1 /* 2 * Support PCI/PCIe on PowerNV platforms 3 * 4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/pci.h> 16 #include <linux/crash_dump.h> 17 #include <linux/delay.h> 18 #include <linux/string.h> 19 #include <linux/init.h> 20 #include <linux/bootmem.h> 21 #include <linux/irq.h> 22 #include <linux/io.h> 23 #include <linux/msi.h> 24 #include <linux/memblock.h> 25 #include <linux/iommu.h> 26 #include <linux/rculist.h> 27 #include <linux/sizes.h> 28 29 #include <asm/sections.h> 30 #include <asm/io.h> 31 #include <asm/prom.h> 32 #include <asm/pci-bridge.h> 33 #include <asm/machdep.h> 34 #include <asm/msi_bitmap.h> 35 #include <asm/ppc-pci.h> 36 #include <asm/opal.h> 37 #include <asm/iommu.h> 38 #include <asm/tce.h> 39 #include <asm/xics.h> 40 #include <asm/debugfs.h> 41 #include <asm/firmware.h> 42 #include <asm/pnv-pci.h> 43 #include <asm/mmzone.h> 44 45 #include <misc/cxl-base.h> 46 47 #include "powernv.h" 48 #include "pci.h" 49 50 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ 51 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ 52 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 53 54 #define POWERNV_IOMMU_DEFAULT_LEVELS 1 55 #define POWERNV_IOMMU_MAX_LEVELS 5 56 57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" }; 58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl); 59 60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, 61 const char *fmt, ...) 62 { 63 struct va_format vaf; 64 va_list args; 65 char pfix[32]; 66 67 va_start(args, fmt); 68 69 vaf.fmt = fmt; 70 vaf.va = &args; 71 72 if (pe->flags & PNV_IODA_PE_DEV) 73 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); 74 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 75 sprintf(pfix, "%04x:%02x ", 76 pci_domain_nr(pe->pbus), pe->pbus->number); 77 #ifdef CONFIG_PCI_IOV 78 else if (pe->flags & PNV_IODA_PE_VF) 79 sprintf(pfix, "%04x:%02x:%2x.%d", 80 pci_domain_nr(pe->parent_dev->bus), 81 (pe->rid & 0xff00) >> 8, 82 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); 83 #endif /* CONFIG_PCI_IOV*/ 84 85 printk("%spci %s: [PE# %.2x] %pV", 86 level, pfix, pe->pe_number, &vaf); 87 88 va_end(args); 89 } 90 91 static bool pnv_iommu_bypass_disabled __read_mostly; 92 93 static int __init iommu_setup(char *str) 94 { 95 if (!str) 96 return -EINVAL; 97 98 while (*str) { 99 if (!strncmp(str, "nobypass", 8)) { 100 pnv_iommu_bypass_disabled = true; 101 pr_info("PowerNV: IOMMU bypass window disabled.\n"); 102 break; 103 } 104 str += strcspn(str, ","); 105 if (*str == ',') 106 str++; 107 } 108 109 return 0; 110 } 111 early_param("iommu", iommu_setup); 112 113 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r) 114 { 115 /* 116 * WARNING: We cannot rely on the resource flags. The Linux PCI 117 * allocation code sometimes decides to put a 64-bit prefetchable 118 * BAR in the 32-bit window, so we have to compare the addresses. 119 * 120 * For simplicity we only test resource start. 121 */ 122 return (r->start >= phb->ioda.m64_base && 123 r->start < (phb->ioda.m64_base + phb->ioda.m64_size)); 124 } 125 126 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags) 127 { 128 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 129 130 return (resource_flags & flags) == flags; 131 } 132 133 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) 134 { 135 s64 rc; 136 137 phb->ioda.pe_array[pe_no].phb = phb; 138 phb->ioda.pe_array[pe_no].pe_number = pe_no; 139 140 /* 141 * Clear the PE frozen state as it might be put into frozen state 142 * in the last PCI remove path. It's not harmful to do so when the 143 * PE is already in unfrozen state. 144 */ 145 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, 146 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 147 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 148 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n", 149 __func__, rc, phb->hose->global_number, pe_no); 150 151 return &phb->ioda.pe_array[pe_no]; 152 } 153 154 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) 155 { 156 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { 157 pr_warn("%s: Invalid PE %x on PHB#%x\n", 158 __func__, pe_no, phb->hose->global_number); 159 return; 160 } 161 162 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) 163 pr_debug("%s: PE %x was reserved on PHB#%x\n", 164 __func__, pe_no, phb->hose->global_number); 165 166 pnv_ioda_init_pe(phb, pe_no); 167 } 168 169 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb) 170 { 171 long pe; 172 173 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { 174 if (!test_and_set_bit(pe, phb->ioda.pe_alloc)) 175 return pnv_ioda_init_pe(phb, pe); 176 } 177 178 return NULL; 179 } 180 181 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) 182 { 183 struct pnv_phb *phb = pe->phb; 184 unsigned int pe_num = pe->pe_number; 185 186 WARN_ON(pe->pdev); 187 188 memset(pe, 0, sizeof(struct pnv_ioda_pe)); 189 clear_bit(pe_num, phb->ioda.pe_alloc); 190 } 191 192 /* The default M64 BAR is shared by all PEs */ 193 static int pnv_ioda2_init_m64(struct pnv_phb *phb) 194 { 195 const char *desc; 196 struct resource *r; 197 s64 rc; 198 199 /* Configure the default M64 BAR */ 200 rc = opal_pci_set_phb_mem_window(phb->opal_id, 201 OPAL_M64_WINDOW_TYPE, 202 phb->ioda.m64_bar_idx, 203 phb->ioda.m64_base, 204 0, /* unused */ 205 phb->ioda.m64_size); 206 if (rc != OPAL_SUCCESS) { 207 desc = "configuring"; 208 goto fail; 209 } 210 211 /* Enable the default M64 BAR */ 212 rc = opal_pci_phb_mmio_enable(phb->opal_id, 213 OPAL_M64_WINDOW_TYPE, 214 phb->ioda.m64_bar_idx, 215 OPAL_ENABLE_M64_SPLIT); 216 if (rc != OPAL_SUCCESS) { 217 desc = "enabling"; 218 goto fail; 219 } 220 221 /* 222 * Exclude the segments for reserved and root bus PE, which 223 * are first or last two PEs. 224 */ 225 r = &phb->hose->mem_resources[1]; 226 if (phb->ioda.reserved_pe_idx == 0) 227 r->start += (2 * phb->ioda.m64_segsize); 228 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 229 r->end -= (2 * phb->ioda.m64_segsize); 230 else 231 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n", 232 phb->ioda.reserved_pe_idx); 233 234 return 0; 235 236 fail: 237 pr_warn(" Failure %lld %s M64 BAR#%d\n", 238 rc, desc, phb->ioda.m64_bar_idx); 239 opal_pci_phb_mmio_enable(phb->opal_id, 240 OPAL_M64_WINDOW_TYPE, 241 phb->ioda.m64_bar_idx, 242 OPAL_DISABLE_M64); 243 return -EIO; 244 } 245 246 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, 247 unsigned long *pe_bitmap) 248 { 249 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 250 struct pnv_phb *phb = hose->private_data; 251 struct resource *r; 252 resource_size_t base, sgsz, start, end; 253 int segno, i; 254 255 base = phb->ioda.m64_base; 256 sgsz = phb->ioda.m64_segsize; 257 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 258 r = &pdev->resource[i]; 259 if (!r->parent || !pnv_pci_is_m64(phb, r)) 260 continue; 261 262 start = _ALIGN_DOWN(r->start - base, sgsz); 263 end = _ALIGN_UP(r->end - base, sgsz); 264 for (segno = start / sgsz; segno < end / sgsz; segno++) { 265 if (pe_bitmap) 266 set_bit(segno, pe_bitmap); 267 else 268 pnv_ioda_reserve_pe(phb, segno); 269 } 270 } 271 } 272 273 static int pnv_ioda1_init_m64(struct pnv_phb *phb) 274 { 275 struct resource *r; 276 int index; 277 278 /* 279 * There are 16 M64 BARs, each of which has 8 segments. So 280 * there are as many M64 segments as the maximum number of 281 * PEs, which is 128. 