1 /* 2 * Support PCI/PCIe on PowerNV platforms 3 * 4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/pci.h> 16 #include <linux/crash_dump.h> 17 #include <linux/delay.h> 18 #include <linux/string.h> 19 #include <linux/init.h> 20 #include <linux/bootmem.h> 21 #include <linux/irq.h> 22 #include <linux/io.h> 23 #include <linux/msi.h> 24 #include <linux/memblock.h> 25 #include <linux/iommu.h> 26 #include <linux/rculist.h> 27 #include <linux/sizes.h> 28 29 #include <asm/sections.h> 30 #include <asm/io.h> 31 #include <asm/prom.h> 32 #include <asm/pci-bridge.h> 33 #include <asm/machdep.h> 34 #include <asm/msi_bitmap.h> 35 #include <asm/ppc-pci.h> 36 #include <asm/opal.h> 37 #include <asm/iommu.h> 38 #include <asm/tce.h> 39 #include <asm/xics.h> 40 #include <asm/debugfs.h> 41 #include <asm/firmware.h> 42 #include <asm/pnv-pci.h> 43 #include <asm/mmzone.h> 44 45 #include <misc/cxl-base.h> 46 47 #include "powernv.h" 48 #include "pci.h" 49 50 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ 51 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ 52 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 53 54 #define POWERNV_IOMMU_DEFAULT_LEVELS 1 55 #define POWERNV_IOMMU_MAX_LEVELS 5 56 57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" }; 58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl); 59 60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, 61 const char *fmt, ...) 62 { 63 struct va_format vaf; 64 va_list args; 65 char pfix[32]; 66 67 va_start(args, fmt); 68 69 vaf.fmt = fmt; 70 vaf.va = &args; 71 72 if (pe->flags & PNV_IODA_PE_DEV) 73 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); 74 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 75 sprintf(pfix, "%04x:%02x ", 76 pci_domain_nr(pe->pbus), pe->pbus->number); 77 #ifdef CONFIG_PCI_IOV 78 else if (pe->flags & PNV_IODA_PE_VF) 79 sprintf(pfix, "%04x:%02x:%2x.%d", 80 pci_domain_nr(pe->parent_dev->bus), 81 (pe->rid & 0xff00) >> 8, 82 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); 83 #endif /* CONFIG_PCI_IOV*/ 84 85 printk("%spci %s: [PE# %.2x] %pV", 86 level, pfix, pe->pe_number, &vaf); 87 88 va_end(args); 89 } 90 91 static bool pnv_iommu_bypass_disabled __read_mostly; 92 93 static int __init iommu_setup(char *str) 94 { 95 if (!str) 96 return -EINVAL; 97 98 while (*str) { 99 if (!strncmp(str, "nobypass", 8)) { 100 pnv_iommu_bypass_disabled = true; 101 pr_info("PowerNV: IOMMU bypass window disabled.\n"); 102 break; 103 } 104 str += strcspn(str, ","); 105 if (*str == ',') 106 str++; 107 } 108 109 return 0; 110 } 111 early_param("iommu", iommu_setup); 112 113 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r) 114 { 115 /* 116 * WARNING: We cannot rely on the resource flags. The Linux PCI 117 * allocation code sometimes decides to put a 64-bit prefetchable 118 * BAR in the 32-bit window, so we have to compare the addresses. 119 * 120 * For simplicity we only test resource start. 121 */ 122 return (r->start >= phb->ioda.m64_base && 123 r->start < (phb->ioda.m64_base + phb->ioda.m64_size)); 124 } 125 126 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags) 127 { 128 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 129 130 return (resource_flags & flags) == flags; 131 } 132 133 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) 134 { 135 s64 rc; 136 137 phb->ioda.pe_array[pe_no].phb = phb; 138 phb->ioda.pe_array[pe_no].pe_number = pe_no; 139 140 /* 141 * Clear the PE frozen state as it might be put into frozen state 142 * in the last PCI remove path. It's not harmful to do so when the 143 * PE is already in unfrozen state. 144 */ 145 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, 146 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 147 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 148 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n", 149 __func__, rc, phb->hose->global_number, pe_no); 150 151 return &phb->ioda.pe_array[pe_no]; 152 } 153 154 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) 155 { 156 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { 157 pr_warn("%s: Invalid PE %x on PHB#%x\n", 158 __func__, pe_no, phb->hose->global_number); 159 return; 160 } 161 162 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) 163 pr_debug("%s: PE %x was reserved on PHB#%x\n", 164 __func__, pe_no, phb->hose->global_number); 165 166 pnv_ioda_init_pe(phb, pe_no); 167 } 168 169 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb) 170 { 171 long pe; 172 173 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { 174 if (!test_and_set_bit(pe, phb->ioda.pe_alloc)) 175 return pnv_ioda_init_pe(phb, pe); 176 } 177 178 return NULL; 179 } 180 181 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) 182 { 183 struct pnv_phb *phb = pe->phb; 184 unsigned int pe_num = pe->pe_number; 185 186 WARN_ON(pe->pdev); 187 188 memset(pe, 0, sizeof(struct pnv_ioda_pe)); 189 clear_bit(pe_num, phb->ioda.pe_alloc); 190 } 191 192 /* The default M64 BAR is shared by all PEs */ 193 static int pnv_ioda2_init_m64(struct pnv_phb *phb) 194 { 195 const char *desc; 196 struct resource *r; 197 s64 rc; 198 199 /* Configure the default M64 BAR */ 200 rc = opal_pci_set_phb_mem_window(phb->opal_id, 201 OPAL_M64_WINDOW_TYPE, 202 phb->ioda.m64_bar_idx, 203 phb->ioda.m64_base, 204 0, /* unused */ 205 phb->ioda.m64_size); 206 if (rc != OPAL_SUCCESS) { 207 desc = "configuring"; 208 goto fail; 209 } 210 211 /* Enable the default M64 BAR */ 212 rc = opal_pci_phb_mmio_enable(phb->opal_id, 213 OPAL_M64_WINDOW_TYPE, 214 phb->ioda.m64_bar_idx, 215 OPAL_ENABLE_M64_SPLIT); 216 if (rc != OPAL_SUCCESS) { 217 desc = "enabling"; 218 goto fail; 219 } 220 221 /* 222 * Exclude the segments for reserved and root bus PE, which 223 * are first or last two PEs. 224 */ 225 r = &phb->hose->mem_resources[1]; 226 if (phb->ioda.reserved_pe_idx == 0) 227 r->start += (2 * phb->ioda.m64_segsize); 228 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 229 r->end -= (2 * phb->ioda.m64_segsize); 230 else 231 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n", 232 phb->ioda.reserved_pe_idx); 233 234 return 0; 235 236 fail: 237 pr_warn(" Failure %lld %s M64 BAR#%d\n", 238 rc, desc, phb->ioda.m64_bar_idx); 239 opal_pci_phb_mmio_enable(phb->opal_id, 240 OPAL_M64_WINDOW_TYPE, 241 phb->ioda.m64_bar_idx, 242 OPAL_DISABLE_M64); 243 return -EIO; 244 } 245 246 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, 247 unsigned long *pe_bitmap) 248 { 249 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 250 struct pnv_phb *phb = hose->private_data; 251 struct resource *r; 252 resource_size_t base, sgsz, start, end; 253 int segno, i; 254 255 base = phb->ioda.m64_base; 256 sgsz = phb->ioda.m64_segsize; 257 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 258 r = &pdev->resource[i]; 259 if (!r->parent || !pnv_pci_is_m64(phb, r)) 260 continue; 261 262 start = _ALIGN_DOWN(r->start - base, sgsz); 263 end = _ALIGN_UP(r->end - base, sgsz); 264 for (segno = start / sgsz; segno < end / sgsz; segno++) { 265 if (pe_bitmap) 266 set_bit(segno, pe_bitmap); 267 else 268 pnv_ioda_reserve_pe(phb, segno); 269 } 270 } 271 } 272 273 static int pnv_ioda1_init_m64(struct pnv_phb *phb) 274 { 275 struct resource *r; 276 int index; 277 278 /* 279 * There are 16 M64 BARs, each of which has 8 segments. So 280 * there are as many M64 segments as the maximum number of 281 * PEs, which is 128. 282 */ 283 for (index = 0; index < PNV_IODA1_M64_NUM; index++) { 284 unsigned long base, segsz = phb->ioda.m64_segsize; 285 int64_t rc; 286 287 base = phb->ioda.m64_base + 288 index * PNV_IODA1_M64_SEGS * segsz; 289 rc = opal_pci_set_phb_mem_window(phb->opal_id, 290 OPAL_M64_WINDOW_TYPE, index, base, 0, 291 PNV_IODA1_M64_SEGS * segsz); 292 if (rc != OPAL_SUCCESS) { 293 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n", 294 rc, phb->hose->global_number, index); 295 goto fail; 296 } 297 298 rc = opal_pci_phb_mmio_enable(phb->opal_id, 299 OPAL_M64_WINDOW_TYPE, index, 300 OPAL_ENABLE_M64_SPLIT); 301 if (rc != OPAL_SUCCESS) { 302 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n", 303 rc, phb->hose->global_number, index); 304 goto fail; 305 } 306 } 307 308 /* 309 * Exclude the segments for reserved and root bus PE, which 310 * are first or last two PEs. 311 */ 312 r = &phb->hose->mem_resources[1]; 313 if (phb->ioda.reserved_pe_idx == 0) 314 r->start += (2 * phb->ioda.m64_segsize); 315 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 316 r->end -= (2 * phb->ioda.m64_segsize); 317 else 318 WARN(1, "Wrong reserved PE#%x on PHB#%x\n", 319 phb->ioda.reserved_pe_idx, phb->hose->global_number); 320 321 return 0; 322 323 fail: 324 for ( ; index >= 0; index--) 325 opal_pci_phb_mmio_enable(phb->opal_id, 326 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); 327 328 return -EIO; 329 } 330 331 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, 332 unsigned long *pe_bitmap, 333 bool all) 334 { 335 struct pci_dev *pdev; 336 337 list_for_each_entry(pdev, &bus->devices, bus_list) { 338 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); 339 340 if (all && pdev->subordinate) 341 pnv_ioda_reserve_m64_pe(pdev->subordinate, 342 pe_bitmap, all); 343 } 344 } 345 346 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) 347 { 348 struct pci_controller *hose = pci_bus_to_host(bus); 349 struct pnv_phb *phb = hose->private_data; 350 struct pnv_ioda_pe *master_pe, *pe; 351 unsigned long size, *pe_alloc; 352 int i; 353 354 /* Root bus shouldn't use M64 */ 355 if (pci_is_root_bus(bus)) 356 return NULL; 357 358 /* Allocate bitmap */ 359 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); 360 pe_alloc = kzalloc(size, GFP_KERNEL); 361 if (!pe_alloc) { 362 pr_warn("%s: Out of memory !\n", 363 __func__); 364 return NULL; 365 } 366 367 /* Figure out reserved PE numbers by the PE */ 368 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); 369 370 /* 371 * the current bus might not own M64 window and that's all 372 * contributed by its child buses. For the case, we needn't 373 * pick M64 dependent PE#. 374 */ 375 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { 376 kfree(pe_alloc); 377 return NULL; 378 } 379 380 /* 381 * Figure out the master PE and put all slave PEs to master 382 * PE's list to form compound PE. 383 */ 384 master_pe = NULL; 385 i = -1; 386 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < 387 phb->ioda.total_pe_num) { 388 pe = &phb->ioda.pe_array[i]; 389 390 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; 391 if (!master_pe) { 392 pe->flags |= PNV_IODA_PE_MASTER; 393 INIT_LIST_HEAD(&pe->slaves); 394 master_pe = pe; 395 } else { 396 pe->flags |= PNV_IODA_PE_SLAVE; 397 pe->master = master_pe; 398 list_add_tail(&pe->list, &master_pe->slaves); 399 } 400 401 /* 402 * P7IOC supports M64DT, which helps mapping M64 segment 403 * to one particular PE#. However, PHB3 has fixed mapping 404 * between M64 segment and PE#. In order to have same logic 405 * for P7IOC and PHB3, we enforce fixed mapping between M64 406 * segment and PE# on P7IOC. 407 */ 408 if (phb->type == PNV_PHB_IODA1) { 409 int64_t rc; 410 411 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 412 pe->pe_number, OPAL_M64_WINDOW_TYPE, 413 pe->pe_number / PNV_IODA1_M64_SEGS, 414 pe->pe_number % PNV_IODA1_M64_SEGS); 415 if (rc != OPAL_SUCCESS) 416 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n", 417 __func__, rc, phb->hose->global_number, 418 pe->pe_number); 419 } 420 } 421 422 kfree(pe_alloc); 423 return master_pe; 424 } 425 426 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) 427 { 428 struct pci_controller *hose = phb->hose; 429 struct device_node *dn = hose->dn; 430 struct resource *res; 431 u32 m64_range[2], i; 432 const __be32 *r; 433 u64 pci_addr; 434 435 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { 436 pr_info(" Not support M64 window\n"); 437 return; 438 } 439 440 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 441 pr_info(" Firmware too old to support M64 window\n"); 442 return; 443 } 444 445 r = of_get_property(dn, "ibm,opal-m64-window", NULL); 446 if (!r) { 447 pr_info(" No <ibm,opal-m64-window> on %s\n", 448 dn->full_name); 449 return; 450 } 451 452 /* 453 * Find the available M64 BAR range and pickup the last one for 454 * covering the whole 64-bits space. We support only one range. 455 */ 456 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", 457 m64_range, 2)) { 458 /* In absence of the property, assume 0..15 */ 459 m64_range[0] = 0; 460 m64_range[1] = 16; 461 } 462 /* We only support 64 bits in our allocator */ 463 if (m64_range[1] > 63) { 464 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", 465 __func__, m64_range[1], phb->hose->global_number); 466 m64_range[1] = 63; 467 } 468 /* Empty range, no m64 */ 469 if (m64_range[1] <= m64_range[0]) { 470 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", 471 __func__, phb->hose->global_number); 472 return; 473 } 474 475 /* Configure M64 informations */ 476 res = &hose->mem_resources[1]; 477 res->name = dn->full_name; 478 res->start = of_translate_address(dn, r + 2); 479 res->end = res->start + of_read_number(r + 4, 2) - 1; 480 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 481 pci_addr = of_read_number(r, 2); 482 hose->mem_offset[1] = res->start - pci_addr; 483 484 phb->ioda.m64_size = resource_size(res); 485 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; 486 phb->ioda.m64_base = pci_addr; 487 488 /* This lines up nicely with the display from processing OF ranges */ 489 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", 490 res->start, res->end, pci_addr, m64_range[0], 491 m64_range[0] + m64_range[1] - 1); 492 493 /* Mark all M64 used up by default */ 494 phb->ioda.m64_bar_alloc = (unsigned long)-1; 495 496 /* Use last M64 BAR to cover M64 window */ 497 m64_range[1]--; 498 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; 499 500 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); 501 502 /* Mark remaining ones free */ 503 for (i = m64_range[0]; i < m64_range[1]; i++) 504 clear_bit(i, &phb->ioda.m64_bar_alloc); 505 506 /* 507 * Setup init functions for M64 based on IODA version, IODA3 uses 508 * the IODA2 code. 509 */ 510 if (phb->type == PNV_PHB_IODA1) 511 phb->init_m64 = pnv_ioda1_init_m64; 512 else 513 phb->init_m64 = pnv_ioda2_init_m64; 514 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe; 515 phb->pick_m64_pe = pnv_ioda_pick_m64_pe; 516 } 517 518 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) 519 { 520 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; 521 struct pnv_ioda_pe *slave; 522 s64 rc; 523 524 /* Fetch master PE */ 525 if (pe->flags & PNV_IODA_PE_SLAVE) { 526 pe = pe->master; 527 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) 528 return; 529 530 pe_no = pe->pe_number; 531 } 532 533 /* Freeze master PE */ 534 rc = opal_pci_eeh_freeze_set(phb->opal_id, 535 pe_no, 536 OPAL_EEH_ACTION_SET_FREEZE_ALL); 537 if (rc != OPAL_SUCCESS) { 538 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 539 __func__, rc, phb->hose->global_number, pe_no); 540 return; 541 } 542 543 /* Freeze slave PEs */ 544 if (!