1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
52 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54 
55 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
56 #define POWERNV_IOMMU_MAX_LEVELS	5
57 
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60 
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 			    const char *fmt, ...)
63 {
64 	struct va_format vaf;
65 	va_list args;
66 	char pfix[32];
67 
68 	va_start(args, fmt);
69 
70 	vaf.fmt = fmt;
71 	vaf.va = &args;
72 
73 	if (pe->flags & PNV_IODA_PE_DEV)
74 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 		sprintf(pfix, "%04x:%02x     ",
77 			pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79 	else if (pe->flags & PNV_IODA_PE_VF)
80 		sprintf(pfix, "%04x:%02x:%2x.%d",
81 			pci_domain_nr(pe->parent_dev->bus),
82 			(pe->rid & 0xff00) >> 8,
83 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85 
86 	printk("%spci %s: [PE# %.2x] %pV",
87 	       level, pfix, pe->pe_number, &vaf);
88 
89 	va_end(args);
90 }
91 
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93 
94 static int __init iommu_setup(char *str)
95 {
96 	if (!str)
97 		return -EINVAL;
98 
99 	while (*str) {
100 		if (!strncmp(str, "nobypass", 8)) {
101 			pnv_iommu_bypass_disabled = true;
102 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
103 			break;
104 		}
105 		str += strcspn(str, ",");
106 		if (*str == ',')
107 			str++;
108 	}
109 
110 	return 0;
111 }
112 early_param("iommu", iommu_setup);
113 
114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115 {
116 	/*
117 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
118 	 * allocation code sometimes decides to put a 64-bit prefetchable
119 	 * BAR in the 32-bit window, so we have to compare the addresses.
120 	 *
121 	 * For simplicity we only test resource start.
122 	 */
123 	return (r->start >= phb->ioda.m64_base &&
124 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 }
126 
127 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
128 {
129 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
130 
131 	return (resource_flags & flags) == flags;
132 }
133 
134 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
135 {
136 	s64 rc;
137 
138 	phb->ioda.pe_array[pe_no].phb = phb;
139 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
140 
141 	/*
142 	 * Clear the PE frozen state as it might be put into frozen state
143 	 * in the last PCI remove path. It's not harmful to do so when the
144 	 * PE is already in unfrozen state.
145 	 */
146 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
147 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
148 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
149 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
150 			__func__, rc, phb->hose->global_number, pe_no);
151 
152 	return &phb->ioda.pe_array[pe_no];
153 }
154 
155 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
156 {
157 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
158 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
159 			__func__, pe_no, phb->hose->global_number);
160 		return;
161 	}
162 
163 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
164 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
165 			 __func__, pe_no, phb->hose->global_number);
166 
167 	pnv_ioda_init_pe(phb, pe_no);
168 }
169 
170 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
171 {
172 	long pe;
173 
174 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
175 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
176 			return pnv_ioda_init_pe(phb, pe);
177 	}
178 
179 	return NULL;
180 }
181 
182 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
183 {
184 	struct pnv_phb *phb = pe->phb;
185 	unsigned int pe_num = pe->pe_number;
186 
187 	WARN_ON(pe->pdev);
188 
189 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
190 	clear_bit(pe_num, phb->ioda.pe_alloc);
191 }
192 
193 /* The default M64 BAR is shared by all PEs */
194 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
195 {
196 	const char *desc;
197 	struct resource *r;
198 	s64 rc;
199 
200 	/* Configure the default M64 BAR */
201 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
202 					 OPAL_M64_WINDOW_TYPE,
203 					 phb->ioda.m64_bar_idx,
204 					 phb->ioda.m64_base,
205 					 0, /* unused */
206 					 phb->ioda.m64_size);
207 	if (rc != OPAL_SUCCESS) {
208 		desc = "configuring";
209 		goto fail;
210 	}
211 
212 	/* Enable the default M64 BAR */
213 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
214 				      OPAL_M64_WINDOW_TYPE,
215 				      phb->ioda.m64_bar_idx,
216 				      OPAL_ENABLE_M64_SPLIT);
217 	if (rc != OPAL_SUCCESS) {
218 		desc = "enabling";
219 		goto fail;
220 	}
221 
222 	/*
223 	 * Exclude the segments for reserved and root bus PE, which
224 	 * are first or last two PEs.
225 	 */
226 	r = &phb->hose->mem_resources[1];
227 	if (phb->ioda.reserved_pe_idx == 0)
228 		r->start += (2 * phb->ioda.m64_segsize);
229 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
230 		r->end -= (2 * phb->ioda.m64_segsize);
231 	else
232 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
233 			phb->ioda.reserved_pe_idx);
234 
235 	return 0;
236 
237 fail:
238 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
239 		rc, desc, phb->ioda.m64_bar_idx);
240 	opal_pci_phb_mmio_enable(phb->opal_id,
241 				 OPAL_M64_WINDOW_TYPE,
242 				 phb->ioda.m64_bar_idx,
243 				 OPAL_DISABLE_M64);
244 	return -EIO;
245 }
246 
247 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
248 					 unsigned long *pe_bitmap)
249 {
250 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
251 	struct pnv_phb *phb = hose->private_data;
252 	struct resource *r;
253 	resource_size_t base, sgsz, start, end;
254 	int segno, i;
255 
256 	base = phb->ioda.m64_base;
257 	sgsz = phb->ioda.m64_segsize;
258 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
259 		r = &pdev->resource[i];
260 		if (!r->parent || !pnv_pci_is_m64(phb, r))
261 			continue;
262 
263 		start = _ALIGN_DOWN(r->start - base, sgsz);
264 		end = _ALIGN_UP(r->end - base, sgsz);
265 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
266 			if (pe_bitmap)
267 				set_bit(segno, pe_bitmap);
268 			else
269 				pnv_ioda_reserve_pe(phb, segno);
270 		}
271 	}
272 }
273 
274 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
275 {
276 	struct resource *r;
277 	int index;
278 
279 	/*
280 	 * There are 16 M64 BARs, each of which has 8 segments. So
281 	 * there are as many M64 segments as the maximum number of
282 	 * PEs, which is 128.
283 	 */
284 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
285 		unsigned long base, segsz = phb->ioda.m64_segsize;
286 		int64_t rc;
287 
288 		base = phb->ioda.m64_base +
289 		       index * PNV_IODA1_M64_SEGS * segsz;
290 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
291 				OPAL_M64_WINDOW_TYPE, index, base, 0,
292 				PNV_IODA1_M64_SEGS * segsz);
293 		if (rc != OPAL_SUCCESS) {
294 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
295 				rc, phb->hose->global_number, index);
296 			goto fail;
297 		}
298 
299 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
300 				OPAL_M64_WINDOW_TYPE, index,
301 				OPAL_ENABLE_M64_SPLIT);
302 		if (rc != OPAL_SUCCESS) {
303 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
304 				rc, phb->hose->global_number, index);
305 			goto fail;
306 		}
307 	}
308 
309 	/*
310 	 * Exclude the segments for reserved and root bus PE, which
311 	 * are first or last two PEs.
312 	 */
313 	r = &phb->hose->mem_resources[1];
314 	if (phb->ioda.reserved_pe_idx == 0)
315 		r->start += (2 * phb->ioda.m64_segsize);
316 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
317 		r->end -= (2 * phb->ioda.m64_segsize);
318 	else
319 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
320 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
321 
322 	return 0;
323 
324 fail:
325 	for ( ; index >= 0; index--)
326 		opal_pci_phb_mmio_enable(phb->opal_id,
327 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
328 
329 	return -EIO;
330 }
331 
332 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
333 				    unsigned long *pe_bitmap,
334 				    bool all)
335 {
336 	struct pci_dev *pdev;
337 
338 	list_for_each_entry(pdev, &bus->devices, bus_list) {
339 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
340 
341 		if (all && pdev->subordinate)
342 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
343 						pe_bitmap, all);
344 	}
345 }
346 
347 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
348 {
349 	struct pci_controller *hose = pci_bus_to_host(bus);
350 	struct pnv_phb *phb = hose->private_data;
351 	struct pnv_ioda_pe *master_pe, *pe;
352 	unsigned long size, *pe_alloc;
353 	int i;
354 
355 	/* Root bus shouldn't use M64 */
356 	if (pci_is_root_bus(bus))
357 		return NULL;
358 
359 	/* Allocate bitmap */
360 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
361 	pe_alloc = kzalloc(size, GFP_KERNEL);
362 	if (!pe_alloc) {
363 		pr_warn("%s: Out of memory !\n",
364 			__func__);
365 		return NULL;
366 	}
367 
368 	/* Figure out reserved PE numbers by the PE */
369 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
370 
371 	/*
372 	 * the current bus might not own M64 window and that's all
373 	 * contributed by its child buses. For the case, we needn't
374 	 * pick M64 dependent PE#.
375 	 */
376 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
377 		kfree(pe_alloc);
378 		return NULL;
379 	}
380 
381 	/*
382 	 * Figure out the master PE and put all slave PEs to master
383 	 * PE's list to form compound PE.
384 	 */
385 	master_pe = NULL;
386 	i = -1;
387 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
388 		phb->ioda.total_pe_num) {
389 		pe = &phb->ioda.pe_array[i];
390 
391 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
392 		if (!master_pe) {
393 			pe->flags |= PNV_IODA_PE_MASTER;
394 			INIT_LIST_HEAD(&pe->slaves);
395 			master_pe = pe;
396 		} else {
397 			pe->flags |= PNV_IODA_PE_SLAVE;
398 			pe->master = master_pe;
399 			list_add_tail(&pe->list, &master_pe->slaves);
400 		}
401 
402 		/*
403 		 * P7IOC supports M64DT, which helps mapping M64 segment
404 		 * to one particular PE#. However, PHB3 has fixed mapping
405 		 * between M64 segment and PE#. In order to have same logic
406 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
407 		 * segment and PE# on P7IOC.
408 		 */
409 		if (phb->type == PNV_PHB_IODA1) {
410 			int64_t rc;
411 
412 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
413 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
414 					pe->pe_number / PNV_IODA1_M64_SEGS,
415 					pe->pe_number % PNV_IODA1_M64_SEGS);
416 			if (rc != OPAL_SUCCESS)
417 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
418 					__func__, rc, phb->hose->global_number,
419 					pe->pe_number);
420 		}
421 	}
422 
423 	kfree(pe_alloc);
424 	return master_pe;
425 }
426 
427 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
428 {
429 	struct pci_controller *hose = phb->hose;
430 	struct device_node *dn = hose->dn;
431 	struct resource *res;
432 	u32 m64_range[2], i;
433 	const __be32 *r;
434 	u64 pci_addr;
435 
436 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
437 		pr_info("  Not support M64 window\n");
438 		return;
439 	}
440 
441 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
442 		pr_info("  Firmware too old to support M64 window\n");
443 		return;
444 	}
445 
446 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
447 	if (!r) {
448 		pr_info("  No <ibm,opal-m64-window> on %s\n",
449 			dn->full_name);
450 		return;
451 	}
452 
453 	/*
454 	 * Find the available M64 BAR range and pickup the last one for
455 	 * covering the whole 64-bits space. We support only one range.
456 	 */
457 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
458 				       m64_range, 2)) {
459 		/* In absence of the property, assume 0..15 */
460 		m64_range[0] = 0;
461 		m64_range[1] = 16;
462 	}
463 	/* We only support 64 bits in our allocator */
464 	if (m64_range[1] > 63) {
465 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
466 			__func__, m64_range[1], phb->hose->global_number);
467 		m64_range[1] = 63;
468 	}
469 	/* Empty range, no m64 */
470 	if (m64_range[1] <= m64_range[0]) {
471 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
472 			__func__, phb->hose->global_number);
473 		return;
474 	}
475 
476 	/* Configure M64 informations */
477 	res = &hose->mem_resources[1];
478 	res->name = dn->full_name;
479 	res->start = of_translate_address(dn, r + 2);
480 	res->end = res->start + of_read_number(r + 4, 2) - 1;
481 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
482 	pci_addr = of_read_number(r, 2);
483 	hose->mem_offset[1] = res->start - pci_addr;
484 
485 	phb->ioda.m64_size = resource_size(res);
486 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
487 	phb->ioda.m64_base = pci_addr;
488 
489 	/* This lines up nicely with the display from processing OF ranges */
490 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
491 		res->start, res->end, pci_addr, m64_range[0],
492 		m64_range[0] + m64_range[1] - 1);
493 
494 	/* Mark all M64 used up by default */
495 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
496 
497 	/* Use last M64 BAR to cover M64 window */
498 	m64_range[1]--;
499 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
500 
501 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
502 
503 	/* Mark remaining ones free */
504 	for (i = m64_range[0]; i < m64_range[1]; i++)
505 		clear_bit(i, &phb->ioda.m64_bar_alloc);
506 
507 	/*
508 	 * Setup init functions for M64 based on IODA version, IODA3 uses
509 	 * the IODA2 code.
