,
2238 						     pe->tce_bypass_base,
2239 						     top);
2240 	} else {
2241 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2242 						     pe->pe_number,
2243 						     window_id,
2244 						     pe->tce_bypass_base,
2245 						     0);
2246 	}
2247 	if (rc)
2248 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2249 	else
2250 		pe->tce_bypass_enabled = enable;
2251 }
2252 
2253 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2254 		__u32 page_shift, __u64 window_size, __u32 levels,
2255 		struct iommu_table *tbl);
2256 
2257 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2258 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2259 		struct iommu_table **ptbl)
2260 {
2261 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2262 			table_group);
2263 	int nid = pe->phb->hose->node;
2264 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2265 	long ret;
2266 	struct iommu_table *tbl;
2267 
2268 	tbl = pnv_pci_table_alloc(nid);
2269 	if (!tbl)
2270 		return -ENOMEM;
2271 
2272 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2273 			bus_offset, page_shift, window_size,
2274 			levels, tbl);
2275 	if (ret) {
2276 		iommu_free_table(tbl, "pnv");
2277 		return ret;
2278 	}
2279 
2280 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2281 
2282 	*ptbl = tbl;
2283 
2284 	return 0;
2285 }
2286 
2287 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2288 {
2289 	struct iommu_table *tbl = NULL;
2290 	long rc;
2291 
2292 	/*
2293 	 * crashkernel= specifies the kdump kernel's maximum memory at
2294 	 * some offset and there is no guaranteed the result is a power
2295 	 * of 2, which will cause errors later.
2296 	 */
2297 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2298 
2299 	/*
2300 	 * In memory constrained environments, e.g. kdump kernel, the
2301 	 * DMA window can be larger than available memory, which will
2302 	 * cause errors later.
2303 	 */
2304 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2305 
2306 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2307 			IOMMU_PAGE_SHIFT_4K,
2308 			window_size,
2309 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2310 	if (rc) {
2311 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2312 				rc);
2313 		return rc;
2314 	}
2315 
2316 	iommu_init_table(tbl, pe->phb->hose->node);
2317 
2318 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2319 	if (rc) {
2320 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2321 				rc);
2322 		pnv_ioda2_table_free(tbl);
2323 		return rc;
2324 	}
2325 
2326 	if (!pnv_iommu_bypass_disabled)
2327 		pnv_pci_ioda2_set_bypass(pe, true);
2328 
2329 	/*
2330 	 * Setting table base here only for carrying iommu_group
2331 	 * further down to let iommu_add_device() do the job.
2332 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2333 	 */
2334 	if (pe->flags & PNV_IODA_PE_DEV)
2335 		set_iommu_table_base(&pe->pdev->dev, tbl);
2336 
2337 	return 0;
2338 }
2339 
2340 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2341 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2342 		int num)
2343 {
2344 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2345 			table_group);
2346 	struct pnv_phb *phb = pe->phb;
2347 	long ret;
2348 
2349 	pe_info(pe, "Removing DMA window #%d\n", num);
2350 
2351 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2352 			(pe->pe_number << 1) + num,
2353 			0/* levels */, 0/* table address */,
2354 			0/* table size */, 0/* page size */);
2355 	if (ret)
2356 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2357 	else
2358 		pnv_pci_phb3_tce_invalidate_pe(pe);
2359 
2360 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2361 
2362 	return ret;
2363 }
2364 #endif
2365 
2366 #ifdef CONFIG_IOMMU_API
2367 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2368 		__u64 window_size, __u32 levels)
2369 {
2370 	unsigned long bytes = 0;
2371 	const unsigned window_shift = ilog2(window_size);
2372 	unsigned entries_shift = window_shift - page_shift;
2373 	unsigned table_shift = entries_shift + 3;
2374 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2375 	unsigned long direct_table_size;
2376 
2377 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2378 			(window_size > memory_hotplug_max()) ||
2379 			!is_power_of_2(window_size))
2380 		return 0;
2381 
2382 	/* Calculate a direct table size from window_size and levels */
2383 	entries_shift = (entries_shift + levels - 1) / levels;
2384 	table_shift = entries_shift + 3;
2385 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2386 	direct_table_size =  1UL << table_shift;
2387 
2388 	for ( ; levels; --levels) {
2389 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2390 
2391 		tce_table_size /= direct_table_size;
2392 		tce_table_size <<= 3;
2393 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2394 	}
2395 
2396 	return bytes;
2397 }
2398 
2399 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2400 {
2401 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2402 						table_group);
2403 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2404 	struct iommu_table *tbl = pe->table_group.tables[0];
2405 
2406 	pnv_pci_ioda2_set_bypass(pe, false);
2407 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2408 	pnv_ioda2_table_free(tbl);
2409 }
2410 
2411 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2412 {
2413 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2414 						table_group);
2415 
2416 	pnv_pci_ioda2_setup_default_config(pe);
2417 }
2418 
2419 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2420 	.get_table_size = pnv_pci_ioda2_get_table_size,
2421 	.create_table = pnv_pci_ioda2_create_table,
2422 	.set_window = pnv_pci_ioda2_set_window,
2423 	.unset_window = pnv_pci_ioda2_unset_window,
2424 	.take_ownership = pnv_ioda2_take_ownership,
2425 	.release_ownership = pnv_ioda2_release_ownership,
2426 };
2427 
2428 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2429 {
2430 	struct pci_controller *hose;
2431 	struct pnv_phb *phb;
2432 	struct pnv_ioda_pe **ptmppe = opaque;
2433 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2434 	struct pci_dn *pdn = pci_get_pdn(pdev);
2435 
2436 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2437 		return 0;
2438 
2439 	hose = pci_bus_to_host(pdev->bus);
2440 	phb = hose->private_data;
2441 	if (phb->type != PNV_PHB_NPU)
2442 		return 0;
2443 
2444 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2445 
2446 	return 1;
2447 }
2448 
2449 /*
2450  * This returns PE of associated NPU.
