1 /* 2 * Support PCI/PCIe on PowerNV platforms 3 * 4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/pci.h> 16 #include <linux/crash_dump.h> 17 #include <linux/debugfs.h> 18 #include <linux/delay.h> 19 #include <linux/string.h> 20 #include <linux/init.h> 21 #include <linux/bootmem.h> 22 #include <linux/irq.h> 23 #include <linux/io.h> 24 #include <linux/msi.h> 25 #include <linux/memblock.h> 26 #include <linux/iommu.h> 27 #include <linux/rculist.h> 28 #include <linux/sizes.h> 29 30 #include <asm/sections.h> 31 #include <asm/io.h> 32 #include <asm/prom.h> 33 #include <asm/pci-bridge.h> 34 #include <asm/machdep.h> 35 #include <asm/msi_bitmap.h> 36 #include <asm/ppc-pci.h> 37 #include <asm/opal.h> 38 #include <asm/iommu.h> 39 #include <asm/tce.h> 40 #include <asm/xics.h> 41 #include <asm/debug.h> 42 #include <asm/firmware.h> 43 #include <asm/pnv-pci.h> 44 #include <asm/mmzone.h> 45 46 #include <misc/cxl-base.h> 47 48 #include "powernv.h" 49 #include "pci.h" 50 51 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ 52 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ 53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 54 55 #define POWERNV_IOMMU_DEFAULT_LEVELS 1 56 #define POWERNV_IOMMU_MAX_LEVELS 5 57 58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" }; 59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl); 60 61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, 62 const char *fmt, ...) 63 { 64 struct va_format vaf; 65 va_list args; 66 char pfix[32]; 67 68 va_start(args, fmt); 69 70 vaf.fmt = fmt; 71 vaf.va = &args; 72 73 if (pe->flags & PNV_IODA_PE_DEV) 74 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); 75 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 76 sprintf(pfix, "%04x:%02x ", 77 pci_domain_nr(pe->pbus), pe->pbus->number); 78 #ifdef CONFIG_PCI_IOV 79 else if (pe->flags & PNV_IODA_PE_VF) 80 sprintf(pfix, "%04x:%02x:%2x.%d", 81 pci_domain_nr(pe->parent_dev->bus), 82 (pe->rid & 0xff00) >> 8, 83 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); 84 #endif /* CONFIG_PCI_IOV*/ 85 86 printk("%spci %s: [PE# %.3d] %pV", 87 level, pfix, pe->pe_number, &vaf); 88 89 va_end(args); 90 } 91 92 static bool pnv_iommu_bypass_disabled __read_mostly; 93 94 static int __init iommu_setup(char *str) 95 { 96 if (!str) 97 return -EINVAL; 98 99 while (*str) { 100 if (!strncmp(str, "nobypass", 8)) { 101 pnv_iommu_bypass_disabled = true; 102 pr_info("PowerNV: IOMMU bypass window disabled.\n"); 103 break; 104 } 105 str += strcspn(str, ","); 106 if (*str == ',') 107 str++; 108 } 109 110 return 0; 111 } 112 early_param("iommu", iommu_setup); 113 114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r) 115 { 116 /* 117 * WARNING: We cannot rely on the resource flags. The Linux PCI 118 * allocation code sometimes decides to put a 64-bit prefetchable 119 * BAR in the 32-bit window, so we have to compare the addresses. 120 * 121 * For simplicity we only test resource start. 122 */ 123 return (r->start >= phb->ioda.m64_base && 124 r->start < (phb->ioda.m64_base + phb->ioda.m64_size)); 125 } 126 127 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) 128 { 129 phb->ioda.pe_array[pe_no].phb = phb; 130 phb->ioda.pe_array[pe_no].pe_number = pe_no; 131 132 return &phb->ioda.pe_array[pe_no]; 133 } 134 135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) 136 { 137 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { 138 pr_warn("%s: Invalid PE %d on PHB#%x\n", 139 __func__, pe_no, phb->hose->global_number); 140 return; 141 } 142 143 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) 144 pr_debug("%s: PE %d was reserved on PHB#%x\n", 145 __func__, pe_no, phb->hose->global_number); 146 147 pnv_ioda_init_pe(phb, pe_no); 148 } 149 150 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb) 151 { 152 long pe; 153 154 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { 155 if (!test_and_set_bit(pe, phb->ioda.pe_alloc)) 156 return pnv_ioda_init_pe(phb, pe); 157 } 158 159 return NULL; 160 } 161 162 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) 163 { 164 struct pnv_phb *phb = pe->phb; 165 unsigned int pe_num = pe->pe_number; 166 167 WARN_ON(pe->pdev); 168 169 memset(pe, 0, sizeof(struct pnv_ioda_pe)); 170 clear_bit(pe_num, phb->ioda.pe_alloc); 171 } 172 173 /* The default M64 BAR is shared by all PEs */ 174 static int pnv_ioda2_init_m64(struct pnv_phb *phb) 175 { 176 const char *desc; 177 struct resource *r; 178 s64 rc; 179 180 /* Configure the default M64 BAR */ 181 rc = opal_pci_set_phb_mem_window(phb->opal_id, 182 OPAL_M64_WINDOW_TYPE, 183 phb->ioda.m64_bar_idx, 184 phb->ioda.m64_base, 185 0, /* unused */ 186 phb->ioda.m64_size); 187 if (rc != OPAL_SUCCESS) { 188 desc = "configuring"; 189 goto fail; 190 } 191 192 /* Enable the default M64 BAR */ 193 rc = opal_pci_phb_mmio_enable(phb->opal_id, 194 OPAL_M64_WINDOW_TYPE, 195 phb->ioda.m64_bar_idx, 196 OPAL_ENABLE_M64_SPLIT); 197 if (rc != OPAL_SUCCESS) { 198 desc = "enabling"; 199 goto fail; 200 } 201 202 /* 203 * Exclude the segments for reserved and root bus PE, which 204 * are first or last two PEs. 205 */ 206 r = &phb->hose->mem_resources[1]; 207 if (phb->ioda.reserved_pe_idx == 0) 208 r->start += (2 * phb->ioda.m64_segsize); 209 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 210 r->end -= (2 * phb->ioda.m64_segsize); 211 else 212 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n", 213 phb->ioda.reserved_pe_idx); 214 215 return 0; 216 217 fail: 218 pr_warn(" Failure %lld %s M64 BAR#%d\n", 219 rc, desc, phb->ioda.m64_bar_idx); 220 opal_pci_phb_mmio_enable(phb->opal_id, 221 OPAL_M64_WINDOW_TYPE, 222 phb->ioda.m64_bar_idx, 223 OPAL_DISABLE_M64); 224 return -EIO; 225 } 226 227 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, 228 unsigned long *pe_bitmap) 229 { 230 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 231 struct pnv_phb *phb = hose->private_data; 232 struct resource *r; 233 resource_size_t base, sgsz, start, end; 234 int segno, i; 235 236 base = phb->ioda.m64_base; 237 sgsz = phb->ioda.m64_segsize; 238 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 239 r = &pdev->resource[i]; 240 if (!r->parent || !pnv_pci_is_m64(phb, r)) 241 continue; 242 243 start = _ALIGN_DOWN(r->start - base, sgsz); 244 end = _ALIGN_UP(r->end - base, sgsz); 245 for (segno = start / sgsz; segno < end / sgsz; segno++) { 246 if (pe_bitmap) 247 set_bit(segno, pe_bitmap); 248 else 249 pnv_ioda_reserve_pe(phb, segno); 250 } 251 } 252 } 253 254 static int pnv_ioda1_init_m64(struct pnv_phb *phb) 255 { 256 struct resource *r; 257 int index; 258 259 /* 260 * There are 16 M64 BARs, each of which has 8 segments. So 261 * there are as many M64 segments as the maximum number of 262 * PEs, which is 128. 263 */ 264 for (index = 0; index < PNV_IODA1_M64_NUM; index++) { 265 unsigned long base, segsz = phb->ioda.m64_segsize; 266 int64_t rc; 267 268 base = phb->ioda.m64_base + 269 index * PNV_IODA1_M64_SEGS * segsz; 270 rc = opal_pci_set_phb_mem_window(phb->opal_id, 271 OPAL_M64_WINDOW_TYPE, index, base, 0, 272 PNV_IODA1_M64_SEGS * segsz); 273 if (rc != OPAL_SUCCESS) { 274 pr_warn(" Error %lld setting M64 PHB#%d-BAR#%d\n", 275 rc, phb->hose->global_number, index); 276 goto fail; 277 } 278 279 rc = opal_pci_phb_mmio_enable(phb->opal_id, 280 OPAL_M64_WINDOW_TYPE, index, 281 OPAL_ENABLE_M64_SPLIT); 282 if (rc != OPAL_SUCCESS) { 283 pr_warn(" Error %lld enabling M64 PHB#%d-BAR#%d\n", 284 rc, phb->hose->global_number, index); 285 goto fail; 286 } 287 } 288 289 /* 290 * Exclude the segments for reserved and root bus PE, which 291 * are first or last two PEs. 292 */ 293 r = &phb->hose->mem_resources[1]; 294 if (phb->ioda.reserved_pe_idx == 0) 295 r->start += (2 * phb->ioda.m64_segsize); 296 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 297 r->end -= (2 * phb->ioda.m64_segsize); 298 else 299 WARN(1, "Wrong reserved PE#%d on PHB#%d\n", 300 phb->ioda.reserved_pe_idx, phb->hose->global_number); 301 302 return 0; 303 304 fail: 305 for ( ; index >= 0; index--) 306 opal_pci_phb_mmio_enable(phb->opal_id, 307 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); 308 309 return -EIO; 310 } 311 312 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, 313 unsigned long *pe_bitmap, 314 bool all) 315 { 316 struct pci_dev *pdev; 317 318 list_for_each_entry(pdev, &bus->devices, bus_list) { 319 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); 320 321 if (all && pdev->subordinate) 322 pnv_ioda_reserve_m64_pe(pdev->subordinate, 323 pe_bitmap, all); 324 } 325 } 326 327 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) 328 { 329 struct pci_controller *hose = pci_bus_to_host(bus); 330 struct pnv_phb *phb = hose->private_data; 331 struct pnv_ioda_pe *master_pe, *pe; 332 unsigned long size, *pe_alloc; 333 int i; 334 335 /* Root bus shouldn't use M64 */ 336 if (pci_is_root_bus(bus)) 337 return NULL; 338 339 /* Allocate bitmap */ 340 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); 341 pe_alloc = kzalloc(size, GFP_KERNEL); 342 if (!pe_alloc) { 343 pr_warn("%s: Out of memory !\n", 344 __func__); 345 return NULL; 346 } 347 348 /* Figure out reserved PE numbers by the PE */ 349 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); 350 351 /* 352 * the current bus might not own M64 window and that's all 353 * contributed by its child buses. For the case, we needn't 354 * pick M64 dependent PE#. 355 */ 356 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { 357 kfree(pe_alloc); 358 return NULL; 359 } 360 361 /* 362 * Figure out the master PE and put all slave PEs to master 363 * PE's list to form compound PE. 364 */ 365 master_pe = NULL; 366 i = -1; 367 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < 368 phb->ioda.total_pe_num) { 369 pe = &phb->ioda.pe_array[i]; 370 371 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; 372 if (!master_pe) { 373 pe->flags |= PNV_IODA_PE_MASTER; 374 INIT_LIST_HEAD(&pe->slaves); 375 master_pe = pe; 376 } else { 377 pe->flags |= PNV_IODA_PE_SLAVE; 378 pe->master = master_pe; 379 list_add_tail(&pe->list, &master_pe->slaves); 380 } 381 382 /* 383 * P7IOC supports M64DT, which helps mapping M64 segment 384 * to one particular PE#. However, PHB3 has fixed mapping 385 * between M64 segment and PE#. In order to have same logic 386 * for P7IOC and PHB3, we enforce fixed mapping between M64 387 * segment and PE# on P7IOC. 388 */ 389 if (phb->type == PNV_PHB_IODA1) { 390 int64_t rc; 391 392 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 393 pe->pe_number, OPAL_M64_WINDOW_TYPE, 394 pe->pe_number / PNV_IODA1_M64_SEGS, 395 pe->pe_number % PNV_IODA1_M64_SEGS); 396 if (rc != OPAL_SUCCESS) 397 pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n", 398 __func__, rc, phb->hose->global_number, 399 pe->pe_number); 400 } 401 } 402 403 kfree(pe_alloc); 404 return master_pe; 405 } 406 407 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) 408 { 409 struct pci_controller *hose = phb->hose; 410 struct device_node *dn = hose->dn; 411 struct resource *res; 412 u32 m64_range[2], i; 413 const u32 *r; 414 u64 pci_addr; 415 416 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { 417 pr_info(" Not support M64 window\n"); 418 return; 419 } 420 421 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 422 pr_info(" Firmware too old to support M64 window\n"); 423 return; 424 } 425 426 r = of_get_property(dn, "ibm,opal-m64-window", NULL); 427 if (!r) { 428 pr_info(" No <ibm,opal-m64-window> on %s\n", 429 dn->full_name); 430 return; 431 } 432 433 /* 434 * Find the available M64 BAR range and pickup the last one for 435 * covering the whole 64-bits space. We support only one range. 436 */ 437 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", 438 m64_range, 2)) { 439 /* In absence of the property, assume 0..15 */ 440 m64_range[0] = 0; 441 m64_range[1] = 16; 442 } 443 /* We only support 64 bits in our allocator */ 444 if (m64_range[1] > 63) { 445 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", 446 __func__, m64_range[1], phb->hose->global_number); 447 m64_range[1] = 63; 448 } 449 /* Empty range, no m64 */ 450 if (m64_range[1] <= m64_range[0]) { 451 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", 452 __func__, phb->hose->global_number); 453 return; 454 } 455 456 /* Configure M64 informations */ 457 res = &hose->mem_resources[1]; 458 res->name = dn->full_name; 459 res->start = of_translate_address(dn, r + 2); 460 res->end = res->start + of_read_number(r + 4, 2) - 1; 461 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 462 pci_addr = of_read_number(r, 2); 463 hose->mem_offset[1] = res->start - pci_addr; 464 465 phb->ioda.m64_size = resource_size(res); 466 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; 467 phb->ioda.m64_base = pci_addr; 468 469 /* This lines up nicely with the display from processing OF ranges */ 470 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", 471 res->start, res->end, pci_addr, m64_range[0], 472 m64_range[0] + m64_range[1] - 1); 473 474 /* Mark all M64 used up by default */ 475 phb->ioda.m64_bar_alloc = (unsigned long)-1; 476 477 /* Use last M64 BAR to cover M64 window */ 478 m64_range[1]--; 479 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; 480 481 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); 482 483 /* Mark remaining ones free */ 484 for (i = m64_range[0]; i < m64_range[1]; i++) 485 clear_bit(i, &phb->ioda.m64_bar_alloc); 486 487 /* 488 * Setup init functions for M64 based on IODA version, IODA3 uses 489 * the IODA2 code. 490 */ 491 if (phb->type == PNV_PHB_IODA1) 492 phb->init_m64 = pnv_ioda1_init_m64; 493 else 494 phb->init_m64 = pnv_ioda2_init_m64; 495 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe; 496 phb->pick_m64_pe = pnv_ioda_pick_m64_pe; 497 } 498 499 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) 500 { 501 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; 502 struct pnv_ioda_pe *slave; 503 s64 rc; 504 505 /* Fetch master PE */ 506 if (pe->flags & PNV_IODA_PE_SLAVE) { 507 pe = pe->master; 508 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) 509 return; 510 511 pe_no = pe->pe_number; 512 } 513 514 /* Freeze master PE */ 515 rc = opal_pci_eeh_freeze_set(phb->opal_id, 516 pe_no, 517 OPAL_EEH_ACTION_SET_FREEZE_ALL); 518 if (rc != OPAL_SUCCESS) { 519 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 520 __func__, rc, phb->hose->global_number, pe_no); 521 return; 522 } 523 524 /* Freeze slave PEs */ 525 if (!