282 */ 283 for (index = 0; index < PNV_IODA1_M64_NUM; index++) { 284 unsigned long base, segsz = phb->ioda.m64_segsize; 285 int64_t rc; 286 287 base = phb->ioda.m64_base + 288 index * PNV_IODA1_M64_SEGS * segsz; 289 rc = opal_pci_set_phb_mem_window(phb->opal_id, 290 OPAL_M64_WINDOW_TYPE, index, base, 0, 291 PNV_IODA1_M64_SEGS * segsz); 292 if (rc != OPAL_SUCCESS) { 293 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n", 294 rc, phb->hose->global_number, index); 295 goto fail; 296 } 297 298 rc = opal_pci_phb_mmio_enable(phb->opal_id, 299 OPAL_M64_WINDOW_TYPE, index, 300 OPAL_ENABLE_M64_SPLIT); 301 if (rc != OPAL_SUCCESS) { 302 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n", 303 rc, phb->hose->global_number, index); 304 goto fail; 305 } 306 } 307 308 /* 309 * Exclude the segments for reserved and root bus PE, which 310 * are first or last two PEs. 311 */ 312 r = &phb->hose->mem_resources[1]; 313 if (phb->ioda.reserved_pe_idx == 0) 314 r->start += (2 * phb->ioda.m64_segsize); 315 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 316 r->end -= (2 * phb->ioda.m64_segsize); 317 else 318 WARN(1, "Wrong reserved PE#%x on PHB#%x\n", 319 phb->ioda.reserved_pe_idx, phb->hose->global_number); 320 321 return 0; 322 323 fail: 324 for ( ; index >= 0; index--) 325 opal_pci_phb_mmio_enable(phb->opal_id, 326 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); 327 328 return -EIO; 329 } 330 331 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, 332 unsigned long *pe_bitmap, 333 bool all) 334 { 335 struct pci_dev *pdev; 336 337 list_for_each_entry(pdev, &bus->devices, bus_list) { 338 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); 339 340 if (all && pdev->subordinate) 341 pnv_ioda_reserve_m64_pe(pdev->subordinate, 342 pe_bitmap, all); 343 } 344 } 345 346 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) 347 { 348 struct pci_controller *hose = pci_bus_to_host(bus); 349 struct pnv_phb *phb = hose->private_data; 350 struct pnv_ioda_pe *master_pe, *pe; 351 unsigned long size, *pe_alloc; 352 int i; 353 354 /* Root bus shouldn't use M64 */ 355 if (pci_is_root_bus(bus)) 356 return NULL; 357 358 /* Allocate bitmap */ 359 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); 360 pe_alloc = kzalloc(size, GFP_KERNEL); 361 if (!pe_alloc) { 362 pr_warn("%s: Out of memory !\n", 363 __func__); 364 return NULL; 365 } 366 367 /* Figure out reserved PE numbers by the PE */ 368 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); 369 370 /* 371 * the current bus might not own M64 window and that's all 372 * contributed by its child buses. For the case, we needn't 373 * pick M64 dependent PE#. 374 */ 375 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { 376 kfree(pe_alloc); 377 return NULL; 378 } 379 380 /* 381 * Figure out the master PE and put all slave PEs to master 382 * PE's list to form compound PE. 383 */ 384 master_pe = NULL; 385 i = -1; 386 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < 387 phb->ioda.total_pe_num) { 388 pe = &phb->ioda.pe_array[i]; 389 390 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; 391 if (!master_pe) { 392 pe->flags |= PNV_IODA_PE_MASTER; 393 INIT_LIST_HEAD(&pe->slaves); 394 master_pe = pe; 395 } else { 396 pe->flags |= PNV_IODA_PE_SLAVE; 397 pe->master = master_pe; 398 list_add_tail(&pe->list, &master_pe->slaves); 399 } 400 401 /* 402 * P7IOC supports M64DT, which helps mapping M64 segment 403 * to one particular PE#. However, PHB3 has fixed mapping 404 * between M64 segment and PE#. In order to have same logic 405 * for P7IOC and PHB3, we enforce fixed mapping between M64 406 * segment and PE# on P7IOC. 407 */ 408 if (phb->type == PNV_PHB_IODA1) { 409 int64_t rc; 410 411 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 412 pe->pe_number, OPAL_M64_WINDOW_TYPE, 413 pe->pe_number / PNV_IODA1_M64_SEGS, 414 pe->pe_number % PNV_IODA1_M64_SEGS); 415 if (rc != OPAL_SUCCESS) 416 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n", 417 __func__, rc, phb->hose->global_number, 418 pe->pe_number); 419 } 420 } 421 422 kfree(pe_alloc); 423 return master_pe; 424 } 425 426 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) 427 { 428 struct pci_controller *hose = phb->hose; 429 struct device_node *dn = hose->dn; 430 struct resource *res; 431 u32 m64_range[2], i; 432 const __be32 *r; 433 u64 pci_addr; 434 435 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { 436 pr_info(" Not support M64 window\n"); 437 return; 438 } 439 440 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 441 pr_info(" Firmware too old to support M64 window\n"); 442 return; 443 } 444 445 r = of_get_property(dn, "ibm,opal-m64-window", NULL); 446 if (!r) { 447 pr_info(" No <ibm,opal-m64-window> on %s\n", 448 dn->full_name); 449 return; 450 } 451 452 /* 453 * Find the available M64 BAR range and pickup the last one for 454 * covering the whole 64-bits space. We support only one range. 455 */ 456 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", 457 m64_range, 2)) { 458 /* In absence of the property, assume 0..15 */ 459 m64_range[0] = 0; 460 m64_range[1] = 16; 461 } 462 /* We only support 64 bits in our allocator */ 463 if (m64_range[1] > 63) { 464 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", 465 __func__, m64_range[1], phb->hose->global_number); 466 m64_range[1] = 63; 467 } 468 /* Empty range, no m64 */ 469 if (m64_range[1] <= m64_range[0]) { 470 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", 471 __func__, phb->hose->global_number); 472 return; 473 } 474 475 /* Configure M64 informations */ 476 res = &hose->mem_resources[1]; 477 res->name = dn->full_name; 478 res->start = of_translate_address(dn, r + 2); 479 res->end = res->start + of_read_number(r + 4, 2) - 1; 480 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 481 pci_addr = of_read_number(r, 2); 482 hose->mem_offset[1] = res->start - pci_addr; 483 484 phb->ioda.m64_size = resource_size(res); 485 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; 486 phb->ioda.m64_base = pci_addr; 487 488 /* This lines up nicely with the display from processing OF ranges */ 489 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", 490 res->start, res->end, pci_addr, m64_range[0], 491 m64_range[0] + m64_range[1] - 1); 492 493 /* Mark all M64 used up by default */ 494 phb->ioda.m64_bar_alloc = (unsigned long)-1; 495 496 /* Use last M64 BAR to cover M64 window */ 497 m64_range[1]--; 498 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; 499 500 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); 501 502 /* Mark remaining ones free */ 503 for (i = m64_range[0]; i < m64_range[1]; i++) 504 clear_bit(i, &phb->ioda.m64_bar_alloc); 505 506 /* 507 * Setup init functions for M64 based on IODA version, IODA3 uses 508 * the IODA2 code. 509 */ 510 if (phb->type == PNV_PHB_IODA1) 511 phb->init_m64 = pnv_ioda1_init_m64; 512 else 513 phb->init_m64 = pnv_ioda2_init_m64; 514 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe; 515 phb->pick_m64_pe = pnv_ioda_pick_m64_pe; 516 } 517 518 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) 519 { 520 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; 521 struct pnv_ioda_pe *slave; 522 s64 rc; 523 524 /* Fetch master PE */ 525 if (pe->flags & PNV_IODA_PE_SLAVE) { 526 pe = pe->master; 527 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) 528 return; 529 530 pe_no = pe->pe_number; 531 } 532 533 /* Freeze master PE */ 534 rc = opal_pci_eeh_freeze_set(phb->opal_id, 535 pe_no, 536 OPAL_EEH_ACTION_SET_FREEZE_ALL); 537 if (rc != OPAL_SUCCESS) { 538 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 539 __func__, rc, phb->hose->global_number, pe_no); 540 return; 541 } 542 543 /* Freeze slave PEs */ 544 if (!(pe->flags & PNV_IODA_PE_MASTER)) 545 return; 546 547 list_for_each_entry(slave, &pe->slaves, list) { 548 rc = opal_pci_eeh_freeze_set(phb->opal_id, 549 slave->pe_number, 550 OPAL_EEH_ACTION_SET_FREEZE_ALL); 551 if (rc != OPAL_SUCCESS) 552 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 553 __func__, rc, phb->hose->global_number, 554 slave->pe_number); 555 } 556 } 557 558 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) 559 { 560 struct pnv_ioda_pe *pe, *slave; 561 s64 rc; 562 563 /* Find master PE */ 564 pe = &phb->ioda.pe_array[pe_no]; 565 if (pe->flags & PNV_IODA_PE_SLAVE) { 566 pe = pe->master; 567 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 568 pe_no = pe->pe_number; 569 } 570 571 /* Clear frozen state for master PE */ 572 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); 573 if (rc != OPAL_SUCCESS) { 574 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 575 __func__, rc, opt, phb->hose->global_number, pe_no); 576 return -EIO; 577 } 578 579 if (!