1 /* 2 * Support PCI/PCIe on PowerNV platforms 3 * 4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/pci.h> 16 #include <linux/crash_dump.h> 17 #include <linux/debugfs.h> 18 #include <linux/delay.h> 19 #include <linux/string.h> 20 #include <linux/init.h> 21 #include <linux/bootmem.h> 22 #include <linux/irq.h> 23 #include <linux/io.h> 24 #include <linux/msi.h> 25 #include <linux/memblock.h> 26 #include <linux/iommu.h> 27 #include <linux/rculist.h> 28 #include <linux/sizes.h> 29 30 #include <asm/sections.h> 31 #include <asm/io.h> 32 #include <asm/prom.h> 33 #include <asm/pci-bridge.h> 34 #include <asm/machdep.h> 35 #include <asm/msi_bitmap.h> 36 #include <asm/ppc-pci.h> 37 #include <asm/opal.h> 38 #include <asm/iommu.h> 39 #include <asm/tce.h> 40 #include <asm/xics.h> 41 #include <asm/debug.h> 42 #include <asm/firmware.h> 43 #include <asm/pnv-pci.h> 44 #include <asm/mmzone.h> 45 46 #include <misc/cxl-base.h> 47 48 #include "powernv.h" 49 #include "pci.h" 50 51 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ 52 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ 53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 54 55 #define POWERNV_IOMMU_DEFAULT_LEVELS 1 56 #define POWERNV_IOMMU_MAX_LEVELS 5 57 58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" }; 59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl); 60 61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, 62 const char *fmt, ...) 63 { 64 struct va_format vaf; 65 va_list args; 66 char pfix[32]; 67 68 va_start(args, fmt); 69 70 vaf.fmt = fmt; 71 vaf.va = &args; 72 73 if (pe->flags & PNV_IODA_PE_DEV) 74 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); 75 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 76 sprintf(pfix, "%04x:%02x ", 77 pci_domain_nr(pe->pbus), pe->pbus->number); 78 #ifdef CONFIG_PCI_IOV 79 else if (pe->flags & PNV_IODA_PE_VF) 80 sprintf(pfix, "%04x:%02x:%2x.%d", 81 pci_domain_nr(pe->parent_dev->bus), 82 (pe->rid & 0xff00) >> 8, 83 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); 84 #endif /* CONFIG_PCI_IOV*/ 85 86 printk("%spci %s: [PE# %.2x] %pV", 87 level, pfix, pe->pe_number, &vaf); 88 89 va_end(args); 90 } 91 92 static bool pnv_iommu_bypass_disabled __read_mostly; 93 94 static int __init iommu_setup(char *str) 95 { 96 if (!str) 97 return -EINVAL; 98 99 while (*str) { 100 if (!strncmp(str, "nobypass", 8)) { 101 pnv_iommu_bypass_disabled = true; 102 pr_info("PowerNV: IOMMU bypass window disabled.\n"); 103 break; 104 } 105 str += strcspn(str, ","); 106 if (*str == ',') 107 str++; 108 } 109 110 return 0; 111 } 112 early_param("iommu", iommu_setup); 113 114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r) 115 { 116 /* 117 * WARNING: We cannot rely on the resource flags. The Linux PCI 118 * allocation code sometimes decides to put a 64-bit prefetchable 119 * BAR in the 32-bit window, so we have to compare the addresses. 120 * 121 * For simplicity we only test resource start. 122 */ 123 return (r->start >= phb->ioda.m64_base && 124 r->start < (phb->ioda.m64_base + phb->ioda.m64_size)); 125 } 126 127 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags) 128 { 129 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 130 131 return (resource_flags & flags) == flags; 132 } 133 134 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) 135 { 136 s64 rc; 137 138 phb->ioda.pe_array[pe_no].phb = phb; 139 phb->ioda.pe_array[pe_no].pe_number = pe_no; 140 141 /* 142 * Clear the PE frozen state as it might be put into frozen state 143 * in the last PCI remove path. It's not harmful to do so when the 144 * PE is already in unfrozen state. 145 */ 146 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, 147 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 148 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 149 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n", 150 __func__, rc, phb->hose->global_number, pe_no); 151 152 return &phb->ioda.pe_array[pe_no]; 153 } 154 155 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) 156 { 157 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { 158 pr_warn("%s: Invalid PE %x on PHB#%x\n", 159 __func__, pe_no, phb->hose->global_number); 160 return; 161 } 162 163 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) 164 pr_debug("%s: PE %x was reserved on PHB#%x\n", 165 __func__, pe_no, phb->hose->global_number); 166 167 pnv_ioda_init_pe(phb, pe_no); 168 } 169 170 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb) 171 { 172 long pe; 173 174 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { 175 if (!test_and_set_bit(pe, phb->ioda.pe_alloc)) 176 return pnv_ioda_init_pe(phb, pe); 177 } 178 179 return NULL; 180 } 181 182 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) 183 { 184 struct pnv_phb *phb = pe->phb; 185 unsigned int pe_num = pe->pe_number; 186 187 WARN_ON(pe->pdev); 188 189 memset(pe, 0, sizeof(struct pnv_ioda_pe)); 190 clear_bit(pe_num, phb->ioda.pe_alloc); 191 } 192 193 /* The default M64 BAR is shared by all PEs */ 194 static int pnv_ioda2_init_m64(struct pnv_phb *phb) 195 { 196 const char *desc; 197 struct resource *r; 198 s64 rc; 199 200 /* Configure the default M64 BAR */ 201 rc = opal_pci_set_phb_mem_window(phb->opal_id, 202 OPAL_M64_WINDOW_TYPE, 203 phb->ioda.m64_bar_idx, 204 phb->ioda.m64_base, 205 0, /* unused */ 206 phb->ioda.m64_size); 207 if (rc != OPAL_SUCCESS) { 208 desc = "configuring"; 209 goto fail; 210 } 211 212 /* Enable the default M64 BAR */ 213 rc = opal_pci_phb_mmio_enable(phb->opal_id, 214 OPAL_M64_WINDOW_TYPE, 215 phb->ioda.m64_bar_idx, 216 OPAL_ENABLE_M64_SPLIT); 217 if (rc != OPAL_SUCCESS) { 218 desc = "enabling"; 219 goto fail; 220 } 221 222 /* 223 * Exclude the segments for reserved and root bus PE, which 224 * are first or last two PEs. 225 */ 226 r = &phb->hose->mem_resources[1]; 227 if (phb->ioda.reserved_pe_idx == 0) 228 r->start += (2 * phb->ioda.m64_segsize); 229 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 230 r->end -= (2 * phb->ioda.m64_segsize); 231 else 232 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n", 233 phb->ioda.reserved_pe_idx); 234 235 return 0; 236 237 fail: 238 pr_warn(" Failure %lld %s M64 BAR#%d\n", 239 rc, desc, phb->ioda.m64_bar_idx); 240 opal_pci_phb_mmio_enable(phb->opal_id, 241 OPAL_M64_WINDOW_TYPE, 242 phb->ioda.m64_bar_idx, 243 OPAL_DISABLE_M64); 244 return -EIO; 245 } 246 247 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, 248 unsigned long *pe_bitmap) 249 { 250 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 251 struct pnv_phb *phb = hose->private_data; 252 struct resource *r; 253 resource_size_t base, sgsz, start, end; 254 int segno, i; 255 256 base = phb->ioda.m64_base; 257 sgsz = phb->ioda.m64_segsize; 258 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 259 r = &pdev->resource[i]; 260 if (!r->parent || !pnv_pci_is_m64(phb, r)) 261 continue; 262 263 start = _ALIGN_DOWN(r->start - base, sgsz); 264 end = _ALIGN_UP(r->end - base, sgsz); 265 for (segno = start / sgsz; segno < end / sgsz; segno++) { 266 if (pe_bitmap) 267 set_bit(segno, pe_bitmap); 268 else 269 pnv_ioda_reserve_pe(phb, segno); 270 } 271 } 272 } 273 274 static int pnv_ioda1_init_m64(struct pnv_phb *phb) 275 { 276 struct resource *r; 277 int index; 278 279 /* 280 * There are 16 M64 BARs, each of which has 8 segments. So 281 * there are as many M64 segments as the maximum number of 282 * PEs, which is 128. 283 */ 284 for (index = 0; index < PNV_IODA1_M64_NUM; index++) { 285 unsigned long base, segsz = phb->ioda.m64_segsize; 286 int64_t rc; 287 288 base = phb->ioda.m64_base + 289 index * PNV_IODA1_M64_SEGS * segsz; 290 rc = opal_pci_set_phb_mem_window(phb->opal_id, 291 OPAL_M64_WINDOW_TYPE, index, base, 0, 292 PNV_IODA1_M64_SEGS * segsz); 293 if (rc != OPAL_SUCCESS) { 294 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n", 295 rc, phb->hose->global_number, index); 296 goto fail; 297 } 298 299 rc = opal_pci_phb_mmio_enable(phb->opal_id, 300 OPAL_M64_WINDOW_TYPE, index, 301 OPAL_ENABLE_M64_SPLIT); 302 if (rc != OPAL_SUCCESS) { 303 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n", 304 rc, phb->hose->global_number, index); 305 goto fail; 306 } 307 } 308 309 /* 310 * Exclude the segments for reserved and root bus PE, which 311 * are first or last two PEs. 312 */ 313 r = &phb->hose->mem_resources[1]; 314 if (phb->ioda.reserved_pe_idx == 0) 315 r->start += (2 * phb->ioda.m64_segsize); 316 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 317 r->end -= (2 * phb->ioda.m64_segsize); 318 else 319 WARN(1, "Wrong reserved PE#%x on PHB#%x\n", 320 phb->ioda.reserved_pe_idx, phb->hose->global_number); 321 322 return 0; 323 324 fail: 325 for ( ; index >= 0; index--) 326 opal_pci_phb_mmio_enable(phb->opal_id, 327 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); 328 329 return -EIO; 330 } 331 332 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, 333 unsigned long *pe_bitmap, 334 bool all) 335 { 336 struct pci_dev *pdev; 337 338 list_for_each_entry(pdev, &bus->devices, bus_list) { 339 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); 340 341 if (all && pdev->subordinate) 342 pnv_ioda_reserve_m64_pe(pdev->subordinate, 343 pe_bitmap, all); 344 } 345 } 346 347 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) 348 { 349 struct pci_controller *hose = pci_bus_to_host(bus); 350 struct pnv_phb *phb = hose->private_data; 351 struct pnv_ioda_pe *master_pe, *pe; 352 unsigned long size, *pe_alloc; 353 int i; 354 355 /* Root bus shouldn't use M64 */ 356 if (pci_is_root_bus(bus)) 357 return NULL; 358 359 /* Allocate bitmap */ 360 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); 361 pe_alloc = kzalloc(size, GFP_KERNEL); 362 if (!pe_alloc) { 363 pr_warn("%s: Out of memory !\n", 364 __func__); 365 return NULL; 366 } 367 368 /* Figure out reserved PE numbers by the PE */ 369 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); 370 371 /* 372 * the current bus might not own M64 window and that's all 373 * contributed by its child buses. For the case, we needn't 374 * pick M64 dependent PE#. 375 */ 376 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { 377 kfree(pe_alloc); 378 return NULL; 379 } 380 381 /* 382 * Figure out the master PE and put all slave PEs to master 383 * PE's list to form compound PE. 384 */ 385 master_pe = NULL; 386 i = -1; 387 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < 388 phb->ioda.total_pe_num) { 389 pe = &phb->ioda.pe_array[i]; 390 391 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; 392 if (!master_pe) { 393 pe->flags |= PNV_IODA_PE_MASTER; 394 INIT_LIST_HEAD(&pe->slaves); 395 master_pe = pe; 396 } else { 397 pe->flags |= PNV_IODA_PE_SLAVE; 398 pe->master = master_pe; 399 list_add_tail(&pe->list, &master_pe->slaves); 400 } 401 402 /* 403 * P7IOC supports M64DT, which helps mapping M64 segment 404 * to one particular PE#. However, PHB3 has fixed mapping 405 * between M64 segment and PE#. In order to have same logic 406 * for P7IOC and PHB3, we enforce fixed mapping between M64 407 * segment and PE# on P7IOC. 408 */ 409 if (phb->type == PNV_PHB_IODA1) { 410 int64_t rc; 411 412 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 413 pe->pe_number, OPAL_M64_WINDOW_TYPE, 414 pe->pe_number / PNV_IODA1_M64_SEGS, 415 pe->pe_number % PNV_IODA1_M64_SEGS); 416 if (rc != OPAL_SUCCESS) 417 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n", 418 __func__, rc, phb->hose->global_number, 419 pe->pe_number); 420 } 421 } 422 423 kfree(pe_alloc); 424 return master_pe; 425 } 426 427 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) 428 { 429 struct pci_controller *hose = phb->hose; 430 struct device_node *dn = hose->dn; 431 struct resource *res; 432 u32 m64_range[2], i; 433 const __be32 *r; 434 u64 pci_addr; 435 436 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { 437 pr_info(" Not support M64 window\n"); 438 return; 439 } 440 441 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 442 pr_info(" Firmware too old to support M64 window\n"); 443 return; 444 } 445 446 r = of_get_property(dn, "ibm,opal-m64-window", NULL); 447 if (!r) { 448 pr_info(" No <ibm,opal-m64-window> on %s\n", 449 dn->full_name); 450 return; 451 } 452 453 /* 454 * Find the available M64 BAR range and pickup the last one for 455 * covering the whole 64-bits space. We support only one range. 456 */ 457 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", 458 m64_range, 2)) { 459 /* In absence of the property, assume 0..15 */ 460 m64_range[0] = 0; 461 m64_range[1] = 16; 462 } 463 /* We only support 64 bits in our allocator */ 464 if (m64_range[1] > 63) { 465 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", 466 __func__, m64_range[1], phb->hose->global_number); 467 m64_range[1] = 63; 468 } 469 /* Empty range, no m64 */ 470 if (m64_range[1] <= m64_range[0]) { 471 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", 472 __func__, phb->hose->global_number); 473 return; 474 } 475 476 /* Configure M64 informations */ 477 res = &hose->mem_resources[1]; 478 res->name = dn->full_name; 479 res->start = of_translate_address(dn, r + 2); 480 res->end = res->start + of_read_number(r + 4, 2) - 1; 481 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 482 pci_addr = of_read_number(r, 2); 483 hose->mem_offset[1] = res->start - pci_addr; 484 485 phb->ioda.m64_size = resource_size(res); 486 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; 487 phb->ioda.m64_base = pci_addr; 488 489 /* This lines up nicely with the display from processing OF ranges */ 490 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", 491 res->start, res->end, pci_addr, m64_range[0], 492 m64_range[0] + m64_range[1] - 1); 493 494 /* Mark all M64 used up by default */ 495 phb->ioda.m64_bar_alloc = (unsigned long)-1; 496 497 /* Use last M64 BAR to cover M64 window */ 498 m64_range[1]--; 499 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; 500 501 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); 502 503 /* Mark remaining ones free */ 504 for (i = m64_range[0]; i < m64_range[1]; i++) 505 clear_bit(i, &phb->ioda.m64_bar_alloc); 506 507 /* 508 * Setup init functions for M64 based on IODA version, IODA3 uses 509 * the IODA2 code. 510 */ 511 if (phb->type == PNV_PHB_IODA1) 512 phb->init_m64 = pnv_ioda1_init_m64; 513 else 514 phb->init_m64 = pnv_ioda2_init_m64; 515 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe; 516 phb->pick_m64_pe = pnv_ioda_pick_m64_pe; 517 } 518 519 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) 520 { 521 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; 522 struct pnv_ioda_pe *slave; 523 s64 rc; 524 525 /* Fetch master PE */ 526 if (pe->flags & PNV_IODA_PE_SLAVE) { 527 pe = pe->master; 528 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) 529 return; 530 531 pe_no = pe->pe_number; 532 } 533 534 /* Freeze master PE */ 535 rc = opal_pci_eeh_freeze_set(phb->opal_id, 536 pe_no, 537 OPAL_EEH_ACTION_SET_FREEZE_ALL); 538 if (rc != OPAL_SUCCESS) { 539 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 540 __func__, rc, phb->hose->global_number, pe_no); 541 return; 542 } 543 544 /* Freeze slave PEs */ 545 if (!