1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
44 
45 #include <misc/cxl-base.h>
46 
47 #include "powernv.h"
48 #include "pci.h"
49 
50 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
51 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
52 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
53 
54 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
55 #define POWERNV_IOMMU_MAX_LEVELS	5
56 
57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59 
60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61 			    const char *fmt, ...)
62 {
63 	struct va_format vaf;
64 	va_list args;
65 	char pfix[32];
66 
67 	va_start(args, fmt);
68 
69 	vaf.fmt = fmt;
70 	vaf.va = &args;
71 
72 	if (pe->flags & PNV_IODA_PE_DEV)
73 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75 		sprintf(pfix, "%04x:%02x     ",
76 			pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78 	else if (pe->flags & PNV_IODA_PE_VF)
79 		sprintf(pfix, "%04x:%02x:%2x.%d",
80 			pci_domain_nr(pe->parent_dev->bus),
81 			(pe->rid & 0xff00) >> 8,
82 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84 
85 	printk("%spci %s: [PE# %.2x] %pV",
86 	       level, pfix, pe->pe_number, &vaf);
87 
88 	va_end(args);
89 }
90 
91 static bool pnv_iommu_bypass_disabled __read_mostly;
92 
93 static int __init iommu_setup(char *str)
94 {
95 	if (!str)
96 		return -EINVAL;
97 
98 	while (*str) {
99 		if (!strncmp(str, "nobypass", 8)) {
100 			pnv_iommu_bypass_disabled = true;
101 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
102 			break;
103 		}
104 		str += strcspn(str, ",");
105 		if (*str == ',')
106 			str++;
107 	}
108 
109 	return 0;
110 }
111 early_param("iommu", iommu_setup);
112 
113 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
114 {
115 	/*
116 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
117 	 * allocation code sometimes decides to put a 64-bit prefetchable
118 	 * BAR in the 32-bit window, so we have to compare the addresses.
119 	 *
120 	 * For simplicity we only test resource start.
121 	 */
122 	return (r->start >= phb->ioda.m64_base &&
123 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
124 }
125 
126 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
127 {
128 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
129 
130 	return (resource_flags & flags) == flags;
131 }
132 
133 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
134 {
135 	s64 rc;
136 
137 	phb->ioda.pe_array[pe_no].phb = phb;
138 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
139 
140 	/*
141 	 * Clear the PE frozen state as it might be put into frozen state
142 	 * in the last PCI remove path. It's not harmful to do so when the
143 	 * PE is already in unfrozen state.
144 	 */
145 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
146 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
147 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
148 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
149 			__func__, rc, phb->hose->global_number, pe_no);
150 
151 	return &phb->ioda.pe_array[pe_no];
152 }
153 
154 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
155 {
156 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
157 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
158 			__func__, pe_no, phb->hose->global_number);
159 		return;
160 	}
161 
162 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
163 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
164 			 __func__, pe_no, phb->hose->global_number);
165 
166 	pnv_ioda_init_pe(phb, pe_no);
167 }
168 
169 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
170 {
171 	long pe;
172 
173 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
174 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
175 			return pnv_ioda_init_pe(phb, pe);
176 	}
177 
178 	return NULL;
179 }
180 
181 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
182 {
183 	struct pnv_phb *phb = pe->phb;
184 	unsigned int pe_num = pe->pe_number;
185 
186 	WARN_ON(pe->pdev);
187 
188 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
189 	clear_bit(pe_num, phb->ioda.pe_alloc);
190 }
191 
192 /* The default M64 BAR is shared by all PEs */
193 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
194 {
195 	const char *desc;
196 	struct resource *r;
197 	s64 rc;
198 
199 	/* Configure the default M64 BAR */
200 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
201 					 OPAL_M64_WINDOW_TYPE,
202 					 phb->ioda.m64_bar_idx,
203 					 phb->ioda.m64_base,
204 					 0, /* unused */
205 					 phb->ioda.m64_size);
206 	if (rc != OPAL_SUCCESS) {
207 		desc = "configuring";
208 		goto fail;
209 	}
210 
211 	/* Enable the default M64 BAR */
212 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
213 				      OPAL_M64_WINDOW_TYPE,
214 				      phb->ioda.m64_bar_idx,
215 				      OPAL_ENABLE_M64_SPLIT);
216 	if (rc != OPAL_SUCCESS) {
217 		desc = "enabling";
218 		goto fail;
219 	}
220 
221 	/*
222 	 * Exclude the segments for reserved and root bus PE, which
223 	 * are first or last two PEs.
224 	 */
225 	r = &phb->hose->mem_resources[1];
226 	if (phb->ioda.reserved_pe_idx == 0)
227 		r->start += (2 * phb->ioda.m64_segsize);
228 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
229 		r->end -= (2 * phb->ioda.m64_segsize);
230 	else
231 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
232 			phb->ioda.reserved_pe_idx);
233 
234 	return 0;
235 
236 fail:
237 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
238 		rc, desc, phb->ioda.m64_bar_idx);
239 	opal_pci_phb_mmio_enable(phb->opal_id,
240 				 OPAL_M64_WINDOW_TYPE,
241 				 phb->ioda.m64_bar_idx,
242 				 OPAL_DISABLE_M64);
243 	return -EIO;
244 }
245 
246 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
247 					 unsigned long *pe_bitmap)
248 {
249 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
250 	struct pnv_phb *phb = hose->private_data;
251 	struct resource *r;
252 	resource_size_t base, sgsz, start, end;
253 	int segno, i;
254 
255 	base = phb->ioda.m64_base;
256 	sgsz = phb->ioda.m64_segsize;
257 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
258 		r = &pdev->resource[i];
259 		if (!r->parent || !pnv_pci_is_m64(phb, r))
260 			continue;
261 
262 		start = _ALIGN_DOWN(r->start - base, sgsz);
263 		end = _ALIGN_UP(r->end - base, sgsz);
264 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
265 			if (pe_bitmap)
266 				set_bit(segno, pe_bitmap);
267 			else
268 				pnv_ioda_reserve_pe(phb, segno);
269 		}
270 	}
271 }
272 
273 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
274 {
275 	struct resource *r;
276 	int index;
277 
278 	/*
279 	 * There are 16 M64 BARs, each of which has 8 segments. So
280 	 * there are as many M64 segments as the maximum number of
281 	 * PEs, which is 128.
282 	 */
283 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
284 		unsigned long base, segsz = phb->ioda.m64_segsize;
285 		int64_t rc;
286 
287 		base = phb->ioda.m64_base +
288 		       index * PNV_IODA1_M64_SEGS * segsz;
289 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
290 				OPAL_M64_WINDOW_TYPE, index, base, 0,
291 				PNV_IODA1_M64_SEGS * segsz);
292 		if (rc != OPAL_SUCCESS) {
293 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
294 				rc, phb->hose->global_number, index);
295 			goto fail;
296 		}
297 
298 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
299 				OPAL_M64_WINDOW_TYPE, index,
300 				OPAL_ENABLE_M64_SPLIT);
301 		if (rc != OPAL_SUCCESS) {
302 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
303 				rc, phb->hose->global_number, index);
304 			goto fail;
305 		}
306 	}
307 
308 	/*
309 	 * Exclude the segments for reserved and root bus PE, which
310 	 * are first or last two PEs.
311 	 */
312 	r = &phb->hose->mem_resources[1];
313 	if (phb->ioda.reserved_pe_idx == 0)
314 		r->start += (2 * phb->ioda.m64_segsize);
315 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
316 		r->end -= (2 * phb->ioda.m64_segsize);
317 	else
318 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
319 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
320 
321 	return 0;
322 
323 fail:
324 	for ( ; index >= 0; index--)
325 		opal_pci_phb_mmio_enable(phb->opal_id,
326 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
327 
328 	return -EIO;
329 }
330 
331 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
332 				    unsigned long *pe_bitmap,
333 				    bool all)
334 {
335 	struct pci_dev *pdev;
336 
337 	list_for_each_entry(pdev, &bus->devices, bus_list) {
338 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
339 
340 		if (all && pdev->subordinate)
341 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
342 						pe_bitmap, all);
343 	}
344 }
345 
346 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
347 {
348 	struct pci_controller *hose = pci_bus_to_host(bus);
349 	struct pnv_phb *phb = hose->private_data;
350 	struct pnv_ioda_pe *master_pe, *pe;
351 	unsigned long size, *pe_alloc;
352 	int i;
353 
354 	/* Root bus shouldn't use M64 */
355 	if (pci_is_root_bus(bus))
356 		return NULL;
357 
358 	/* Allocate bitmap */
359 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
360 	pe_alloc = kzalloc(size, GFP_KERNEL);
361 	if (!pe_alloc) {
362 		pr_warn("%s: Out of memory !\n",
363 			__func__);
364 		return NULL;
365 	}
366 
367 	/* Figure out reserved PE numbers by the PE */
368 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
369 
370 	/*
371 	 * the current bus might not own M64 window and that's all
372 	 * contributed by its child buses. For the case, we needn't
373 	 * pick M64 dependent PE#.
374 	 */
375 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
376 		kfree(pe_alloc);
377 		return NULL;
378 	}
379 
380 	/*
381 	 * Figure out the master PE and put all slave PEs to master
382 	 * PE's list to form compound PE.
383 	 */
384 	master_pe = NULL;
385 	i = -1;
386 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
387 		phb->ioda.total_pe_num) {
388 		pe = &phb->ioda.pe_array[i];
389 
390 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
391 		if (!master_pe) {
392 			pe->flags |= PNV_IODA_PE_MASTER;
393 			INIT_LIST_HEAD(&pe->slaves);
394 			master_pe = pe;
395 		} else {
396 			pe->flags |= PNV_IODA_PE_SLAVE;
397 			pe->master = master_pe;
398 			list_add_tail(&pe->list, &master_pe->slaves);
399 		}
400 
401 		/*
402 		 * P7IOC supports M64DT, which helps mapping M64 segment
403 		 * to one particular PE#. However, PHB3 has fixed mapping
404 		 * between M64 segment and PE#. In order to have same logic
405 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
406 		 * segment and PE# on P7IOC.
407 		 */
408 		if (phb->type == PNV_PHB_IODA1) {
409 			int64_t rc;
410 
411 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
412 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
413 					pe->pe_number / PNV_IODA1_M64_SEGS,
414 					pe->pe_number % PNV_IODA1_M64_SEGS);
415 			if (rc != OPAL_SUCCESS)
416 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
417 					__func__, rc, phb->hose->global_number,
418 					pe->pe_number);
419 		}
420 	}
421 
422 	kfree(pe_alloc);
423 	return master_pe;
424 }
425 
426 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
427 {
428 	struct pci_controller *hose = phb->hose;
429 	struct device_node *dn = hose->dn;
430 	struct resource *res;
431 	u32 m64_range[2], i;
432 	const __be32 *r;
433 	u64 pci_addr;
434 
435 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
436 		pr_info("  Not support M64 window\n");
437 		return;
438 	}
439 
440 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
441 		pr_info("  Firmware too old to support M64 window\n");
442 		return;
443 	}
444 
445 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
446 	if (!r) {
447 		pr_info("  No <ibm,opal-m64-window> on %s\n",
448 			dn->full_name);
449 		return;
450 	}
451 
452 	/*
453 	 * Find the available M64 BAR range and pickup the last one for
454 	 * covering the whole 64-bits space. We support only one range.
455 	 */
456 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
457 				       m64_range, 2)) {
458 		/* In absence of the property, assume 0..15 */
459 		m64_range[0] = 0;
460 		m64_range[1] = 16;
461 	}
462 	/* We only support 64 bits in our allocator */
463 	if (m64_range[1] > 63) {
464 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
465 			__func__, m64_range[1], phb->hose->global_number);
466 		m64_range[1] = 63;
467 	}
468 	/* Empty range, no m64 */
469 	if (m64_range[1] <= m64_range[0]) {
470 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
471 			__func__, phb->hose->global_number);
472 		return;
473 	}
474 
475 	/* Configure M64 informations */
476 	res = &hose->mem_resources[1];
477 	res->name = dn->full_name;
478 	res->start = of_translate_address(dn, r + 2);
479 	res->end = res->start + of_read_number(r + 4, 2) - 1;
480 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
481 	pci_addr = of_read_number(r, 2);
482 	hose->mem_offset[1] = res->start - pci_addr;
483 
484 	phb->ioda.m64_size = resource_size(res);
485 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
486 	phb->ioda.m64_base = pci_addr;
487 
488 	/* This lines up nicely with the display from processing OF ranges */
489 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
490 		res->start, res->end, pci_addr, m64_range[0],
491 		m64_range[0] + m64_range[1] - 1);
492 
493 	/* Mark all M64 used up by default */
494 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
495 
496 	/* Use last M64 BAR to cover M64 window */
497 	m64_range[1]--;
498 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
499 
500 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
501 
502 	/* Mark remaining ones free */
503 	for (i = m64_range[0]; i < m64_range[1]; i++)
504 		clear_bit(i, &phb->ioda.m64_bar_alloc);
505 
506 	/*
507 	 * Setup init functions for M64 based on IODA version, IODA3 uses
508 	 * the IODA2 code.
509 	 */
510 	if (phb->type == PNV_PHB_IODA1)
511 		phb->init_m64 = pnv_ioda1_init_m64;
512 	else
513 		phb->init_m64 = pnv_ioda2_init_m64;
514 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
515 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
516 }
517 
518 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
519 {
520 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
521 	struct pnv_ioda_pe *slave;
522 	s64 rc;
523 
524 	/* Fetch master PE */
525 	if (pe->flags & PNV_IODA_PE_SLAVE) {
526 		pe = pe->master;
527 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
528 			return;
529 
530 		pe_no = pe->pe_number;
531 	}
532 
533 	/* Freeze master PE */
534 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
535 				     pe_no,
536 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
537 	if (rc != OPAL_SUCCESS) {
538 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
539 			__func__, rc, phb->hose->global_number, pe_no);
540 		return;
541 	}
542 
543 	/* Freeze slave PEs */
544 	if (!(pe->flags & PNV_IODA_PE_MASTER))
545 		return;
546 
547 	list_for_each_entry(slave, &pe->slaves, list) {
548 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
549 					     slave->pe_number,
550 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
551 		if (rc != OPAL_SUCCESS)
552 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
553 				__func__, rc, phb->hose->global_number,
554 				slave->pe_number);
555 	}
556 }
557 
558 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
559 {
560 	struct pnv_ioda_pe *pe, *slave;
561 	s64 rc;
562 
563 	/* Find master PE */
564 	pe = &phb->ioda.pe_array[pe_no];
565 	if (pe->flags & PNV_IODA_PE_SLAVE) {
566 		pe = pe->master;
567 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
568 		pe_no = pe->pe_number;
569 	}
570 
571 	/* Clear frozen state for master PE */
572 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
573 	if (rc != OPAL_SUCCESS) {
574 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
575 			__func__, rc, opt, phb->hose->global_number, pe_no);
576 		return -EIO;
577 	}
578 
579 	if (!(pe->flags & PNV_IODA_PE_MASTER))
580 		return 0;
581 
582 	/* Clear frozen state for slave PEs */
583 	list_for_each_entry(slave, &pe->slaves, list) {
584 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
585 					     slave->pe_number,
586 					     opt);
587 		if (rc != OPAL_SUCCESS) {
588 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
589 				__func__, rc, opt, phb->hose->global_number,
590 				slave->pe_number);
591 			return -EIO;
592 		}
593 	}
594 
595 	return 0;
596 }
597 
598 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
599 {
600 	struct pnv_ioda_pe *slave, *pe;
601 	u8 fstate, state;
602 	__be16 pcierr;
603 	s64 rc;
604 
605 	/* Sanity check on PE number */
606 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
607 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
608 
609 	/*
610 	 * Fetch the master PE and the PE instance might be
611 	 * not initialized yet.