(pe->flags & PNV_IODA_PE_MASTER)) 526 return; 527 528 list_for_each_entry(slave, &pe->slaves, list) { 529 rc = opal_pci_eeh_freeze_set(phb->opal_id, 530 slave->pe_number, 531 OPAL_EEH_ACTION_SET_FREEZE_ALL); 532 if (rc != OPAL_SUCCESS) 533 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 534 __func__, rc, phb->hose->global_number, 535 slave->pe_number); 536 } 537 } 538 539 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) 540 { 541 struct pnv_ioda_pe *pe, *slave; 542 s64 rc; 543 544 /* Find master PE */ 545 pe = &phb->ioda.pe_array[pe_no]; 546 if (pe->flags & PNV_IODA_PE_SLAVE) { 547 pe = pe->master; 548 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 549 pe_no = pe->pe_number; 550 } 551 552 /* Clear frozen state for master PE */ 553 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); 554 if (rc != OPAL_SUCCESS) { 555 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 556 __func__, rc, opt, phb->hose->global_number, pe_no); 557 return -EIO; 558 } 559 560 if (!(pe->flags & PNV_IODA_PE_MASTER)) 561 return 0; 562 563 /* Clear frozen state for slave PEs */ 564 list_for_each_entry(slave, &pe->slaves, list) { 565 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 566 slave->pe_number, 567 opt); 568 if (rc != OPAL_SUCCESS) { 569 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 570 __func__, rc, opt, phb->hose->global_number, 571 slave->pe_number); 572 return -EIO; 573 } 574 } 575 576 return 0; 577 } 578 579 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) 580 { 581 struct pnv_ioda_pe *slave, *pe; 582 u8 fstate, state; 583 __be16 pcierr; 584 s64 rc; 585 586 /* Sanity check on PE number */ 587 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) 588 return OPAL_EEH_STOPPED_PERM_UNAVAIL; 589 590 /* 591 * Fetch the master PE and the PE instance might be 592 * not initialized yet. 593 */ 594 pe = &phb->ioda.pe_array[pe_no]; 595 if (pe->flags & PNV_IODA_PE_SLAVE) { 596 pe = pe->master; 597 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 598 pe_no = pe->pe_number; 599 } 600 601 /* Check the master PE */ 602 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, 603 &state, &pcierr, NULL); 604 if (rc != OPAL_SUCCESS) { 605 pr_warn("%s: Failure %lld getting " 606 "PHB#%x-PE#%x state\n", 607 __func__, rc, 608 phb->hose->global_number, pe_no); 609 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 610 } 611 612 /* Check the slave PE */ 613 if (!(pe->flags & PNV_IODA_PE_MASTER)) 614 return state; 615 616 list_for_each_entry(slave, &pe->slaves, list) { 617 rc = opal_pci_eeh_freeze_status(phb->opal_id, 618 slave->pe_number, 619 &fstate, 620 &pcierr, 621 NULL); 622 if (rc != OPAL_SUCCESS) { 623 pr_warn("%s: Failure %lld getting " 624 "PHB#%x-PE#%x state\n", 625 __func__, rc, 626 phb->hose->global_number, slave->pe_number); 627 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 628 } 629 630 /* 631 * Override the result based on the ascending 632 * priority. 633 */ 634 if (fstate > state) 635 state = fstate; 636 } 637 638 return state; 639 } 640 641 /* Currently those 2 are only used when MSIs are enabled, this will change 642 * but in the meantime, we need to protect them to avoid warnings 643 */ 644 #ifdef CONFIG_PCI_MSI 645 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) 646 { 647 struct pci_controller *hose = pci_bus_to_host(dev->bus); 648 struct pnv_phb *phb = hose->private_data; 649 struct pci_dn *pdn = pci_get_pdn(dev); 650 651 if (!pdn) 652 return NULL; 653 if (pdn->pe_number == IODA_INVALID_PE) 654 return NULL; 655 return &phb->ioda.pe_array[pdn->pe_number]; 656 } 657 #endif /* CONFIG_PCI_MSI */ 658 659 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, 660 struct pnv_ioda_pe *parent, 661 struct pnv_ioda_pe *child, 662 bool is_add) 663 { 664 const char *desc = is_add ? "adding" : "removing"; 665 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : 666 OPAL_REMOVE_PE_FROM_DOMAIN; 667 struct pnv_ioda_pe *slave; 668 long rc; 669 670 /* Parent PE affects child PE */ 671 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 672 child->pe_number, op); 673 if (rc != OPAL_SUCCESS) { 674 pe_warn(child, "OPAL error %ld %s to parent PELTV\n", 675 rc, desc); 676 return -ENXIO; 677 } 678 679 if (!(child->flags & PNV_IODA_PE_MASTER)) 680 return 0; 681 682 /* Compound case: parent PE affects slave PEs */ 683 list_for_each_entry(slave, &child->slaves, list) { 684 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 685 slave->pe_number, op); 686 if (rc != OPAL_SUCCESS) { 687 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", 688 rc, desc); 689 return -ENXIO; 690 } 691 } 692 693 return 0; 694 } 695 696 static int pnv_ioda_set_peltv(struct pnv_phb *phb, 697 struct pnv_ioda_pe *pe, 698 bool is_add) 699 { 700 struct pnv_ioda_pe *slave; 701 struct pci_dev *pdev = NULL; 702 int ret; 703 704 /* 705 * Clear PE frozen state. If it's master PE, we need 706 * clear slave PE frozen state as well. 707 */ 708 if (is_add) { 709 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 710 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 711 if (pe->flags & PNV_IODA_PE_MASTER) { 712 list_for_each_entry(slave, &pe->slaves, list) 713 opal_pci_eeh_freeze_clear(phb->opal_id, 714 slave->pe_number, 715 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 716 } 717 } 718 719 /* 720 * Associate PE in PELT. We need add the PE into the 721 * corresponding PELT-V as well. Otherwise, the error 722 * originated from the PE might contribute to other 723 * PEs. 724 */ 725 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); 726 if (ret) 727 return ret; 728 729 /* For compound PEs, any one affects all of them */ 730 if (pe->flags & PNV_IODA_PE_MASTER) { 731 list_for_each_entry(slave, &pe->slaves, list) { 732 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); 733 if (ret) 734 return ret; 735 } 736 } 737 738 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) 739 pdev = pe->pbus->self; 740 else if (pe->flags & PNV_IODA_PE_DEV) 741 pdev = pe->pdev->bus->self; 742 #ifdef CONFIG_PCI_IOV 743 else if (pe->flags & PNV_IODA_PE_VF) 744 pdev = pe->parent_dev; 745 #endif /* CONFIG_PCI_IOV */ 746 while (pdev) { 747 struct pci_dn *pdn = pci_get_pdn(pdev); 748 struct pnv_ioda_pe *parent; 749 750 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 751 parent = &phb->ioda.pe_array[pdn->pe_number]; 752 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); 753 if (ret) 754 return ret; 755 } 756 757 pdev = pdev->bus->self; 758 } 759 760 return 0; 761 } 762 763 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 764 { 765 struct pci_dev *parent; 766 uint8_t bcomp, dcomp, fcomp; 767 int64_t rc; 768 long rid_end, rid; 769 770 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ 771 if (pe->pbus) { 772 int count; 773 774 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 775 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 776 parent = pe->pbus->self; 777 if (pe->flags & PNV_IODA_PE_BUS_ALL) 778 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 779 else 780 count = 1; 781 782 switch(count) { 783 case 1: bcomp = OpalPciBusAll; break; 784 case 2: bcomp = OpalPciBus7Bits; break; 785 case 4: bcomp = OpalPciBus6Bits; break; 786 case 8: bcomp = OpalPciBus5Bits; break; 787 case 16: bcomp = OpalPciBus4Bits; break; 788 case 32: bcomp = OpalPciBus3Bits; break; 789 default: 790 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 791 count); 792 /* Do an exact match only */ 793 bcomp = OpalPciBusAll; 794 } 795 rid_end = pe->rid + (count << 8); 796 } else { 797 #ifdef CONFIG_PCI_IOV 798 if (pe->flags & PNV_IODA_PE_VF) 799 parent = pe->parent_dev; 800 else 801 #endif 802 parent = pe->pdev->bus->self; 803 bcomp = OpalPciBusAll; 804 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 805 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 806 rid_end = pe->rid + 1; 807 } 808 809 /* Clear the reverse map */ 810 for (rid = pe->rid; rid < rid_end; rid++) 811 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; 812 813 /* Release from all parents PELT-V */ 814 while (parent) { 815 struct pci_dn *pdn = pci_get_pdn(parent); 816 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 817 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, 818 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 819 /* XXX What to do in case of error ? */ 820 } 821 parent = parent->bus->self; 822 } 823 824 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 825 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 826 827 /* Disassociate PE in PELT */ 828 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, 829 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 830 if (rc) 831 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc); 832 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 833 bcomp, dcomp, fcomp, OPAL_UNMAP_PE); 834 if (rc) 835 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 836 837 pe->pbus = NULL; 838 pe->pdev = NULL; 839 #ifdef CONFIG_PCI_IOV 840 pe->parent_dev = NULL; 841 #endif 842 843 return 0; 844 } 845 846 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 847 { 848 struct pci_dev *parent; 849 uint8_t bcomp, dcomp, fcomp; 850 long rc, rid_end, rid; 851 852 /* Bus validation ? */ 853 if (pe->pbus) { 854 int count; 855 856 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 857 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 858 parent = pe->pbus->self; 859 if (pe->flags & PNV_IODA_PE_BUS_ALL) 860 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 861 else 862 count = 1; 863 864 switch(count) { 865 case 1: bcomp = OpalPciBusAll; break; 866 case 2: bcomp = OpalPciBus7Bits; break; 867 case 4: bcomp = OpalPciBus6Bits; break; 868 case 8: bcomp = OpalPciBus5Bits; break; 869 case 16: bcomp = OpalPciBus4Bits; break; 870 case 32: bcomp = OpalPciBus3Bits; break; 871 default: 872 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 873 count); 874 /* Do an exact match only */ 875 bcomp = OpalPciBusAll; 876 } 877 rid_end = pe->rid + (count << 8); 878 } else { 879 #ifdef CONFIG_PCI_IOV 880 if (pe->flags & PNV_IODA_PE_VF) 881 parent = pe->parent_dev; 882 else 883 #endif /* CONFIG_PCI_IOV */ 884 parent = pe->pdev->bus->self; 885 bcomp = OpalPciBusAll; 886 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 887 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 888 rid_end = pe->rid + 1; 889 } 890 891 /* 892 * Associate PE in PELT. We need add the PE into the 893 * corresponding PELT-V as well. Otherwise, the error 894 * originated from the PE might contribute to other 895 * PEs. 896 */ 897 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 898 bcomp, dcomp, fcomp, OPAL_MAP_PE); 899 if (rc) { 900 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 901 return -ENXIO; 902 } 903 904 /* 905 * Configure PELTV. NPUs don't have a PELTV table so skip 906 * configuration on them. 907 */ 908 if (phb->type != PNV_PHB_NPU) 909 pnv_ioda_set_peltv(phb, pe, true); 910 911 /* Setup reverse map */ 912 for (rid = pe->rid; rid < rid_end; rid++) 913 phb->ioda.pe_rmap[rid] = pe->pe_number; 914 915 /* Setup one MVTs on IODA1 */ 916 if (phb->type != PNV_PHB_IODA1) { 917 pe->mve_number = 0; 918 goto out; 919 } 920 921 pe->mve_number = pe->pe_number; 922 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); 923 if (rc != OPAL_SUCCESS) { 924 pe_err(pe, "OPAL error %ld setting up MVE %d\n", 925 rc, pe->mve_number); 926 pe->mve_number = -1; 927 } else { 928 rc = opal_pci_set_mve_enable(phb->opal_id, 929 pe->mve_number, OPAL_ENABLE_MVE); 930 if (rc) { 931 pe_err(pe, "OPAL error %ld enabling MVE %d\n", 932 rc, pe->mve_number); 933 pe->mve_number = -1; 934 } 935 } 936 937 out: 938 return 0; 939 } 940 941 #ifdef CONFIG_PCI_IOV 942 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) 943 { 944 struct pci_dn *pdn = pci_get_pdn(dev); 945 int i; 946 struct resource *res, res2; 947 resource_size_t size; 948 u16 num_vfs; 949 950 if (!dev->is_physfn) 951 return -EINVAL; 952 953 /* 954 * "offset" is in VFs. The M64 windows are sized so that when they 955 * are segmented, each segment is the same size as the IOV BAR. 956 * Each segment is in a separate PE, and the high order bits of the 957 * address are the PE number. Therefore, each VF's BAR is in a 958 * separate PE, and changing the IOV BAR start address changes the 959 * range of PEs the VFs are in. 960 */ 961 num_vfs = pdn->num_vfs; 962 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 963 res = &dev->resource[i + PCI_IOV_RESOURCES]; 964 if (!res->flags || !res->parent) 965 continue; 966 967 /* 968 * The actual IOV BAR range is determined by the start address 969 * and the actual size for num_vfs VFs BAR. This check is to 970 * make sure that after shifting, the range will not overlap 971 * with another device. 