(pe->flags & PNV_IODA_PE_MASTER)) 546 return; 547 548 list_for_each_entry(slave, &pe->slaves, list) { 549 rc = opal_pci_eeh_freeze_set(phb->opal_id, 550 slave->pe_number, 551 OPAL_EEH_ACTION_SET_FREEZE_ALL); 552 if (rc != OPAL_SUCCESS) 553 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 554 __func__, rc, phb->hose->global_number, 555 slave->pe_number); 556 } 557 } 558 559 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) 560 { 561 struct pnv_ioda_pe *pe, *slave; 562 s64 rc; 563 564 /* Find master PE */ 565 pe = &phb->ioda.pe_array[pe_no]; 566 if (pe->flags & PNV_IODA_PE_SLAVE) { 567 pe = pe->master; 568 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 569 pe_no = pe->pe_number; 570 } 571 572 /* Clear frozen state for master PE */ 573 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); 574 if (rc != OPAL_SUCCESS) { 575 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 576 __func__, rc, opt, phb->hose->global_number, pe_no); 577 return -EIO; 578 } 579 580 if (!(pe->flags & PNV_IODA_PE_MASTER)) 581 return 0; 582 583 /* Clear frozen state for slave PEs */ 584 list_for_each_entry(slave, &pe->slaves, list) { 585 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 586 slave->pe_number, 587 opt); 588 if (rc != OPAL_SUCCESS) { 589 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 590 __func__, rc, opt, phb->hose->global_number, 591 slave->pe_number); 592 return -EIO; 593 } 594 } 595 596 return 0; 597 } 598 599 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) 600 { 601 struct pnv_ioda_pe *slave, *pe; 602 u8 fstate, state; 603 __be16 pcierr; 604 s64 rc; 605 606 /* Sanity check on PE number */ 607 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) 608 return OPAL_EEH_STOPPED_PERM_UNAVAIL; 609 610 /* 611 * Fetch the master PE and the PE instance might be 612 * not initialized yet. 613 */ 614 pe = &phb->ioda.pe_array[pe_no]; 615 if (pe->flags & PNV_IODA_PE_SLAVE) { 616 pe = pe->master; 617 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 618 pe_no = pe->pe_number; 619 } 620 621 /* Check the master PE */ 622 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, 623 &state, &pcierr, NULL); 624 if (rc != OPAL_SUCCESS) { 625 pr_warn("%s: Failure %lld getting " 626 "PHB#%x-PE#%x state\n", 627 __func__, rc, 628 phb->hose->global_number, pe_no); 629 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 630 } 631 632 /* Check the slave PE */ 633 if (!(pe->flags & PNV_IODA_PE_MASTER)) 634 return state; 635 636 list_for_each_entry(slave, &pe->slaves, list) { 637 rc = opal_pci_eeh_freeze_status(phb->opal_id, 638 slave->pe_number, 639 &fstate, 640 &pcierr, 641 NULL); 642 if (rc != OPAL_SUCCESS) { 643 pr_warn("%s: Failure %lld getting " 644 "PHB#%x-PE#%x state\n", 645 __func__, rc, 646 phb->hose->global_number, slave->pe_number); 647 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 648 } 649 650 /* 651 * Override the result based on the ascending 652 * priority. 653 */ 654 if (fstate > state) 655 state = fstate; 656 } 657 658 return state; 659 } 660 661 /* Currently those 2 are only used when MSIs are enabled, this will change 662 * but in the meantime, we need to protect them to avoid warnings 663 */ 664 #ifdef CONFIG_PCI_MSI 665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) 666 { 667 struct pci_controller *hose = pci_bus_to_host(dev->bus); 668 struct pnv_phb *phb = hose->private_data; 669 struct pci_dn *pdn = pci_get_pdn(dev); 670 671 if (!pdn) 672 return NULL; 673 if (pdn->pe_number == IODA_INVALID_PE) 674 return NULL; 675 return &phb->ioda.pe_array[pdn->pe_number]; 676 } 677 #endif /* CONFIG_PCI_MSI */ 678 679 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, 680 struct pnv_ioda_pe *parent, 681 struct pnv_ioda_pe *child, 682 bool is_add) 683 { 684 const char *desc = is_add ? "adding" : "removing"; 685 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : 686 OPAL_REMOVE_PE_FROM_DOMAIN; 687 struct pnv_ioda_pe *slave; 688 long rc; 689 690 /* Parent PE affects child PE */ 691 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 692 child->pe_number, op); 693 if (rc != OPAL_SUCCESS) { 694 pe_warn(child, "OPAL error %ld %s to parent PELTV\n", 695 rc, desc); 696 return -ENXIO; 697 } 698 699 if (!(child->flags & PNV_IODA_PE_MASTER)) 700 return 0; 701 702 /* Compound case: parent PE affects slave PEs */ 703 list_for_each_entry(slave, &child->slaves, list) { 704 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 705 slave->pe_number, op); 706 if (rc != OPAL_SUCCESS) { 707 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", 708 rc, desc); 709 return -ENXIO; 710 } 711 } 712 713 return 0; 714 } 715 716 static int pnv_ioda_set_peltv(struct pnv_phb *phb, 717 struct pnv_ioda_pe *pe, 718 bool is_add) 719 { 720 struct pnv_ioda_pe *slave; 721 struct pci_dev *pdev = NULL; 722 int ret; 723 724 /* 725 * Clear PE frozen state. If it's master PE, we need 726 * clear slave PE frozen state as well. 727 */ 728 if (is_add) { 729 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 730 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 731 if (pe->flags & PNV_IODA_PE_MASTER) { 732 list_for_each_entry(slave, &pe->slaves, list) 733 opal_pci_eeh_freeze_clear(phb->opal_id, 734 slave->pe_number, 735 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 736 } 737 } 738 739 /* 740 * Associate PE in PELT. We need add the PE into the 741 * corresponding PELT-V as well. Otherwise, the error 742 * originated from the PE might contribute to other 743 * PEs. 744 */ 745 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); 746 if (ret) 747 return ret; 748 749 /* For compound PEs, any one affects all of them */ 750 if (pe->flags & PNV_IODA_PE_MASTER) { 751 list_for_each_entry(slave, &pe->slaves, list) { 752 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); 753 if (ret) 754 return ret; 755 } 756 } 757 758 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) 759 pdev = pe->pbus->self; 760 else if (pe->flags & PNV_IODA_PE_DEV) 761 pdev = pe->pdev->bus->self; 762 #ifdef CONFIG_PCI_IOV 763 else if (pe->flags & PNV_IODA_PE_VF) 764 pdev = pe->parent_dev; 765 #endif /* CONFIG_PCI_IOV */ 766 while (pdev) { 767 struct pci_dn *pdn = pci_get_pdn(pdev); 768 struct pnv_ioda_pe *parent; 769 770 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 771 parent = &phb->ioda.pe_array[pdn->pe_number]; 772 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); 773 if (ret) 774 return ret; 775 } 776 777 pdev = pdev->bus->self; 778 } 779 780 return 0; 781 } 782 783 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 784 { 785 struct pci_dev *parent; 786 uint8_t bcomp, dcomp, fcomp; 787 int64_t rc; 788 long rid_end, rid; 789 790 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ 791 if (pe->pbus) { 792 int count; 793 794 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 795 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 796 parent = pe->pbus->self; 797 if (pe->flags & PNV_IODA_PE_BUS_ALL) 798 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 799 else 800 count = 1; 801 802 switch(count) { 803 case 1: bcomp = OpalPciBusAll; break; 804 case 2: bcomp = OpalPciBus7Bits; break; 805 case 4: bcomp = OpalPciBus6Bits; break; 806 case 8: bcomp = OpalPciBus5Bits; break; 807 case 16: bcomp = OpalPciBus4Bits; break; 808 case 32: bcomp = OpalPciBus3Bits; break; 809 default: 810 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 811 count); 812 /* Do an exact match only */ 813 bcomp = OpalPciBusAll; 814 } 815 rid_end = pe->rid + (count << 8); 816 } else { 817 #ifdef CONFIG_PCI_IOV 818 if (pe->flags & PNV_IODA_PE_VF) 819 parent = pe->parent_dev; 820 else 821 #endif 822 parent = pe->pdev->bus->self; 823 bcomp = OpalPciBusAll; 824 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 825 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 826 rid_end = pe->rid + 1; 827 } 828 829 /* Clear the reverse map */ 830 for (rid = pe->rid; rid < rid_end; rid++) 831 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; 832 833 /* Release from all parents PELT-V */ 834 while (parent) { 835 struct pci_dn *pdn = pci_get_pdn(parent); 836 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 837 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, 838 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 839 /* XXX What to do in case of error ? */ 840 } 841 parent = parent->bus->self; 842 } 843 844 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 845 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 846 847 /* Disassociate PE in PELT */ 848 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, 849 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 850 if (rc) 851 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc); 852 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 853 bcomp, dcomp, fcomp, OPAL_UNMAP_PE); 854 if (rc) 855 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 856 857 pe->pbus = NULL; 858 pe->pdev = NULL; 859 #ifdef CONFIG_PCI_IOV 860 pe->parent_dev = NULL; 861 #endif 862 863 return 0; 864 } 865 866 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 867 { 868 struct pci_dev *parent; 869 uint8_t bcomp, dcomp, fcomp; 870 long rc, rid_end, rid; 871 872 /* Bus validation ? */ 873 if (pe->pbus) { 874 int count; 875 876 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 877 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 878 parent = pe->pbus->self; 879 if (pe->flags & PNV_IODA_PE_BUS_ALL) 880 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 881 else 882 count = 1; 883 884 switch(count) { 885 case 1: bcomp = OpalPciBusAll; break; 886 case 2: bcomp = OpalPciBus7Bits; break; 887 case 4: bcomp = OpalPciBus6Bits; break; 888 case 8: bcomp = OpalPciBus5Bits; break; 889 case 16: bcomp = OpalPciBus4Bits; break; 890 case 32: bcomp = OpalPciBus3Bits; break; 891 default: 892 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 893 count); 894 /* Do an exact match only */ 895 bcomp = OpalPciBusAll; 896 } 897 rid_end = pe->rid + (count << 8); 898 } else { 899 #ifdef CONFIG_PCI_IOV 900 if (pe->flags & PNV_IODA_PE_VF) 901 parent = pe->parent_dev; 902 else 903 #endif /* CONFIG_PCI_IOV */ 904 parent = pe->pdev->bus->self; 905 bcomp = OpalPciBusAll; 906 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 907 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 908 rid_end = pe->rid + 1; 909 } 910 911 /* 912 * Associate PE in PELT. We need add the PE into the 913 * corresponding PELT-V as well. Otherwise, the error 914 * originated from the PE might contribute to other 915 * PEs. 916 */ 917 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 918 bcomp, dcomp, fcomp, OPAL_MAP_PE); 919 if (rc) { 920 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 921 return -ENXIO; 922 } 923 924 /* 925 * Configure PELTV. NPUs don't have a PELTV table so skip 926 * configuration on them. 927 */ 928 if (phb->type != PNV_PHB_NPU) 929 pnv_ioda_set_peltv(phb, pe, true); 930 931 /* Setup reverse map */ 932 for (rid = pe->rid; rid < rid_end; rid++) 933 phb->ioda.pe_rmap[rid] = pe->pe_number; 934 935 /* Setup one MVTs on IODA1 */ 936 if (phb->type != PNV_PHB_IODA1) { 937 pe->mve_number = 0; 938 goto out; 939 } 940 941 pe->mve_number = pe->pe_number; 942 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); 943 if (rc != OPAL_SUCCESS) { 944 pe_err(pe, "OPAL error %ld setting up MVE %x\n", 945 rc, pe->mve_number); 946 pe->mve_number = -1; 947 } else { 948 rc = opal_pci_set_mve_enable(phb->opal_id, 949 pe->mve_number, OPAL_ENABLE_MVE); 950 if (rc) { 951 pe_err(pe, "OPAL error %ld enabling MVE %x\n", 952 rc, pe->mve_number); 953 pe->mve_number = -1; 954 } 955 } 956 957 out: 958 return 0; 959 } 960 961 #ifdef CONFIG_PCI_IOV 962 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) 963 { 964 struct pci_dn *pdn = pci_get_pdn(dev); 965 int i; 966 struct resource *res, res2; 967 resource_size_t size; 968 u16 num_vfs; 969 970 if (!dev->is_physfn) 971 return -EINVAL; 972 973 /* 974 * "offset" is in VFs. The M64 windows are sized so that when they 975 * are segmented, each segment is the same size as the IOV BAR. 976 * Each segment is in a separate PE, and the high order bits of the 977 * address are the PE number. Therefore, each VF's BAR is in a 978 * separate PE, and changing the IOV BAR start address changes the 979 * range of PEs the VFs are in. 980 */ 981 num_vfs = pdn->num_vfs; 982 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 983 res = &dev->resource[i + PCI_IOV_RESOURCES]; 984 if (!res->flags || !res->parent) 985 continue; 986 987 /* 988 * The actual IOV BAR range is determined by the start address 989 * and the actual size for num_vfs VFs BAR. This check is to 990 * make sure that after shifting, the range will not overlap 991 * with another device. 992 */ 993 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 994 res2.flags = res->flags; 995 res2.start = res->start + (size * offset); 996 res2.end = res2.start + (size * num_vfs) - 1; 997 998 if (res2.end > res->end) { 999 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", 1000 i, &res2, res, num_vfs, offset); 1001 return -EBUSY; 1002 } 1003 } 1004 1005 /* 1006 * After doing so, there would be a "hole" in the /proc/iomem when 1007 * offset is a positive value. It looks like the device return some 1008 * mmio back to the system, which actually no one could use it. 1009 */ 1010 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1011 res = &dev->resource[i + PCI_IOV_RESOURCES]; 1012 if (!res->flags || !res->parent) 1013 continue; 1014 1015 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 1016 res2 = *res; 1017 res->start += size * offset; 1018 1019 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", 1020 i, &res2, res, (offset > 0) ? "En" : "Dis", 1021 num_vfs, offset); 1022 pci_update_resource(dev, i + PCI_IOV_RESOURCES); 1023 } 1024 return 0; 1025 } 1026 #endif /* CONFIG_PCI_IOV */ 1027 1028 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) 1029 { 1030 struct pci_controller *hose = pci_bus_to_host(dev->bus); 1031 struct pnv_phb *phb = hose->private_data; 1032 struct pci_dn *pdn = pci_get_pdn(dev); 1033 struct pnv_ioda_pe *pe; 1034 1035 if (!pdn) { 1036 pr_err("%s: Device tree node not associated properly\n", 1037 pci_name(dev)); 1038 return NULL; 1039 } 1040 if (pdn->pe_number != IODA_INVALID_PE) 1041 return NULL; 1042 1043 pe = pnv_ioda_alloc_pe(phb); 1044 if (!pe) { 1045 pr_warning("%s: Not enough PE# available, disabling device\n", 1046 pci_name(dev)); 1047 return NULL; 1048 } 1049 1050 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the 1051 * pointer in the PE data structure, both should be destroyed at the 1052 * same time. However, this needs to be looked at more closely again 1053 * once we actually start removing things (Hotplug, SR-IOV, ...) 