612 	 */
613 	pe = &phb->ioda.pe_array[pe_no];
614 	if (pe->flags & PNV_IODA_PE_SLAVE) {
615 		pe = pe->master;
616 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
617 		pe_no = pe->pe_number;
618 	}
619 
620 	/* Check the master PE */
621 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
622 					&state, &pcierr, NULL);
623 	if (rc != OPAL_SUCCESS) {
624 		pr_warn("%s: Failure %lld getting "
625 			"PHB#%x-PE#%x state\n",
626 			__func__, rc,
627 			phb->hose->global_number, pe_no);
628 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
629 	}
630 
631 	/* Check the slave PE */
632 	if (!(pe->flags & PNV_IODA_PE_MASTER))
633 		return state;
634 
635 	list_for_each_entry(slave, &pe->slaves, list) {
636 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
637 						slave->pe_number,
638 						&fstate,
639 						&pcierr,
640 						NULL);
641 		if (rc != OPAL_SUCCESS) {
642 			pr_warn("%s: Failure %lld getting "
643 				"PHB#%x-PE#%x state\n",
644 				__func__, rc,
645 				phb->hose->global_number, slave->pe_number);
646 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
647 		}
648 
649 		/*
650 		 * Override the result based on the ascending
651 		 * priority.
652 		 */
653 		if (fstate > state)
654 			state = fstate;
655 	}
656 
657 	return state;
658 }
659 
660 /* Currently those 2 are only used when MSIs are enabled, this will change
661  * but in the meantime, we need to protect them to avoid warnings
662  */
663 #ifdef CONFIG_PCI_MSI
664 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
665 {
666 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
667 	struct pnv_phb *phb = hose->private_data;
668 	struct pci_dn *pdn = pci_get_pdn(dev);
669 
670 	if (!pdn)
671 		return NULL;
672 	if (pdn->pe_number == IODA_INVALID_PE)
673 		return NULL;
674 	return &phb->ioda.pe_array[pdn->pe_number];
675 }
676 #endif /* CONFIG_PCI_MSI */
677 
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679 				  struct pnv_ioda_pe *parent,
680 				  struct pnv_ioda_pe *child,
681 				  bool is_add)
682 {
683 	const char *desc = is_add ? "adding" : "removing";
684 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685 			      OPAL_REMOVE_PE_FROM_DOMAIN;
686 	struct pnv_ioda_pe *slave;
687 	long rc;
688 
689 	/* Parent PE affects child PE */
690 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691 				child->pe_number, op);
692 	if (rc != OPAL_SUCCESS) {
693 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694 			rc, desc);
695 		return -ENXIO;
696 	}
697 
698 	if (!(child->flags & PNV_IODA_PE_MASTER))
699 		return 0;
700 
701 	/* Compound case: parent PE affects slave PEs */
702 	list_for_each_entry(slave, &child->slaves, list) {
703 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704 					slave->pe_number, op);
705 		if (rc != OPAL_SUCCESS) {
706 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707 				rc, desc);
708 			return -ENXIO;
709 		}
710 	}
711 
712 	return 0;
713 }
714 
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716 			      struct pnv_ioda_pe *pe,
717 			      bool is_add)
718 {
719 	struct pnv_ioda_pe *slave;
720 	struct pci_dev *pdev = NULL;
721 	int ret;
722 
723 	/*
724 	 * Clear PE frozen state. If it's master PE, we need
725 	 * clear slave PE frozen state as well.
726 	 */
727 	if (is_add) {
728 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730 		if (pe->flags & PNV_IODA_PE_MASTER) {
731 			list_for_each_entry(slave, &pe->slaves, list)
732 				opal_pci_eeh_freeze_clear(phb->opal_id,
733 							  slave->pe_number,
734 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735 		}
736 	}
737 
738 	/*
739 	 * Associate PE in PELT. We need add the PE into the
740 	 * corresponding PELT-V as well. Otherwise, the error
741 	 * originated from the PE might contribute to other
742 	 * PEs.
743 	 */
744 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745 	if (ret)
746 		return ret;
747 
748 	/* For compound PEs, any one affects all of them */
749 	if (pe->flags & PNV_IODA_PE_MASTER) {
750 		list_for_each_entry(slave, &pe->slaves, list) {
751 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752 			if (ret)
753 				return ret;
754 		}
755 	}
756 
757 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758 		pdev = pe->pbus->self;
759 	else if (pe->flags & PNV_IODA_PE_DEV)
760 		pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762 	else if (pe->flags & PNV_IODA_PE_VF)
763 		pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765 	while (pdev) {
766 		struct pci_dn *pdn = pci_get_pdn(pdev);
767 		struct pnv_ioda_pe *parent;
768 
769 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 			parent = &phb->ioda.pe_array[pdn->pe_number];
771 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772 			if (ret)
773 				return ret;
774 		}
775 
776 		pdev = pdev->bus->self;
777 	}
778 
779 	return 0;
780 }
781 
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784 	struct pci_dev *parent;
785 	uint8_t bcomp, dcomp, fcomp;
786 	int64_t rc;
787 	long rid_end, rid;
788 
789 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790 	if (pe->pbus) {
791 		int count;
792 
793 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795 		parent = pe->pbus->self;
796 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
797 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798 		else
799 			count = 1;
800 
801 		switch(count) {
802 		case  1: bcomp = OpalPciBusAll;         break;
803 		case  2: bcomp = OpalPciBus7Bits;       break;
804 		case  4: bcomp = OpalPciBus6Bits;       break;
805 		case  8: bcomp = OpalPciBus5Bits;       break;
806 		case 16: bcomp = OpalPciBus4Bits;       break;
807 		case 32: bcomp = OpalPciBus3Bits;       break;
808 		default:
809 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810 			        count);
811 			/* Do an exact match only */
812 			bcomp = OpalPciBusAll;
813 		}
814 		rid_end = pe->rid + (count << 8);
815 	} else {
816 #ifdef CONFIG_PCI_IOV
817 		if (pe->flags & PNV_IODA_PE_VF)
818 			parent = pe->parent_dev;
819 		else
820 #endif
821 			parent = pe->pdev->bus->self;
822 		bcomp = OpalPciBusAll;
823 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825 		rid_end = pe->rid + 1;
826 	}
827 
828 	/* Clear the reverse map */
829 	for (rid = pe->rid; rid < rid_end; rid++)
830 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831 
832 	/* Release from all parents PELT-V */
833 	while (parent) {
834 		struct pci_dn *pdn = pci_get_pdn(parent);
835 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838 			/* XXX What to do in case of error ? */
839 		}
840 		parent = parent->bus->self;
841 	}
842 
843 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845 
846 	/* Disassociate PE in PELT */
847 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849 	if (rc)
850 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
851 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853 	if (rc)
854 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855 
856 	pe->pbus = NULL;
857 	pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859 	pe->parent_dev = NULL;
860 #endif
861 
862 	return 0;
863 }
864 
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867 	struct pci_dev *parent;
868 	uint8_t bcomp, dcomp, fcomp;
869 	long rc, rid_end, rid;
870 
871 	/* Bus validation ? */
872 	if (pe->pbus) {
873 		int count;
874 
875 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877 		parent = pe->pbus->self;
878 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
879 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880 		else
881 			count = 1;
882 
883 		switch(count) {
884 		case  1: bcomp = OpalPciBusAll;		break;
885 		case  2: bcomp = OpalPciBus7Bits;	break;
886 		case  4: bcomp = OpalPciBus6Bits;	break;
887 		case  8: bcomp = OpalPciBus5Bits;	break;
888 		case 16: bcomp = OpalPciBus4Bits;	break;
889 		case 32: bcomp = OpalPciBus3Bits;	break;
890 		default:
891 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892 			        count);
893 			/* Do an exact match only */
894 			bcomp = OpalPciBusAll;
895 		}
896 		rid_end = pe->rid + (count << 8);
897 	} else {
898 #ifdef CONFIG_PCI_IOV
899 		if (pe->flags & PNV_IODA_PE_VF)
900 			parent = pe->parent_dev;
901 		else
902 #endif /* CONFIG_PCI_IOV */
903 			parent = pe->pdev->bus->self;
904 		bcomp = OpalPciBusAll;
905 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907 		rid_end = pe->rid + 1;
908 	}
909 
910 	/*
911 	 * Associate PE in PELT. We need add the PE into the
912 	 * corresponding PELT-V as well. Otherwise, the error
913 	 * originated from the PE might contribute to other
914 	 * PEs.
915 	 */
916 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
918 	if (rc) {
919 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920 		return -ENXIO;
921 	}
922 
923 	/*
924 	 * Configure PELTV. NPUs don't have a PELTV table so skip
925 	 * configuration on them.
926 	 */
927 	if (phb->type != PNV_PHB_NPU)
928 		pnv_ioda_set_peltv(phb, pe, true);
929 
930 	/* Setup reverse map */
931 	for (rid = pe->rid; rid < rid_end; rid++)
932 		phb->ioda.pe_rmap[rid] = pe->pe_number;
933 
934 	/* Setup one MVTs on IODA1 */
935 	if (phb->type != PNV_PHB_IODA1) {
936 		pe->mve_number = 0;
937 		goto out;
938 	}
939 
940 	pe->mve_number = pe->pe_number;
941 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942 	if (rc != OPAL_SUCCESS) {
943 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944 		       rc, pe->mve_number);
945 		pe->mve_number = -1;
946 	} else {
947 		rc = opal_pci_set_mve_enable(phb->opal_id,
948 					     pe->mve_number, OPAL_ENABLE_MVE);
949 		if (rc) {
950 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951 			       rc, pe->mve_number);
952 			pe->mve_number = -1;
953 		}
954 	}
955 
956 out:
957 	return 0;
958 }
959 
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963 	struct pci_dn *pdn = pci_get_pdn(dev);
964 	int i;
965 	struct resource *res, res2;
966 	resource_size_t size;
967 	u16 num_vfs;
968 
969 	if (!dev->is_physfn)
970 		return -EINVAL;
971 
972 	/*
973 	 * "offset" is in VFs.  The M64 windows are sized so that when they
974 	 * are segmented, each segment is the same size as the IOV BAR.
975 	 * Each segment is in a separate PE, and the high order bits of the
976 	 * address are the PE number.  Therefore, each VF's BAR is in a
977 	 * separate PE, and changing the IOV BAR start address changes the
978 	 * range of PEs the VFs are in.
979 	 */
980 	num_vfs = pdn->num_vfs;
981 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982 		res = &dev->resource[i + PCI_IOV_RESOURCES];
983 		if (!res->flags || !res->parent)
984 			continue;
985 
986 		/*
987 		 * The actual IOV BAR range is determined by the start address
988 		 * and the actual size for num_vfs VFs BAR.  This check is to
989 		 * make sure that after shifting, the range will not overlap
990 		 * with another device.
991 		 */
992 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993 		res2.flags = res->flags;
994 		res2.start = res->start + (size * offset);
995 		res2.end = res2.start + (size * num_vfs) - 1;
996 
997 		if (res2.end > res->end) {
998 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999 				i, &res2, res, num_vfs, offset);
1000 			return -EBUSY;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * After doing so, there would be a "hole" in the /proc/iomem when
1006 	 * offset is a positive value. It looks like the device return some
1007 	 * mmio back to the system, which actually no one could use it.
1008 	 */
1009 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1010 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1011 		if (!res->flags || !res->parent)
1012 			continue;
1013 
1014 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1015 		res2 = *res;
1016 		res->start += size * offset;
1017 
1018 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1019 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1020 			 num_vfs, offset);
1021 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1022 	}
1023 	return 0;
1024 }
1025 #endif /* CONFIG_PCI_IOV */
1026 
1027 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1028 {
1029 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1030 	struct pnv_phb *phb = hose->private_data;
1031 	struct pci_dn *pdn = pci_get_pdn(dev);
1032 	struct pnv_ioda_pe *pe;
1033 
1034 	if (!pdn) {
1035 		pr_err("%s: Device tree node not associated properly\n",
1036 			   pci_name(dev));
1037 		return NULL;
1038 	}
1039 	if (pdn->pe_number != IODA_INVALID_PE)
1040 		return NULL;
1041 
1042 	pe = pnv_ioda_alloc_pe(phb);
1043 	if (!pe) {
1044 		pr_warning("%s: Not enough PE# available, disabling device\n",
1045 			   pci_name(dev));
1046 		return NULL;
1047 	}
1048 
1049 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1050 	 * pointer in the PE data structure, both should be destroyed at the
1051 	 * same time. However, this needs to be looked at more closely again
1052 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1053 	 *
1054 	 * At some point we want to remove the PDN completely anyways
1055 	 */
1056 	pci_dev_get(dev);
1057 	pdn->pcidev = dev;
1058 	pdn->pe_number = pe->pe_number;
1059 	pe->flags = PNV_IODA_PE_DEV;
1060 	pe->pdev = dev;
1061 	pe->pbus = NULL;
1062 	pe->mve_number = -1;
1063 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1064 
1065 	pe_info(pe, "Associated device to PE\n");
1066 
1067 	if (pnv_ioda_configure_pe(phb, pe)) {
1068 		/* XXX What do we do here ? */
1069 		pnv_ioda_free_pe(pe);
1070 		pdn->pe_number = IODA_INVALID_PE;
1071 		pe->pdev = NULL;
1072 		pci_dev_put(dev);
1073 		return NULL;
1074 	}
1075 
1076 	/* Put PE to the list */
1077 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1078 
1079 	return pe;
1080 }
1081 
1082 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1083 {
1084 	struct pci_dev *dev;
1085 
1086 	list_for_each_entry(dev, &bus->devices, bus_list) {
1087 		struct pci_dn *pdn = pci_get_pdn(dev);
1088 
1089 		if (pdn == NULL) {
1090 			pr_warn("%s: No device node associated with device !\n",
1091 				pci_name(dev));
1092 			continue;
1093 		}
1094 
1095 		/*
1096 		 * In partial hotplug case, the PCI device might be still
1097 		 * associated with the PE and needn't attach it to the PE
1098 		 * again.