(pe->flags & PNV_IODA_PE_MASTER)) 545 return; 546 547 list_for_each_entry(slave, &pe->slaves, list) { 548 rc = opal_pci_eeh_freeze_set(phb->opal_id, 549 slave->pe_number, 550 OPAL_EEH_ACTION_SET_FREEZE_ALL); 551 if (rc != OPAL_SUCCESS) 552 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 553 __func__, rc, phb->hose->global_number, 554 slave->pe_number); 555 } 556 } 557 558 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) 559 { 560 struct pnv_ioda_pe *pe, *slave; 561 s64 rc; 562 563 /* Find master PE */ 564 pe = &phb->ioda.pe_array[pe_no]; 565 if (pe->flags & PNV_IODA_PE_SLAVE) { 566 pe = pe->master; 567 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 568 pe_no = pe->pe_number; 569 } 570 571 /* Clear frozen state for master PE */ 572 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); 573 if (rc != OPAL_SUCCESS) { 574 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 575 __func__, rc, opt, phb->hose->global_number, pe_no); 576 return -EIO; 577 } 578 579 if (!(pe->flags & PNV_IODA_PE_MASTER)) 580 return 0; 581 582 /* Clear frozen state for slave PEs */ 583 list_for_each_entry(slave, &pe->slaves, list) { 584 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 585 slave->pe_number, 586 opt); 587 if (rc != OPAL_SUCCESS) { 588 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 589 __func__, rc, opt, phb->hose->global_number, 590 slave->pe_number); 591 return -EIO; 592 } 593 } 594 595 return 0; 596 } 597 598 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) 599 { 600 struct pnv_ioda_pe *slave, *pe; 601 u8 fstate, state; 602 __be16 pcierr; 603 s64 rc; 604 605 /* Sanity check on PE number */ 606 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) 607 return OPAL_EEH_STOPPED_PERM_UNAVAIL; 608 609 /* 610 * Fetch the master PE and the PE instance might be 611 * not initialized yet. 612 */ 613 pe = &phb->ioda.pe_array[pe_no]; 614 if (pe->flags & PNV_IODA_PE_SLAVE) { 615 pe = pe->master; 616 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 617 pe_no = pe->pe_number; 618 } 619 620 /* Check the master PE */ 621 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, 622 &state, &pcierr, NULL); 623 if (rc != OPAL_SUCCESS) { 624 pr_warn("%s: Failure %lld getting " 625 "PHB#%x-PE#%x state\n", 626 __func__, rc, 627 phb->hose->global_number, pe_no); 628 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 629 } 630 631 /* Check the slave PE */ 632 if (!(pe->flags & PNV_IODA_PE_MASTER)) 633 return state; 634 635 list_for_each_entry(slave, &pe->slaves, list) { 636 rc = opal_pci_eeh_freeze_status(phb->opal_id, 637 slave->pe_number, 638 &fstate, 639 &pcierr, 640 NULL); 641 if (rc != OPAL_SUCCESS) { 642 pr_warn("%s: Failure %lld getting " 643 "PHB#%x-PE#%x state\n", 644 __func__, rc, 645 phb->hose->global_number, slave->pe_number); 646 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 647 } 648 649 /* 650 * Override the result based on the ascending 651 * priority. 652 */ 653 if (fstate > state) 654 state = fstate; 655 } 656 657 return state; 658 } 659 660 /* Currently those 2 are only used when MSIs are enabled, this will change 661 * but in the meantime, we need to protect them to avoid warnings 662 */ 663 #ifdef CONFIG_PCI_MSI 664 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) 665 { 666 struct pci_controller *hose = pci_bus_to_host(dev->bus); 667 struct pnv_phb *phb = hose->private_data; 668 struct pci_dn *pdn = pci_get_pdn(dev); 669 670 if (!pdn) 671 return NULL; 672 if (pdn->pe_number == IODA_INVALID_PE) 673 return NULL; 674 return &phb->ioda.pe_array[pdn->pe_number]; 675 } 676 #endif /* CONFIG_PCI_MSI */ 677 678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, 679 struct pnv_ioda_pe *parent, 680 struct pnv_ioda_pe *child, 681 bool is_add) 682 { 683 const char *desc = is_add ? "adding" : "removing"; 684 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : 685 OPAL_REMOVE_PE_FROM_DOMAIN; 686 struct pnv_ioda_pe *slave; 687 long rc; 688 689 /* Parent PE affects child PE */ 690 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 691 child->pe_number, op); 692 if (rc != OPAL_SUCCESS) { 693 pe_warn(child, "OPAL error %ld %s to parent PELTV\n", 694 rc, desc); 695 return -ENXIO; 696 } 697 698 if (!(child->flags & PNV_IODA_PE_MASTER)) 699 return 0; 700 701 /* Compound case: parent PE affects slave PEs */ 702 list_for_each_entry(slave, &child->slaves, list) { 703 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 704 slave->pe_number, op); 705 if (rc != OPAL_SUCCESS) { 706 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", 707 rc, desc); 708 return -ENXIO; 709 } 710 } 711 712 return 0; 713 } 714 715 static int pnv_ioda_set_peltv(struct pnv_phb *phb, 716 struct pnv_ioda_pe *pe, 717 bool is_add) 718 { 719 struct pnv_ioda_pe *slave; 720 struct pci_dev *pdev = NULL; 721 int ret; 722 723 /* 724 * Clear PE frozen state. If it's master PE, we need 725 * clear slave PE frozen state as well. 726 */ 727 if (is_add) { 728 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 729 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 730 if (pe->flags & PNV_IODA_PE_MASTER) { 731 list_for_each_entry(slave, &pe->slaves, list) 732 opal_pci_eeh_freeze_clear(phb->opal_id, 733 slave->pe_number, 734 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 735 } 736 } 737 738 /* 739 * Associate PE in PELT. We need add the PE into the 740 * corresponding PELT-V as well. Otherwise, the error 741 * originated from the PE might contribute to other 742 * PEs. 743 */ 744 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); 745 if (ret) 746 return ret; 747 748 /* For compound PEs, any one affects all of them */ 749 if (pe->flags & PNV_IODA_PE_MASTER) { 750 list_for_each_entry(slave, &pe->slaves, list) { 751 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); 752 if (ret) 753 return ret; 754 } 755 } 756 757 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) 758 pdev = pe->pbus->self; 759 else if (pe->flags & PNV_IODA_PE_DEV) 760 pdev = pe->pdev->bus->self; 761 #ifdef CONFIG_PCI_IOV 762 else if (pe->flags & PNV_IODA_PE_VF) 763 pdev = pe->parent_dev; 764 #endif /* CONFIG_PCI_IOV */ 765 while (pdev) { 766 struct pci_dn *pdn = pci_get_pdn(pdev); 767 struct pnv_ioda_pe *parent; 768 769 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 770 parent = &phb->ioda.pe_array[pdn->pe_number]; 771 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); 772 if (ret) 773 return ret; 774 } 775 776 pdev = pdev->bus->self; 777 } 778 779 return 0; 780 } 781 782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 783 { 784 struct pci_dev *parent; 785 uint8_t bcomp, dcomp, fcomp; 786 int64_t rc; 787 long rid_end, rid; 788 789 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ 790 if (pe->pbus) { 791 int count; 792 793 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 794 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 795 parent = pe->pbus->self; 796 if (pe->flags & PNV_IODA_PE_BUS_ALL) 797 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 798 else 799 count = 1; 800 801 switch(count) { 802 case 1: bcomp = OpalPciBusAll; break; 803 case 2: bcomp = OpalPciBus7Bits; break; 804 case 4: bcomp = OpalPciBus6Bits; break; 805 case 8: bcomp = OpalPciBus5Bits; break; 806 case 16: bcomp = OpalPciBus4Bits; break; 807 case 32: bcomp = OpalPciBus3Bits; break; 808 default: 809 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 810 count); 811 /* Do an exact match only */ 812 bcomp = OpalPciBusAll; 813 } 814 rid_end = pe->rid + (count << 8); 815 } else { 816 #ifdef CONFIG_PCI_IOV 817 if (pe->flags & PNV_IODA_PE_VF) 818 parent = pe->parent_dev; 819 else 820 #endif 821 parent = pe->pdev->bus->self; 822 bcomp = OpalPciBusAll; 823 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 824 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 825 rid_end = pe->rid + 1; 826 } 827 828 /* Clear the reverse map */ 829 for (rid = pe->rid; rid < rid_end; rid++) 830 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; 831 832 /* Release from all parents PELT-V */ 833 while (parent) { 834 struct pci_dn *pdn = pci_get_pdn(parent); 835 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 836 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, 837 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 838 /* XXX What to do in case of error ? */ 839 } 840 parent = parent->bus->self; 841 } 842 843 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 844 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 845 846 /* Disassociate PE in PELT */ 847 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, 848 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 849 if (rc) 850 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc); 851 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 852 bcomp, dcomp, fcomp, OPAL_UNMAP_PE); 853 if (rc) 854 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 855 856 pe->pbus = NULL; 857 pe->pdev = NULL; 858 #ifdef CONFIG_PCI_IOV 859 pe->parent_dev = NULL; 860 #endif 861 862 return 0; 863 } 864 865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 866 { 867 struct pci_dev *parent; 868 uint8_t bcomp, dcomp, fcomp; 869 long rc, rid_end, rid; 870 871 /* Bus validation ? */ 872 if (pe->pbus) { 873 int count; 874 875 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 876 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 877 parent = pe->pbus->self; 878 if (pe->flags & PNV_IODA_PE_BUS_ALL) 879 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 880 else 881 count = 1; 882 883 switch(count) { 884 case 1: bcomp = OpalPciBusAll; break; 885 case 2: bcomp = OpalPciBus7Bits; break; 886 case 4: bcomp = OpalPciBus6Bits; break; 887 case 8: bcomp = OpalPciBus5Bits; break; 888 case 16: bcomp = OpalPciBus4Bits; break; 889 case 32: bcomp = OpalPciBus3Bits; break; 890 default: 891 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 892 count); 893 /* Do an exact match only */ 894 bcomp = OpalPciBusAll; 895 } 896 rid_end = pe->rid + (count << 8); 897 } else { 898 #ifdef CONFIG_PCI_IOV 899 if (pe->flags & PNV_IODA_PE_VF) 900 parent = pe->parent_dev; 901 else 902 #endif /* CONFIG_PCI_IOV */ 903 parent = pe->pdev->bus->self; 904 bcomp = OpalPciBusAll; 905 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 906 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 907 rid_end = pe->rid + 1; 908 } 909 910 /* 911 * Associate PE in PELT. We need add the PE into the 912 * corresponding PELT-V as well. Otherwise, the error 913 * originated from the PE might contribute to other 914 * PEs. 915 */ 916 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 917 bcomp, dcomp, fcomp, OPAL_MAP_PE); 918 if (rc) { 919 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 920 return -ENXIO; 921 } 922 923 /* 924 * Configure PELTV. NPUs don't have a PELTV table so skip 925 * configuration on them. 926 */ 927 if (phb->type != PNV_PHB_NPU) 928 pnv_ioda_set_peltv(phb, pe, true); 929 930 /* Setup reverse map */ 931 for (rid = pe->rid; rid < rid_end; rid++) 932 phb->ioda.pe_rmap[rid] = pe->pe_number; 933 934 /* Setup one MVTs on IODA1 */ 935 if (phb->type != PNV_PHB_IODA1) { 936 pe->mve_number = 0; 937 goto out; 938 } 939 940 pe->mve_number = pe->pe_number; 941 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); 942 if (rc != OPAL_SUCCESS) { 943 pe_err(pe, "OPAL error %ld setting up MVE %x\n", 944 rc, pe->mve_number); 945 pe->mve_number = -1; 946 } else { 947 rc = opal_pci_set_mve_enable(phb->opal_id, 948 pe->mve_number, OPAL_ENABLE_MVE); 949 if (rc) { 950 pe_err(pe, "OPAL error %ld enabling MVE %x\n", 951 rc, pe->mve_number); 952 pe->mve_number = -1; 953 } 954 } 955 956 out: 957 return 0; 958 } 959 960 #ifdef CONFIG_PCI_IOV 961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) 962 { 963 struct pci_dn *pdn = pci_get_pdn(dev); 964 int i; 965 struct resource *res, res2; 966 resource_size_t size; 967 u16 num_vfs; 968 969 if (!dev->is_physfn) 970 return -EINVAL; 971 972 /* 973 * "offset" is in VFs. The M64 windows are sized so that when they 974 * are segmented, each segment is the same size as the IOV BAR. 975 * Each segment is in a separate PE, and the high order bits of the 976 * address are the PE number. Therefore, each VF's BAR is in a 977 * separate PE, and changing the IOV BAR start address changes the 978 * range of PEs the VFs are in. 979 */ 980 num_vfs = pdn->num_vfs; 981 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 982 res = &dev->resource[i + PCI_IOV_RESOURCES]; 983 if (!res->flags || !res->parent) 984 continue; 985 986 /* 987 * The actual IOV BAR range is determined by the start address 988 * and the actual size for num_vfs VFs BAR. This check is to 989 * make sure that after shifting, the range will not overlap 990 * with another device. 991 */ 992 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 993 res2.flags = res->flags; 994 res2.start = res->start + (size * offset); 995 res2.end = res2.start + (size * num_vfs) - 1; 996 997 if (res2.end > res->end) { 998 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", 999 i, &res2, res, num_vfs, offset); 1000 return -EBUSY; 1001 } 1002 } 1003 1004 /* 1005 * After doing so, there would be a "hole" in the /proc/iomem when 1006 * offset is a positive value. It looks like the device return some 1007 * mmio back to the system, which actually no one could use it. 1008 */ 1009 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1010 res = &dev->resource[i + PCI_IOV_RESOURCES]; 1011 if (!res->flags || !res->parent) 1012 continue; 1013 1014 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 1015 res2 = *res; 1016 res->start += size * offset; 1017 1018 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", 1019 i, &res2, res, (offset > 0) ? "En" : "Dis", 1020 num_vfs, offset); 1021 pci_update_resource(dev, i + PCI_IOV_RESOURCES); 1022 } 1023 return 0; 1024 } 1025 #endif /* CONFIG_PCI_IOV */ 1026 1027 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) 1028 { 1029 struct pci_controller *hose = pci_bus_to_host(dev->bus); 1030 struct pnv_phb *phb = hose->private_data; 1031 struct pci_dn *pdn = pci_get_pdn(dev); 1032 struct pnv_ioda_pe *pe; 1033 1034 if (!pdn) { 1035 pr_err("%s: Device tree node not associated properly\n", 1036 pci_name(dev)); 1037 return NULL; 1038 } 1039 if (pdn->pe_number != IODA_INVALID_PE) 1040 return NULL; 1041 1042 pe = pnv_ioda_alloc_pe(phb); 1043 if (!pe) { 1044 pr_warning("%s: Not enough PE# available, disabling device\n", 1045 pci_name(dev)); 1046 return NULL; 1047 } 1048 1049 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the 1050 * pointer in the PE data structure, both should be destroyed at the 1051 * same time. However, this needs to be looked at more closely again 1052 * once we actually start removing things (Hotplug, SR-IOV, ...) 