1054 * 1055 * At some point we want to remove the PDN completely anyways 1056 */ 1057 pci_dev_get(dev); 1058 pdn->pcidev = dev; 1059 pdn->pe_number = pe->pe_number; 1060 pe->flags = PNV_IODA_PE_DEV; 1061 pe->pdev = dev; 1062 pe->pbus = NULL; 1063 pe->mve_number = -1; 1064 pe->rid = dev->bus->number << 8 | pdn->devfn; 1065 1066 pe_info(pe, "Associated device to PE\n"); 1067 1068 if (pnv_ioda_configure_pe(phb, pe)) { 1069 /* XXX What do we do here ? */ 1070 pnv_ioda_free_pe(pe); 1071 pdn->pe_number = IODA_INVALID_PE; 1072 pe->pdev = NULL; 1073 pci_dev_put(dev); 1074 return NULL; 1075 } 1076 1077 /* Put PE to the list */ 1078 list_add_tail(&pe->list, &phb->ioda.pe_list); 1079 1080 return pe; 1081 } 1082 1083 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe) 1084 { 1085 struct pci_dev *dev; 1086 1087 list_for_each_entry(dev, &bus->devices, bus_list) { 1088 struct pci_dn *pdn = pci_get_pdn(dev); 1089 1090 if (pdn == NULL) { 1091 pr_warn("%s: No device node associated with device !\n", 1092 pci_name(dev)); 1093 continue; 1094 } 1095 1096 /* 1097 * In partial hotplug case, the PCI device might be still 1098 * associated with the PE and needn't attach it to the PE 1099 * again. 1100 */ 1101 if (pdn->pe_number != IODA_INVALID_PE) 1102 continue; 1103 1104 pe->device_count++; 1105 pdn->pcidev = dev; 1106 pdn->pe_number = pe->pe_number; 1107 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1108 pnv_ioda_setup_same_PE(dev->subordinate, pe); 1109 } 1110 } 1111 1112 /* 1113 * There're 2 types of PCI bus sensitive PEs: One that is compromised of 1114 * single PCI bus. Another one that contains the primary PCI bus and its 1115 * subordinate PCI devices and buses. The second type of PE is normally 1116 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. 1117 */ 1118 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) 1119 { 1120 struct pci_controller *hose = pci_bus_to_host(bus); 1121 struct pnv_phb *phb = hose->private_data; 1122 struct pnv_ioda_pe *pe = NULL; 1123 unsigned int pe_num; 1124 1125 /* 1126 * In partial hotplug case, the PE instance might be still alive. 1127 * We should reuse it instead of allocating a new one. 1128 */ 1129 pe_num = phb->ioda.pe_rmap[bus->number << 8]; 1130 if (pe_num != IODA_INVALID_PE) { 1131 pe = &phb->ioda.pe_array[pe_num]; 1132 pnv_ioda_setup_same_PE(bus, pe); 1133 return NULL; 1134 } 1135 1136 /* PE number for root bus should have been reserved */ 1137 if (pci_is_root_bus(bus) && 1138 phb->ioda.root_pe_idx != IODA_INVALID_PE) 1139 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; 1140 1141 /* Check if PE is determined by M64 */ 1142 if (!pe && phb->pick_m64_pe) 1143 pe = phb->pick_m64_pe(bus, all); 1144 1145 /* The PE number isn't pinned by M64 */ 1146 if (!pe) 1147 pe = pnv_ioda_alloc_pe(phb); 1148 1149 if (!pe) { 1150 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n", 1151 __func__, pci_domain_nr(bus), bus->number); 1152 return NULL; 1153 } 1154 1155 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); 1156 pe->pbus = bus; 1157 pe->pdev = NULL; 1158 pe->mve_number = -1; 1159 pe->rid = bus->busn_res.start << 8; 1160 1161 if (all) 1162 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n", 1163 bus->busn_res.start, bus->busn_res.end, pe->pe_number); 1164 else 1165 pe_info(pe, "Secondary bus %d associated with PE#%x\n", 1166 bus->busn_res.start, pe->pe_number); 1167 1168 if (pnv_ioda_configure_pe(phb, pe)) { 1169 /* XXX What do we do here ? */ 1170 pnv_ioda_free_pe(pe); 1171 pe->pbus = NULL; 1172 return NULL; 1173 } 1174 1175 /* Associate it with all child devices */ 1176 pnv_ioda_setup_same_PE(bus, pe); 1177 1178 /* Put PE to the list */ 1179 list_add_tail(&pe->list, &phb->ioda.pe_list); 1180 1181 return pe; 1182 } 1183 1184 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev) 1185 { 1186 int pe_num, found_pe = false, rc; 1187 long rid; 1188 struct pnv_ioda_pe *pe; 1189 struct pci_dev *gpu_pdev; 1190 struct pci_dn *npu_pdn; 1191 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus); 1192 struct pnv_phb *phb = hose->private_data; 1193 1194 /* 1195 * Due to a hardware errata PE#0 on the NPU is reserved for 1196 * error handling. This means we only have three PEs remaining 1197 * which need to be assigned to four links, implying some 1198 * links must share PEs. 1199 * 1200 * To achieve this we assign PEs such that NPUs linking the 1201 * same GPU get assigned the same PE. 1202 */ 1203 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev); 1204 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 1205 pe = &phb->ioda.pe_array[pe_num]; 1206 if (!pe->pdev) 1207 continue; 1208 1209 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) { 1210 /* 1211 * This device has the same peer GPU so should 1212 * be assigned the same PE as the existing 1213 * peer NPU. 1214 */ 1215 dev_info(&npu_pdev->dev, 1216 "Associating to existing PE %x\n", pe_num); 1217 pci_dev_get(npu_pdev); 1218 npu_pdn = pci_get_pdn(npu_pdev); 1219 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn; 1220 npu_pdn->pcidev = npu_pdev; 1221 npu_pdn->pe_number = pe_num; 1222 phb->ioda.pe_rmap[rid] = pe->pe_number; 1223 1224 /* Map the PE to this link */ 1225 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid, 1226 OpalPciBusAll, 1227 OPAL_COMPARE_RID_DEVICE_NUMBER, 1228 OPAL_COMPARE_RID_FUNCTION_NUMBER, 1229 OPAL_MAP_PE); 1230 WARN_ON(rc != OPAL_SUCCESS); 1231 found_pe = true; 1232 break; 1233 } 1234 } 1235 1236 if (!found_pe) 1237 /* 1238 * Could not find an existing PE so allocate a new 1239 * one. 1240 */ 1241 return pnv_ioda_setup_dev_PE(npu_pdev); 1242 else 1243 return pe; 1244 } 1245 1246 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus) 1247 { 1248 struct pci_dev *pdev; 1249 1250 list_for_each_entry(pdev, &bus->devices, bus_list) 1251 pnv_ioda_setup_npu_PE(pdev); 1252 } 1253 1254 static void pnv_pci_ioda_setup_PEs(void) 1255 { 1256 struct pci_controller *hose, *tmp; 1257 struct pnv_phb *phb; 1258 1259 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 1260 phb = hose->private_data; 1261 if (phb->type == PNV_PHB_NPU) { 1262 /* PE#0 is needed for error reporting */ 1263 pnv_ioda_reserve_pe(phb, 0); 1264 pnv_ioda_setup_npu_PEs(hose->bus); 1265 } 1266 } 1267 } 1268 1269 #ifdef CONFIG_PCI_IOV 1270 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) 1271 { 1272 struct pci_bus *bus; 1273 struct pci_controller *hose; 1274 struct pnv_phb *phb; 1275 struct pci_dn *pdn; 1276 int i, j; 1277 int m64_bars; 1278 1279 bus = pdev->bus; 1280 hose = pci_bus_to_host(bus); 1281 phb = hose->private_data; 1282 pdn = pci_get_pdn(pdev); 1283 1284 if (pdn->m64_single_mode) 1285 m64_bars = num_vfs; 1286 else 1287 m64_bars = 1; 1288 1289 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) 1290 for (j = 0; j < m64_bars; j++) { 1291 if (pdn->m64_map[j][i] == IODA_INVALID_M64) 1292 continue; 1293 opal_pci_phb_mmio_enable(phb->opal_id, 1294 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0); 1295 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc); 1296 pdn->m64_map[j][i] = IODA_INVALID_M64; 1297 } 1298 1299 kfree(pdn->m64_map); 1300 return 0; 1301 } 1302 1303 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) 1304 { 1305 struct pci_bus *bus; 1306 struct pci_controller *hose; 1307 struct pnv_phb *phb; 1308 struct pci_dn *pdn; 1309 unsigned int win; 1310 struct resource *res; 1311 int i, j; 1312 int64_t rc; 1313 int total_vfs; 1314 resource_size_t size, start; 1315 int pe_num; 1316 int m64_bars; 1317 1318 bus = pdev->bus; 1319 hose = pci_bus_to_host(bus); 1320 phb = hose->private_data; 1321 pdn = pci_get_pdn(pdev); 1322 total_vfs = pci_sriov_get_totalvfs(pdev); 1323 1324 if (pdn->m64_single_mode) 1325 m64_bars = num_vfs; 1326 else 1327 m64_bars = 1; 1328 1329 pdn->m64_map = kmalloc_array(m64_bars, 1330 sizeof(*pdn->m64_map), 1331 GFP_KERNEL); 1332 if (!pdn->m64_map) 1333 return -ENOMEM; 1334 /* Initialize the m64_map to IODA_INVALID_M64 */ 1335 for (i = 0; i < m64_bars ; i++) 1336 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++) 1337 pdn->m64_map[i][j] = IODA_INVALID_M64; 1338 1339 1340 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1341 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 1342 if (!res->flags || !res->parent) 1343 continue; 1344 1345 for (j = 0; j < m64_bars; j++) { 1346 do { 1347 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, 1348 phb->ioda.m64_bar_idx + 1, 0); 1349 1350 if (win >= phb->ioda.m64_bar_idx + 1) 1351 goto m64_failed; 1352 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); 1353 1354 pdn->m64_map[j][i] = win; 1355 1356 if (pdn->m64_single_mode) { 1357 size = pci_iov_resource_size(pdev, 1358 PCI_IOV_RESOURCES + i); 1359 start = res->start + size * j; 1360 } else { 1361 size = resource_size(res); 1362 start = res->start; 1363 } 1364 1365 /* Map the M64 here */ 1366 if (pdn->m64_single_mode) { 1367 pe_num = pdn->pe_num_map[j]; 1368 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 1369 pe_num, OPAL_M64_WINDOW_TYPE, 1370 pdn->m64_map[j][i], 0); 1371 } 1372 1373 rc = opal_pci_set_phb_mem_window(phb->opal_id, 1374 OPAL_M64_WINDOW_TYPE, 1375 pdn->m64_map[j][i], 1376 start, 1377 0, /* unused */ 1378 size); 1379 1380 1381 if (rc != OPAL_SUCCESS) { 1382 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n", 1383 win, rc); 1384 goto m64_failed; 1385 } 1386 1387 if (pdn->m64_single_mode) 1388 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1389 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2); 1390 else 1391 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1392 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1); 1393 1394 if (rc != OPAL_SUCCESS) { 1395 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n", 1396 win, rc); 1397 goto m64_failed; 1398 } 1399 } 1400 } 1401 return 0; 1402 1403 m64_failed: 1404 pnv_pci_vf_release_m64(pdev, num_vfs); 1405 return -EBUSY; 1406 } 1407 1408 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 1409 int num); 1410 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable); 1411 1412 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe) 1413 { 1414 struct iommu_table *tbl; 1415 int64_t rc; 1416 1417 tbl = pe->table_group.tables[0]; 1418 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 1419 if (rc) 1420 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 1421 1422 pnv_pci_ioda2_set_bypass(pe, false); 1423 if (pe->table_group.group) { 1424 iommu_group_put(pe->table_group.group); 1425 BUG_ON(pe->table_group.group); 1426 } 1427 pnv_pci_ioda2_table_free_pages(tbl); 1428 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node)); 1429 } 1430 1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev) 1432 { 1433 struct pci_bus *bus; 1434 struct pci_controller *hose; 1435 struct pnv_phb *phb; 1436 struct pnv_ioda_pe *pe, *pe_n; 1437 struct pci_dn *pdn; 1438 1439 bus = pdev->bus; 1440 hose = pci_bus_to_host(bus); 1441 phb = hose->private_data; 1442 pdn = pci_get_pdn(pdev); 1443 1444 if (!pdev->is_physfn) 1445 return; 1446 1447 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { 1448 if (pe->parent_dev != pdev) 1449 continue; 1450 1451 pnv_pci_ioda2_release_dma_pe(pdev, pe); 1452 1453 /* Remove from list */ 1454 mutex_lock(&phb->ioda.pe_list_mutex); 1455 list_del(&pe->list); 1456 mutex_unlock(&phb->ioda.pe_list_mutex); 1457 1458 pnv_ioda_deconfigure_pe(phb, pe); 1459 1460 pnv_ioda_free_pe(pe); 1461 } 1462 } 1463 1464 void pnv_pci_sriov_disable(struct pci_dev *pdev) 1465 { 1466 struct pci_bus *bus; 1467 struct pci_controller *hose; 1468 struct pnv_phb *phb; 1469 struct pnv_ioda_pe *pe; 1470 struct pci_dn *pdn; 1471 u16 num_vfs, i; 1472 1473 bus = pdev->bus; 1474 hose = pci_bus_to_host(bus); 1475 phb = hose->private_data; 1476 pdn = pci_get_pdn(pdev); 1477 num_vfs = pdn->num_vfs; 1478 1479 /* Release VF PEs */ 1480 pnv_ioda_release_vf_PE(pdev); 1481 1482 if (phb->type == PNV_PHB_IODA2) { 1483 if (!pdn->m64_single_mode) 1484 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map); 1485 1486 /* Release M64 windows */ 1487 pnv_pci_vf_release_m64(pdev, num_vfs); 1488 1489 /* Release PE numbers */ 1490 if (pdn->m64_single_mode) { 1491 for (i = 0; i < num_vfs; i++) { 1492 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1493 continue; 1494 1495 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1496 pnv_ioda_free_pe(pe); 1497 } 1498 } else 1499 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1500 /* Releasing pe_num_map */ 1501 kfree(pdn->pe_num_map); 1502 } 1503 } 1504 1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 1506 struct pnv_ioda_pe *pe); 1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) 1508 { 1509 struct pci_bus *bus; 1510 struct pci_controller *hose; 1511 struct pnv_phb *phb; 1512 struct pnv_ioda_pe *pe; 1513 int pe_num; 1514 u16 vf_index; 1515 struct pci_dn *pdn; 1516 1517 bus = pdev->bus; 1518 hose = pci_bus_to_host(bus); 1519 phb = hose->private_data; 1520 pdn = pci_get_pdn(pdev); 1521 1522 if (!pdev->is_physfn) 1523 return; 1524 1525 /* Reserve PE for each VF */ 1526 for (vf_index = 0; vf_index < num_vfs; vf_index++) { 1527 if (pdn->m64_single_mode) 1528 pe_num = pdn->pe_num_map[vf_index]; 1529 else 1530 pe_num = *pdn->pe_num_map + vf_index; 1531 1532 pe = &phb->ioda.pe_array[pe_num]; 1533 pe->pe_number = pe_num; 1534 pe->phb = phb; 1535 pe->flags = PNV_IODA_PE_VF; 1536 pe->pbus = NULL; 1537 pe->parent_dev = pdev; 1538 pe->mve_number = -1; 1539 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) | 1540 pci_iov_virtfn_devfn(pdev, vf_index); 1541 