1099 		 */
1100 		if (pdn->pe_number != IODA_INVALID_PE)
1101 			continue;
1102 
1103 		pe->device_count++;
1104 		pdn->pcidev = dev;
1105 		pdn->pe_number = pe->pe_number;
1106 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1107 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1108 	}
1109 }
1110 
1111 /*
1112  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1113  * single PCI bus. Another one that contains the primary PCI bus and its
1114  * subordinate PCI devices and buses. The second type of PE is normally
1115  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1116  */
1117 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1118 {
1119 	struct pci_controller *hose = pci_bus_to_host(bus);
1120 	struct pnv_phb *phb = hose->private_data;
1121 	struct pnv_ioda_pe *pe = NULL;
1122 	unsigned int pe_num;
1123 
1124 	/*
1125 	 * In partial hotplug case, the PE instance might be still alive.
1126 	 * We should reuse it instead of allocating a new one.
1127 	 */
1128 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1129 	if (pe_num != IODA_INVALID_PE) {
1130 		pe = &phb->ioda.pe_array[pe_num];
1131 		pnv_ioda_setup_same_PE(bus, pe);
1132 		return NULL;
1133 	}
1134 
1135 	/* PE number for root bus should have been reserved */
1136 	if (pci_is_root_bus(bus) &&
1137 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1138 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1139 
1140 	/* Check if PE is determined by M64 */
1141 	if (!pe && phb->pick_m64_pe)
1142 		pe = phb->pick_m64_pe(bus, all);
1143 
1144 	/* The PE number isn't pinned by M64 */
1145 	if (!pe)
1146 		pe = pnv_ioda_alloc_pe(phb);
1147 
1148 	if (!pe) {
1149 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1150 			__func__, pci_domain_nr(bus), bus->number);
1151 		return NULL;
1152 	}
1153 
1154 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1155 	pe->pbus = bus;
1156 	pe->pdev = NULL;
1157 	pe->mve_number = -1;
1158 	pe->rid = bus->busn_res.start << 8;
1159 
1160 	if (all)
1161 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1162 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1163 	else
1164 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1165 			bus->busn_res.start, pe->pe_number);
1166 
1167 	if (pnv_ioda_configure_pe(phb, pe)) {
1168 		/* XXX What do we do here ? */
1169 		pnv_ioda_free_pe(pe);
1170 		pe->pbus = NULL;
1171 		return NULL;
1172 	}
1173 
1174 	/* Associate it with all child devices */
1175 	pnv_ioda_setup_same_PE(bus, pe);
1176 
1177 	/* Put PE to the list */
1178 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1179 
1180 	return pe;
1181 }
1182 
1183 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1184 {
1185 	int pe_num, found_pe = false, rc;
1186 	long rid;
1187 	struct pnv_ioda_pe *pe;
1188 	struct pci_dev *gpu_pdev;
1189 	struct pci_dn *npu_pdn;
1190 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1191 	struct pnv_phb *phb = hose->private_data;
1192 
1193 	/*
1194 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1195 	 * error handling. This means we only have three PEs remaining
1196 	 * which need to be assigned to four links, implying some
1197 	 * links must share PEs.
1198 	 *
1199 	 * To achieve this we assign PEs such that NPUs linking the
1200 	 * same GPU get assigned the same PE.
1201 	 */
1202 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1203 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1204 		pe = &phb->ioda.pe_array[pe_num];
1205 		if (!pe->pdev)
1206 			continue;
1207 
1208 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1209 			/*
1210 			 * This device has the same peer GPU so should
1211 			 * be assigned the same PE as the existing
1212 			 * peer NPU.
1213 			 */
1214 			dev_info(&npu_pdev->dev,
1215 				"Associating to existing PE %x\n", pe_num);
1216 			pci_dev_get(npu_pdev);
1217 			npu_pdn = pci_get_pdn(npu_pdev);
1218 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1219 			npu_pdn->pcidev = npu_pdev;
1220 			npu_pdn->pe_number = pe_num;
1221 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1222 
1223 			/* Map the PE to this link */
1224 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1225 					OpalPciBusAll,
1226 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1227 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1228 					OPAL_MAP_PE);
1229 			WARN_ON(rc != OPAL_SUCCESS);
1230 			found_pe = true;
1231 			break;
1232 		}
1233 	}
1234 
1235 	if (!found_pe)
1236 		/*
1237 		 * Could not find an existing PE so allocate a new
1238 		 * one.
1239 		 */
1240 		return pnv_ioda_setup_dev_PE(npu_pdev);
1241 	else
1242 		return pe;
1243 }
1244 
1245 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1246 {
1247 	struct pci_dev *pdev;
1248 
1249 	list_for_each_entry(pdev, &bus->devices, bus_list)
1250 		pnv_ioda_setup_npu_PE(pdev);
1251 }
1252 
1253 static void pnv_pci_ioda_setup_PEs(void)
1254 {
1255 	struct pci_controller *hose, *tmp;
1256 	struct pnv_phb *phb;
1257 
1258 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1259 		phb = hose->private_data;
1260 		if (phb->type == PNV_PHB_NPU) {
1261 			/* PE#0 is needed for error reporting */
1262 			pnv_ioda_reserve_pe(phb, 0);
1263 			pnv_ioda_setup_npu_PEs(hose->bus);
1264 			if (phb->model == PNV_PHB_MODEL_NPU2)
1265 				pnv_npu2_init(phb);
1266 		}
1267 	}
1268 }
1269 
1270 #ifdef CONFIG_PCI_IOV
1271 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1272 {
1273 	struct pci_bus        *bus;
1274 	struct pci_controller *hose;
1275 	struct pnv_phb        *phb;
1276 	struct pci_dn         *pdn;
1277 	int                    i, j;
1278 	int                    m64_bars;
1279 
1280 	bus = pdev->bus;
1281 	hose = pci_bus_to_host(bus);
1282 	phb = hose->private_data;
1283 	pdn = pci_get_pdn(pdev);
1284 
1285 	if (pdn->m64_single_mode)
1286 		m64_bars = num_vfs;
1287 	else
1288 		m64_bars = 1;
1289 
1290 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1291 		for (j = 0; j < m64_bars; j++) {
1292 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1293 				continue;
1294 			opal_pci_phb_mmio_enable(phb->opal_id,
1295 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1296 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1297 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1298 		}
1299 
1300 	kfree(pdn->m64_map);
1301 	return 0;
1302 }
1303 
1304 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1305 {
1306 	struct pci_bus        *bus;
1307 	struct pci_controller *hose;
1308 	struct pnv_phb        *phb;
1309 	struct pci_dn         *pdn;
1310 	unsigned int           win;
1311 	struct resource       *res;
1312 	int                    i, j;
1313 	int64_t                rc;
1314 	int                    total_vfs;
1315 	resource_size_t        size, start;
1316 	int                    pe_num;
1317 	int                    m64_bars;
1318 
1319 	bus = pdev->bus;
1320 	hose = pci_bus_to_host(bus);
1321 	phb = hose->private_data;
1322 	pdn = pci_get_pdn(pdev);
1323 	total_vfs = pci_sriov_get_totalvfs(pdev);
1324 
1325 	if (pdn->m64_single_mode)
1326 		m64_bars = num_vfs;
1327 	else
1328 		m64_bars = 1;
1329 
1330 	pdn->m64_map = kmalloc_array(m64_bars,
1331 				     sizeof(*pdn->m64_map),
1332 				     GFP_KERNEL);
1333 	if (!pdn->m64_map)
1334 		return -ENOMEM;
1335 	/* Initialize the m64_map to IODA_INVALID_M64 */
1336 	for (i = 0; i < m64_bars ; i++)
1337 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1338 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1339 
1340 
1341 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1342 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1343 		if (!res->flags || !res->parent)
1344 			continue;
1345 
1346 		for (j = 0; j < m64_bars; j++) {
1347 			do {
1348 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1349 						phb->ioda.m64_bar_idx + 1, 0);
1350 
1351 				if (win >= phb->ioda.m64_bar_idx + 1)
1352 					goto m64_failed;
1353 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1354 
1355 			pdn->m64_map[j][i] = win;
1356 
1357 			if (pdn->m64_single_mode) {
1358 				size = pci_iov_resource_size(pdev,
1359 							PCI_IOV_RESOURCES + i);
1360 				start = res->start + size * j;
1361 			} else {
1362 				size = resource_size(res);
1363 				start = res->start;
1364 			}
1365 
1366 			/* Map the M64 here */
1367 			if (pdn->m64_single_mode) {
1368 				pe_num = pdn->pe_num_map[j];
1369 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1370 						pe_num, OPAL_M64_WINDOW_TYPE,
1371 						pdn->m64_map[j][i], 0);
1372 			}
1373 
1374 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1375 						 OPAL_M64_WINDOW_TYPE,
1376 						 pdn->m64_map[j][i],
1377 						 start,
1378 						 0, /* unused */
1379 						 size);
1380 
1381 
1382 			if (rc != OPAL_SUCCESS) {
1383 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1384 					win, rc);
1385 				goto m64_failed;
1386 			}
1387 
1388 			if (pdn->m64_single_mode)
1389 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1390 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1391 			else
1392 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1393 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1394 
1395 			if (rc != OPAL_SUCCESS) {
1396 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1397 					win, rc);
1398 				goto m64_failed;
1399 			}
1400 		}
1401 	}
1402 	return 0;
1403 
1404 m64_failed:
1405 	pnv_pci_vf_release_m64(pdev, num_vfs);
1406 	return -EBUSY;
1407 }
1408 
1409 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1410 		int num);
1411 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1412 
1413 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1414 {
1415 	struct iommu_table    *tbl;
1416 	int64_t               rc;
1417 
1418 	tbl = pe->table_group.tables[0];
1419 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1420 	if (rc)
1421 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1422 
1423 	pnv_pci_ioda2_set_bypass(pe, false);
1424 	if (pe->table_group.group) {
1425 		iommu_group_put(pe->table_group.group);
1426 		BUG_ON(pe->table_group.group);
1427 	}
1428 	iommu_tce_table_put(tbl);
1429 }
1430 
1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1432 {
1433 	struct pci_bus        *bus;
1434 	struct pci_controller *hose;
1435 	struct pnv_phb        *phb;
1436 	struct pnv_ioda_pe    *pe, *pe_n;
1437 	struct pci_dn         *pdn;
1438 
1439 	bus = pdev->bus;
1440 	hose = pci_bus_to_host(bus);
1441 	phb = hose->private_data;
1442 	pdn = pci_get_pdn(pdev);
1443 
1444 	if (!pdev->is_physfn)
1445 		return;
1446 
1447 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1448 		if (pe->parent_dev != pdev)
1449 			continue;
1450 
1451 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1452 
1453 		/* Remove from list */
1454 		mutex_lock(&phb->ioda.pe_list_mutex);
1455 		list_del(&pe->list);
1456 		mutex_unlock(&phb->ioda.pe_list_mutex);
1457 
1458 		pnv_ioda_deconfigure_pe(phb, pe);
1459 
1460 		pnv_ioda_free_pe(pe);
1461 	}
1462 }
1463 
1464 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1465 {
1466 	struct pci_bus        *bus;
1467 	struct pci_controller *hose;
1468 	struct pnv_phb        *phb;
1469 	struct pnv_ioda_pe    *pe;
1470 	struct pci_dn         *pdn;
1471 	u16                    num_vfs, i;
1472 
1473 	bus = pdev->bus;
1474 	hose = pci_bus_to_host(bus);
1475 	phb = hose->private_data;
1476 	pdn = pci_get_pdn(pdev);
1477 	num_vfs = pdn->num_vfs;
1478 
1479 	/* Release VF PEs */
1480 	pnv_ioda_release_vf_PE(pdev);
1481 
1482 	if (phb->type == PNV_PHB_IODA2) {
1483 		if (!pdn->m64_single_mode)
1484 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1485 
1486 		/* Release M64 windows */
1487 		pnv_pci_vf_release_m64(pdev, num_vfs);
1488 
1489 		/* Release PE numbers */
1490 		if (pdn->m64_single_mode) {
1491 			for (i = 0; i < num_vfs; i++) {
1492 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1493 					continue;
1494 
1495 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1496 				pnv_ioda_free_pe(pe);
1497 			}
1498 		} else
1499 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1500 		/* Releasing pe_num_map */
1501 		kfree(pdn->pe_num_map);
1502 	}
1503 }
1504 
1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1506 				       struct pnv_ioda_pe *pe);
1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509 	struct pci_bus        *bus;
1510 	struct pci_controller *hose;
1511 	struct pnv_phb        *phb;
1512 	struct pnv_ioda_pe    *pe;
1513 	int                    pe_num;
1514 	u16                    vf_index;
1515 	struct pci_dn         *pdn;
1516 
1517 	bus = pdev->bus;
1518 	hose = pci_bus_to_host(bus);
1519 	phb = hose->private_data;
1520 	pdn = pci_get_pdn(pdev);
1521 
1522 	if (!pdev->is_physfn)
1523 		return;
1524 
1525 	/* Reserve PE for each VF */
1526 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1527 		if (pdn->m64_single_mode)
1528 			pe_num = pdn->pe_num_map[vf_index];
1529 		else
1530 			pe_num = *pdn->pe_num_map + vf_index;
1531 
1532 		pe = &phb->ioda.pe_array[pe_num];
1533 		pe->pe_number = pe_num;
1534 		pe->phb = phb;
1535 		pe->flags = PNV_IODA_PE_VF;
1536 		pe->pbus = NULL;
1537 		pe->parent_dev = pdev;
1538 		pe->mve_number = -1;
1539 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1540 			   pci_iov_virtfn_devfn(pdev, vf_index);
1541 
1542 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1543 			hose->global_number, pdev->bus->number,
1544 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1545 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1546 
1547 		if (pnv_ioda_configure_pe(phb, pe)) {
1548 			/* XXX What do we do here ? */
1549 			pnv_ioda_free_pe(pe);
1550 			pe->pdev = NULL;
1551 			continue;
1552 		}
1553 
1554 		/* Put PE to the list */
1555 		mutex_lock(&phb->ioda.pe_list_mutex);
1556 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1557 		mutex_unlock(&phb->ioda.pe_list_mutex);
1558 
1559 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1560 	}
1561 }
1562 
1563 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1564 {
1565 	struct pci_bus        *bus;
1566 	struct pci_controller *hose;
1567 	struct pnv_phb        *phb;
1568 	struct pnv_ioda_pe    *pe;
1569 	struct pci_dn         *pdn;
1570 	int                    ret;
1571 	u16                    i;
1572 
1573 	bus = pdev->bus;
1574 	hose = pci_bus_to_host(bus);
1575 	phb = hose->private_data;
1576 	pdn = pci_get_pdn(pdev);
1577 
1578 	if (phb->type == PNV_PHB_IODA2) {
1579 		if (!pdn->vfs_expanded) {
1580 			dev_info(&pdev->dev, "don't support this SRIOV device"
1581 				" with non 64bit-prefetchable IOV BAR\n");
1582 			return -ENOSPC;
1583 		}
1584 
1585 		/*
1586 		 * When M64 BARs functions in Single PE mode, the number of VFs
1587 		 * could be enabled must be less than the number of M64 BARs.