(pe->flags & PNV_IODA_PE_MASTER)) 580 return 0; 581 582 /* Clear frozen state for slave PEs */ 583 list_for_each_entry(slave, &pe->slaves, list) { 584 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 585 slave->pe_number, 586 opt); 587 if (rc != OPAL_SUCCESS) { 588 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 589 __func__, rc, opt, phb->hose->global_number, 590 slave->pe_number); 591 return -EIO; 592 } 593 } 594 595 return 0; 596 } 597 598 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) 599 { 600 struct pnv_ioda_pe *slave, *pe; 601 u8 fstate, state; 602 __be16 pcierr; 603 s64 rc; 604 605 /* Sanity check on PE number */ 606 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) 607 return OPAL_EEH_STOPPED_PERM_UNAVAIL; 608 609 /* 610 * Fetch the master PE and the PE instance might be 611 * not initialized yet. 612 */ 613 pe = &phb->ioda.pe_array[pe_no]; 614 if (pe->flags & PNV_IODA_PE_SLAVE) { 615 pe = pe->master; 616 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 617 pe_no = pe->pe_number; 618 } 619 620 /* Check the master PE */ 621 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, 622 &state, &pcierr, NULL); 623 if (rc != OPAL_SUCCESS) { 624 pr_warn("%s: Failure %lld getting " 625 "PHB#%x-PE#%x state\n", 626 __func__, rc, 627 phb->hose->global_number, pe_no); 628 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 629 } 630 631 /* Check the slave PE */ 632 if (!(pe->flags & PNV_IODA_PE_MASTER)) 633 return state; 634 635 list_for_each_entry(slave, &pe->slaves, list) { 636 rc = opal_pci_eeh_freeze_status(phb->opal_id, 637 slave->pe_number, 638 &fstate, 639 &pcierr, 640 NULL); 641 if (rc != OPAL_SUCCESS) { 642 pr_warn("%s: Failure %lld getting " 643 "PHB#%x-PE#%x state\n", 644 __func__, rc, 645 phb->hose->global_number, slave->pe_number); 646 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 647 } 648 649 /* 650 * Override the result based on the ascending 651 * priority. 652 */ 653 if (fstate > state) 654 state = fstate; 655 } 656 657 return state; 658 } 659 660 /* Currently those 2 are only used when MSIs are enabled, this will change 661 * but in the meantime, we need to protect them to avoid warnings 662 */ 663 #ifdef CONFIG_PCI_MSI 664 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) 665 { 666 struct pci_controller *hose = pci_bus_to_host(dev->bus); 667 struct pnv_phb *phb = hose->private_data; 668 struct pci_dn *pdn = pci_get_pdn(dev); 669 670 if (!pdn) 671 return NULL; 672 if (pdn->pe_number == IODA_INVALID_PE) 673 return NULL; 674 return &phb->ioda.pe_array[pdn->pe_number]; 675 } 676 #endif /* CONFIG_PCI_MSI */ 677 678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, 679 struct pnv_ioda_pe *parent, 680 struct pnv_ioda_pe *child, 681 bool is_add) 682 { 683 const char *desc = is_add ? "adding" : "removing"; 684 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : 685 OPAL_REMOVE_PE_FROM_DOMAIN; 686 struct pnv_ioda_pe *slave; 687 long rc; 688 689 /* Parent PE affects child PE */ 690 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 691 child->pe_number, op); 692 if (rc != OPAL_SUCCESS) { 693 pe_warn(child, "OPAL error %ld %s to parent PELTV\n", 694 rc, desc); 695 return -ENXIO; 696 } 697 698 if (!(child->flags & PNV_IODA_PE_MASTER)) 699 return 0; 700 701 /* Compound case: parent PE affects slave PEs */ 702 list_for_each_entry(slave, &child->slaves, list) { 703 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 704 slave->pe_number, op); 705 if (rc != OPAL_SUCCESS) { 706 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", 707 rc, desc); 708 return -ENXIO; 709 } 710 } 711 712 return 0; 713 } 714 715 static int pnv_ioda_set_peltv(struct pnv_phb *phb, 716 struct pnv_ioda_pe *pe, 717 bool is_add) 718 { 719 struct pnv_ioda_pe *slave; 720 struct pci_dev *pdev = NULL; 721 int ret; 722 723 /* 724 * Clear PE frozen state. If it's master PE, we need 725 * clear slave PE frozen state as well. 726 */ 727 if (is_add) { 728 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 729 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 730 if (pe->flags & PNV_IODA_PE_MASTER) { 731 list_for_each_entry(slave, &pe->slaves, list) 732 opal_pci_eeh_freeze_clear(phb->opal_id, 733 slave->pe_number, 734 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 735 } 736 } 737 738 /* 739 * Associate PE in PELT. We need add the PE into the 740 * corresponding PELT-V as well. Otherwise, the error 741 * originated from the PE might contribute to other 742 * PEs. 743 */ 744 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); 745 if (ret) 746 return ret; 747 748 /* For compound PEs, any one affects all of them */ 749 if (pe->flags & PNV_IODA_PE_MASTER) { 750 list_for_each_entry(slave, &pe->slaves, list) { 751 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); 752 if (ret) 753 return ret; 754 } 755 } 756 757 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) 758 pdev = pe->pbus->self; 759 else if (pe->flags & PNV_IODA_PE_DEV) 760 pdev = pe->pdev->bus->self; 761 #ifdef CONFIG_PCI_IOV 762 else if (pe->flags & PNV_IODA_PE_VF) 763 pdev = pe->parent_dev; 764 #endif /* CONFIG_PCI_IOV */ 765 while (pdev) { 766 struct pci_dn *pdn = pci_get_pdn(pdev); 767 struct pnv_ioda_pe *parent; 768 769 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 770 parent = &phb->ioda.pe_array[pdn->pe_number]; 771 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); 772 if (ret) 773 return ret; 774 } 775 776 pdev = pdev->bus->self; 777 } 778 779 return 0; 780 } 781 782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 783 { 784 struct pci_dev *parent; 785 uint8_t bcomp, dcomp, fcomp; 786 int64_t rc; 787 long rid_end, rid; 788 789 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ 790 if (pe->pbus) { 791 int count; 792 793 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 794 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 795 parent = pe->pbus->self; 796 if (pe->flags & PNV_IODA_PE_BUS_ALL) 797 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 798 else 799 count = 1; 800 801 switch(count) { 802 case 1: bcomp = OpalPciBusAll; break; 803 case 2: bcomp = OpalPciBus7Bits; break; 804 case 4: bcomp = OpalPciBus6Bits; break; 805 case 8: bcomp = OpalPciBus5Bits; break; 806 case 16: bcomp = OpalPciBus4Bits; break; 807 case 32: bcomp = OpalPciBus3Bits; break; 808 default: 809 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 810 count); 811 /* Do an exact match only */ 812 bcomp = OpalPciBusAll; 813 } 814 rid_end = pe->rid + (count << 8); 815 } else { 816 #ifdef CONFIG_PCI_IOV 817 if (pe->flags & PNV_IODA_PE_VF) 818 parent = pe->parent_dev; 819 else 820 #endif 821 parent = pe->pdev->bus->self; 822 bcomp = OpalPciBusAll; 823 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 824 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 825 rid_end = pe->rid + 1; 826 } 827 828 /* Clear the reverse map */ 829 for (rid = pe->rid; rid < rid_end; rid++) 830 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; 831 832 /* Release from all parents PELT-V */ 833 while (parent) { 834 struct pci_dn *pdn = pci_get_pdn(parent); 835 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 836 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, 837 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 838 /* XXX What to do in case of error ? */ 839 } 840 parent = parent->bus->self; 841 } 842 843 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 844 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 845 846 /* Disassociate PE in PELT */ 847 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, 848 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 849 if (rc) 850 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc); 851 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 852 bcomp, dcomp, fcomp, OPAL_UNMAP_PE); 853 if (rc) 854 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 855 