1053 * 1054 * At some point we want to remove the PDN completely anyways 1055 */ 1056 pci_dev_get(dev); 1057 pdn->pcidev = dev; 1058 pdn->pe_number = pe->pe_number; 1059 pe->flags = PNV_IODA_PE_DEV; 1060 pe->pdev = dev; 1061 pe->pbus = NULL; 1062 pe->mve_number = -1; 1063 pe->rid = dev->bus->number << 8 | pdn->devfn; 1064 1065 pe_info(pe, "Associated device to PE\n"); 1066 1067 if (pnv_ioda_configure_pe(phb, pe)) { 1068 /* XXX What do we do here ? */ 1069 pnv_ioda_free_pe(pe); 1070 pdn->pe_number = IODA_INVALID_PE; 1071 pe->pdev = NULL; 1072 pci_dev_put(dev); 1073 return NULL; 1074 } 1075 1076 /* Put PE to the list */ 1077 list_add_tail(&pe->list, &phb->ioda.pe_list); 1078 1079 return pe; 1080 } 1081 1082 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe) 1083 { 1084 struct pci_dev *dev; 1085 1086 list_for_each_entry(dev, &bus->devices, bus_list) { 1087 struct pci_dn *pdn = pci_get_pdn(dev); 1088 1089 if (pdn == NULL) { 1090 pr_warn("%s: No device node associated with device !\n", 1091 pci_name(dev)); 1092 continue; 1093 } 1094 1095 /* 1096 * In partial hotplug case, the PCI device might be still 1097 * associated with the PE and needn't attach it to the PE 1098 * again. 1099 */ 1100 if (pdn->pe_number != IODA_INVALID_PE) 1101 continue; 1102 1103 pe->device_count++; 1104 pdn->pcidev = dev; 1105 pdn->pe_number = pe->pe_number; 1106 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1107 pnv_ioda_setup_same_PE(dev->subordinate, pe); 1108 } 1109 } 1110 1111 /* 1112 * There're 2 types of PCI bus sensitive PEs: One that is compromised of 1113 * single PCI bus. Another one that contains the primary PCI bus and its 1114 * subordinate PCI devices and buses. The second type of PE is normally 1115 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. 1116 */ 1117 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) 1118 { 1119 struct pci_controller *hose = pci_bus_to_host(bus); 1120 struct pnv_phb *phb = hose->private_data; 1121 struct pnv_ioda_pe *pe = NULL; 1122 unsigned int pe_num; 1123 1124 /* 1125 * In partial hotplug case, the PE instance might be still alive. 1126 * We should reuse it instead of allocating a new one. 1127 */ 1128 pe_num = phb->ioda.pe_rmap[bus->number << 8]; 1129 if (pe_num != IODA_INVALID_PE) { 1130 pe = &phb->ioda.pe_array[pe_num]; 1131 pnv_ioda_setup_same_PE(bus, pe); 1132 return NULL; 1133 } 1134 1135 /* PE number for root bus should have been reserved */ 1136 if (pci_is_root_bus(bus) && 1137 phb->ioda.root_pe_idx != IODA_INVALID_PE) 1138 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; 1139 1140 /* Check if PE is determined by M64 */ 1141 if (!pe && phb->pick_m64_pe) 1142 pe = phb->pick_m64_pe(bus, all); 1143 1144 /* The PE number isn't pinned by M64 */ 1145 if (!pe) 1146 pe = pnv_ioda_alloc_pe(phb); 1147 1148 if (!pe) { 1149 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n", 1150 __func__, pci_domain_nr(bus), bus->number); 1151 return NULL; 1152 } 1153 1154 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); 1155 pe->pbus = bus; 1156 pe->pdev = NULL; 1157 pe->mve_number = -1; 1158 pe->rid = bus->busn_res.start << 8; 1159 1160 if (all) 1161 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n", 1162 bus->busn_res.start, bus->busn_res.end, pe->pe_number); 1163 else 1164 pe_info(pe, "Secondary bus %d associated with PE#%x\n", 1165 bus->busn_res.start, pe->pe_number); 1166 1167 if (pnv_ioda_configure_pe(phb, pe)) { 1168 /* XXX What do we do here ? */ 1169 pnv_ioda_free_pe(pe); 1170 pe->pbus = NULL; 1171 return NULL; 1172 } 1173 1174 /* Associate it with all child devices */ 1175 pnv_ioda_setup_same_PE(bus, pe); 1176 1177 /* Put PE to the list */ 1178 list_add_tail(&pe->list, &phb->ioda.pe_list); 1179 1180 return pe; 1181 } 1182 1183 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev) 1184 { 1185 int pe_num, found_pe = false, rc; 1186 long rid; 1187 struct pnv_ioda_pe *pe; 1188 struct pci_dev *gpu_pdev; 1189 struct pci_dn *npu_pdn; 1190 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus); 1191 struct pnv_phb *phb = hose->private_data; 1192 1193 /* 1194 * Due to a hardware errata PE#0 on the NPU is reserved for 1195 * error handling. This means we only have three PEs remaining 1196 * which need to be assigned to four links, implying some 1197 * links must share PEs. 1198 * 1199 * To achieve this we assign PEs such that NPUs linking the 1200 * same GPU get assigned the same PE. 1201 */ 1202 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev); 1203 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 1204 pe = &phb->ioda.pe_array[pe_num]; 1205 if (!pe->pdev) 1206 continue; 1207 1208 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) { 1209 /* 1210 * This device has the same peer GPU so should 1211 * be assigned the same PE as the existing 1212 * peer NPU. 1213 */ 1214 dev_info(&npu_pdev->dev, 1215 "Associating to existing PE %x\n", pe_num); 1216 pci_dev_get(npu_pdev); 1217 npu_pdn = pci_get_pdn(npu_pdev); 1218 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn; 1219 npu_pdn->pcidev = npu_pdev; 1220 npu_pdn->pe_number = pe_num; 1221 phb->ioda.pe_rmap[rid] = pe->pe_number; 1222 1223 /* Map the PE to this link */ 1224 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid, 1225 OpalPciBusAll, 1226 OPAL_COMPARE_RID_DEVICE_NUMBER, 1227 OPAL_COMPARE_RID_FUNCTION_NUMBER, 1228 OPAL_MAP_PE); 1229 WARN_ON(rc != OPAL_SUCCESS); 1230 found_pe = true; 1231 break; 1232 } 1233 } 1234 1235 if (!found_pe) 1236 /* 1237 * Could not find an existing PE so allocate a new 1238 * one. 1239 */ 1240 return pnv_ioda_setup_dev_PE(npu_pdev); 1241 else 1242 return pe; 1243 } 1244 1245 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus) 1246 { 1247 struct pci_dev *pdev; 1248 1249 list_for_each_entry(pdev, &bus->devices, bus_list) 1250 pnv_ioda_setup_npu_PE(pdev); 1251 } 1252 1253 static void pnv_pci_ioda_setup_PEs(void) 1254 { 1255 struct pci_controller *hose, *tmp; 1256 struct pnv_phb *phb; 1257 1258 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 1259 phb = hose->private_data; 1260 if (phb->type == PNV_PHB_NPU) { 1261 /* PE#0 is needed for error reporting */ 1262 pnv_ioda_reserve_pe(phb, 0); 1263 pnv_ioda_setup_npu_PEs(hose->bus); 1264 if (phb->model == PNV_PHB_MODEL_NPU2) 1265 pnv_npu2_init(phb); 1266 } 1267 } 1268 } 1269 1270 #ifdef CONFIG_PCI_IOV 1271 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) 1272 { 1273 struct pci_bus *bus; 1274 struct pci_controller *hose; 1275 struct pnv_phb *phb; 1276 struct pci_dn *pdn; 1277 int i, j; 1278 int m64_bars; 1279 1280 bus = pdev->bus; 1281 hose = pci_bus_to_host(bus); 1282 phb = hose->private_data; 1283 pdn = pci_get_pdn(pdev); 1284 1285 if (pdn->m64_single_mode) 1286 m64_bars = num_vfs; 1287 else 1288 m64_bars = 1; 1289 1290 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) 1291 for (j = 0; j < m64_bars; j++) { 1292 if (pdn->m64_map[j][i] == IODA_INVALID_M64) 1293 continue; 1294 opal_pci_phb_mmio_enable(phb->opal_id, 1295 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0); 1296 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc); 1297 pdn->m64_map[j][i] = IODA_INVALID_M64; 1298 } 1299 1300 kfree(pdn->m64_map); 1301 return 0; 1302 } 1303 1304 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) 1305 { 1306 struct pci_bus *bus; 1307 struct pci_controller *hose; 1308 struct pnv_phb *phb; 1309 struct pci_dn *pdn; 1310 unsigned int win; 1311 struct resource *res; 1312 int i, j; 1313 int64_t rc; 1314 int total_vfs; 1315 resource_size_t size, start; 1316 int pe_num; 1317 int m64_bars; 1318 1319 bus = pdev->bus; 1320 hose = pci_bus_to_host(bus); 1321 phb = hose->private_data; 1322 pdn = pci_get_pdn(pdev); 1323 total_vfs = pci_sriov_get_totalvfs(pdev); 1324 1325 if (pdn->m64_single_mode) 1326 m64_bars = num_vfs; 1327 else 1328 m64_bars = 1; 1329 1330 pdn->m64_map = kmalloc_array(m64_bars, 1331 sizeof(*pdn->m64_map), 1332 GFP_KERNEL); 1333 if (!pdn->m64_map) 1334 return -ENOMEM; 1335 /* Initialize the m64_map to IODA_INVALID_M64 */ 1336 for (i = 0; i < m64_bars ; i++) 1337 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++) 1338 pdn->m64_map[i][j] = IODA_INVALID_M64; 1339 1340 1341 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1342 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 1343 if (!res->flags || !res->parent) 1344 continue; 1345 1346 for (j = 0; j < m64_bars; j++) { 1347 do { 1348 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, 1349 phb->ioda.m64_bar_idx + 1, 0); 1350 1351 if (win >= phb->ioda.m64_bar_idx + 1) 1352 goto m64_failed; 1353 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); 1354 1355 pdn->m64_map[j][i] = win; 1356 1357 if (pdn->m64_single_mode) { 1358 size = pci_iov_resource_size(pdev, 1359 PCI_IOV_RESOURCES + i); 1360 start = res->start + size * j; 1361 } else { 1362 size = resource_size(res); 1363 start = res->start; 1364 } 1365 1366 /* Map the M64 here */ 1367 if (pdn->m64_single_mode) { 1368 pe_num = pdn->pe_num_map[j]; 1369 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 1370 pe_num, OPAL_M64_WINDOW_TYPE, 1371 pdn->m64_map[j][i], 0); 1372 } 1373 1374 rc = opal_pci_set_phb_mem_window(phb->opal_id, 1375 OPAL_M64_WINDOW_TYPE, 1376 pdn->m64_map[j][i], 1377 start, 1378 0, /* unused */ 1379 size); 1380 1381 1382 if (rc != OPAL_SUCCESS) { 1383 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n", 1384 win, rc); 1385 goto m64_failed; 1386 } 1387 1388 if (pdn->m64_single_mode) 1389 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1390 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2); 1391 else 1392 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1393 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1); 1394 1395 if (rc != OPAL_SUCCESS) { 1396 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n", 1397 win, rc); 1398 goto m64_failed; 1399 } 1400 } 1401 } 1402 return 0; 1403 1404 m64_failed: 1405 pnv_pci_vf_release_m64(pdev, num_vfs); 1406 return -EBUSY; 1407 } 1408 1409 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 1410 int num); 1411 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable); 1412 1413 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe) 1414 { 1415 struct iommu_table *tbl; 1416 int64_t rc; 1417 1418 tbl = pe->table_group.tables[0]; 1419 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 1420 if (rc) 1421 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 1422 1423 pnv_pci_ioda2_set_bypass(pe, false); 1424 if (pe->table_group.group) { 1425 iommu_group_put(pe->table_group.group); 1426 BUG_ON(pe->table_group.group); 1427 } 1428 iommu_tce_table_put(tbl); 1429 } 1430 1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev) 1432 { 1433 struct pci_bus *bus; 1434 struct pci_controller *hose; 1435 struct pnv_phb *phb; 1436 struct pnv_ioda_pe *pe, *pe_n; 1437 struct pci_dn *pdn; 1438 1439 bus = pdev->bus; 1440 hose = pci_bus_to_host(bus); 1441 phb = hose->private_data; 1442 pdn = pci_get_pdn(pdev); 1443 1444 if (!pdev->is_physfn) 1445 return; 1446 1447 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { 1448 if (pe->parent_dev != pdev) 1449 continue; 1450 1451 pnv_pci_ioda2_release_dma_pe(pdev, pe); 1452 1453 /* Remove from list */ 1454 mutex_lock(&phb->ioda.pe_list_mutex); 1455 list_del(&pe->list); 1456 mutex_unlock(&phb->ioda.pe_list_mutex); 1457 1458 pnv_ioda_deconfigure_pe(phb, pe); 1459 1460 pnv_ioda_free_pe(pe); 1461 } 1462 } 1463 1464 void pnv_pci_sriov_disable(struct pci_dev *pdev) 1465 { 1466 struct pci_bus *bus; 1467 struct pci_controller *hose; 1468 struct pnv_phb *phb; 1469 struct pnv_ioda_pe *pe; 1470 struct pci_dn *pdn; 1471 u16 num_vfs, i; 1472 1473 bus = pdev->bus; 1474 hose = pci_bus_to_host(bus); 1475 phb = hose->private_data; 1476 pdn = pci_get_pdn(pdev); 1477 num_vfs = pdn->num_vfs; 1478 1479 /* Release VF PEs */ 1480 pnv_ioda_release_vf_PE(pdev); 1481 1482 if (phb->type == PNV_PHB_IODA2) { 1483 if (!pdn->m64_single_mode) 1484 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map); 1485 1486 /* Release M64 windows */ 1487 pnv_pci_vf_release_m64(pdev, num_vfs); 1488 1489 /* Release PE numbers */ 1490 if (pdn->m64_single_mode) { 1491 for (i = 0; i < num_vfs; i++) { 1492 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1493 continue; 1494 1495 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1496 pnv_ioda_free_pe(pe); 1497 } 1498 } else 1499 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1500 /* Releasing pe_num_map */ 1501 kfree(pdn->pe_num_map); 1502 } 1503 } 1504 1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 1506 struct pnv_ioda_pe *pe); 1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) 1508 { 1509 struct pci_bus *bus; 1510 struct pci_controller *hose; 1511 struct pnv_phb *phb; 1512 struct pnv_ioda_pe *pe; 1513 int pe_num; 1514 u16 vf_index; 1515 struct pci_dn *pdn; 1516 1517 bus = pdev->bus; 1518 hose = pci_bus_to_host(bus); 1519 phb = hose->private_data; 1520 pdn = pci_get_pdn(pdev); 1521 1522 if (!pdev->is_physfn) 1523 return; 1524 1525 /* Reserve PE for each VF */ 1526 for (vf_index = 0; vf_index < num_vfs; vf_index++) { 1527 if (pdn->m64_single_mode) 1528 pe_num = pdn->pe_num_map[vf_index]; 1529 else 1530 pe_num = *pdn->pe_num_map + vf_index; 1531 1532 pe = &phb->ioda.pe_array[pe_num]; 1533 pe->pe_number = pe_num; 1534 pe->phb = phb; 1535 pe->flags = PNV_IODA_PE_VF; 1536 pe->pbus = NULL; 1537 pe->parent_dev = pdev; 1538 pe->mve_number = -1; 1539 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) | 1540 pci_iov_virtfn_devfn(pdev, vf_index); 1541 1542 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n", 1543 hose->global_number, pdev->bus->number, 1544 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)), 1545 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num); 1546 1547 if (pnv_ioda_configure_pe(phb, pe)) { 1548 /* XXX What do we do here ? */ 1549 pnv_ioda_free_pe(pe); 1550 pe->pdev = NULL; 1551 continue; 1552 } 1553 1554 /* Put PE to the list */ 1555 mutex_lock(&phb->ioda.pe_list_mutex); 1556 list_add_tail(&pe->list, &phb->ioda.pe_list); 1557 mutex_unlock(&phb->ioda.pe_list_mutex); 1558 1559 pnv_pci_ioda2_setup_dma_pe(phb, pe); 1560 } 1561 } 1562 1563 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1564 { 1565 struct pci_bus *bus; 1566 struct pci_controller *hose; 1567 struct pnv_phb *phb; 1568 struct pnv_ioda_pe *pe; 1569 struct pci_dn *pdn; 1570 int ret; 1571 u16 i; 1572 1573 bus = pdev->bus; 1574 hose = pci_bus_to_host(bus); 1575 phb = hose->private_data; 1576 pdn = pci_get_pdn(pdev); 1577 1578 if (phb->type == PNV_PHB_IODA2) { 1579 if (!pdn->vfs_expanded) { 1580 dev_info(&pdev->dev, "don't support this SRIOV device" 1581 " with non 64bit-prefetchable IOV BAR\n"); 1582 return -ENOSPC; 1583 } 1584 1585 /* 1586 * When M64 BARs functions in Single PE mode, the number of VFs 1587 * could be enabled must be less than the number of M64 BARs. 1588 */ 1589 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) { 1590 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n"); 1591 return -EBUSY; 1592 } 1593 1594 /* Allocating pe_num_map */ 1595 if (pdn->m64_single_mode) 1596 pdn->pe_num_map = kmalloc_array(num_vfs, 1597 sizeof(*pdn->pe_num_map), 1598 GFP_KERNEL); 1599 else 1600 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL); 1601 1602 if (!pdn->pe_num_map) 1603 return -ENOMEM; 1604 1605 if (pdn->m64_single_mode) 1606 for (i = 0; i < num_vfs; i++) 1607 pdn->pe_num_map[i] = IODA_INVALID_PE; 1608 1609 /* Calculate available PE for required VFs */ 1610 if (pdn->m64_single_mode) { 1611 for (i = 0; i < num_vfs; i++) { 1612 pe = pnv_ioda_alloc_pe(phb); 1613 if (!pe) { 1614 ret = -EBUSY; 1615 goto m64_failed; 1616 } 1617 1618 pdn->pe_num_map[i] = pe->pe_number; 1619 } 1620 } else { 1621 mutex_lock(&phb->ioda.pe_alloc_mutex); 1622 *pdn->pe_num_map = bitmap_find_next_zero_area( 1623 phb->ioda.pe_alloc, phb->ioda.total_pe_num, 1624 0, num_vfs, 0); 1625 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) { 1626 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1627 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs); 1628 kfree(pdn->pe_num_map); 1629 return -EBUSY; 1630 } 1631 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1632 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1633 } 1634 pdn->num_vfs = num_vfs; 1635 1636 /* Assign M64 window accordingly */ 1637 ret = pnv_pci_vf_assign_m64(pdev, num_vfs); 1638 if (ret) { 1639 dev_info(&pdev->dev, "Not enough M64 window resources\n"); 1640 goto m64_failed; 1641 } 1642 1643 /* 1644 * When using one M64 BAR to map one IOV BAR, we need to shift 1645 * the IOV BAR according to the PE# allocated to the VFs. 1646 * Otherwise, the PE# for the VF will conflict with others. 