1542 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n", 1543 hose->global_number, pdev->bus->number, 1544 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)), 1545 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num); 1546 1547 if (pnv_ioda_configure_pe(phb, pe)) { 1548 /* XXX What do we do here ? */ 1549 pnv_ioda_free_pe(pe); 1550 pe->pdev = NULL; 1551 continue; 1552 } 1553 1554 /* Put PE to the list */ 1555 mutex_lock(&phb->ioda.pe_list_mutex); 1556 list_add_tail(&pe->list, &phb->ioda.pe_list); 1557 mutex_unlock(&phb->ioda.pe_list_mutex); 1558 1559 pnv_pci_ioda2_setup_dma_pe(phb, pe); 1560 } 1561 } 1562 1563 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1564 { 1565 struct pci_bus *bus; 1566 struct pci_controller *hose; 1567 struct pnv_phb *phb; 1568 struct pnv_ioda_pe *pe; 1569 struct pci_dn *pdn; 1570 int ret; 1571 u16 i; 1572 1573 bus = pdev->bus; 1574 hose = pci_bus_to_host(bus); 1575 phb = hose->private_data; 1576 pdn = pci_get_pdn(pdev); 1577 1578 if (phb->type == PNV_PHB_IODA2) { 1579 if (!pdn->vfs_expanded) { 1580 dev_info(&pdev->dev, "don't support this SRIOV device" 1581 " with non 64bit-prefetchable IOV BAR\n"); 1582 return -ENOSPC; 1583 } 1584 1585 /* 1586 * When M64 BARs functions in Single PE mode, the number of VFs 1587 * could be enabled must be less than the number of M64 BARs. 1588 */ 1589 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) { 1590 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n"); 1591 return -EBUSY; 1592 } 1593 1594 /* Allocating pe_num_map */ 1595 if (pdn->m64_single_mode) 1596 pdn->pe_num_map = kmalloc_array(num_vfs, 1597 sizeof(*pdn->pe_num_map), 1598 GFP_KERNEL); 1599 else 1600 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL); 1601 1602 if (!pdn->pe_num_map) 1603 return -ENOMEM; 1604 1605 if (pdn->m64_single_mode) 1606 for (i = 0; i < num_vfs; i++) 1607 pdn->pe_num_map[i] = IODA_INVALID_PE; 1608 1609 /* Calculate available PE for required VFs */ 1610 if (pdn->m64_single_mode) { 1611 for (i = 0; i < num_vfs; i++) { 1612 pe = pnv_ioda_alloc_pe(phb); 1613 if (!pe) { 1614 ret = -EBUSY; 1615 goto m64_failed; 1616 } 1617 1618 pdn->pe_num_map[i] = pe->pe_number; 1619 } 1620 } else { 1621 mutex_lock(&phb->ioda.pe_alloc_mutex); 1622 *pdn->pe_num_map = bitmap_find_next_zero_area( 1623 phb->ioda.pe_alloc, phb->ioda.total_pe_num, 1624 0, num_vfs, 0); 1625 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) { 1626 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1627 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs); 1628 kfree(pdn->pe_num_map); 1629 return -EBUSY; 1630 } 1631 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1632 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1633 } 1634 pdn->num_vfs = num_vfs; 1635 1636 /* Assign M64 window accordingly */ 1637 ret = pnv_pci_vf_assign_m64(pdev, num_vfs); 1638 if (ret) { 1639 dev_info(&pdev->dev, "Not enough M64 window resources\n"); 1640 goto m64_failed; 1641 } 1642 1643 /* 1644 * When using one M64 BAR to map one IOV BAR, we need to shift 1645 * the IOV BAR according to the PE# allocated to the VFs. 1646 * Otherwise, the PE# for the VF will conflict with others. 1647 */ 1648 if (!pdn->m64_single_mode) { 1649 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map); 1650 if (ret) 1651 goto m64_failed; 1652 } 1653 } 1654 1655 /* Setup VF PEs */ 1656 pnv_ioda_setup_vf_PE(pdev, num_vfs); 1657 1658 return 0; 1659 1660 m64_failed: 1661 if (pdn->m64_single_mode) { 1662 for (i = 0; i < num_vfs; i++) { 1663 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1664 continue; 1665 1666 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1667 pnv_ioda_free_pe(pe); 1668 } 1669 } else 1670 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1671 1672 /* Releasing pe_num_map */ 1673 kfree(pdn->pe_num_map); 1674 1675 return ret; 1676 } 1677 1678 int pcibios_sriov_disable(struct pci_dev *pdev) 1679 { 1680 pnv_pci_sriov_disable(pdev); 1681 1682 /* Release PCI data */ 1683 remove_dev_pci_data(pdev); 1684 return 0; 1685 } 1686 1687 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1688 { 1689 /* Allocate PCI data */ 1690 add_dev_pci_data(pdev); 1691 1692 return pnv_pci_sriov_enable(pdev, num_vfs); 1693 } 1694 #endif /* CONFIG_PCI_IOV */ 1695 1696 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev) 1697 { 1698 struct pci_dn *pdn = pci_get_pdn(pdev); 1699 struct pnv_ioda_pe *pe; 1700 1701 /* 1702 * The function can be called while the PE# 1703 * hasn't been assigned. Do nothing for the 1704 * case. 1705 */ 1706 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 1707 return; 1708 1709 pe = &phb->ioda.pe_array[pdn->pe_number]; 1710 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); 1711 set_dma_offset(&pdev->dev, pe->tce_bypass_base); 1712 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); 1713 /* 1714 * Note: iommu_add_device() will fail here as 1715 * for physical PE: the device is already added by now; 1716 * for virtual PE: sysfs entries are not ready yet and 1717 * tce_iommu_bus_notifier will add the device to a group later. 1718 */ 1719 } 1720 1721 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask) 1722 { 1723 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1724 struct pnv_phb *phb = hose->private_data; 1725 struct pci_dn *pdn = pci_get_pdn(pdev); 1726 struct pnv_ioda_pe *pe; 1727 uint64_t top; 1728 bool bypass = false; 1729 1730 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1731 return -ENODEV;; 1732 1733 pe = &phb->ioda.pe_array[pdn->pe_number]; 1734 if (pe->tce_bypass_enabled) { 1735 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; 1736 bypass = (dma_mask >= top); 1737 } 1738 1739 if (bypass) { 1740 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n"); 1741 set_dma_ops(&pdev->dev, &dma_direct_ops); 1742 } else { 1743 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n"); 1744 set_dma_ops(&pdev->dev, &dma_iommu_ops); 1745 } 1746 *pdev->dev.dma_mask = dma_mask; 1747 1748 /* Update peer npu devices */ 1749 pnv_npu_try_dma_set_bypass(pdev, bypass); 1750 1751 return 0; 1752 } 1753 1754 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev) 1755 { 1756 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1757 struct pnv_phb *phb = hose->private_data; 1758 struct pci_dn *pdn = pci_get_pdn(pdev); 1759 struct pnv_ioda_pe *pe; 1760 u64 end, mask; 1761 1762 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1763 return 0; 1764 1765 pe = &phb->ioda.pe_array[pdn->pe_number]; 1766 if (!pe->tce_bypass_enabled) 1767 return __dma_get_required_mask(&pdev->dev); 1768 1769 1770 end = pe->tce_bypass_base + memblock_end_of_DRAM(); 1771 mask = 1ULL << (fls64(end) - 1); 1772 mask += mask - 1; 1773 1774 return mask; 1775 } 1776 1777 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, 1778 struct pci_bus *bus) 1779 { 1780 struct pci_dev *dev; 1781 1782 list_for_each_entry(dev, &bus->devices, bus_list) { 1783 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); 1784 set_dma_offset(&dev->dev, pe->tce_bypass_base); 1785 iommu_add_device(&dev->dev); 1786 1787 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1788 pnv_ioda_setup_bus_dma(pe, dev->subordinate); 1789 } 1790 } 1791 1792 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, 1793 bool real_mode) 1794 { 1795 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : 1796 (phb->regs + 0x210); 1797 } 1798 1799 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, 1800 unsigned long index, unsigned long npages, bool rm) 1801 { 1802 struct iommu_table_group_link *tgl = list_first_entry_or_null( 1803 &tbl->it_group_list, struct iommu_table_group_link, 1804 next); 1805 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1806 struct pnv_ioda_pe, table_group); 1807 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1808 unsigned long start, end, inc; 1809 1810 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); 1811 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + 1812 npages - 1); 1813 1814 /* p7ioc-style invalidation, 2 TCEs per write */ 1815 start |= (1ull << 63); 1816 end |= (1ull << 63); 1817 inc = 16; 1818 end |= inc - 1; /* round up end to be different than start */ 1819 1820 mb(); /* Ensure above stores are visible */ 1821 while (start <= end) { 1822 if (rm) 1823 __raw_rm_writeq(cpu_to_be64(start), invalidate); 1824 else 1825 __raw_writeq(cpu_to_be64(start), invalidate); 1826 start += inc; 1827 } 1828 1829 /* 1830 * The iommu layer will do another mb() for us on build() 1831 * and we don't care on free() 1832 */ 1833 } 1834 1835 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, 1836 long npages, unsigned long uaddr, 1837 enum dma_data_direction direction, 1838 unsigned long attrs) 1839 { 1840 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1841 attrs); 1842 1843 if (!ret) 1844 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1845 1846 return ret; 1847 } 1848 1849 #ifdef CONFIG_IOMMU_API 1850 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index, 1851 unsigned long *hpa, enum dma_data_direction *direction) 1852 { 1853 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 1854 1855 if (!ret) 1856 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false); 1857 1858 return ret; 1859 } 1860 #endif 1861 1862 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, 1863 long npages) 1864 { 1865 pnv_tce_free(tbl, index, npages); 1866 1867 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1868 } 1869 1870 static struct iommu_table_ops pnv_ioda1_iommu_ops = { 1871 .set = pnv_ioda1_tce_build, 1872 #ifdef CONFIG_IOMMU_API 1873 .exchange = pnv_ioda1_tce_xchg, 1874 #endif 1875 .clear = pnv_ioda1_tce_free, 1876 .get = pnv_tce_get, 1877 }; 1878 1879 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) 1880 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) 1881 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) 1882 1883 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 1884 { 1885 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm); 1886 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL; 1887 1888 mb(); /* Ensure previous TCE table stores are visible */ 1889 if (rm) 1890 __raw_rm_writeq(cpu_to_be64(val), invalidate); 1891 else 1892 __raw_writeq(cpu_to_be64(val), invalidate); 1893 } 1894 1895 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1896 { 1897 /* 01xb - invalidate TCEs that match the specified PE# */ 1898 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); 1899 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); 1900 1901 mb(); /* Ensure above stores are visible */ 1902 __raw_writeq(cpu_to_be64(val), invalidate); 1903 } 1904 1905 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, 1906 unsigned shift, unsigned long index, 1907 unsigned long npages) 1908 { 1909 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1910 unsigned long start, end, inc; 1911 1912 /* We'll invalidate DMA address in PE scope */ 1913 start = PHB3_TCE_KILL_INVAL_ONE; 1914 start |= (pe->pe_number & 0xFF); 1915 end = start; 1916 1917 /* Figure out the start, end and step */ 1918 start |= (index << shift); 1919 end |= ((index + npages - 1) << shift); 1920 inc = (0x1ull << shift); 1921 mb(); 1922 1923 while (start <= end) { 1924 if (rm) 1925 __raw_rm_writeq(cpu_to_be64(start), invalidate); 1926 else 1927 __raw_writeq(cpu_to_be64(start), invalidate); 1928 start += inc; 1929 } 1930 } 1931 1932 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1933 { 1934 struct pnv_phb *phb = pe->phb; 1935 1936 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1937 pnv_pci_phb3_tce_invalidate_pe(pe); 1938 else 1939 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, 1940 pe->pe_number, 0, 0, 0); 1941 } 1942 1943 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, 1944 unsigned long index, unsigned long npages, bool rm) 1945 { 1946 struct iommu_table_group_link *tgl; 1947 1948 list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) { 1949 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1950 struct pnv_ioda_pe, table_group); 1951 struct pnv_phb *phb = pe->phb; 1952 unsigned int shift = tbl->it_page_shift; 1953 1954 /* 1955 * NVLink1 can use the TCE kill register directly as 1956 * it's the same as PHB3. NVLink2 is different and 1957 * should go via the OPAL call. 1958 */ 1959 if (phb->model == PNV_PHB_MODEL_NPU) { 1960 /* 1961 * The NVLink hardware does not support TCE kill 1962 * per TCE entry so we have to invalidate 1963 * the entire cache for it. 1964 */ 1965 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 1966 continue; 1967 } 1968 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1969 pnv_pci_phb3_tce_invalidate(pe, rm, shift, 1970 index, npages); 1971 else 1972 opal_pci_tce_kill(phb->opal_id, 1973 OPAL_PCI_TCE_KILL_PAGES, 1974 pe->pe_number, 1u << shift, 1975 index << shift, npages); 1976 } 1977 } 1978 1979 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, 1980 long npages, unsigned long uaddr, 1981 enum dma_data_direction direction, 1982 unsigned long attrs) 1983 { 1984 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1985 attrs); 1986 1987 if (!ret) 1988 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 1989 1990 return ret; 1991 } 1992 1993 #ifdef CONFIG_IOMMU_API 1994 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index, 1995 unsigned long *hpa, enum dma_data_direction *direction) 1996 { 1997 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 1998 1999 if (!ret) 2000 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false); 2001 2002 return ret; 2003 } 2004 #endif 2005 2006 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, 2007 long npages) 2008 { 2009 pnv_tce_free(tbl, index, npages); 2010 2011 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2012 } 2013 2014 static void pnv_ioda2_table_free(struct iommu_table *tbl) 2015 { 2016 pnv_pci_ioda2_table_free_pages(tbl); 2017 iommu_free_table(tbl, "pnv"); 2018 } 2019 2020 static struct iommu_table_ops pnv_ioda2_iommu_ops = { 2021 .set = pnv_ioda2_tce_build, 2022 #ifdef CONFIG_IOMMU_API 2023 .exchange = pnv_ioda2_tce_xchg, 2024 #endif 2025 .clear = pnv_ioda2_tce_free, 2026 .get = pnv_tce_get, 2027 .free = pnv_ioda2_table_free, 2028 }; 2029 2030 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) 2031 { 2032 unsigned int *weight = (unsigned int *)data; 2033 2034 /* This is quite simplistic. The "base" weight of a device 2035 * is 10. 