2451  * This assumes that NPU is in the same IOMMU group with GPU and there is
2452  * no other PEs.
2453  */
2454 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2455 		struct iommu_table_group *table_group)
2456 {
2457 	struct pnv_ioda_pe *npe = NULL;
2458 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2459 			gpe_table_group_to_npe_cb);
2460 
2461 	BUG_ON(!ret || !npe);
2462 
2463 	return npe;
2464 }
2465 
2466 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2467 		int num, struct iommu_table *tbl)
2468 {
2469 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2470 
2471 	if (ret)
2472 		return ret;
2473 
2474 	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2475 	if (ret)
2476 		pnv_pci_ioda2_unset_window(table_group, num);
2477 
2478 	return ret;
2479 }
2480 
2481 static long pnv_pci_ioda2_npu_unset_window(
2482 		struct iommu_table_group *table_group,
2483 		int num)
2484 {
2485 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2486 
2487 	if (ret)
2488 		return ret;
2489 
2490 	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2491 }
2492 
2493 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2494 {
2495 	/*
2496 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2497 	 * the iommu_table if 32bit DMA is enabled.
2498 	 */
2499 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2500 	pnv_ioda2_take_ownership(table_group);
2501 }
2502 
2503 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2504 	.get_table_size = pnv_pci_ioda2_get_table_size,
2505 	.create_table = pnv_pci_ioda2_create_table,
2506 	.set_window = pnv_pci_ioda2_npu_set_window,
2507 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2508 	.take_ownership = pnv_ioda2_npu_take_ownership,
2509 	.release_ownership = pnv_ioda2_release_ownership,
2510 };
2511 
2512 static void pnv_pci_ioda_setup_iommu_api(void)
2513 {
2514 	struct pci_controller *hose, *tmp;
2515 	struct pnv_phb *phb;
2516 	struct pnv_ioda_pe *pe, *gpe;
2517 
2518 	/*
2519 	 * Now we have all PHBs discovered, time to add NPU devices to
2520 	 * the corresponding IOMMU groups.
2521 	 */
2522 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2523 		phb = hose->private_data;
2524 
2525 		if (phb->type != PNV_PHB_NPU)
2526 			continue;
2527 
2528 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2529 			gpe = pnv_pci_npu_setup_iommu(pe);
2530 			if (gpe)
2531 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2532 		}
2533 	}
2534 }
2535 #else /* !CONFIG_IOMMU_API */
2536 static void pnv_pci_ioda_setup_iommu_api(void) { };
2537 #endif
2538 
2539 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2540 		unsigned levels, unsigned long limit,
2541 		unsigned long *current_offset, unsigned long *total_allocated)
2542 {
2543 	struct page *tce_mem = NULL;
2544 	__be64 *addr, *tmp;
2545 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2546 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2547 	unsigned entries = 1UL << (shift - 3);
2548 	long i;
2549 
2550 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2551 	if (!tce_mem) {
2552 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2553 		return NULL;
2554 	}
2555 	addr = page_address(tce_mem);
2556 	memset(addr, 0, allocated);
2557 	*total_allocated += allocated;
2558 
2559 	--levels;
2560 	if (!levels) {
2561 		*current_offset += allocated;
2562 		return addr;
2563 	}
2564 
2565 	for (i = 0; i < entries; ++i) {
2566 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2567 				levels, limit, current_offset, total_allocated);
2568 		if (!tmp)
2569 			break;
2570 
2571 		addr[i] = cpu_to_be64(__pa(tmp) |
2572 				TCE_PCI_READ | TCE_PCI_WRITE);
2573 
2574 		if (*current_offset >= limit)
2575 			break;
2576 	}
2577 
2578 	return addr;
2579 }
2580 
2581 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2582 		unsigned long size, unsigned level);
2583 
2584 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2585 		__u32 page_shift, __u64 window_size, __u32 levels,
2586 		struct iommu_table *tbl)
2587 {
2588 	void *addr;
2589 	unsigned long offset = 0, level_shift, total_allocated = 0;
2590 	const unsigned window_shift = ilog2(window_size);
2591 	unsigned entries_shift = window_shift - page_shift;
2592 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2593 	const unsigned long tce_table_size = 1UL << table_shift;
2594 
2595 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2596 		return -EINVAL;
2597 
2598 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2599 		return -EINVAL;
2600 
2601 	/* Adjust direct table size from window_size and levels */
2602 	entries_shift = (entries_shift + levels - 1) / levels;
2603 	level_shift = entries_shift + 3;
2604 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2605 
2606 	/* Allocate TCE table */
2607 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2608 			levels, tce_table_size, &offset, &total_allocated);
2609 
2610 	/* addr==NULL means that the first level allocation failed */
2611 	if (!addr)
2612 		return -ENOMEM;
2613 
2614 	/*
2615 	 * First level was allocated but some lower level failed as
2616 	 * we did not allocate as much as we wanted,
2617 	 * release partially allocated table.
2618 	 */
2619 	if (offset < tce_table_size) {
2620 		pnv_pci_ioda2_table_do_free_pages(addr,
2621 				1ULL << (level_shift - 3), levels - 1);
2622 		return -ENOMEM;
2623 	}
2624 
2625 	/* Setup linux iommu table */
2626 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2627 			page_shift);
2628 	tbl->it_level_size = 1ULL << (level_shift - 3);
2629 	tbl->it_indirect_levels = levels - 1;
2630 	tbl->it_allocated_size = total_allocated;
2631 
2632 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2633 			window_size, tce_table_size, bus_offset);
2634 
2635 	return 0;
2636 }
2637 
2638 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2639 		unsigned long size, unsigned level)
2640 {
2641 	const unsigned long addr_ul = (unsigned long) addr &
2642 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2643 
2644 	if (level) {
2645 		long i;
2646 		u64 *tmp = (u64 *) addr_ul;
2647 
2648 		for (i = 0; i < size; ++i) {
2649 			unsigned long hpa = be64_to_cpu(tmp[i]);
2650 
2651 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2652 				continue;
2653 
2654 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2655 					level - 1);
2656 		}
2657 	}
2658 
2659 	free_pages(addr_ul, get_order(size << 3));
2660 }
2661 
2662 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2663 {
2664 	const unsigned long size = tbl->it_indirect_levels ?