1647 */ 1648 if (!pdn->m64_single_mode) { 1649 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map); 1650 if (ret) 1651 goto m64_failed; 1652 } 1653 } 1654 1655 /* Setup VF PEs */ 1656 pnv_ioda_setup_vf_PE(pdev, num_vfs); 1657 1658 return 0; 1659 1660 m64_failed: 1661 if (pdn->m64_single_mode) { 1662 for (i = 0; i < num_vfs; i++) { 1663 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1664 continue; 1665 1666 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1667 pnv_ioda_free_pe(pe); 1668 } 1669 } else 1670 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1671 1672 /* Releasing pe_num_map */ 1673 kfree(pdn->pe_num_map); 1674 1675 return ret; 1676 } 1677 1678 int pcibios_sriov_disable(struct pci_dev *pdev) 1679 { 1680 pnv_pci_sriov_disable(pdev); 1681 1682 /* Release PCI data */ 1683 remove_dev_pci_data(pdev); 1684 return 0; 1685 } 1686 1687 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1688 { 1689 /* Allocate PCI data */ 1690 add_dev_pci_data(pdev); 1691 1692 return pnv_pci_sriov_enable(pdev, num_vfs); 1693 } 1694 #endif /* CONFIG_PCI_IOV */ 1695 1696 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev) 1697 { 1698 struct pci_dn *pdn = pci_get_pdn(pdev); 1699 struct pnv_ioda_pe *pe; 1700 1701 /* 1702 * The function can be called while the PE# 1703 * hasn't been assigned. Do nothing for the 1704 * case. 1705 */ 1706 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 1707 return; 1708 1709 pe = &phb->ioda.pe_array[pdn->pe_number]; 1710 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); 1711 set_dma_offset(&pdev->dev, pe->tce_bypass_base); 1712 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); 1713 /* 1714 * Note: iommu_add_device() will fail here as 1715 * for physical PE: the device is already added by now; 1716 * for virtual PE: sysfs entries are not ready yet and 1717 * tce_iommu_bus_notifier will add the device to a group later. 1718 */ 1719 } 1720 1721 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe) 1722 { 1723 unsigned short vendor = 0; 1724 struct pci_dev *pdev; 1725 1726 if (pe->device_count == 1) 1727 return true; 1728 1729 /* pe->pdev should be set if it's a single device, pe->pbus if not */ 1730 if (!pe->pbus) 1731 return true; 1732 1733 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 1734 if (!vendor) { 1735 vendor = pdev->vendor; 1736 continue; 1737 } 1738 1739 if (pdev->vendor != vendor) 1740 return false; 1741 } 1742 1743 return true; 1744 } 1745 1746 /* 1747 * Reconfigure TVE#0 to be usable as 64-bit DMA space. 1748 * 1749 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses. 1750 * Devices can only access more than that if bit 59 of the PCI address is set 1751 * by hardware, which indicates TVE#1 should be used instead of TVE#0. 1752 * Many PCI devices are not capable of addressing that many bits, and as a 1753 * result are limited to the 4GB of virtual memory made available to 32-bit 1754 * devices in TVE#0. 1755 * 1756 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit 1757 * devices by configuring the virtual memory past the first 4GB inaccessible 1758 * by 64-bit DMAs. This should only be used by devices that want more than 1759 * 4GB, and only on PEs that have no 32-bit devices. 1760 * 1761 * Currently this will only work on PHB3 (POWER8). 1762 */ 1763 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe) 1764 { 1765 u64 window_size, table_size, tce_count, addr; 1766 struct page *table_pages; 1767 u64 tce_order = 28; /* 256MB TCEs */ 1768 __be64 *tces; 1769 s64 rc; 1770 1771 /* 1772 * Window size needs to be a power of two, but needs to account for 1773 * shifting memory by the 4GB offset required to skip 32bit space. 1774 */ 1775 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32)); 1776 tce_count = window_size >> tce_order; 1777 table_size = tce_count << 3; 1778 1779 if (table_size < PAGE_SIZE) 1780 table_size = PAGE_SIZE; 1781 1782 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL, 1783 get_order(table_size)); 1784 if (!table_pages) 1785 goto err; 1786 1787 tces = page_address(table_pages); 1788 if (!tces) 1789 goto err; 1790 1791 memset(tces, 0, table_size); 1792 1793 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) { 1794 tces[(addr + (1ULL << 32)) >> tce_order] = 1795 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE); 1796 } 1797 1798 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id, 1799 pe->pe_number, 1800 /* reconfigure window 0 */ 1801 (pe->pe_number << 1) + 0, 1802 1, 1803 __pa(tces), 1804 table_size, 1805 1 << tce_order); 1806 if (rc == OPAL_SUCCESS) { 1807 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n"); 1808 return 0; 1809 } 1810 err: 1811 pe_err(pe, "Error configuring 64-bit DMA bypass\n"); 1812 return -EIO; 1813 } 1814 1815 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask) 1816 { 1817 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1818 struct pnv_phb *phb = hose->private_data; 1819 struct pci_dn *pdn = pci_get_pdn(pdev); 1820 struct pnv_ioda_pe *pe; 1821 uint64_t top; 1822 bool bypass = false; 1823 s64 rc; 1824 1825 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1826 return -ENODEV;; 1827 1828 pe = &phb->ioda.pe_array[pdn->pe_number]; 1829 if (pe->tce_bypass_enabled) { 1830 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; 1831 bypass = (dma_mask >= top); 1832 } 1833 1834 if (bypass) { 1835 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n"); 1836 set_dma_ops(&pdev->dev, &dma_direct_ops); 1837 } else { 1838 /* 1839 * If the device can't set the TCE bypass bit but still wants 1840 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to 1841 * bypass the 32-bit region and be usable for 64-bit DMAs. 1842 * The device needs to be able to address all of this space. 1843 */ 1844 if (dma_mask >> 32 && 1845 dma_mask > (memory_hotplug_max() + (1ULL << 32)) && 1846 pnv_pci_ioda_pe_single_vendor(pe) && 1847 phb->model == PNV_PHB_MODEL_PHB3) { 1848 /* Configure the bypass mode */ 1849 rc = pnv_pci_ioda_dma_64bit_bypass(pe); 1850 if (rc) 1851 return rc; 1852 /* 4GB offset bypasses 32-bit space */ 1853 set_dma_offset(&pdev->dev, (1ULL << 32)); 1854 set_dma_ops(&pdev->dev, &dma_direct_ops); 1855 } else { 1856 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n"); 1857 set_dma_ops(&pdev->dev, &dma_iommu_ops); 1858 } 1859 } 1860 *pdev->dev.dma_mask = dma_mask; 1861 1862 /* Update peer npu devices */ 1863 pnv_npu_try_dma_set_bypass(pdev, bypass); 1864 1865 return 0; 1866 } 1867 1868 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev) 1869 { 1870 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1871 struct pnv_phb *phb = hose->private_data; 1872 struct pci_dn *pdn = pci_get_pdn(pdev); 1873 struct pnv_ioda_pe *pe; 1874 u64 end, mask; 1875 1876 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1877 return 0; 1878 1879 pe = &phb->ioda.pe_array[pdn->pe_number]; 1880 if (!pe->tce_bypass_enabled) 1881 return __dma_get_required_mask(&pdev->dev); 1882 1883 1884 end = pe->tce_bypass_base + memblock_end_of_DRAM(); 1885 mask = 1ULL << (fls64(end) - 1); 1886 mask += mask - 1; 1887 1888 return mask; 1889 } 1890 1891 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, 1892 struct pci_bus *bus, 1893 bool add_to_group) 1894 { 1895 struct pci_dev *dev; 1896 1897 list_for_each_entry(dev, &bus->devices, bus_list) { 1898 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); 1899 set_dma_offset(&dev->dev, pe->tce_bypass_base); 1900 if (add_to_group) 1901 iommu_add_device(&dev->dev); 1902 1903 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1904 pnv_ioda_setup_bus_dma(pe, dev->subordinate, 1905 add_to_group); 1906 } 1907 } 1908 1909 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, 1910 bool real_mode) 1911 { 1912 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : 1913 (phb->regs + 0x210); 1914 } 1915 1916 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, 1917 unsigned long index, unsigned long npages, bool rm) 1918 { 1919 struct iommu_table_group_link *tgl = list_first_entry_or_null( 1920 &tbl->it_group_list, struct iommu_table_group_link, 1921 next); 1922 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1923 struct pnv_ioda_pe, table_group); 1924 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1925 unsigned long start, end, inc; 1926 1927 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); 1928 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + 1929 npages - 1); 1930 1931 /* p7ioc-style invalidation, 2 TCEs per write */ 1932 start |= (1ull << 63); 1933 end |= (1ull << 63); 1934 inc = 16; 1935 end |= inc - 1; /* round up end to be different than start */ 1936 1937 mb(); /* Ensure above stores are visible */ 1938 while (start <= end) { 1939 if (rm) 1940 __raw_rm_writeq(cpu_to_be64(start), invalidate); 1941 else 1942 __raw_writeq(cpu_to_be64(start), invalidate); 1943 start += inc; 1944 } 1945 1946 /* 1947 * The iommu layer will do another mb() for us on build() 1948 * and we don't care on free() 1949 */ 1950 } 1951 1952 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, 1953 long npages, unsigned long uaddr, 1954 enum dma_data_direction direction, 1955 unsigned long attrs) 1956 { 1957 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1958 attrs); 1959 1960 if (!ret) 1961 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1962 1963 return ret; 1964 } 1965 1966 #ifdef CONFIG_IOMMU_API 1967 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index, 1968 unsigned long *hpa, enum dma_data_direction *direction) 1969 { 1970 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 1971 1972 if (!ret) 1973 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false); 1974 1975 return ret; 1976 } 1977 1978 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index, 1979 unsigned long *hpa, enum dma_data_direction *direction) 1980 { 1981 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 1982 1983 if (!ret) 1984 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true); 1985 1986 return ret; 1987 } 1988 #endif 1989 1990 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, 1991 long npages) 1992 { 1993 pnv_tce_free(tbl, index, npages); 1994 1995 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1996 } 1997 1998 static struct iommu_table_ops pnv_ioda1_iommu_ops = { 1999 .set = pnv_ioda1_tce_build, 2000 #ifdef CONFIG_IOMMU_API 2001 .exchange = pnv_ioda1_tce_xchg, 2002 .exchange_rm = pnv_ioda1_tce_xchg_rm, 2003 #endif 2004 .clear = pnv_ioda1_tce_free, 2005 .get = pnv_tce_get, 2006 }; 2007 2008 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) 2009 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) 2010 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) 2011 2012 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 2013 { 2014 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm); 2015 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL; 2016 2017 mb(); /* Ensure previous TCE table stores are visible */ 2018 if (rm) 2019 __raw_rm_writeq(cpu_to_be64(val), invalidate); 2020 else 2021 __raw_writeq(cpu_to_be64(val), invalidate); 2022 } 2023 2024 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) 2025 { 2026 /* 01xb - invalidate TCEs that match the specified PE# */ 2027 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); 2028 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); 2029 2030 mb(); /* Ensure above stores are visible */ 2031 __raw_writeq(cpu_to_be64(val), invalidate); 2032 } 2033 2034 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, 2035 unsigned shift, unsigned long index, 2036 unsigned long npages) 2037 { 2038 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 2039 unsigned long start, end, inc; 2040 2041 /* We'll invalidate DMA address in PE scope */ 2042 start = PHB3_TCE_KILL_INVAL_ONE; 2043 start |= (pe->pe_number & 0xFF); 2044 end = start; 2045 2046 /* Figure out the start, end and step */ 2047 start |= (index << shift); 2048 end |= ((index + npages - 1) << shift); 2049 inc = (0x1ull << shift); 2050 mb(); 2051 2052 while (start <= end) { 2053 if (rm) 2054 __raw_rm_writeq(cpu_to_be64(start), invalidate); 2055 else 2056 __raw_writeq(cpu_to_be64(start), invalidate); 2057 start += inc; 2058 } 2059 } 2060 2061 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) 2062 { 2063 struct pnv_phb *phb = pe->phb; 2064 2065 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 2066 pnv_pci_phb3_tce_invalidate_pe(pe); 2067 else 2068 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, 2069 pe->pe_number, 0, 0, 0); 2070 } 2071 2072 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, 2073 unsigned long index, unsigned long npages, bool rm) 2074 { 2075 struct iommu_table_group_link *tgl; 2076 2077 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) { 2078 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 2079 struct pnv_ioda_pe, table_group); 2080 struct pnv_phb *phb = pe->phb; 2081 unsigned int shift = tbl->it_page_shift; 2082 2083 /* 2084 * NVLink1 can use the TCE kill register directly as 2085 * it's the same as PHB3. NVLink2 is different and 2086 * should go via the OPAL call. 2087 */ 2088 if (phb->model == PNV_PHB_MODEL_NPU) { 2089 /* 2090 * The NVLink hardware does not support TCE kill 2091 * per TCE entry so we have to invalidate 2092 * the entire cache for it. 2093 */ 2094 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 2095 continue; 2096 } 2097 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 2098 pnv_pci_phb3_tce_invalidate(pe, rm, shift, 2099 index, npages); 2100 else 2101 opal_pci_tce_kill(phb->opal_id, 2102 OPAL_PCI_TCE_KILL_PAGES, 2103 pe->pe_number, 1u << shift, 2104 index << shift, npages); 2105 } 2106 } 2107 2108 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 2109 { 2110 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3) 2111 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 2112 else 2113 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0); 2114 } 2115 2116 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, 2117 long npages, unsigned long uaddr, 2118 enum dma_data_direction direction, 2119 unsigned long attrs) 2120 { 2121 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 2122 attrs); 2123 2124 if (!ret) 2125 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2126 2127 return ret; 2128 } 2129 2130 #ifdef CONFIG_IOMMU_API 2131 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index, 2132 unsigned long *hpa, enum dma_data_direction *direction) 2133 { 2134 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 2135 2136 if (!ret) 2137 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false); 2138 2139 return ret; 2140 } 2141 2142 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index, 2143 unsigned long *hpa, enum dma_data_direction *direction) 2144 { 2145 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 2146 2147 if (!ret) 2148 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true); 2149 2150 return ret; 2151 } 2152 #endif 2153 2154 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, 2155 long npages) 2156 { 2157 pnv_tce_free(tbl, index, npages); 2158 2159 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2160 } 2161 2162 static void pnv_ioda2_table_free(struct iommu_table *tbl) 2163 { 2164 pnv_pci_ioda2_table_free_pages(tbl); 2165 } 2166 2167 static struct iommu_table_ops pnv_ioda2_iommu_ops = { 2168 .set = pnv_ioda2_tce_build, 2169 #ifdef CONFIG_IOMMU_API 2170 .exchange = pnv_ioda2_tce_xchg, 2171 .exchange_rm = pnv_ioda2_tce_xchg_rm, 2172 #endif 2173 .clear = pnv_ioda2_tce_free, 2174 .get = pnv_tce_get, 2175 .free = pnv_ioda2_table_free, 2176 }; 2177 2178 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) 2179 { 2180 unsigned int *weight = (unsigned int *)data; 2181 2182 /* This is quite simplistic. The "base" weight of a device 2183 * is 10. 