0 means no DMA is to be accounted for it. 2036 */ 2037 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2038 return 0; 2039 2040 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || 2041 dev->class == PCI_CLASS_SERIAL_USB_OHCI || 2042 dev->class == PCI_CLASS_SERIAL_USB_EHCI) 2043 *weight += 3; 2044 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) 2045 *weight += 15; 2046 else 2047 *weight += 10; 2048 2049 return 0; 2050 } 2051 2052 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) 2053 { 2054 unsigned int weight = 0; 2055 2056 /* SRIOV VF has same DMA32 weight as its PF */ 2057 #ifdef CONFIG_PCI_IOV 2058 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { 2059 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); 2060 return weight; 2061 } 2062 #endif 2063 2064 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { 2065 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); 2066 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { 2067 struct pci_dev *pdev; 2068 2069 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) 2070 pnv_pci_ioda_dev_dma_weight(pdev, &weight); 2071 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { 2072 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); 2073 } 2074 2075 return weight; 2076 } 2077 2078 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, 2079 struct pnv_ioda_pe *pe) 2080 { 2081 2082 struct page *tce_mem = NULL; 2083 struct iommu_table *tbl; 2084 unsigned int weight, total_weight = 0; 2085 unsigned int tce32_segsz, base, segs, avail, i; 2086 int64_t rc; 2087 void *addr; 2088 2089 /* XXX FIXME: Handle 64-bit only DMA devices */ 2090 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ 2091 /* XXX FIXME: Allocate multi-level tables on PHB3 */ 2092 weight = pnv_pci_ioda_pe_dma_weight(pe); 2093 if (!weight) 2094 return; 2095 2096 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, 2097 &total_weight); 2098 segs = (weight * phb->ioda.dma32_count) / total_weight; 2099 if (!segs) 2100 segs = 1; 2101 2102 /* 2103 * Allocate contiguous DMA32 segments. We begin with the expected 2104 * number of segments. With one more attempt, the number of DMA32 2105 * segments to be allocated is decreased by one until one segment 2106 * is allocated successfully. 2107 */ 2108 do { 2109 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { 2110 for (avail = 0, i = base; i < base + segs; i++) { 2111 if (phb->ioda.dma32_segmap[i] == 2112 IODA_INVALID_PE) 2113 avail++; 2114 } 2115 2116 if (avail == segs) 2117 goto found; 2118 } 2119 } while (--segs); 2120 2121 if (!segs) { 2122 pe_warn(pe, "No available DMA32 segments\n"); 2123 return; 2124 } 2125 2126 found: 2127 tbl = pnv_pci_table_alloc(phb->hose->node); 2128 iommu_register_group(&pe->table_group, phb->hose->global_number, 2129 pe->pe_number); 2130 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); 2131 2132 /* Grab a 32-bit TCE table */ 2133 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", 2134 weight, total_weight, base, segs); 2135 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", 2136 base * PNV_IODA1_DMA32_SEGSIZE, 2137 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); 2138 2139 /* XXX Currently, we allocate one big contiguous table for the 2140 * TCEs. We only really need one chunk per 256M of TCE space 2141 * (ie per segment) but that's an optimization for later, it 2142 * requires some added smarts with our get/put_tce implementation 2143 * 2144 * Each TCE page is 4KB in size and each TCE entry occupies 8 2145 * bytes 2146 */ 2147 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); 2148 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, 2149 get_order(tce32_segsz * segs)); 2150 if (!tce_mem) { 2151 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); 2152 goto fail; 2153 } 2154 addr = page_address(tce_mem); 2155 memset(addr, 0, tce32_segsz * segs); 2156 2157 /* Configure HW */ 2158 for (i = 0; i < segs; i++) { 2159 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2160 pe->pe_number, 2161 base + i, 1, 2162 __pa(addr) + tce32_segsz * i, 2163 tce32_segsz, IOMMU_PAGE_SIZE_4K); 2164 if (rc) { 2165 pe_err(pe, " Failed to configure 32-bit TCE table," 2166 " err %ld\n", rc); 2167 goto fail; 2168 } 2169 } 2170 2171 /* Setup DMA32 segment mapping */ 2172 for (i = base; i < base + segs; i++) 2173 phb->ioda.dma32_segmap[i] = pe->pe_number; 2174 2175 /* Setup linux iommu table */ 2176 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, 2177 base * PNV_IODA1_DMA32_SEGSIZE, 2178 IOMMU_PAGE_SHIFT_4K); 2179 2180 tbl->it_ops = &pnv_ioda1_iommu_ops; 2181 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; 2182 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; 2183 iommu_init_table(tbl, phb->hose->node); 2184 2185 if (pe->flags & PNV_IODA_PE_DEV) { 2186 /* 2187 * Setting table base here only for carrying iommu_group 2188 * further down to let iommu_add_device() do the job. 2189 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2190 */ 2191 set_iommu_table_base(&pe->pdev->dev, tbl); 2192 iommu_add_device(&pe->pdev->dev); 2193 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2194 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2195 2196 return; 2197 fail: 2198 /* XXX Failure: Try to fallback to 64-bit only ? */ 2199 if (tce_mem) 2200 __free_pages(tce_mem, get_order(tce32_segsz * segs)); 2201 if (tbl) { 2202 pnv_pci_unlink_table_and_group(tbl, &pe->table_group); 2203 iommu_free_table(tbl, "pnv"); 2204 } 2205 } 2206 2207 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, 2208 int num, struct iommu_table *tbl) 2209 { 2210 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2211 table_group); 2212 struct pnv_phb *phb = pe->phb; 2213 int64_t rc; 2214 const unsigned long size = tbl->it_indirect_levels ? 2215 tbl->it_level_size : tbl->it_size; 2216 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; 2217 const __u64 win_size = tbl->it_size << tbl->it_page_shift; 2218 2219 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num, 2220 start_addr, start_addr + win_size - 1, 2221 IOMMU_PAGE_SIZE(tbl)); 2222 2223 /* 2224 * Map TCE table through TVT. The TVE index is the PE number 2225 * shifted by 1 bit for 32-bits DMA space. 2226 */ 2227 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2228 pe->pe_number, 2229 (pe->pe_number << 1) + num, 2230 tbl->it_indirect_levels + 1, 2231 __pa(tbl->it_base), 2232 size << 3, 2233 IOMMU_PAGE_SIZE(tbl)); 2234 if (rc) { 2235 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc); 2236 return rc; 2237 } 2238 2239 pnv_pci_link_table_and_group(phb->hose->node, num, 2240 tbl, &pe->table_group); 2241 pnv_pci_ioda2_tce_invalidate_pe(pe); 2242 2243 return 0; 2244 } 2245 2246 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) 2247 { 2248 uint16_t window_id = (pe->pe_number << 1 ) + 1; 2249 int64_t rc; 2250 2251 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); 2252 if (enable) { 2253 phys_addr_t top = memblock_end_of_DRAM(); 2254 2255 top = roundup_pow_of_two(top); 2256 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2257 pe->pe_number, 2258 window_id, 2259 pe->tce_bypass_base, 2260 top); 2261 } else { 2262 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2263 pe->pe_number, 2264 window_id, 2265 pe->tce_bypass_base, 2266 0); 2267 } 2268 if (rc) 2269 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); 2270 else 2271 pe->tce_bypass_enabled = enable; 2272 } 2273 2274 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2275 __u32 page_shift, __u64 window_size, __u32 levels, 2276 struct iommu_table *tbl); 2277 2278 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, 2279 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2280 struct iommu_table **ptbl) 2281 { 2282 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2283 table_group); 2284 int nid = pe->phb->hose->node; 2285 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; 2286 long ret; 2287 struct iommu_table *tbl; 2288 2289 tbl = pnv_pci_table_alloc(nid); 2290 if (!tbl) 2291 return -ENOMEM; 2292 2293 ret = pnv_pci_ioda2_table_alloc_pages(nid, 2294 bus_offset, page_shift, window_size, 2295 levels, tbl); 2296 if (ret) { 2297 iommu_free_table(tbl, "pnv"); 2298 return ret; 2299 } 2300 2301 tbl->it_ops = &pnv_ioda2_iommu_ops; 2302 2303 *ptbl = tbl; 2304 2305 return 0; 2306 } 2307 2308 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) 2309 { 2310 struct iommu_table *tbl = NULL; 2311 long rc; 2312 2313 /* 2314 * crashkernel= specifies the kdump kernel's maximum memory at 2315 * some offset and there is no guaranteed the result is a power 2316 * of 2, which will cause errors later. 2317 */ 2318 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); 2319 2320 /* 2321 * In memory constrained environments, e.g. kdump kernel, the 2322 * DMA window can be larger than available memory, which will 2323 * cause errors later. 2324 */ 2325 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory); 2326 2327 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, 2328 IOMMU_PAGE_SHIFT_4K, 2329 window_size, 2330 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl); 2331 if (rc) { 2332 pe_err(pe, "Failed to create 32-bit TCE table, err %ld", 2333 rc); 2334 return rc; 2335 } 2336 2337 iommu_init_table(tbl, pe->phb->hose->node); 2338 2339 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); 2340 if (rc) { 2341 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", 2342 rc); 2343 pnv_ioda2_table_free(tbl); 2344 return rc; 2345 } 2346 2347 if (!pnv_iommu_bypass_disabled) 2348 pnv_pci_ioda2_set_bypass(pe, true); 2349 2350 /* 2351 * Setting table base here only for carrying iommu_group 2352 * further down to let iommu_add_device() do the job. 2353 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2354 */ 2355 if (pe->flags & PNV_IODA_PE_DEV) 2356 set_iommu_table_base(&pe->pdev->dev, tbl); 2357 2358 return 0; 2359 } 2360 2361 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV) 2362 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 2363 int num) 2364 { 2365 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2366 table_group); 2367 struct pnv_phb *phb = pe->phb; 2368 long ret; 2369 2370 pe_info(pe, "Removing DMA window #%d\n", num); 2371 2372 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 2373 (pe->pe_number << 1) + num, 2374 0/* levels */, 0/* table address */, 2375 0/* table size */, 0/* page size */); 2376 if (ret) 2377 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); 2378 else 2379 pnv_pci_ioda2_tce_invalidate_pe(pe); 2380 2381 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 2382 2383 return ret; 2384 } 2385 #endif 2386 2387 #ifdef CONFIG_IOMMU_API 2388 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, 2389 __u64 window_size, __u32 levels) 2390 { 2391 unsigned long bytes = 0; 2392 const unsigned window_shift = ilog2(window_size); 2393 unsigned entries_shift = window_shift - page_shift; 2394 unsigned table_shift = entries_shift + 3; 2395 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); 2396 unsigned long direct_table_size; 2397 2398 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || 2399 (window_size > memory_hotplug_max()) || 2400 !is_power_of_2(window_size)) 2401 return 0; 2402 2403 /* Calculate a direct table size from window_size and levels */ 2404 entries_shift = (entries_shift + levels - 1) / levels; 2405 table_shift = entries_shift + 3; 2406 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); 2407 direct_table_size = 1UL << table_shift; 2408 2409 for ( ; levels; --levels) { 2410 bytes += _ALIGN_UP(tce_table_size, direct_table_size); 2411 2412 tce_table_size /= direct_table_size; 2413 tce_table_size <<= 3; 2414 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size); 2415 } 2416 2417 return bytes; 2418 } 2419 2420 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) 2421 { 2422 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2423 table_group); 2424 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ 2425 struct iommu_table *tbl = pe->table_group.tables[0]; 2426 2427 pnv_pci_ioda2_set_bypass(pe, false); 2428 pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2429 pnv_ioda2_table_free(tbl); 2430 } 2431 2432 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) 2433 { 2434 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2435 table_group); 2436 2437 pnv_pci_ioda2_setup_default_config(pe); 2438 } 2439 2440 static struct iommu_table_group_ops pnv_pci_ioda2_ops = { 2441 .get_table_size = pnv_pci_ioda2_get_table_size, 2442 .create_table = pnv_pci_ioda2_create_table, 2443 .set_window = pnv_pci_ioda2_set_window, 2444 .unset_window = pnv_pci_ioda2_unset_window, 2445 .take_ownership = pnv_ioda2_take_ownership, 2446 .release_ownership = pnv_ioda2_release_ownership, 2447 }; 2448 2449 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque) 2450 { 2451 struct pci_controller *hose; 2452 struct pnv_phb *phb; 2453 struct pnv_ioda_pe **ptmppe = opaque; 2454 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev); 2455 struct pci_dn *pdn = pci_get_pdn(pdev); 2456 2457 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 2458 return 0; 2459 2460 hose = pci_bus_to_host(pdev->bus); 2461 phb = hose->private_data; 2462 if (phb->type != PNV_PHB_NPU) 2463 return 0; 2464 2465 *ptmppe = &phb->ioda.pe_array[pdn->pe_number]; 2466 2467 return 1; 2468 } 2469 2470 /* 2471 * This returns PE of associated NPU. 2472 * This assumes that NPU is in the same IOMMU group with GPU and there is 2473 * no other PEs. 2474 */ 2475 static struct pnv_ioda_pe *gpe_table_group_to_npe( 2476 struct iommu_table_group *table_group) 2477 { 2478 struct pnv_ioda_pe *npe = NULL; 2479 int ret = iommu_group_for_each_dev(table_group->group, &npe, 2480 gpe_table_group_to_npe_cb); 2481 2482 BUG_ON(!ret || !npe); 2483 2484 return npe; 2485 } 2486 2487 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group, 2488 int num, struct iommu_table *tbl) 2489 { 2490 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl); 2491 2492 if (ret) 2493 return ret; 2494 2495 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl); 2496 if (ret) 2497 pnv_pci_ioda2_unset_window(table_group, num); 2498 2499 return ret; 2500 } 2501 2502 static long pnv_pci_ioda2_npu_unset_window( 2503 struct iommu_table_group *table_group, 2504 int num) 2505 { 2506 long ret = pnv_pci_ioda2_unset_window(table_group, num); 2507 2508 if (ret) 2509 return ret; 2510 2511 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num); 2512 } 2513 2514 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group) 2515 { 2516 /* 2517 * Detach NPU first as pnv_ioda2_take_ownership() will destroy 2518 * the iommu_table if 32bit DMA is enabled. 