510 	 */
511 	if (phb->type == PNV_PHB_IODA1)
512 		phb->init_m64 = pnv_ioda1_init_m64;
513 	else
514 		phb->init_m64 = pnv_ioda2_init_m64;
515 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
516 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
517 }
518 
519 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
520 {
521 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
522 	struct pnv_ioda_pe *slave;
523 	s64 rc;
524 
525 	/* Fetch master PE */
526 	if (pe->flags & PNV_IODA_PE_SLAVE) {
527 		pe = pe->master;
528 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
529 			return;
530 
531 		pe_no = pe->pe_number;
532 	}
533 
534 	/* Freeze master PE */
535 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
536 				     pe_no,
537 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
538 	if (rc != OPAL_SUCCESS) {
539 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
540 			__func__, rc, phb->hose->global_number, pe_no);
541 		return;
542 	}
543 
544 	/* Freeze slave PEs */
545 	if (!(pe->flags & PNV_IODA_PE_MASTER))
546 		return;
547 
548 	list_for_each_entry(slave, &pe->slaves, list) {
549 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
550 					     slave->pe_number,
551 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
552 		if (rc != OPAL_SUCCESS)
553 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
554 				__func__, rc, phb->hose->global_number,
555 				slave->pe_number);
556 	}
557 }
558 
559 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
560 {
561 	struct pnv_ioda_pe *pe, *slave;
562 	s64 rc;
563 
564 	/* Find master PE */
565 	pe = &phb->ioda.pe_array[pe_no];
566 	if (pe->flags & PNV_IODA_PE_SLAVE) {
567 		pe = pe->master;
568 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
569 		pe_no = pe->pe_number;
570 	}
571 
572 	/* Clear frozen state for master PE */
573 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
574 	if (rc != OPAL_SUCCESS) {
575 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
576 			__func__, rc, opt, phb->hose->global_number, pe_no);
577 		return -EIO;
578 	}
579 
580 	if (!(pe->flags & PNV_IODA_PE_MASTER))
581 		return 0;
582 
583 	/* Clear frozen state for slave PEs */
584 	list_for_each_entry(slave, &pe->slaves, list) {
585 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
586 					     slave->pe_number,
587 					     opt);
588 		if (rc != OPAL_SUCCESS) {
589 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
590 				__func__, rc, opt, phb->hose->global_number,
591 				slave->pe_number);
592 			return -EIO;
593 		}
594 	}
595 
596 	return 0;
597 }
598 
599 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
600 {
601 	struct pnv_ioda_pe *slave, *pe;
602 	u8 fstate, state;
603 	__be16 pcierr;
604 	s64 rc;
605 
606 	/* Sanity check on PE number */
607 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
608 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
609 
610 	/*
611 	 * Fetch the master PE and the PE instance might be
612 	 * not initialized yet.
613 	 */
614 	pe = &phb->ioda.pe_array[pe_no];
615 	if (pe->flags & PNV_IODA_PE_SLAVE) {
616 		pe = pe->master;
617 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
618 		pe_no = pe->pe_number;
619 	}
620 
621 	/* Check the master PE */
622 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
623 					&state, &pcierr, NULL);
624 	if (rc != OPAL_SUCCESS) {
625 		pr_warn("%s: Failure %lld getting "
626 			"PHB#%x-PE#%x state\n",
627 			__func__, rc,
628 			phb->hose->global_number, pe_no);
629 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
630 	}
631 
632 	/* Check the slave PE */
633 	if (!(pe->flags & PNV_IODA_PE_MASTER))
634 		return state;
635 
636 	list_for_each_entry(slave, &pe->slaves, list) {
637 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
638 						slave->pe_number,
639 						&fstate,
640 						&pcierr,
641 						NULL);
642 		if (rc != OPAL_SUCCESS) {
643 			pr_warn("%s: Failure %lld getting "
644 				"PHB#%x-PE#%x state\n",
645 				__func__, rc,
646 				phb->hose->global_number, slave->pe_number);
647 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
648 		}
649 
650 		/*
651 		 * Override the result based on the ascending
652 		 * priority.
653 		 */
654 		if (fstate > state)
655 			state = fstate;
656 	}
657 
658 	return state;
659 }
660 
661 /* Currently those 2 are only used when MSIs are enabled, this will change
662  * but in the meantime, we need to protect them to avoid warnings
663  */
664 #ifdef CONFIG_PCI_MSI
665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 {
667 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
668 	struct pnv_phb *phb = hose->private_data;
669 	struct pci_dn *pdn = pci_get_pdn(dev);
670 
671 	if (!pdn)
672 		return NULL;
673 	if (pdn->pe_number == IODA_INVALID_PE)
674 		return NULL;
675 	return &phb->ioda.pe_array[pdn->pe_number];
676 }
677 #endif /* CONFIG_PCI_MSI */
678 
679 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
680 				  struct pnv_ioda_pe *parent,
681 				  struct pnv_ioda_pe *child,
682 				  bool is_add)
683 {
684 	const char *desc = is_add ? "adding" : "removing";
685 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
686 			      OPAL_REMOVE_PE_FROM_DOMAIN;
687 	struct pnv_ioda_pe *slave;
688 	long rc;
689 
690 	/* Parent PE affects child PE */
691 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
692 				child->pe_number, op);
693 	if (rc != OPAL_SUCCESS) {
694 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
695 			rc, desc);
696 		return -ENXIO;
697 	}
698 
699 	if (!(child->flags & PNV_IODA_PE_MASTER))
700 		return 0;
701 
702 	/* Compound case: parent PE affects slave PEs */
703 	list_for_each_entry(slave, &child->slaves, list) {
704 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
705 					slave->pe_number, op);
706 		if (rc != OPAL_SUCCESS) {
707 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
708 				rc, desc);
709 			return -ENXIO;
710 		}
711 	}
712 
713 	return 0;
714 }
715 
716 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
717 			      struct pnv_ioda_pe *pe,
718 			      bool is_add)
719 {
720 	struct pnv_ioda_pe *slave;
721 	struct pci_dev *pdev = NULL;
722 	int ret;
723 
724 	/*
725 	 * Clear PE frozen state. If it's master PE, we need
726 	 * clear slave PE frozen state as well.
727 	 */
728 	if (is_add) {
729 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
730 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
731 		if (pe->flags & PNV_IODA_PE_MASTER) {
732 			list_for_each_entry(slave, &pe->slaves, list)
733 				opal_pci_eeh_freeze_clear(phb->opal_id,
734 							  slave->pe_number,
735 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
736 		}
737 	}
738 
739 	/*
740 	 * Associate PE in PELT. We need add the PE into the
741 	 * corresponding PELT-V as well. Otherwise, the error
742 	 * originated from the PE might contribute to other
743 	 * PEs.
744 	 */
745 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
746 	if (ret)
747 		return ret;
748 
749 	/* For compound PEs, any one affects all of them */
750 	if (pe->flags & PNV_IODA_PE_MASTER) {
751 		list_for_each_entry(slave, &pe->slaves, list) {
752 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
753 			if (ret)
754 				return ret;
755 		}
756 	}
757 
758 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
759 		pdev = pe->pbus->self;
760 	else if (pe->flags & PNV_IODA_PE_DEV)
761 		pdev = pe->pdev->bus->self;
762 #ifdef CONFIG_PCI_IOV
763 	else if (pe->flags & PNV_IODA_PE_VF)
764 		pdev = pe->parent_dev;
765 #endif /* CONFIG_PCI_IOV */
766 	while (pdev) {
767 		struct pci_dn *pdn = pci_get_pdn(pdev);
768 		struct pnv_ioda_pe *parent;
769 
770 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
771 			parent = &phb->ioda.pe_array[pdn->pe_number];
772 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
773 			if (ret)
774 				return ret;
775 		}
776 
777 		pdev = pdev->bus->self;
778 	}
779 
780 	return 0;
781 }
782 
783 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
784 {
785 	struct pci_dev *parent;
786 	uint8_t bcomp, dcomp, fcomp;
787 	int64_t rc;
788 	long rid_end, rid;
789 
790 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
791 	if (pe->pbus) {
792 		int count;
793 
794 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
795 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
796 		parent = pe->pbus->self;
797 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
798 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
799 		else
800 			count = 1;
801 
802 		switch(count) {
803 		case  1: bcomp = OpalPciBusAll;         break;
804 		case  2: bcomp = OpalPciBus7Bits;       break;
805 		case  4: bcomp = OpalPciBus6Bits;       break;
806 		case  8: bcomp = OpalPciBus5Bits;       break;
807 		case 16: bcomp = OpalPciBus4Bits;       break;
808 		case 32: bcomp = OpalPciBus3Bits;       break;
809 		default:
810 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
811 			        count);
812 			/* Do an exact match only */
813 			bcomp = OpalPciBusAll;
814 		}
815 		rid_end = pe->rid + (count << 8);
816 	} else {
817 #ifdef CONFIG_PCI_IOV
818 		if (pe->flags & PNV_IODA_PE_VF)
819 			parent = pe->parent_dev;
820 		else
821 #endif
822 			parent = pe->pdev->bus->self;
823 		bcomp = OpalPciBusAll;
824 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
825 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
826 		rid_end = pe->rid + 1;
827 	}
828 
829 	/* Clear the reverse map */
830 	for (rid = pe->rid; rid < rid_end; rid++)
831 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
832 
833 	/* Release from all parents PELT-V */
834 	while (parent) {
835 		struct pci_dn *pdn = pci_get_pdn(parent);
836 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
837 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
838 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
839 			/* XXX What to do in case of error ? */
840 		}
841 		parent = parent->bus->self;
842 	}
843 
844 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
845 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
846 
847 	/* Disassociate PE in PELT */
848 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
849 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
850 	if (rc)
851 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
852 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
853 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
854 	if (rc)
855 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
856 
857 	pe->pbus = NULL;
858 	pe->pdev = NULL;
859 #ifdef CONFIG_PCI_IOV
860 	pe->parent_dev = NULL;
861 #endif
862 
863 	return 0;
864 }
865 
866 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
867 {
868 	struct pci_dev *parent;
869 	uint8_t bcomp, dcomp, fcomp;
870 	long rc, rid_end, rid;
871 
872 	/* Bus validation ? */
873 	if (pe->pbus) {
874 		int count;
875 
876 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
877 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
878 		parent = pe->pbus->self;
879 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
880 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
881 		else
882 			count = 1;
883 
884 		switch(count) {
885 		case  1: bcomp = OpalPciBusAll;		break;
886 		case  2: bcomp = OpalPciBus7Bits;	break;
887 		case  4: bcomp = OpalPciBus6Bits;	break;
888 		case  8: bcomp = OpalPciBus5Bits;	break;
889 		case 16: bcomp = OpalPciBus4Bits;	break;
890 		case 32: bcomp = OpalPciBus3Bits;	break;
891 		default:
892 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
893 			        count);
894 			/* Do an exact match only */
895 			bcomp = OpalPciBusAll;
896 		}
897 		rid_end = pe->rid + (count << 8);
898 	} else {
899 #ifdef CONFIG_PCI_IOV
900 		if (pe->flags & PNV_IODA_PE_VF)
901 			parent = pe->parent_dev;
902 		else
903 #endif /* CONFIG_PCI_IOV */
904 			parent = pe->pdev->bus->self;
905 		bcomp = OpalPciBusAll;
906 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
907 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
908 		rid_end = pe->rid + 1;
909 	}
910 
911 	/*
912 	 * Associate PE in PELT. We need add the PE into the
913 	 * corresponding PELT-V as well. Otherwise, the error
914 	 * originated from the PE might contribute to other
915 	 * PEs.
916 	 */
917 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
918 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
919 	if (rc) {
920 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
921 		return -ENXIO;
922 	}
923 
924 	/*
925 	 * Configure PELTV. NPUs don't have a PELTV table so skip
926 	 * configuration on them.
927 	 */
928 	if (phb->type != PNV_PHB_NPU)
929 		pnv_ioda_set_peltv(phb, pe, true);
930 
931 	/* Setup reverse map */
932 	for (rid = pe->rid; rid < rid_end; rid++)
933 		phb->ioda.pe_rmap[rid] = pe->pe_number;
934 
935 	/* Setup one MVTs on IODA1 */
936 	if (phb->type != PNV_PHB_IODA1) {
937 		pe->mve_number = 0;
938 		goto out;
939 	}
940 
941 	pe->mve_number = pe->pe_number;
942 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
943 	if (rc != OPAL_SUCCESS) {
944 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
945 		       rc, pe->mve_number);
946 		pe->mve_number = -1;
947 	} else {
948 		rc = opal_pci_set_mve_enable(phb->opal_id,
949 					     pe->mve_number, OPAL_ENABLE_MVE);
950 		if (rc) {
951 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
952 			       rc, pe->mve_number);
953 			pe->mve_number = -1;
954 		}
955 	}
956 
957 out:
958 	return 0;
959 }
960 
961 #ifdef CONFIG_PCI_IOV
962 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
963 {
964 	struct pci_dn *pdn = pci_get_pdn(dev);
965 	int i;
966 	struct resource *res, res2;
967 	resource_size_t size;
968 	u16 num_vfs;
969 
970 	if (!dev->is_physfn)
971 		return -EINVAL;
972 
973 	/*
974 	 * "offset" is in VFs.  The M64 windows are sized so that when they
975 	 * are segmented, each segment is the same size as the IOV BAR.
976 	 * Each segment is in a separate PE, and the high order bits of the
977 	 * address are the PE number.  Therefore, each VF's BAR is in a
978 	 * separate PE, and changing the IOV BAR start address changes the
979 	 * range of PEs the VFs are in.
980 	 */
981 	num_vfs = pdn->num_vfs;
982 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
983 		res = &dev->resource[i + PCI_IOV_RESOURCES];
984 		if (!res->flags || !res->parent)
985 			continue;
986 
987 		/*
988 		 * The actual IOV BAR range is determined by the start address
989 		 * and the actual size for num_vfs VFs BAR.  This check is to
990 		 * make sure that after shifting, the range will not overlap
991 		 * with another device.
992 		 */
993 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
994 		res2.flags = res->flags;
995 		res2.start = res->start + (size * offset);
996 		res2.end = res2.start + (size * num_vfs) - 1;
997 
998 		if (res2.end > res->end) {
999 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1000 				i, &res2, res, num_vfs, offset);
1001 			return -EBUSY;
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * After doing so, there would be a "hole" in the /proc/iomem when
1007 	 * offset is a positive value. It looks like the device return some
1008 	 * mmio back to the system, which actually no one could use it.