0 means no DMA is to be accounted for it. 2184 */ 2185 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2186 return 0; 2187 2188 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || 2189 dev->class == PCI_CLASS_SERIAL_USB_OHCI || 2190 dev->class == PCI_CLASS_SERIAL_USB_EHCI) 2191 *weight += 3; 2192 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) 2193 *weight += 15; 2194 else 2195 *weight += 10; 2196 2197 return 0; 2198 } 2199 2200 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) 2201 { 2202 unsigned int weight = 0; 2203 2204 /* SRIOV VF has same DMA32 weight as its PF */ 2205 #ifdef CONFIG_PCI_IOV 2206 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { 2207 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); 2208 return weight; 2209 } 2210 #endif 2211 2212 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { 2213 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); 2214 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { 2215 struct pci_dev *pdev; 2216 2217 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) 2218 pnv_pci_ioda_dev_dma_weight(pdev, &weight); 2219 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { 2220 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); 2221 } 2222 2223 return weight; 2224 } 2225 2226 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, 2227 struct pnv_ioda_pe *pe) 2228 { 2229 2230 struct page *tce_mem = NULL; 2231 struct iommu_table *tbl; 2232 unsigned int weight, total_weight = 0; 2233 unsigned int tce32_segsz, base, segs, avail, i; 2234 int64_t rc; 2235 void *addr; 2236 2237 /* XXX FIXME: Handle 64-bit only DMA devices */ 2238 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ 2239 /* XXX FIXME: Allocate multi-level tables on PHB3 */ 2240 weight = pnv_pci_ioda_pe_dma_weight(pe); 2241 if (!weight) 2242 return; 2243 2244 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, 2245 &total_weight); 2246 segs = (weight * phb->ioda.dma32_count) / total_weight; 2247 if (!segs) 2248 segs = 1; 2249 2250 /* 2251 * Allocate contiguous DMA32 segments. We begin with the expected 2252 * number of segments. With one more attempt, the number of DMA32 2253 * segments to be allocated is decreased by one until one segment 2254 * is allocated successfully. 2255 */ 2256 do { 2257 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { 2258 for (avail = 0, i = base; i < base + segs; i++) { 2259 if (phb->ioda.dma32_segmap[i] == 2260 IODA_INVALID_PE) 2261 avail++; 2262 } 2263 2264 if (avail == segs) 2265 goto found; 2266 } 2267 } while (--segs); 2268 2269 if (!segs) { 2270 pe_warn(pe, "No available DMA32 segments\n"); 2271 return; 2272 } 2273 2274 found: 2275 tbl = pnv_pci_table_alloc(phb->hose->node); 2276 if (WARN_ON(!tbl)) 2277 return; 2278 2279 iommu_register_group(&pe->table_group, phb->hose->global_number, 2280 pe->pe_number); 2281 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); 2282 2283 /* Grab a 32-bit TCE table */ 2284 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", 2285 weight, total_weight, base, segs); 2286 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", 2287 base * PNV_IODA1_DMA32_SEGSIZE, 2288 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); 2289 2290 /* XXX Currently, we allocate one big contiguous table for the 2291 * TCEs. We only really need one chunk per 256M of TCE space 2292 * (ie per segment) but that's an optimization for later, it 2293 * requires some added smarts with our get/put_tce implementation 2294 * 2295 * Each TCE page is 4KB in size and each TCE entry occupies 8 2296 * bytes 2297 */ 2298 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); 2299 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, 2300 get_order(tce32_segsz * segs)); 2301 if (!tce_mem) { 2302 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); 2303 goto fail; 2304 } 2305 addr = page_address(tce_mem); 2306 memset(addr, 0, tce32_segsz * segs); 2307 2308 /* Configure HW */ 2309 for (i = 0; i < segs; i++) { 2310 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2311 pe->pe_number, 2312 base + i, 1, 2313 __pa(addr) + tce32_segsz * i, 2314 tce32_segsz, IOMMU_PAGE_SIZE_4K); 2315 if (rc) { 2316 pe_err(pe, " Failed to configure 32-bit TCE table," 2317 " err %ld\n", rc); 2318 goto fail; 2319 } 2320 } 2321 2322 /* Setup DMA32 segment mapping */ 2323 for (i = base; i < base + segs; i++) 2324 phb->ioda.dma32_segmap[i] = pe->pe_number; 2325 2326 /* Setup linux iommu table */ 2327 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, 2328 base * PNV_IODA1_DMA32_SEGSIZE, 2329 IOMMU_PAGE_SHIFT_4K); 2330 2331 tbl->it_ops = &pnv_ioda1_iommu_ops; 2332 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; 2333 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; 2334 iommu_init_table(tbl, phb->hose->node); 2335 2336 if (pe->flags & PNV_IODA_PE_DEV) { 2337 /* 2338 * Setting table base here only for carrying iommu_group 2339 * further down to let iommu_add_device() do the job. 2340 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2341 */ 2342 set_iommu_table_base(&pe->pdev->dev, tbl); 2343 iommu_add_device(&pe->pdev->dev); 2344 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2345 pnv_ioda_setup_bus_dma(pe, pe->pbus, true); 2346 2347 return; 2348 fail: 2349 /* XXX Failure: Try to fallback to 64-bit only ? */ 2350 if (tce_mem) 2351 __free_pages(tce_mem, get_order(tce32_segsz * segs)); 2352 if (tbl) { 2353 pnv_pci_unlink_table_and_group(tbl, &pe->table_group); 2354 iommu_tce_table_put(tbl); 2355 } 2356 } 2357 2358 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, 2359 int num, struct iommu_table *tbl) 2360 { 2361 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2362 table_group); 2363 struct pnv_phb *phb = pe->phb; 2364 int64_t rc; 2365 const unsigned long size = tbl->it_indirect_levels ? 2366 tbl->it_level_size : tbl->it_size; 2367 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; 2368 const __u64 win_size = tbl->it_size << tbl->it_page_shift; 2369 2370 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num, 2371 start_addr, start_addr + win_size - 1, 2372 IOMMU_PAGE_SIZE(tbl)); 2373 2374 /* 2375 * Map TCE table through TVT. The TVE index is the PE number 2376 * shifted by 1 bit for 32-bits DMA space. 2377 */ 2378 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2379 pe->pe_number, 2380 (pe->pe_number << 1) + num, 2381 tbl->it_indirect_levels + 1, 2382 __pa(tbl->it_base), 2383 size << 3, 2384 IOMMU_PAGE_SIZE(tbl)); 2385 if (rc) { 2386 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc); 2387 return rc; 2388 } 2389 2390 pnv_pci_link_table_and_group(phb->hose->node, num, 2391 tbl, &pe->table_group); 2392 pnv_pci_ioda2_tce_invalidate_pe(pe); 2393 2394 return 0; 2395 } 2396 2397 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) 2398 { 2399 uint16_t window_id = (pe->pe_number << 1 ) + 1; 2400 int64_t rc; 2401 2402 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); 2403 if (enable) { 2404 phys_addr_t top = memblock_end_of_DRAM(); 2405 2406 top = roundup_pow_of_two(top); 2407 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2408 pe->pe_number, 2409 window_id, 2410 pe->tce_bypass_base, 2411 top); 2412 } else { 2413 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2414 pe->pe_number, 2415 window_id, 2416 pe->tce_bypass_base, 2417 0); 2418 } 2419 if (rc) 2420 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); 2421 else 2422 pe->tce_bypass_enabled = enable; 2423 } 2424 2425 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2426 __u32 page_shift, __u64 window_size, __u32 levels, 2427 struct iommu_table *tbl); 2428 2429 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, 2430 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2431 struct iommu_table **ptbl) 2432 { 2433 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2434 table_group); 2435 int nid = pe->phb->hose->node; 2436 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; 2437 long ret; 2438 struct iommu_table *tbl; 2439 2440 tbl = pnv_pci_table_alloc(nid); 2441 if (!tbl) 2442 return -ENOMEM; 2443 2444 tbl->it_ops = &pnv_ioda2_iommu_ops; 2445 2446 ret = pnv_pci_ioda2_table_alloc_pages(nid, 2447 bus_offset, page_shift, window_size, 2448 levels, tbl); 2449 if (ret) { 2450 iommu_tce_table_put(tbl); 2451 return ret; 2452 } 2453 2454 *ptbl = tbl; 2455 2456 return 0; 2457 } 2458 2459 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) 2460 { 2461 struct iommu_table *tbl = NULL; 2462 long rc; 2463 2464 /* 2465 * crashkernel= specifies the kdump kernel's maximum memory at 2466 * some offset and there is no guaranteed the result is a power 2467 * of 2, which will cause errors later. 2468 */ 2469 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); 2470 2471 /* 2472 * In memory constrained environments, e.g. kdump kernel, the 2473 * DMA window can be larger than available memory, which will 2474 * cause errors later. 2475 */ 2476 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory); 2477 2478 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, 2479 IOMMU_PAGE_SHIFT_4K, 2480 window_size, 2481 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl); 2482 if (rc) { 2483 pe_err(pe, "Failed to create 32-bit TCE table, err %ld", 2484 rc); 2485 return rc; 2486 } 2487 2488 iommu_init_table(tbl, pe->phb->hose->node); 2489 2490 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); 2491 if (rc) { 2492 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", 2493 rc); 2494 iommu_tce_table_put(tbl); 2495 return rc; 2496 } 2497 2498 if (!pnv_iommu_bypass_disabled) 2499 pnv_pci_ioda2_set_bypass(pe, true); 2500 2501 /* 2502 * Setting table base here only for carrying iommu_group 2503 * further down to let iommu_add_device() do the job. 2504 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2505 */ 2506 if (pe->flags & PNV_IODA_PE_DEV) 2507 set_iommu_table_base(&pe->pdev->dev, tbl); 2508 2509 return 0; 2510 } 2511 2512 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV) 2513 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 2514 int num) 2515 { 2516 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2517 table_group); 2518 struct pnv_phb *phb = pe->phb; 2519 long ret; 2520 2521 pe_info(pe, "Removing DMA window #%d\n", num); 2522 2523 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 2524 (pe->pe_number << 1) + num, 2525 0/* levels */, 0/* table address */, 2526 0/* table size */, 0/* page size */); 2527 if (ret) 2528 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); 2529 else 2530 pnv_pci_ioda2_tce_invalidate_pe(pe); 2531 2532 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 2533 2534 return ret; 2535 } 2536 #endif 2537 2538 #ifdef CONFIG_IOMMU_API 2539 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, 2540 __u64 window_size, __u32 levels) 2541 { 2542 unsigned long bytes = 0; 2543 const unsigned window_shift = ilog2(window_size); 2544 unsigned entries_shift = window_shift - page_shift; 2545 unsigned table_shift = entries_shift + 3; 2546 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); 2547 unsigned long direct_table_size; 2548 2549 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || 2550 (window_size > memory_hotplug_max()) || 2551 !is_power_of_2(window_size)) 2552 return 0; 2553 2554 /* Calculate a direct table size from window_size and levels */ 2555 entries_shift = (entries_shift + levels - 1) / levels; 2556 table_shift = entries_shift + 3; 2557 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); 2558 direct_table_size = 1UL << table_shift; 2559 2560 for ( ; levels; --levels) { 2561 bytes += _ALIGN_UP(tce_table_size, direct_table_size); 2562 2563 tce_table_size /= direct_table_size; 2564 tce_table_size <<= 3; 2565 tce_table_size = max_t(unsigned long, 2566 tce_table_size, direct_table_size); 2567 } 2568 2569 return bytes; 2570 } 2571 2572 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) 2573 { 2574 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2575 table_group); 2576 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ 2577 struct iommu_table *tbl = pe->table_group.tables[0]; 2578 2579 pnv_pci_ioda2_set_bypass(pe, false); 2580 pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2581 if (pe->pbus) 2582 pnv_ioda_setup_bus_dma(pe, pe->pbus, false); 2583 iommu_tce_table_put(tbl); 2584 } 2585 2586 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) 2587 { 2588 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2589 table_group); 2590 2591 pnv_pci_ioda2_setup_default_config(pe); 2592 if (pe->pbus) 2593 pnv_ioda_setup_bus_dma(pe, pe->pbus, false); 2594 } 2595 2596 static struct iommu_table_group_ops pnv_pci_ioda2_ops = { 2597 .get_table_size = pnv_pci_ioda2_get_table_size, 2598 .create_table = pnv_pci_ioda2_create_table, 2599 .set_window = pnv_pci_ioda2_set_window, 2600 .unset_window = pnv_pci_ioda2_unset_window, 2601 .take_ownership = pnv_ioda2_take_ownership, 2602 .release_ownership = pnv_ioda2_release_ownership, 2603 }; 2604 2605 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque) 2606 { 2607 struct pci_controller *hose; 2608 struct pnv_phb *phb; 2609 struct pnv_ioda_pe **ptmppe = opaque; 2610 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev); 2611 struct pci_dn *pdn = pci_get_pdn(pdev); 2612 2613 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 2614 return 0; 2615 2616 hose = pci_bus_to_host(pdev->bus); 2617 phb = hose->private_data; 2618 if (phb->type != PNV_PHB_NPU) 2619 return 0; 2620 2621 *ptmppe = &phb->ioda.pe_array[pdn->pe_number]; 2622 2623 return 1; 2624 } 2625 2626 /* 2627 * This returns PE of associated NPU. 2628 * This assumes that NPU is in the same IOMMU group with GPU and there is 2629 * no other PEs. 2630 */ 2631 static struct pnv_ioda_pe *gpe_table_group_to_npe( 2632 struct iommu_table_group *table_group) 2633 { 2634 struct pnv_ioda_pe *npe = NULL; 2635 int ret = iommu_group_for_each_dev(table_group->group, &npe, 2636 gpe_table_group_to_npe_cb); 2637 2638 BUG_ON(!ret || !npe); 2639 2640 return npe; 2641 } 2642 2643 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group, 2644 int num, struct iommu_table *tbl) 2645 { 2646 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl); 2647 2648 if (ret) 2649 return ret; 2650 2651 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl); 2652 if (ret) 2653 pnv_pci_ioda2_unset_window(table_group, num); 2654 2655 return ret; 2656 } 2657 2658 static long pnv_pci_ioda2_npu_unset_window( 2659 struct iommu_table_group *table_group, 2660 int num) 2661 { 2662 long ret = pnv_pci_ioda2_unset_window(table_group, num); 2663 2664 if (ret) 2665 return ret; 2666 2667 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num); 2668 } 2669 2670 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group) 2671 { 2672 /* 2673 * Detach NPU first as pnv_ioda2_take_ownership() will destroy 2674 * the iommu_table if 32bit DMA is enabled. 