856 pe->pbus = NULL; 857 pe->pdev = NULL; 858 #ifdef CONFIG_PCI_IOV 859 pe->parent_dev = NULL; 860 #endif 861 862 return 0; 863 } 864 865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 866 { 867 struct pci_dev *parent; 868 uint8_t bcomp, dcomp, fcomp; 869 long rc, rid_end, rid; 870 871 /* Bus validation ? */ 872 if (pe->pbus) { 873 int count; 874 875 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 876 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 877 parent = pe->pbus->self; 878 if (pe->flags & PNV_IODA_PE_BUS_ALL) 879 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 880 else 881 count = 1; 882 883 switch(count) { 884 case 1: bcomp = OpalPciBusAll; break; 885 case 2: bcomp = OpalPciBus7Bits; break; 886 case 4: bcomp = OpalPciBus6Bits; break; 887 case 8: bcomp = OpalPciBus5Bits; break; 888 case 16: bcomp = OpalPciBus4Bits; break; 889 case 32: bcomp = OpalPciBus3Bits; break; 890 default: 891 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 892 count); 893 /* Do an exact match only */ 894 bcomp = OpalPciBusAll; 895 } 896 rid_end = pe->rid + (count << 8); 897 } else { 898 #ifdef CONFIG_PCI_IOV 899 if (pe->flags & PNV_IODA_PE_VF) 900 parent = pe->parent_dev; 901 else 902 #endif /* CONFIG_PCI_IOV */ 903 parent = pe->pdev->bus->self; 904 bcomp = OpalPciBusAll; 905 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 906 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 907 rid_end = pe->rid + 1; 908 } 909 910 /* 911 * Associate PE in PELT. We need add the PE into the 912 * corresponding PELT-V as well. Otherwise, the error 913 * originated from the PE might contribute to other 914 * PEs. 915 */ 916 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 917 bcomp, dcomp, fcomp, OPAL_MAP_PE); 918 if (rc) { 919 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 920 return -ENXIO; 921 } 922 923 /* 924 * Configure PELTV. NPUs don't have a PELTV table so skip 925 * configuration on them. 926 */ 927 if (phb->type != PNV_PHB_NPU) 928 pnv_ioda_set_peltv(phb, pe, true); 929 930 /* Setup reverse map */ 931 for (rid = pe->rid; rid < rid_end; rid++) 932 phb->ioda.pe_rmap[rid] = pe->pe_number; 933 934 /* Setup one MVTs on IODA1 */ 935 if (phb->type != PNV_PHB_IODA1) { 936 pe->mve_number = 0; 937 goto out; 938 } 939 940 pe->mve_number = pe->pe_number; 941 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); 942 if (rc != OPAL_SUCCESS) { 943 pe_err(pe, "OPAL error %ld setting up MVE %x\n", 944 rc, pe->mve_number); 945 pe->mve_number = -1; 946 } else { 947 rc = opal_pci_set_mve_enable(phb->opal_id, 948 pe->mve_number, OPAL_ENABLE_MVE); 949 if (rc) { 950 pe_err(pe, "OPAL error %ld enabling MVE %x\n", 951 rc, pe->mve_number); 952 pe->mve_number = -1; 953 } 954 } 955 956 out: 957 return 0; 958 } 959 960 #ifdef CONFIG_PCI_IOV 961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) 962 { 963 struct pci_dn *pdn = pci_get_pdn(dev); 964 int i; 965 struct resource *res, res2; 966 resource_size_t size; 967 u16 num_vfs; 968 969 if (!dev->is_physfn) 970 return -EINVAL; 971 972 /* 973 * "offset" is in VFs. The M64 windows are sized so that when they 974 * are segmented, each segment is the same size as the IOV BAR. 975 * Each segment is in a separate PE, and the high order bits of the 976 * address are the PE number. Therefore, each VF's BAR is in a 977 * separate PE, and changing the IOV BAR start address changes the 978 * range of PEs the VFs are in. 979 */ 980 num_vfs = pdn->num_vfs; 981 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 982 res = &dev->resource[i + PCI_IOV_RESOURCES]; 983 if (!res->flags || !res->parent) 984 continue; 985 986 /* 987 * The actual IOV BAR range is determined by the start address 988 * and the actual size for num_vfs VFs BAR. This check is to 989 * make sure that after shifting, the range will not overlap 990 * with another device. 991 */ 992 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 993 res2.flags = res->flags; 994 res2.start = res->start + (size * offset); 995 res2.end = res2.start + (size * num_vfs) - 1; 996 997 if (res2.end > res->end) { 998 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", 999 i, &res2, res, num_vfs, offset); 1000 return -EBUSY; 1001 } 1002 } 1003 1004 /* 1005 * After doing so, there would be a "hole" in the /proc/iomem when 1006 * offset is a positive value. It looks like the device return some 1007 * mmio back to the system, which actually no one could use it. 1008 */ 1009 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1010 res = &dev->resource[i + PCI_IOV_RESOURCES]; 1011 if (!res->flags || !res->parent) 1012 continue; 1013 1014 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 1015 res2 = *res; 1016 res->start += size * offset; 1017 1018 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", 1019 i, &res2, res, (offset > 0) ? "En" : "Dis", 1020 num_vfs, offset); 1021 pci_update_resource(dev, i + PCI_IOV_RESOURCES); 1022 } 1023 return 0; 1024 } 1025 #endif /* CONFIG_PCI_IOV */ 1026 1027 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) 1028 { 1029 struct pci_controller *hose = pci_bus_to_host(dev->bus); 1030 struct pnv_phb *phb = hose->private_data; 1031 struct pci_dn *pdn = pci_get_pdn(dev); 1032 struct pnv_ioda_pe *pe; 1033 1034 if (!pdn) { 1035 pr_err("%s: Device tree node not associated properly\n", 1036 pci_name(dev)); 1037 return NULL; 1038 } 1039 if (pdn->pe_number != IODA_INVALID_PE) 1040 return NULL; 1041 1042 pe = pnv_ioda_alloc_pe(phb); 1043 if (!pe) { 1044 pr_warning("%s: Not enough PE# available, disabling device\n", 1045 pci_name(dev)); 1046 return NULL; 1047 } 1048 1049 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the 1050 * pointer in the PE data structure, both should be destroyed at the 1051 * same time. However, this needs to be looked at more closely again 1052 * once we actually start removing things (Hotplug, SR-IOV, ...) 1053 * 1054 * At some point we want to remove the PDN completely anyways 1055 */ 1056 pci_dev_get(dev); 1057 pdn->pcidev = dev; 1058 pdn->pe_number = pe->pe_number; 1059 pe->flags = PNV_IODA_PE_DEV; 1060 pe->pdev = dev; 1061 pe->pbus = NULL; 1062 pe->mve_number = -1; 1063 pe->rid = dev->bus->number << 8 | pdn->devfn; 1064 1065 pe_info(pe, "Associated device to PE\n"); 1066 1067 if (pnv_ioda_configure_pe(phb, pe)) { 1068 /* XXX What do we do here ? */ 1069 pnv_ioda_free_pe(pe); 1070 pdn->pe_number = IODA_INVALID_PE; 1071 pe->pdev = NULL; 1072 pci_dev_put(dev); 1073 return NULL; 1074 } 1075 1076 /* Put PE to the list */ 1077 list_add_tail(&pe->list, &phb->ioda.pe_list); 1078 1079 return pe; 1080 } 1081 1082 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe) 1083 { 1084 struct pci_dev *dev; 1085 1086 list_for_each_entry(dev, &bus->devices, bus_list) { 1087 struct pci_dn *pdn = pci_get_pdn(dev); 1088 1089 if (pdn == NULL) { 1090 pr_warn("%s: No device node associated with device !\n", 1091 pci_name(dev)); 1092 continue; 1093 } 1094 1095 /* 1096 * In partial hotplug case, the PCI device might be still 1097 * associated with the PE and needn't attach it to the PE 1098 * again. 1099 */ 1100 if (pdn->pe_number != IODA_INVALID_PE) 1101 continue; 1102 1103 pe->device_count++; 1104 pdn->pcidev = dev; 1105 pdn->pe_number = pe->pe_number; 1106 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1107 pnv_ioda_setup_same_PE(dev->subordinate, pe); 1108 } 1109 } 1110 1111 /* 1112 * There're 2 types of PCI bus sensitive PEs: One that is compromised of 1113 * single PCI bus. Another one that contains the primary PCI bus and its 1114 * subordinate PCI devices and buses. The second type of PE is normally 1115 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. 1116 */ 1117 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) 1118 { 1119 struct pci_controller *hose = pci_bus_to_host(bus); 1120 struct pnv_phb *phb = hose->private_data; 1121 struct pnv_ioda_pe *pe = NULL; 1122 unsigned int pe_num; 1123 1124 /* 1125 * In partial hotplug case, the PE instance might be still alive. 