1009 	 */
1010 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1011 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1012 		if (!res->flags || !res->parent)
1013 			continue;
1014 
1015 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1016 		res2 = *res;
1017 		res->start += size * offset;
1018 
1019 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1020 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1021 			 num_vfs, offset);
1022 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1023 	}
1024 	return 0;
1025 }
1026 #endif /* CONFIG_PCI_IOV */
1027 
1028 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1029 {
1030 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1031 	struct pnv_phb *phb = hose->private_data;
1032 	struct pci_dn *pdn = pci_get_pdn(dev);
1033 	struct pnv_ioda_pe *pe;
1034 
1035 	if (!pdn) {
1036 		pr_err("%s: Device tree node not associated properly\n",
1037 			   pci_name(dev));
1038 		return NULL;
1039 	}
1040 	if (pdn->pe_number != IODA_INVALID_PE)
1041 		return NULL;
1042 
1043 	pe = pnv_ioda_alloc_pe(phb);
1044 	if (!pe) {
1045 		pr_warning("%s: Not enough PE# available, disabling device\n",
1046 			   pci_name(dev));
1047 		return NULL;
1048 	}
1049 
1050 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1051 	 * pointer in the PE data structure, both should be destroyed at the
1052 	 * same time. However, this needs to be looked at more closely again
1053 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1054 	 *
1055 	 * At some point we want to remove the PDN completely anyways
1056 	 */
1057 	pci_dev_get(dev);
1058 	pdn->pcidev = dev;
1059 	pdn->pe_number = pe->pe_number;
1060 	pe->flags = PNV_IODA_PE_DEV;
1061 	pe->pdev = dev;
1062 	pe->pbus = NULL;
1063 	pe->mve_number = -1;
1064 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1065 
1066 	pe_info(pe, "Associated device to PE\n");
1067 
1068 	if (pnv_ioda_configure_pe(phb, pe)) {
1069 		/* XXX What do we do here ? */
1070 		pnv_ioda_free_pe(pe);
1071 		pdn->pe_number = IODA_INVALID_PE;
1072 		pe->pdev = NULL;
1073 		pci_dev_put(dev);
1074 		return NULL;
1075 	}
1076 
1077 	/* Put PE to the list */
1078 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1079 
1080 	return pe;
1081 }
1082 
1083 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1084 {
1085 	struct pci_dev *dev;
1086 
1087 	list_for_each_entry(dev, &bus->devices, bus_list) {
1088 		struct pci_dn *pdn = pci_get_pdn(dev);
1089 
1090 		if (pdn == NULL) {
1091 			pr_warn("%s: No device node associated with device !\n",
1092 				pci_name(dev));
1093 			continue;
1094 		}
1095 
1096 		/*
1097 		 * In partial hotplug case, the PCI device might be still
1098 		 * associated with the PE and needn't attach it to the PE
1099 		 * again.
1100 		 */
1101 		if (pdn->pe_number != IODA_INVALID_PE)
1102 			continue;
1103 
1104 		pe->device_count++;
1105 		pdn->pcidev = dev;
1106 		pdn->pe_number = pe->pe_number;
1107 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1108 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1109 	}
1110 }
1111 
1112 /*
1113  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1114  * single PCI bus. Another one that contains the primary PCI bus and its
1115  * subordinate PCI devices and buses. The second type of PE is normally
1116  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1117  */
1118 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1119 {
1120 	struct pci_controller *hose = pci_bus_to_host(bus);
1121 	struct pnv_phb *phb = hose->private_data;
1122 	struct pnv_ioda_pe *pe = NULL;
1123 	unsigned int pe_num;
1124 
1125 	/*
1126 	 * In partial hotplug case, the PE instance might be still alive.
1127 	 * We should reuse it instead of allocating a new one.
1128 	 */
1129 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1130 	if (pe_num != IODA_INVALID_PE) {
1131 		pe = &phb->ioda.pe_array[pe_num];
1132 		pnv_ioda_setup_same_PE(bus, pe);
1133 		return NULL;
1134 	}
1135 
1136 	/* PE number for root bus should have been reserved */
1137 	if (pci_is_root_bus(bus) &&
1138 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1139 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1140 
1141 	/* Check if PE is determined by M64 */
1142 	if (!pe && phb->pick_m64_pe)
1143 		pe = phb->pick_m64_pe(bus, all);
1144 
1145 	/* The PE number isn't pinned by M64 */
1146 	if (!pe)
1147 		pe = pnv_ioda_alloc_pe(phb);
1148 
1149 	if (!pe) {
1150 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1151 			__func__, pci_domain_nr(bus), bus->number);
1152 		return NULL;
1153 	}
1154 
1155 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1156 	pe->pbus = bus;
1157 	pe->pdev = NULL;
1158 	pe->mve_number = -1;
1159 	pe->rid = bus->busn_res.start << 8;
1160 
1161 	if (all)
1162 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1163 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1164 	else
1165 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1166 			bus->busn_res.start, pe->pe_number);
1167 
1168 	if (pnv_ioda_configure_pe(phb, pe)) {
1169 		/* XXX What do we do here ? */
1170 		pnv_ioda_free_pe(pe);
1171 		pe->pbus = NULL;
1172 		return NULL;
1173 	}
1174 
1175 	/* Associate it with all child devices */
1176 	pnv_ioda_setup_same_PE(bus, pe);
1177 
1178 	/* Put PE to the list */
1179 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1180 
1181 	return pe;
1182 }
1183 
1184 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1185 {
1186 	int pe_num, found_pe = false, rc;
1187 	long rid;
1188 	struct pnv_ioda_pe *pe;
1189 	struct pci_dev *gpu_pdev;
1190 	struct pci_dn *npu_pdn;
1191 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1192 	struct pnv_phb *phb = hose->private_data;
1193 
1194 	/*
1195 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1196 	 * error handling. This means we only have three PEs remaining
1197 	 * which need to be assigned to four links, implying some
1198 	 * links must share PEs.
1199 	 *
1200 	 * To achieve this we assign PEs such that NPUs linking the
1201 	 * same GPU get assigned the same PE.
1202 	 */
1203 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1204 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1205 		pe = &phb->ioda.pe_array[pe_num];
1206 		if (!pe->pdev)
1207 			continue;
1208 
1209 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1210 			/*
1211 			 * This device has the same peer GPU so should
1212 			 * be assigned the same PE as the existing
1213 			 * peer NPU.
1214 			 */
1215 			dev_info(&npu_pdev->dev,
1216 				"Associating to existing PE %x\n", pe_num);
1217 			pci_dev_get(npu_pdev);
1218 			npu_pdn = pci_get_pdn(npu_pdev);
1219 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1220 			npu_pdn->pcidev = npu_pdev;
1221 			npu_pdn->pe_number = pe_num;
1222 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1223 
1224 			/* Map the PE to this link */
1225 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1226 					OpalPciBusAll,
1227 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1228 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1229 					OPAL_MAP_PE);
1230 			WARN_ON(rc != OPAL_SUCCESS);
1231 			found_pe = true;
1232 			break;
1233 		}
1234 	}
1235 
1236 	if (!found_pe)
1237 		/*
1238 		 * Could not find an existing PE so allocate a new
1239 		 * one.
1240 		 */
1241 		return pnv_ioda_setup_dev_PE(npu_pdev);
1242 	else
1243 		return pe;
1244 }
1245 
1246 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1247 {
1248 	struct pci_dev *pdev;
1249 
1250 	list_for_each_entry(pdev, &bus->devices, bus_list)
1251 		pnv_ioda_setup_npu_PE(pdev);
1252 }
1253 
1254 static void pnv_pci_ioda_setup_PEs(void)
1255 {
1256 	struct pci_controller *hose, *tmp;
1257 	struct pnv_phb *phb;
1258 
1259 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1260 		phb = hose->private_data;
1261 		if (phb->type == PNV_PHB_NPU) {
1262 			/* PE#0 is needed for error reporting */
1263 			pnv_ioda_reserve_pe(phb, 0);
1264 			pnv_ioda_setup_npu_PEs(hose->bus);
1265 		}
1266 	}
1267 }
1268 
1269 #ifdef CONFIG_PCI_IOV
1270 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1271 {
1272 	struct pci_bus        *bus;
1273 	struct pci_controller *hose;
1274 	struct pnv_phb        *phb;
1275 	struct pci_dn         *pdn;
1276 	int                    i, j;
1277 	int                    m64_bars;
1278 
1279 	bus = pdev->bus;
1280 	hose = pci_bus_to_host(bus);
1281 	phb = hose->private_data;
1282 	pdn = pci_get_pdn(pdev);
1283 
1284 	if (pdn->m64_single_mode)
1285 		m64_bars = num_vfs;
1286 	else
1287 		m64_bars = 1;
1288 
1289 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1290 		for (j = 0; j < m64_bars; j++) {
1291 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1292 				continue;
1293 			opal_pci_phb_mmio_enable(phb->opal_id,
1294 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1295 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1296 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1297 		}
1298 
1299 	kfree(pdn->m64_map);
1300 	return 0;
1301 }
1302 
1303 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1304 {
1305 	struct pci_bus        *bus;
1306 	struct pci_controller *hose;
1307 	struct pnv_phb        *phb;
1308 	struct pci_dn         *pdn;
1309 	unsigned int           win;
1310 	struct resource       *res;
1311 	int                    i, j;
1312 	int64_t                rc;
1313 	int                    total_vfs;
1314 	resource_size_t        size, start;
1315 	int                    pe_num;
1316 	int                    m64_bars;
1317 
1318 	bus = pdev->bus;
1319 	hose = pci_bus_to_host(bus);
1320 	phb = hose->private_data;
1321 	pdn = pci_get_pdn(pdev);
1322 	total_vfs = pci_sriov_get_totalvfs(pdev);
1323 
1324 	if (pdn->m64_single_mode)
1325 		m64_bars = num_vfs;
1326 	else
1327 		m64_bars = 1;
1328 
1329 	pdn->m64_map = kmalloc_array(m64_bars,
1330 				     sizeof(*pdn->m64_map),
1331 				     GFP_KERNEL);
1332 	if (!pdn->m64_map)
1333 		return -ENOMEM;
1334 	/* Initialize the m64_map to IODA_INVALID_M64 */
1335 	for (i = 0; i < m64_bars ; i++)
1336 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1337 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1338 
1339 
1340 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1341 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1342 		if (!res->flags || !res->parent)
1343 			continue;
1344 
1345 		for (j = 0; j < m64_bars; j++) {
1346 			do {
1347 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1348 						phb->ioda.m64_bar_idx + 1, 0);
1349 
1350 				if (win >= phb->ioda.m64_bar_idx + 1)
1351 					goto m64_failed;
1352 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1353 
1354 			pdn->m64_map[j][i] = win;
1355 
1356 			if (pdn->m64_single_mode) {
1357 				size = pci_iov_resource_size(pdev,
1358 							PCI_IOV_RESOURCES + i);
1359 				start = res->start + size * j;
1360 			} else {
1361 				size = resource_size(res);
1362 				start = res->start;
1363 			}
1364 
1365 			/* Map the M64 here */
1366 			if (pdn->m64_single_mode) {
1367 				pe_num = pdn->pe_num_map[j];
1368 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1369 						pe_num, OPAL_M64_WINDOW_TYPE,
1370 						pdn->m64_map[j][i], 0);
1371 			}
1372 
1373 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1374 						 OPAL_M64_WINDOW_TYPE,
1375 						 pdn->m64_map[j][i],
1376 						 start,
1377 						 0, /* unused */
1378 						 size);
1379 
1380 
1381 			if (rc != OPAL_SUCCESS) {
1382 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1383 					win, rc);
1384 				goto m64_failed;
1385 			}
1386 
1387 			if (pdn->m64_single_mode)
1388 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1389 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1390 			else
1391 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1392 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1393 
1394 			if (rc != OPAL_SUCCESS) {
1395 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1396 					win, rc);
1397 				goto m64_failed;
1398 			}
1399 		}
1400 	}
1401 	return 0;
1402 
1403 m64_failed:
1404 	pnv_pci_vf_release_m64(pdev, num_vfs);
1405 	return -EBUSY;
1406 }
1407 
1408 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1409 		int num);
1410 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1411 
1412 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1413 {
1414 	struct iommu_table    *tbl;
1415 	int64_t               rc;
1416 
1417 	tbl = pe->table_group.tables[0];
1418 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1419 	if (rc)
1420 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1421 
1422 	pnv_pci_ioda2_set_bypass(pe, false);
1423 	if (pe->table_group.group) {
1424 		iommu_group_put(pe->table_group.group);
1425 		BUG_ON(pe->table_group.group);
1426 	}
1427 	pnv_pci_ioda2_table_free_pages(tbl);
1428 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1429 }
1430 
1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1432 {
1433 	struct pci_bus        *bus;
1434 	struct pci_controller *hose;
1435 	struct pnv_phb        *phb;
1436 	struct pnv_ioda_pe    *pe, *pe_n;
1437 	struct pci_dn         *pdn;
1438 
1439 	bus = pdev->bus;
1440 	hose = pci_bus_to_host(bus);
1441 	phb = hose->private_data;
1442 	pdn = pci_get_pdn(pdev);
1443 
1444 	if (!pdev->is_physfn)
1445 		return;
1446 
1447 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1448 		if (pe->parent_dev != pdev)
1449 			continue;
1450 
1451 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1452 
1453 		/* Remove from list */
1454 		mutex_lock(&phb->ioda.pe_list_mutex);
1455 		list_del(&pe->list);
1456 		mutex_unlock(&phb->ioda.pe_list_mutex);
1457 
1458 		pnv_ioda_deconfigure_pe(phb, pe);
1459 
1460 		pnv_ioda_free_pe(pe);
1461 	}
1462 }
1463 
1464 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1465 {
1466 	struct pci_bus        *bus;
1467 	struct pci_controller *hose;
1468 	struct pnv_phb        *phb;
1469 	struct pnv_ioda_pe    *pe;
1470 	struct pci_dn         *pdn;
1471 	u16                    num_vfs, i;
1472 
1473 	bus = pdev->bus;
1474 	hose = pci_bus_to_host(bus);
1475 	phb = hose->private_data;
1476 	pdn = pci_get_pdn(pdev);
1477 	num_vfs = pdn->num_vfs;
1478 
1479 	/* Release VF PEs */
1480 	pnv_ioda_release_vf_PE(pdev);
1481 
1482 	if (phb->type == PNV_PHB_IODA2) {
1483 		if (!pdn->m64_single_mode)
1484 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1485 
1486 		/* Release M64 windows */
1487 		pnv_pci_vf_release_m64(pdev, num_vfs);
1488 
1489 		/* Release PE numbers */
1490 		if (pdn->m64_single_mode) {
1491 			for (i = 0; i < num_vfs; i++) {
1492 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1493 					continue;
1494 
1495 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1496 				pnv_ioda_free_pe(pe);
1497 			}
1498 		} else
1499 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1500 		/* Releasing pe_num_map */
1501 		kfree(pdn->pe_num_map);
1502 	}
1503 }
1504 
1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1506 				       struct pnv_ioda_pe *pe);
1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509 	struct pci_bus        *bus;
1510 	struct pci_controller *hose;
1511 	struct pnv_phb        *phb;
1512 	struct pnv_ioda_pe    *pe;
1513 	int                    pe_num;
1514 	u16                    vf_index;
1515 	struct pci_dn         *pdn;
1516 
1517 	bus = pdev->bus;
1518 	hose = pci_bus_to_host(bus);
1519 	phb = hose->private_data;
1520 	pdn = pci_get_pdn(pdev);
1521 
1522 	if (!pdev->is_physfn)
1523 		return;
1524 
1525 	/* Reserve PE for each VF */
1526 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1527 		if (pdn->m64_single_mode)
1528 			pe_num = pdn->pe_num_map[vf_index];
1529 		else
1530 			pe_num = *pdn->pe_num_map + vf_index;
1531 
1532 		pe = &phb->ioda.pe_array[pe_num];
1533 		pe->pe_number = pe_num;
1534 		pe->phb = phb;
1535 		pe->flags = PNV_IODA_PE_VF;
1536 		pe->pbus = NULL;
1537 		pe->parent_dev = pdev;
1538 		pe->mve_number = -1;
1539 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1540 			   pci_iov_virtfn_devfn(pdev, vf_index);
1541 
1542 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1543 			hose->global_number, pdev->bus->number,
1544 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1545 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1546 
1547 		if (pnv_ioda_configure_pe(phb, pe)) {
1548 			/* XXX What do we do here ? */
1549 			pnv_ioda_free_pe(pe);
1550 			pe->pdev = NULL;
1551 			continue;
1552 		}
1553 
1554 		/* Put PE to the list */
1555 		mutex_lock(&phb->ioda.pe_list_mutex);
1556 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1557 		mutex_unlock(&phb->ioda.pe_list_mutex);
1558 
1559 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1560 	}
1561 }
1562 
1563 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1564 {
1565 	struct pci_bus        *bus;
1566 	struct pci_controller *hose;
1567 	struct pnv_phb        *phb;
1568 	struct pnv_ioda_pe    *pe;
1569 	struct pci_dn         *pdn;
1570 	int                    ret;
1571 	u16                    i;
1572 
1573 	bus = pdev->bus;
1574 	hose = pci_bus_to_host(bus);
1575 	phb = hose->private_data;
1576 	pdn = pci_get_pdn(pdev);
1577 
1578 	if (phb->type == PNV_PHB_IODA2) {
1579 		if (!pdn->vfs_expanded) {
1580 			dev_info(&pdev->dev, "don't support this SRIOV device"
1581 				" with non 64bit-prefetchable IOV BAR\n");
1582 			return -ENOSPC;
1583 		}
1584 
1585 		/*
1586 		 * When M64 BARs functions in Single PE mode, the number of VFs
1587 		 * could be enabled must be less than the number of M64 BARs.