2675 */ 2676 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group)); 2677 pnv_ioda2_take_ownership(table_group); 2678 } 2679 2680 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = { 2681 .get_table_size = pnv_pci_ioda2_get_table_size, 2682 .create_table = pnv_pci_ioda2_create_table, 2683 .set_window = pnv_pci_ioda2_npu_set_window, 2684 .unset_window = pnv_pci_ioda2_npu_unset_window, 2685 .take_ownership = pnv_ioda2_npu_take_ownership, 2686 .release_ownership = pnv_ioda2_release_ownership, 2687 }; 2688 2689 static void pnv_pci_ioda_setup_iommu_api(void) 2690 { 2691 struct pci_controller *hose, *tmp; 2692 struct pnv_phb *phb; 2693 struct pnv_ioda_pe *pe, *gpe; 2694 2695 /* 2696 * Now we have all PHBs discovered, time to add NPU devices to 2697 * the corresponding IOMMU groups. 2698 */ 2699 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 2700 phb = hose->private_data; 2701 2702 if (phb->type != PNV_PHB_NPU) 2703 continue; 2704 2705 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2706 gpe = pnv_pci_npu_setup_iommu(pe); 2707 if (gpe) 2708 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops; 2709 } 2710 } 2711 } 2712 #else /* !CONFIG_IOMMU_API */ 2713 static void pnv_pci_ioda_setup_iommu_api(void) { }; 2714 #endif 2715 2716 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift, 2717 unsigned levels, unsigned long limit, 2718 unsigned long *current_offset, unsigned long *total_allocated) 2719 { 2720 struct page *tce_mem = NULL; 2721 __be64 *addr, *tmp; 2722 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT; 2723 unsigned long allocated = 1UL << (order + PAGE_SHIFT); 2724 unsigned entries = 1UL << (shift - 3); 2725 long i; 2726 2727 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order); 2728 if (!tce_mem) { 2729 pr_err("Failed to allocate a TCE memory, order=%d\n", order); 2730 return NULL; 2731 } 2732 addr = page_address(tce_mem); 2733 memset(addr, 0, allocated); 2734 *total_allocated += allocated; 2735 2736 --levels; 2737 if (!levels) { 2738 *current_offset += allocated; 2739 return addr; 2740 } 2741 2742 for (i = 0; i < entries; ++i) { 2743 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift, 2744 levels, limit, current_offset, total_allocated); 2745 if (!tmp) 2746 break; 2747 2748 addr[i] = cpu_to_be64(__pa(tmp) | 2749 TCE_PCI_READ | TCE_PCI_WRITE); 2750 2751 if (*current_offset >= limit) 2752 break; 2753 } 2754 2755 return addr; 2756 } 2757 2758 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2759 unsigned long size, unsigned level); 2760 2761 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2762 __u32 page_shift, __u64 window_size, __u32 levels, 2763 struct iommu_table *tbl) 2764 { 2765 void *addr; 2766 unsigned long offset = 0, level_shift, total_allocated = 0; 2767 const unsigned window_shift = ilog2(window_size); 2768 unsigned entries_shift = window_shift - page_shift; 2769 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT); 2770 const unsigned long tce_table_size = 1UL << table_shift; 2771 2772 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS)) 2773 return -EINVAL; 2774 2775 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size)) 2776 return -EINVAL; 2777 2778 /* Adjust direct table size from window_size and levels */ 2779 entries_shift = (entries_shift + levels - 1) / levels; 2780 level_shift = entries_shift + 3; 2781 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT); 2782 2783 if ((level_shift - 3) * levels + page_shift >= 60) 2784 return -EINVAL; 2785 2786 /* Allocate TCE table */ 2787 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift, 2788 levels, tce_table_size, &offset, &total_allocated); 2789 2790 /* addr==NULL means that the first level allocation failed */ 2791 if (!addr) 2792 return -ENOMEM; 2793 2794 /* 2795 * First level was allocated but some lower level failed as 2796 * we did not allocate as much as we wanted, 2797 * release partially allocated table. 2798 */ 2799 if (offset < tce_table_size) { 2800 pnv_pci_ioda2_table_do_free_pages(addr, 2801 1ULL << (level_shift - 3), levels - 1); 2802 return -ENOMEM; 2803 } 2804 2805 /* Setup linux iommu table */ 2806 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset, 2807 page_shift); 2808 tbl->it_level_size = 1ULL << (level_shift - 3); 2809 tbl->it_indirect_levels = levels - 1; 2810 tbl->it_allocated_size = total_allocated; 2811 2812 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n", 2813 window_size, tce_table_size, bus_offset); 2814 2815 return 0; 2816 } 2817 2818 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2819 unsigned long size, unsigned level) 2820 { 2821 const unsigned long addr_ul = (unsigned long) addr & 2822 ~(TCE_PCI_READ | TCE_PCI_WRITE); 2823 2824 if (level) { 2825 long i; 2826 u64 *tmp = (u64 *) addr_ul; 2827 2828 for (i = 0; i < size; ++i) { 2829 unsigned long hpa = be64_to_cpu(tmp[i]); 2830 2831 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE))) 2832 continue; 2833 2834 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size, 2835 level - 1); 2836 } 2837 } 2838 2839 free_pages(addr_ul, get_order(size << 3)); 2840 } 2841 2842 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl) 2843 { 2844 const unsigned long size = tbl->it_indirect_levels ? 2845 tbl->it_level_size : tbl->it_size; 2846 2847 if (!tbl->it_size) 2848 return; 2849 2850 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size, 2851 tbl->it_indirect_levels); 2852 } 2853 2854 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 2855 struct pnv_ioda_pe *pe) 2856 { 2857 int64_t rc; 2858 2859 if (!pnv_pci_ioda_pe_dma_weight(pe)) 2860 return; 2861 2862 /* TVE #1 is selected by PCI address bit 59 */ 2863 pe->tce_bypass_base = 1ull << 59; 2864 2865 iommu_register_group(&pe->table_group, phb->hose->global_number, 2866 pe->pe_number); 2867 2868 /* The PE will reserve all possible 32-bits space */ 2869 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", 2870 phb->ioda.m32_pci_base); 2871 2872 /* Setup linux iommu table */ 2873 pe->table_group.tce32_start = 0; 2874 pe->table_group.tce32_size = phb->ioda.m32_pci_base; 2875 pe->table_group.max_dynamic_windows_supported = 2876 IOMMU_TABLE_GROUP_MAX_TABLES; 2877 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; 2878 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M; 2879 #ifdef CONFIG_IOMMU_API 2880 pe->table_group.ops = &pnv_pci_ioda2_ops; 2881 #endif 2882 2883 rc = pnv_pci_ioda2_setup_default_config(pe); 2884 if (rc) 2885 return; 2886 2887 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2888 pnv_ioda_setup_bus_dma(pe, pe->pbus, true); 2889 } 2890 2891 #ifdef CONFIG_PCI_MSI 2892 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq) 2893 { 2894 struct pnv_phb *phb = container_of(chip, struct pnv_phb, 2895 ioda.irq_chip); 2896 2897 return opal_pci_msi_eoi(phb->opal_id, hw_irq); 2898 } 2899 2900 static void pnv_ioda2_msi_eoi(struct irq_data *d) 2901 { 2902 int64_t rc; 2903 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 2904 struct irq_chip *chip = irq_data_get_irq_chip(d); 2905 2906 rc = pnv_opal_pci_msi_eoi(chip, hw_irq); 2907 WARN_ON_ONCE(rc); 2908 2909 icp_native_eoi(d); 2910 } 2911 2912 2913 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) 2914 { 2915 struct irq_data *idata; 2916 struct irq_chip *ichip; 2917 2918 /* The MSI EOI OPAL call is only needed on PHB3 */ 2919 if (phb->model != PNV_PHB_MODEL_PHB3) 2920 return; 2921 2922 if (!phb->ioda.irq_chip_init) { 2923 /* 2924 * First time we setup an MSI IRQ, we need to setup the 2925 * corresponding IRQ chip to route correctly. 2926 */ 2927 idata = irq_get_irq_data(virq); 2928 ichip = irq_data_get_irq_chip(idata); 2929 phb->ioda.irq_chip_init = 1; 2930 phb->ioda.irq_chip = *ichip; 2931 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; 2932 } 2933 irq_set_chip(virq, &phb->ioda.irq_chip); 2934 } 2935 2936 /* 2937 * Returns true iff chip is something that we could call 2938 * pnv_opal_pci_msi_eoi for. 2939 */ 2940 bool is_pnv_opal_msi(struct irq_chip *chip) 2941 { 2942 return chip->irq_eoi == pnv_ioda2_msi_eoi; 2943 } 2944 EXPORT_SYMBOL_GPL(is_pnv_opal_msi); 2945 2946 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, 2947 unsigned int hwirq, unsigned int virq, 2948 unsigned int is_64, struct msi_msg *msg) 2949 { 2950 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); 2951 unsigned int xive_num = hwirq - phb->msi_base; 2952 __be32 data; 2953 int rc; 2954 2955 /* No PE assigned ? bail out ... no MSI for you ! */ 2956 if (pe == NULL) 2957 return -ENXIO; 2958 2959 /* Check if we have an MVE */ 2960 if (pe->mve_number < 0) 2961 return -ENXIO; 2962 2963 /* Force 32-bit MSI on some broken devices */ 2964 if (dev->no_64bit_msi) 2965 is_64 = 0; 2966 2967 /* Assign XIVE to PE */ 2968 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); 2969 if (rc) { 2970 pr_warn("%s: OPAL error %d setting XIVE %d PE\n", 2971 pci_name(dev), rc, xive_num); 2972 return -EIO; 2973 } 2974 2975 if (is_64) { 2976 __be64 addr64; 2977 2978 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, 2979 &addr64, &data); 2980 if (rc) { 2981 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", 2982 pci_name(dev), rc); 2983 return -EIO; 2984 } 2985 msg->address_hi = be64_to_cpu(addr64) >> 32; 2986 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; 2987 } else { 2988 __be32 addr32; 2989 2990 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, 2991 &addr32, &data); 2992 if (rc) { 2993 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", 2994 pci_name(dev), rc); 2995 return -EIO; 2996 } 2997 msg->address_hi = 0; 2998 msg->address_lo = be32_to_cpu(addr32); 2999 } 3000 msg->data = be32_to_cpu(data); 3001 3002 pnv_set_msi_irq_chip(phb, virq); 3003 3004 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," 3005 " address=%x_%08x data=%x PE# %x\n", 3006 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, 3007 msg->address_hi, msg->address_lo, data, pe->pe_number); 3008 3009 return 0; 3010 } 3011 3012 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) 3013 { 3014 unsigned int count; 3015 const __be32 *prop = of_get_property(phb->hose->dn, 3016 "ibm,opal-msi-ranges", NULL); 3017 if (!prop) { 3018 /* BML Fallback */ 3019 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); 3020 } 3021 if (!prop) 3022 return; 3023 3024 phb->msi_base = be32_to_cpup(prop); 3025 count = be32_to_cpup(prop + 1); 3026 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { 3027 pr_err("PCI %d: Failed to allocate MSI bitmap !\n", 3028 phb->hose->global_number); 3029 return; 3030 } 3031 3032 phb->msi_setup = pnv_pci_ioda_msi_setup; 3033 phb->msi32_support = 1; 3034 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", 3035 count, phb->msi_base); 3036 } 3037 #else 3038 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { } 3039 #endif /* CONFIG_PCI_MSI */ 3040 3041 #ifdef CONFIG_PCI_IOV 3042 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) 3043 { 3044 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3045 struct pnv_phb *phb = hose->private_data; 3046 const resource_size_t gate = phb->ioda.m64_segsize >> 2; 3047 struct resource *res; 3048 int i; 3049 resource_size_t size, total_vf_bar_sz; 3050 struct pci_dn *pdn; 3051 int mul, total_vfs; 3052 3053 if (!pdev->is_physfn || pdev->is_added) 3054 return; 3055 3056 pdn = pci_get_pdn(pdev); 3057 pdn->vfs_expanded = 0; 3058 pdn->m64_single_mode = false; 3059 3060 total_vfs = pci_sriov_get_totalvfs(pdev); 3061 mul = phb->ioda.total_pe_num; 3062 total_vf_bar_sz = 0; 3063 3064 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 3065 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 3066 if (!res->flags || res->parent) 3067 continue; 3068 if (!pnv_pci_is_m64_flags(res->flags)) { 3069 dev_warn(&pdev->dev, "Don't support SR-IOV with" 3070 " non M64 VF BAR%d: %pR. \n", 3071 i, res); 3072 goto truncate_iov; 3073 } 3074 3075 total_vf_bar_sz += pci_iov_resource_size(pdev, 3076 i + PCI_IOV_RESOURCES); 3077 3078 /* 3079 * If bigger than quarter of M64 segment size, just round up 3080 * power of two. 3081 * 3082 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict 3083 * with other devices, IOV BAR size is expanded to be 3084 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64 3085 * segment size , the expanded size would equal to half of the 3086 * whole M64 space size, which will exhaust the M64 Space and 3087 * limit the system flexibility. This is a design decision to 3088 * set the boundary to quarter of the M64 segment size. 3089 */ 3090 if (total_vf_bar_sz > gate) { 3091 mul = roundup_pow_of_two(total_vfs); 3092 dev_info(&pdev->dev, 3093 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n", 3094 total_vf_bar_sz, gate, mul); 3095 pdn->m64_single_mode = true; 3096 break; 3097 } 3098 } 3099 3100 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 3101 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 3102 if (!res->flags || res->parent) 3103 continue; 3104 3105 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); 3106 /* 3107 * On PHB3, the minimum size alignment of M64 BAR in single 3108 * mode is 32MB. 3109 */ 3110 if (pdn->m64_single_mode && (size < SZ_32M)) 3111 goto truncate_iov; 3112 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res); 3113 res->end = res->start + size * mul - 1; 3114 dev_dbg(&pdev->dev, " %pR\n", res); 3115 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", 3116 i, res, mul); 3117 } 3118 pdn->vfs_expanded = mul; 3119 3120 return; 3121 3122 truncate_iov: 3123 /* To save MMIO space, IOV BAR is truncated. */ 3124 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 3125 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 3126 res->flags = 0; 3127 res->end = res->start - 1; 3128 } 3129 } 3130 #endif /* CONFIG_PCI_IOV */ 3131 3132 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, 3133 struct resource *res) 3134 { 3135 struct pnv_phb *phb = pe->phb; 3136 struct pci_bus_region region; 3137 int index; 3138 int64_t rc; 3139 3140 if (!res || !res->flags || res->start > res->end) 3141 return; 3142 3143 if (res->flags & IORESOURCE_IO) { 3144 region.start = res->start - phb->ioda.io_pci_base; 3145 region.end = res->end - phb->ioda.io_pci_base; 3146 index = region.start / phb->ioda.io_segsize; 3147 3148 while (index < phb->ioda.total_pe_num && 3149 region.start <= region.end) { 3150 phb->ioda.io_segmap[index] = pe->pe_number; 3151 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3152 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); 3153 if (rc != OPAL_SUCCESS) { 3154 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n", 3155 __func__, rc, index, pe->pe_number); 3156 break; 3157 } 3158 3159 region.start += phb->ioda.io_segsize; 3160 index++; 3161 } 3162 } else if ((res->flags & IORESOURCE_MEM) && 3163 !pnv_pci_is_m64(phb, res)) { 3164 region.start = res->start - 3165 phb->hose->mem_offset[0] - 3166 phb->ioda.m32_pci_base; 3167 region.end = res->end - 3168 phb->hose->mem_offset[0] - 3169 phb->ioda.m32_pci_base; 3170 index = region.start / phb->ioda.m32_segsize; 3171 3172 while (index < phb->ioda.total_pe_num && 3173 region.start <= region.end) { 3174 phb->ioda.m32_segmap[index] = pe->pe_number; 3175 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3176 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); 3177 if (rc != OPAL_SUCCESS) { 3178 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x", 3179 __func__, rc, index, pe->pe_number); 3180 break; 3181 } 3182 3183 region.start += phb->ioda.m32_segsize; 3184 index++; 3185 } 3186 } 3187 } 3188 3189 /* 3190 * This function is supposed to be called on basis of PE from top 3191 * to bottom style. So the the I/O or MMIO segment assigned to 3192 * parent PE could be overridden by its child PEs if necessary. 