972 */ 973 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 974 res2.flags = res->flags; 975 res2.start = res->start + (size * offset); 976 res2.end = res2.start + (size * num_vfs) - 1; 977 978 if (res2.end > res->end) { 979 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", 980 i, &res2, res, num_vfs, offset); 981 return -EBUSY; 982 } 983 } 984 985 /* 986 * After doing so, there would be a "hole" in the /proc/iomem when 987 * offset is a positive value. It looks like the device return some 988 * mmio back to the system, which actually no one could use it. 989 */ 990 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 991 res = &dev->resource[i + PCI_IOV_RESOURCES]; 992 if (!res->flags || !res->parent) 993 continue; 994 995 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 996 res2 = *res; 997 res->start += size * offset; 998 999 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", 1000 i, &res2, res, (offset > 0) ? "En" : "Dis", 1001 num_vfs, offset); 1002 pci_update_resource(dev, i + PCI_IOV_RESOURCES); 1003 } 1004 return 0; 1005 } 1006 #endif /* CONFIG_PCI_IOV */ 1007 1008 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) 1009 { 1010 struct pci_controller *hose = pci_bus_to_host(dev->bus); 1011 struct pnv_phb *phb = hose->private_data; 1012 struct pci_dn *pdn = pci_get_pdn(dev); 1013 struct pnv_ioda_pe *pe; 1014 1015 if (!pdn) { 1016 pr_err("%s: Device tree node not associated properly\n", 1017 pci_name(dev)); 1018 return NULL; 1019 } 1020 if (pdn->pe_number != IODA_INVALID_PE) 1021 return NULL; 1022 1023 pe = pnv_ioda_alloc_pe(phb); 1024 if (!pe) { 1025 pr_warning("%s: Not enough PE# available, disabling device\n", 1026 pci_name(dev)); 1027 return NULL; 1028 } 1029 1030 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the 1031 * pointer in the PE data structure, both should be destroyed at the 1032 * same time. However, this needs to be looked at more closely again 1033 * once we actually start removing things (Hotplug, SR-IOV, ...) 1034 * 1035 * At some point we want to remove the PDN completely anyways 1036 */ 1037 pci_dev_get(dev); 1038 pdn->pcidev = dev; 1039 pdn->pe_number = pe->pe_number; 1040 pe->flags = PNV_IODA_PE_DEV; 1041 pe->pdev = dev; 1042 pe->pbus = NULL; 1043 pe->mve_number = -1; 1044 pe->rid = dev->bus->number << 8 | pdn->devfn; 1045 1046 pe_info(pe, "Associated device to PE\n"); 1047 1048 if (pnv_ioda_configure_pe(phb, pe)) { 1049 /* XXX What do we do here ? */ 1050 pnv_ioda_free_pe(pe); 1051 pdn->pe_number = IODA_INVALID_PE; 1052 pe->pdev = NULL; 1053 pci_dev_put(dev); 1054 return NULL; 1055 } 1056 1057 /* Put PE to the list */ 1058 list_add_tail(&pe->list, &phb->ioda.pe_list); 1059 1060 return pe; 1061 } 1062 1063 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe) 1064 { 1065 struct pci_dev *dev; 1066 1067 list_for_each_entry(dev, &bus->devices, bus_list) { 1068 struct pci_dn *pdn = pci_get_pdn(dev); 1069 1070 if (pdn == NULL) { 1071 pr_warn("%s: No device node associated with device !\n", 1072 pci_name(dev)); 1073 continue; 1074 } 1075 1076 /* 1077 * In partial hotplug case, the PCI device might be still 1078 * associated with the PE and needn't attach it to the PE 1079 * again. 1080 */ 1081 if (pdn->pe_number != IODA_INVALID_PE) 1082 continue; 1083 1084 pe->device_count++; 1085 pdn->pcidev = dev; 1086 pdn->pe_number = pe->pe_number; 1087 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1088 pnv_ioda_setup_same_PE(dev->subordinate, pe); 1089 } 1090 } 1091 1092 /* 1093 * There're 2 types of PCI bus sensitive PEs: One that is compromised of 1094 * single PCI bus. Another one that contains the primary PCI bus and its 1095 * subordinate PCI devices and buses. The second type of PE is normally 1096 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. 1097 */ 1098 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) 1099 { 1100 struct pci_controller *hose = pci_bus_to_host(bus); 1101 struct pnv_phb *phb = hose->private_data; 1102 struct pnv_ioda_pe *pe = NULL; 1103 unsigned int pe_num; 1104 1105 /* 1106 * In partial hotplug case, the PE instance might be still alive. 1107 * We should reuse it instead of allocating a new one. 1108 */ 1109 pe_num = phb->ioda.pe_rmap[bus->number << 8]; 1110 if (pe_num != IODA_INVALID_PE) { 1111 pe = &phb->ioda.pe_array[pe_num]; 1112 pnv_ioda_setup_same_PE(bus, pe); 1113 return NULL; 1114 } 1115 1116 /* PE number for root bus should have been reserved */ 1117 if (pci_is_root_bus(bus) && 1118 phb->ioda.root_pe_idx != IODA_INVALID_PE) 1119 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; 1120 1121 /* Check if PE is determined by M64 */ 1122 if (!pe && phb->pick_m64_pe) 1123 pe = phb->pick_m64_pe(bus, all); 1124 1125 /* The PE number isn't pinned by M64 */ 1126 if (!pe) 1127 pe = pnv_ioda_alloc_pe(phb); 1128 1129 if (!pe) { 1130 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n", 1131 __func__, pci_domain_nr(bus), bus->number); 1132 return NULL; 1133 } 1134 1135 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); 1136 pe->pbus = bus; 1137 pe->pdev = NULL; 1138 pe->mve_number = -1; 1139 pe->rid = bus->busn_res.start << 8; 1140 1141 if (all) 1142 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n", 1143 bus->busn_res.start, bus->busn_res.end, pe->pe_number); 1144 else 1145 pe_info(pe, "Secondary bus %d associated with PE#%d\n", 1146 bus->busn_res.start, pe->pe_number); 1147 1148 if (pnv_ioda_configure_pe(phb, pe)) { 1149 /* XXX What do we do here ? */ 1150 pnv_ioda_free_pe(pe); 1151 pe->pbus = NULL; 1152 return NULL; 1153 } 1154 1155 /* Associate it with all child devices */ 1156 pnv_ioda_setup_same_PE(bus, pe); 1157 1158 /* Put PE to the list */ 1159 list_add_tail(&pe->list, &phb->ioda.pe_list); 1160 1161 return pe; 1162 } 1163 1164 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev) 1165 { 1166 int pe_num, found_pe = false, rc; 1167 long rid; 1168 struct pnv_ioda_pe *pe; 1169 struct pci_dev *gpu_pdev; 1170 struct pci_dn *npu_pdn; 1171 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus); 1172 struct pnv_phb *phb = hose->private_data; 1173 1174 /* 1175 * Due to a hardware errata PE#0 on the NPU is reserved for 1176 * error handling. This means we only have three PEs remaining 1177 * which need to be assigned to four links, implying some 1178 * links must share PEs. 1179 * 1180 * To achieve this we assign PEs such that NPUs linking the 1181 * same GPU get assigned the same PE. 1182 */ 1183 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev); 1184 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 1185 pe = &phb->ioda.pe_array[pe_num]; 1186 if (!pe->pdev) 1187 continue; 1188 1189 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) { 1190 /* 1191 * This device has the same peer GPU so should 1192 * be assigned the same PE as the existing 1193 * peer NPU. 1194 */ 1195 dev_info(&npu_pdev->dev, 1196 "Associating to existing PE %d\n", pe_num); 1197 pci_dev_get(npu_pdev); 1198 npu_pdn = pci_get_pdn(npu_pdev); 1199 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn; 1200 npu_pdn->pcidev = npu_pdev; 1201 npu_pdn->pe_number = pe_num; 1202 phb->ioda.pe_rmap[rid] = pe->pe_number; 1203 1204 /* Map the PE to this link */ 1205 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid, 1206 OpalPciBusAll, 1207 OPAL_COMPARE_RID_DEVICE_NUMBER, 1208 OPAL_COMPARE_RID_FUNCTION_NUMBER, 1209 OPAL_MAP_PE); 1210 WARN_ON(rc != OPAL_SUCCESS); 1211 found_pe = true; 1212 break; 1213 } 1214 } 1215 1216 if (!found_pe) 1217 /* 1218 * Could not find an existing PE so allocate a new 1219 * one. 1220 */ 1221 return pnv_ioda_setup_dev_PE(npu_pdev); 1222 else 1223 return pe; 1224 } 1225 1226 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus) 1227 { 1228 struct pci_dev *pdev; 1229 1230 list_for_each_entry(pdev, &bus->devices, bus_list) 1231 pnv_ioda_setup_npu_PE(pdev); 1232 } 1233 1234 static void pnv_pci_ioda_setup_PEs(void) 1235 { 1236 struct pci_controller *hose, *tmp; 1237 struct pnv_phb *phb; 1238 1239 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 1240 phb = hose->private_data; 1241 if (phb->type == PNV_PHB_NPU) { 1242 /* PE#0 is needed for error reporting */ 1243 pnv_ioda_reserve_pe(phb, 0); 1244 pnv_ioda_setup_npu_PEs(hose->bus); 1245 } 1246 } 1247 } 1248 1249 #ifdef CONFIG_PCI_IOV 1250 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) 1251 { 1252 struct pci_bus *bus; 1253 struct pci_controller *hose; 1254 struct pnv_phb *phb; 1255 struct pci_dn *pdn; 1256 int i, j; 1257 int m64_bars; 1258 1259 bus = pdev->bus; 1260 hose = pci_bus_to_host(bus); 1261 phb = hose->private_data; 1262 pdn = pci_get_pdn(pdev); 1263 1264 if (pdn->m64_single_mode) 1265 m64_bars = num_vfs; 1266 else 1267 m64_bars = 1; 1268 1269 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) 1270 for (j = 0; j < m64_bars; j++) { 1271 if (pdn->m64_map[j][i] == IODA_INVALID_M64) 1272 continue; 1273 opal_pci_phb_mmio_enable(phb->opal_id, 1274 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0); 1275 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc); 1276 pdn->m64_map[j][i] = IODA_INVALID_M64; 1277 } 1278 1279 kfree(pdn->m64_map); 1280 return 0; 1281 } 1282 1283 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) 1284 { 1285 struct pci_bus *bus; 1286 struct pci_controller *hose; 1287 struct pnv_phb *phb; 1288 struct pci_dn *pdn; 1289 unsigned int win; 1290 struct resource *res; 1291 int i, j; 1292 int64_t rc; 1293 int total_vfs; 1294 resource_size_t size, start; 1295 int pe_num; 1296 int m64_bars; 1297 1298 bus = pdev->bus; 1299 hose = pci_bus_to_host(bus); 1300 phb = hose->private_data; 1301 pdn = pci_get_pdn(pdev); 1302 total_vfs = pci_sriov_get_totalvfs(pdev); 1303 1304 if (pdn->m64_single_mode) 1305 m64_bars = num_vfs; 1306 else 1307 m64_bars = 1; 1308 1309 pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL); 1310 if (!pdn->m64_map) 1311 return -ENOMEM; 1312 /* Initialize the m64_map to IODA_INVALID_M64 */ 1313 for (i = 0; i < m64_bars ; i++) 1314 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++) 1315 pdn->m64_map[i][j] = IODA_INVALID_M64; 1316 1317 1318 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1319 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 1320 if (!res->flags || !res->parent) 1321 continue; 1322 1323 for (j = 0; j < m64_bars; j++) { 1324 do { 1325 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, 1326 phb->ioda.m64_bar_idx + 1, 0); 1327 1328 if (win >= phb->ioda.m64_bar_idx + 1) 1329 goto m64_failed; 1330 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); 1331 1332 pdn->m64_map[j][i] = win; 1333 1334 if (pdn->m64_single_mode) { 1335 size = pci_iov_resource_size(pdev, 1336 PCI_IOV_RESOURCES + i); 1337 start = res->start + size * j; 1338 } else { 1339 size = resource_size(res); 1340 start = res->start; 1341 } 1342 1343 /* Map the M64 here */ 1344 if (pdn->m64_single_mode) { 1345 pe_num = pdn->pe_num_map[j]; 1346 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 1347 pe_num, OPAL_M64_WINDOW_TYPE, 1348 pdn->m64_map[j][i], 0); 1349 } 1350 1351 rc = opal_pci_set_phb_mem_window(phb->opal_id, 1352 OPAL_M64_WINDOW_TYPE, 1353 pdn->m64_map[j][i], 1354 start, 1355 0, /* unused */ 1356 size); 1357 1358 1359 if (rc != OPAL_SUCCESS) { 1360 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n", 1361 win, rc); 1362 goto m64_failed; 1363 } 1364 1365 if (pdn->m64_single_mode) 1366 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1367 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2); 1368 else 1369 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1370 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1); 1371 1372 if (rc != OPAL_SUCCESS) { 1373 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n", 1374 win, rc); 1375 goto m64_failed; 1376 } 1377 } 1378 } 1379 return 0; 1380 1381 m64_failed: 1382 pnv_pci_vf_release_m64(pdev, num_vfs); 1383 return -EBUSY; 1384 } 1385 1386 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 1387 int num); 1388 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable); 1389 1390 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe) 1391 { 1392 struct iommu_table *tbl; 1393 int64_t rc; 1394 1395 tbl = pe->table_group.tables[0]; 1396 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 1397 if (rc) 1398 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 1399 1400 pnv_pci_ioda2_set_bypass(pe, false); 1401 if (pe->table_group.group) { 1402 iommu_group_put(pe->table_group.group); 1403 BUG_ON(pe->table_group.group); 1404 } 1405 pnv_pci_ioda2_table_free_pages(tbl); 1406 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node)); 1407 } 1408 1409 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev) 1410 { 1411 struct pci_bus *bus; 1412 struct pci_controller *hose; 1413 struct pnv_phb *phb; 1414 struct pnv_ioda_pe *pe, *pe_n; 1415 struct pci_dn *pdn; 1416 1417 bus = pdev->bus; 1418 hose = pci_bus_to_host(bus); 1419 phb = hose->private_data; 1420 pdn = pci_get_pdn(pdev); 1421 1422 if (!pdev->is_physfn) 1423 return; 1424 1425 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { 1426 if (pe->parent_dev != pdev) 1427 continue; 1428 1429 pnv_pci_ioda2_release_dma_pe(pdev, pe); 1430 1431 /* Remove from list */ 1432 mutex_lock(&phb->ioda.pe_list_mutex); 1433 list_del(&pe->list); 1434 mutex_unlock(&phb->ioda.pe_list_mutex); 1435 1436 pnv_ioda_deconfigure_pe(phb, pe); 1437 1438 pnv_ioda_free_pe(pe); 1439 } 1440 } 1441 1442 void pnv_pci_sriov_disable(struct pci_dev *pdev) 1443 { 1444 struct pci_bus *bus; 1445 struct pci_controller *hose; 1446 struct pnv_phb *phb; 1447 struct pnv_ioda_pe *pe; 1448 struct pci_dn *pdn; 1449 struct pci_sriov *iov; 1450 u16 num_vfs, i; 1451 1452 bus = pdev->bus; 1453 hose = pci_bus_to_host(bus); 1454 phb = hose->private_data; 1455 pdn = pci_get_pdn(pdev); 1456 iov = pdev->sriov; 1457 num_vfs = pdn->num_vfs; 1458 1459 /* Release VF PEs */ 1460 pnv_ioda_release_vf_PE(pdev); 1461 1462 if (phb->type == PNV_PHB_IODA2) { 1463 if (!pdn->m64_single_mode) 1464 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map); 1465 1466 /* Release M64 windows */ 1467 pnv_pci_vf_release_m64(pdev, num_vfs); 1468 1469 /* Release PE numbers */ 1470 if (pdn->m64_single_mode) { 1471 for (i = 0; i < num_vfs; i++) { 1472 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1473 continue; 1474 1475 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1476 pnv_ioda_free_pe(pe); 1477 } 1478 } else 1479 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1480 /* Releasing pe_num_map */ 1481 kfree(pdn->pe_num_map); 1482 } 1483 } 1484 1485 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 1486 struct pnv_ioda_pe *pe); 1487 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) 1488 { 1489 struct pci_bus *bus; 1490 struct pci_controller *hose; 1491 struct pnv_phb *phb; 1492 struct pnv_ioda_pe *pe; 1493 int pe_num; 1494 u16 vf_index; 1495 struct pci_dn *pdn; 1496 1497 bus = pdev->bus; 1498 hose = pci_bus_to_host(bus); 1499 phb = hose->private_data; 1500 pdn = pci_get_pdn(pdev); 1501 1502 if (!pdev->is_physfn) 1503 return; 1504 1505 /* Reserve PE for each VF */ 1506 for (vf_index = 0; vf_index < num_vfs; vf_index++) { 1507 if (pdn->m64_single_mode) 1508 pe_num = pdn->pe_num_map[vf_index]; 1509 else 1510 pe_num = *pdn->pe_num_map + vf_index; 1511 1512 pe = &phb->ioda.pe_array[pe_num]; 1513 pe->pe_number = pe_num; 1514 pe->phb = phb; 1515 pe->flags = PNV_IODA_PE_VF; 1516 pe->pbus = NULL; 1517 pe->parent_dev = pdev; 1518 pe->mve_number = -1; 1519 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) | 1520 pci_iov_virtfn_devfn(pdev, vf_index); 1521 1522 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n", 1523 hose->global_number, pdev->bus->number, 1524 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)), 1525 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num); 1526 1527 if (pnv_ioda_configure_pe(phb, pe)) { 1528 /* XXX What do we do here ? */ 1529 pnv_ioda_free_pe(pe); 1530 pe->pdev = NULL; 1531 continue; 1532 } 1533 1534 /* Put PE to the list */ 1535 mutex_lock(&phb->ioda.pe_list_mutex); 1536 list_add_tail(&pe->list, &phb->ioda.pe_list); 1537 mutex_unlock(&phb->ioda.pe_list_mutex); 1538 1539 pnv_pci_ioda2_setup_dma_pe(phb, pe); 1540 } 1541 } 1542 1543 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1544 { 1545 struct pci_bus *bus; 1546 struct pci_controller *hose; 1547 struct pnv_phb *phb; 1548 struct pnv_ioda_pe *pe; 1549 struct pci_dn *pdn; 1550 int ret; 1551 u16 i; 1552 1553 bus = pdev->bus; 1554 hose = pci_bus_to_host(bus); 1555 phb = hose->private_data; 1556 pdn = pci_get_pdn(pdev); 1557 1558 if (phb->type == PNV_PHB_IODA2) { 1559 if (!pdn->vfs_expanded) { 1560 dev_info(&pdev->dev, "don't support this SRIOV device" 1561 " with non 64bit-prefetchable IOV BAR\n"); 1562 return -ENOSPC; 1563 } 1564 1565 /* 1566 * When M64 BARs functions in Single PE mode, the number of VFs 1567 * could be enabled must be less than the number of M64 BARs. 1568 */ 1569 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) { 1570 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n"); 1571 return -EBUSY; 1572 } 1573 1574 /* Allocating pe_num_map */ 1575 if (pdn->m64_single_mode) 1576 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs, 1577 GFP_KERNEL); 1578 else 1579 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL); 1580 1581 if (!pdn->pe_num_map) 1582 return -ENOMEM; 1583 1584 if (pdn->m64_single_mode) 1585 for (i = 0; i < num_vfs; i++) 1586 pdn->pe_num_map[i] = IODA_INVALID_PE; 1587 1588 /* Calculate available PE for required VFs */ 1589 if (pdn->m64_single_mode) { 1590 for (i = 0; i < num_vfs; i++) { 1591 pe = pnv_ioda_alloc_pe(phb); 1592 if (!pe) { 1593 ret = -EBUSY; 1594 goto m64_failed; 1595 } 1596 1597 pdn->pe_num_map[i] = pe->pe_number; 1598 } 1599 } else { 1600 mutex_lock(&phb->ioda.pe_alloc_mutex); 1601 *pdn->pe_num_map = bitmap_find_next_zero_area( 1602 phb->ioda.pe_alloc, phb->ioda.total_pe_num, 1603 0, num_vfs, 0); 1604 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) { 1605 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1606 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs); 1607 kfree(pdn->pe_num_map); 1608 return -EBUSY; 1609 } 1610 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1611 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1612 } 1613 pdn->num_vfs = num_vfs; 1614 1615 /* Assign M64 window accordingly */ 1616 ret = pnv_pci_vf_assign_m64(pdev, num_vfs); 1617 if (ret) { 1618 dev_info(&pdev->dev, "Not enough M64 window resources\n"); 1619 goto m64_failed; 1620 } 1621 1622 /* 1623 * When using one M64 BAR to map one IOV BAR, we need to shift 1624 * the IOV BAR according to the PE# allocated to the VFs. 1625 * Otherwise, the PE# for the VF will conflict with others. 1626 */ 1627 if (!pdn->m64_single_mode) { 1628 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map); 1629 if (ret) 1630 goto m64_failed; 1631 } 1632 } 1633 1634 /* Setup VF PEs */ 1635 pnv_ioda_setup_vf_PE(pdev, num_vfs); 1636 1637 return 0; 1638 1639 m64_failed: 1640 if (pdn->m64_single_mode) { 1641 for (i = 0; i < num_vfs; i++) { 1642 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1643 continue; 1644 1645 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1646 pnv_ioda_free_pe(pe); 1647 } 1648 } else 1649 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1650 1651 /* Releasing pe_num_map */ 1652 kfree(pdn->pe_num_map); 1653 1654 return ret; 1655 } 1656 1657 int pcibios_sriov_disable(struct pci_dev *pdev) 1658 { 1659 pnv_pci_sriov_disable(pdev); 1660 1661 /* Release PCI data */ 1662 remove_dev_pci_data(pdev); 1663 return 0; 1664 } 1665 1666 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1667 { 1668 /* Allocate PCI data */ 1669 add_dev_pci_data(pdev); 1670 1671 return pnv_pci_sriov_enable(pdev, num_vfs); 1672 } 1673 #endif /* CONFIG_PCI_IOV */ 1674 1675 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev) 1676 { 1677 struct pci_dn *pdn = pci_get_pdn(pdev); 1678 struct pnv_ioda_pe *pe; 1679 1680 /* 1681 * The function can be called while the PE# 1682 * hasn't been assigned. Do nothing for the 1683 * case. 1684 */ 1685 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 1686 return; 1687 1688 pe = &phb->ioda.pe_array[pdn->pe_number]; 1689 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); 1690 set_dma_offset(&pdev->dev, pe->tce_bypass_base); 1691 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); 1692 /* 1693 * Note: iommu_add_device() will fail here as 1694 * for physical PE: the device is already added by now; 1695 * for virtual PE: sysfs entries are not ready yet and 1696 * tce_iommu_bus_notifier will add the device to a group later. 1697 */ 1698 } 1699 1700 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask) 1701 { 1702 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1703 struct pnv_phb *phb = hose->private_data; 1704 struct pci_dn *pdn = pci_get_pdn(pdev); 1705 struct pnv_ioda_pe *pe; 1706 uint64_t top; 1707 bool bypass = false; 1708 1709 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1710 return -ENODEV;; 1711 1712 pe = &phb->ioda.pe_array[pdn->pe_number]; 1713 if (pe->tce_bypass_enabled) { 1714 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; 1715 bypass = (dma_mask >= top); 1716 } 1717 1718 if (bypass) { 1719 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n"); 1720 set_dma_ops(&pdev->dev, &dma_direct_ops); 1721 } else { 1722 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n"); 1723 set_dma_ops(&pdev->dev, &dma_iommu_ops); 1724 } 1725 *pdev->dev.dma_mask = dma_mask; 1726 1727 /* Update peer npu devices */ 1728 pnv_npu_try_dma_set_bypass(pdev, bypass); 1729 1730 return 0; 1731 } 1732 1733 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev) 1734 { 1735 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1736 struct pnv_phb *phb = hose->private_data; 1737 struct pci_dn *pdn = pci_get_pdn(pdev); 1738 struct pnv_ioda_pe *pe; 1739 u64 end, mask; 1740 1741 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1742 return 0; 1743 1744 pe = &phb->ioda.pe_array[pdn->pe_number]; 1745 if (!pe->tce_bypass_enabled) 1746 return __dma_get_required_mask(&pdev->dev); 1747 1748 1749 end = pe->tce_bypass_base + memblock_end_of_DRAM(); 1750 mask = 1ULL << (fls64(end) - 1); 1751 mask += mask - 1; 1752 1753 return mask; 1754 } 1755 1756 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, 1757 struct pci_bus *bus) 1758 { 1759 struct pci_dev *dev; 1760 1761 list_for_each_entry(dev, &bus->devices, bus_list) { 1762 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); 1763 set_dma_offset(&dev->dev, pe->tce_bypass_base); 1764 iommu_add_device(&dev->dev); 1765 1766 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1767 pnv_ioda_setup_bus_dma(pe, dev->subordinate); 1768 } 1769 } 1770 1771 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, 1772 bool real_mode) 1773 { 1774 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : 1775 (phb->regs + 0x210); 1776 } 1777 1778 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, 1779 unsigned long index, unsigned long npages, bool rm) 1780 { 1781 struct iommu_table_group_link *tgl = list_first_entry_or_null( 1782 &tbl->it_group_list, struct iommu_table_group_link, 1783 next); 1784 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1785 struct pnv_ioda_pe, table_group); 1786 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1787 unsigned long start, end, inc; 1788 1789 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); 1790 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + 1791 npages - 1); 1792 1793 /* p7ioc-style invalidation, 2 TCEs per write */ 1794 start |= (1ull << 63); 1795 end |= (1ull << 63); 1796 inc = 16; 1797 end |= inc - 1; /* round up end to be different than start */ 1798 1799 mb(); /* Ensure above stores are visible */ 1800 while (start <= end) { 1801 if (rm) 1802 __raw_rm_writeq(cpu_to_be64(start), invalidate); 1803 else 1804 __raw_writeq(cpu_to_be64(start), invalidate); 1805 start += inc; 1806 } 1807 1808 /* 1809 * The iommu layer will do another mb() for us on build() 1810 * and we don't care on free() 1811 */ 1812 } 1813 1814 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, 1815 long npages, unsigned long uaddr, 1816 enum dma_data_direction direction, 1817 unsigned long attrs) 1818 { 1819 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1820 attrs); 1821 1822 if (!ret) 1823 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1824 1825 return ret; 1826 } 1827 1828 #ifdef CONFIG_IOMMU_API 1829 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index, 1830 unsigned long *hpa, enum dma_data_direction *direction) 1831 { 1832 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 1833 1834 if (!ret) 1835 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false); 1836 1837 return ret; 1838 } 1839 #endif 1840 1841 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, 1842 long npages) 1843 { 1844 pnv_tce_free(tbl, index, npages); 1845 1846 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1847 } 1848 1849 static struct iommu_table_ops pnv_ioda1_iommu_ops = { 1850 .set = pnv_ioda1_tce_build, 1851 #ifdef CONFIG_IOMMU_API 1852 .exchange = pnv_ioda1_tce_xchg, 1853 #endif 1854 .clear = pnv_ioda1_tce_free, 1855 .get = pnv_tce_get, 1856 }; 1857 1858 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) 1859 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) 1860 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) 1861 1862 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 1863 { 1864 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm); 1865 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL; 1866 1867 mb(); /* Ensure previous TCE table stores are visible */ 1868 if (rm) 1869 __raw_rm_writeq(cpu_to_be64(val), invalidate); 1870 else 1871 __raw_writeq(cpu_to_be64(val), invalidate); 1872 } 1873 1874 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1875 { 1876 /* 01xb - invalidate TCEs that match the specified PE# */ 1877 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); 1878 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); 1879 1880 mb(); /* Ensure above stores are visible */ 1881 __raw_writeq(cpu_to_be64(val), invalidate); 1882 } 1883 1884 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, 1885 unsigned shift, unsigned long index, 1886 unsigned long npages) 1887 { 1888 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1889 unsigned long start, end, inc; 1890 1891 /* We'll invalidate DMA address in PE scope */ 1892 start = PHB3_TCE_KILL_INVAL_ONE; 1893 start |= (pe->pe_number & 0xFF); 1894 end = start; 1895 1896 /* Figure out the start, end and step */ 1897 start |= (index << shift); 1898 end |= ((index + npages - 1) << shift); 1899 inc = (0x1ull << shift); 1900 mb(); 1901 1902 while (start <= end) { 1903 if (rm) 1904 __raw_rm_writeq(cpu_to_be64(start), invalidate); 1905 else 1906 __raw_writeq(cpu_to_be64(start), invalidate); 1907 start += inc; 1908 } 1909 } 1910 1911 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1912 { 1913 struct pnv_phb *phb = pe->phb; 1914 1915 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1916 pnv_pci_phb3_tce_invalidate_pe(pe); 1917 else 1918 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, 1919 pe->pe_number, 0, 0, 0); 1920 } 1921 1922 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, 1923 unsigned long index, unsigned long npages, bool rm) 1924 { 1925 struct iommu_table_group_link *tgl; 1926 1927 list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) { 1928 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1929 struct pnv_ioda_pe, table_group); 1930 struct pnv_phb *phb = pe->phb; 1931 unsigned int shift = tbl->it_page_shift; 1932 1933 if (phb->type == PNV_PHB_NPU) { 1934 /* 1935 * The NVLink hardware does not support TCE kill 1936 * per TCE entry so we have to invalidate 1937 * the entire cache for it. 1938 */ 1939 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 1940 continue; 1941 } 1942 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1943 pnv_pci_phb3_tce_invalidate(pe, rm, shift, 1944 index, npages); 1945 else if (rm) 1946 opal_rm_pci_tce_kill(phb->opal_id, 1947 OPAL_PCI_TCE_KILL_PAGES, 1948 pe->pe_number, 1u << shift, 1949 index << shift, npages); 1950 else 1951 opal_pci_tce_kill(phb->opal_id, 1952 OPAL_PCI_TCE_KILL_PAGES, 1953 pe->pe_number, 1u << shift, 1954 index << shift, npages); 1955 } 1956 } 1957 1958 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, 1959 long npages, unsigned long uaddr, 1960 enum dma_data_direction direction, 1961 unsigned long attrs) 1962 { 1963 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1964 attrs); 1965 1966 if (!ret) 1967 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 1968 1969 return ret; 1970 } 1971 1972 #ifdef CONFIG_IOMMU_API 1973 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index, 1974 unsigned long *hpa, enum dma_data_direction *direction) 1975 { 1976 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 1977 1978 if (!ret) 1979 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false); 1980 1981 return ret; 1982 } 1983 #endif 1984 1985 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, 1986 long npages) 1987 { 1988 pnv_tce_free(tbl, index, npages); 1989 1990 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 1991 } 1992 1993 static void pnv_ioda2_table_free(struct iommu_table *tbl) 1994 { 1995 pnv_pci_ioda2_table_free_pages(tbl); 1996 iommu_free_table(tbl, "pnv"); 1997 } 1998 1999 static struct iommu_table_ops pnv_ioda2_iommu_ops = { 2000 .set = pnv_ioda2_tce_build, 2001 #ifdef CONFIG_IOMMU_API 2002 .exchange = pnv_ioda2_tce_xchg, 2003 #endif 2004 .clear = pnv_ioda2_tce_free, 2005 .get = pnv_tce_get, 2006 .free = pnv_ioda2_table_free, 2007 }; 2008 2009 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) 2010 { 2011 unsigned int *weight = (unsigned int *)data; 2012 2013 /* This is quite simplistic. The "base" weight of a device 2014 * is 10. 