2519 */ 2520 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group)); 2521 pnv_ioda2_take_ownership(table_group); 2522 } 2523 2524 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = { 2525 .get_table_size = pnv_pci_ioda2_get_table_size, 2526 .create_table = pnv_pci_ioda2_create_table, 2527 .set_window = pnv_pci_ioda2_npu_set_window, 2528 .unset_window = pnv_pci_ioda2_npu_unset_window, 2529 .take_ownership = pnv_ioda2_npu_take_ownership, 2530 .release_ownership = pnv_ioda2_release_ownership, 2531 }; 2532 2533 static void pnv_pci_ioda_setup_iommu_api(void) 2534 { 2535 struct pci_controller *hose, *tmp; 2536 struct pnv_phb *phb; 2537 struct pnv_ioda_pe *pe, *gpe; 2538 2539 /* 2540 * Now we have all PHBs discovered, time to add NPU devices to 2541 * the corresponding IOMMU groups. 2542 */ 2543 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 2544 phb = hose->private_data; 2545 2546 if (phb->type != PNV_PHB_NPU) 2547 continue; 2548 2549 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2550 gpe = pnv_pci_npu_setup_iommu(pe); 2551 if (gpe) 2552 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops; 2553 } 2554 } 2555 } 2556 #else /* !CONFIG_IOMMU_API */ 2557 static void pnv_pci_ioda_setup_iommu_api(void) { }; 2558 #endif 2559 2560 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift, 2561 unsigned levels, unsigned long limit, 2562 unsigned long *current_offset, unsigned long *total_allocated) 2563 { 2564 struct page *tce_mem = NULL; 2565 __be64 *addr, *tmp; 2566 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT; 2567 unsigned long allocated = 1UL << (order + PAGE_SHIFT); 2568 unsigned entries = 1UL << (shift - 3); 2569 long i; 2570 2571 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order); 2572 if (!tce_mem) { 2573 pr_err("Failed to allocate a TCE memory, order=%d\n", order); 2574 return NULL; 2575 } 2576 addr = page_address(tce_mem); 2577 memset(addr, 0, allocated); 2578 *total_allocated += allocated; 2579 2580 --levels; 2581 if (!levels) { 2582 *current_offset += allocated; 2583 return addr; 2584 } 2585 2586 for (i = 0; i < entries; ++i) { 2587 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift, 2588 levels, limit, current_offset, total_allocated); 2589 if (!tmp) 2590 break; 2591 2592 addr[i] = cpu_to_be64(__pa(tmp) | 2593 TCE_PCI_READ | TCE_PCI_WRITE); 2594 2595 if (*current_offset >= limit) 2596 break; 2597 } 2598 2599 return addr; 2600 } 2601 2602 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2603 unsigned long size, unsigned level); 2604 2605 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2606 __u32 page_shift, __u64 window_size, __u32 levels, 2607 struct iommu_table *tbl) 2608 { 2609 void *addr; 2610 unsigned long offset = 0, level_shift, total_allocated = 0; 2611 const unsigned window_shift = ilog2(window_size); 2612 unsigned entries_shift = window_shift - page_shift; 2613 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT); 2614 const unsigned long tce_table_size = 1UL << table_shift; 2615 2616 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS)) 2617 return -EINVAL; 2618 2619 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size)) 2620 return -EINVAL; 2621 2622 /* Adjust direct table size from window_size and levels */ 2623 entries_shift = (entries_shift + levels - 1) / levels; 2624 level_shift = entries_shift + 3; 2625 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT); 2626 2627 /* Allocate TCE table */ 2628 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift, 2629 levels, tce_table_size, &offset, &total_allocated); 2630 2631 /* addr==NULL means that the first level allocation failed */ 2632 if (!addr) 2633 return -ENOMEM; 2634 2635 /* 2636 * First level was allocated but some lower level failed as 2637 * we did not allocate as much as we wanted, 2638 * release partially allocated table. 2639 */ 2640 if (offset < tce_table_size) { 2641 pnv_pci_ioda2_table_do_free_pages(addr, 2642 1ULL << (level_shift - 3), levels - 1); 2643 return -ENOMEM; 2644 } 2645 2646 /* Setup linux iommu table */ 2647 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset, 2648 page_shift); 2649 tbl->it_level_size = 1ULL << (level_shift - 3); 2650 tbl->it_indirect_levels = levels - 1; 2651 tbl->it_allocated_size = total_allocated; 2652 2653 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n", 2654 window_size, tce_table_size, bus_offset); 2655 2656 return 0; 2657 } 2658 2659 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2660 unsigned long size, unsigned level) 2661 { 2662 const unsigned long addr_ul = (unsigned long) addr & 2663 ~(TCE_PCI_READ | TCE_PCI_WRITE); 2664 2665 if (level) { 2666 long i; 2667 u64 *tmp = (u64 *) addr_ul; 2668 2669 for (i = 0; i < size; ++i) { 2670 unsigned long hpa = be64_to_cpu(tmp[i]); 2671 2672 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE))) 2673 continue; 2674 2675 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size, 2676 level - 1); 2677 } 2678 } 2679 2680 free_pages(addr_ul, get_order(size << 3)); 2681 } 2682 2683 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl) 2684 { 2685 const unsigned long size = tbl->it_indirect_levels ? 2686 tbl->it_level_size : tbl->it_size; 2687 2688 if (!tbl->it_size) 2689 return; 2690 2691 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size, 2692 tbl->it_indirect_levels); 2693 } 2694 2695 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 2696 struct pnv_ioda_pe *pe) 2697 { 2698 int64_t rc; 2699 2700 if (!pnv_pci_ioda_pe_dma_weight(pe)) 2701 return; 2702 2703 /* TVE #1 is selected by PCI address bit 59 */ 2704 pe->tce_bypass_base = 1ull << 59; 2705 2706 iommu_register_group(&pe->table_group, phb->hose->global_number, 2707 pe->pe_number); 2708 2709 /* The PE will reserve all possible 32-bits space */ 2710 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", 2711 phb->ioda.m32_pci_base); 2712 2713 /* Setup linux iommu table */ 2714 pe->table_group.tce32_start = 0; 2715 pe->table_group.tce32_size = phb->ioda.m32_pci_base; 2716 pe->table_group.max_dynamic_windows_supported = 2717 IOMMU_TABLE_GROUP_MAX_TABLES; 2718 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; 2719 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M; 2720 #ifdef CONFIG_IOMMU_API 2721 pe->table_group.ops = &pnv_pci_ioda2_ops; 2722 #endif 2723 2724 rc = pnv_pci_ioda2_setup_default_config(pe); 2725 if (rc) 2726 return; 2727 2728 if (pe->flags & PNV_IODA_PE_DEV) 2729 iommu_add_device(&pe->pdev->dev); 2730 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2731 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2732 } 2733 2734 #ifdef CONFIG_PCI_MSI 2735 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq) 2736 { 2737 struct pnv_phb *phb = container_of(chip, struct pnv_phb, 2738 ioda.irq_chip); 2739 2740 return opal_pci_msi_eoi(phb->opal_id, hw_irq); 2741 } 2742 2743 static void pnv_ioda2_msi_eoi(struct irq_data *d) 2744 { 2745 int64_t rc; 2746 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 2747 struct irq_chip *chip = irq_data_get_irq_chip(d); 2748 2749 rc = pnv_opal_pci_msi_eoi(chip, hw_irq); 2750 WARN_ON_ONCE(rc); 2751 2752 icp_native_eoi(d); 2753 } 2754 2755 2756 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) 2757 { 2758 struct irq_data *idata; 2759 struct irq_chip *ichip; 2760 2761 /* The MSI EOI OPAL call is only needed on PHB3 */ 2762 if (phb->model != PNV_PHB_MODEL_PHB3) 2763 return; 2764 2765 if (!phb->ioda.irq_chip_init) { 2766 /* 2767 * First time we setup an MSI IRQ, we need to setup the 2768 * corresponding IRQ chip to route correctly. 2769 */ 2770 idata = irq_get_irq_data(virq); 2771 ichip = irq_data_get_irq_chip(idata); 2772 phb->ioda.irq_chip_init = 1; 2773 phb->ioda.irq_chip = *ichip; 2774 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; 2775 } 2776 irq_set_chip(virq, &phb->ioda.irq_chip); 2777 } 2778 2779 /* 2780 * Returns true iff chip is something that we could call 2781 * pnv_opal_pci_msi_eoi for. 2782 */ 2783 bool is_pnv_opal_msi(struct irq_chip *chip) 2784 { 2785 return chip->irq_eoi == pnv_ioda2_msi_eoi; 2786 } 2787 EXPORT_SYMBOL_GPL(is_pnv_opal_msi); 2788 2789 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, 2790 unsigned int hwirq, unsigned int virq, 2791 unsigned int is_64, struct msi_msg *msg) 2792 { 2793 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); 2794 unsigned int xive_num = hwirq - phb->msi_base; 2795 __be32 data; 2796 int rc; 2797 2798 /* No PE assigned ? bail out ... no MSI for you ! */ 2799 if (pe == NULL) 2800 return -ENXIO; 2801 2802 /* Check if we have an MVE */ 2803 if (pe->mve_number < 0) 2804 return -ENXIO; 2805 2806 /* Force 32-bit MSI on some broken devices */ 2807 if (dev->no_64bit_msi) 2808 is_64 = 0; 2809 2810 /* Assign XIVE to PE */ 2811 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); 2812 if (rc) { 2813 pr_warn("%s: OPAL error %d setting XIVE %d PE\n", 2814 pci_name(dev), rc, xive_num); 2815 return -EIO; 2816 } 2817 2818 if (is_64) { 2819 __be64 addr64; 2820 2821 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, 2822 &addr64, &data); 2823 if (rc) { 2824 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", 2825 pci_name(dev), rc); 2826 return -EIO; 2827 } 2828 msg->address_hi = be64_to_cpu(addr64) >> 32; 2829 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; 2830 } else { 2831 __be32 addr32; 2832 2833 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, 2834 &addr32, &data); 2835 if (rc) { 2836 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", 2837 pci_name(dev), rc); 2838 return -EIO; 2839 } 2840 msg->address_hi = 0; 2841 msg->address_lo = be32_to_cpu(addr32); 2842 } 2843 msg->data = be32_to_cpu(data); 2844 2845 pnv_set_msi_irq_chip(phb, virq); 2846 2847 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," 2848 " address=%x_%08x data=%x PE# %x\n", 2849 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, 2850 msg->address_hi, msg->address_lo, data, pe->pe_number); 2851 2852 return 0; 2853 } 2854 2855 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) 2856 { 2857 unsigned int count; 2858 const __be32 *prop = of_get_property(phb->hose->dn, 2859 "ibm,opal-msi-ranges", NULL); 2860 if (!prop) { 2861 /* BML Fallback */ 2862 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); 2863 } 2864 if (!prop) 2865 return; 2866 2867 phb->msi_base = be32_to_cpup(prop); 2868 count = be32_to_cpup(prop + 1); 2869 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { 2870 pr_err("PCI %d: Failed to allocate MSI bitmap !\n", 2871 phb->hose->global_number); 2872 return; 2873 } 2874 2875 phb->msi_setup = pnv_pci_ioda_msi_setup; 2876 phb->msi32_support = 1; 2877 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", 2878 count, phb->msi_base); 2879 } 2880 #else 2881 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { } 2882 #endif /* CONFIG_PCI_MSI */ 2883 2884 #ifdef CONFIG_PCI_IOV 2885 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) 2886 { 2887 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 2888 struct pnv_phb *phb = hose->private_data; 2889 const resource_size_t gate = phb->ioda.m64_segsize >> 2; 2890 struct resource *res; 2891 int i; 2892 resource_size_t size, total_vf_bar_sz; 2893 struct pci_dn *pdn; 2894 int mul, total_vfs; 2895 2896 if (!pdev->is_physfn || pdev->is_added) 2897 return; 2898 2899 pdn = pci_get_pdn(pdev); 2900 pdn->vfs_expanded = 0; 2901 pdn->m64_single_mode = false; 2902 2903 total_vfs = pci_sriov_get_totalvfs(pdev); 2904 mul = phb->ioda.total_pe_num; 2905 total_vf_bar_sz = 0; 2906 2907 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2908 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2909 if (!res->flags || res->parent) 2910 continue; 2911 if (!pnv_pci_is_m64_flags(res->flags)) { 2912 dev_warn(&pdev->dev, "Don't support SR-IOV with" 2913 " non M64 VF BAR%d: %pR. \n", 2914 i, res); 2915 goto truncate_iov; 2916 } 2917 2918 total_vf_bar_sz += pci_iov_resource_size(pdev, 2919 i + PCI_IOV_RESOURCES); 2920 2921 /* 2922 * If bigger than quarter of M64 segment size, just round up 2923 * power of two. 2924 * 2925 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict 2926 * with other devices, IOV BAR size is expanded to be 2927 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64 2928 * segment size , the expanded size would equal to half of the 2929 * whole M64 space size, which will exhaust the M64 Space and 2930 * limit the system flexibility. This is a design decision to 2931 * set the boundary to quarter of the M64 segment size. 2932 */ 2933 if (total_vf_bar_sz > gate) { 2934 mul = roundup_pow_of_two(total_vfs); 2935 dev_info(&pdev->dev, 2936 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n", 2937 total_vf_bar_sz, gate, mul); 2938 pdn->m64_single_mode = true; 2939 break; 2940 } 2941 } 2942 2943 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2944 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2945 if (!res->flags || res->parent) 2946 continue; 2947 2948 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); 2949 /* 2950 * On PHB3, the minimum size alignment of M64 BAR in single 2951 * mode is 32MB. 2952 */ 2953 if (pdn->m64_single_mode && (size < SZ_32M)) 2954 goto truncate_iov; 2955 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res); 2956 res->end = res->start + size * mul - 1; 2957 dev_dbg(&pdev->dev, " %pR\n", res); 2958 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", 2959 i, res, mul); 2960 } 2961 pdn->vfs_expanded = mul; 2962 2963 return; 2964 2965 truncate_iov: 2966 /* To save MMIO space, IOV BAR is truncated. */ 2967 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2968 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2969 res->flags = 0; 2970 res->end = res->start - 1; 2971 } 2972 } 2973 #endif /* CONFIG_PCI_IOV */ 2974 2975 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, 2976 struct resource *res) 2977 { 2978 struct pnv_phb *phb = pe->phb; 2979 struct pci_bus_region region; 2980 int index; 2981 int64_t rc; 2982 2983 if (!res || !res->flags || res->start > res->end) 2984 return; 2985 2986 if (res->flags & IORESOURCE_IO) { 2987 region.start = res->start - phb->ioda.io_pci_base; 2988 region.end = res->end - phb->ioda.io_pci_base; 2989 index = region.start / phb->ioda.io_segsize; 2990 2991 while (index < phb->ioda.total_pe_num && 2992 region.start <= region.end) { 2993 phb->ioda.io_segmap[index] = pe->pe_number; 2994 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 2995 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); 2996 if (rc != OPAL_SUCCESS) { 2997 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n", 2998 __func__, rc, index, pe->pe_number); 2999 break; 3000 } 3001 3002 region.start += phb->ioda.io_segsize; 3003 index++; 3004 } 3005 } else if ((res->flags & IORESOURCE_MEM) && 3006 !pnv_pci_is_m64(phb, res)) { 3007 region.start = res->start - 3008 phb->hose->mem_offset[0] - 3009 phb->ioda.m32_pci_base; 3010 region.end = res->end - 3011 phb->hose->mem_offset[0] - 3012 phb->ioda.m32_pci_base; 3013 index = region.start / phb->ioda.m32_segsize; 3014 3015 while (index < phb->ioda.total_pe_num && 3016 region.start <= region.end) { 3017 phb->ioda.m32_segmap[index] = pe->pe_number; 3018 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3019 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); 3020 if (rc != OPAL_SUCCESS) { 3021 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x", 3022 __func__, rc, index, pe->pe_number); 3023 break; 3024 } 3025 3026 region.start += phb->ioda.m32_segsize; 3027 index++; 3028 } 3029 } 3030 } 3031 3032 /* 3033 * This function is supposed to be called on basis of PE from top 3034 * to bottom style. So the the I/O or MMIO segment assigned to 3035 * parent PE could be overridden by its child PEs if necessary. 