1588 		 */
1589 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1590 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1591 			return -EBUSY;
1592 		}
1593 
1594 		/* Allocating pe_num_map */
1595 		if (pdn->m64_single_mode)
1596 			pdn->pe_num_map = kmalloc_array(num_vfs,
1597 							sizeof(*pdn->pe_num_map),
1598 							GFP_KERNEL);
1599 		else
1600 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1601 
1602 		if (!pdn->pe_num_map)
1603 			return -ENOMEM;
1604 
1605 		if (pdn->m64_single_mode)
1606 			for (i = 0; i < num_vfs; i++)
1607 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1608 
1609 		/* Calculate available PE for required VFs */
1610 		if (pdn->m64_single_mode) {
1611 			for (i = 0; i < num_vfs; i++) {
1612 				pe = pnv_ioda_alloc_pe(phb);
1613 				if (!pe) {
1614 					ret = -EBUSY;
1615 					goto m64_failed;
1616 				}
1617 
1618 				pdn->pe_num_map[i] = pe->pe_number;
1619 			}
1620 		} else {
1621 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1622 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1623 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1624 				0, num_vfs, 0);
1625 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1626 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1627 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1628 				kfree(pdn->pe_num_map);
1629 				return -EBUSY;
1630 			}
1631 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1632 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1633 		}
1634 		pdn->num_vfs = num_vfs;
1635 
1636 		/* Assign M64 window accordingly */
1637 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1638 		if (ret) {
1639 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1640 			goto m64_failed;
1641 		}
1642 
1643 		/*
1644 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1645 		 * the IOV BAR according to the PE# allocated to the VFs.
1646 		 * Otherwise, the PE# for the VF will conflict with others.
1647 		 */
1648 		if (!pdn->m64_single_mode) {
1649 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1650 			if (ret)
1651 				goto m64_failed;
1652 		}
1653 	}
1654 
1655 	/* Setup VF PEs */
1656 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1657 
1658 	return 0;
1659 
1660 m64_failed:
1661 	if (pdn->m64_single_mode) {
1662 		for (i = 0; i < num_vfs; i++) {
1663 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1664 				continue;
1665 
1666 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1667 			pnv_ioda_free_pe(pe);
1668 		}
1669 	} else
1670 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1671 
1672 	/* Releasing pe_num_map */
1673 	kfree(pdn->pe_num_map);
1674 
1675 	return ret;
1676 }
1677 
1678 int pcibios_sriov_disable(struct pci_dev *pdev)
1679 {
1680 	pnv_pci_sriov_disable(pdev);
1681 
1682 	/* Release PCI data */
1683 	remove_dev_pci_data(pdev);
1684 	return 0;
1685 }
1686 
1687 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1688 {
1689 	/* Allocate PCI data */
1690 	add_dev_pci_data(pdev);
1691 
1692 	return pnv_pci_sriov_enable(pdev, num_vfs);
1693 }
1694 #endif /* CONFIG_PCI_IOV */
1695 
1696 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1697 {
1698 	struct pci_dn *pdn = pci_get_pdn(pdev);
1699 	struct pnv_ioda_pe *pe;
1700 
1701 	/*
1702 	 * The function can be called while the PE#
1703 	 * hasn't been assigned. Do nothing for the
1704 	 * case.
1705 	 */
1706 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1707 		return;
1708 
1709 	pe = &phb->ioda.pe_array[pdn->pe_number];
1710 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1711 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1712 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1713 	/*
1714 	 * Note: iommu_add_device() will fail here as
1715 	 * for physical PE: the device is already added by now;
1716 	 * for virtual PE: sysfs entries are not ready yet and
1717 	 * tce_iommu_bus_notifier will add the device to a group later.
1718 	 */
1719 }
1720 
1721 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1722 {
1723 	unsigned short vendor = 0;
1724 	struct pci_dev *pdev;
1725 
1726 	if (pe->device_count == 1)
1727 		return true;
1728 
1729 	/* pe->pdev should be set if it's a single device, pe->pbus if not */
1730 	if (!pe->pbus)
1731 		return true;
1732 
1733 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1734 		if (!vendor) {
1735 			vendor = pdev->vendor;
1736 			continue;
1737 		}
1738 
1739 		if (pdev->vendor != vendor)
1740 			return false;
1741 	}
1742 
1743 	return true;
1744 }
1745 
1746 /*
1747  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1748  *
1749  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1750  * Devices can only access more than that if bit 59 of the PCI address is set
1751  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1752  * Many PCI devices are not capable of addressing that many bits, and as a
1753  * result are limited to the 4GB of virtual memory made available to 32-bit
1754  * devices in TVE#0.
1755  *
1756  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1757  * devices by configuring the virtual memory past the first 4GB inaccessible
1758  * by 64-bit DMAs.  This should only be used by devices that want more than
1759  * 4GB, and only on PEs that have no 32-bit devices.
1760  *
1761  * Currently this will only work on PHB3 (POWER8).
1762  */
1763 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1764 {
1765 	u64 window_size, table_size, tce_count, addr;
1766 	struct page *table_pages;
1767 	u64 tce_order = 28; /* 256MB TCEs */
1768 	__be64 *tces;
1769 	s64 rc;
1770 
1771 	/*
1772 	 * Window size needs to be a power of two, but needs to account for
1773 	 * shifting memory by the 4GB offset required to skip 32bit space.
1774 	 */
1775 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1776 	tce_count = window_size >> tce_order;
1777 	table_size = tce_count << 3;
1778 
1779 	if (table_size < PAGE_SIZE)
1780 		table_size = PAGE_SIZE;
1781 
1782 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1783 				       get_order(table_size));
1784 	if (!table_pages)
1785 		goto err;
1786 
1787 	tces = page_address(table_pages);
1788 	if (!tces)
1789 		goto err;
1790 
1791 	memset(tces, 0, table_size);
1792 
1793 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1794 		tces[(addr + (1ULL << 32)) >> tce_order] =
1795 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1796 	}
1797 
1798 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1799 					pe->pe_number,
1800 					/* reconfigure window 0 */
1801 					(pe->pe_number << 1) + 0,
1802 					1,
1803 					__pa(tces),
1804 					table_size,
1805 					1 << tce_order);
1806 	if (rc == OPAL_SUCCESS) {
1807 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1808 		return 0;
1809 	}
1810 err:
1811 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1812 	return -EIO;
1813 }
1814 
1815 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1816 {
1817 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1818 	struct pnv_phb *phb = hose->private_data;
1819 	struct pci_dn *pdn = pci_get_pdn(pdev);
1820 	struct pnv_ioda_pe *pe;
1821 	uint64_t top;
1822 	bool bypass = false;
1823 	s64 rc;
1824 
1825 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1826 		return -ENODEV;;
1827 
1828 	pe = &phb->ioda.pe_array[pdn->pe_number];
1829 	if (pe->tce_bypass_enabled) {
1830 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1831 		bypass = (dma_mask >= top);
1832 	}
1833 
1834 	if (bypass) {
1835 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1836 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1837 	} else {
1838 		/*
1839 		 * If the device can't set the TCE bypass bit but still wants
1840 		 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1841 		 * bypass the 32-bit region and be usable for 64-bit DMAs.
1842 		 * The device needs to be able to address all of this space.
1843 		 */
1844 		if (dma_mask >> 32 &&
1845 		    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1846 		    pnv_pci_ioda_pe_single_vendor(pe) &&
1847 		    phb->model == PNV_PHB_MODEL_PHB3) {
1848 			/* Configure the bypass mode */
1849 			rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1850 			if (rc)
1851 				return rc;
1852 			/* 4GB offset bypasses 32-bit space */
1853 			set_dma_offset(&pdev->dev, (1ULL << 32));
1854 			set_dma_ops(&pdev->dev, &dma_direct_ops);
1855 		} else {
1856 			dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1857 			set_dma_ops(&pdev->dev, &dma_iommu_ops);
1858 		}
1859 	}
1860 	*pdev->dev.dma_mask = dma_mask;
1861 
1862 	/* Update peer npu devices */
1863 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1864 
1865 	return 0;
1866 }
1867 
1868 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1869 {
1870 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1871 	struct pnv_phb *phb = hose->private_data;
1872 	struct pci_dn *pdn = pci_get_pdn(pdev);
1873 	struct pnv_ioda_pe *pe;
1874 	u64 end, mask;
1875 
1876 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1877 		return 0;
1878 
1879 	pe = &phb->ioda.pe_array[pdn->pe_number];
1880 	if (!pe->tce_bypass_enabled)
1881 		return __dma_get_required_mask(&pdev->dev);
1882 
1883 
1884 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1885 	mask = 1ULL << (fls64(end) - 1);
1886 	mask += mask - 1;
1887 
1888 	return mask;
1889 }
1890 
1891 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1892 				   struct pci_bus *bus,
1893 				   bool add_to_group)
1894 {
1895 	struct pci_dev *dev;
1896 
1897 	list_for_each_entry(dev, &bus->devices, bus_list) {
1898 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1899 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1900 		if (add_to_group)
1901 			iommu_add_device(&dev->dev);
1902 
1903 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1904 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1905 					add_to_group);
1906 	}
1907 }
1908 
1909 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1910 						     bool real_mode)
1911 {
1912 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1913 		(phb->regs + 0x210);
1914 }
1915 
1916 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1917 		unsigned long index, unsigned long npages, bool rm)
1918 {
1919 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1920 			&tbl->it_group_list, struct iommu_table_group_link,
1921 			next);
1922 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1923 			struct pnv_ioda_pe, table_group);
1924 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1925 	unsigned long start, end, inc;
1926 
1927 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1928 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1929 			npages - 1);
1930 
1931 	/* p7ioc-style invalidation, 2 TCEs per write */
1932 	start |= (1ull << 63);
1933 	end |= (1ull << 63);
1934 	inc = 16;
1935         end |= inc - 1;	/* round up end to be different than start */
1936 
1937         mb(); /* Ensure above stores are visible */
1938         while (start <= end) {
1939 		if (rm)
1940 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1941 		else
1942 			__raw_writeq(cpu_to_be64(start), invalidate);
1943                 start += inc;
1944         }
1945 
1946 	/*
1947 	 * The iommu layer will do another mb() for us on build()
1948 	 * and we don't care on free()
1949 	 */
1950 }
1951 
1952 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1953 		long npages, unsigned long uaddr,
1954 		enum dma_data_direction direction,
1955 		unsigned long attrs)
1956 {
1957 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1958 			attrs);
1959 
1960 	if (!ret)
1961 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1962 
1963 	return ret;
1964 }
1965 
1966 #ifdef CONFIG_IOMMU_API
1967 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1968 		unsigned long *hpa, enum dma_data_direction *direction)
1969 {
1970 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1971 
1972 	if (!ret)
1973 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1974 
1975 	return ret;
1976 }
1977 
1978 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
1979 		unsigned long *hpa, enum dma_data_direction *direction)
1980 {
1981 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1982 
1983 	if (!ret)
1984 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
1985 
1986 	return ret;
1987 }
1988 #endif
1989 
1990 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1991 		long npages)
1992 {
1993 	pnv_tce_free(tbl, index, npages);
1994 
1995 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1996 }
1997 
1998 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1999 	.set = pnv_ioda1_tce_build,
2000 #ifdef CONFIG_IOMMU_API
2001 	.exchange = pnv_ioda1_tce_xchg,
2002 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
2003 #endif
2004 	.clear = pnv_ioda1_tce_free,
2005 	.get = pnv_tce_get,
2006 };
2007 
2008 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
2009 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
2010 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
2011 
2012 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2013 {
2014 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2015 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2016 
2017 	mb(); /* Ensure previous TCE table stores are visible */
2018 	if (rm)
2019 		__raw_rm_writeq(cpu_to_be64(val), invalidate);
2020 	else
2021 		__raw_writeq(cpu_to_be64(val), invalidate);
2022 }
2023 
2024 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2025 {
2026 	/* 01xb - invalidate TCEs that match the specified PE# */
2027 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2028 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2029 
2030 	mb(); /* Ensure above stores are visible */
2031 	__raw_writeq(cpu_to_be64(val), invalidate);
2032 }
2033 
2034 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2035 					unsigned shift, unsigned long index,
2036 					unsigned long npages)
2037 {
2038 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2039 	unsigned long start, end, inc;
2040 
2041 	/* We'll invalidate DMA address in PE scope */
2042 	start = PHB3_TCE_KILL_INVAL_ONE;
2043 	start |= (pe->pe_number & 0xFF);
2044 	end = start;
2045 
2046 	/* Figure out the start, end and step */
2047 	start |= (index << shift);
2048 	end |= ((index + npages - 1) << shift);
2049 	inc = (0x1ull << shift);
2050 	mb();
2051 
2052 	while (start <= end) {
2053 		if (rm)
2054 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
2055 		else
2056 			__raw_writeq(cpu_to_be64(start), invalidate);
2057 		start += inc;
2058 	}
2059 }
2060 
2061 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2062 {
2063 	struct pnv_phb *phb = pe->phb;
2064 
2065 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2066 		pnv_pci_phb3_tce_invalidate_pe(pe);
2067 	else
2068 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2069 				  pe->pe_number, 0, 0, 0);
2070 }
2071 
2072 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2073 		unsigned long index, unsigned long npages, bool rm)
2074 {
2075 	struct iommu_table_group_link *tgl;
2076 
2077 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2078 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2079 				struct pnv_ioda_pe, table_group);
2080 		struct pnv_phb *phb = pe->phb;
2081 		unsigned int shift = tbl->it_page_shift;
2082 
2083 		/*
2084 		 * NVLink1 can use the TCE kill register directly as
2085 		 * it's the same as PHB3. NVLink2 is different and
2086 		 * should go via the OPAL call.