0 means no DMA is to be accounted for it. 2015 */ 2016 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2017 return 0; 2018 2019 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || 2020 dev->class == PCI_CLASS_SERIAL_USB_OHCI || 2021 dev->class == PCI_CLASS_SERIAL_USB_EHCI) 2022 *weight += 3; 2023 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) 2024 *weight += 15; 2025 else 2026 *weight += 10; 2027 2028 return 0; 2029 } 2030 2031 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) 2032 { 2033 unsigned int weight = 0; 2034 2035 /* SRIOV VF has same DMA32 weight as its PF */ 2036 #ifdef CONFIG_PCI_IOV 2037 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { 2038 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); 2039 return weight; 2040 } 2041 #endif 2042 2043 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { 2044 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); 2045 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { 2046 struct pci_dev *pdev; 2047 2048 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) 2049 pnv_pci_ioda_dev_dma_weight(pdev, &weight); 2050 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { 2051 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); 2052 } 2053 2054 return weight; 2055 } 2056 2057 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, 2058 struct pnv_ioda_pe *pe) 2059 { 2060 2061 struct page *tce_mem = NULL; 2062 struct iommu_table *tbl; 2063 unsigned int weight, total_weight = 0; 2064 unsigned int tce32_segsz, base, segs, avail, i; 2065 int64_t rc; 2066 void *addr; 2067 2068 /* XXX FIXME: Handle 64-bit only DMA devices */ 2069 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ 2070 /* XXX FIXME: Allocate multi-level tables on PHB3 */ 2071 weight = pnv_pci_ioda_pe_dma_weight(pe); 2072 if (!weight) 2073 return; 2074 2075 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, 2076 &total_weight); 2077 segs = (weight * phb->ioda.dma32_count) / total_weight; 2078 if (!segs) 2079 segs = 1; 2080 2081 /* 2082 * Allocate contiguous DMA32 segments. We begin with the expected 2083 * number of segments. With one more attempt, the number of DMA32 2084 * segments to be allocated is decreased by one until one segment 2085 * is allocated successfully. 2086 */ 2087 do { 2088 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { 2089 for (avail = 0, i = base; i < base + segs; i++) { 2090 if (phb->ioda.dma32_segmap[i] == 2091 IODA_INVALID_PE) 2092 avail++; 2093 } 2094 2095 if (avail == segs) 2096 goto found; 2097 } 2098 } while (--segs); 2099 2100 if (!segs) { 2101 pe_warn(pe, "No available DMA32 segments\n"); 2102 return; 2103 } 2104 2105 found: 2106 tbl = pnv_pci_table_alloc(phb->hose->node); 2107 iommu_register_group(&pe->table_group, phb->hose->global_number, 2108 pe->pe_number); 2109 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); 2110 2111 /* Grab a 32-bit TCE table */ 2112 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", 2113 weight, total_weight, base, segs); 2114 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", 2115 base * PNV_IODA1_DMA32_SEGSIZE, 2116 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); 2117 2118 /* XXX Currently, we allocate one big contiguous table for the 2119 * TCEs. We only really need one chunk per 256M of TCE space 2120 * (ie per segment) but that's an optimization for later, it 2121 * requires some added smarts with our get/put_tce implementation 2122 * 2123 * Each TCE page is 4KB in size and each TCE entry occupies 8 2124 * bytes 2125 */ 2126 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); 2127 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, 2128 get_order(tce32_segsz * segs)); 2129 if (!tce_mem) { 2130 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); 2131 goto fail; 2132 } 2133 addr = page_address(tce_mem); 2134 memset(addr, 0, tce32_segsz * segs); 2135 2136 /* Configure HW */ 2137 for (i = 0; i < segs; i++) { 2138 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2139 pe->pe_number, 2140 base + i, 1, 2141 __pa(addr) + tce32_segsz * i, 2142 tce32_segsz, IOMMU_PAGE_SIZE_4K); 2143 if (rc) { 2144 pe_err(pe, " Failed to configure 32-bit TCE table," 2145 " err %ld\n", rc); 2146 goto fail; 2147 } 2148 } 2149 2150 /* Setup DMA32 segment mapping */ 2151 for (i = base; i < base + segs; i++) 2152 phb->ioda.dma32_segmap[i] = pe->pe_number; 2153 2154 /* Setup linux iommu table */ 2155 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, 2156 base * PNV_IODA1_DMA32_SEGSIZE, 2157 IOMMU_PAGE_SHIFT_4K); 2158 2159 tbl->it_ops = &pnv_ioda1_iommu_ops; 2160 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; 2161 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; 2162 iommu_init_table(tbl, phb->hose->node); 2163 2164 if (pe->flags & PNV_IODA_PE_DEV) { 2165 /* 2166 * Setting table base here only for carrying iommu_group 2167 * further down to let iommu_add_device() do the job. 2168 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2169 */ 2170 set_iommu_table_base(&pe->pdev->dev, tbl); 2171 iommu_add_device(&pe->pdev->dev); 2172 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2173 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2174 2175 return; 2176 fail: 2177 /* XXX Failure: Try to fallback to 64-bit only ? */ 2178 if (tce_mem) 2179 __free_pages(tce_mem, get_order(tce32_segsz * segs)); 2180 if (tbl) { 2181 pnv_pci_unlink_table_and_group(tbl, &pe->table_group); 2182 iommu_free_table(tbl, "pnv"); 2183 } 2184 } 2185 2186 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, 2187 int num, struct iommu_table *tbl) 2188 { 2189 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2190 table_group); 2191 struct pnv_phb *phb = pe->phb; 2192 int64_t rc; 2193 const unsigned long size = tbl->it_indirect_levels ? 2194 tbl->it_level_size : tbl->it_size; 2195 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; 2196 const __u64 win_size = tbl->it_size << tbl->it_page_shift; 2197 2198 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num, 2199 start_addr, start_addr + win_size - 1, 2200 IOMMU_PAGE_SIZE(tbl)); 2201 2202 /* 2203 * Map TCE table through TVT. The TVE index is the PE number 2204 * shifted by 1 bit for 32-bits DMA space. 2205 */ 2206 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2207 pe->pe_number, 2208 (pe->pe_number << 1) + num, 2209 tbl->it_indirect_levels + 1, 2210 __pa(tbl->it_base), 2211 size << 3, 2212 IOMMU_PAGE_SIZE(tbl)); 2213 if (rc) { 2214 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc); 2215 return rc; 2216 } 2217 2218 pnv_pci_link_table_and_group(phb->hose->node, num, 2219 tbl, &pe->table_group); 2220 pnv_pci_phb3_tce_invalidate_pe(pe); 2221 2222 return 0; 2223 } 2224 2225 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) 2226 { 2227 uint16_t window_id = (pe->pe_number << 1 ) + 1; 2228 int64_t rc; 2229 2230 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); 2231 if (enable) { 2232 phys_addr_t top = memblock_end_of_DRAM(); 2233 2234 top = roundup_pow_of_two(top); 2235 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2236 pe->pe_number, 2237 window_id, 2238 pe->tce_bypass_base, 2239 top); 2240 } else { 2241 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2242 pe->pe_number, 2243 window_id, 2244 pe->tce_bypass_base, 2245 0); 2246 } 2247 if (rc) 2248 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); 2249 else 2250 pe->tce_bypass_enabled = enable; 2251 } 2252 2253 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2254 __u32 page_shift, __u64 window_size, __u32 levels, 2255 struct iommu_table *tbl); 2256 2257 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, 2258 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2259 struct iommu_table **ptbl) 2260 { 2261 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2262 table_group); 2263 int nid = pe->phb->hose->node; 2264 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; 2265 long ret; 2266 struct iommu_table *tbl; 2267 2268 tbl = pnv_pci_table_alloc(nid); 2269 if (!tbl) 2270 return -ENOMEM; 2271 2272 ret = pnv_pci_ioda2_table_alloc_pages(nid, 2273 bus_offset, page_shift, window_size, 2274 levels, tbl); 2275 if (ret) { 2276 iommu_free_table(tbl, "pnv"); 2277 return ret; 2278 } 2279 2280 tbl->it_ops = &pnv_ioda2_iommu_ops; 2281 2282 *ptbl = tbl; 2283 2284 return 0; 2285 } 2286 2287 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) 2288 { 2289 struct iommu_table *tbl = NULL; 2290 long rc; 2291 2292 /* 2293 * crashkernel= specifies the kdump kernel's maximum memory at 2294 * some offset and there is no guaranteed the result is a power 2295 * of 2, which will cause errors later. 2296 */ 2297 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); 2298 2299 /* 2300 * In memory constrained environments, e.g. kdump kernel, the 2301 * DMA window can be larger than available memory, which will 2302 * cause errors later. 2303 */ 2304 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory); 2305 2306 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, 2307 IOMMU_PAGE_SHIFT_4K, 2308 window_size, 2309 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl); 2310 if (rc) { 2311 pe_err(pe, "Failed to create 32-bit TCE table, err %ld", 2312 rc); 2313 return rc; 2314 } 2315 2316 iommu_init_table(tbl, pe->phb->hose->node); 2317 2318 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); 2319 if (rc) { 2320 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", 2321 rc); 2322 pnv_ioda2_table_free(tbl); 2323 return rc; 2324 } 2325 2326 if (!pnv_iommu_bypass_disabled) 2327 pnv_pci_ioda2_set_bypass(pe, true); 2328 2329 /* 2330 * Setting table base here only for carrying iommu_group 2331 * further down to let iommu_add_device() do the job. 2332 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2333 */ 2334 if (pe->flags & PNV_IODA_PE_DEV) 2335 set_iommu_table_base(&pe->pdev->dev, tbl); 2336 2337 return 0; 2338 } 2339 2340 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV) 2341 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 2342 int num) 2343 { 2344 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2345 table_group); 2346 struct pnv_phb *phb = pe->phb; 2347 long ret; 2348 2349 pe_info(pe, "Removing DMA window #%d\n", num); 2350 2351 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 2352 (pe->pe_number << 1) + num, 2353 0/* levels */, 0/* table address */, 2354 0/* table size */, 0/* page size */); 2355 if (ret) 2356 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); 2357 else 2358 pnv_pci_phb3_tce_invalidate_pe(pe); 2359 2360 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 2361 2362 return ret; 2363 } 2364 #endif 2365 2366 #ifdef CONFIG_IOMMU_API 2367 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, 2368 __u64 window_size, __u32 levels) 2369 { 2370 unsigned long bytes = 0; 2371 const unsigned window_shift = ilog2(window_size); 2372 unsigned entries_shift = window_shift - page_shift; 2373 unsigned table_shift = entries_shift + 3; 2374 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); 2375 unsigned long direct_table_size; 2376 2377 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || 2378 (window_size > memory_hotplug_max()) || 2379 !is_power_of_2(window_size)) 2380 return 0; 2381 2382 /* Calculate a direct table size from window_size and levels */ 2383 entries_shift = (entries_shift + levels - 1) / levels; 2384 table_shift = entries_shift + 3; 2385 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); 2386 direct_table_size = 1UL << table_shift; 2387 2388 for ( ; levels; --levels) { 2389 bytes += _ALIGN_UP(tce_table_size, direct_table_size); 2390 2391 tce_table_size /= direct_table_size; 2392 tce_table_size <<= 3; 2393 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size); 2394 } 2395 2396 return bytes; 2397 } 2398 2399 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) 2400 { 2401 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2402 table_group); 2403 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ 2404 struct iommu_table *tbl = pe->table_group.tables[0]; 2405 2406 pnv_pci_ioda2_set_bypass(pe, false); 2407 pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2408 pnv_ioda2_table_free(tbl); 2409 } 2410 2411 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) 2412 { 2413 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2414 table_group); 2415 2416 pnv_pci_ioda2_setup_default_config(pe); 2417 } 2418 2419 static struct iommu_table_group_ops pnv_pci_ioda2_ops = { 2420 .get_table_size = pnv_pci_ioda2_get_table_size, 2421 .create_table = pnv_pci_ioda2_create_table, 2422 .set_window = pnv_pci_ioda2_set_window, 2423 .unset_window = pnv_pci_ioda2_unset_window, 2424 .take_ownership = pnv_ioda2_take_ownership, 2425 .release_ownership = pnv_ioda2_release_ownership, 2426 }; 2427 2428 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque) 2429 { 2430 struct pci_controller *hose; 2431 struct pnv_phb *phb; 2432 struct pnv_ioda_pe **ptmppe = opaque; 2433 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev); 2434 struct pci_dn *pdn = pci_get_pdn(pdev); 2435 2436 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 2437 return 0; 2438 2439 hose = pci_bus_to_host(pdev->bus); 2440 phb = hose->private_data; 2441 if (phb->type != PNV_PHB_NPU) 2442 return 0; 2443 2444 *ptmppe = &phb->ioda.pe_array[pdn->pe_number]; 2445 2446 return 1; 2447 } 2448 2449 /* 2450 * This returns PE of associated NPU. 2451 * This assumes that NPU is in the same IOMMU group with GPU and there is 2452 * no other PEs. 2453 */ 2454 static struct pnv_ioda_pe *gpe_table_group_to_npe( 2455 struct iommu_table_group *table_group) 2456 { 2457 struct pnv_ioda_pe *npe = NULL; 2458 int ret = iommu_group_for_each_dev(table_group->group, &npe, 2459 gpe_table_group_to_npe_cb); 2460 2461 BUG_ON(!ret || !npe); 2462 2463 return npe; 2464 } 2465 2466 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group, 2467 int num, struct iommu_table *tbl) 2468 { 2469 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl); 2470 2471 if (ret) 2472 return ret; 2473 2474 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl); 2475 if (ret) 2476 pnv_pci_ioda2_unset_window(table_group, num); 2477 2478 return ret; 2479 } 2480 2481 static long pnv_pci_ioda2_npu_unset_window( 2482 struct iommu_table_group *table_group, 2483 int num) 2484 { 2485 long ret = pnv_pci_ioda2_unset_window(table_group, num); 2486 2487 if (ret) 2488 return ret; 2489 2490 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num); 2491 } 2492 2493 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group) 2494 { 2495 /* 2496 * Detach NPU first as pnv_ioda2_take_ownership() will destroy 2497 * the iommu_table if 32bit DMA is enabled. 