3036 */ 3037 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) 3038 { 3039 struct pci_dev *pdev; 3040 int i; 3041 3042 /* 3043 * NOTE: We only care PCI bus based PE for now. For PCI 3044 * device based PE, for example SRIOV sensitive VF should 3045 * be figured out later. 3046 */ 3047 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); 3048 3049 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 3050 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 3051 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); 3052 3053 /* 3054 * If the PE contains all subordinate PCI buses, the 3055 * windows of the child bridges should be mapped to 3056 * the PE as well. 3057 */ 3058 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) 3059 continue; 3060 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) 3061 pnv_ioda_setup_pe_res(pe, 3062 &pdev->resource[PCI_BRIDGE_RESOURCES + i]); 3063 } 3064 } 3065 3066 #ifdef CONFIG_DEBUG_FS 3067 static int pnv_pci_diag_data_set(void *data, u64 val) 3068 { 3069 struct pci_controller *hose; 3070 struct pnv_phb *phb; 3071 s64 ret; 3072 3073 if (val != 1ULL) 3074 return -EINVAL; 3075 3076 hose = (struct pci_controller *)data; 3077 if (!hose || !hose->private_data) 3078 return -ENODEV; 3079 3080 phb = hose->private_data; 3081 3082 /* Retrieve the diag data from firmware */ 3083 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob, 3084 PNV_PCI_DIAG_BUF_SIZE); 3085 if (ret != OPAL_SUCCESS) 3086 return -EIO; 3087 3088 /* Print the diag data to the kernel log */ 3089 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob); 3090 return 0; 3091 } 3092 3093 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, 3094 pnv_pci_diag_data_set, "%llu\n"); 3095 3096 #endif /* CONFIG_DEBUG_FS */ 3097 3098 static void pnv_pci_ioda_create_dbgfs(void) 3099 { 3100 #ifdef CONFIG_DEBUG_FS 3101 struct pci_controller *hose, *tmp; 3102 struct pnv_phb *phb; 3103 char name[16]; 3104 3105 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 3106 phb = hose->private_data; 3107 3108 /* Notify initialization of PHB done */ 3109 phb->initialized = 1; 3110 3111 sprintf(name, "PCI%04x", hose->global_number); 3112 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); 3113 if (!phb->dbgfs) { 3114 pr_warning("%s: Error on creating debugfs on PHB#%x\n", 3115 __func__, hose->global_number); 3116 continue; 3117 } 3118 3119 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose, 3120 &pnv_pci_diag_data_fops); 3121 } 3122 #endif /* CONFIG_DEBUG_FS */ 3123 } 3124 3125 static void pnv_pci_ioda_fixup(void) 3126 { 3127 pnv_pci_ioda_setup_PEs(); 3128 pnv_pci_ioda_setup_iommu_api(); 3129 pnv_pci_ioda_create_dbgfs(); 3130 3131 #ifdef CONFIG_EEH 3132 eeh_init(); 3133 eeh_addr_cache_build(); 3134 #endif 3135 } 3136 3137 /* 3138 * Returns the alignment for I/O or memory windows for P2P 3139 * bridges. That actually depends on how PEs are segmented. 3140 * For now, we return I/O or M32 segment size for PE sensitive 3141 * P2P bridges. Otherwise, the default values (4KiB for I/O, 3142 * 1MiB for memory) will be returned. 3143 * 3144 * The current PCI bus might be put into one PE, which was 3145 * create against the parent PCI bridge. For that case, we 3146 * needn't enlarge the alignment so that we can save some 3147 * resources. 3148 */ 3149 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, 3150 unsigned long type) 3151 { 3152 struct pci_dev *bridge; 3153 struct pci_controller *hose = pci_bus_to_host(bus); 3154 struct pnv_phb *phb = hose->private_data; 3155 int num_pci_bridges = 0; 3156 3157 bridge = bus->self; 3158 while (bridge) { 3159 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { 3160 num_pci_bridges++; 3161 if (num_pci_bridges >= 2) 3162 return 1; 3163 } 3164 3165 bridge = bridge->bus->self; 3166 } 3167 3168 /* 3169 * We fall back to M32 if M64 isn't supported. We enforce the M64 3170 * alignment for any 64-bit resource, PCIe doesn't care and 3171 * bridges only do 64-bit prefetchable anyway. 3172 */ 3173 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type)) 3174 return phb->ioda.m64_segsize; 3175 if (type & IORESOURCE_MEM) 3176 return phb->ioda.m32_segsize; 3177 3178 return phb->ioda.io_segsize; 3179 } 3180 3181 /* 3182 * We are updating root port or the upstream port of the 3183 * bridge behind the root port with PHB's windows in order 3184 * to accommodate the changes on required resources during 3185 * PCI (slot) hotplug, which is connected to either root 3186 * port or the downstream ports of PCIe switch behind the 3187 * root port. 3188 */ 3189 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, 3190 unsigned long type) 3191 { 3192 struct pci_controller *hose = pci_bus_to_host(bus); 3193 struct pnv_phb *phb = hose->private_data; 3194 struct pci_dev *bridge = bus->self; 3195 struct resource *r, *w; 3196 bool msi_region = false; 3197 int i; 3198 3199 /* Check if we need apply fixup to the bridge's windows */ 3200 if (!pci_is_root_bus(bridge->bus) && 3201 !pci_is_root_bus(bridge->bus->self->bus)) 3202 return; 3203 3204 /* Fixup the resources */ 3205 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { 3206 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; 3207 if (!r->flags || !r->parent) 3208 continue; 3209 3210 w = NULL; 3211 if (r->flags & type & IORESOURCE_IO) 3212 w = &hose->io_resource; 3213 else if (pnv_pci_is_m64(phb, r) && 3214 (type & IORESOURCE_PREFETCH) && 3215 phb->ioda.m64_segsize) 3216 w = &hose->mem_resources[1]; 3217 else if (r->flags & type & IORESOURCE_MEM) { 3218 w = &hose->mem_resources[0]; 3219 msi_region = true; 3220 } 3221 3222 r->start = w->start; 3223 r->end = w->end; 3224 3225 /* The 64KB 32-bits MSI region shouldn't be included in 3226 * the 32-bits bridge window. Otherwise, we can see strange 3227 * issues. One of them is EEH error observed on Garrison. 3228 * 3229 * Exclude top 1MB region which is the minimal alignment of 3230 * 32-bits bridge window. 3231 */ 3232 if (msi_region) { 3233 r->end += 0x10000; 3234 r->end -= 0x100000; 3235 } 3236 } 3237 } 3238 3239 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type) 3240 { 3241 struct pci_controller *hose = pci_bus_to_host(bus); 3242 struct pnv_phb *phb = hose->private_data; 3243 struct pci_dev *bridge = bus->self; 3244 struct pnv_ioda_pe *pe; 3245 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); 3246 3247 /* Extend bridge's windows if necessary */ 3248 pnv_pci_fixup_bridge_resources(bus, type); 3249 3250 /* The PE for root bus should be realized before any one else */ 3251 if (!phb->ioda.root_pe_populated) { 3252 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false); 3253 if (pe) { 3254 phb->ioda.root_pe_idx = pe->pe_number; 3255 phb->ioda.root_pe_populated = true; 3256 } 3257 } 3258 3259 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ 3260 if (list_empty(&bus->devices)) 3261 return; 3262 3263 /* Reserve PEs according to used M64 resources */ 3264 if (phb->reserve_m64_pe) 3265 phb->reserve_m64_pe(bus, NULL, all); 3266 3267 /* 3268 * Assign PE. We might run here because of partial hotplug. 3269 * For the case, we just pick up the existing PE and should 3270 * not allocate resources again. 3271 */ 3272 pe = pnv_ioda_setup_bus_PE(bus, all); 3273 if (!pe) 3274 return; 3275 3276 pnv_ioda_setup_pe_seg(pe); 3277 switch (phb->type) { 3278 case PNV_PHB_IODA1: 3279 pnv_pci_ioda1_setup_dma_pe(phb, pe); 3280 break; 3281 case PNV_PHB_IODA2: 3282 pnv_pci_ioda2_setup_dma_pe(phb, pe); 3283 break; 3284 default: 3285 pr_warn("%s: No DMA for PHB#%x (type %d)\n", 3286 __func__, phb->hose->global_number, phb->type); 3287 } 3288 } 3289 3290 #ifdef CONFIG_PCI_IOV 3291 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, 3292 int resno) 3293 { 3294 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3295 struct pnv_phb *phb = hose->private_data; 3296 struct pci_dn *pdn = pci_get_pdn(pdev); 3297 resource_size_t align; 3298 3299 /* 3300 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the 3301 * SR-IOV. While from hardware perspective, the range mapped by M64 3302 * BAR should be size aligned. 3303 * 3304 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra 3305 * powernv-specific hardware restriction is gone. But if just use the 3306 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with 3307 * in one segment of M64 #15, which introduces the PE conflict between 3308 * PF and VF. Based on this, the minimum alignment of an IOV BAR is 3309 * m64_segsize. 3310 * 3311 * This function returns the total IOV BAR size if M64 BAR is in 3312 * Shared PE mode or just VF BAR size if not. 3313 * If the M64 BAR is in Single PE mode, return the VF BAR size or 3314 * M64 segment size if IOV BAR size is less. 3315 */ 3316 align = pci_iov_resource_size(pdev, resno); 3317 if (!pdn->vfs_expanded) 3318 return align; 3319 if (pdn->m64_single_mode) 3320 return max(align, (resource_size_t)phb->ioda.m64_segsize); 3321 3322 return pdn->vfs_expanded * align; 3323 } 3324 #endif /* CONFIG_PCI_IOV */ 3325 3326 /* Prevent enabling devices for which we couldn't properly 3327 * assign a PE 3328 */ 3329 bool pnv_pci_enable_device_hook(struct pci_dev *dev) 3330 { 3331 struct pci_controller *hose = pci_bus_to_host(dev->bus); 3332 struct pnv_phb *phb = hose->private_data; 3333 struct pci_dn *pdn; 3334 3335 /* The function is probably called while the PEs have 3336 * not be created yet. For example, resource reassignment 3337 * during PCI probe period. We just skip the check if 3338 * PEs isn't ready. 3339 */ 3340 if (!phb->initialized) 3341 return true; 3342 3343 pdn = pci_get_pdn(dev); 3344 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3345 return false; 3346 3347 return true; 3348 } 3349 3350 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, 3351 int num) 3352 { 3353 struct pnv_ioda_pe *pe = container_of(table_group, 3354 struct pnv_ioda_pe, table_group); 3355 struct pnv_phb *phb = pe->phb; 3356 unsigned int idx; 3357 long rc; 3358 3359 pe_info(pe, "Removing DMA window #%d\n", num); 3360 for (idx = 0; idx < phb->ioda.dma32_count; idx++) { 3361 if (phb->ioda.dma32_segmap[idx] != pe->pe_number) 3362 continue; 3363 3364 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 3365 idx, 0, 0ul, 0ul, 0ul); 3366 if (rc != OPAL_SUCCESS) { 3367 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", 3368 rc, idx); 3369 return rc; 3370 } 3371 3372 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; 3373 } 3374 3375 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 3376 return OPAL_SUCCESS; 3377 } 3378 3379 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) 3380 { 3381 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3382 struct iommu_table *tbl = pe->table_group.tables[0]; 3383 int64_t rc; 3384 3385 if (!weight) 3386 return; 3387 3388 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); 3389 if (rc != OPAL_SUCCESS) 3390 return; 3391 3392 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); 3393 if (pe->table_group.group) { 3394 iommu_group_put(pe->table_group.group); 3395 WARN_ON(pe->table_group.group); 3396 } 3397 3398 free_pages(tbl->it_base, get_order(tbl->it_size << 3)); 3399 iommu_free_table(tbl, "pnv"); 3400 } 3401 3402 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) 3403 { 3404 struct iommu_table *tbl = pe->table_group.tables[0]; 3405 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3406 #ifdef CONFIG_IOMMU_API 3407 int64_t rc; 3408 #endif 3409 3410 if (!weight) 3411 return; 3412 3413 #ifdef CONFIG_IOMMU_API 3414 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 3415 if (rc) 3416 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 3417 #endif 3418 3419 pnv_pci_ioda2_set_bypass(pe, false); 3420 if (pe->table_group.group) { 3421 iommu_group_put(pe->table_group.group); 3422 WARN_ON(pe->table_group.group); 3423 } 3424 3425 pnv_pci_ioda2_table_free_pages(tbl); 3426 iommu_free_table(tbl, "pnv"); 3427 } 3428 3429 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, 3430 unsigned short win, 3431 unsigned int *map) 3432 { 3433 struct pnv_phb *phb = pe->phb; 3434 int idx; 3435 int64_t rc; 3436 3437 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { 3438 if (map[idx] != pe->pe_number) 3439 continue; 3440 3441 if (win == OPAL_M64_WINDOW_TYPE) 3442 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3443 phb->ioda.reserved_pe_idx, win, 3444 idx / PNV_IODA1_M64_SEGS, 3445 idx % PNV_IODA1_M64_SEGS); 3446 else 3447 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3448 phb->ioda.reserved_pe_idx, win, 0, idx); 3449 3450 if (rc != OPAL_SUCCESS) 3451 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n", 3452 rc, win, idx); 3453 3454 map[idx] = IODA_INVALID_PE; 3455 } 3456 } 3457 3458 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) 3459 { 3460 struct pnv_phb *phb = pe->phb; 3461 3462 if (phb->type == PNV_PHB_IODA1) { 3463 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, 3464 phb->ioda.io_segmap); 3465 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3466 phb->ioda.m32_segmap); 3467 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE, 3468 phb->ioda.m64_segmap); 3469 } else if (phb->type == PNV_PHB_IODA2) { 3470 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3471 phb->ioda.m32_segmap); 3472 } 3473 } 3474 3475 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) 3476 { 3477 struct pnv_phb *phb = pe->phb; 3478 struct pnv_ioda_pe *slave, *tmp; 3479 3480 list_del(&pe->list); 3481 switch (phb->type) { 3482 case PNV_PHB_IODA1: 3483 pnv_pci_ioda1_release_pe_dma(pe); 3484 break; 3485 case PNV_PHB_IODA2: 3486 pnv_pci_ioda2_release_pe_dma(pe); 3487 break; 3488 default: 3489 WARN_ON(1); 3490 } 3491 3492 pnv_ioda_release_pe_seg(pe); 3493 pnv_ioda_deconfigure_pe(pe->phb, pe); 3494 3495 /* Release slave PEs in the compound PE */ 3496 if (pe->flags & PNV_IODA_PE_MASTER) { 3497 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { 3498 list_del(&slave->list); 3499 pnv_ioda_free_pe(slave); 3500 } 3501 } 3502 3503 /* 3504 * The PE for root bus can be removed because of hotplug in EEH 3505 * recovery for fenced PHB error. We need to mark the PE dead so 3506 * that it can be populated again in PCI hot add path. The PE 3507 * shouldn't be destroyed as it's the global reserved resource. 