1126 * We should reuse it instead of allocating a new one. 1127 */ 1128 pe_num = phb->ioda.pe_rmap[bus->number << 8]; 1129 if (pe_num != IODA_INVALID_PE) { 1130 pe = &phb->ioda.pe_array[pe_num]; 1131 pnv_ioda_setup_same_PE(bus, pe); 1132 return NULL; 1133 } 1134 1135 /* PE number for root bus should have been reserved */ 1136 if (pci_is_root_bus(bus) && 1137 phb->ioda.root_pe_idx != IODA_INVALID_PE) 1138 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; 1139 1140 /* Check if PE is determined by M64 */ 1141 if (!pe && phb->pick_m64_pe) 1142 pe = phb->pick_m64_pe(bus, all); 1143 1144 /* The PE number isn't pinned by M64 */ 1145 if (!pe) 1146 pe = pnv_ioda_alloc_pe(phb); 1147 1148 if (!pe) { 1149 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n", 1150 __func__, pci_domain_nr(bus), bus->number); 1151 return NULL; 1152 } 1153 1154 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); 1155 pe->pbus = bus; 1156 pe->pdev = NULL; 1157 pe->mve_number = -1; 1158 pe->rid = bus->busn_res.start << 8; 1159 1160 if (all) 1161 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n", 1162 bus->busn_res.start, bus->busn_res.end, pe->pe_number); 1163 else 1164 pe_info(pe, "Secondary bus %d associated with PE#%x\n", 1165 bus->busn_res.start, pe->pe_number); 1166 1167 if (pnv_ioda_configure_pe(phb, pe)) { 1168 /* XXX What do we do here ? */ 1169 pnv_ioda_free_pe(pe); 1170 pe->pbus = NULL; 1171 return NULL; 1172 } 1173 1174 /* Associate it with all child devices */ 1175 pnv_ioda_setup_same_PE(bus, pe); 1176 1177 /* Put PE to the list */ 1178 list_add_tail(&pe->list, &phb->ioda.pe_list); 1179 1180 return pe; 1181 } 1182 1183 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev) 1184 { 1185 int pe_num, found_pe = false, rc; 1186 long rid; 1187 struct pnv_ioda_pe *pe; 1188 struct pci_dev *gpu_pdev; 1189 struct pci_dn *npu_pdn; 1190 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus); 1191 struct pnv_phb *phb = hose->private_data; 1192 1193 /* 1194 * Due to a hardware errata PE#0 on the NPU is reserved for 1195 * error handling. This means we only have three PEs remaining 1196 * which need to be assigned to four links, implying some 1197 * links must share PEs. 1198 * 1199 * To achieve this we assign PEs such that NPUs linking the 1200 * same GPU get assigned the same PE. 1201 */ 1202 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev); 1203 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 1204 pe = &phb->ioda.pe_array[pe_num]; 1205 if (!pe->pdev) 1206 continue; 1207 1208 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) { 1209 /* 1210 * This device has the same peer GPU so should 1211 * be assigned the same PE as the existing 1212 * peer NPU. 1213 */ 1214 dev_info(&npu_pdev->dev, 1215 "Associating to existing PE %x\n", pe_num); 1216 pci_dev_get(npu_pdev); 1217 npu_pdn = pci_get_pdn(npu_pdev); 1218 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn; 1219 npu_pdn->pcidev = npu_pdev; 1220 npu_pdn->pe_number = pe_num; 1221 phb->ioda.pe_rmap[rid] = pe->pe_number; 1222 1223 /* Map the PE to this link */ 1224 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid, 1225 OpalPciBusAll, 1226 OPAL_COMPARE_RID_DEVICE_NUMBER, 1227 OPAL_COMPARE_RID_FUNCTION_NUMBER, 1228 OPAL_MAP_PE); 1229 WARN_ON(rc != OPAL_SUCCESS); 1230 found_pe = true; 1231 break; 1232 } 1233 } 1234 1235 if (!found_pe) 1236 /* 1237 * Could not find an existing PE so allocate a new 1238 * one. 1239 */ 1240 return pnv_ioda_setup_dev_PE(npu_pdev); 1241 else 1242 return pe; 1243 } 1244 1245 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus) 1246 { 1247 struct pci_dev *pdev; 1248 1249 list_for_each_entry(pdev, &bus->devices, bus_list) 1250 pnv_ioda_setup_npu_PE(pdev); 1251 } 1252 1253 static void pnv_pci_ioda_setup_PEs(void) 1254 { 1255 struct pci_controller *hose, *tmp; 1256 struct pnv_phb *phb; 1257 1258 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 1259 phb = hose->private_data; 1260 if (phb->type == PNV_PHB_NPU) { 1261 /* PE#0 is needed for error reporting */ 1262 pnv_ioda_reserve_pe(phb, 0); 1263 pnv_ioda_setup_npu_PEs(hose->bus); 1264 if (phb->model == PNV_PHB_MODEL_NPU2) 1265 pnv_npu2_init(phb); 1266 } 1267 } 1268 } 1269 1270 #ifdef CONFIG_PCI_IOV 1271 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) 1272 { 1273 struct pci_bus *bus; 1274 struct pci_controller *hose; 1275 struct pnv_phb *phb; 1276 struct pci_dn *pdn; 1277 int i, j; 1278 int m64_bars; 1279 1280 bus = pdev->bus; 1281 hose = pci_bus_to_host(bus); 1282 phb = hose->private_data; 1283 pdn = pci_get_pdn(pdev); 1284 1285 if (pdn->m64_single_mode) 1286 m64_bars = num_vfs; 1287 else 1288 m64_bars = 1; 1289 1290 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) 1291 for (j = 0; j < m64_bars; j++) { 1292 if (pdn->m64_map[j][i] == IODA_INVALID_M64) 1293 continue; 1294 opal_pci_phb_mmio_enable(phb->opal_id, 1295 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0); 1296 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc); 1297 pdn->m64_map[j][i] = IODA_INVALID_M64; 1298 } 1299 1300 kfree(pdn->m64_map); 1301 return 0; 1302 } 1303 1304 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) 1305 { 1306 struct pci_bus *bus; 1307 struct pci_controller *hose; 1308 struct pnv_phb *phb; 1309 struct pci_dn *pdn; 1310 unsigned int win; 1311 struct resource *res; 1312 int i, j; 1313 int64_t rc; 1314 int total_vfs; 1315 resource_size_t size, start; 1316 int pe_num; 1317 int m64_bars; 1318 1319 bus = pdev->bus; 1320 hose = pci_bus_to_host(bus); 1321 phb = hose->private_data; 1322 pdn = pci_get_pdn(pdev); 1323 total_vfs = pci_sriov_get_totalvfs(pdev); 1324 1325 if (pdn->m64_single_mode) 1326 m64_bars = num_vfs; 1327 else 1328 m64_bars = 1; 1329 1330 pdn->m64_map = kmalloc_array(m64_bars, 1331 sizeof(*pdn->m64_map), 1332 GFP_KERNEL); 1333 if (!pdn->m64_map) 1334 return -ENOMEM; 1335 /* Initialize the m64_map to IODA_INVALID_M64 */ 1336 for (i = 0; i < m64_bars ; i++) 1337 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++) 1338 pdn->m64_map[i][j] = IODA_INVALID_M64; 1339 1340 1341 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1342 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 1343 if (!res->flags || !res->parent) 1344 continue; 1345 1346 for (j = 0; j < m64_bars; j++) { 1347 do { 1348 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, 1349 phb->ioda.m64_bar_idx + 1, 0); 1350 1351 if (win >= phb->ioda.m64_bar_idx + 1) 1352 goto m64_failed; 1353 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); 1354 1355 pdn->m64_map[j][i] = win; 1356 1357 if (pdn->m64_single_mode) { 1358 size = pci_iov_resource_size(pdev, 1359 PCI_IOV_RESOURCES + i); 1360 start = res->start + size * j; 1361 } else { 1362 size = resource_size(res); 1363 start = res->start; 1364 } 1365 1366 /* Map the M64 here */ 1367 if (pdn->m64_single_mode) { 1368 pe_num = pdn->pe_num_map[j]; 1369 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 1370 pe_num, OPAL_M64_WINDOW_TYPE, 1371 pdn->m64_map[j][i], 0); 1372 } 1373 1374 rc = opal_pci_set_phb_mem_window(phb->opal_id, 1375 OPAL_M64_WINDOW_TYPE, 1376 pdn->m64_map[j][i], 1377 start, 1378 0, /* unused */ 1379 size); 1380 1381 1382 if (rc != OPAL_SUCCESS) { 1383 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n", 1384 win, rc); 1385 goto m64_failed; 1386 } 1387 1388 if (pdn->m64_single_mode) 1389 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1390 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2); 1391 else 1392 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1393 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1); 1394 1395 if (rc != OPAL_SUCCESS) { 1396 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n", 1397 win, rc); 1398 goto m64_failed; 1399 } 1400 } 1401 } 1402 return 0; 1403 1404 m64_failed: 1405 pnv_pci_vf_release_m64(pdev, num_vfs); 1406 return -EBUSY; 1407 } 1408 1409 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 1410 int num); 1411 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable); 1412 1413 