2498 */ 2499 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group)); 2500 pnv_ioda2_take_ownership(table_group); 2501 } 2502 2503 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = { 2504 .get_table_size = pnv_pci_ioda2_get_table_size, 2505 .create_table = pnv_pci_ioda2_create_table, 2506 .set_window = pnv_pci_ioda2_npu_set_window, 2507 .unset_window = pnv_pci_ioda2_npu_unset_window, 2508 .take_ownership = pnv_ioda2_npu_take_ownership, 2509 .release_ownership = pnv_ioda2_release_ownership, 2510 }; 2511 2512 static void pnv_pci_ioda_setup_iommu_api(void) 2513 { 2514 struct pci_controller *hose, *tmp; 2515 struct pnv_phb *phb; 2516 struct pnv_ioda_pe *pe, *gpe; 2517 2518 /* 2519 * Now we have all PHBs discovered, time to add NPU devices to 2520 * the corresponding IOMMU groups. 2521 */ 2522 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 2523 phb = hose->private_data; 2524 2525 if (phb->type != PNV_PHB_NPU) 2526 continue; 2527 2528 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2529 gpe = pnv_pci_npu_setup_iommu(pe); 2530 if (gpe) 2531 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops; 2532 } 2533 } 2534 } 2535 #else /* !CONFIG_IOMMU_API */ 2536 static void pnv_pci_ioda_setup_iommu_api(void) { }; 2537 #endif 2538 2539 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift, 2540 unsigned levels, unsigned long limit, 2541 unsigned long *current_offset, unsigned long *total_allocated) 2542 { 2543 struct page *tce_mem = NULL; 2544 __be64 *addr, *tmp; 2545 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT; 2546 unsigned long allocated = 1UL << (order + PAGE_SHIFT); 2547 unsigned entries = 1UL << (shift - 3); 2548 long i; 2549 2550 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order); 2551 if (!tce_mem) { 2552 pr_err("Failed to allocate a TCE memory, order=%d\n", order); 2553 return NULL; 2554 } 2555 addr = page_address(tce_mem); 2556 memset(addr, 0, allocated); 2557 *total_allocated += allocated; 2558 2559 --levels; 2560 if (!levels) { 2561 *current_offset += allocated; 2562 return addr; 2563 } 2564 2565 for (i = 0; i < entries; ++i) { 2566 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift, 2567 levels, limit, current_offset, total_allocated); 2568 if (!tmp) 2569 break; 2570 2571 addr[i] = cpu_to_be64(__pa(tmp) | 2572 TCE_PCI_READ | TCE_PCI_WRITE); 2573 2574 if (*current_offset >= limit) 2575 break; 2576 } 2577 2578 return addr; 2579 } 2580 2581 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2582 unsigned long size, unsigned level); 2583 2584 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2585 __u32 page_shift, __u64 window_size, __u32 levels, 2586 struct iommu_table *tbl) 2587 { 2588 void *addr; 2589 unsigned long offset = 0, level_shift, total_allocated = 0; 2590 const unsigned window_shift = ilog2(window_size); 2591 unsigned entries_shift = window_shift - page_shift; 2592 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT); 2593 const unsigned long tce_table_size = 1UL << table_shift; 2594 2595 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS)) 2596 return -EINVAL; 2597 2598 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size)) 2599 return -EINVAL; 2600 2601 /* Adjust direct table size from window_size and levels */ 2602 entries_shift = (entries_shift + levels - 1) / levels; 2603 level_shift = entries_shift + 3; 2604 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT); 2605 2606 /* Allocate TCE table */ 2607 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift, 2608 levels, tce_table_size, &offset, &total_allocated); 2609 2610 /* addr==NULL means that the first level allocation failed */ 2611 if (!addr) 2612 return -ENOMEM; 2613 2614 /* 2615 * First level was allocated but some lower level failed as 2616 * we did not allocate as much as we wanted, 2617 * release partially allocated table. 2618 */ 2619 if (offset < tce_table_size) { 2620 pnv_pci_ioda2_table_do_free_pages(addr, 2621 1ULL << (level_shift - 3), levels - 1); 2622 return -ENOMEM; 2623 } 2624 2625 /* Setup linux iommu table */ 2626 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset, 2627 page_shift); 2628 tbl->it_level_size = 1ULL << (level_shift - 3); 2629 tbl->it_indirect_levels = levels - 1; 2630 tbl->it_allocated_size = total_allocated; 2631 2632 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n", 2633 window_size, tce_table_size, bus_offset); 2634 2635 return 0; 2636 } 2637 2638 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2639 unsigned long size, unsigned level) 2640 { 2641 const unsigned long addr_ul = (unsigned long) addr & 2642 ~(TCE_PCI_READ | TCE_PCI_WRITE); 2643 2644 if (level) { 2645 long i; 2646 u64 *tmp = (u64 *) addr_ul; 2647 2648 for (i = 0; i < size; ++i) { 2649 unsigned long hpa = be64_to_cpu(tmp[i]); 2650 2651 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE))) 2652 continue; 2653 2654 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size, 2655 level - 1); 2656 } 2657 } 2658 2659 free_pages(addr_ul, get_order(size << 3)); 2660 } 2661 2662 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl) 2663 { 2664 const unsigned long size = tbl->it_indirect_levels ? 2665 tbl->it_level_size : tbl->it_size; 2666 2667 if (!tbl->it_size) 2668 return; 2669 2670 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size, 2671 tbl->it_indirect_levels); 2672 } 2673 2674 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 2675 struct pnv_ioda_pe *pe) 2676 { 2677 int64_t rc; 2678 2679 if (!pnv_pci_ioda_pe_dma_weight(pe)) 2680 return; 2681 2682 /* TVE #1 is selected by PCI address bit 59 */ 2683 pe->tce_bypass_base = 1ull << 59; 2684 2685 iommu_register_group(&pe->table_group, phb->hose->global_number, 2686 pe->pe_number); 2687 2688 /* The PE will reserve all possible 32-bits space */ 2689 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", 2690 phb->ioda.m32_pci_base); 2691 2692 /* Setup linux iommu table */ 2693 pe->table_group.tce32_start = 0; 2694 pe->table_group.tce32_size = phb->ioda.m32_pci_base; 2695 pe->table_group.max_dynamic_windows_supported = 2696 IOMMU_TABLE_GROUP_MAX_TABLES; 2697 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; 2698 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M; 2699 #ifdef CONFIG_IOMMU_API 2700 pe->table_group.ops = &pnv_pci_ioda2_ops; 2701 #endif 2702 2703 rc = pnv_pci_ioda2_setup_default_config(pe); 2704 if (rc) 2705 return; 2706 2707 if (pe->flags & PNV_IODA_PE_DEV) 2708 iommu_add_device(&pe->pdev->dev); 2709 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2710 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2711 } 2712 2713 #ifdef CONFIG_PCI_MSI 2714 static void pnv_ioda2_msi_eoi(struct irq_data *d) 2715 { 2716 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 2717 struct irq_chip *chip = irq_data_get_irq_chip(d); 2718 struct pnv_phb *phb = container_of(chip, struct pnv_phb, 2719 ioda.irq_chip); 2720 int64_t rc; 2721 2722 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq); 2723 WARN_ON_ONCE(rc); 2724 2725 icp_native_eoi(d); 2726 } 2727 2728 2729 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) 2730 { 2731 struct irq_data *idata; 2732 struct irq_chip *ichip; 2733 2734 /* The MSI EOI OPAL call is only needed on PHB3 */ 2735 if (phb->model != PNV_PHB_MODEL_PHB3) 2736 return; 2737 2738 if (!phb->ioda.irq_chip_init) { 2739 /* 2740 * First time we setup an MSI IRQ, we need to setup the 2741 * corresponding IRQ chip to route correctly. 2742 */ 2743 idata = irq_get_irq_data(virq); 2744 ichip = irq_data_get_irq_chip(idata); 2745 phb->ioda.irq_chip_init = 1; 2746 phb->ioda.irq_chip = *ichip; 2747 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; 2748 } 2749 irq_set_chip(virq, &phb->ioda.irq_chip); 2750 } 2751 2752 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, 2753 unsigned int hwirq, unsigned int virq, 2754 unsigned int is_64, struct msi_msg *msg) 2755 { 2756 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); 2757 unsigned int xive_num = hwirq - phb->msi_base; 2758 __be32 data; 2759 int rc; 2760 2761 /* No PE assigned ? bail out ... no MSI for you ! */ 2762 if (pe == NULL) 2763 return -ENXIO; 2764 2765 /* Check if we have an MVE */ 2766 if (pe->mve_number < 0) 2767 return -ENXIO; 2768 2769 /* Force 32-bit MSI on some broken devices */ 2770 if (dev->no_64bit_msi) 2771 is_64 = 0; 2772 2773 /* Assign XIVE to PE */ 2774 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); 2775 if (rc) { 2776 pr_warn("%s: OPAL error %d setting XIVE %d PE\n", 2777 pci_name(dev), rc, xive_num); 2778 return -EIO; 2779 } 2780 2781 if (is_64) { 2782 __be64 addr64; 2783 2784 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, 2785 &addr64, &data); 2786 if (rc) { 2787 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", 2788 pci_name(dev), rc); 2789 return -EIO; 2790 } 2791 msg->address_hi = be64_to_cpu(addr64) >> 32; 2792 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; 2793 } else { 2794 __be32 addr32; 2795 2796 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, 2797 &addr32, &data); 2798 if (rc) { 2799 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", 2800 pci_name(dev), rc); 2801 return -EIO; 2802 } 2803 msg->address_hi = 0; 2804 msg->address_lo = be32_to_cpu(addr32); 2805 } 2806 msg->data = be32_to_cpu(data); 2807 2808 pnv_set_msi_irq_chip(phb, virq); 2809 2810 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," 2811 " address=%x_%08x data=%x PE# %d\n", 2812 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, 2813 msg->address_hi, msg->address_lo, data, pe->pe_number); 2814 2815 return 0; 2816 } 2817 2818 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) 2819 { 2820 unsigned int count; 2821 const __be32 *prop = of_get_property(phb->hose->dn, 2822 "ibm,opal-msi-ranges", NULL); 2823 if (!prop) { 2824 /* BML Fallback */ 2825 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); 2826 } 2827 if (!prop) 2828 return; 2829 2830 phb->msi_base = be32_to_cpup(prop); 2831 count = be32_to_cpup(prop + 1); 2832 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { 2833 pr_err("PCI %d: Failed to allocate MSI bitmap !\n", 2834 phb->hose->global_number); 2835 return; 2836 } 2837 2838 phb->msi_setup = pnv_pci_ioda_msi_setup; 2839 phb->msi32_support = 1; 2840 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", 2841 count, phb->msi_base); 2842 } 2843 #else 2844 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { } 2845 #endif /* CONFIG_PCI_MSI */ 2846 2847 #ifdef CONFIG_PCI_IOV 2848 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) 2849 { 2850 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 2851 struct pnv_phb *phb = hose->private_data; 2852 const resource_size_t gate = phb->ioda.m64_segsize >> 2; 2853 struct resource *res; 2854 int i; 2855 resource_size_t size, total_vf_bar_sz; 2856 struct pci_dn *pdn; 2857 int mul, total_vfs; 2858 2859 if (!pdev->is_physfn || pdev->is_added) 2860 return; 2861 2862 pdn = pci_get_pdn(pdev); 2863 pdn->vfs_expanded = 0; 2864 pdn->m64_single_mode = false; 2865 2866 total_vfs = pci_sriov_get_totalvfs(pdev); 2867 mul = phb->ioda.total_pe_num; 2868 total_vf_bar_sz = 0; 2869 2870 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2871 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2872 if (!res->flags || res->parent) 2873 continue; 2874 if (!pnv_pci_is_m64(phb, res)) { 2875 dev_warn(&pdev->dev, "Don't support SR-IOV with" 2876 " non M64 VF BAR%d: %pR. \n", 2877 i, res); 2878 goto truncate_iov; 2879 } 2880 2881 total_vf_bar_sz += pci_iov_resource_size(pdev, 2882 i + PCI_IOV_RESOURCES); 2883 2884 /* 2885 * If bigger than quarter of M64 segment size, just round up 2886 * power of two. 2887 * 2888 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict 2889 * with other devices, IOV BAR size is expanded to be 2890 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64 2891 * segment size , the expanded size would equal to half of the 2892 * whole M64 space size, which will exhaust the M64 Space and 2893 * limit the system flexibility. This is a design decision to 2894 * set the boundary to quarter of the M64 segment size. 2895 */ 2896 if (total_vf_bar_sz > gate) { 2897 mul = roundup_pow_of_two(total_vfs); 2898 dev_info(&pdev->dev, 2899 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n", 2900 total_vf_bar_sz, gate, mul); 2901 pdn->m64_single_mode = true; 2902 break; 2903 } 2904 } 2905 2906 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2907 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2908 if (!res->flags || res->parent) 2909 continue; 2910 2911 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); 2912 /* 2913 * On PHB3, the minimum size alignment of M64 BAR in single 2914 * mode is 32MB. 2915 */ 2916 if (pdn->m64_single_mode && (size < SZ_32M)) 2917 goto truncate_iov; 2918 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res); 2919 res->end = res->start + size * mul - 1; 2920 dev_dbg(&pdev->dev, " %pR\n", res); 2921 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", 2922 i, res, mul); 2923 } 2924 pdn->vfs_expanded = mul; 2925 2926 return; 2927 2928 truncate_iov: 2929 /* To save MMIO space, IOV BAR is truncated. */ 2930 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2931 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2932 res->flags = 0; 2933 res->end = res->start - 1; 2934 } 2935 } 2936 #endif /* CONFIG_PCI_IOV */ 2937 2938 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, 2939 struct resource *res) 2940 { 2941 struct pnv_phb *phb = pe->phb; 2942 struct pci_bus_region region; 2943 int index; 2944 int64_t rc; 2945 2946 if (!res || !res->flags || res->start > res->end) 2947 return; 2948 2949 if (res->flags & IORESOURCE_IO) { 2950 region.start = res->start - phb->ioda.io_pci_base; 2951 region.end = res->end - phb->ioda.io_pci_base; 2952 index = region.start / phb->ioda.io_segsize; 2953 2954 while (index < phb->ioda.total_pe_num && 2955 region.start <= region.end) { 2956 phb->ioda.io_segmap[index] = pe->pe_number; 2957 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 2958 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); 2959 if (rc != OPAL_SUCCESS) { 2960 pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n", 2961 __func__, rc, index, pe->pe_number); 2962 break; 2963 } 2964 2965 region.start += phb->ioda.io_segsize; 2966 index++; 2967 } 2968 } else if ((res->flags & IORESOURCE_MEM) && 2969 !pnv_pci_is_m64(phb, res)) { 2970 region.start = res->start - 2971 phb->hose->mem_offset[0] - 2972 phb->ioda.m32_pci_base; 2973 region.end = res->end - 2974 phb->hose->mem_offset[0] - 2975 phb->ioda.m32_pci_base; 2976 index = region.start / phb->ioda.m32_segsize; 2977 2978 while (index < phb->ioda.total_pe_num && 2979 region.start <= region.end) { 2980 phb->ioda.m32_segmap[index] = pe->pe_number; 2981 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 2982 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); 2983 if (rc != OPAL_SUCCESS) { 2984 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d", 2985 __func__, rc, index, pe->pe_number); 2986 break; 2987 } 2988 2989 region.start += phb->ioda.m32_segsize; 2990 index++; 2991 } 2992 } 2993 } 2994 2995 /* 2996 * This function is supposed to be called on basis of PE from top 2997 * to bottom style. So the the I/O or MMIO segment assigned to 2998 * parent PE could be overrided by its child PEs if necessary. 2999 */ 3000 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) 3001 { 3002 struct pci_dev *pdev; 3003 int i; 3004 3005 /* 3006 * NOTE: We only care PCI bus based PE for now. For PCI 3007 * device based PE, for example SRIOV sensitive VF should 3008 * be figured out later. 3009 */ 3010 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); 3011 3012 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 3013 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 3014 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); 3015 3016 /* 3017 * If the PE contains all subordinate PCI buses, the 3018 * windows of the child bridges should be mapped to 3019 * the PE as well. 3020 */ 3021 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) 3022 continue; 3023 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) 3024 pnv_ioda_setup_pe_res(pe, 3025 &pdev->resource[PCI_BRIDGE_RESOURCES + i]); 3026 } 3027 } 3028 3029 static void pnv_pci_ioda_create_dbgfs(void) 3030 { 3031 #ifdef CONFIG_DEBUG_FS 3032 struct pci_controller *hose, *tmp; 3033 struct pnv_phb *phb; 3034 char name[16]; 3035 3036 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 3037 phb = hose->private_data; 3038 3039 /* Notify initialization of PHB done */ 3040 phb->initialized = 1; 3041 3042 sprintf(name, "PCI%04x", hose->global_number); 3043 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); 3044 if (!phb->dbgfs) 3045 pr_warning("%s: Error on creating debugfs on PHB#%x\n", 3046 __func__, hose->global_number); 3047 } 3048 #endif /* CONFIG_DEBUG_FS */ 3049 } 3050 3051 static void pnv_pci_ioda_fixup(void) 3052 { 3053 pnv_pci_ioda_setup_PEs(); 3054 pnv_pci_ioda_setup_iommu_api(); 3055 pnv_pci_ioda_create_dbgfs(); 3056 3057 #ifdef CONFIG_EEH 3058 eeh_init(); 3059 eeh_addr_cache_build(); 3060 #endif 3061 } 3062 3063 /* 3064 * Returns the alignment for I/O or memory windows for P2P 3065 * bridges. That actually depends on how PEs are segmented. 3066 * For now, we return I/O or M32 segment size for PE sensitive 3067 * P2P bridges. Otherwise, the default values (4KiB for I/O, 3068 * 1MiB for memory) will be returned. 3069 * 3070 * The current PCI bus might be put into one PE, which was 3071 * create against the parent PCI bridge. For that case, we 3072 * needn't enlarge the alignment so that we can save some 3073 * resources. 3074 */ 3075 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, 3076 unsigned long type) 3077 { 3078 struct pci_dev *bridge; 3079 struct pci_controller *hose = pci_bus_to_host(bus); 3080 struct pnv_phb *phb = hose->private_data; 3081 int num_pci_bridges = 0; 3082 3083 bridge = bus->self; 3084 while (bridge) { 3085 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { 3086 num_pci_bridges++; 3087 if (num_pci_bridges >= 2) 3088 return 1; 3089 } 3090 3091 bridge = bridge->bus->self; 3092 } 3093 3094 /* 3095 * We fall back to M32 if M64 isn't supported. We enforce the M64 3096 * alignment for any 64-bit resource, PCIe doesn't care and 3097 * bridges only do 64-bit prefetchable anyway. 3098 */ 3099 if (phb->ioda.m64_segsize && (type & IORESOURCE_MEM_64)) 3100 return phb->ioda.m64_segsize; 3101 if (type & IORESOURCE_MEM) 3102 return phb->ioda.m32_segsize; 3103 3104 return phb->ioda.io_segsize; 3105 } 3106 3107 /* 3108 * We are updating root port or the upstream port of the 3109 * bridge behind the root port with PHB's windows in order 3110 * to accommodate the changes on required resources during 3111 * PCI (slot) hotplug, which is connected to either root 3112 * port or the downstream ports of PCIe switch behind the 3113 * root port. 3114 */ 3115 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, 3116 unsigned long type) 3117 { 3118 struct pci_controller *hose = pci_bus_to_host(bus); 3119 struct pnv_phb *phb = hose->private_data; 3120 struct pci_dev *bridge = bus->self; 3121 struct resource *r, *w; 3122 bool msi_region = false; 3123 int i; 3124 3125 /* Check if we need apply fixup to the bridge's windows */ 3126 if (!pci_is_root_bus(bridge->bus) && 3127 !pci_is_root_bus(bridge->bus->self->bus)) 3128 return; 3129 3130 /* Fixup the resources */ 3131 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { 3132 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; 3133 if (!r->flags || !r->parent) 3134 continue; 3135 3136 w = NULL; 3137 if (r->flags & type & IORESOURCE_IO) 3138 w = &hose->io_resource; 3139 else if (pnv_pci_is_m64(phb, r) && 3140 (type & IORESOURCE_PREFETCH) && 3141 phb->ioda.m64_segsize) 3142 w = &hose->mem_resources[1]; 3143 else if (r->flags & type & IORESOURCE_MEM) { 3144 w = &hose->mem_resources[0]; 3145 msi_region = true; 3146 } 3147 3148 r->start = w->start; 3149 r->end = w->end; 3150 3151 /* The 64KB 32-bits MSI region shouldn't be included in 3152 * the 32-bits bridge window. Otherwise, we can see strange 3153 * issues. One of them is EEH error observed on Garrison. 3154 * 3155 * Exclude top 1MB region which is the minimal alignment of 3156 * 32-bits bridge window. 3157 */ 3158 if (msi_region) { 3159 r->end += 0x10000; 3160 r->end -= 0x100000; 3161 } 3162 } 3163 } 3164 3165 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type) 3166 { 3167 struct pci_controller *hose = pci_bus_to_host(bus); 3168 struct pnv_phb *phb = hose->private_data; 3169 struct pci_dev *bridge = bus->self; 3170 struct pnv_ioda_pe *pe; 3171 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); 3172 3173 /* Extend bridge's windows if necessary */ 3174 pnv_pci_fixup_bridge_resources(bus, type); 3175 3176 /* The PE for root bus should be realized before any one else */ 3177 if (!phb->ioda.root_pe_populated) { 3178 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false); 3179 if (pe) { 3180 phb->ioda.root_pe_idx = pe->pe_number; 3181 phb->ioda.root_pe_populated = true; 3182 } 3183 } 3184 3185 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ 3186 if (list_empty(&bus->devices)) 3187 return; 3188 3189 /* Reserve PEs according to used M64 resources */ 3190 if (phb->reserve_m64_pe) 3191 phb->reserve_m64_pe(bus, NULL, all); 3192 3193 /* 3194 * Assign PE. We might run here because of partial hotplug. 3195 * For the case, we just pick up the existing PE and should 3196 * not allocate resources again. 3197 */ 3198 pe = pnv_ioda_setup_bus_PE(bus, all); 3199 if (!pe) 3200 return; 3201 3202 pnv_ioda_setup_pe_seg(pe); 3203 switch (phb->type) { 3204 case PNV_PHB_IODA1: 3205 pnv_pci_ioda1_setup_dma_pe(phb, pe); 3206 break; 3207 case PNV_PHB_IODA2: 3208 pnv_pci_ioda2_setup_dma_pe(phb, pe); 3209 break; 3210 default: 3211 pr_warn("%s: No DMA for PHB#%d (type %d)\n", 3212 __func__, phb->hose->global_number, phb->type); 3213 } 3214 } 3215 3216 #ifdef CONFIG_PCI_IOV 3217 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, 3218 int resno) 3219 { 3220 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3221 struct pnv_phb *phb = hose->private_data; 3222 struct pci_dn *pdn = pci_get_pdn(pdev); 3223 resource_size_t align; 3224 3225 /* 3226 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the 3227 * SR-IOV. While from hardware perspective, the range mapped by M64 3228 * BAR should be size aligned. 3229 * 3230 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra 3231 * powernv-specific hardware restriction is gone. But if just use the 3232 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with 3233 * in one segment of M64 #15, which introduces the PE conflict between 3234 * PF and VF. Based on this, the minimum alignment of an IOV BAR is 3235 * m64_segsize. 3236 * 3237 * This function returns the total IOV BAR size if M64 BAR is in 3238 * Shared PE mode or just VF BAR size if not. 3239 * If the M64 BAR is in Single PE mode, return the VF BAR size or 3240 * M64 segment size if IOV BAR size is less. 3241 */ 3242 align = pci_iov_resource_size(pdev, resno); 3243 if (!pdn->vfs_expanded) 3244 return align; 3245 if (pdn->m64_single_mode) 3246 return max(align, (resource_size_t)phb->ioda.m64_segsize); 3247 3248 return pdn->vfs_expanded * align; 3249 } 3250 #endif /* CONFIG_PCI_IOV */ 3251 3252 /* Prevent enabling devices for which we couldn't properly 3253 * assign a PE 3254 */ 3255 bool pnv_pci_enable_device_hook(struct pci_dev *dev) 3256 { 3257 struct pci_controller *hose = pci_bus_to_host(dev->bus); 3258 struct pnv_phb *phb = hose->private_data; 3259 struct pci_dn *pdn; 3260 3261 /* The function is probably called while the PEs have 3262 * not be created yet. For example, resource reassignment 3263 * during PCI probe period. We just skip the check if 3264 * PEs isn't ready. 3265 */ 3266 if (!phb->initialized) 3267 return true; 3268 3269 pdn = pci_get_pdn(dev); 3270 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3271 return false; 3272 3273 return true; 3274 } 3275 3276 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, 3277 int num) 3278 { 3279 struct pnv_ioda_pe *pe = container_of(table_group, 3280 struct pnv_ioda_pe, table_group); 3281 struct pnv_phb *phb = pe->phb; 3282 unsigned int idx; 3283 long rc; 3284 3285 pe_info(pe, "Removing DMA window #%d\n", num); 3286 for (idx = 0; idx < phb->ioda.dma32_count; idx++) { 3287 if (phb->ioda.dma32_segmap[idx] != pe->pe_number) 3288 continue; 3289 3290 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 3291 idx, 0, 0ul, 0ul, 0ul); 3292 if (rc != OPAL_SUCCESS) { 3293 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", 3294 rc, idx); 3295 return rc; 3296 } 3297 3298 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; 3299 } 3300 3301 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 3302 return OPAL_SUCCESS; 3303 } 3304 3305 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) 3306 { 3307 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3308 struct iommu_table *tbl = pe->table_group.tables[0]; 3309 int64_t rc; 3310 3311 if (!weight) 3312 return; 3313 3314 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); 3315 if (rc != OPAL_SUCCESS) 3316 return; 3317 3318 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); 3319 if (pe->table_group.group) { 3320 iommu_group_put(pe->table_group.group); 3321 WARN_ON(pe->table_group.group); 3322 } 3323 3324 free_pages(tbl->it_base, get_order(tbl->it_size << 3)); 3325 iommu_free_table(tbl, "pnv"); 3326 } 3327 3328 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) 3329 { 3330 struct iommu_table *tbl = pe->table_group.tables[0]; 3331 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3332 #ifdef CONFIG_IOMMU_API 3333 int64_t rc; 3334 #endif 3335 3336 if (!weight) 3337 return; 3338 3339 #ifdef CONFIG_IOMMU_API 3340 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 3341 if (rc) 3342 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 3343 #endif 3344 3345 pnv_pci_ioda2_set_bypass(pe, false); 3346 if (pe->table_group.group) { 3347 iommu_group_put(pe->table_group.group); 3348 WARN_ON(pe->table_group.group); 3349 } 3350 3351 pnv_pci_ioda2_table_free_pages(tbl); 3352 iommu_free_table(tbl, "pnv"); 3353 } 3354 3355 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, 3356 unsigned short win, 3357 unsigned int *map) 3358 { 3359 struct pnv_phb *phb = pe->phb; 3360 int idx; 3361 int64_t rc; 3362 3363 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { 3364 if (map[idx] != pe->pe_number) 3365 continue; 3366 3367 if (win == OPAL_M64_WINDOW_TYPE) 3368 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3369 phb->ioda.reserved_pe_idx, win, 3370 idx / PNV_IODA1_M64_SEGS, 3371 idx % PNV_IODA1_M64_SEGS); 3372 else 3373 