3508 */ 3509 if (phb->ioda.root_pe_populated && 3510 phb->ioda.root_pe_idx == pe->pe_number) 3511 phb->ioda.root_pe_populated = false; 3512 else 3513 pnv_ioda_free_pe(pe); 3514 } 3515 3516 static void pnv_pci_release_device(struct pci_dev *pdev) 3517 { 3518 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3519 struct pnv_phb *phb = hose->private_data; 3520 struct pci_dn *pdn = pci_get_pdn(pdev); 3521 struct pnv_ioda_pe *pe; 3522 3523 if (pdev->is_virtfn) 3524 return; 3525 3526 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3527 return; 3528 3529 /* 3530 * PCI hotplug can happen as part of EEH error recovery. The @pdn 3531 * isn't removed and added afterwards in this scenario. We should 3532 * set the PE number in @pdn to an invalid one. Otherwise, the PE's 3533 * device count is decreased on removing devices while failing to 3534 * be increased on adding devices. It leads to unbalanced PE's device 3535 * count and eventually make normal PCI hotplug path broken. 3536 */ 3537 pe = &phb->ioda.pe_array[pdn->pe_number]; 3538 pdn->pe_number = IODA_INVALID_PE; 3539 3540 WARN_ON(--pe->device_count < 0); 3541 if (pe->device_count == 0) 3542 pnv_ioda_release_pe(pe); 3543 } 3544 3545 static void pnv_pci_ioda_shutdown(struct pci_controller *hose) 3546 { 3547 struct pnv_phb *phb = hose->private_data; 3548 3549 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, 3550 OPAL_ASSERT_RESET); 3551 } 3552 3553 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { 3554 .dma_dev_setup = pnv_pci_dma_dev_setup, 3555 .dma_bus_setup = pnv_pci_dma_bus_setup, 3556 #ifdef CONFIG_PCI_MSI 3557 .setup_msi_irqs = pnv_setup_msi_irqs, 3558 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3559 #endif 3560 .enable_device_hook = pnv_pci_enable_device_hook, 3561 .release_device = pnv_pci_release_device, 3562 .window_alignment = pnv_pci_window_alignment, 3563 .setup_bridge = pnv_pci_setup_bridge, 3564 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3565 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3566 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3567 .shutdown = pnv_pci_ioda_shutdown, 3568 }; 3569 3570 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask) 3571 { 3572 dev_err_once(&npdev->dev, 3573 "%s operation unsupported for NVLink devices\n", 3574 __func__); 3575 return -EPERM; 3576 } 3577 3578 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = { 3579 .dma_dev_setup = pnv_pci_dma_dev_setup, 3580 #ifdef CONFIG_PCI_MSI 3581 .setup_msi_irqs = pnv_setup_msi_irqs, 3582 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3583 #endif 3584 .enable_device_hook = pnv_pci_enable_device_hook, 3585 .window_alignment = pnv_pci_window_alignment, 3586 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3587 .dma_set_mask = pnv_npu_dma_set_mask, 3588 .shutdown = pnv_pci_ioda_shutdown, 3589 }; 3590 3591 #ifdef CONFIG_CXL_BASE 3592 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = { 3593 .dma_dev_setup = pnv_pci_dma_dev_setup, 3594 .dma_bus_setup = pnv_pci_dma_bus_setup, 3595 #ifdef CONFIG_PCI_MSI 3596 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs, 3597 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs, 3598 #endif 3599 .enable_device_hook = pnv_cxl_enable_device_hook, 3600 .disable_device = pnv_cxl_disable_device, 3601 .release_device = pnv_pci_release_device, 3602 .window_alignment = pnv_pci_window_alignment, 3603 .setup_bridge = pnv_pci_setup_bridge, 3604 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3605 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3606 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3607 .shutdown = pnv_pci_ioda_shutdown, 3608 }; 3609 #endif 3610 3611 static void __init pnv_pci_init_ioda_phb(struct device_node *np, 3612 u64 hub_id, int ioda_type) 3613 { 3614 struct pci_controller *hose; 3615 struct pnv_phb *phb; 3616 unsigned long size, m64map_off, m32map_off, pemap_off; 3617 unsigned long iomap_off = 0, dma32map_off = 0; 3618 struct resource r; 3619 const __be64 *prop64; 3620 const __be32 *prop32; 3621 int len; 3622 unsigned int segno; 3623 u64 phb_id; 3624 void *aux; 3625 long rc; 3626 3627 if (!of_device_is_available(np)) 3628 return; 3629 3630 pr_info("Initializing %s PHB (%s)\n", 3631 pnv_phb_names[ioda_type], of_node_full_name(np)); 3632 3633 prop64 = of_get_property(np, "ibm,opal-phbid", NULL); 3634 if (!prop64) { 3635 pr_err(" Missing \"ibm,opal-phbid\" property !\n"); 3636 return; 3637 } 3638 phb_id = be64_to_cpup(prop64); 3639 pr_debug(" PHB-ID : 0x%016llx\n", phb_id); 3640 3641 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0); 3642 3643 /* Allocate PCI controller */ 3644 phb->hose = hose = pcibios_alloc_controller(np); 3645 if (!phb->hose) { 3646 pr_err(" Can't allocate PCI controller for %s\n", 3647 np->full_name); 3648 memblock_free(__pa(phb), sizeof(struct pnv_phb)); 3649 return; 3650 } 3651 3652 spin_lock_init(&phb->lock); 3653 prop32 = of_get_property(np, "bus-range", &len); 3654 if (prop32 && len == 8) { 3655 hose->first_busno = be32_to_cpu(prop32[0]); 3656 hose->last_busno = be32_to_cpu(prop32[1]); 3657 } else { 3658 pr_warn(" Broken <bus-range> on %s\n", np->full_name); 3659 hose->first_busno = 0; 3660 hose->last_busno = 0xff; 3661 } 3662 hose->private_data = phb; 3663 phb->hub_id = hub_id; 3664 phb->opal_id = phb_id; 3665 phb->type = ioda_type; 3666 mutex_init(&phb->ioda.pe_alloc_mutex); 3667 3668 /* Detect specific models for error handling */ 3669 if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) 3670 phb->model = PNV_PHB_MODEL_P7IOC; 3671 else if (of_device_is_compatible(np, "ibm,power8-pciex")) 3672 phb->model = PNV_PHB_MODEL_PHB3; 3673 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex")) 3674 phb->model = PNV_PHB_MODEL_NPU; 3675 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex")) 3676 phb->model = PNV_PHB_MODEL_NPU2; 3677 else 3678 phb->model = PNV_PHB_MODEL_UNKNOWN; 3679 3680 /* Parse 32-bit and IO ranges (if any) */ 3681 pci_process_bridge_OF_ranges(hose, np, !hose->global_number); 3682 3683 /* Get registers */ 3684 if (!of_address_to_resource(np, 0, &r)) { 3685 phb->regs_phys = r.start; 3686 phb->regs = ioremap(r.start, resource_size(&r)); 3687 if (phb->regs == NULL) 3688 pr_err(" Failed to map registers !\n"); 3689 } 3690 3691 /* Initialize more IODA stuff */ 3692 phb->ioda.total_pe_num = 1; 3693 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); 3694 if (prop32) 3695 phb->ioda.total_pe_num = be32_to_cpup(prop32); 3696 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); 3697 if (prop32) 3698 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); 3699 3700 /* Invalidate RID to PE# mapping */ 3701 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) 3702 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; 3703 3704 /* Parse 64-bit MMIO range */ 3705 pnv_ioda_parse_m64_window(phb); 3706 3707 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); 3708 /* FW Has already off top 64k of M32 space (MSI space) */ 3709 phb->ioda.m32_size += 0x10000; 3710 3711 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; 3712 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; 3713 phb->ioda.io_size = hose->pci_io_size; 3714 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; 3715 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ 3716 3717 /* Calculate how many 32-bit TCE segments we have */ 3718 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3719 PNV_IODA1_DMA32_SEGSIZE; 3720 3721 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ 3722 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, 3723 sizeof(unsigned long)); 3724 m64map_off = size; 3725 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); 3726 m32map_off = size; 3727 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); 3728 if (phb->type == PNV_PHB_IODA1) { 3729 iomap_off = size; 3730 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); 3731 dma32map_off = size; 3732 size += phb->ioda.dma32_count * 3733 sizeof(phb->ioda.dma32_segmap[0]); 3734 } 3735 pemap_off = size; 3736 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); 3737 aux = memblock_virt_alloc(size, 0); 3738 phb->ioda.pe_alloc = aux; 3739 phb->ioda.m64_segmap = aux + m64map_off; 3740 phb->ioda.m32_segmap = aux + m32map_off; 3741 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { 3742 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; 3743 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; 3744 } 3745 if (phb->type == PNV_PHB_IODA1) { 3746 phb->ioda.io_segmap = aux + iomap_off; 3747 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) 3748 phb->ioda.io_segmap[segno] = IODA_INVALID_PE; 3749 3750 phb->ioda.dma32_segmap = aux + dma32map_off; 3751 for (segno = 0; segno < phb->ioda.dma32_count; segno++) 3752 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; 3753 } 3754 phb->ioda.pe_array = aux + pemap_off; 3755 3756 /* 3757 * Choose PE number for root bus, which shouldn't have 3758 * M64 resources consumed by its child devices. To pick 3759 * the PE number adjacent to the reserved one if possible. 3760 */ 3761 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); 3762 if (phb->ioda.reserved_pe_idx == 0) { 3763 phb->ioda.root_pe_idx = 1; 3764 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3765 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { 3766 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; 3767 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3768 } else { 3769 phb->ioda.root_pe_idx = IODA_INVALID_PE; 3770 } 3771 3772 INIT_LIST_HEAD(&phb->ioda.pe_list); 3773 mutex_init(&phb->ioda.pe_list_mutex); 3774 3775 /* Calculate how many 32-bit TCE segments we have */ 3776 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3777 PNV_IODA1_DMA32_SEGSIZE; 3778 3779 #if 0 /* We should really do that ... */ 3780 rc = opal_pci_set_phb_mem_window(opal->phb_id, 3781 window_type, 3782 window_num, 3783 starting_real_address, 3784 starting_pci_address, 3785 segment_size); 3786 #endif 3787 3788 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", 3789 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, 3790 phb->ioda.m32_size, phb->ioda.m32_segsize); 3791 if (phb->ioda.m64_size) 3792 pr_info(" M64: 0x%lx [segment=0x%lx]\n", 3793 phb->ioda.m64_size, phb->ioda.m64_segsize); 3794 if (phb->ioda.io_size) 3795 pr_info(" IO: 0x%x [segment=0x%x]\n", 3796 phb->ioda.io_size, phb->ioda.io_segsize); 3797 3798 3799 phb->hose->ops = &pnv_pci_ops; 3800 phb->get_pe_state = pnv_ioda_get_pe_state; 3801 phb->freeze_pe = pnv_ioda_freeze_pe; 3802 phb->unfreeze_pe = pnv_ioda_unfreeze_pe; 3803 3804 /* Setup MSI support */ 3805 pnv_pci_init_ioda_msis(phb); 3806 3807 /* 3808 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here 3809 * to let the PCI core do resource assignment. It's supposed 3810 * that the PCI core will do correct I/O and MMIO alignment 3811 * for the P2P bridge bars so that each PCI bus (excluding 3812 * the child P2P bridges) can form individual PE. 3813 */ 3814 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; 3815 3816 if (phb->type == PNV_PHB_NPU) { 3817 hose->controller_ops = pnv_npu_ioda_controller_ops; 3818 } else { 3819 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup; 3820 hose->controller_ops = pnv_pci_ioda_controller_ops; 3821 } 3822 3823 #ifdef CONFIG_PCI_IOV 3824 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources; 3825 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; 3826 #endif 3827 3828 pci_add_flags(PCI_REASSIGN_ALL_RSRC); 3829 3830 /* Reset IODA tables to a clean state */ 3831 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); 3832 if (rc) 3833 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc); 3834 3835 /* 3836 * If we're running in kdump kernel, the previous kernel never 3837 * shutdown PCI devices correctly. We already got IODA table 3838 * cleaned out. So we have to issue PHB reset to stop all PCI 3839 * transactions from previous kernel. 3840 */ 3841 if (is_kdump_kernel()) { 3842 pr_info(" Issue PHB reset ...\n"); 3843 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); 3844 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); 3845 } 3846 3847 /* Remove M64 resource if we can't configure it successfully */ 3848 if (!phb->init_m64 || phb->init_m64(phb)) 3849 hose->mem_resources[1].flags = 0; 3850 } 3851 3852 void __init pnv_pci_init_ioda2_phb(struct device_node *np) 3853 { 3854 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); 3855 } 3856 3857 void __init pnv_pci_init_npu_phb(struct device_node *np) 3858 { 3859 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU); 3860 } 3861 3862 void __init pnv_pci_init_ioda_hub(struct device_node *np) 3863 { 3864 struct device_node *phbn; 3865 const __be64 *prop64; 3866 u64 hub_id; 3867 3868 pr_info("Probing IODA IO-Hub %s\n", np->full_name); 3869 3870 prop64 = of_get_property(np, "ibm,opal-hubid", NULL); 3871 if (!prop64) { 3872 pr_err(" Missing \"ibm,opal-hubid\" property !\n"); 3873 return; 3874 } 3875 hub_id = be64_to_cpup(prop64); 3876 pr_devel(" HUB-ID : 0x%016llx\n", hub_id); 3877 3878 /* Count child PHBs */ 3879 for_each_child_of_node(np, phbn) { 3880 /* Look for IODA1 PHBs */ 3881 if (of_device_is_compatible(phbn, "ibm,ioda-phb")) 3882 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); 3883 } 3884 } 3885