2087 		 */
2088 		if (phb->model == PNV_PHB_MODEL_NPU) {
2089 			/*
2090 			 * The NVLink hardware does not support TCE kill
2091 			 * per TCE entry so we have to invalidate
2092 			 * the entire cache for it.
2093 			 */
2094 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2095 			continue;
2096 		}
2097 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2098 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2099 						    index, npages);
2100 		else
2101 			opal_pci_tce_kill(phb->opal_id,
2102 					  OPAL_PCI_TCE_KILL_PAGES,
2103 					  pe->pe_number, 1u << shift,
2104 					  index << shift, npages);
2105 	}
2106 }
2107 
2108 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2109 {
2110 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2111 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2112 	else
2113 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2114 }
2115 
2116 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2117 		long npages, unsigned long uaddr,
2118 		enum dma_data_direction direction,
2119 		unsigned long attrs)
2120 {
2121 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2122 			attrs);
2123 
2124 	if (!ret)
2125 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2126 
2127 	return ret;
2128 }
2129 
2130 #ifdef CONFIG_IOMMU_API
2131 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2132 		unsigned long *hpa, enum dma_data_direction *direction)
2133 {
2134 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2135 
2136 	if (!ret)
2137 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2138 
2139 	return ret;
2140 }
2141 
2142 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2143 		unsigned long *hpa, enum dma_data_direction *direction)
2144 {
2145 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2146 
2147 	if (!ret)
2148 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2149 
2150 	return ret;
2151 }
2152 #endif
2153 
2154 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2155 		long npages)
2156 {
2157 	pnv_tce_free(tbl, index, npages);
2158 
2159 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2160 }
2161 
2162 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2163 {
2164 	pnv_pci_ioda2_table_free_pages(tbl);
2165 }
2166 
2167 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2168 	.set = pnv_ioda2_tce_build,
2169 #ifdef CONFIG_IOMMU_API
2170 	.exchange = pnv_ioda2_tce_xchg,
2171 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2172 #endif
2173 	.clear = pnv_ioda2_tce_free,
2174 	.get = pnv_tce_get,
2175 	.free = pnv_ioda2_table_free,
2176 };
2177 
2178 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2179 {
2180 	unsigned int *weight = (unsigned int *)data;
2181 
2182 	/* This is quite simplistic. The "base" weight of a device
2183 	 * is 10. 0 means no DMA is to be accounted for it.
2184 	 */
2185 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2186 		return 0;
2187 
2188 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2189 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2190 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2191 		*weight += 3;
2192 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2193 		*weight += 15;
2194 	else
2195 		*weight += 10;
2196 
2197 	return 0;
2198 }
2199 
2200 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2201 {
2202 	unsigned int weight = 0;
2203 
2204 	/* SRIOV VF has same DMA32 weight as its PF */
2205 #ifdef CONFIG_PCI_IOV
2206 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2207 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2208 		return weight;
2209 	}
2210 #endif
2211 
2212 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2213 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2214 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2215 		struct pci_dev *pdev;
2216 
2217 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2218 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2219 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2220 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2221 	}
2222 
2223 	return weight;
2224 }
2225 
2226 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2227 				       struct pnv_ioda_pe *pe)
2228 {
2229 
2230 	struct page *tce_mem = NULL;
2231 	struct iommu_table *tbl;
2232 	unsigned int weight, total_weight = 0;
2233 	unsigned int tce32_segsz, base, segs, avail, i;
2234 	int64_t rc;
2235 	void *addr;
2236 
2237 	/* XXX FIXME: Handle 64-bit only DMA devices */
2238 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2239 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2240 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2241 	if (!weight)
2242 		return;
2243 
2244 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2245 		     &total_weight);
2246 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2247 	if (!segs)
2248 		segs = 1;
2249 
2250 	/*
2251 	 * Allocate contiguous DMA32 segments. We begin with the expected
2252 	 * number of segments. With one more attempt, the number of DMA32
2253 	 * segments to be allocated is decreased by one until one segment
2254 	 * is allocated successfully.
2255 	 */
2256 	do {
2257 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2258 			for (avail = 0, i = base; i < base + segs; i++) {
2259 				if (phb->ioda.dma32_segmap[i] ==
2260 				    IODA_INVALID_PE)
2261 					avail++;
2262 			}
2263 
2264 			if (avail == segs)
2265 				goto found;
2266 		}
2267 	} while (--segs);
2268 
2269 	if (!segs) {
2270 		pe_warn(pe, "No available DMA32 segments\n");
2271 		return;
2272 	}
2273 
2274 found:
2275 	tbl = pnv_pci_table_alloc(phb->hose->node);
2276 	if (WARN_ON(!tbl))
2277 		return;
2278 
2279 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2280 			pe->pe_number);
2281 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2282 
2283 	/* Grab a 32-bit TCE table */
2284 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2285 		weight, total_weight, base, segs);
2286 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2287 		base * PNV_IODA1_DMA32_SEGSIZE,
2288 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2289 
2290 	/* XXX Currently, we allocate one big contiguous table for the
2291 	 * TCEs. We only really need one chunk per 256M of TCE space
2292 	 * (ie per segment) but that's an optimization for later, it
2293 	 * requires some added smarts with our get/put_tce implementation
2294 	 *
2295 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2296 	 * bytes
2297 	 */
2298 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2299 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2300 				   get_order(tce32_segsz * segs));
2301 	if (!tce_mem) {
2302 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2303 		goto fail;
2304 	}
2305 	addr = page_address(tce_mem);
2306 	memset(addr, 0, tce32_segsz * segs);
2307 
2308 	/* Configure HW */
2309 	for (i = 0; i < segs; i++) {
2310 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2311 					      pe->pe_number,
2312 					      base + i, 1,
2313 					      __pa(addr) + tce32_segsz * i,
2314 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2315 		if (rc) {
2316 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2317 			       " err %ld\n", rc);
2318 			goto fail;
2319 		}
2320 	}
2321 
2322 	/* Setup DMA32 segment mapping */
2323 	for (i = base; i < base + segs; i++)
2324 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2325 
2326 	/* Setup linux iommu table */
2327 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2328 				  base * PNV_IODA1_DMA32_SEGSIZE,
2329 				  IOMMU_PAGE_SHIFT_4K);
2330 
2331 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2332 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2333 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2334 	iommu_init_table(tbl, phb->hose->node);
2335 
2336 	if (pe->flags & PNV_IODA_PE_DEV) {
2337 		/*
2338 		 * Setting table base here only for carrying iommu_group
2339 		 * further down to let iommu_add_device() do the job.
2340 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2341 		 */
2342 		set_iommu_table_base(&pe->pdev->dev, tbl);
2343 		iommu_add_device(&pe->pdev->dev);
2344 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2345 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2346 
2347 	return;
2348  fail:
2349 	/* XXX Failure: Try to fallback to 64-bit only ? */
2350 	if (tce_mem)
2351 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2352 	if (tbl) {
2353 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2354 		iommu_tce_table_put(tbl);
2355 	}
2356 }
2357 
2358 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2359 		int num, struct iommu_table *tbl)
2360 {
2361 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2362 			table_group);
2363 	struct pnv_phb *phb = pe->phb;
2364 	int64_t rc;
2365 	const unsigned long size = tbl->it_indirect_levels ?
2366 			tbl->it_level_size : tbl->it_size;
2367 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2368 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2369 
2370 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2371 			start_addr, start_addr + win_size - 1,
2372 			IOMMU_PAGE_SIZE(tbl));
2373 
2374 	/*
2375 	 * Map TCE table through TVT. The TVE index is the PE number
2376 	 * shifted by 1 bit for 32-bits DMA space.
2377 	 */
2378 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2379 			pe->pe_number,
2380 			(pe->pe_number << 1) + num,
2381 			tbl->it_indirect_levels + 1,
2382 			__pa(tbl->it_base),
2383 			size << 3,
2384 			IOMMU_PAGE_SIZE(tbl));
2385 	if (rc) {
2386 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2387 		return rc;
2388 	}
2389 
2390 	pnv_pci_link_table_and_group(phb->hose->node, num,
2391 			tbl, &pe->table_group);
2392 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2393 
2394 	return 0;
2395 }
2396 
2397 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2398 {
2399 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2400 	int64_t rc;
2401 
2402 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2403 	if (enable) {
2404 		phys_addr_t top = memblock_end_of_DRAM();
2405 
2406 		top = roundup_pow_of_two(top);
2407 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2408 						     pe->pe_number,
2409 						     window_id,
2410 						     pe->tce_bypass_base,
2411 						     top);
2412 	} else {
2413 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2414 						     pe->pe_number,
2415 						     window_id,
2416 						     pe->tce_bypass_base,
2417 						     0);
2418 	}
2419 	if (rc)
2420 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2421 	else
2422 		pe->tce_bypass_enabled = enable;
2423 }
2424 
2425 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2426 		__u32 page_shift, __u64 window_size, __u32 levels,
2427 		struct iommu_table *tbl);
2428 
2429 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2430 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2431 		struct iommu_table **ptbl)
2432 {
2433 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2434 			table_group);
2435 	int nid = pe->phb->hose->node;
2436 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2437 	long ret;
2438 	struct iommu_table *tbl;
2439 
2440 	tbl = pnv_pci_table_alloc(nid);
2441 	if (!tbl)
2442 		return -ENOMEM;
2443 
2444 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2445 
2446 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2447 			bus_offset, page_shift, window_size,
2448 			levels, tbl);
2449 	if (ret) {
2450 		iommu_tce_table_put(tbl);
2451 		return ret;
2452 	}
2453 
2454 	*ptbl = tbl;
2455 
2456 	return 0;
2457 }
2458 
2459 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2460 {
2461 	struct iommu_table *tbl = NULL;
2462 	long rc;
2463 
2464 	/*
2465 	 * crashkernel= specifies the kdump kernel's maximum memory at
2466 	 * some offset and there is no guaranteed the result is a power
2467 	 * of 2, which will cause errors later.
2468 	 */
2469 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2470 
2471 	/*
2472 	 * In memory constrained environments, e.g. kdump kernel, the
2473 	 * DMA window can be larger than available memory, which will
2474 	 * cause errors later.
2475 	 */
2476 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2477 
2478 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2479 			IOMMU_PAGE_SHIFT_4K,
2480 			window_size,
2481 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2482 	if (rc) {
2483 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2484 				rc);
2485 		return rc;
2486 	}
2487 
2488 	iommu_init_table(tbl, pe->phb->hose->node);
2489 
2490 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2491 	if (rc) {
2492 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2493 				rc);
2494 		iommu_tce_table_put(tbl);
2495 		return rc;
2496 	}
2497 
2498 	if (!pnv_iommu_bypass_disabled)
2499 		pnv_pci_ioda2_set_bypass(pe, true);
2500 
2501 	/*
2502 	 * Setting table base here only for carrying iommu_group
2503 	 * further down to let iommu_add_device() do the job.
2504 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2505 	 */
2506 	if (pe->flags & PNV_IODA_PE_DEV)
2507 		set_iommu_table_base(&pe->pdev->dev, tbl);
2508 
2509 	return 0;
2510 }
2511 
2512 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2513 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2514 		int num)
2515 {
2516 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2517 			table_group);
2518 	struct pnv_phb *phb = pe->phb;
2519 	long ret;
2520 
2521 	pe_info(pe, "Removing DMA window #%d\n", num);
2522 
2523 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2524 			(pe->pe_number << 1) + num,
2525 			0/* levels */, 0/* table address */,
2526 			0/* table size */, 0/* page size */);
2527 	if (ret)
2528 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2529 	else
2530 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2531 
2532 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2533 
2534 	return ret;
2535 }
2536 #endif
2537 
2538 #ifdef CONFIG_IOMMU_API
2539 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2540 		__u64 window_size, __u32 levels)
2541 {
2542 	unsigned long bytes = 0;
2543 	const unsigned window_shift = ilog2(window_size);
2544 	unsigned entries_shift = window_shift - page_shift;
2545 	unsigned table_shift = entries_shift + 3;
2546 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2547 	unsigned long direct_table_size;
2548 
2549 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2550 			(window_size > memory_hotplug_max()) ||
2551 			!is_power_of_2(window_size))
2552 		return 0;
2553 
2554 	/* Calculate a direct table size from window_size and levels */
2555 	entries_shift = (entries_shift + levels - 1) / levels;
2556 	table_shift = entries_shift + 3;
2557 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2558 	direct_table_size =  1UL << table_shift;
2559 
2560 	for ( ; levels; --levels) {
2561 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2562 
2563 		tce_table_size /= direct_table_size;
2564 		tce_table_size <<= 3;
2565 		tce_table_size = max_t(unsigned long,
2566 				tce_table_size, direct_table_size);
2567 	}
2568 
2569 	return bytes;
2570 }
2571 
2572 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2573 {
2574 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2575 						table_group);
2576 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2577 	struct iommu_table *tbl = pe->table_group.tables[0];
2578 
2579 	pnv_pci_ioda2_set_bypass(pe, false);
2580 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2581 	if (pe->pbus)
2582 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2583 	iommu_tce_table_put(tbl);
2584 }
2585 
2586 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2587 {
2588 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2589 						table_group);
2590 
2591 	pnv_pci_ioda2_setup_default_config(pe);
2592 	if (pe->pbus)
2593 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2594 }
2595 
2596 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2597 	.get_table_size = pnv_pci_ioda2_get_table_size,
2598 	.create_table = pnv_pci_ioda2_create_table,
2599 	.set_window = pnv_pci_ioda2_set_window,
2600 	.unset_window = pnv_pci_ioda2_unset_window,
2601 	.take_ownership = pnv_ioda2_take_ownership,
2602 	.release_ownership = pnv_ioda2_release_ownership,
2603 };
2604 
2605 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2606 {
2607 	struct pci_controller *hose;
2608 	struct pnv_phb *phb;
2609 	struct pnv_ioda_pe **ptmppe = opaque;
2610 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2611 	struct pci_dn *pdn = pci_get_pdn(pdev);
2612 
2613 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2614 		return 0;
2615 
2616 	hose = pci_bus_to_host(pdev->bus);
2617 	phb = hose->private_data;
2618 	if (phb->type != PNV_PHB_NPU)
2619 		return 0;
2620 
2621 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2622 
2623 	return 1;
2624 }
2625 
2626 /*
2627  * This returns PE of associated NPU.