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe) 1414 { 1415 struct iommu_table *tbl; 1416 int64_t rc; 1417 1418 tbl = pe->table_group.tables[0]; 1419 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 1420 if (rc) 1421 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 1422 1423 pnv_pci_ioda2_set_bypass(pe, false); 1424 if (pe->table_group.group) { 1425 iommu_group_put(pe->table_group.group); 1426 BUG_ON(pe->table_group.group); 1427 } 1428 iommu_tce_table_put(tbl); 1429 } 1430 1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev) 1432 { 1433 struct pci_bus *bus; 1434 struct pci_controller *hose; 1435 struct pnv_phb *phb; 1436 struct pnv_ioda_pe *pe, *pe_n; 1437 struct pci_dn *pdn; 1438 1439 bus = pdev->bus; 1440 hose = pci_bus_to_host(bus); 1441 phb = hose->private_data; 1442 pdn = pci_get_pdn(pdev); 1443 1444 if (!pdev->is_physfn) 1445 return; 1446 1447 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { 1448 if (pe->parent_dev != pdev) 1449 continue; 1450 1451 pnv_pci_ioda2_release_dma_pe(pdev, pe); 1452 1453 /* Remove from list */ 1454 mutex_lock(&phb->ioda.pe_list_mutex); 1455 list_del(&pe->list); 1456 mutex_unlock(&phb->ioda.pe_list_mutex); 1457 1458 pnv_ioda_deconfigure_pe(phb, pe); 1459 1460 pnv_ioda_free_pe(pe); 1461 } 1462 } 1463 1464 void pnv_pci_sriov_disable(struct pci_dev *pdev) 1465 { 1466 struct pci_bus *bus; 1467 struct pci_controller *hose; 1468 struct pnv_phb *phb; 1469 struct pnv_ioda_pe *pe; 1470 struct pci_dn *pdn; 1471 u16 num_vfs, i; 1472 1473 bus = pdev->bus; 1474 hose = pci_bus_to_host(bus); 1475 phb = hose->private_data; 1476 pdn = pci_get_pdn(pdev); 1477 num_vfs = pdn->num_vfs; 1478 1479 /* Release VF PEs */ 1480 pnv_ioda_release_vf_PE(pdev); 1481 1482 if (phb->type == PNV_PHB_IODA2) { 1483 if (!pdn->m64_single_mode) 1484 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map); 1485 1486 /* Release M64 windows */ 1487 pnv_pci_vf_release_m64(pdev, num_vfs); 1488 1489 /* Release PE numbers */ 1490 if (pdn->m64_single_mode) { 1491 for (i = 0; i < num_vfs; i++) { 1492 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1493 continue; 1494 1495 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1496 pnv_ioda_free_pe(pe); 1497 } 1498 } else 1499 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1500 /* Releasing pe_num_map */ 1501 kfree(pdn->pe_num_map); 1502 } 1503 } 1504 1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 1506 struct pnv_ioda_pe *pe); 1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) 1508 { 1509 struct pci_bus *bus; 1510 struct pci_controller *hose; 1511 struct pnv_phb *phb; 1512 struct pnv_ioda_pe *pe; 1513 int pe_num; 1514 u16 vf_index; 1515 struct pci_dn *pdn; 1516 1517 bus = pdev->bus; 1518 hose = pci_bus_to_host(bus); 1519 phb = hose->private_data; 1520 pdn = pci_get_pdn(pdev); 1521 1522 if (!pdev->is_physfn) 1523 return; 1524 1525 /* Reserve PE for each VF */ 1526 for (vf_index = 0; vf_index < num_vfs; vf_index++) { 1527 if (pdn->m64_single_mode) 1528 pe_num = pdn->pe_num_map[vf_index]; 1529 else 1530 pe_num = *pdn->pe_num_map + vf_index; 1531 1532 pe = &phb->ioda.pe_array[pe_num]; 1533 pe->pe_number = pe_num; 1534 pe->phb = phb; 1535 pe->flags = PNV_IODA_PE_VF; 1536 pe->pbus = NULL; 1537 pe->parent_dev = pdev; 1538 pe->mve_number = -1; 1539 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) | 1540 pci_iov_virtfn_devfn(pdev, vf_index); 1541 1542 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n", 1543 hose->global_number, pdev->bus->number, 1544 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)), 1545 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num); 1546 1547 if (pnv_ioda_configure_pe(phb, pe)) { 1548 /* XXX What do we do here ? */ 1549 pnv_ioda_free_pe(pe); 1550 pe->pdev = NULL; 1551 continue; 1552 } 1553 1554 /* Put PE to the list */ 1555 mutex_lock(&phb->ioda.pe_list_mutex); 1556 list_add_tail(&pe->list, &phb->ioda.pe_list); 1557 mutex_unlock(&phb->ioda.pe_list_mutex); 1558 1559 pnv_pci_ioda2_setup_dma_pe(phb, pe); 1560 } 1561 } 1562 1563 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1564 { 1565 struct pci_bus *bus; 1566 struct pci_controller *hose; 1567 struct pnv_phb *phb; 1568 struct pnv_ioda_pe *pe; 1569 struct pci_dn *pdn; 1570 int ret; 1571 u16 i; 1572 1573 bus = pdev->bus; 1574 hose = pci_bus_to_host(bus); 1575 phb = hose->private_data; 1576 pdn = pci_get_pdn(pdev); 1577 1578 if (phb->type == PNV_PHB_IODA2) { 1579 if (!pdn->vfs_expanded) { 1580 dev_info(&pdev->dev, "don't support this SRIOV device" 1581 " with non 64bit-prefetchable IOV BAR\n"); 1582 return -ENOSPC; 1583 } 1584 1585 /* 1586 * When M64 BARs functions in Single PE mode, the number of VFs 1587 * could be enabled must be less than the number of M64 BARs. 1588 */ 1589 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) { 1590 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n"); 1591 return -EBUSY; 1592 } 1593 1594 /* Allocating pe_num_map */ 1595 if (pdn->m64_single_mode) 1596 pdn->pe_num_map = kmalloc_array(num_vfs, 1597 sizeof(*pdn->pe_num_map), 1598 GFP_KERNEL); 1599 else 1600 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL); 1601 1602 if (!pdn->pe_num_map) 1603 return -ENOMEM; 1604 1605 if (pdn->m64_single_mode) 1606 for (i = 0; i < num_vfs; i++) 1607 pdn->pe_num_map[i] = IODA_INVALID_PE; 1608 1609 /* Calculate available PE for required VFs */ 1610 if (pdn->m64_single_mode) { 1611 for (i = 0; i < num_vfs; i++) { 1612 pe = pnv_ioda_alloc_pe(phb); 1613 if (!pe) { 1614 ret = -EBUSY; 1615 goto m64_failed; 1616 } 1617 1618 pdn->pe_num_map[i] = pe->pe_number; 1619 } 1620 } else { 1621 mutex_lock(&phb->ioda.pe_alloc_mutex); 1622 *pdn->pe_num_map = bitmap_find_next_zero_area( 1623 phb->ioda.pe_alloc, phb->ioda.total_pe_num, 1624 0, num_vfs, 0); 1625 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) { 1626 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1627 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs); 1628 kfree(pdn->pe_num_map); 1629 return -EBUSY; 1630 } 1631 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1632 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1633 } 1634 pdn->num_vfs = num_vfs; 1635 1636 /* Assign M64 window accordingly */ 1637 ret = pnv_pci_vf_assign_m64(pdev, num_vfs); 1638 if (ret) { 1639 dev_info(&pdev->dev, "Not enough M64 window resources\n"); 1640 goto m64_failed; 1641 } 1642 1643 /* 1644 * When using one M64 BAR to map one IOV BAR, we need to shift 1645 * the IOV BAR according to the PE# allocated to the VFs. 1646 * Otherwise, the PE# for the VF will conflict with others. 1647 */ 1648 if (!pdn->m64_single_mode) { 1649 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map); 1650 if (ret) 1651 goto m64_failed; 1652 } 1653 } 1654 1655 /* Setup VF PEs */ 1656 pnv_ioda_setup_vf_PE(pdev, num_vfs); 1657 1658 return 0; 1659 1660 m64_failed: 1661 if (pdn->m64_single_mode) { 1662 for (i = 0; i < num_vfs; i++) { 1663 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1664 continue; 1665 1666 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1667 pnv_ioda_free_pe(pe); 1668 } 1669 } else 1670 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1671 1672 /* Releasing pe_num_map */ 1673 kfree(pdn->pe_num_map); 1674 1675 return ret; 1676 } 1677 1678 int pcibios_sriov_disable(struct pci_dev *pdev) 1679 { 1680 pnv_pci_sriov_disable(pdev); 1681 1682 /* Release PCI data */ 1683 remove_dev_pci_data(pdev); 1684 return 0; 1685 } 1686 1687 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1688 { 1689 /* Allocate PCI data */ 1690 add_dev_pci_data(pdev); 1691 1692 return pnv_pci_sriov_enable(pdev, num_vfs); 1693 } 1694 #endif /* CONFIG_PCI_IOV */ 1695 1696 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev) 1697 { 1698 struct pci_dn *pdn = pci_get_pdn(pdev); 1699 struct pnv_ioda_pe *pe; 1700 1701 /* 1702 * The function can be called while the PE# 1703 * hasn't been assigned. Do nothing for the 1704 * case. 1705 */ 1706 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 1707 return; 1708 1709 pe = &phb->ioda.pe_array[pdn->pe_number]; 1710 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); 1711 set_dma_offset(&pdev->dev, pe->tce_bypass_base); 1712 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); 1713 /* 1714 * Note: iommu_add_device() will fail here as 1715 * for physical PE: the device is already added by now; 1716 * for virtual PE: sysfs entries are not ready yet and 1717 * tce_iommu_bus_notifier will add the device to a group later. 