2665 			tbl->it_level_size : tbl->it_size;
2666 
2667 	if (!tbl->it_size)
2668 		return;
2669 
2670 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2671 			tbl->it_indirect_levels);
2672 }
2673 
2674 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2675 				       struct pnv_ioda_pe *pe)
2676 {
2677 	int64_t rc;
2678 
2679 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2680 		return;
2681 
2682 	/* TVE #1 is selected by PCI address bit 59 */
2683 	pe->tce_bypass_base = 1ull << 59;
2684 
2685 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2686 			pe->pe_number);
2687 
2688 	/* The PE will reserve all possible 32-bits space */
2689 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2690 		phb->ioda.m32_pci_base);
2691 
2692 	/* Setup linux iommu table */
2693 	pe->table_group.tce32_start = 0;
2694 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2695 	pe->table_group.max_dynamic_windows_supported =
2696 			IOMMU_TABLE_GROUP_MAX_TABLES;
2697 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2698 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2699 #ifdef CONFIG_IOMMU_API
2700 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2701 #endif
2702 
2703 	rc = pnv_pci_ioda2_setup_default_config(pe);
2704 	if (rc)
2705 		return;
2706 
2707 	if (pe->flags & PNV_IODA_PE_DEV)
2708 		iommu_add_device(&pe->pdev->dev);
2709 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2710 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2711 }
2712 
2713 #ifdef CONFIG_PCI_MSI
2714 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2715 {
2716 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2717 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2718 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2719 					   ioda.irq_chip);
2720 	int64_t rc;
2721 
2722 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2723 	WARN_ON_ONCE(rc);
2724 
2725 	icp_native_eoi(d);
2726 }
2727 
2728 
2729 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2730 {
2731 	struct irq_data *idata;
2732 	struct irq_chip *ichip;
2733 
2734 	/* The MSI EOI OPAL call is only needed on PHB3 */
2735 	if (phb->model != PNV_PHB_MODEL_PHB3)
2736 		return;
2737 
2738 	if (!phb->ioda.irq_chip_init) {
2739 		/*
2740 		 * First time we setup an MSI IRQ, we need to setup the
2741 		 * corresponding IRQ chip to route correctly.
2742 		 */
2743 		idata = irq_get_irq_data(virq);
2744 		ichip = irq_data_get_irq_chip(idata);
2745 		phb->ioda.irq_chip_init = 1;
2746 		phb->ioda.irq_chip = *ichip;
2747 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2748 	}
2749 	irq_set_chip(virq, &phb->ioda.irq_chip);
2750 }
2751 
2752 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2753 				  unsigned int hwirq, unsigned int virq,
2754 				  unsigned int is_64, struct msi_msg *msg)
2755 {
2756 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2757 	unsigned int xive_num = hwirq - phb->msi_base;
2758 	__be32 data;
2759 	int rc;
2760 
2761 	/* No PE assigned ? bail out ... no MSI for you ! */
2762 	if (pe == NULL)
2763 		return -ENXIO;
2764 
2765 	/* Check if we have an MVE */
2766 	if (pe->mve_number < 0)
2767 		return -ENXIO;
2768 
2769 	/* Force 32-bit MSI on some broken devices */
2770 	if (dev->no_64bit_msi)
2771 		is_64 = 0;
2772 
2773 	/* Assign XIVE to PE */
2774 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2775 	if (rc) {
2776 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2777 			pci_name(dev), rc, xive_num);
2778 		return -EIO;
2779 	}
2780 
2781 	if (is_64) {
2782 		__be64 addr64;
2783 
2784 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2785 				     &addr64, &data);
2786 		if (rc) {
2787 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2788 				pci_name(dev), rc);
2789 			return -EIO;
2790 		}
2791 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2792 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2793 	} else {
2794 		__be32 addr32;
2795 
2796 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2797 				     &addr32, &data);
2798 		if (rc) {
2799 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2800 				pci_name(dev), rc);
2801 			return -EIO;
2802 		}
2803 		msg->address_hi = 0;
2804 		msg->address_lo = be32_to_cpu(addr32);
2805 	}
2806 	msg->data = be32_to_cpu(data);
2807 
2808 	pnv_set_msi_irq_chip(phb, virq);
2809 
2810 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2811 		 " address=%x_%08x data=%x PE# %d\n",
2812 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2813 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2814 
2815 	return 0;
2816 }
2817 
2818 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2819 {
2820 	unsigned int count;
2821 	const __be32 *prop = of_get_property(phb->hose->dn,
2822 					     "ibm,opal-msi-ranges", NULL);
2823 	if (!prop) {
2824 		/* BML Fallback */
2825 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2826 	}
2827 	if (!prop)
2828 		return;
2829 
2830 	phb->msi_base = be32_to_cpup(prop);
2831 	count = be32_to_cpup(prop + 1);
2832 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2833 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2834 		       phb->hose->global_number);
2835 		return;
2836 	}
2837 
2838 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2839 	phb->msi32_support = 1;
2840 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2841 		count, phb->msi_base);
2842 }
2843 #else
2844 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2845 #endif /* CONFIG_PCI_MSI */
2846 
2847 #ifdef CONFIG_PCI_IOV
2848 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2849 {
2850 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2851 	struct pnv_phb *phb = hose->private_data;
2852 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2853 	struct resource *res;
2854 	int i;
2855 	resource_size_t size, total_vf_bar_sz;
2856 	struct pci_dn *pdn;
2857 	int mul, total_vfs;
2858 
2859 	if (!pdev->is_physfn || pdev->is_added)
2860 		return;
2861 
2862 	pdn = pci_get_pdn(pdev);
2863 	pdn->vfs_expanded = 0;
2864 	pdn->m64_single_mode = false;
2865 
2866 	total_vfs = pci_sriov_get_totalvfs(pdev);
2867 	mul = phb->ioda.total_pe_num;
2868 	total_vf_bar_sz = 0;
2869 
2870 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2871 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2872 		if (!res->flags || res->parent)
2873 			continue;
2874 		if (!pnv_pci_is_m64(phb, res)) {
2875 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2876 					" non M64 VF BAR%d: %pR. \n",
2877 				 i, res);
2878 			goto truncate_iov;
2879 		}
2880 
2881 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2882 				i + PCI_IOV_RESOURCES);
2883 
2884 		/*
2885 		 * If bigger than quarter of M64 segment size, just round up
2886 		 * power of two.