1588 		 */
1589 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1590 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1591 			return -EBUSY;
1592 		}
1593 
1594 		/* Allocating pe_num_map */
1595 		if (pdn->m64_single_mode)
1596 			pdn->pe_num_map = kmalloc_array(num_vfs,
1597 							sizeof(*pdn->pe_num_map),
1598 							GFP_KERNEL);
1599 		else
1600 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1601 
1602 		if (!pdn->pe_num_map)
1603 			return -ENOMEM;
1604 
1605 		if (pdn->m64_single_mode)
1606 			for (i = 0; i < num_vfs; i++)
1607 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1608 
1609 		/* Calculate available PE for required VFs */
1610 		if (pdn->m64_single_mode) {
1611 			for (i = 0; i < num_vfs; i++) {
1612 				pe = pnv_ioda_alloc_pe(phb);
1613 				if (!pe) {
1614 					ret = -EBUSY;
1615 					goto m64_failed;
1616 				}
1617 
1618 				pdn->pe_num_map[i] = pe->pe_number;
1619 			}
1620 		} else {
1621 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1622 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1623 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1624 				0, num_vfs, 0);
1625 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1626 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1627 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1628 				kfree(pdn->pe_num_map);
1629 				return -EBUSY;
1630 			}
1631 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1632 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1633 		}
1634 		pdn->num_vfs = num_vfs;
1635 
1636 		/* Assign M64 window accordingly */
1637 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1638 		if (ret) {
1639 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1640 			goto m64_failed;
1641 		}
1642 
1643 		/*
1644 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1645 		 * the IOV BAR according to the PE# allocated to the VFs.
1646 		 * Otherwise, the PE# for the VF will conflict with others.
1647 		 */
1648 		if (!pdn->m64_single_mode) {
1649 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1650 			if (ret)
1651 				goto m64_failed;
1652 		}
1653 	}
1654 
1655 	/* Setup VF PEs */
1656 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1657 
1658 	return 0;
1659 
1660 m64_failed:
1661 	if (pdn->m64_single_mode) {
1662 		for (i = 0; i < num_vfs; i++) {
1663 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1664 				continue;
1665 
1666 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1667 			pnv_ioda_free_pe(pe);
1668 		}
1669 	} else
1670 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1671 
1672 	/* Releasing pe_num_map */
1673 	kfree(pdn->pe_num_map);
1674 
1675 	return ret;
1676 }
1677 
1678 int pcibios_sriov_disable(struct pci_dev *pdev)
1679 {
1680 	pnv_pci_sriov_disable(pdev);
1681 
1682 	/* Release PCI data */
1683 	remove_dev_pci_data(pdev);
1684 	return 0;
1685 }
1686 
1687 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1688 {
1689 	/* Allocate PCI data */
1690 	add_dev_pci_data(pdev);
1691 
1692 	return pnv_pci_sriov_enable(pdev, num_vfs);
1693 }
1694 #endif /* CONFIG_PCI_IOV */
1695 
1696 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1697 {
1698 	struct pci_dn *pdn = pci_get_pdn(pdev);
1699 	struct pnv_ioda_pe *pe;
1700 
1701 	/*
1702 	 * The function can be called while the PE#
1703 	 * hasn't been assigned. Do nothing for the
1704 	 * case.
1705 	 */
1706 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1707 		return;
1708 
1709 	pe = &phb->ioda.pe_array[pdn->pe_number];
1710 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1711 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1712 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1713 	/*
1714 	 * Note: iommu_add_device() will fail here as
1715 	 * for physical PE: the device is already added by now;
1716 	 * for virtual PE: sysfs entries are not ready yet and
1717 	 * tce_iommu_bus_notifier will add the device to a group later.
1718 	 */
1719 }
1720 
1721 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1722 {
1723 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1724 	struct pnv_phb *phb = hose->private_data;
1725 	struct pci_dn *pdn = pci_get_pdn(pdev);
1726 	struct pnv_ioda_pe *pe;
1727 	uint64_t top;
1728 	bool bypass = false;
1729 
1730 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1731 		return -ENODEV;;
1732 
1733 	pe = &phb->ioda.pe_array[pdn->pe_number];
1734 	if (pe->tce_bypass_enabled) {
1735 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1736 		bypass = (dma_mask >= top);
1737 	}
1738 
1739 	if (bypass) {
1740 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1741 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1742 	} else {
1743 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1744 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1745 	}
1746 	*pdev->dev.dma_mask = dma_mask;
1747 
1748 	/* Update peer npu devices */
1749 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1750 
1751 	return 0;
1752 }
1753 
1754 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1755 {
1756 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1757 	struct pnv_phb *phb = hose->private_data;
1758 	struct pci_dn *pdn = pci_get_pdn(pdev);
1759 	struct pnv_ioda_pe *pe;
1760 	u64 end, mask;
1761 
1762 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1763 		return 0;
1764 
1765 	pe = &phb->ioda.pe_array[pdn->pe_number];
1766 	if (!pe->tce_bypass_enabled)
1767 		return __dma_get_required_mask(&pdev->dev);
1768 
1769 
1770 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1771 	mask = 1ULL << (fls64(end) - 1);
1772 	mask += mask - 1;
1773 
1774 	return mask;
1775 }
1776 
1777 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1778 				   struct pci_bus *bus)
1779 {
1780 	struct pci_dev *dev;
1781 
1782 	list_for_each_entry(dev, &bus->devices, bus_list) {
1783 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1784 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1785 		iommu_add_device(&dev->dev);
1786 
1787 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1788 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1789 	}
1790 }
1791 
1792 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1793 						     bool real_mode)
1794 {
1795 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1796 		(phb->regs + 0x210);
1797 }
1798 
1799 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1800 		unsigned long index, unsigned long npages, bool rm)
1801 {
1802 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1803 			&tbl->it_group_list, struct iommu_table_group_link,
1804 			next);
1805 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1806 			struct pnv_ioda_pe, table_group);
1807 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1808 	unsigned long start, end, inc;
1809 
1810 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1811 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1812 			npages - 1);
1813 
1814 	/* p7ioc-style invalidation, 2 TCEs per write */
1815 	start |= (1ull << 63);
1816 	end |= (1ull << 63);
1817 	inc = 16;
1818         end |= inc - 1;	/* round up end to be different than start */
1819 
1820         mb(); /* Ensure above stores are visible */
1821         while (start <= end) {
1822 		if (rm)
1823 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1824 		else
1825 			__raw_writeq(cpu_to_be64(start), invalidate);
1826                 start += inc;
1827         }
1828 
1829 	/*
1830 	 * The iommu layer will do another mb() for us on build()
1831 	 * and we don't care on free()
1832 	 */
1833 }
1834 
1835 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1836 		long npages, unsigned long uaddr,
1837 		enum dma_data_direction direction,
1838 		unsigned long attrs)
1839 {
1840 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1841 			attrs);
1842 
1843 	if (!ret)
1844 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1845 
1846 	return ret;
1847 }
1848 
1849 #ifdef CONFIG_IOMMU_API
1850 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1851 		unsigned long *hpa, enum dma_data_direction *direction)
1852 {
1853 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1854 
1855 	if (!ret)
1856 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1857 
1858 	return ret;
1859 }
1860 #endif
1861 
1862 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1863 		long npages)
1864 {
1865 	pnv_tce_free(tbl, index, npages);
1866 
1867 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1868 }
1869 
1870 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1871 	.set = pnv_ioda1_tce_build,
1872 #ifdef CONFIG_IOMMU_API
1873 	.exchange = pnv_ioda1_tce_xchg,
1874 #endif
1875 	.clear = pnv_ioda1_tce_free,
1876 	.get = pnv_tce_get,
1877 };
1878 
1879 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1880 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1881 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1882 
1883 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1884 {
1885 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1886 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1887 
1888 	mb(); /* Ensure previous TCE table stores are visible */
1889 	if (rm)
1890 		__raw_rm_writeq(cpu_to_be64(val), invalidate);
1891 	else
1892 		__raw_writeq(cpu_to_be64(val), invalidate);
1893 }
1894 
1895 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1896 {
1897 	/* 01xb - invalidate TCEs that match the specified PE# */
1898 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1899 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1900 
1901 	mb(); /* Ensure above stores are visible */
1902 	__raw_writeq(cpu_to_be64(val), invalidate);
1903 }
1904 
1905 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1906 					unsigned shift, unsigned long index,
1907 					unsigned long npages)
1908 {
1909 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1910 	unsigned long start, end, inc;
1911 
1912 	/* We'll invalidate DMA address in PE scope */
1913 	start = PHB3_TCE_KILL_INVAL_ONE;
1914 	start |= (pe->pe_number & 0xFF);
1915 	end = start;
1916 
1917 	/* Figure out the start, end and step */
1918 	start |= (index << shift);
1919 	end |= ((index + npages - 1) << shift);
1920 	inc = (0x1ull << shift);
1921 	mb();
1922 
1923 	while (start <= end) {
1924 		if (rm)
1925 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1926 		else
1927 			__raw_writeq(cpu_to_be64(start), invalidate);
1928 		start += inc;
1929 	}
1930 }
1931 
1932 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1933 {
1934 	struct pnv_phb *phb = pe->phb;
1935 
1936 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1937 		pnv_pci_phb3_tce_invalidate_pe(pe);
1938 	else
1939 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1940 				  pe->pe_number, 0, 0, 0);
1941 }
1942 
1943 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1944 		unsigned long index, unsigned long npages, bool rm)
1945 {
1946 	struct iommu_table_group_link *tgl;
1947 
1948 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1949 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1950 				struct pnv_ioda_pe, table_group);
1951 		struct pnv_phb *phb = pe->phb;
1952 		unsigned int shift = tbl->it_page_shift;
1953 
1954 		/*
1955 		 * NVLink1 can use the TCE kill register directly as
1956 		 * it's the same as PHB3. NVLink2 is different and
1957 		 * should go via the OPAL call.
1958 		 */
1959 		if (phb->model == PNV_PHB_MODEL_NPU) {
1960 			/*
1961 			 * The NVLink hardware does not support TCE kill
1962 			 * per TCE entry so we have to invalidate
1963 			 * the entire cache for it.