1718 */ 1719 } 1720 1721 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask) 1722 { 1723 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1724 struct pnv_phb *phb = hose->private_data; 1725 struct pci_dn *pdn = pci_get_pdn(pdev); 1726 struct pnv_ioda_pe *pe; 1727 uint64_t top; 1728 bool bypass = false; 1729 1730 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1731 return -ENODEV;; 1732 1733 pe = &phb->ioda.pe_array[pdn->pe_number]; 1734 if (pe->tce_bypass_enabled) { 1735 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; 1736 bypass = (dma_mask >= top); 1737 } 1738 1739 if (bypass) { 1740 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n"); 1741 set_dma_ops(&pdev->dev, &dma_direct_ops); 1742 } else { 1743 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n"); 1744 set_dma_ops(&pdev->dev, &dma_iommu_ops); 1745 } 1746 *pdev->dev.dma_mask = dma_mask; 1747 1748 /* Update peer npu devices */ 1749 pnv_npu_try_dma_set_bypass(pdev, bypass); 1750 1751 return 0; 1752 } 1753 1754 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev) 1755 { 1756 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1757 struct pnv_phb *phb = hose->private_data; 1758 struct pci_dn *pdn = pci_get_pdn(pdev); 1759 struct pnv_ioda_pe *pe; 1760 u64 end, mask; 1761 1762 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1763 return 0; 1764 1765 pe = &phb->ioda.pe_array[pdn->pe_number]; 1766 if (!pe->tce_bypass_enabled) 1767 return __dma_get_required_mask(&pdev->dev); 1768 1769 1770 end = pe->tce_bypass_base + memblock_end_of_DRAM(); 1771 mask = 1ULL << (fls64(end) - 1); 1772 mask += mask - 1; 1773 1774 return mask; 1775 } 1776 1777 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, 1778 struct pci_bus *bus, 1779 bool add_to_group) 1780 { 1781 struct pci_dev *dev; 1782 1783 list_for_each_entry(dev, &bus->devices, bus_list) { 1784 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); 1785 set_dma_offset(&dev->dev, pe->tce_bypass_base); 1786 if (add_to_group) 1787 iommu_add_device(&dev->dev); 1788 1789 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1790 pnv_ioda_setup_bus_dma(pe, dev->subordinate, 1791 add_to_group); 1792 } 1793 } 1794 1795 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, 1796 bool real_mode) 1797 { 1798 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : 1799 (phb->regs + 0x210); 1800 } 1801 1802 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, 1803 unsigned long index, unsigned long npages, bool rm) 1804 { 1805 struct iommu_table_group_link *tgl = list_first_entry_or_null( 1806 &tbl->it_group_list, struct iommu_table_group_link, 1807 next); 1808 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1809 struct pnv_ioda_pe, table_group); 1810 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1811 unsigned long start, end, inc; 1812 1813 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); 1814 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + 1815 npages - 1); 1816 1817 /* p7ioc-style invalidation, 2 TCEs per write */ 1818 start |= (1ull << 63); 1819 end |= (1ull << 63); 1820 inc = 16; 1821 end |= inc - 1; /* round up end to be different than start */ 1822 1823 mb(); /* Ensure above stores are visible */ 1824 while (start <= end) { 1825 if (rm) 1826 __raw_rm_writeq(cpu_to_be64(start), invalidate); 1827 else 1828 __raw_writeq(cpu_to_be64(start), invalidate); 1829 start += inc; 1830 } 1831 1832 /* 1833 * The iommu layer will do another mb() for us on build() 1834 * and we don't care on free() 1835 */ 1836 } 1837 1838 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, 1839 long npages, unsigned long uaddr, 1840 enum dma_data_direction direction, 1841 unsigned long attrs) 1842 { 1843 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1844 attrs); 1845 1846 if (!ret) 1847 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1848 1849 return ret; 1850 } 1851 1852 #ifdef CONFIG_IOMMU_API 1853 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index, 1854 unsigned long *hpa, enum dma_data_direction *direction) 1855 { 1856 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 1857 1858 if (!ret) 1859 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false); 1860 1861 return ret; 1862 } 1863 1864 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index, 1865 unsigned long *hpa, enum dma_data_direction *direction) 1866 { 1867 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 1868 1869 if (!ret) 1870 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true); 1871 1872 return ret; 1873 } 1874 #endif 1875 1876 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, 1877 long npages) 1878 { 1879 pnv_tce_free(tbl, index, npages); 1880 1881 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1882 } 1883 1884 static struct iommu_table_ops pnv_ioda1_iommu_ops = { 1885 .set = pnv_ioda1_tce_build, 1886 #ifdef CONFIG_IOMMU_API 1887 .exchange = pnv_ioda1_tce_xchg, 1888 .exchange_rm = pnv_ioda1_tce_xchg_rm, 1889 #endif 1890 .clear = pnv_ioda1_tce_free, 1891 .get = pnv_tce_get, 1892 }; 1893 1894 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) 1895 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) 1896 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) 1897 1898 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 1899 { 1900 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm); 1901 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL; 1902 1903 mb(); /* Ensure previous TCE table stores are visible */ 1904 if (rm) 1905 __raw_rm_writeq(cpu_to_be64(val), invalidate); 1906 else 1907 __raw_writeq(cpu_to_be64(val), invalidate); 1908 } 1909 1910 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1911 { 1912 /* 01xb - invalidate TCEs that match the specified PE# */ 1913 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); 1914 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); 1915 1916 mb(); /* Ensure above stores are visible */ 1917 __raw_writeq(cpu_to_be64(val), invalidate); 1918 } 1919 1920 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, 1921 unsigned shift, unsigned long index, 1922 unsigned long npages) 1923 { 1924 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1925 unsigned long start, end, inc; 1926 1927 /* We'll invalidate DMA address in PE scope */ 1928 start = PHB3_TCE_KILL_INVAL_ONE; 1929 start |= (pe->pe_number & 0xFF); 1930 end = start; 1931 1932 /* Figure out the start, end and step */ 1933 start |= (index << shift); 1934 end |= ((index + npages - 1) << shift); 1935 inc = (0x1ull << shift); 1936 mb(); 1937 1938 while (start <= end) { 1939 if (rm) 1940 __raw_rm_writeq(cpu_to_be64(start), invalidate); 1941 else 1942 __raw_writeq(cpu_to_be64(start), invalidate); 1943 start += inc; 1944 } 1945 } 1946 1947 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1948 { 1949 struct pnv_phb *phb = pe->phb; 1950 1951 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1952 pnv_pci_phb3_tce_invalidate_pe(pe); 1953 else 1954 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, 1955 pe->pe_number, 0, 0, 0); 1956 } 1957 1958 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, 1959 unsigned long index, unsigned long npages, bool rm) 1960 { 1961 struct iommu_table_group_link *tgl; 1962 1963 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) { 1964 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1965 struct pnv_ioda_pe, table_group); 1966 struct pnv_phb *phb = pe->phb; 1967 unsigned int shift = tbl->it_page_shift; 1968 1969 /* 1970 * NVLink1 can use the TCE kill register