2887 		 *
2888 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2889 		 * with other devices, IOV BAR size is expanded to be
2890 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2891 		 * segment size , the expanded size would equal to half of the
2892 		 * whole M64 space size, which will exhaust the M64 Space and
2893 		 * limit the system flexibility.  This is a design decision to
2894 		 * set the boundary to quarter of the M64 segment size.
2895 		 */
2896 		if (total_vf_bar_sz > gate) {
2897 			mul = roundup_pow_of_two(total_vfs);
2898 			dev_info(&pdev->dev,
2899 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2900 				total_vf_bar_sz, gate, mul);
2901 			pdn->m64_single_mode = true;
2902 			break;
2903 		}
2904 	}
2905 
2906 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2907 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2908 		if (!res->flags || res->parent)
2909 			continue;
2910 
2911 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2912 		/*
2913 		 * On PHB3, the minimum size alignment of M64 BAR in single
2914 		 * mode is 32MB.
2915 		 */
2916 		if (pdn->m64_single_mode && (size < SZ_32M))
2917 			goto truncate_iov;
2918 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2919 		res->end = res->start + size * mul - 1;
2920 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2921 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2922 			 i, res, mul);
2923 	}
2924 	pdn->vfs_expanded = mul;
2925 
2926 	return;
2927 
2928 truncate_iov:
2929 	/* To save MMIO space, IOV BAR is truncated. */
2930 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2931 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2932 		res->flags = 0;
2933 		res->end = res->start - 1;
2934 	}
2935 }
2936 #endif /* CONFIG_PCI_IOV */
2937 
2938 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2939 				  struct resource *res)
2940 {
2941 	struct pnv_phb *phb = pe->phb;
2942 	struct pci_bus_region region;
2943 	int index;
2944 	int64_t rc;
2945 
2946 	if (!res || !res->flags || res->start > res->end)
2947 		return;
2948 
2949 	if (res->flags & IORESOURCE_IO) {
2950 		region.start = res->start - phb->ioda.io_pci_base;
2951 		region.end   = res->end - phb->ioda.io_pci_base;
2952 		index = region.start / phb->ioda.io_segsize;
2953 
2954 		while (index < phb->ioda.total_pe_num &&
2955 		       region.start <= region.end) {
2956 			phb->ioda.io_segmap[index] = pe->pe_number;
2957 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2958 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2959 			if (rc != OPAL_SUCCESS) {
2960 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
2961 				       __func__, rc, index, pe->pe_number);
2962 				break;
2963 			}
2964 
2965 			region.start += phb->ioda.io_segsize;
2966 			index++;
2967 		}
2968 	} else if ((res->flags & IORESOURCE_MEM) &&
2969 		   !pnv_pci_is_m64(phb, res)) {
2970 		region.start = res->start -
2971 			       phb->hose->mem_offset[0] -
2972 			       phb->ioda.m32_pci_base;
2973 		region.end   = res->end -
2974 			       phb->hose->mem_offset[0] -
2975 			       phb->ioda.m32_pci_base;
2976 		index = region.start / phb->ioda.m32_segsize;
2977 
2978 		while (index < phb->ioda.total_pe_num &&
2979 		       region.start <= region.end) {
2980 			phb->ioda.m32_segmap[index] = pe->pe_number;
2981 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2982 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2983 			if (rc != OPAL_SUCCESS) {
2984 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
2985 				       __func__, rc, index, pe->pe_number);
2986 				break;
2987 			}
2988 
2989 			region.start += phb->ioda.m32_segsize;
2990 			index++;
2991 		}
2992 	}
2993 }
2994 
2995 /*
2996  * This function is supposed to be called on basis of PE from top
2997  * to bottom style. So the the I/O or MMIO segment assigned to
2998  * parent PE could be overrided by its child PEs if necessary.
2999  */
3000 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3001 {
3002 	struct pci_dev *pdev;
3003 	int i;
3004 
3005 	/*
3006 	 * NOTE: We only care PCI bus based PE for now. For PCI
3007 	 * device based PE, for example SRIOV sensitive VF should
3008 	 * be figured out later.
3009 	 */
3010 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3011 
3012 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3013 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3014 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3015 
3016 		/*
3017 		 * If the PE contains all subordinate PCI buses, the
3018 		 * windows of the child bridges should be mapped to
3019 		 * the PE as well.