1964 			 */
1965 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1966 			continue;
1967 		}
1968 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1969 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1970 						    index, npages);
1971 		else
1972 			opal_pci_tce_kill(phb->opal_id,
1973 					  OPAL_PCI_TCE_KILL_PAGES,
1974 					  pe->pe_number, 1u << shift,
1975 					  index << shift, npages);
1976 	}
1977 }
1978 
1979 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1980 		long npages, unsigned long uaddr,
1981 		enum dma_data_direction direction,
1982 		unsigned long attrs)
1983 {
1984 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1985 			attrs);
1986 
1987 	if (!ret)
1988 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1989 
1990 	return ret;
1991 }
1992 
1993 #ifdef CONFIG_IOMMU_API
1994 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1995 		unsigned long *hpa, enum dma_data_direction *direction)
1996 {
1997 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1998 
1999 	if (!ret)
2000 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2001 
2002 	return ret;
2003 }
2004 #endif
2005 
2006 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2007 		long npages)
2008 {
2009 	pnv_tce_free(tbl, index, npages);
2010 
2011 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2012 }
2013 
2014 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2015 {
2016 	pnv_pci_ioda2_table_free_pages(tbl);
2017 	iommu_free_table(tbl, "pnv");
2018 }
2019 
2020 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2021 	.set = pnv_ioda2_tce_build,
2022 #ifdef CONFIG_IOMMU_API
2023 	.exchange = pnv_ioda2_tce_xchg,
2024 #endif
2025 	.clear = pnv_ioda2_tce_free,
2026 	.get = pnv_tce_get,
2027 	.free = pnv_ioda2_table_free,
2028 };
2029 
2030 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2031 {
2032 	unsigned int *weight = (unsigned int *)data;
2033 
2034 	/* This is quite simplistic. The "base" weight of a device
2035 	 * is 10. 0 means no DMA is to be accounted for it.
2036 	 */
2037 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2038 		return 0;
2039 
2040 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2041 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2042 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2043 		*weight += 3;
2044 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2045 		*weight += 15;
2046 	else
2047 		*weight += 10;
2048 
2049 	return 0;
2050 }
2051 
2052 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2053 {
2054 	unsigned int weight = 0;
2055 
2056 	/* SRIOV VF has same DMA32 weight as its PF */
2057 #ifdef CONFIG_PCI_IOV
2058 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2059 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2060 		return weight;
2061 	}
2062 #endif
2063 
2064 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2065 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2066 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2067 		struct pci_dev *pdev;
2068 
2069 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2070 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2071 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2072 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2073 	}
2074 
2075 	return weight;
2076 }
2077 
2078 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2079 				       struct pnv_ioda_pe *pe)
2080 {
2081 
2082 	struct page *tce_mem = NULL;
2083 	struct iommu_table *tbl;
2084 	unsigned int weight, total_weight = 0;
2085 	unsigned int tce32_segsz, base, segs, avail, i;
2086 	int64_t rc;
2087 	void *addr;
2088 
2089 	/* XXX FIXME: Handle 64-bit only DMA devices */
2090 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2091 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2092 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2093 	if (!weight)
2094 		return;
2095 
2096 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2097 		     &total_weight);
2098 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2099 	if (!segs)
2100 		segs = 1;
2101 
2102 	/*
2103 	 * Allocate contiguous DMA32 segments. We begin with the expected
2104 	 * number of segments. With one more attempt, the number of DMA32
2105 	 * segments to be allocated is decreased by one until one segment
2106 	 * is allocated successfully.
2107 	 */
2108 	do {
2109 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2110 			for (avail = 0, i = base; i < base + segs; i++) {
2111 				if (phb->ioda.dma32_segmap[i] ==
2112 				    IODA_INVALID_PE)
2113 					avail++;
2114 			}
2115 
2116 			if (avail == segs)
2117 				goto found;
2118 		}
2119 	} while (--segs);
2120 
2121 	if (!segs) {
2122 		pe_warn(pe, "No available DMA32 segments\n");
2123 		return;
2124 	}
2125 
2126 found:
2127 	tbl = pnv_pci_table_alloc(phb->hose->node);
2128 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2129 			pe->pe_number);
2130 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2131 
2132 	/* Grab a 32-bit TCE table */
2133 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2134 		weight, total_weight, base, segs);
2135 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2136 		base * PNV_IODA1_DMA32_SEGSIZE,
2137 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2138 
2139 	/* XXX Currently, we allocate one big contiguous table for the
2140 	 * TCEs. We only really need one chunk per 256M of TCE space
2141 	 * (ie per segment) but that's an optimization for later, it
2142 	 * requires some added smarts with our get/put_tce implementation
2143 	 *
2144 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2145 	 * bytes
2146 	 */
2147 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2148 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2149 				   get_order(tce32_segsz * segs));
2150 	if (!tce_mem) {
2151 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2152 		goto fail;
2153 	}
2154 	addr = page_address(tce_mem);
2155 	memset(addr, 0, tce32_segsz * segs);
2156 
2157 	/* Configure HW */
2158 	for (i = 0; i < segs; i++) {
2159 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2160 					      pe->pe_number,
2161 					      base + i, 1,
2162 					      __pa(addr) + tce32_segsz * i,
2163 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2164 		if (rc) {
2165 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2166 			       " err %ld\n", rc);
2167 			goto fail;
2168 		}
2169 	}
2170 
2171 	/* Setup DMA32 segment mapping */
2172 	for (i = base; i < base + segs; i++)
2173 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2174 
2175 	/* Setup linux iommu table */
2176 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2177 				  base * PNV_IODA1_DMA32_SEGSIZE,
2178 				  IOMMU_PAGE_SHIFT_4K);
2179 
2180 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2181 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2182 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2183 	iommu_init_table(tbl, phb->hose->node);
2184 
2185 	if (pe->flags & PNV_IODA_PE_DEV) {
2186 		/*
2187 		 * Setting table base here only for carrying iommu_group
2188 		 * further down to let iommu_add_device() do the job.
2189 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2190 		 */
2191 		set_iommu_table_base(&pe->pdev->dev, tbl);
2192 		iommu_add_device(&pe->pdev->dev);
2193 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2194 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2195 
2196 	return;
2197  fail:
2198 	/* XXX Failure: Try to fallback to 64-bit only ? */
2199 	if (tce_mem)
2200 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2201 	if (tbl) {
2202 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2203 		iommu_free_table(tbl, "pnv");
2204 	}
2205 }
2206 
2207 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2208 		int num, struct iommu_table *tbl)
2209 {
2210 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2211 			table_group);
2212 	struct pnv_phb *phb = pe->phb;
2213 	int64_t rc;
2214 	const unsigned long size = tbl->it_indirect_levels ?
2215 			tbl->it_level_size : tbl->it_size;
2216 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2217 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2218 
2219 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2220 			start_addr, start_addr + win_size - 1,
2221 			IOMMU_PAGE_SIZE(tbl));
2222 
2223 	/*
2224 	 * Map TCE table through TVT. The TVE index is the PE number
2225 	 * shifted by 1 bit for 32-bits DMA space.
2226 	 */
2227 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2228 			pe->pe_number,
2229 			(pe->pe_number << 1) + num,
2230 			tbl->it_indirect_levels + 1,
2231 			__pa(tbl->it_base),
2232 			size << 3,
2233 			IOMMU_PAGE_SIZE(tbl));
2234 	if (rc) {
2235 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2236 		return rc;
2237 	}
2238 
2239 	pnv_pci_link_table_and_group(phb->hose->node, num,
2240 			tbl, &pe->table_group);
2241 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2242 
2243 	return 0;
2244 }
2245 
2246 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2247 {
2248 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2249 	int64_t rc;
2250 
2251 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2252 	if (enable) {
2253 		phys_addr_t top = memblock_end_of_DRAM();
2254 
2255 		top = roundup_pow_of_two(top);
2256 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2257 						     pe->pe_number,
2258 						     window_id,
2259 						     pe->tce_bypass_base,
2260 						     top);
2261 	} else {
2262 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2263 						     pe->pe_number,
2264 						     window_id,
2265 						     pe->tce_bypass_base,
2266 						     0);
2267 	}
2268 	if (rc)
2269 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2270 	else
2271 		pe->tce_bypass_enabled = enable;
2272 }
2273 
2274 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2275 		__u32 page_shift, __u64 window_size, __u32 levels,
2276 		struct iommu_table *tbl);
2277 
2278 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2279 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2280 		struct iommu_table **ptbl)
2281 {
2282 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2283 			table_group);
2284 	int nid = pe->phb->hose->node;
2285 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2286 	long ret;
2287 	struct iommu_table *tbl;
2288 
2289 	tbl = pnv_pci_table_alloc(nid);
2290 	if (!tbl)
2291 		return -ENOMEM;
2292 
2293 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2294 			bus_offset, page_shift, window_size,
2295 			levels, tbl);
2296 	if (ret) {
2297 		iommu_free_table(tbl, "pnv");
2298 		return ret;
2299 	}
2300 
2301 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2302 
2303 	*ptbl = tbl;
2304 
2305 	return 0;
2306 }
2307 
2308 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2309 {
2310 	struct iommu_table *tbl = NULL;
2311 	long rc;
2312 
2313 	/*
2314 	 * crashkernel= specifies the kdump kernel's maximum memory at
2315 	 * some offset and there is no guaranteed the result is a power
2316 	 * of 2, which will cause errors later.
2317 	 */
2318 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2319 
2320 	/*
2321 	 * In memory constrained environments, e.g. kdump kernel, the
2322 	 * DMA window can be larger than available memory, which will
2323 	 * cause errors later.
2324 	 */
2325 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2326 
2327 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2328 			IOMMU_PAGE_SHIFT_4K,
2329 			window_size,
2330 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2331 	if (rc) {
2332 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2333 				rc);
2334 		return rc;
2335 	}
2336 
2337 	iommu_init_table(tbl, pe->phb->hose->node);
2338 
2339 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2340 	if (rc) {
2341 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2342 				rc);
2343 		pnv_ioda2_table_free(tbl);
2344 		return rc;
2345 	}
2346 
2347 	if (!pnv_iommu_bypass_disabled)
2348 		pnv_pci_ioda2_set_bypass(pe, true);
2349 
2350 	/*
2351 	 * Setting table base here only for carrying iommu_group
2352 	 * further down to let iommu_add_device() do the job.
2353 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2354 	 */
2355 	if (pe->flags & PNV_IODA_PE_DEV)
2356 		set_iommu_table_base(&pe->pdev->dev, tbl);
2357 
2358 	return 0;
2359 }
2360 
2361 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2362 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2363 		int num)
2364 {
2365 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2366 			table_group);
2367 	struct pnv_phb *phb = pe->phb;
2368 	long ret;
2369 
2370 	pe_info(pe, "Removing DMA window #%d\n", num);
2371 
2372 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2373 			(pe->pe_number << 1) + num,
2374 			0/* levels */, 0/* table address */,
2375 			0/* table size */, 0/* page size */);
2376 	if (ret)
2377 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2378 	else
2379 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2380 
2381 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2382 
2383 	return ret;
2384 }
2385 #endif
2386 
2387 #ifdef CONFIG_IOMMU_API
2388 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2389 		__u64 window_size, __u32 levels)
2390 {
2391 	unsigned long bytes = 0;
2392 	const unsigned window_shift = ilog2(window_size);
2393 	unsigned entries_shift = window_shift - page_shift;
2394 	unsigned table_shift = entries_shift + 3;
2395 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2396 	unsigned long direct_table_size;
2397 
2398 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2399 			(window_size > memory_hotplug_max()) ||
2400 			!is_power_of_2(window_size))
2401 		return 0;
2402 
2403 	/* Calculate a direct table size from window_size and levels */
2404 	entries_shift = (entries_shift + levels - 1) / levels;
2405 	table_shift = entries_shift + 3;
2406 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2407 	direct_table_size =  1UL << table_shift;
2408 
2409 	for ( ; levels; --levels) {
2410 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2411 
2412 		tce_table_size /= direct_table_size;
2413 		tce_table_size <<= 3;
2414 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2415 	}
2416 
2417 	return bytes;
2418 }
2419 
2420 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2421 {
2422 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2423 						table_group);
2424 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2425 	struct iommu_table *tbl = pe->table_group.tables[0];
2426 
2427 	pnv_pci_ioda2_set_bypass(pe, false);
2428 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2429 	pnv_ioda2_table_free(tbl);
2430 }
2431 
2432 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2433 {
2434 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2435 						table_group);
2436 
2437 	pnv_pci_ioda2_setup_default_config(pe);
2438 }
2439 
2440 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2441 	.get_table_size = pnv_pci_ioda2_get_table_size,
2442 	.create_table = pnv_pci_ioda2_create_table,
2443 	.set_window = pnv_pci_ioda2_set_window,
2444 	.unset_window = pnv_pci_ioda2_unset_window,
2445 	.take_ownership = pnv_ioda2_take_ownership,
2446 	.release_ownership = pnv_ioda2_release_ownership,
2447 };
2448 
2449 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2450 {
2451 	struct pci_controller *hose;
2452 	struct pnv_phb *phb;
2453 	struct pnv_ioda_pe **ptmppe = opaque;
2454 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2455 	struct pci_dn *pdn = pci_get_pdn(pdev);
2456 
2457 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2458 		return 0;
2459 
2460 	hose = pci_bus_to_host(pdev->bus);
2461 	phb = hose->private_data;
2462 	if (phb->type != PNV_PHB_NPU)
2463 		return 0;
2464 
2465 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2466 
2467 	return 1;
2468 }
2469 
2470 /*
2471  * This returns PE of associated NPU.
2472  * This assumes that NPU is in the same IOMMU group with GPU and there is
2473  * no other PEs.