2628  * This assumes that NPU is in the same IOMMU group with GPU and there is
2629  * no other PEs.
2630  */
2631 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2632 		struct iommu_table_group *table_group)
2633 {
2634 	struct pnv_ioda_pe *npe = NULL;
2635 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2636 			gpe_table_group_to_npe_cb);
2637 
2638 	BUG_ON(!ret || !npe);
2639 
2640 	return npe;
2641 }
2642 
2643 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2644 		int num, struct iommu_table *tbl)
2645 {
2646 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2647 
2648 	if (ret)
2649 		return ret;
2650 
2651 	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2652 	if (ret)
2653 		pnv_pci_ioda2_unset_window(table_group, num);
2654 
2655 	return ret;
2656 }
2657 
2658 static long pnv_pci_ioda2_npu_unset_window(
2659 		struct iommu_table_group *table_group,
2660 		int num)
2661 {
2662 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2663 
2664 	if (ret)
2665 		return ret;
2666 
2667 	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2668 }
2669 
2670 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2671 {
2672 	/*
2673 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2674 	 * the iommu_table if 32bit DMA is enabled.
2675 	 */
2676 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2677 	pnv_ioda2_take_ownership(table_group);
2678 }
2679 
2680 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2681 	.get_table_size = pnv_pci_ioda2_get_table_size,
2682 	.create_table = pnv_pci_ioda2_create_table,
2683 	.set_window = pnv_pci_ioda2_npu_set_window,
2684 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2685 	.take_ownership = pnv_ioda2_npu_take_ownership,
2686 	.release_ownership = pnv_ioda2_release_ownership,
2687 };
2688 
2689 static void pnv_pci_ioda_setup_iommu_api(void)
2690 {
2691 	struct pci_controller *hose, *tmp;
2692 	struct pnv_phb *phb;
2693 	struct pnv_ioda_pe *pe, *gpe;
2694 
2695 	/*
2696 	 * Now we have all PHBs discovered, time to add NPU devices to
2697 	 * the corresponding IOMMU groups.
2698 	 */
2699 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2700 		phb = hose->private_data;
2701 
2702 		if (phb->type != PNV_PHB_NPU)
2703 			continue;
2704 
2705 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2706 			gpe = pnv_pci_npu_setup_iommu(pe);
2707 			if (gpe)
2708 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2709 		}
2710 	}
2711 }
2712 #else /* !CONFIG_IOMMU_API */
2713 static void pnv_pci_ioda_setup_iommu_api(void) { };
2714 #endif
2715 
2716 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2717 		unsigned levels, unsigned long limit,
2718 		unsigned long *current_offset, unsigned long *total_allocated)
2719 {
2720 	struct page *tce_mem = NULL;
2721 	__be64 *addr, *tmp;
2722 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2723 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2724 	unsigned entries = 1UL << (shift - 3);
2725 	long i;
2726 
2727 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2728 	if (!tce_mem) {
2729 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2730 		return NULL;
2731 	}
2732 	addr = page_address(tce_mem);
2733 	memset(addr, 0, allocated);
2734 	*total_allocated += allocated;
2735 
2736 	--levels;
2737 	if (!levels) {
2738 		*current_offset += allocated;
2739 		return addr;
2740 	}
2741 
2742 	for (i = 0; i < entries; ++i) {
2743 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2744 				levels, limit, current_offset, total_allocated);
2745 		if (!tmp)
2746 			break;
2747 
2748 		addr[i] = cpu_to_be64(__pa(tmp) |
2749 				TCE_PCI_READ | TCE_PCI_WRITE);
2750 
2751 		if (*current_offset >= limit)
2752 			break;
2753 	}
2754 
2755 	return addr;
2756 }
2757 
2758 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2759 		unsigned long size, unsigned level);
2760 
2761 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2762 		__u32 page_shift, __u64 window_size, __u32 levels,
2763 		struct iommu_table *tbl)
2764 {
2765 	void *addr;
2766 	unsigned long offset = 0, level_shift, total_allocated = 0;
2767 	const unsigned window_shift = ilog2(window_size);
2768 	unsigned entries_shift = window_shift - page_shift;
2769 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2770 	const unsigned long tce_table_size = 1UL << table_shift;
2771 
2772 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2773 		return -EINVAL;
2774 
2775 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2776 		return -EINVAL;
2777 
2778 	/* Adjust direct table size from window_size and levels */
2779 	entries_shift = (entries_shift + levels - 1) / levels;
2780 	level_shift = entries_shift + 3;
2781 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2782 
2783 	if ((level_shift - 3) * levels + page_shift >= 60)
2784 		return -EINVAL;
2785 
2786 	/* Allocate TCE table */
2787 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2788 			levels, tce_table_size, &offset, &total_allocated);
2789 
2790 	/* addr==NULL means that the first level allocation failed */
2791 	if (!addr)
2792 		return -ENOMEM;
2793 
2794 	/*
2795 	 * First level was allocated but some lower level failed as
2796 	 * we did not allocate as much as we wanted,
2797 	 * release partially allocated table.
2798 	 */
2799 	if (offset < tce_table_size) {
2800 		pnv_pci_ioda2_table_do_free_pages(addr,
2801 				1ULL << (level_shift - 3), levels - 1);
2802 		return -ENOMEM;
2803 	}
2804 
2805 	/* Setup linux iommu table */
2806 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2807 			page_shift);
2808 	tbl->it_level_size = 1ULL << (level_shift - 3);
2809 	tbl->it_indirect_levels = levels - 1;
2810 	tbl->it_allocated_size = total_allocated;
2811 
2812 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2813 			window_size, tce_table_size, bus_offset);
2814 
2815 	return 0;
2816 }
2817 
2818 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2819 		unsigned long size, unsigned level)
2820 {
2821 	const unsigned long addr_ul = (unsigned long) addr &
2822 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2823 
2824 	if (level) {
2825 		long i;
2826 		u64 *tmp = (u64 *) addr_ul;
2827 
2828 		for (i = 0; i < size; ++i) {
2829 			unsigned long hpa = be64_to_cpu(tmp[i]);
2830 
2831 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2832 				continue;
2833 
2834 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2835 					level - 1);
2836 		}
2837 	}
2838 
2839 	free_pages(addr_ul, get_order(size << 3));
2840 }
2841 
2842 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2843 {
2844 	const unsigned long size = tbl->it_indirect_levels ?
2845 			tbl->it_level_size : tbl->it_size;
2846 
2847 	if (!tbl->it_size)
2848 		return;
2849 
2850 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2851 			tbl->it_indirect_levels);
2852 }
2853 
2854 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2855 				       struct pnv_ioda_pe *pe)
2856 {
2857 	int64_t rc;
2858 
2859 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2860 		return;
2861 
2862 	/* TVE #1 is selected by PCI address bit 59 */
2863 	pe->tce_bypass_base = 1ull << 59;
2864 
2865 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2866 			pe->pe_number);
2867 
2868 	/* The PE will reserve all possible 32-bits space */
2869 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2870 		phb->ioda.m32_pci_base);
2871 
2872 	/* Setup linux iommu table */
2873 	pe->table_group.tce32_start = 0;
2874 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2875 	pe->table_group.max_dynamic_windows_supported =
2876 			IOMMU_TABLE_GROUP_MAX_TABLES;
2877 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2878 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2879 #ifdef CONFIG_IOMMU_API
2880 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2881 #endif
2882 
2883 	rc = pnv_pci_ioda2_setup_default_config(pe);
2884 	if (rc)
2885 		return;
2886 
2887 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2888 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2889 }
2890 
2891 #ifdef CONFIG_PCI_MSI
2892 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2893 {
2894 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2895 					   ioda.irq_chip);
2896 
2897 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2898 }
2899 
2900 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2901 {
2902 	int64_t rc;
2903 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2904 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2905 
2906 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2907 	WARN_ON_ONCE(rc);
2908 
2909 	icp_native_eoi(d);
2910 }
2911 
2912 
2913 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2914 {
2915 	struct irq_data *idata;
2916 	struct irq_chip *ichip;
2917 
2918 	/* The MSI EOI OPAL call is only needed on PHB3 */
2919 	if (phb->model != PNV_PHB_MODEL_PHB3)
2920 		return;
2921 
2922 	if (!phb->ioda.irq_chip_init) {
2923 		/*
2924 		 * First time we setup an MSI IRQ, we need to setup the
2925 		 * corresponding IRQ chip to route correctly.
2926 		 */
2927 		idata = irq_get_irq_data(virq);
2928 		ichip = irq_data_get_irq_chip(idata);
2929 		phb->ioda.irq_chip_init = 1;
2930 		phb->ioda.irq_chip = *ichip;
2931 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2932 	}
2933 	irq_set_chip(virq, &phb->ioda.irq_chip);
2934 }
2935 
2936 /*
2937  * Returns true iff chip is something that we could call
2938  * pnv_opal_pci_msi_eoi for.
2939  */
2940 bool is_pnv_opal_msi(struct irq_chip *chip)
2941 {
2942 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2943 }
2944 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2945 
2946 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2947 				  unsigned int hwirq, unsigned int virq,
2948 				  unsigned int is_64, struct msi_msg *msg)
2949 {
2950 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2951 	unsigned int xive_num = hwirq - phb->msi_base;
2952 	__be32 data;
2953 	int rc;
2954 
2955 	/* No PE assigned ? bail out ... no MSI for you ! */
2956 	if (pe == NULL)
2957 		return -ENXIO;
2958 
2959 	/* Check if we have an MVE */
2960 	if (pe->mve_number < 0)
2961 		return -ENXIO;
2962 
2963 	/* Force 32-bit MSI on some broken devices */
2964 	if (dev->no_64bit_msi)
2965 		is_64 = 0;
2966 
2967 	/* Assign XIVE to PE */
2968 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2969 	if (rc) {
2970 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2971 			pci_name(dev), rc, xive_num);
2972 		return -EIO;
2973 	}
2974 
2975 	if (is_64) {
2976 		__be64 addr64;
2977 
2978 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2979 				     &addr64, &data);
2980 		if (rc) {
2981 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2982 				pci_name(dev), rc);
2983 			return -EIO;
2984 		}
2985 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2986 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2987 	} else {
2988 		__be32 addr32;
2989 
2990 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2991 				     &addr32, &data);
2992 		if (rc) {
2993 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2994 				pci_name(dev), rc);
2995 			return -EIO;
2996 		}
2997 		msg->address_hi = 0;
2998 		msg->address_lo = be32_to_cpu(addr32);
2999 	}
3000 	msg->data = be32_to_cpu(data);
3001 
3002 	pnv_set_msi_irq_chip(phb, virq);
3003 
3004 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
3005 		 " address=%x_%08x data=%x PE# %x\n",
3006 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
3007 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
3008 
3009 	return 0;
3010 }
3011 
3012 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
3013 {
3014 	unsigned int count;
3015 	const __be32 *prop = of_get_property(phb->hose->dn,
3016 					     "ibm,opal-msi-ranges", NULL);
3017 	if (!prop) {
3018 		/* BML Fallback */
3019 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
3020 	}
3021 	if (!prop)
3022 		return;
3023 
3024 	phb->msi_base = be32_to_cpup(prop);
3025 	count = be32_to_cpup(prop + 1);
3026 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
3027 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3028 		       phb->hose->global_number);
3029 		return;
3030 	}
3031 
3032 	phb->msi_setup = pnv_pci_ioda_msi_setup;
3033 	phb->msi32_support = 1;
3034 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3035 		count, phb->msi_base);
3036 }
3037 #else
3038 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3039 #endif /* CONFIG_PCI_MSI */
3040 
3041 #ifdef CONFIG_PCI_IOV
3042 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3043 {
3044 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3045 	struct pnv_phb *phb = hose->private_data;
3046 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3047 	struct resource *res;
3048 	int i;
3049 	resource_size_t size, total_vf_bar_sz;
3050 	struct pci_dn *pdn;
3051 	int mul, total_vfs;
3052 
3053 	if (!pdev->is_physfn || pdev->is_added)
3054 		return;
3055 
3056 	pdn = pci_get_pdn(pdev);
3057 	pdn->vfs_expanded = 0;
3058 	pdn->m64_single_mode = false;
3059 
3060 	total_vfs = pci_sriov_get_totalvfs(pdev);
3061 	mul = phb->ioda.total_pe_num;
3062 	total_vf_bar_sz = 0;
3063 
3064 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3065 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3066 		if (!res->flags || res->parent)
3067 			continue;
3068 		if (!pnv_pci_is_m64_flags(res->flags)) {
3069 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
3070 					" non M64 VF BAR%d: %pR. \n",
3071 				 i, res);
3072 			goto truncate_iov;
3073 		}
3074 
3075 		total_vf_bar_sz += pci_iov_resource_size(pdev,
3076 				i + PCI_IOV_RESOURCES);
3077 
3078 		/*
3079 		 * If bigger than quarter of M64 segment size, just round up
3080 		 * power of two.
3081 		 *
3082 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3083 		 * with other devices, IOV BAR size is expanded to be
3084 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3085 		 * segment size , the expanded size would equal to half of the
3086 		 * whole M64 space size, which will exhaust the M64 Space and
3087 		 * limit the system flexibility.  This is a design decision to
3088 		 * set the boundary to quarter of the M64 segment size.
3089 		 */
3090 		if (total_vf_bar_sz > gate) {
3091 			mul = roundup_pow_of_two(total_vfs);
3092 			dev_info(&pdev->dev,
3093 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3094 				total_vf_bar_sz, gate, mul);
3095 			pdn->m64_single_mode = true;
3096 			break;
3097 		}
3098 	}
3099 
3100 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3101 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3102 		if (!res->flags || res->parent)
3103 			continue;
3104 
3105 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3106 		/*
3107 		 * On PHB3, the minimum size alignment of M64 BAR in single
3108 		 * mode is 32MB.