3020 		 */
3021 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3022 			continue;
3023 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3024 			pnv_ioda_setup_pe_res(pe,
3025 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3026 	}
3027 }
3028 
3029 static void pnv_pci_ioda_create_dbgfs(void)
3030 {
3031 #ifdef CONFIG_DEBUG_FS
3032 	struct pci_controller *hose, *tmp;
3033 	struct pnv_phb *phb;
3034 	char name[16];
3035 
3036 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3037 		phb = hose->private_data;
3038 
3039 		/* Notify initialization of PHB done */
3040 		phb->initialized = 1;
3041 
3042 		sprintf(name, "PCI%04x", hose->global_number);
3043 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3044 		if (!phb->dbgfs)
3045 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3046 				__func__, hose->global_number);
3047 	}
3048 #endif /* CONFIG_DEBUG_FS */
3049 }
3050 
3051 static void pnv_pci_ioda_fixup(void)
3052 {
3053 	pnv_pci_ioda_setup_PEs();
3054 	pnv_pci_ioda_setup_iommu_api();
3055 	pnv_pci_ioda_create_dbgfs();
3056 
3057 #ifdef CONFIG_EEH
3058 	eeh_init();
3059 	eeh_addr_cache_build();
3060 #endif
3061 }
3062 
3063 /*
3064  * Returns the alignment for I/O or memory windows for P2P
3065  * bridges. That actually depends on how PEs are segmented.
3066  * For now, we return I/O or M32 segment size for PE sensitive
3067  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3068  * 1MiB for memory) will be returned.
3069  *
3070  * The current PCI bus might be put into one PE, which was
3071  * create against the parent PCI bridge. For that case, we
3072  * needn't enlarge the alignment so that we can save some
3073  * resources.
3074  */
3075 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3076 						unsigned long type)
3077 {
3078 	struct pci_dev *bridge;
3079 	struct pci_controller *hose = pci_bus_to_host(bus);
3080 	struct pnv_phb *phb = hose->private_data;
3081 	int num_pci_bridges = 0;
3082 
3083 	bridge = bus->self;
3084 	while (bridge) {
3085 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3086 			num_pci_bridges++;
3087 			if (num_pci_bridges >= 2)
3088 				return 1;
3089 		}
3090 
3091 		bridge = bridge->bus->self;
3092 	}
3093 
3094 	/*
3095 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3096 	 * alignment for any 64-bit resource, PCIe doesn't care and
3097 	 * bridges only do 64-bit prefetchable anyway.
3098 	 */
3099 	if (phb->ioda.m64_segsize && (type & IORESOURCE_MEM_64))
3100 		return phb->ioda.m64_segsize;
3101 	if (type & IORESOURCE_MEM)
3102 		return phb->ioda.m32_segsize;
3103 
3104 	return phb->ioda.io_segsize;
3105 }
3106 
3107 /*
3108  * We are updating root port or the upstream port of the
3109  * bridge behind the root port with PHB's windows in order
3110  * to accommodate the changes on required resources during
3111  * PCI (slot) hotplug, which is connected to either root
3112  * port or the downstream ports of PCIe switch behind the
3113  * root port.
3114  */
3115 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3116 					   unsigned long type)
3117 {
3118 	struct pci_controller *hose = pci_bus_to_host(bus);
3119 	struct pnv_phb *phb = hose->private_data;
3120 	struct pci_dev *bridge = bus->self;
3121 	struct resource *r, *w;
3122 	bool msi_region = false;
3123 	int i;
3124 
3125 	/* Check if we need apply fixup to the bridge's windows */
3126 	if (!pci_is_root_bus(bridge->bus) &&
3127 	    !pci_is_root_bus(bridge->bus->self->bus))
3128 		return;
3129 
3130 	/* Fixup the resources */
3131 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3132 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3133 		if (!r->flags || !r->parent)
3134 			continue;
3135 
3136 		w = NULL;
3137 		if (r->flags & type & IORESOURCE_IO)
3138 			w = &hose->io_resource;
3139 		else if (pnv_pci_is_m64(phb, r) &&
3140 			 (type & IORESOURCE_PREFETCH) &&
3141 			 phb->ioda.m64_segsize)
3142 			w = &hose->mem_resources[1];
3143 		else if (r->flags & type & IORESOURCE_MEM) {
3144 			w = &hose->mem_resources[0];
3145 			msi_region = true;
3146 		}
3147 
3148 		r->start = w->start;
3149 		r->end = w->end;
3150 
3151 		/* The 64KB 32-bits MSI region shouldn't be included in
3152 		 * the 32-bits bridge window. Otherwise, we can see strange
3153 		 * issues. One of them is EEH error observed on Garrison.
3154 		 *
3155 		 * Exclude top 1MB region which is the minimal alignment of
3156 		 * 32-bits bridge window.
3157 		 */
3158 		if (msi_region) {
3159 			r->end += 0x10000;
3160 			r->end -= 0x100000;
3161 		}
3162 	}
3163 }
3164 
3165 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3166 {
3167 	struct pci_controller *hose = pci_bus_to_host(bus);
3168 	struct pnv_phb *phb = hose->private_data;
3169 	struct pci_dev *bridge = bus->self;
3170 	struct pnv_ioda_pe *pe;
3171 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3172 
3173 	/* Extend bridge's windows if necessary */
3174 	pnv_pci_fixup_bridge_resources(bus, type);
3175 
3176 	/* The PE for root bus should be realized before any one else */
3177 	if (!phb->ioda.root_pe_populated) {
3178 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3179 		if (pe) {
3180 			phb->ioda.root_pe_idx = pe->pe_number;
3181 			phb->ioda.root_pe_populated = true;
3182 		}
3183 	}
3184 
3185 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3186 	if (list_empty(&bus->devices))
3187 		return;
3188 
3189 	/* Reserve PEs according to used M64 resources */
3190 	if (phb->reserve_m64_pe)
3191 		phb->reserve_m64_pe(bus, NULL, all);
3192 
3193 	/*
3194 	 * Assign PE. We might run here because of partial hotplug.
3195 	 * For the case, we just pick up the existing PE and should
3196 	 * not allocate resources again.