2474  */
2475 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2476 		struct iommu_table_group *table_group)
2477 {
2478 	struct pnv_ioda_pe *npe = NULL;
2479 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2480 			gpe_table_group_to_npe_cb);
2481 
2482 	BUG_ON(!ret || !npe);
2483 
2484 	return npe;
2485 }
2486 
2487 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2488 		int num, struct iommu_table *tbl)
2489 {
2490 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2491 
2492 	if (ret)
2493 		return ret;
2494 
2495 	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2496 	if (ret)
2497 		pnv_pci_ioda2_unset_window(table_group, num);
2498 
2499 	return ret;
2500 }
2501 
2502 static long pnv_pci_ioda2_npu_unset_window(
2503 		struct iommu_table_group *table_group,
2504 		int num)
2505 {
2506 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2507 
2508 	if (ret)
2509 		return ret;
2510 
2511 	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2512 }
2513 
2514 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2515 {
2516 	/*
2517 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2518 	 * the iommu_table if 32bit DMA is enabled.
2519 	 */
2520 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2521 	pnv_ioda2_take_ownership(table_group);
2522 }
2523 
2524 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2525 	.get_table_size = pnv_pci_ioda2_get_table_size,
2526 	.create_table = pnv_pci_ioda2_create_table,
2527 	.set_window = pnv_pci_ioda2_npu_set_window,
2528 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2529 	.take_ownership = pnv_ioda2_npu_take_ownership,
2530 	.release_ownership = pnv_ioda2_release_ownership,
2531 };
2532 
2533 static void pnv_pci_ioda_setup_iommu_api(void)
2534 {
2535 	struct pci_controller *hose, *tmp;
2536 	struct pnv_phb *phb;
2537 	struct pnv_ioda_pe *pe, *gpe;
2538 
2539 	/*
2540 	 * Now we have all PHBs discovered, time to add NPU devices to
2541 	 * the corresponding IOMMU groups.
2542 	 */
2543 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2544 		phb = hose->private_data;
2545 
2546 		if (phb->type != PNV_PHB_NPU)
2547 			continue;
2548 
2549 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2550 			gpe = pnv_pci_npu_setup_iommu(pe);
2551 			if (gpe)
2552 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2553 		}
2554 	}
2555 }
2556 #else /* !CONFIG_IOMMU_API */
2557 static void pnv_pci_ioda_setup_iommu_api(void) { };
2558 #endif
2559 
2560 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2561 		unsigned levels, unsigned long limit,
2562 		unsigned long *current_offset, unsigned long *total_allocated)
2563 {
2564 	struct page *tce_mem = NULL;
2565 	__be64 *addr, *tmp;
2566 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2567 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2568 	unsigned entries = 1UL << (shift - 3);
2569 	long i;
2570 
2571 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2572 	if (!tce_mem) {
2573 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2574 		return NULL;
2575 	}
2576 	addr = page_address(tce_mem);
2577 	memset(addr, 0, allocated);
2578 	*total_allocated += allocated;
2579 
2580 	--levels;
2581 	if (!levels) {
2582 		*current_offset += allocated;
2583 		return addr;
2584 	}
2585 
2586 	for (i = 0; i < entries; ++i) {
2587 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2588 				levels, limit, current_offset, total_allocated);
2589 		if (!tmp)
2590 			break;
2591 
2592 		addr[i] = cpu_to_be64(__pa(tmp) |
2593 				TCE_PCI_READ | TCE_PCI_WRITE);
2594 
2595 		if (*current_offset >= limit)
2596 			break;
2597 	}
2598 
2599 	return addr;
2600 }
2601 
2602 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2603 		unsigned long size, unsigned level);
2604 
2605 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2606 		__u32 page_shift, __u64 window_size, __u32 levels,
2607 		struct iommu_table *tbl)
2608 {
2609 	void *addr;
2610 	unsigned long offset = 0, level_shift, total_allocated = 0;
2611 	const unsigned window_shift = ilog2(window_size);
2612 	unsigned entries_shift = window_shift - page_shift;
2613 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2614 	const unsigned long tce_table_size = 1UL << table_shift;
2615 
2616 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2617 		return -EINVAL;
2618 
2619 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2620 		return -EINVAL;
2621 
2622 	/* Adjust direct table size from window_size and levels */
2623 	entries_shift = (entries_shift + levels - 1) / levels;
2624 	level_shift = entries_shift + 3;
2625 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2626 
2627 	/* Allocate TCE table */
2628 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2629 			levels, tce_table_size, &offset, &total_allocated);
2630 
2631 	/* addr==NULL means that the first level allocation failed */
2632 	if (!addr)
2633 		return -ENOMEM;
2634 
2635 	/*
2636 	 * First level was allocated but some lower level failed as
2637 	 * we did not allocate as much as we wanted,
2638 	 * release partially allocated table.
2639 	 */
2640 	if (offset < tce_table_size) {
2641 		pnv_pci_ioda2_table_do_free_pages(addr,
2642 				1ULL << (level_shift - 3), levels - 1);
2643 		return -ENOMEM;
2644 	}
2645 
2646 	/* Setup linux iommu table */
2647 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2648 			page_shift);
2649 	tbl->it_level_size = 1ULL << (level_shift - 3);
2650 	tbl->it_indirect_levels = levels - 1;
2651 	tbl->it_allocated_size = total_allocated;
2652 
2653 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2654 			window_size, tce_table_size, bus_offset);
2655 
2656 	return 0;
2657 }
2658 
2659 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2660 		unsigned long size, unsigned level)
2661 {
2662 	const unsigned long addr_ul = (unsigned long) addr &
2663 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2664 
2665 	if (level) {
2666 		long i;
2667 		u64 *tmp = (u64 *) addr_ul;
2668 
2669 		for (i = 0; i < size; ++i) {
2670 			unsigned long hpa = be64_to_cpu(tmp[i]);
2671 
2672 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2673 				continue;
2674 
2675 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2676 					level - 1);
2677 		}
2678 	}
2679 
2680 	free_pages(addr_ul, get_order(size << 3));
2681 }
2682 
2683 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2684 {
2685 	const unsigned long size = tbl->it_indirect_levels ?
2686 			tbl->it_level_size : tbl->it_size;
2687 
2688 	if (!tbl->it_size)
2689 		return;
2690 
2691 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2692 			tbl->it_indirect_levels);
2693 }
2694 
2695 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2696 				       struct pnv_ioda_pe *pe)
2697 {
2698 	int64_t rc;
2699 
2700 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2701 		return;
2702 
2703 	/* TVE #1 is selected by PCI address bit 59 */
2704 	pe->tce_bypass_base = 1ull << 59;
2705 
2706 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2707 			pe->pe_number);
2708 
2709 	/* The PE will reserve all possible 32-bits space */
2710 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2711 		phb->ioda.m32_pci_base);
2712 
2713 	/* Setup linux iommu table */
2714 	pe->table_group.tce32_start = 0;
2715 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2716 	pe->table_group.max_dynamic_windows_supported =
2717 			IOMMU_TABLE_GROUP_MAX_TABLES;
2718 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2719 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2720 #ifdef CONFIG_IOMMU_API
2721 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2722 #endif
2723 
2724 	rc = pnv_pci_ioda2_setup_default_config(pe);
2725 	if (rc)
2726 		return;
2727 
2728 	if (pe->flags & PNV_IODA_PE_DEV)
2729 		iommu_add_device(&pe->pdev->dev);
2730 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2731 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2732 }
2733 
2734 #ifdef CONFIG_PCI_MSI
2735 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2736 {
2737 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2738 					   ioda.irq_chip);
2739 
2740 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2741 }
2742 
2743 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2744 {
2745 	int64_t rc;
2746 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2747 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2748 
2749 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2750 	WARN_ON_ONCE(rc);
2751 
2752 	icp_native_eoi(d);
2753 }
2754 
2755 
2756 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2757 {
2758 	struct irq_data *idata;
2759 	struct irq_chip *ichip;
2760 
2761 	/* The MSI EOI OPAL call is only needed on PHB3 */
2762 	if (phb->model != PNV_PHB_MODEL_PHB3)
2763 		return;
2764 
2765 	if (!phb->ioda.irq_chip_init) {
2766 		/*
2767 		 * First time we setup an MSI IRQ, we need to setup the
2768 		 * corresponding IRQ chip to route correctly.
2769 		 */
2770 		idata = irq_get_irq_data(virq);
2771 		ichip = irq_data_get_irq_chip(idata);
2772 		phb->ioda.irq_chip_init = 1;
2773 		phb->ioda.irq_chip = *ichip;
2774 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2775 	}
2776 	irq_set_chip(virq, &phb->ioda.irq_chip);
2777 }
2778 
2779 /*
2780  * Returns true iff chip is something that we could call
2781  * pnv_opal_pci_msi_eoi for.
2782  */
2783 bool is_pnv_opal_msi(struct irq_chip *chip)
2784 {
2785 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2786 }
2787 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2788 
2789 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2790 				  unsigned int hwirq, unsigned int virq,
2791 				  unsigned int is_64, struct msi_msg *msg)
2792 {
2793 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2794 	unsigned int xive_num = hwirq - phb->msi_base;
2795 	__be32 data;
2796 	int rc;
2797 
2798 	/* No PE assigned ? bail out ... no MSI for you ! */
2799 	if (pe == NULL)
2800 		return -ENXIO;
2801 
2802 	/* Check if we have an MVE */
2803 	if (pe->mve_number < 0)
2804 		return -ENXIO;
2805 
2806 	/* Force 32-bit MSI on some broken devices */
2807 	if (dev->no_64bit_msi)
2808 		is_64 = 0;
2809 
2810 	/* Assign XIVE to PE */
2811 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2812 	if (rc) {
2813 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2814 			pci_name(dev), rc, xive_num);
2815 		return -EIO;
2816 	}
2817 
2818 	if (is_64) {
2819 		__be64 addr64;
2820 
2821 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2822 				     &addr64, &data);
2823 		if (rc) {
2824 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2825 				pci_name(dev), rc);
2826 			return -EIO;
2827 		}
2828 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2829 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2830 	} else {
2831 		__be32 addr32;
2832 
2833 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2834 				     &addr32, &data);
2835 		if (rc) {
2836 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2837 				pci_name(dev), rc);
2838 			return -EIO;
2839 		}
2840 		msg->address_hi = 0;
2841 		msg->address_lo = be32_to_cpu(addr32);
2842 	}
2843 	msg->data = be32_to_cpu(data);
2844 
2845 	pnv_set_msi_irq_chip(phb, virq);
2846 
2847 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2848 		 " address=%x_%08x data=%x PE# %x\n",
2849 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2850 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2851 
2852 	return 0;
2853 }
2854 
2855 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2856 {
2857 	unsigned int count;
2858 	const __be32 *prop = of_get_property(phb->hose->dn,
2859 					     "ibm,opal-msi-ranges", NULL);
2860 	if (!prop) {
2861 		/* BML Fallback */
2862 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2863 	}
2864 	if (!prop)
2865 		return;
2866 
2867 	phb->msi_base = be32_to_cpup(prop);
2868 	count = be32_to_cpup(prop + 1);
2869 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2870 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2871 		       phb->hose->global_number);
2872 		return;
2873 	}
2874 
2875 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2876 	phb->msi32_support = 1;
2877 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2878 		count, phb->msi_base);
2879 }
2880 #else
2881 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2882 #endif /* CONFIG_PCI_MSI */
2883 
2884 #ifdef CONFIG_PCI_IOV
2885 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2886 {
2887 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2888 	struct pnv_phb *phb = hose->private_data;
2889 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2890 	struct resource *res;
2891 	int i;
2892 	resource_size_t size, total_vf_bar_sz;
2893 	struct pci_dn *pdn;
2894 	int mul, total_vfs;
2895 
2896 	if (!pdev->is_physfn || pdev->is_added)
2897 		return;
2898 
2899 	pdn = pci_get_pdn(pdev);
2900 	pdn->vfs_expanded = 0;
2901 	pdn->m64_single_mode = false;
2902 
2903 	total_vfs = pci_sriov_get_totalvfs(pdev);
2904 	mul = phb->ioda.total_pe_num;
2905 	total_vf_bar_sz = 0;
2906 
2907 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2908 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2909 		if (!res->flags || res->parent)
2910 			continue;
2911 		if (!pnv_pci_is_m64_flags(res->flags)) {
2912 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2913 					" non M64 VF BAR%d: %pR. \n",
2914 				 i, res);
2915 			goto truncate_iov;
2916 		}
2917 
2918 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2919 				i + PCI_IOV_RESOURCES);
2920 
2921 		/*
2922 		 * If bigger than quarter of M64 segment size, just round up
2923 		 * power of two.
2924 		 *
2925 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2926 		 * with other devices, IOV BAR size is expanded to be
2927 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2928 		 * segment size , the expanded size would equal to half of the
2929 		 * whole M64 space size, which will exhaust the M64 Space and
2930 		 * limit the system flexibility.  This is a design decision to
2931 		 * set the boundary to quarter of the M64 segment size.
2932 		 */
2933 		if (total_vf_bar_sz > gate) {
2934 			mul = roundup_pow_of_two(total_vfs);
2935 			dev_info(&pdev->dev,
2936 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2937 				total_vf_bar_sz, gate, mul);
2938 			pdn->m64_single_mode = true;
2939 			break;
2940 		}
2941 	}
2942 
2943 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2944 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2945 		if (!res->flags || res->parent)
2946 			continue;
2947 
2948 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2949 		/*
2950 		 * On PHB3, the minimum size alignment of M64 BAR in single
2951 		 * mode is 32MB.