3109 		 */
3110 		if (pdn->m64_single_mode && (size < SZ_32M))
3111 			goto truncate_iov;
3112 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3113 		res->end = res->start + size * mul - 1;
3114 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3115 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3116 			 i, res, mul);
3117 	}
3118 	pdn->vfs_expanded = mul;
3119 
3120 	return;
3121 
3122 truncate_iov:
3123 	/* To save MMIO space, IOV BAR is truncated. */
3124 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3125 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3126 		res->flags = 0;
3127 		res->end = res->start - 1;
3128 	}
3129 }
3130 #endif /* CONFIG_PCI_IOV */
3131 
3132 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3133 				  struct resource *res)
3134 {
3135 	struct pnv_phb *phb = pe->phb;
3136 	struct pci_bus_region region;
3137 	int index;
3138 	int64_t rc;
3139 
3140 	if (!res || !res->flags || res->start > res->end)
3141 		return;
3142 
3143 	if (res->flags & IORESOURCE_IO) {
3144 		region.start = res->start - phb->ioda.io_pci_base;
3145 		region.end   = res->end - phb->ioda.io_pci_base;
3146 		index = region.start / phb->ioda.io_segsize;
3147 
3148 		while (index < phb->ioda.total_pe_num &&
3149 		       region.start <= region.end) {
3150 			phb->ioda.io_segmap[index] = pe->pe_number;
3151 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3152 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3153 			if (rc != OPAL_SUCCESS) {
3154 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3155 				       __func__, rc, index, pe->pe_number);
3156 				break;
3157 			}
3158 
3159 			region.start += phb->ioda.io_segsize;
3160 			index++;
3161 		}
3162 	} else if ((res->flags & IORESOURCE_MEM) &&
3163 		   !pnv_pci_is_m64(phb, res)) {
3164 		region.start = res->start -
3165 			       phb->hose->mem_offset[0] -
3166 			       phb->ioda.m32_pci_base;
3167 		region.end   = res->end -
3168 			       phb->hose->mem_offset[0] -
3169 			       phb->ioda.m32_pci_base;
3170 		index = region.start / phb->ioda.m32_segsize;
3171 
3172 		while (index < phb->ioda.total_pe_num &&
3173 		       region.start <= region.end) {
3174 			phb->ioda.m32_segmap[index] = pe->pe_number;
3175 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3176 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3177 			if (rc != OPAL_SUCCESS) {
3178 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3179 				       __func__, rc, index, pe->pe_number);
3180 				break;
3181 			}
3182 
3183 			region.start += phb->ioda.m32_segsize;
3184 			index++;
3185 		}
3186 	}
3187 }
3188 
3189 /*
3190  * This function is supposed to be called on basis of PE from top
3191  * to bottom style. So the the I/O or MMIO segment assigned to
3192  * parent PE could be overridden by its child PEs if necessary.
3193  */
3194 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3195 {
3196 	struct pci_dev *pdev;
3197 	int i;
3198 
3199 	/*
3200 	 * NOTE: We only care PCI bus based PE for now. For PCI
3201 	 * device based PE, for example SRIOV sensitive VF should
3202 	 * be figured out later.
3203 	 */
3204 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3205 
3206 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3207 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3208 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3209 
3210 		/*
3211 		 * If the PE contains all subordinate PCI buses, the
3212 		 * windows of the child bridges should be mapped to
3213 		 * the PE as well.
3214 		 */
3215 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3216 			continue;
3217 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3218 			pnv_ioda_setup_pe_res(pe,
3219 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3220 	}
3221 }
3222 
3223 #ifdef CONFIG_DEBUG_FS
3224 static int pnv_pci_diag_data_set(void *data, u64 val)
3225 {
3226 	struct pci_controller *hose;
3227 	struct pnv_phb *phb;
3228 	s64 ret;
3229 
3230 	if (val != 1ULL)
3231 		return -EINVAL;
3232 
3233 	hose = (struct pci_controller *)data;
3234 	if (!hose || !hose->private_data)
3235 		return -ENODEV;
3236 
3237 	phb = hose->private_data;
3238 
3239 	/* Retrieve the diag data from firmware */
3240 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3241 					  phb->diag_data_size);
3242 	if (ret != OPAL_SUCCESS)
3243 		return -EIO;
3244 
3245 	/* Print the diag data to the kernel log */
3246 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3247 	return 0;
3248 }
3249 
3250 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3251 			pnv_pci_diag_data_set, "%llu\n");
3252 
3253 #endif /* CONFIG_DEBUG_FS */
3254 
3255 static void pnv_pci_ioda_create_dbgfs(void)
3256 {
3257 #ifdef CONFIG_DEBUG_FS
3258 	struct pci_controller *hose, *tmp;
3259 	struct pnv_phb *phb;
3260 	char name[16];
3261 
3262 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3263 		phb = hose->private_data;
3264 
3265 		/* Notify initialization of PHB done */
3266 		phb->initialized = 1;
3267 
3268 		sprintf(name, "PCI%04x", hose->global_number);
3269 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3270 		if (!phb->dbgfs) {
3271 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3272 				__func__, hose->global_number);
3273 			continue;
3274 		}
3275 
3276 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3277 				    &pnv_pci_diag_data_fops);
3278 	}
3279 #endif /* CONFIG_DEBUG_FS */
3280 }
3281 
3282 static void pnv_pci_ioda_fixup(void)
3283 {
3284 	pnv_pci_ioda_setup_PEs();
3285 	pnv_pci_ioda_setup_iommu_api();
3286 	pnv_pci_ioda_create_dbgfs();
3287 
3288 #ifdef CONFIG_EEH
3289 	eeh_init();
3290 	eeh_addr_cache_build();
3291 #endif
3292 }
3293 
3294 /*
3295  * Returns the alignment for I/O or memory windows for P2P
3296  * bridges. That actually depends on how PEs are segmented.
3297  * For now, we return I/O or M32 segment size for PE sensitive
3298  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3299  * 1MiB for memory) will be returned.
3300  *
3301  * The current PCI bus might be put into one PE, which was
3302  * create against the parent PCI bridge. For that case, we
3303  * needn't enlarge the alignment so that we can save some
3304  * resources.
3305  */
3306 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3307 						unsigned long type)
3308 {
3309 	struct pci_dev *bridge;
3310 	struct pci_controller *hose = pci_bus_to_host(bus);
3311 	struct pnv_phb *phb = hose->private_data;
3312 	int num_pci_bridges = 0;
3313 
3314 	bridge = bus->self;
3315 	while (bridge) {
3316 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3317 			num_pci_bridges++;
3318 			if (num_pci_bridges >= 2)
3319 				return 1;
3320 		}
3321 
3322 		bridge = bridge->bus->self;
3323 	}
3324 
3325 	/*
3326 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3327 	 * alignment for any 64-bit resource, PCIe doesn't care and
3328 	 * bridges only do 64-bit prefetchable anyway.
3329 	 */
3330 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3331 		return phb->ioda.m64_segsize;
3332 	if (type & IORESOURCE_MEM)
3333 		return phb->ioda.m32_segsize;
3334 
3335 	return phb->ioda.io_segsize;
3336 }
3337 
3338 /*
3339  * We are updating root port or the upstream port of the
3340  * bridge behind the root port with PHB's windows in order
3341  * to accommodate the changes on required resources during
3342  * PCI (slot) hotplug, which is connected to either root
3343  * port or the downstream ports of PCIe switch behind the
3344  * root port.
3345  */
3346 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3347 					   unsigned long type)
3348 {
3349 	struct pci_controller *hose = pci_bus_to_host(bus);
3350 	struct pnv_phb *phb = hose->private_data;
3351 	struct pci_dev *bridge = bus->self;
3352 	struct resource *r, *w;
3353 	bool msi_region = false;
3354 	int i;
3355 
3356 	/* Check if we need apply fixup to the bridge's windows */
3357 	if (!pci_is_root_bus(bridge->bus) &&
3358 	    !pci_is_root_bus(bridge->bus->self->bus))
3359 		return;
3360 
3361 	/* Fixup the resources */
3362 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3363 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3364 		if (!r->flags || !r->parent)
3365 			continue;
3366 
3367 		w = NULL;
3368 		if (r->flags & type & IORESOURCE_IO)
3369 			w = &hose->io_resource;
3370 		else if (pnv_pci_is_m64(phb, r) &&
3371 			 (type & IORESOURCE_PREFETCH) &&
3372 			 phb->ioda.m64_segsize)
3373 			w = &hose->mem_resources[1];
3374 		else if (r->flags & type & IORESOURCE_MEM) {
3375 			w = &hose->mem_resources[0];
3376 			msi_region = true;
3377 		}
3378 
3379 		r->start = w->start;
3380 		r->end = w->end;
3381 
3382 		/* The 64KB 32-bits MSI region shouldn't be included in
3383 		 * the 32-bits bridge window. Otherwise, we can see strange
3384 		 * issues. One of them is EEH error observed on Garrison.
3385 		 *
3386 		 * Exclude top 1MB region which is the minimal alignment of
3387 		 * 32-bits bridge window.
3388 		 */
3389 		if (msi_region) {
3390 			r->end += 0x10000;
3391 			r->end -= 0x100000;
3392 		}
3393 	}
3394 }
3395 
3396 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3397 {
3398 	struct pci_controller *hose = pci_bus_to_host(bus);
3399 	struct pnv_phb *phb = hose->private_data;
3400 	struct pci_dev *bridge = bus->self;
3401 	struct pnv_ioda_pe *pe;
3402 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3403 
3404 	/* Extend bridge's windows if necessary */
3405 	pnv_pci_fixup_bridge_resources(bus, type);
3406 
3407 	/* The PE for root bus should be realized before any one else */
3408 	if (!phb->ioda.root_pe_populated) {
3409 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3410 		if (pe) {
3411 			phb->ioda.root_pe_idx = pe->pe_number;
3412 			phb->ioda.root_pe_populated = true;
3413 		}
3414 	}
3415 
3416 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3417 	if (list_empty(&bus->devices))
3418 		return;
3419 
3420 	/* Reserve PEs according to used M64 resources */
3421 	if (phb->reserve_m64_pe)
3422 		phb->reserve_m64_pe(bus, NULL, all);
3423 
3424 	/*
3425 	 * Assign PE. We might run here because of partial hotplug.
3426 	 * For the case, we just pick up the existing PE and should
3427 	 * not allocate resources again.
3428 	 */
3429 	pe = pnv_ioda_setup_bus_PE(bus, all);
3430 	if (!pe)
3431 		return;
3432 
3433 	pnv_ioda_setup_pe_seg(pe);
3434 	switch (phb->type) {
3435 	case PNV_PHB_IODA1:
3436 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3437 		break;
3438 	case PNV_PHB_IODA2:
3439 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3440 		break;
3441 	default:
3442 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3443 			__func__, phb->hose->global_number, phb->type);
3444 	}
3445 }
3446 
3447 static resource_size_t pnv_pci_default_alignment(void)
3448 {
3449 	return PAGE_SIZE;
3450 }
3451 
3452 #ifdef CONFIG_PCI_IOV
3453 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3454 						      int resno)
3455 {
3456 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3457 	struct pnv_phb *phb = hose->private_data;
3458 	struct pci_dn *pdn = pci_get_pdn(pdev);
3459 	resource_size_t align;
3460 
3461 	/*
3462 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3463 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3464 	 * BAR should be size aligned.
3465 	 *
3466 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3467 	 * powernv-specific hardware restriction is gone. But if just use the
3468 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3469 	 * in one segment of M64 #15, which introduces the PE conflict between
3470 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3471 	 * m64_segsize.
3472 	 *
3473 	 * This function returns the total IOV BAR size if M64 BAR is in
3474 	 * Shared PE mode or just VF BAR size if not.
3475 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3476 	 * M64 segment size if IOV BAR size is less.
3477 	 */
3478 	align = pci_iov_resource_size(pdev, resno);
3479 	if (!pdn->vfs_expanded)
3480 		return align;
3481 	if (pdn->m64_single_mode)
3482 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3483 
3484 	return pdn->vfs_expanded * align;
3485 }
3486 #endif /* CONFIG_PCI_IOV */
3487 
3488 /* Prevent enabling devices for which we couldn't properly
3489  * assign a PE
3490  */
3491 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3492 {
3493 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3494 	struct pnv_phb *phb = hose->private_data;
3495 	struct pci_dn *pdn;
3496 
3497 	/* The function is probably called while the PEs have
3498 	 * not be created yet. For example, resource reassignment
3499 	 * during PCI probe period. We just skip the check if
3500 	 * PEs isn't ready.