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3374 phb->ioda.reserved_pe_idx, win, 0, idx); 3375 3376 if (rc != OPAL_SUCCESS) 3377 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n", 3378 rc, win, idx); 3379 3380 map[idx] = IODA_INVALID_PE; 3381 } 3382 } 3383 3384 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) 3385 { 3386 struct pnv_phb *phb = pe->phb; 3387 3388 if (phb->type == PNV_PHB_IODA1) { 3389 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, 3390 phb->ioda.io_segmap); 3391 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3392 phb->ioda.m32_segmap); 3393 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE, 3394 phb->ioda.m64_segmap); 3395 } else if (phb->type == PNV_PHB_IODA2) { 3396 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3397 phb->ioda.m32_segmap); 3398 } 3399 } 3400 3401 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) 3402 { 3403 struct pnv_phb *phb = pe->phb; 3404 struct pnv_ioda_pe *slave, *tmp; 3405 3406 list_del(&pe->list); 3407 switch (phb->type) { 3408 case PNV_PHB_IODA1: 3409 pnv_pci_ioda1_release_pe_dma(pe); 3410 break; 3411 case PNV_PHB_IODA2: 3412 pnv_pci_ioda2_release_pe_dma(pe); 3413 break; 3414 default: 3415 WARN_ON(1); 3416 } 3417 3418 pnv_ioda_release_pe_seg(pe); 3419 pnv_ioda_deconfigure_pe(pe->phb, pe); 3420 3421 /* Release slave PEs in the compound PE */ 3422 if (pe->flags & PNV_IODA_PE_MASTER) { 3423 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { 3424 list_del(&slave->list); 3425 pnv_ioda_free_pe(slave); 3426 } 3427 } 3428 3429 pnv_ioda_free_pe(pe); 3430 } 3431 3432 static void pnv_pci_release_device(struct pci_dev *pdev) 3433 { 3434 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3435 struct pnv_phb *phb = hose->private_data; 3436 struct pci_dn *pdn = pci_get_pdn(pdev); 3437 struct pnv_ioda_pe *pe; 3438 3439 if (pdev->is_virtfn) 3440 return; 3441 3442 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3443 return; 3444 3445 pe = &phb->ioda.pe_array[pdn->pe_number]; 3446 WARN_ON(--pe->device_count < 0); 3447 if (pe->device_count == 0) 3448 pnv_ioda_release_pe(pe); 3449 } 3450 3451 static void pnv_pci_ioda_shutdown(struct pci_controller *hose) 3452 { 3453 struct pnv_phb *phb = hose->private_data; 3454 3455 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, 3456 OPAL_ASSERT_RESET); 3457 } 3458 3459 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { 3460 .dma_dev_setup = pnv_pci_dma_dev_setup, 3461 .dma_bus_setup = pnv_pci_dma_bus_setup, 3462 #ifdef CONFIG_PCI_MSI 3463 .setup_msi_irqs = pnv_setup_msi_irqs, 3464 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3465 #endif 3466 .enable_device_hook = pnv_pci_enable_device_hook, 3467 .release_device = pnv_pci_release_device, 3468 .window_alignment = pnv_pci_window_alignment, 3469 .setup_bridge = pnv_pci_setup_bridge, 3470 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3471 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3472 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3473 .shutdown = pnv_pci_ioda_shutdown, 3474 }; 3475 3476 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask) 3477 { 3478 dev_err_once(&npdev->dev, 3479 "%s operation unsupported for NVLink devices\n", 3480 __func__); 3481 return -EPERM; 3482 } 3483 3484 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = { 3485 .dma_dev_setup = pnv_pci_dma_dev_setup, 3486 #ifdef CONFIG_PCI_MSI 3487 .setup_msi_irqs = pnv_setup_msi_irqs, 3488 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3489 #endif 3490 .enable_device_hook = pnv_pci_enable_device_hook, 3491 .window_alignment = pnv_pci_window_alignment, 3492 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3493 .dma_set_mask = pnv_npu_dma_set_mask, 3494 .shutdown = pnv_pci_ioda_shutdown, 3495 }; 3496 3497 #ifdef CONFIG_CXL_BASE 3498 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = { 3499 .dma_dev_setup = pnv_pci_dma_dev_setup, 3500 .dma_bus_setup = pnv_pci_dma_bus_setup, 3501 #ifdef CONFIG_PCI_MSI 3502 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs, 3503 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs, 3504 #endif 3505 .enable_device_hook = pnv_cxl_enable_device_hook, 3506 .disable_device = pnv_cxl_disable_device, 3507 .release_device = pnv_pci_release_device, 3508 .window_alignment = pnv_pci_window_alignment, 3509 .setup_bridge = pnv_pci_setup_bridge, 3510 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3511 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3512 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3513 .shutdown = pnv_pci_ioda_shutdown, 3514 }; 3515 #endif 3516 3517 static void __init pnv_pci_init_ioda_phb(struct device_node *np, 3518 u64 hub_id, int ioda_type) 3519 { 3520 struct pci_controller *hose; 3521 struct pnv_phb *phb; 3522 unsigned long size, m64map_off, m32map_off, pemap_off; 3523 unsigned long iomap_off = 0, dma32map_off = 0; 3524 struct resource r; 3525 const __be64 *prop64; 3526 const __be32 *prop32; 3527 int len; 3528 unsigned int segno; 3529 u64 phb_id; 3530 void *aux; 3531 long rc; 3532 3533 if (!of_device_is_available(np)) 3534 return; 3535 3536 pr_info("Initializing %s PHB (%s)\n", 3537 pnv_phb_names[ioda_type], of_node_full_name(np)); 3538 3539 prop64 = of_get_property(np, "ibm,opal-phbid", NULL); 3540 if (!prop64) { 3541 pr_err(" Missing \"ibm,opal-phbid\" property !\n"); 3542 return; 3543 } 3544 phb_id = be64_to_cpup(prop64); 3545 pr_debug(" PHB-ID : 0x%016llx\n", phb_id); 3546 3547 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0); 3548 3549 /* Allocate PCI controller */ 3550 phb->hose = hose = pcibios_alloc_controller(np); 3551 if (!phb->hose) { 3552 pr_err(" Can't allocate PCI controller for %s\n", 3553 np->full_name); 3554 memblock_free(__pa(phb), sizeof(struct pnv_phb)); 3555 return; 3556 } 3557 3558 spin_lock_init(&phb->lock); 3559 prop32 = of_get_property(np, "bus-range", &len); 3560 if (prop32 && len == 8) { 3561 hose->first_busno = be32_to_cpu(prop32[0]); 3562 hose->last_busno = be32_to_cpu(prop32[1]); 3563 } else { 3564 pr_warn(" Broken <bus-range> on %s\n", np->full_name); 3565 hose->first_busno = 0; 3566 hose->last_busno = 0xff; 3567 } 3568 hose->private_data = phb; 3569 phb->hub_id = hub_id; 3570 phb->opal_id = phb_id; 3571 phb->type = ioda_type; 3572 mutex_init(&phb->ioda.pe_alloc_mutex); 3573 3574 /* Detect specific models for error handling */ 3575 if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) 3576 phb->model = PNV_PHB_MODEL_P7IOC; 3577 else if (of_device_is_compatible(np, "ibm,power8-pciex")) 3578 phb->model = PNV_PHB_MODEL_PHB3; 3579 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex")) 3580 phb->model = PNV_PHB_MODEL_NPU; 3581 else 3582 phb->model = PNV_PHB_MODEL_UNKNOWN; 3583 3584 /* Parse 32-bit and IO ranges (if any) */ 3585 pci_process_bridge_OF_ranges(hose, np, !hose->global_number); 3586 3587 /* Get registers */ 3588 if (!of_address_to_resource(np, 0, &r)) { 3589 phb->regs_phys = r.start; 3590 phb->regs = ioremap(r.start, resource_size(&r)); 3591 if (phb->regs == NULL) 3592 pr_err(" Failed to map registers !\n"); 3593 } 3594 3595 /* Initialize more IODA stuff */ 3596 phb->ioda.total_pe_num = 1; 3597 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); 3598 if (prop32) 3599 phb->ioda.total_pe_num = be32_to_cpup(prop32); 3600 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); 3601 if (prop32) 3602 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); 3603 3604 /* Invalidate RID to PE# mapping */ 3605 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) 3606 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; 3607 3608 /* Parse 64-bit MMIO range */ 3609 pnv_ioda_parse_m64_window(phb); 3610 3611 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); 3612 /* FW Has already off top 64k of M32 space (MSI space) */ 3613 phb->ioda.m32_size += 0x10000; 3614 3615 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; 3616 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; 3617 phb->ioda.io_size = hose->pci_io_size; 3618 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; 3619 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ 3620 3621 /* Calculate how many 32-bit TCE segments we have */ 3622 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3623 PNV_IODA1_DMA32_SEGSIZE; 3624 3625 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ 3626 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, 3627 sizeof(unsigned long)); 3628 m64map_off = size; 3629 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); 3630 m32map_off = size; 3631 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); 3632 if (phb->type == PNV_PHB_IODA1) { 3633 iomap_off = size; 3634 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); 3635 dma32map_off = size; 3636 size += phb->ioda.dma32_count * 3637 sizeof(phb->ioda.dma32_segmap[0]); 3638 } 3639 pemap_off = size; 3640 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); 3641 aux = memblock_virt_alloc(size, 0); 3642 phb->ioda.pe_alloc = aux; 3643 phb->ioda.m64_segmap = aux + m64map_off; 3644 phb->ioda.m32_segmap = aux + m32map_off; 3645 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { 3646 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; 3647 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; 3648 } 3649 if (phb->type == PNV_PHB_IODA1) { 3650 phb->ioda.io_segmap = aux + iomap_off; 3651 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) 3652 phb->ioda.io_segmap[segno] = IODA_INVALID_PE; 3653 3654 phb->ioda.dma32_segmap = aux + dma32map_off; 3655 for (segno = 0; segno < phb->ioda.dma32_count; segno++) 3656 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; 3657 } 3658 phb->ioda.pe_array = aux + pemap_off; 3659 3660 /* 3661 * Choose PE number for root bus, which shouldn't have 3662 * M64 resources consumed by its child devices. To pick 3663 * the PE number adjacent to the reserved one if possible. 3664 */ 3665 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); 3666 if (phb->ioda.reserved_pe_idx == 0) { 3667 phb->ioda.root_pe_idx = 1; 3668 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3669 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { 3670 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; 3671 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3672 } else { 3673 phb->ioda.root_pe_idx = IODA_INVALID_PE; 3674 } 3675 3676 INIT_LIST_HEAD(&phb->ioda.pe_list); 3677 mutex_init(&phb->ioda.pe_list_mutex); 3678 3679 /* Calculate how many 32-bit TCE segments we have */ 3680 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3681 PNV_IODA1_DMA32_SEGSIZE; 3682 3683 #if 0 /* We should really do that ... */ 3684 rc = opal_pci_set_phb_mem_window(opal->phb_id, 3685 window_type, 3686 window_num, 3687 starting_real_address, 3688 starting_pci_address, 3689 segment_size); 3690 #endif 3691 3692 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", 3693 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, 3694 phb->ioda.m32_size, phb->ioda.m32_segsize); 3695 if (phb->ioda.m64_size) 3696 pr_info(" M64: 0x%lx [segment=0x%lx]\n", 3697 phb->ioda.m64_size, phb->ioda.m64_segsize); 3698 if (phb->ioda.io_size) 3699 pr_info(" IO: 0x%x [segment=0x%x]\n", 3700 phb->ioda.io_size, phb->ioda.io_segsize); 3701 3702 3703 phb->hose->ops = &pnv_pci_ops; 3704 phb->get_pe_state = pnv_ioda_get_pe_state; 3705 phb->freeze_pe = pnv_ioda_freeze_pe; 3706 phb->unfreeze_pe = pnv_ioda_unfreeze_pe; 3707 3708 /* Setup MSI support */ 3709 pnv_pci_init_ioda_msis(phb); 3710 3711 /* 3712 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here 3713 * to let the PCI core do resource assignment. It's supposed 3714 * that the PCI core will do correct I/O and MMIO alignment 3715 * for the P2P bridge bars so that each PCI bus (excluding 3716 * the child P2P bridges) can form individual PE. 3717 */ 3718 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; 3719 3720 if (phb->type == PNV_PHB_NPU) { 3721 hose->controller_ops = pnv_npu_ioda_controller_ops; 3722 } else { 3723 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup; 3724 hose->controller_ops = pnv_pci_ioda_controller_ops; 3725 } 3726 3727 #ifdef CONFIG_PCI_IOV 3728 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources; 3729 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; 3730 #endif 3731 3732 pci_add_flags(PCI_REASSIGN_ALL_RSRC); 3733 3734 /* Reset IODA tables to a clean state */ 3735 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); 3736 if (rc) 3737 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc); 3738 3739 /* If we're running in kdump kerenl, the previous kerenl never 3740 * shutdown PCI devices correctly. We already got IODA table 3741 * cleaned out. So we have to issue PHB reset to stop all PCI 3742 * transactions from previous kerenl. 3743 */ 3744 if (is_kdump_kernel()) { 3745 pr_info(" Issue PHB reset ...\n"); 3746 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); 3747 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); 3748 } 3749 3750 /* Remove M64 resource if we can't configure it successfully */ 3751 if (!phb->init_m64 || phb->init_m64(phb)) 3752 hose->mem_resources[1].flags = 0; 3753 } 3754 3755 void __init pnv_pci_init_ioda2_phb(struct device_node *np) 3756 { 3757 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); 3758 } 3759 3760 void __init pnv_pci_init_npu_phb(struct device_node *np) 3761 { 3762 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU); 3763 } 3764 3765 void __init pnv_pci_init_ioda_hub(struct device_node *np) 3766 { 3767 struct device_node *phbn; 3768 const __be64 *prop64; 3769 u64 hub_id; 3770 3771 pr_info("Probing IODA IO-Hub %s\n", np->full_name); 3772 3773 prop64 = of_get_property(np, "ibm,opal-hubid", NULL); 3774 if (!prop64) { 3775 pr_err(" Missing \"ibm,opal-hubid\" property !\n"); 3776 return; 3777 } 3778 hub_id = be64_to_cpup(prop64); 3779 pr_devel(" HUB-ID : 0x%016llx\n", hub_id); 3780 3781 /* Count child PHBs */ 3782 for_each_child_of_node(np, phbn) { 3783 /* Look for IODA1 PHBs */ 3784 if (of_device_is_compatible(phbn, "ibm,ioda-phb")) 3785 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); 3786 } 3787 } 3788