3193 */ 3194 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) 3195 { 3196 struct pci_dev *pdev; 3197 int i; 3198 3199 /* 3200 * NOTE: We only care PCI bus based PE for now. For PCI 3201 * device based PE, for example SRIOV sensitive VF should 3202 * be figured out later. 3203 */ 3204 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); 3205 3206 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 3207 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 3208 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); 3209 3210 /* 3211 * If the PE contains all subordinate PCI buses, the 3212 * windows of the child bridges should be mapped to 3213 * the PE as well. 3214 */ 3215 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) 3216 continue; 3217 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) 3218 pnv_ioda_setup_pe_res(pe, 3219 &pdev->resource[PCI_BRIDGE_RESOURCES + i]); 3220 } 3221 } 3222 3223 #ifdef CONFIG_DEBUG_FS 3224 static int pnv_pci_diag_data_set(void *data, u64 val) 3225 { 3226 struct pci_controller *hose; 3227 struct pnv_phb *phb; 3228 s64 ret; 3229 3230 if (val != 1ULL) 3231 return -EINVAL; 3232 3233 hose = (struct pci_controller *)data; 3234 if (!hose || !hose->private_data) 3235 return -ENODEV; 3236 3237 phb = hose->private_data; 3238 3239 /* Retrieve the diag data from firmware */ 3240 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data, 3241 phb->diag_data_size); 3242 if (ret != OPAL_SUCCESS) 3243 return -EIO; 3244 3245 /* Print the diag data to the kernel log */ 3246 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data); 3247 return 0; 3248 } 3249 3250 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, 3251 pnv_pci_diag_data_set, "%llu\n"); 3252 3253 #endif /* CONFIG_DEBUG_FS */ 3254 3255 static void pnv_pci_ioda_create_dbgfs(void) 3256 { 3257 #ifdef CONFIG_DEBUG_FS 3258 struct pci_controller *hose, *tmp; 3259 struct pnv_phb *phb; 3260 char name[16]; 3261 3262 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 3263 phb = hose->private_data; 3264 3265 /* Notify initialization of PHB done */ 3266 phb->initialized = 1; 3267 3268 sprintf(name, "PCI%04x", hose->global_number); 3269 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); 3270 if (!phb->dbgfs) { 3271 pr_warning("%s: Error on creating debugfs on PHB#%x\n", 3272 __func__, hose->global_number); 3273 continue; 3274 } 3275 3276 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose, 3277 &pnv_pci_diag_data_fops); 3278 } 3279 #endif /* CONFIG_DEBUG_FS */ 3280 } 3281 3282 static void pnv_pci_ioda_fixup(void) 3283 { 3284 pnv_pci_ioda_setup_PEs(); 3285 pnv_pci_ioda_setup_iommu_api(); 3286 pnv_pci_ioda_create_dbgfs(); 3287 3288 #ifdef CONFIG_EEH 3289 eeh_init(); 3290 eeh_addr_cache_build(); 3291 #endif 3292 } 3293 3294 /* 3295 * Returns the alignment for I/O or memory windows for P2P 3296 * bridges. That actually depends on how PEs are segmented. 3297 * For now, we return I/O or M32 segment size for PE sensitive 3298 * P2P bridges. Otherwise, the default values (4KiB for I/O, 3299 * 1MiB for memory) will be returned. 3300 * 3301 * The current PCI bus might be put into one PE, which was 3302 * create against the parent PCI bridge. For that case, we 3303 * needn't enlarge the alignment so that we can save some 3304 * resources. 3305 */ 3306 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, 3307 unsigned long type) 3308 { 3309 struct pci_dev *bridge; 3310 struct pci_controller *hose = pci_bus_to_host(bus); 3311 struct pnv_phb *phb = hose->private_data; 3312 int num_pci_bridges = 0; 3313 3314 bridge = bus->self; 3315 while (bridge) { 3316 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { 3317 num_pci_bridges++; 3318 if (num_pci_bridges >= 2) 3319 return 1; 3320 } 3321 3322 bridge = bridge->bus->self; 3323 } 3324 3325 /* 3326 * We fall back to M32 if M64 isn't supported. We enforce the M64 3327 * alignment for any 64-bit resource, PCIe doesn't care and 3328 * bridges only do 64-bit prefetchable anyway. 3329 */ 3330 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type)) 3331 return phb->ioda.m64_segsize; 3332 if (type & IORESOURCE_MEM) 3333 return phb->ioda.m32_segsize; 3334 3335 return phb->ioda.io_segsize; 3336 } 3337 3338 /* 3339 * We are updating root port or the upstream port of the 3340 * bridge behind the root port with PHB's windows in order 3341 * to accommodate the changes on required resources during 3342 * PCI (slot) hotplug, which is connected to either root 3343 * port or the downstream ports of PCIe switch behind the 3344 * root port. 3345 */ 3346 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, 3347 unsigned long type) 3348 { 3349 struct pci_controller *hose = pci_bus_to_host(bus); 3350 struct pnv_phb *phb = hose->private_data; 3351 struct pci_dev *bridge = bus->self; 3352 struct resource *r, *w; 3353 bool msi_region = false; 3354 int i; 3355 3356 /* Check if we need apply fixup to the bridge's windows */ 3357 if (!pci_is_root_bus(bridge->bus) && 3358 !pci_is_root_bus(bridge->bus->self->bus)) 3359 return; 3360 3361 /* Fixup the resources */ 3362 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { 3363 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; 3364 if (!r->flags || !r->parent) 3365 continue; 3366 3367 w = NULL; 3368 if (r->flags & type & IORESOURCE_IO) 3369 w = &hose->io_resource; 3370 else if (pnv_pci_is_m64(phb, r) && 3371 (type & IORESOURCE_PREFETCH) && 3372 phb->ioda.m64_segsize) 3373 w = &hose->mem_resources[1]; 3374 else if (r->flags & type & IORESOURCE_MEM) { 3375 w = &hose->mem_resources[0]; 3376 msi_region = true; 3377 } 3378 3379 r->start = w->start; 3380 r->end = w->end; 3381 3382 /* The 64KB 32-bits MSI region shouldn't be included in 3383 * the 32-bits bridge window. Otherwise, we can see strange 3384 * issues. One of them is EEH error observed on Garrison. 3385 * 3386 * Exclude top 1MB region which is the minimal alignment of 3387 * 32-bits bridge window. 3388 */ 3389 if (msi_region) { 3390 r->end += 0x10000; 3391 r->end -= 0x100000; 3392 } 3393 } 3394 } 3395 3396 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type) 3397 { 3398 struct pci_controller *hose = pci_bus_to_host(bus); 3399 struct pnv_phb *phb = hose->private_data; 3400 struct pci_dev *bridge = bus->self; 3401 struct pnv_ioda_pe *pe; 3402 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); 3403 3404 /* Extend bridge's windows if necessary */ 3405 pnv_pci_fixup_bridge_resources(bus, type); 3406 3407 /* The PE for root bus should be realized before any one else */ 3408 if (!phb->ioda.root_pe_populated) { 3409 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false); 3410 if (pe) { 3411 phb->ioda.root_pe_idx = pe->pe_number; 3412 phb->ioda.root_pe_populated = true; 3413 } 3414 } 3415 3416 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ 3417 if (list_empty(&bus->devices)) 3418 return; 3419 3420 /* Reserve PEs according to used M64 resources */ 3421 if (phb->reserve_m64_pe) 3422 phb->reserve_m64_pe(bus, NULL, all); 3423 3424 /* 3425 * Assign PE. We might run here because of partial hotplug. 3426 * For the case, we just pick up the existing PE and should 3427 * not allocate resources again. 3428 */ 3429 pe = pnv_ioda_setup_bus_PE(bus, all); 3430 if (!pe) 3431 return; 3432 3433 pnv_ioda_setup_pe_seg(pe); 3434 switch (phb->type) { 3435 case PNV_PHB_IODA1: 3436 pnv_pci_ioda1_setup_dma_pe(phb, pe); 3437 break; 3438 case PNV_PHB_IODA2: 3439 pnv_pci_ioda2_setup_dma_pe(phb, pe); 3440 break; 3441 default: 3442 pr_warn("%s: No DMA for PHB#%x (type %d)\n", 3443 __func__, phb->hose->global_number, phb->type); 3444 } 3445 } 3446 3447 static resource_size_t pnv_pci_default_alignment(void) 3448 { 3449 return PAGE_SIZE; 3450 } 3451 3452 #ifdef CONFIG_PCI_IOV 3453 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, 3454 int resno) 3455 { 3456 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3457 struct pnv_phb *phb = hose->private_data; 3458 struct pci_dn *pdn = pci_get_pdn(pdev); 3459 resource_size_t align; 3460 3461 /* 3462 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the 3463 * SR-IOV. While from hardware perspective, the range mapped by M64 3464 * BAR should be size aligned. 3465 * 3466 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra 3467 * powernv-specific hardware restriction is gone. But if just use the 3468 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with 3469 * in one segment of M64 #15, which introduces the PE conflict between 3470 * PF and VF. Based on this, the minimum alignment of an IOV BAR is 3471 * m64_segsize. 3472 * 3473 * This function returns the total IOV BAR size if M64 BAR is in 3474 * Shared PE mode or just VF BAR size if not. 3475 * If the M64 BAR is in Single PE mode, return the VF BAR size or 3476 * M64 segment size if IOV BAR size is less. 3477 */ 3478 align = pci_iov_resource_size(pdev, resno); 3479 if (!pdn->vfs_expanded) 3480 return align; 3481 if (pdn->m64_single_mode) 3482 return max(align, (resource_size_t)phb->ioda.m64_segsize); 3483 3484 return pdn->vfs_expanded * align; 3485 } 3486 #endif /* CONFIG_PCI_IOV */ 3487 3488 /* Prevent enabling devices for which we couldn't properly 3489 * assign a PE 3490 */ 3491 bool pnv_pci_enable_device_hook(struct pci_dev *dev) 3492 { 3493 struct pci_controller *hose = pci_bus_to_host(dev->bus); 3494 struct pnv_phb *phb = hose->private_data; 3495 struct pci_dn *pdn; 3496 3497 /* The function is probably called while the PEs have 3498 * not be created yet. For example, resource reassignment 3499 * during PCI probe period. We just skip the check if 3500 * PEs isn't ready. 3501 */ 3502 if (!phb->initialized) 3503 return true; 3504 3505 pdn = pci_get_pdn(dev); 3506 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3507 return false; 3508 3509 return true; 3510 } 3511 3512 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, 3513 int num) 3514 { 3515 struct pnv_ioda_pe *pe = container_of(table_group, 3516 struct pnv_ioda_pe, table_group); 3517 struct pnv_phb *phb = pe->phb; 3518 unsigned int idx; 3519 long rc; 3520 3521 pe_info(pe, "Removing DMA window #%d\n", num); 3522 for (idx = 0; idx < phb->ioda.dma32_count; idx++) { 3523 if (phb->ioda.dma32_segmap[idx] != pe->pe_number) 3524 continue; 3525 3526 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 3527 idx, 0, 0ul, 0ul, 0ul); 3528 if (rc != OPAL_SUCCESS) { 3529 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", 3530 rc, idx); 3531 return rc; 3532 } 3533 3534 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; 3535 } 3536 3537 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 3538 return OPAL_SUCCESS; 3539 } 3540 3541 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) 3542 { 3543 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3544 struct iommu_table *tbl = pe->table_group.tables[0]; 3545 int64_t rc; 3546 3547 if (!weight) 3548 return; 3549 3550 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); 3551 if (rc != OPAL_SUCCESS) 3552 return; 3553 3554 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); 3555 if (pe->table_group.group) { 3556 iommu_group_put(pe->table_group.group); 3557 WARN_ON(pe->table_group.group); 3558 } 3559 3560 free_pages(tbl->it_base, get_order(tbl->it_size << 3)); 3561 iommu_tce_table_put(tbl); 3562 } 3563 3564 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) 3565 { 3566 struct iommu_table *tbl = pe->table_group.tables[0]; 3567 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3568 #ifdef CONFIG_IOMMU_API 3569 int64_t rc; 3570 #endif 3571 3572 if (!weight) 3573 return; 3574 3575 #ifdef CONFIG_IOMMU_API 3576 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 3577 if (rc) 3578 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 3579 #endif 3580 3581 pnv_pci_ioda2_set_bypass(pe, false); 3582 if (pe->table_group.group) { 3583 iommu_group_put(pe->table_group.group); 3584 WARN_ON(pe->table_group.group); 3585 } 3586 3587 pnv_pci_ioda2_table_free_pages(tbl); 3588 iommu_tce_table_put(tbl); 3589 } 3590 3591 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, 3592 unsigned short win, 3593 unsigned int *map) 3594 { 3595 struct pnv_phb *phb = pe->phb; 3596 int idx; 3597 int64_t rc; 3598 3599 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { 3600 if (map[idx] != pe->pe_number) 3601 continue; 3602 3603 if (win == OPAL_M64_WINDOW_TYPE) 3604 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3605 phb->ioda.reserved_pe_idx, win, 3606 idx / PNV_IODA1_M64_SEGS, 3607 idx % PNV_IODA1_M64_SEGS); 3608 else 3609 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3610 phb->ioda.reserved_pe_idx, win, 0, idx); 3611 3612 if (rc != OPAL_SUCCESS) 3613 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n", 3614 rc, win, idx); 3615 3616 map[idx] = IODA_INVALID_PE; 3617 } 3618 } 3619 3620 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) 3621 { 3622 struct pnv_phb *phb = pe->phb; 3623 3624 if (phb->type == PNV_PHB_IODA1) { 3625 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, 3626 phb->ioda.io_segmap); 3627 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3628 phb->ioda.m32_segmap); 3629 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE, 3630 phb->ioda.m64_segmap); 3631 } else if (phb->type == PNV_PHB_IODA2) { 3632 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3633 phb->ioda.m32_segmap); 3634 } 3635 } 3636 3637 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) 3638 { 3639 struct pnv_phb *phb = pe->phb; 3640 struct pnv_ioda_pe *slave, *tmp; 3641 3642 list_del(&pe->list); 3643 switch (phb->type) { 3644 case PNV_PHB_IODA1: 3645 pnv_pci_ioda1_release_pe_dma(pe); 3646 break; 3647 case PNV_PHB_IODA2: 3648 pnv_pci_ioda2_release_pe_dma(pe); 3649 break; 3650 default: 3651 WARN_ON(1); 3652 } 3653 3654 pnv_ioda_release_pe_seg(pe); 3655 pnv_ioda_deconfigure_pe(pe->phb, pe); 3656 3657 /* Release slave PEs in the compound PE */ 3658 if (pe->flags & PNV_IODA_PE_MASTER) { 3659 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { 3660 list_del(&slave->list); 3661 pnv_ioda_free_pe(slave); 3662 } 3663 } 3664 3665 /* 3666 * The PE for root bus can be removed because of hotplug in EEH 3667 * recovery for fenced PHB error. We need to mark the PE dead so 3668 * that it can be populated again in PCI hot add path. The PE 3669 * shouldn't be destroyed as it's the global reserved resource. 