3501 	 */
3502 	if (!phb->initialized)
3503 		return true;
3504 
3505 	pdn = pci_get_pdn(dev);
3506 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3507 		return false;
3508 
3509 	return true;
3510 }
3511 
3512 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3513 				       int num)
3514 {
3515 	struct pnv_ioda_pe *pe = container_of(table_group,
3516 					      struct pnv_ioda_pe, table_group);
3517 	struct pnv_phb *phb = pe->phb;
3518 	unsigned int idx;
3519 	long rc;
3520 
3521 	pe_info(pe, "Removing DMA window #%d\n", num);
3522 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3523 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3524 			continue;
3525 
3526 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3527 						idx, 0, 0ul, 0ul, 0ul);
3528 		if (rc != OPAL_SUCCESS) {
3529 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3530 				rc, idx);
3531 			return rc;
3532 		}
3533 
3534 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3535 	}
3536 
3537 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3538 	return OPAL_SUCCESS;
3539 }
3540 
3541 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3542 {
3543 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3544 	struct iommu_table *tbl = pe->table_group.tables[0];
3545 	int64_t rc;
3546 
3547 	if (!weight)
3548 		return;
3549 
3550 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3551 	if (rc != OPAL_SUCCESS)
3552 		return;
3553 
3554 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3555 	if (pe->table_group.group) {
3556 		iommu_group_put(pe->table_group.group);
3557 		WARN_ON(pe->table_group.group);
3558 	}
3559 
3560 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3561 	iommu_tce_table_put(tbl);
3562 }
3563 
3564 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3565 {
3566 	struct iommu_table *tbl = pe->table_group.tables[0];
3567 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3568 #ifdef CONFIG_IOMMU_API
3569 	int64_t rc;
3570 #endif
3571 
3572 	if (!weight)
3573 		return;
3574 
3575 #ifdef CONFIG_IOMMU_API
3576 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3577 	if (rc)
3578 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3579 #endif
3580 
3581 	pnv_pci_ioda2_set_bypass(pe, false);
3582 	if (pe->table_group.group) {
3583 		iommu_group_put(pe->table_group.group);
3584 		WARN_ON(pe->table_group.group);
3585 	}
3586 
3587 	pnv_pci_ioda2_table_free_pages(tbl);
3588 	iommu_tce_table_put(tbl);
3589 }
3590 
3591 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3592 				 unsigned short win,
3593 				 unsigned int *map)
3594 {
3595 	struct pnv_phb *phb = pe->phb;
3596 	int idx;
3597 	int64_t rc;
3598 
3599 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3600 		if (map[idx] != pe->pe_number)
3601 			continue;
3602 
3603 		if (win == OPAL_M64_WINDOW_TYPE)
3604 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3605 					phb->ioda.reserved_pe_idx, win,
3606 					idx / PNV_IODA1_M64_SEGS,
3607 					idx % PNV_IODA1_M64_SEGS);
3608 		else
3609 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3610 					phb->ioda.reserved_pe_idx, win, 0, idx);
3611 
3612 		if (rc != OPAL_SUCCESS)
3613 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3614 				rc, win, idx);
3615 
3616 		map[idx] = IODA_INVALID_PE;
3617 	}
3618 }
3619 
3620 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3621 {
3622 	struct pnv_phb *phb = pe->phb;
3623 
3624 	if (phb->type == PNV_PHB_IODA1) {
3625 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3626 				     phb->ioda.io_segmap);
3627 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3628 				     phb->ioda.m32_segmap);
3629 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3630 				     phb->ioda.m64_segmap);
3631 	} else if (phb->type == PNV_PHB_IODA2) {
3632 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3633 				     phb->ioda.m32_segmap);
3634 	}
3635 }
3636 
3637 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3638 {
3639 	struct pnv_phb *phb = pe->phb;
3640 	struct pnv_ioda_pe *slave, *tmp;
3641 
3642 	list_del(&pe->list);
3643 	switch (phb->type) {
3644 	case PNV_PHB_IODA1:
3645 		pnv_pci_ioda1_release_pe_dma(pe);
3646 		break;
3647 	case PNV_PHB_IODA2:
3648 		pnv_pci_ioda2_release_pe_dma(pe);
3649 		break;
3650 	default:
3651 		WARN_ON(1);
3652 	}
3653 
3654 	pnv_ioda_release_pe_seg(pe);
3655 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3656 
3657 	/* Release slave PEs in the compound PE */
3658 	if (pe->flags & PNV_IODA_PE_MASTER) {
3659 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3660 			list_del(&slave->list);
3661 			pnv_ioda_free_pe(slave);
3662 		}
3663 	}
3664 
3665 	/*
3666 	 * The PE for root bus can be removed because of hotplug in EEH
3667 	 * recovery for fenced PHB error. We need to mark the PE dead so
3668 	 * that it can be populated again in PCI hot add path. The PE
3669 	 * shouldn't be destroyed as it's the global reserved resource.
3670 	 */
3671 	if (phb->ioda.root_pe_populated &&
3672 	    phb->ioda.root_pe_idx == pe->pe_number)
3673 		phb->ioda.root_pe_populated = false;
3674 	else
3675 		pnv_ioda_free_pe(pe);
3676 }
3677 
3678 static void pnv_pci_release_device(struct pci_dev *pdev)
3679 {
3680 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3681 	struct pnv_phb *phb = hose->private_data;
3682 	struct pci_dn *pdn = pci_get_pdn(pdev);
3683 	struct pnv_ioda_pe *pe;
3684 
3685 	if (pdev->is_virtfn)
3686 		return;
3687 
3688 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3689 		return;
3690 
3691 	/*
3692 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3693 	 * isn't removed and added afterwards in this scenario. We should
3694 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3695 	 * device count is decreased on removing devices while failing to
3696 	 * be increased on adding devices. It leads to unbalanced PE's device
3697 	 * count and eventually make normal PCI hotplug path broken.
3698 	 */
3699 	pe = &phb->ioda.pe_array[pdn->pe_number];
3700 	pdn->pe_number = IODA_INVALID_PE;
3701 
3702 	WARN_ON(--pe->device_count < 0);
3703 	if (pe->device_count == 0)
3704 		pnv_ioda_release_pe(pe);
3705 }
3706 
3707 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3708 {
3709 	struct pnv_phb *phb = hose->private_data;
3710 
3711 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3712 		       OPAL_ASSERT_RESET);
3713 }
3714 
3715 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3716 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3717 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3718 #ifdef CONFIG_PCI_MSI
3719 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3720 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3721 #endif
3722 	.enable_device_hook	= pnv_pci_enable_device_hook,
3723 	.release_device		= pnv_pci_release_device,
3724 	.window_alignment	= pnv_pci_window_alignment,
3725 	.setup_bridge		= pnv_pci_setup_bridge,
3726 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3727 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3728 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3729 	.shutdown		= pnv_pci_ioda_shutdown,
3730 };
3731 
3732 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3733 {
3734 	dev_err_once(&npdev->dev,
3735 			"%s operation unsupported for NVLink devices\n",
3736 			__func__);
3737 	return -EPERM;
3738 }
3739 
3740 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3741 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3742 #ifdef CONFIG_PCI_MSI
3743 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3744 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3745 #endif
3746 	.enable_device_hook	= pnv_pci_enable_device_hook,
3747 	.window_alignment	= pnv_pci_window_alignment,
3748 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3749 	.dma_set_mask		= pnv_npu_dma_set_mask,
3750 	.shutdown		= pnv_pci_ioda_shutdown,
3751 };
3752 
3753 #ifdef CONFIG_CXL_BASE
3754 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3755 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3756 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3757 #ifdef CONFIG_PCI_MSI
3758 	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
3759 	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
3760 #endif
3761 	.enable_device_hook	= pnv_cxl_enable_device_hook,
3762 	.disable_device		= pnv_cxl_disable_device,
3763 	.release_device		= pnv_pci_release_device,
3764 	.window_alignment	= pnv_pci_window_alignment,
3765 	.setup_bridge		= pnv_pci_setup_bridge,
3766 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3767 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3768 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3769 	.shutdown		= pnv_pci_ioda_shutdown,
3770 };
3771 #endif
3772 
3773 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3774 					 u64 hub_id, int ioda_type)
3775 {
3776 	struct pci_controller *hose;
3777 	struct pnv_phb *phb;
3778 	unsigned long size, m64map_off, m32map_off, pemap_off;
3779 	unsigned long iomap_off = 0, dma32map_off = 0;
3780 	struct resource r;
3781 	const __be64 *prop64;
3782 	const __be32 *prop32;
3783 	int len;
3784 	unsigned int segno;
3785 	u64 phb_id;
3786 	void *aux;
3787 	long rc;
3788 
3789 	if (!of_device_is_available(np))
3790 		return;
3791 
3792 	pr_info("Initializing %s PHB (%s)\n",
3793 		pnv_phb_names[ioda_type], of_node_full_name(np));
3794 
3795 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3796 	if (!prop64) {
3797 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3798 		return;
3799 	}
3800 	phb_id = be64_to_cpup(prop64);
3801 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3802 
3803 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3804 
3805 	/* Allocate PCI controller */
3806 	phb->hose = hose = pcibios_alloc_controller(np);
3807 	if (!phb->hose) {
3808 		pr_err("  Can't allocate PCI controller for %s\n",
3809 		       np->full_name);
3810 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3811 		return;
3812 	}
3813 
3814 	spin_lock_init(&phb->lock);
3815 	prop32 = of_get_property(np, "bus-range", &len);
3816 	if (prop32 && len == 8) {
3817 		hose->first_busno = be32_to_cpu(prop32[0]);
3818 		hose->last_busno = be32_to_cpu(prop32[1]);
3819 	} else {
3820 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3821 		hose->first_busno = 0;
3822 		hose->last_busno = 0xff;
3823 	}
3824 	hose->private_data = phb;
3825 	phb->hub_id = hub_id;
3826 	phb->opal_id = phb_id;
3827 	phb->type = ioda_type;
3828 	mutex_init(&phb->ioda.pe_alloc_mutex);
3829 
3830 	/* Detect specific models for error handling */
3831 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3832 		phb->model = PNV_PHB_MODEL_P7IOC;
3833 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3834 		phb->model = PNV_PHB_MODEL_PHB3;
3835 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3836 		phb->model = PNV_PHB_MODEL_NPU;
3837 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3838 		phb->model = PNV_PHB_MODEL_NPU2;
3839 	else
3840 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3841 
3842 	/* Initialize diagnostic data buffer */
3843 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3844 	if (prop32)
3845 		phb->diag_data_size = be32_to_cpup(prop32);
3846 	else
3847 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3848 
3849 	phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3850 
3851 	/* Parse 32-bit and IO ranges (if any) */
3852 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3853 
3854 	/* Get registers */
3855 	if (!of_address_to_resource(np, 0, &r)) {
3856 		phb->regs_phys = r.start;
3857 		phb->regs = ioremap(r.start, resource_size(&r));
3858 		if (phb->regs == NULL)
3859 			pr_err("  Failed to map registers !\n");
3860 	}
3861 
3862 	/* Initialize more IODA stuff */
3863 	phb->ioda.total_pe_num = 1;
3864 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3865 	if (prop32)
3866 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3867 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3868 	if (prop32)
3869 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3870 
3871 	/* Invalidate RID to PE# mapping */
3872 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3873 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3874 
3875 	/* Parse 64-bit MMIO range */
3876 	pnv_ioda_parse_m64_window(phb);
3877 
3878 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3879 	/* FW Has already off top 64k of M32 space (MSI space) */
3880 	phb->ioda.m32_size += 0x10000;
3881 
3882 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3883 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3884 	phb->ioda.io_size = hose->pci_io_size;
3885 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3886 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3887 
3888 	/* Calculate how many 32-bit TCE segments we have */
3889 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3890 				PNV_IODA1_DMA32_SEGSIZE;
3891 
3892 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3893 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3894 			sizeof(unsigned long));
3895 	m64map_off = size;
3896 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3897 	m32map_off = size;
3898 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3899 	if (phb->type == PNV_PHB_IODA1) {
3900 		iomap_off = size;
3901 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3902 		dma32map_off = size;
3903 		size += phb->ioda.dma32_count *
3904 			sizeof(phb->ioda.dma32_segmap[0]);
3905 	}
3906 	pemap_off = size;
3907 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3908 	aux = memblock_virt_alloc(size, 0);
3909 	phb->ioda.pe_alloc = aux;
3910 	phb->ioda.m64_segmap = aux + m64map_off;
3911 	phb->ioda.m32_segmap = aux + m32map_off;
3912 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3913 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3914 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3915 	}
3916 	if (phb->type == PNV_PHB_IODA1) {
3917 		phb->ioda.io_segmap = aux + iomap_off;
3918 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3919 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3920 
3921 		phb->ioda.dma32_segmap = aux + dma32map_off;
3922 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3923 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3924 	}
3925 	phb->ioda.pe_array = aux + pemap_off;
3926 
3927 	/*
3928 	 * Choose PE number for root bus, which shouldn't have
3929 	 * M64 resources consumed by its child devices. To pick
3930 	 * the PE number adjacent to the reserved one if possible.
3931 	 */
3932 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3933 	if (phb->ioda.reserved_pe_idx == 0) {
3934 		phb->ioda.root_pe_idx = 1;
3935 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3936 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3937 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3938 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3939 	} else {
3940 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3941 	}
3942 
3943 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3944 	mutex_init(&phb->ioda.pe_list_mutex);
3945 
3946 	/* Calculate how many 32-bit TCE segments we have */
3947 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3948 				PNV_IODA1_DMA32_SEGSIZE;
3949 
3950 #if 0 /* We should really do that ... */
3951 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3952 					 window_type,
3953 					 window_num,
3954 					 starting_real_address,
3955 					 starting_pci_address,
3956 					 segment_size);
3957 #endif
3958 
3959 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3960 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3961 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3962 	if (phb->ioda.m64_size)
3963 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3964 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3965 	if (phb->ioda.io_size)
3966 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3967 			phb->ioda.io_size, phb->ioda.io_segsize);
3968 
3969 
3970 	phb->hose->ops = &pnv_pci_ops;
3971 	phb->get_pe_state = pnv_ioda_get_pe_state;
3972 	phb->freeze_pe = pnv_ioda_freeze_pe;
3973 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3974 
3975 	/* Setup MSI support */
3976 	pnv_pci_init_ioda_msis(phb);
3977 
3978 	/*
3979 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3980 	 * to let the PCI core do resource assignment. It's supposed
3981 	 * that the PCI core will do correct I/O and MMIO alignment
3982 	 * for the P2P bridge bars so that each PCI bus (excluding
3983 	 * the child P2P bridges) can form individual PE.
3984 	 */
3985 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3986 
3987 	if (phb->type == PNV_PHB_NPU) {
3988 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3989 	} else {
3990 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3991 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3992 	}
3993 
3994 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3995 
3996 #ifdef CONFIG_PCI_IOV
3997 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3998 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3999 #endif
4000 
4001 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
4002 
4003 	/* Reset IODA tables to a clean state */
4004 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
4005 	if (rc)
4006 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
4007 
4008 	/*
4009 	 * If we're running in kdump kernel, the previous kernel never
4010 	 * shutdown PCI devices correctly. We already got IODA table
4011 	 * cleaned out. So we have to issue PHB reset to stop all PCI
4012 	 * transactions from previous kernel.
4013 	 */
4014 	if (is_kdump_kernel()) {
4015 		pr_info("  Issue PHB reset ...\n");
4016 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
4017 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
4018 	}
4019 
4020 	/* Remove M64 resource if we can't configure it successfully */
4021 	if (!phb->init_m64 || phb->init_m64(phb))
4022 		hose->mem_resources[1].flags = 0;
4023 }
4024 
4025 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4026 {
4027 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4028 }
4029 
4030 void __init pnv_pci_init_npu_phb(struct device_node *np)
4031 {
4032 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
4033 }
4034 
4035 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4036 {
4037 	struct device_node *phbn;
4038 	const __be64 *prop64;
4039 	u64 hub_id;
4040 
4041 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
4042 
4043 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4044 	if (!prop64) {
4045 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4046 		return;
4047 	}
4048 	hub_id = be64_to_cpup(prop64);
4049 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4050 
4051 	/* Count child PHBs */
4052 	for_each_child_of_node(np, phbn) {
4053 		/* Look for IODA1 PHBs */
4054 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4055 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4056 	}
4057 }
4058