2952 		 */
2953 		if (pdn->m64_single_mode && (size < SZ_32M))
2954 			goto truncate_iov;
2955 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2956 		res->end = res->start + size * mul - 1;
2957 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2958 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2959 			 i, res, mul);
2960 	}
2961 	pdn->vfs_expanded = mul;
2962 
2963 	return;
2964 
2965 truncate_iov:
2966 	/* To save MMIO space, IOV BAR is truncated. */
2967 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2968 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2969 		res->flags = 0;
2970 		res->end = res->start - 1;
2971 	}
2972 }
2973 #endif /* CONFIG_PCI_IOV */
2974 
2975 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2976 				  struct resource *res)
2977 {
2978 	struct pnv_phb *phb = pe->phb;
2979 	struct pci_bus_region region;
2980 	int index;
2981 	int64_t rc;
2982 
2983 	if (!res || !res->flags || res->start > res->end)
2984 		return;
2985 
2986 	if (res->flags & IORESOURCE_IO) {
2987 		region.start = res->start - phb->ioda.io_pci_base;
2988 		region.end   = res->end - phb->ioda.io_pci_base;
2989 		index = region.start / phb->ioda.io_segsize;
2990 
2991 		while (index < phb->ioda.total_pe_num &&
2992 		       region.start <= region.end) {
2993 			phb->ioda.io_segmap[index] = pe->pe_number;
2994 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2995 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2996 			if (rc != OPAL_SUCCESS) {
2997 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2998 				       __func__, rc, index, pe->pe_number);
2999 				break;
3000 			}
3001 
3002 			region.start += phb->ioda.io_segsize;
3003 			index++;
3004 		}
3005 	} else if ((res->flags & IORESOURCE_MEM) &&
3006 		   !pnv_pci_is_m64(phb, res)) {
3007 		region.start = res->start -
3008 			       phb->hose->mem_offset[0] -
3009 			       phb->ioda.m32_pci_base;
3010 		region.end   = res->end -
3011 			       phb->hose->mem_offset[0] -
3012 			       phb->ioda.m32_pci_base;
3013 		index = region.start / phb->ioda.m32_segsize;
3014 
3015 		while (index < phb->ioda.total_pe_num &&
3016 		       region.start <= region.end) {
3017 			phb->ioda.m32_segmap[index] = pe->pe_number;
3018 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3019 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3020 			if (rc != OPAL_SUCCESS) {
3021 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3022 				       __func__, rc, index, pe->pe_number);
3023 				break;
3024 			}
3025 
3026 			region.start += phb->ioda.m32_segsize;
3027 			index++;
3028 		}
3029 	}
3030 }
3031 
3032 /*
3033  * This function is supposed to be called on basis of PE from top
3034  * to bottom style. So the the I/O or MMIO segment assigned to
3035  * parent PE could be overridden by its child PEs if necessary.
3036  */
3037 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3038 {
3039 	struct pci_dev *pdev;
3040 	int i;
3041 
3042 	/*
3043 	 * NOTE: We only care PCI bus based PE for now. For PCI
3044 	 * device based PE, for example SRIOV sensitive VF should
3045 	 * be figured out later.
3046 	 */
3047 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3048 
3049 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3050 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3051 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3052 
3053 		/*
3054 		 * If the PE contains all subordinate PCI buses, the
3055 		 * windows of the child bridges should be mapped to
3056 		 * the PE as well.
3057 		 */
3058 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3059 			continue;
3060 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3061 			pnv_ioda_setup_pe_res(pe,
3062 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3063 	}
3064 }
3065 
3066 #ifdef CONFIG_DEBUG_FS
3067 static int pnv_pci_diag_data_set(void *data, u64 val)
3068 {
3069 	struct pci_controller *hose;
3070 	struct pnv_phb *phb;
3071 	s64 ret;
3072 
3073 	if (val != 1ULL)
3074 		return -EINVAL;
3075 
3076 	hose = (struct pci_controller *)data;
3077 	if (!hose || !hose->private_data)
3078 		return -ENODEV;
3079 
3080 	phb = hose->private_data;
3081 
3082 	/* Retrieve the diag data from firmware */
3083 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
3084 					  PNV_PCI_DIAG_BUF_SIZE);
3085 	if (ret != OPAL_SUCCESS)
3086 		return -EIO;
3087 
3088 	/* Print the diag data to the kernel log */
3089 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob);
3090 	return 0;
3091 }
3092 
3093 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3094 			pnv_pci_diag_data_set, "%llu\n");
3095 
3096 #endif /* CONFIG_DEBUG_FS */
3097 
3098 static void pnv_pci_ioda_create_dbgfs(void)
3099 {
3100 #ifdef CONFIG_DEBUG_FS
3101 	struct pci_controller *hose, *tmp;
3102 	struct pnv_phb *phb;
3103 	char name[16];
3104 
3105 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3106 		phb = hose->private_data;
3107 
3108 		/* Notify initialization of PHB done */
3109 		phb->initialized = 1;
3110 
3111 		sprintf(name, "PCI%04x", hose->global_number);
3112 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3113 		if (!phb->dbgfs) {
3114 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3115 				__func__, hose->global_number);
3116 			continue;
3117 		}
3118 
3119 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3120 				    &pnv_pci_diag_data_fops);
3121 	}
3122 #endif /* CONFIG_DEBUG_FS */
3123 }
3124 
3125 static void pnv_pci_ioda_fixup(void)
3126 {
3127 	pnv_pci_ioda_setup_PEs();
3128 	pnv_pci_ioda_setup_iommu_api();
3129 	pnv_pci_ioda_create_dbgfs();
3130 
3131 #ifdef CONFIG_EEH
3132 	eeh_init();
3133 	eeh_addr_cache_build();
3134 #endif
3135 }
3136 
3137 /*
3138  * Returns the alignment for I/O or memory windows for P2P
3139  * bridges. That actually depends on how PEs are segmented.
3140  * For now, we return I/O or M32 segment size for PE sensitive
3141  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3142  * 1MiB for memory) will be returned.
3143  *
3144  * The current PCI bus might be put into one PE, which was
3145  * create against the parent PCI bridge. For that case, we
3146  * needn't enlarge the alignment so that we can save some
3147  * resources.
3148  */
3149 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3150 						unsigned long type)
3151 {
3152 	struct pci_dev *bridge;
3153 	struct pci_controller *hose = pci_bus_to_host(bus);
3154 	struct pnv_phb *phb = hose->private_data;
3155 	int num_pci_bridges = 0;
3156 
3157 	bridge = bus->self;
3158 	while (bridge) {
3159 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3160 			num_pci_bridges++;
3161 			if (num_pci_bridges >= 2)
3162 				return 1;
3163 		}
3164 
3165 		bridge = bridge->bus->self;
3166 	}
3167 
3168 	/*
3169 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3170 	 * alignment for any 64-bit resource, PCIe doesn't care and
3171 	 * bridges only do 64-bit prefetchable anyway.
3172 	 */
3173 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3174 		return phb->ioda.m64_segsize;
3175 	if (type & IORESOURCE_MEM)
3176 		return phb->ioda.m32_segsize;
3177 
3178 	return phb->ioda.io_segsize;
3179 }
3180 
3181 /*
3182  * We are updating root port or the upstream port of the
3183  * bridge behind the root port with PHB's windows in order
3184  * to accommodate the changes on required resources during
3185  * PCI (slot) hotplug, which is connected to either root
3186  * port or the downstream ports of PCIe switch behind the
3187  * root port.
3188  */
3189 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3190 					   unsigned long type)
3191 {
3192 	struct pci_controller *hose = pci_bus_to_host(bus);
3193 	struct pnv_phb *phb = hose->private_data;
3194 	struct pci_dev *bridge = bus->self;
3195 	struct resource *r, *w;
3196 	bool msi_region = false;
3197 	int i;
3198 
3199 	/* Check if we need apply fixup to the bridge's windows */
3200 	if (!pci_is_root_bus(bridge->bus) &&
3201 	    !pci_is_root_bus(bridge->bus->self->bus))
3202 		return;
3203 
3204 	/* Fixup the resources */
3205 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3206 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3207 		if (!r->flags || !r->parent)
3208 			continue;
3209 
3210 		w = NULL;
3211 		if (r->flags & type & IORESOURCE_IO)
3212 			w = &hose->io_resource;
3213 		else if (pnv_pci_is_m64(phb, r) &&
3214 			 (type & IORESOURCE_PREFETCH) &&
3215 			 phb->ioda.m64_segsize)
3216 			w = &hose->mem_resources[1];
3217 		else if (r->flags & type & IORESOURCE_MEM) {
3218 			w = &hose->mem_resources[0];
3219 			msi_region = true;
3220 		}
3221 
3222 		r->start = w->start;
3223 		r->end = w->end;
3224 
3225 		/* The 64KB 32-bits MSI region shouldn't be included in
3226 		 * the 32-bits bridge window. Otherwise, we can see strange
3227 		 * issues. One of them is EEH error observed on Garrison.
3228 		 *
3229 		 * Exclude top 1MB region which is the minimal alignment of
3230 		 * 32-bits bridge window.
3231 		 */
3232 		if (msi_region) {
3233 			r->end += 0x10000;
3234 			r->end -= 0x100000;
3235 		}
3236 	}
3237 }
3238 
3239 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3240 {
3241 	struct pci_controller *hose = pci_bus_to_host(bus);
3242 	struct pnv_phb *phb = hose->private_data;
3243 	struct pci_dev *bridge = bus->self;
3244 	struct pnv_ioda_pe *pe;
3245 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3246 
3247 	/* Extend bridge's windows if necessary */
3248 	pnv_pci_fixup_bridge_resources(bus, type);
3249 
3250 	/* The PE for root bus should be realized before any one else */
3251 	if (!phb->ioda.root_pe_populated) {
3252 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3253 		if (pe) {
3254 			phb->ioda.root_pe_idx = pe->pe_number;
3255 			phb->ioda.root_pe_populated = true;
3256 		}
3257 	}
3258 
3259 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3260 	if (list_empty(&bus->devices))
3261 		return;
3262 
3263 	/* Reserve PEs according to used M64 resources */
3264 	if (phb->reserve_m64_pe)
3265 		phb->reserve_m64_pe(bus, NULL, all);
3266 
3267 	/*
3268 	 * Assign PE. We might run here because of partial hotplug.
3269 	 * For the case, we just pick up the existing PE and should
3270 	 * not allocate resources again.
3271 	 */
3272 	pe = pnv_ioda_setup_bus_PE(bus, all);
3273 	if (!pe)
3274 		return;
3275 
3276 	pnv_ioda_setup_pe_seg(pe);
3277 	switch (phb->type) {
3278 	case PNV_PHB_IODA1:
3279 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3280 		break;
3281 	case PNV_PHB_IODA2:
3282 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3283 		break;
3284 	default:
3285 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3286 			__func__, phb->hose->global_number, phb->type);
3287 	}
3288 }
3289 
3290 #ifdef CONFIG_PCI_IOV
3291 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3292 						      int resno)
3293 {
3294 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3295 	struct pnv_phb *phb = hose->private_data;
3296 	struct pci_dn *pdn = pci_get_pdn(pdev);
3297 	resource_size_t align;
3298 
3299 	/*
3300 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3301 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3302 	 * BAR should be size aligned.
3303 	 *
3304 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3305 	 * powernv-specific hardware restriction is gone. But if just use the
3306 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3307 	 * in one segment of M64 #15, which introduces the PE conflict between
3308 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3309 	 * m64_segsize.
3310 	 *
3311 	 * This function returns the total IOV BAR size if M64 BAR is in
3312 	 * Shared PE mode or just VF BAR size if not.
3313 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3314 	 * M64 segment size if IOV BAR size is less.
3315 	 */
3316 	align = pci_iov_resource_size(pdev, resno);
3317 	if (!pdn->vfs_expanded)
3318 		return align;
3319 	if (pdn->m64_single_mode)
3320 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3321 
3322 	return pdn->vfs_expanded * align;
3323 }
3324 #endif /* CONFIG_PCI_IOV */
3325 
3326 /* Prevent enabling devices for which we couldn't properly
3327  * assign a PE
3328  */
3329 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3330 {
3331 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3332 	struct pnv_phb *phb = hose->private_data;
3333 	struct pci_dn *pdn;
3334 
3335 	/* The function is probably called while the PEs have
3336 	 * not be created yet. For example, resource reassignment
3337 	 * during PCI probe period. We just skip the check if
3338 	 * PEs isn't ready.