3670 */ 3671 if (phb->ioda.root_pe_populated && 3672 phb->ioda.root_pe_idx == pe->pe_number) 3673 phb->ioda.root_pe_populated = false; 3674 else 3675 pnv_ioda_free_pe(pe); 3676 } 3677 3678 static void pnv_pci_release_device(struct pci_dev *pdev) 3679 { 3680 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3681 struct pnv_phb *phb = hose->private_data; 3682 struct pci_dn *pdn = pci_get_pdn(pdev); 3683 struct pnv_ioda_pe *pe; 3684 3685 if (pdev->is_virtfn) 3686 return; 3687 3688 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3689 return; 3690 3691 /* 3692 * PCI hotplug can happen as part of EEH error recovery. The @pdn 3693 * isn't removed and added afterwards in this scenario. We should 3694 * set the PE number in @pdn to an invalid one. Otherwise, the PE's 3695 * device count is decreased on removing devices while failing to 3696 * be increased on adding devices. It leads to unbalanced PE's device 3697 * count and eventually make normal PCI hotplug path broken. 3698 */ 3699 pe = &phb->ioda.pe_array[pdn->pe_number]; 3700 pdn->pe_number = IODA_INVALID_PE; 3701 3702 WARN_ON(--pe->device_count < 0); 3703 if (pe->device_count == 0) 3704 pnv_ioda_release_pe(pe); 3705 } 3706 3707 static void pnv_pci_ioda_shutdown(struct pci_controller *hose) 3708 { 3709 struct pnv_phb *phb = hose->private_data; 3710 3711 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, 3712 OPAL_ASSERT_RESET); 3713 } 3714 3715 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { 3716 .dma_dev_setup = pnv_pci_dma_dev_setup, 3717 .dma_bus_setup = pnv_pci_dma_bus_setup, 3718 #ifdef CONFIG_PCI_MSI 3719 .setup_msi_irqs = pnv_setup_msi_irqs, 3720 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3721 #endif 3722 .enable_device_hook = pnv_pci_enable_device_hook, 3723 .release_device = pnv_pci_release_device, 3724 .window_alignment = pnv_pci_window_alignment, 3725 .setup_bridge = pnv_pci_setup_bridge, 3726 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3727 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3728 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3729 .shutdown = pnv_pci_ioda_shutdown, 3730 }; 3731 3732 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask) 3733 { 3734 dev_err_once(&npdev->dev, 3735 "%s operation unsupported for NVLink devices\n", 3736 __func__); 3737 return -EPERM; 3738 } 3739 3740 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = { 3741 .dma_dev_setup = pnv_pci_dma_dev_setup, 3742 #ifdef CONFIG_PCI_MSI 3743 .setup_msi_irqs = pnv_setup_msi_irqs, 3744 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3745 #endif 3746 .enable_device_hook = pnv_pci_enable_device_hook, 3747 .window_alignment = pnv_pci_window_alignment, 3748 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3749 .dma_set_mask = pnv_npu_dma_set_mask, 3750 .shutdown = pnv_pci_ioda_shutdown, 3751 }; 3752 3753 #ifdef CONFIG_CXL_BASE 3754 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = { 3755 .dma_dev_setup = pnv_pci_dma_dev_setup, 3756 .dma_bus_setup = pnv_pci_dma_bus_setup, 3757 #ifdef CONFIG_PCI_MSI 3758 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs, 3759 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs, 3760 #endif 3761 .enable_device_hook = pnv_cxl_enable_device_hook, 3762 .disable_device = pnv_cxl_disable_device, 3763 .release_device = pnv_pci_release_device, 3764 .window_alignment = pnv_pci_window_alignment, 3765 .setup_bridge = pnv_pci_setup_bridge, 3766 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3767 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3768 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3769 .shutdown = pnv_pci_ioda_shutdown, 3770 }; 3771 #endif 3772 3773 static void __init pnv_pci_init_ioda_phb(struct device_node *np, 3774 u64 hub_id, int ioda_type) 3775 { 3776 struct pci_controller *hose; 3777 struct pnv_phb *phb; 3778 unsigned long size, m64map_off, m32map_off, pemap_off; 3779 unsigned long iomap_off = 0, dma32map_off = 0; 3780 struct resource r; 3781 const __be64 *prop64; 3782 const __be32 *prop32; 3783 int len; 3784 unsigned int segno; 3785 u64 phb_id; 3786 void *aux; 3787 long rc; 3788 3789 if (!of_device_is_available(np)) 3790 return; 3791 3792 pr_info("Initializing %s PHB (%s)\n", 3793 pnv_phb_names[ioda_type], of_node_full_name(np)); 3794 3795 prop64 = of_get_property(np, "ibm,opal-phbid", NULL); 3796 if (!prop64) { 3797 pr_err(" Missing \"ibm,opal-phbid\" property !\n"); 3798 return; 3799 } 3800 phb_id = be64_to_cpup(prop64); 3801 pr_debug(" PHB-ID : 0x%016llx\n", phb_id); 3802 3803 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0); 3804 3805 /* Allocate PCI controller */ 3806 phb->hose = hose = pcibios_alloc_controller(np); 3807 if (!phb->hose) { 3808 pr_err(" Can't allocate PCI controller for %s\n", 3809 np->full_name); 3810 memblock_free(__pa(phb), sizeof(struct pnv_phb)); 3811 return; 3812 } 3813 3814 spin_lock_init(&phb->lock); 3815 prop32 = of_get_property(np, "bus-range", &len); 3816 if (prop32 && len == 8) { 3817 hose->first_busno = be32_to_cpu(prop32[0]); 3818 hose->last_busno = be32_to_cpu(prop32[1]); 3819 } else { 3820 pr_warn(" Broken <bus-range> on %s\n", np->full_name); 3821 hose->first_busno = 0; 3822 hose->last_busno = 0xff; 3823 } 3824 hose->private_data = phb; 3825 phb->hub_id = hub_id; 3826 phb->opal_id = phb_id; 3827 phb->type = ioda_type; 3828 mutex_init(&phb->ioda.pe_alloc_mutex); 3829 3830 /* Detect specific models for error handling */ 3831 if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) 3832 phb->model = PNV_PHB_MODEL_P7IOC; 3833 else if (of_device_is_compatible(np, "ibm,power8-pciex")) 3834 phb->model = PNV_PHB_MODEL_PHB3; 3835 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex")) 3836 phb->model = PNV_PHB_MODEL_NPU; 3837 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex")) 3838 phb->model = PNV_PHB_MODEL_NPU2; 3839 else 3840 phb->model = PNV_PHB_MODEL_UNKNOWN; 3841 3842 /* Initialize diagnostic data buffer */ 3843 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL); 3844 if (prop32) 3845 phb->diag_data_size = be32_to_cpup(prop32); 3846 else 3847 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE; 3848 3849 phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0); 3850 3851 /* Parse 32-bit and IO ranges (if any) */ 3852 pci_process_bridge_OF_ranges(hose, np, !hose->global_number); 3853 3854 /* Get registers */ 3855 if (!of_address_to_resource(np, 0, &r)) { 3856 phb->regs_phys = r.start; 3857 phb->regs = ioremap(r.start, resource_size(&r)); 3858 if (phb->regs == NULL) 3859 pr_err(" Failed to map registers !\n"); 3860 } 3861 3862 /* Initialize more IODA stuff */ 3863 phb->ioda.total_pe_num = 1; 3864 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); 3865 if (prop32) 3866 phb->ioda.total_pe_num = be32_to_cpup(prop32); 3867 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); 3868 if (prop32) 3869 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); 3870 3871 /* Invalidate RID to PE# mapping */ 3872 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) 3873 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; 3874 3875 /* Parse 64-bit MMIO range */ 3876 pnv_ioda_parse_m64_window(phb); 3877 3878 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); 3879 /* FW Has already off top 64k of M32 space (MSI space) */ 3880 phb->ioda.m32_size += 0x10000; 3881 3882 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; 3883 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; 3884 phb->ioda.io_size = hose->pci_io_size; 3885 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; 3886 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ 3887 3888 /* Calculate how many 32-bit TCE segments we have */ 3889 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3890 PNV_IODA1_DMA32_SEGSIZE; 3891 3892 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ 3893 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, 3894 sizeof(unsigned long)); 3895 m64map_off = size; 3896 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); 3897 m32map_off = size; 3898 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); 3899 if (phb->type == PNV_PHB_IODA1) { 3900 iomap_off = size; 3901 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); 3902 dma32map_off = size; 3903 size += phb->ioda.dma32_count * 3904 sizeof(phb->ioda.dma32_segmap[0]); 3905 } 3906 pemap_off = size; 3907 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); 3908 aux = memblock_virt_alloc(size, 0); 3909 phb->ioda.pe_alloc = aux; 3910 phb->ioda.m64_segmap = aux + m64map_off; 3911 phb->ioda.m32_segmap = aux + m32map_off; 3912 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { 3913 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; 3914 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; 3915 } 3916 if (phb->type == PNV_PHB_IODA1) { 3917 phb->ioda.io_segmap = aux + iomap_off; 3918 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) 3919 phb->ioda.io_segmap[segno] = IODA_INVALID_PE; 3920 3921 phb->ioda.dma32_segmap = aux + dma32map_off; 3922 for (segno = 0; segno < phb->ioda.dma32_count; segno++) 3923 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; 3924 } 3925 phb->ioda.pe_array = aux + pemap_off; 3926 3927 /* 3928 * Choose PE number for root bus, which shouldn't have 3929 * M64 resources consumed by its child devices. To pick 3930 * the PE number adjacent to the reserved one if possible. 3931 */ 3932 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); 3933 if (phb->ioda.reserved_pe_idx == 0) { 3934 phb->ioda.root_pe_idx = 1; 3935 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3936 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { 3937 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; 3938 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3939 } else { 3940 phb->ioda.root_pe_idx = IODA_INVALID_PE; 3941 } 3942 3943 INIT_LIST_HEAD(&phb->ioda.pe_list); 3944 mutex_init(&phb->ioda.pe_list_mutex); 3945 3946 /* Calculate how many 32-bit TCE segments we have */ 3947 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3948 PNV_IODA1_DMA32_SEGSIZE; 3949 3950 #if 0 /* We should really do that ... */ 3951 rc = opal_pci_set_phb_mem_window(opal->phb_id, 3952 window_type, 3953 window_num, 3954 starting_real_address, 3955 starting_pci_address, 3956 segment_size); 3957 #endif 3958 3959 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", 3960 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, 3961 phb->ioda.m32_size, phb->ioda.m32_segsize); 3962 if (phb->ioda.m64_size) 3963 pr_info(" M64: 0x%lx [segment=0x%lx]\n", 3964 phb->ioda.m64_size, phb->ioda.m64_segsize); 3965 if (phb->ioda.io_size) 3966 pr_info(" IO: 0x%x [segment=0x%x]\n", 3967 phb->ioda.io_size, phb->ioda.io_segsize); 3968 3969 3970 phb->hose->ops = &pnv_pci_ops; 3971 phb->get_pe_state = pnv_ioda_get_pe_state; 3972 phb->freeze_pe = pnv_ioda_freeze_pe; 3973 phb->unfreeze_pe = pnv_ioda_unfreeze_pe; 3974 3975 /* Setup MSI support */ 3976 pnv_pci_init_ioda_msis(phb); 3977 3978 /* 3979 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here 3980 * to let the PCI core do resource assignment. It's supposed 3981 * that the PCI core will do correct I/O and MMIO alignment 3982 * for the P2P bridge bars so that each PCI bus (excluding 3983 * the child P2P bridges) can form individual PE. 3984 */ 3985 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; 3986 3987 if (phb->type == PNV_PHB_NPU) { 3988 hose->controller_ops = pnv_npu_ioda_controller_ops; 3989 } else { 3990 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup; 3991 hose->controller_ops = pnv_pci_ioda_controller_ops; 3992 } 3993 3994 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment; 3995 3996 #ifdef CONFIG_PCI_IOV 3997 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources; 3998 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; 3999 #endif 4000 4001 pci_add_flags(PCI_REASSIGN_ALL_RSRC); 4002 4003 /* Reset IODA tables to a clean state */ 4004 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); 4005 if (rc) 4006 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc); 4007 4008 /* 4009 * If we're running in kdump kernel, the previous kernel never 4010 * shutdown PCI devices correctly. We already got IODA table 4011 * cleaned out. So we have to issue PHB reset to stop all PCI 4012 * transactions from previous kernel. 4013 */ 4014 if (is_kdump_kernel()) { 4015 pr_info(" Issue PHB reset ...\n"); 4016 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); 4017 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); 4018 } 4019 4020 /* Remove M64 resource if we can't configure it successfully */ 4021 if (!phb->init_m64 || phb->init_m64(phb)) 4022 hose->mem_resources[1].flags = 0; 4023 } 4024 4025 void __init pnv_pci_init_ioda2_phb(struct device_node *np) 4026 { 4027 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); 4028 } 4029 4030 void __init pnv_pci_init_npu_phb(struct device_node *np) 4031 { 4032 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU); 4033 } 4034 4035 void __init pnv_pci_init_ioda_hub(struct device_node *np) 4036 { 4037 struct device_node *phbn; 4038 const __be64 *prop64; 4039 u64 hub_id; 4040 4041 pr_info("Probing IODA IO-Hub %s\n", np->full_name); 4042 4043 prop64 = of_get_property(np, "ibm,opal-hubid", NULL); 4044 if (!prop64) { 4045 pr_err(" Missing \"ibm,opal-hubid\" property !\n"); 4046 return; 4047 } 4048 hub_id = be64_to_cpup(prop64); 4049 pr_devel(" HUB-ID : 0x%016llx\n", hub_id); 4050 4051 /* Count child PHBs */ 4052 for_each_child_of_node(np, phbn) { 4053 /* Look for IODA1 PHBs */ 4054 if (of_device_is_compatible(phbn, "ibm,ioda-phb")) 4055 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); 4056 } 4057 } 4058