3197 	 */
3198 	pe = pnv_ioda_setup_bus_PE(bus, all);
3199 	if (!pe)
3200 		return;
3201 
3202 	pnv_ioda_setup_pe_seg(pe);
3203 	switch (phb->type) {
3204 	case PNV_PHB_IODA1:
3205 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3206 		break;
3207 	case PNV_PHB_IODA2:
3208 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3209 		break;
3210 	default:
3211 		pr_warn("%s: No DMA for PHB#%d (type %d)\n",
3212 			__func__, phb->hose->global_number, phb->type);
3213 	}
3214 }
3215 
3216 #ifdef CONFIG_PCI_IOV
3217 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3218 						      int resno)
3219 {
3220 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3221 	struct pnv_phb *phb = hose->private_data;
3222 	struct pci_dn *pdn = pci_get_pdn(pdev);
3223 	resource_size_t align;
3224 
3225 	/*
3226 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3227 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3228 	 * BAR should be size aligned.
3229 	 *
3230 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3231 	 * powernv-specific hardware restriction is gone. But if just use the
3232 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3233 	 * in one segment of M64 #15, which introduces the PE conflict between
3234 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3235 	 * m64_segsize.
3236 	 *
3237 	 * This function returns the total IOV BAR size if M64 BAR is in
3238 	 * Shared PE mode or just VF BAR size if not.
3239 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3240 	 * M64 segment size if IOV BAR size is less.
3241 	 */
3242 	align = pci_iov_resource_size(pdev, resno);
3243 	if (!pdn->vfs_expanded)
3244 		return align;
3245 	if (pdn->m64_single_mode)
3246 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3247 
3248 	return pdn->vfs_expanded * align;
3249 }
3250 #endif /* CONFIG_PCI_IOV */
3251 
3252 /* Prevent enabling devices for which we couldn't properly
3253  * assign a PE
3254  */
3255 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3256 {
3257 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3258 	struct pnv_phb *phb = hose->private_data;
3259 	struct pci_dn *pdn;
3260 
3261 	/* The function is probably called while the PEs have
3262 	 * not be created yet. For example, resource reassignment
3263 	 * during PCI probe period. We just skip the check if
3264 	 * PEs isn't ready.
3265 	 */
3266 	if (!phb->initialized)
3267 		return true;
3268 
3269 	pdn = pci_get_pdn(dev);
3270 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3271 		return false;
3272 
3273 	return true;
3274 }
3275 
3276 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3277 				       int num)
3278 {
3279 	struct pnv_ioda_pe *pe = container_of(table_group,
3280 					      struct pnv_ioda_pe, table_group);
3281 	struct pnv_phb *phb = pe->phb;
3282 	unsigned int idx;
3283 	long rc;
3284 
3285 	pe_info(pe, "Removing DMA window #%d\n", num);
3286 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3287 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3288 			continue;
3289 
3290 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3291 						idx, 0, 0ul, 0ul, 0ul);
3292 		if (rc != OPAL_SUCCESS) {
3293 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3294 				rc, idx);
3295 			return rc;
3296 		}
3297 
3298 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3299 	}
3300 
3301 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3302 	return OPAL_SUCCESS;
3303 }
3304 
3305 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3306 {
3307 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3308 	struct iommu_table *tbl = pe->table_group.tables[0];
3309 	int64_t rc;
3310 
3311 	if (!weight)
3312 		return;
3313 
3314 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3315 	if (rc != OPAL_SUCCESS)
3316 		return;
3317 
3318 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3319 	if (pe->table_group.group) {
3320 		iommu_group_put(pe->table_group.group);
3321 		WARN_ON(pe->table_group.group);
3322 	}
3323 
3324 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3325 	iommu_free_table(tbl, "pnv");
3326 }
3327 
3328 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3329 {
3330 	struct iommu_table *tbl = pe->table_group.tables[0];
3331 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3332 #ifdef CONFIG_IOMMU_API
3333 	int64_t rc;
3334 #endif
3335 
3336 	if (!weight)
3337 		return;
3338 
3339 #ifdef CONFIG_IOMMU_API
3340 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3341 	if (rc)
3342 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3343 #endif
3344 
3345 	pnv_pci_ioda2_set_bypass(pe, false);
3346 	if (pe->table_group.group) {
3347 		iommu_group_put(pe->table_group.group);
3348 		WARN_ON(pe->table_group.group);
3349 	}
3350 
3351 	pnv_pci_ioda2_table_free_pages(tbl);
3352 	iommu_free_table(tbl, "pnv");
3353 }
3354 
3355 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3356 				 unsigned short win,
3357 				 unsigned int *map)
3358 {
3359 	struct pnv_phb *phb = pe->phb;
3360 	int idx;
3361 	int64_t rc;
3362 
3363 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3364 		if (map[idx] != pe->pe_number)
3365 			continue;
3366 
3367 		if (win == OPAL_M64_WINDOW_TYPE)
3368 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3369 					phb->ioda.reserved_pe_idx, win,
3370 					idx / PNV_IODA1_M64_SEGS,
3371 					idx % PNV_IODA1_M64_SEGS);
3372 		else
3373 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3374 					phb->ioda.reserved_pe_idx, win, 0, idx);
3375 
3376 		if (rc != OPAL_SUCCESS)
3377 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3378 				rc, win, idx);
3379 
3380 		map[idx] = IODA_INVALID_PE;
3381 	}
3382 }
3383 
3384 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3385 {
3386 	struct pnv_phb *phb = pe->phb;
3387 
3388 	if (phb->type == PNV_PHB_IODA1) {
3389 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3390 				     phb->ioda.io_segmap);
3391 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3392 				     phb->ioda.m32_segmap);
3393 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3394 				     phb->ioda.m64_segmap);
3395 	} else if (phb->type == PNV_PHB_IODA2) {
3396 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3397 				     phb->ioda.m32_segmap);
3398 	}
3399 }
3400 
3401 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3402 {
3403 	struct pnv_phb *phb = pe->phb;
3404 	struct pnv_ioda_pe *slave, *tmp;
3405 
3406 	list_del(&pe->list);
3407 	switch (phb->type) {
3408 	case PNV_PHB_IODA1:
3409 		pnv_pci_ioda1_release_pe_dma(pe);
3410 		break;
3411 	case PNV_PHB_IODA2:
3412 		pnv_pci_ioda2_release_pe_dma(pe);
3413 		break;
3414 	default:
3415 		WARN_ON(1);
3416 	}
3417 
3418 	pnv_ioda_release_pe_seg(pe);
3419 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3420 
3421 	/* Release slave PEs in the compound PE */
3422 	if (pe->flags & PNV_IODA_PE_MASTER) {
3423 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3424 			list_del(&slave->list);
3425 			pnv_ioda_free_pe(slave);
3426 		}
3427 	}
3428 
3429 	pnv_ioda_free_pe(pe);
3430 }
3431 
3432 static void pnv_pci_release_device(struct pci_dev *pdev)
3433 {
3434 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3435 	struct pnv_phb *phb = hose->private_data;
3436 	struct pci_dn *pdn = pci_get_pdn(pdev);
3437 	struct pnv_ioda_pe *pe;
3438 
3439 	if (pdev->is_virtfn)
3440 		return;
3441 
3442 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3443 		return;
3444 
3445 	pe = &phb->ioda.pe_array[pdn->pe_number];
3446 	WARN_ON(--pe->device_count < 0);
3447 	if (pe->device_count == 0)
3448 		pnv_ioda_release_pe(pe);
3449 }
3450 
3451 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3452 {
3453 	struct pnv_phb *phb = hose->private_data;
3454 
3455 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3456 		       OPAL_ASSERT_RESET);
3457 }
3458 
3459 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3460 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3461 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3462 #ifdef CONFIG_PCI_MSI
3463 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3464 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3465 #endif
3466 	.enable_device_hook	= pnv_pci_enable_device_hook,
3467 	.release_device		= pnv_pci_release_device,
3468 	.window_alignment	= pnv_pci_window_alignment,
3469 	.setup_bridge		= pnv_pci_setup_bridge,
3470 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3471 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3472 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3473 	.shutdown		= pnv_pci_ioda_shutdown,
3474 };
3475 
3476 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3477 {
3478 	dev_err_once(&npdev->dev,
3479 			"%s operation unsupported for NVLink devices\n",
3480 			__func__);
3481 	return -EPERM;
3482 }
3483 
3484 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3485 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3486 #ifdef CONFIG_PCI_MSI
3487 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3488 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3489 #endif
3490 	.enable_device_hook	= pnv_pci_enable_device_hook,
3491 	.window_alignment	= pnv_pci_window_alignment,
3492 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3493 	.dma_set_mask		= pnv_npu_dma_set_mask,
3494 	.shutdown		= pnv_pci_ioda_shutdown,
3495 };
3496 
3497 #ifdef CONFIG_CXL_BASE
3498 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3499 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3500 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3501 #ifdef CONFIG_PCI_MSI
3502 	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
3503 	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
3504 #endif
3505 	.enable_device_hook	= pnv_cxl_enable_device_hook,
3506 	.disable_device		= pnv_cxl_disable_device,
3507 	.release_device		= pnv_pci_release_device,
3508 	.window_alignment	= pnv_pci_window_alignment,
3509 	.setup_bridge		= pnv_pci_setup_bridge,
3510 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3511 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3512 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3513 	.shutdown		= pnv_pci_ioda_shutdown,
3514 };
3515 #endif
3516 
3517 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3518 					 u64 hub_id, int ioda_type)
3519 {
3520 	struct pci_controller *hose;
3521 	struct pnv_phb *phb;
3522 	unsigned long size, m64map_off, m32map_off, pemap_off;
3523 	unsigned long iomap_off = 0, dma32map_off = 0;
3524 	struct resource r;
3525 	const __be64 *prop64;
3526 	const __be32 *prop32;
3527 	int len;
3528 	unsigned int segno;
3529 	u64 phb_id;
3530 	void *aux;
3531 	long rc;
3532 
3533 	if (!of_device_is_available(np))
3534 		return;
3535 
3536 	pr_info("Initializing %s PHB (%s)\n",
3537 		pnv_phb_names[ioda_type], of_node_full_name(np));
3538 
3539 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3540 	if (!prop64) {
3541 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3542 		return;
3543 	}
3544 	phb_id = be64_to_cpup(prop64);
3545 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3546 
3547 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3548 
3549 	/* Allocate PCI controller */
3550 	phb->hose = hose = pcibios_alloc_controller(np);
3551 	if (!phb->hose) {
3552 		pr_err("  Can't allocate PCI controller for %s\n",
3553 		       np->full_name);
3554 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3555 		return;
3556 	}
3557 
3558 	spin_lock_init(&phb->lock);
3559 	prop32 = of_get_property(np, "bus-range", &len);
3560 	if (prop32 && len == 8) {
3561 		hose->first_busno = be32_to_cpu(prop32[0]);
3562 		hose->last_busno = be32_to_cpu(prop32[1]);
3563 	} else {
3564 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3565 		hose->first_busno = 0;
3566 		hose->last_busno = 0xff;
3567 	}
3568 	hose->private_data = phb;
3569 	phb->hub_id = hub_id;
3570 	phb->opal_id = phb_id;
3571 	phb->type = ioda_type;
3572 	mutex_init(&phb->ioda.pe_alloc_mutex);
3573 
3574 	/* Detect specific models for error handling */
3575 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3576 		phb->model = PNV_PHB_MODEL_P7IOC;
3577 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3578 		phb->model = PNV_PHB_MODEL_PHB3;
3579 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3580 		phb->model = PNV_PHB_MODEL_NPU;
3581 	else
3582 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3583 
3584 	/* Parse 32-bit and IO ranges (if any) */
3585 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3586 
3587 	/* Get registers */
3588 	if (!of_address_to_resource(np, 0, &r)) {
3589 		phb->regs_phys = r.start;
3590 		phb->regs = ioremap(r.start, resource_size(&r));
3591 		if (phb->regs == NULL)
3592 			pr_err("  Failed to map registers !\n");
3593 	}
3594 
3595 	/* Initialize more IODA stuff */
3596 	phb->ioda.total_pe_num = 1;
3597 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3598 	if (prop32)
3599 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3600 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3601 	if (prop32)
3602 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3603 
3604 	/* Invalidate RID to PE# mapping */
3605 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3606 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3607 
3608 	/* Parse 64-bit MMIO range */