3339 	 */
3340 	if (!phb->initialized)
3341 		return true;
3342 
3343 	pdn = pci_get_pdn(dev);
3344 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3345 		return false;
3346 
3347 	return true;
3348 }
3349 
3350 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3351 				       int num)
3352 {
3353 	struct pnv_ioda_pe *pe = container_of(table_group,
3354 					      struct pnv_ioda_pe, table_group);
3355 	struct pnv_phb *phb = pe->phb;
3356 	unsigned int idx;
3357 	long rc;
3358 
3359 	pe_info(pe, "Removing DMA window #%d\n", num);
3360 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3361 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3362 			continue;
3363 
3364 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3365 						idx, 0, 0ul, 0ul, 0ul);
3366 		if (rc != OPAL_SUCCESS) {
3367 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3368 				rc, idx);
3369 			return rc;
3370 		}
3371 
3372 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3373 	}
3374 
3375 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3376 	return OPAL_SUCCESS;
3377 }
3378 
3379 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3380 {
3381 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3382 	struct iommu_table *tbl = pe->table_group.tables[0];
3383 	int64_t rc;
3384 
3385 	if (!weight)
3386 		return;
3387 
3388 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3389 	if (rc != OPAL_SUCCESS)
3390 		return;
3391 
3392 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3393 	if (pe->table_group.group) {
3394 		iommu_group_put(pe->table_group.group);
3395 		WARN_ON(pe->table_group.group);
3396 	}
3397 
3398 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3399 	iommu_free_table(tbl, "pnv");
3400 }
3401 
3402 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3403 {
3404 	struct iommu_table *tbl = pe->table_group.tables[0];
3405 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3406 #ifdef CONFIG_IOMMU_API
3407 	int64_t rc;
3408 #endif
3409 
3410 	if (!weight)
3411 		return;
3412 
3413 #ifdef CONFIG_IOMMU_API
3414 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3415 	if (rc)
3416 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3417 #endif
3418 
3419 	pnv_pci_ioda2_set_bypass(pe, false);
3420 	if (pe->table_group.group) {
3421 		iommu_group_put(pe->table_group.group);
3422 		WARN_ON(pe->table_group.group);
3423 	}
3424 
3425 	pnv_pci_ioda2_table_free_pages(tbl);
3426 	iommu_free_table(tbl, "pnv");
3427 }
3428 
3429 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3430 				 unsigned short win,
3431 				 unsigned int *map)
3432 {
3433 	struct pnv_phb *phb = pe->phb;
3434 	int idx;
3435 	int64_t rc;
3436 
3437 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3438 		if (map[idx] != pe->pe_number)
3439 			continue;
3440 
3441 		if (win == OPAL_M64_WINDOW_TYPE)
3442 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3443 					phb->ioda.reserved_pe_idx, win,
3444 					idx / PNV_IODA1_M64_SEGS,
3445 					idx % PNV_IODA1_M64_SEGS);
3446 		else
3447 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3448 					phb->ioda.reserved_pe_idx, win, 0, idx);
3449 
3450 		if (rc != OPAL_SUCCESS)
3451 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3452 				rc, win, idx);
3453 
3454 		map[idx] = IODA_INVALID_PE;
3455 	}
3456 }
3457 
3458 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3459 {
3460 	struct pnv_phb *phb = pe->phb;
3461 
3462 	if (phb->type == PNV_PHB_IODA1) {
3463 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3464 				     phb->ioda.io_segmap);
3465 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3466 				     phb->ioda.m32_segmap);
3467 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3468 				     phb->ioda.m64_segmap);
3469 	} else if (phb->type == PNV_PHB_IODA2) {
3470 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3471 				     phb->ioda.m32_segmap);
3472 	}
3473 }
3474 
3475 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3476 {
3477 	struct pnv_phb *phb = pe->phb;
3478 	struct pnv_ioda_pe *slave, *tmp;
3479 
3480 	list_del(&pe->list);
3481 	switch (phb->type) {
3482 	case PNV_PHB_IODA1:
3483 		pnv_pci_ioda1_release_pe_dma(pe);
3484 		break;
3485 	case PNV_PHB_IODA2:
3486 		pnv_pci_ioda2_release_pe_dma(pe);
3487 		break;
3488 	default:
3489 		WARN_ON(1);
3490 	}
3491 
3492 	pnv_ioda_release_pe_seg(pe);
3493 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3494 
3495 	/* Release slave PEs in the compound PE */
3496 	if (pe->flags & PNV_IODA_PE_MASTER) {
3497 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3498 			list_del(&slave->list);
3499 			pnv_ioda_free_pe(slave);
3500 		}
3501 	}
3502 
3503 	/*
3504 	 * The PE for root bus can be removed because of hotplug in EEH
3505 	 * recovery for fenced PHB error. We need to mark the PE dead so
3506 	 * that it can be populated again in PCI hot add path. The PE
3507 	 * shouldn't be destroyed as it's the global reserved resource.
3508 	 */
3509 	if (phb->ioda.root_pe_populated &&
3510 	    phb->ioda.root_pe_idx == pe->pe_number)
3511 		phb->ioda.root_pe_populated = false;
3512 	else
3513 		pnv_ioda_free_pe(pe);
3514 }
3515 
3516 static void pnv_pci_release_device(struct pci_dev *pdev)
3517 {
3518 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3519 	struct pnv_phb *phb = hose->private_data;
3520 	struct pci_dn *pdn = pci_get_pdn(pdev);
3521 	struct pnv_ioda_pe *pe;
3522 
3523 	if (pdev->is_virtfn)
3524 		return;
3525 
3526 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3527 		return;
3528 
3529 	/*
3530 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3531 	 * isn't removed and added afterwards in this scenario. We should
3532 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3533 	 * device count is decreased on removing devices while failing to
3534 	 * be increased on adding devices. It leads to unbalanced PE's device
3535 	 * count and eventually make normal PCI hotplug path broken.
3536 	 */
3537 	pe = &phb->ioda.pe_array[pdn->pe_number];
3538 	pdn->pe_number = IODA_INVALID_PE;
3539 
3540 	WARN_ON(--pe->device_count < 0);
3541 	if (pe->device_count == 0)
3542 		pnv_ioda_release_pe(pe);
3543 }
3544 
3545 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3546 {
3547 	struct pnv_phb *phb = hose->private_data;
3548 
3549 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3550 		       OPAL_ASSERT_RESET);
3551 }
3552 
3553 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3554 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3555 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3556 #ifdef CONFIG_PCI_MSI
3557 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3558 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3559 #endif
3560 	.enable_device_hook	= pnv_pci_enable_device_hook,
3561 	.release_device		= pnv_pci_release_device,
3562 	.window_alignment	= pnv_pci_window_alignment,
3563 	.setup_bridge		= pnv_pci_setup_bridge,
3564 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3565 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3566 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3567 	.shutdown		= pnv_pci_ioda_shutdown,
3568 };
3569 
3570 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3571 {
3572 	dev_err_once(&npdev->dev,
3573 			"%s operation unsupported for NVLink devices\n",
3574 			__func__);
3575 	return -EPERM;
3576 }
3577 
3578 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3579 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3580 #ifdef CONFIG_PCI_MSI
3581 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3582 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3583 #endif
3584 	.enable_device_hook	= pnv_pci_enable_device_hook,
3585 	.window_alignment	= pnv_pci_window_alignment,
3586 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3587 	.dma_set_mask		= pnv_npu_dma_set_mask,
3588 	.shutdown		= pnv_pci_ioda_shutdown,
3589 };
3590 
3591 #ifdef CONFIG_CXL_BASE
3592 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3593 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3594 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3595 #ifdef CONFIG_PCI_MSI
3596 	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
3597 	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
3598 #endif
3599 	.enable_device_hook	= pnv_cxl_enable_device_hook,
3600 	.disable_device		= pnv_cxl_disable_device,
3601 	.release_device		= pnv_pci_release_device,
3602 	.window_alignment	= pnv_pci_window_alignment,
3603 	.setup_bridge		= pnv_pci_setup_bridge,
3604 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3605 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3606 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3607 	.shutdown		= pnv_pci_ioda_shutdown,
3608 };
3609 #endif
3610 
3611 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3612 					 u64 hub_id, int ioda_type)
3613 {
3614 	struct pci_controller *hose;
3615 	struct pnv_phb *phb;
3616 	unsigned long size, m64map_off, m32map_off, pemap_off;
3617 	unsigned long iomap_off = 0, dma32map_off = 0;
3618 	struct resource r;
3619 	const __be64 *prop64;
3620 	const __be32 *prop32;
3621 	int len;
3622 	unsigned int segno;
3623 	u64 phb_id;
3624 	void *aux;
3625 	long rc;
3626 
3627 	if (!of_device_is_available(np))
3628 		return;
3629 
3630 	pr_info("Initializing %s PHB (%s)\n",
3631 		pnv_phb_names[ioda_type], of_node_full_name(np));
3632 
3633 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3634 	if (!prop64) {
3635 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3636 		return;
3637 	}
3638 	phb_id = be64_to_cpup(prop64);
3639 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3640 
3641 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3642 
3643 	/* Allocate PCI controller */
3644 	phb->hose = hose = pcibios_alloc_controller(np);
3645 	if (!phb->hose) {
3646 		pr_err("  Can't allocate PCI controller for %s\n",
3647 		       np->full_name);
3648 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3649 		return;
3650 	}
3651 
3652 	spin_lock_init(&phb->lock);
3653 	prop32 = of_get_property(np, "bus-range", &len);
3654 	if (prop32 && len == 8) {
3655 		hose->first_busno = be32_to_cpu(prop32[0]);
3656 		hose->last_busno = be32_to_cpu(prop32[1]);
3657 	} else {
3658 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3659 		hose->first_busno = 0;
3660 		hose->last_busno = 0xff;
3661 	}
3662 	hose->private_data = phb;
3663 	phb->hub_id = hub_id;
3664 	phb->opal_id = phb_id;
3665 	phb->type = ioda_type;
3666 	mutex_init(&phb->ioda.pe_alloc_mutex);
3667 
3668 	/* Detect specific models for error handling */
3669 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3670 		phb->model = PNV_PHB_MODEL_P7IOC;
3671 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3672 		phb->model = PNV_PHB_MODEL_PHB3;
3673 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3674 		phb->model = PNV_PHB_MODEL_NPU;
3675 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3676 		phb->model = PNV_PHB_MODEL_NPU2;
3677 	else
3678 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3679 
3680 	/* Parse 32-bit and IO ranges (if any) */
3681 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3682 
3683 	/* Get registers */
3684 	if (!of_address_to_resource(np, 0, &r)) {
3685 		phb->regs_phys = r.start;
3686 		phb->regs = ioremap(r.start, resource_size(&r));
3687 		if (phb->regs == NULL)
3688 			pr_err("  Failed to map registers !\n");
3689 	}
3690 
3691 	/* Initialize more IODA stuff */
3692 	phb->ioda.total_pe_num = 1;
3693 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3694 	if (prop32)
3695 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3696 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3697 	if (prop32)
3698 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3699 
3700 	/* Invalidate RID to PE# mapping */
3701 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3702 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3703 
3704 	/* Parse 64-bit MMIO range */
3705 	pnv_ioda_parse_m64_window(phb);
3706 
3707 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3708 	/* FW Has already off top 64k of M32 space (MSI space) */
3709 	phb->ioda.m32_size += 0x10000;
3710 
3711 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3712 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3713 	phb->ioda.io_size = hose->pci_io_size;
3714 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3715 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3716 
3717 	/* Calculate how many 32-bit TCE segments we have */
3718 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3719 				PNV_IODA1_DMA32_SEGSIZE;
3720 
3721 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3722 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3723 			sizeof(unsigned long));
3724 	m64map_off = size;
3725 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3726 	m32map_off = size;
3727 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3728 	if (phb->type == PNV_PHB_IODA1) {
3729 		iomap_off = size;
3730 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3731 		dma32map_off = size;
3732 		size += phb->ioda.dma32_count *
3733 			sizeof(phb->ioda.dma32_segmap[0]);
3734 	}
3735 	pemap_off = size;
3736 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3737 	aux = memblock_virt_alloc(size, 0);
3738 	phb->ioda.pe_alloc = aux;
3739 	phb->ioda.m64_segmap = aux + m64map_off;
3740 	phb->ioda.m32_segmap = aux + m32map_off;
3741 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3742 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3743 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3744 	}
3745 	if (phb->type == PNV_PHB_IODA1) {
3746 		phb->ioda.io_segmap = aux + iomap_off;
3747 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3748 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3749 
3750 		phb->ioda.dma32_segmap = aux + dma32map_off;
3751 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3752 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3753 	}
3754 	phb->ioda.pe_array = aux + pemap_off;
3755 
3756 	/*
3757 	 * Choose PE number for root bus, which shouldn't have
3758 	 * M64 resources consumed by its child devices. To pick
3759 	 * the PE number adjacent to the reserved one if possible.
3760 	 */
3761 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3762 	if (phb->ioda.reserved_pe_idx == 0) {
3763 		phb->ioda.root_pe_idx = 1;
3764 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3765 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3766 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3767 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3768 	} else {
3769 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3770 	}
3771 
3772 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3773 	mutex_init(&phb->ioda.pe_list_mutex);
3774 
3775 	/* Calculate how many 32-bit TCE segments we have */
3776 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3777 				PNV_IODA1_DMA32_SEGSIZE;
3778 
3779 #if 0 /* We should really do that ... */
3780 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3781 					 window_type,
3782 					 window_num,
3783 					 starting_real_address,
3784 					 starting_pci_address,
3785 					 segment_size);
3786 #endif
3787 
3788 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3789 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3790 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3791 	if (phb->ioda.m64_size)
3792 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3793 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3794 	if (phb->ioda.io_size)
3795 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3796 			phb->ioda.io_size, phb->ioda.io_segsize);
3797 
3798 
3799 	phb->hose->ops = &pnv_pci_ops;
3800 	phb->get_pe_state = pnv_ioda_get_pe_state;
3801 	phb->freeze_pe = pnv_ioda_freeze_pe;
3802 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3803 
3804 	/* Setup MSI support */
3805 	pnv_pci_init_ioda_msis(phb);
3806 
3807 	/*
3808 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3809 	 * to let the PCI core do resource assignment. It's supposed
3810 	 * that the PCI core will do correct I/O and MMIO alignment
3811 	 * for the P2P bridge bars so that each PCI bus (excluding
3812 	 * the child P2P bridges) can form individual PE.
3813 	 */
3814 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3815 
3816 	if (phb->type == PNV_PHB_NPU) {
3817 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3818 	} else {
3819 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3820 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3821 	}
3822 
3823 #ifdef CONFIG_PCI_IOV
3824 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3825 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3826 #endif
3827 
3828 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3829 
3830 	/* Reset IODA tables to a clean state */
3831 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3832 	if (rc)
3833 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3834 
3835 	/*
3836 	 * If we're running in kdump kernel, the previous kernel never
3837 	 * shutdown PCI devices correctly. We already got IODA table
3838 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3839 	 * transactions from previous kernel.
3840 	 */
3841 	if (is_kdump_kernel()) {
3842 		pr_info("  Issue PHB reset ...\n");
3843 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3844 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3845 	}
3846 
3847 	/* Remove M64 resource if we can't configure it successfully */
3848 	if (!phb->init_m64 || phb->init_m64(phb))
3849 		hose->mem_resources[1].flags = 0;
3850 }
3851 
3852 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3853 {
3854 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3855 }
3856 
3857 void __init pnv_pci_init_npu_phb(struct device_node *np)
3858 {
3859 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3860 }
3861 
3862 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3863 {
3864 	struct device_node *phbn;
3865 	const __be64 *prop64;
3866 	u64 hub_id;
3867 
3868 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3869 
3870 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3871 	if (!prop64) {
3872 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3873 		return;
3874 	}
3875 	hub_id = be64_to_cpup(prop64);
3876 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3877 
3878 	/* Count child PHBs */
3879 	for_each_child_of_node(np, phbn) {
3880 		/* Look for IODA1 PHBs */
3881 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3882 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3883 	}
3884 }
3885