3609 	pnv_ioda_parse_m64_window(phb);
3610 
3611 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3612 	/* FW Has already off top 64k of M32 space (MSI space) */
3613 	phb->ioda.m32_size += 0x10000;
3614 
3615 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3616 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3617 	phb->ioda.io_size = hose->pci_io_size;
3618 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3619 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3620 
3621 	/* Calculate how many 32-bit TCE segments we have */
3622 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3623 				PNV_IODA1_DMA32_SEGSIZE;
3624 
3625 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3626 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3627 			sizeof(unsigned long));
3628 	m64map_off = size;
3629 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3630 	m32map_off = size;
3631 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3632 	if (phb->type == PNV_PHB_IODA1) {
3633 		iomap_off = size;
3634 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3635 		dma32map_off = size;
3636 		size += phb->ioda.dma32_count *
3637 			sizeof(phb->ioda.dma32_segmap[0]);
3638 	}
3639 	pemap_off = size;
3640 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3641 	aux = memblock_virt_alloc(size, 0);
3642 	phb->ioda.pe_alloc = aux;
3643 	phb->ioda.m64_segmap = aux + m64map_off;
3644 	phb->ioda.m32_segmap = aux + m32map_off;
3645 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3646 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3647 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3648 	}
3649 	if (phb->type == PNV_PHB_IODA1) {
3650 		phb->ioda.io_segmap = aux + iomap_off;
3651 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3652 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3653 
3654 		phb->ioda.dma32_segmap = aux + dma32map_off;
3655 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3656 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3657 	}
3658 	phb->ioda.pe_array = aux + pemap_off;
3659 
3660 	/*
3661 	 * Choose PE number for root bus, which shouldn't have
3662 	 * M64 resources consumed by its child devices. To pick
3663 	 * the PE number adjacent to the reserved one if possible.
3664 	 */
3665 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3666 	if (phb->ioda.reserved_pe_idx == 0) {
3667 		phb->ioda.root_pe_idx = 1;
3668 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3669 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3670 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3671 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3672 	} else {
3673 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3674 	}
3675 
3676 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3677 	mutex_init(&phb->ioda.pe_list_mutex);
3678 
3679 	/* Calculate how many 32-bit TCE segments we have */
3680 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3681 				PNV_IODA1_DMA32_SEGSIZE;
3682 
3683 #if 0 /* We should really do that ... */
3684 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3685 					 window_type,
3686 					 window_num,
3687 					 starting_real_address,
3688 					 starting_pci_address,
3689 					 segment_size);
3690 #endif
3691 
3692 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3693 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3694 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3695 	if (phb->ioda.m64_size)
3696 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3697 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3698 	if (phb->ioda.io_size)
3699 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3700 			phb->ioda.io_size, phb->ioda.io_segsize);
3701 
3702 
3703 	phb->hose->ops = &pnv_pci_ops;
3704 	phb->get_pe_state = pnv_ioda_get_pe_state;
3705 	phb->freeze_pe = pnv_ioda_freeze_pe;
3706 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3707 
3708 	/* Setup MSI support */
3709 	pnv_pci_init_ioda_msis(phb);
3710 
3711 	/*
3712 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3713 	 * to let the PCI core do resource assignment. It's supposed
3714 	 * that the PCI core will do correct I/O and MMIO alignment
3715 	 * for the P2P bridge bars so that each PCI bus (excluding
3716 	 * the child P2P bridges) can form individual PE.
3717 	 */
3718 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3719 
3720 	if (phb->type == PNV_PHB_NPU) {
3721 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3722 	} else {
3723 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3724 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3725 	}
3726 
3727 #ifdef CONFIG_PCI_IOV
3728 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3729 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3730 #endif
3731 
3732 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3733 
3734 	/* Reset IODA tables to a clean state */
3735 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3736 	if (rc)
3737 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3738 
3739 	/* If we're running in kdump kerenl, the previous kerenl never
3740 	 * shutdown PCI devices correctly. We already got IODA table
3741 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3742 	 * transactions from previous kerenl.
3743 	 */
3744 	if (is_kdump_kernel()) {
3745 		pr_info("  Issue PHB reset ...\n");
3746 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3747 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3748 	}
3749 
3750 	/* Remove M64 resource if we can't configure it successfully */
3751 	if (!phb->init_m64 || phb->init_m64(phb))
3752 		hose->mem_resources[1].flags = 0;
3753 }
3754 
3755 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3756 {
3757 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3758 }
3759 
3760 void __init pnv_pci_init_npu_phb(struct device_node *np)
3761 {
3762 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3763 }
3764 
3765 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3766 {
3767 	struct device_node *phbn;
3768 	const __be64 *prop64;
3769 	u64 hub_id;
3770 
3771 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3772 
3773 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3774 	if (!prop64) {
3775 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3776 		return;
3777 	}
3778 	hub_id = be64_to_cpup(prop64);
3779 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3780 
3781 	/* Count child PHBs */
3782 	for_each_child_of_node(np, phbn) {
3783 		/* Look for IODA1 PHBs */
3784 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3785 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3786 	}
3787 }
3788