directly as 1971 * it's the same as PHB3. NVLink2 is different and 1972 * should go via the OPAL call. 1973 */ 1974 if (phb->model == PNV_PHB_MODEL_NPU) { 1975 /* 1976 * The NVLink hardware does not support TCE kill 1977 * per TCE entry so we have to invalidate 1978 * the entire cache for it. 1979 */ 1980 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 1981 continue; 1982 } 1983 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1984 pnv_pci_phb3_tce_invalidate(pe, rm, shift, 1985 index, npages); 1986 else 1987 opal_pci_tce_kill(phb->opal_id, 1988 OPAL_PCI_TCE_KILL_PAGES, 1989 pe->pe_number, 1u << shift, 1990 index << shift, npages); 1991 } 1992 } 1993 1994 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 1995 { 1996 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3) 1997 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 1998 else 1999 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0); 2000 } 2001 2002 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, 2003 long npages, unsigned long uaddr, 2004 enum dma_data_direction direction, 2005 unsigned long attrs) 2006 { 2007 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 2008 attrs); 2009 2010 if (!ret) 2011 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2012 2013 return ret; 2014 } 2015 2016 #ifdef CONFIG_IOMMU_API 2017 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index, 2018 unsigned long *hpa, enum dma_data_direction *direction) 2019 { 2020 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 2021 2022 if (!ret) 2023 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false); 2024 2025 return ret; 2026 } 2027 2028 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index, 2029 unsigned long *hpa, enum dma_data_direction *direction) 2030 { 2031 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 2032 2033 if (!ret) 2034 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true); 2035 2036 return ret; 2037 } 2038 #endif 2039 2040 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, 2041 long npages) 2042 { 2043 pnv_tce_free(tbl, index, npages); 2044 2045 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2046 } 2047 2048 static void pnv_ioda2_table_free(struct iommu_table *tbl) 2049 { 2050 pnv_pci_ioda2_table_free_pages(tbl); 2051 } 2052 2053 static struct iommu_table_ops pnv_ioda2_iommu_ops = { 2054 .set = pnv_ioda2_tce_build, 2055 #ifdef CONFIG_IOMMU_API 2056 .exchange = pnv_ioda2_tce_xchg, 2057 .exchange_rm = pnv_ioda2_tce_xchg_rm, 2058 #endif 2059 .clear = pnv_ioda2_tce_free, 2060 .get = pnv_tce_get, 2061 .free = pnv_ioda2_table_free, 2062 }; 2063 2064 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) 2065 { 2066 unsigned int *weight = (unsigned int *)data; 2067 2068 /* This is quite simplistic. The "base" weight of a device 2069 * is 10. 0 means no DMA is to be accounted for it. 2070 */ 2071 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2072 return 0; 2073 2074 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || 2075 dev->class == PCI_CLASS_SERIAL_USB_OHCI || 2076 dev->class == PCI_CLASS_SERIAL_USB_EHCI) 2077 *weight += 3; 2078 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) 2079 *weight += 15; 2080 else 2081 *weight += 10; 2082 2083 return 0; 2084 } 2085 2086 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) 2087 { 2088 unsigned int weight = 0; 2089 2090 /* SRIOV VF has same DMA32 weight as its PF */ 2091 #ifdef CONFIG_PCI_IOV 2092 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { 2093 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); 2094 return weight; 2095 } 2096 #endif 2097 2098 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { 2099 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); 2100 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { 2101 struct pci_dev *pdev; 2102 2103 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) 2104 pnv_pci_ioda_dev_dma_weight(pdev, &weight); 2105 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { 2106 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); 2107 } 2108 2109 return weight; 2110 } 2111 2112 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, 2113 struct pnv_ioda_pe *pe) 2114 { 2115 2116 struct page *tce_mem = NULL; 2117 struct iommu_table *tbl; 2118 unsigned int weight, total_weight = 0; 2119 unsigned int tce32_segsz, base, segs, avail, i; 2120 int64_t rc; 2121 void *addr; 2122 2123 /* XXX FIXME: Handle 64-bit only DMA devices */ 2124 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ 2125 /* XXX FIXME: Allocate multi-level tables on PHB3 */ 2126 weight = pnv_pci_ioda_pe_dma_weight(pe); 2127 if (!weight) 2128 return; 2129 2130 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, 2131 &total_weight); 2132 segs = (weight * phb->ioda.dma32_count) / total_weight; 2133 if (!segs) 2134 segs = 1; 2135 2136 /* 2137 * Allocate contiguous DMA32 segments. We begin with the expected 2138 * number of segments. With one more attempt, the number of DMA32 2139 * segments to be allocated is decreased by one until one segment 2140 * is allocated successfully. 2141 */ 2142 do { 2143 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { 2144 for (avail = 0, i = base; i < base + segs; i++) { 2145 if (phb->ioda.dma32_segmap[i] == 2146 IODA_INVALID_PE) 2147 avail++; 2148 } 2149 2150 if (avail == segs) 2151 goto found; 2152 } 2153 } while (--segs); 2154 2155 if (!segs) { 2156 pe_warn(pe, "No available DMA32 segments\n"); 2157 return; 2158 } 2159 2160 found: 2161 tbl = pnv_pci_table_alloc(phb->hose->node); 2162 if (WARN_ON(!tbl)) 2163 return; 2164 2165 iommu_register_group(&pe->table_group, phb->hose->global_number, 2166 pe->pe_number); 2167 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); 2168 2169 /* Grab a 32-bit TCE table */ 2170 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", 2171 weight, total_weight, base, segs); 2172 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", 2173 base * PNV_IODA1_DMA32_SEGSIZE, 2174 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); 2175 2176 /* XXX Currently, we allocate one big contiguous table for the 2177 * TCEs. We only really need one chunk per 256M of TCE space 2178 * (ie per segment) but that's an optimization for later, it 2179 * requires some added smarts with our get/put_tce implementation 2180 * 2181 * Each TCE page is 4KB in size and each TCE entry occupies 8 2182 * bytes 2183 */ 2184 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); 2185 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, 2186 get_order(tce32_segsz * segs)); 2187 if (!tce_mem) { 2188 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); 2189 goto fail; 2190 } 2191 addr = page_address(tce_mem); 2192 memset(addr, 0, tce32_segsz * segs); 2193 2194 /* Configure HW */ 2195 for (i = 0; i < segs; i++) { 2196 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2197 pe->pe_number, 2198 base + i, 1, 2199 __pa(addr) + tce32_segsz * i, 2200 tce32_segsz, IOMMU_PAGE_SIZE_4K); 2201 if (rc) { 2202 pe_err(pe, " Failed to configure 32-bit TCE table," 2203 " err %ld\n", rc); 2204 goto fail; 2205 } 2206 } 2207 2208 /* Setup DMA32 segment mapping */ 2209 for (i = base; i < base + segs; i++) 2210 phb->ioda.dma32_segmap[i] = pe->pe_number; 2211 2212 /* Setup linux iommu table */ 2213 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, 2214 base * PNV_IODA1_DMA32_SEGSIZE, 2215 IOMMU_PAGE_SHIFT_4K); 2216 2217 tbl->it_ops = &pnv_ioda1_iommu_ops; 2218 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; 2219 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; 2220 iommu_init_table(tbl, phb->hose->node); 2221 2222 if (pe->flags & PNV_IODA_PE_DEV) { 2223 /* 2224 * Setting table base here only for carrying iommu_group 2225 * further down to let iommu_add_device() do the job. 2226 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2227 */ 2228 set_iommu_table_base(&pe->pdev->dev, tbl); 2229 iommu_add_device(&pe->pdev->dev); 2230 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2231 pnv_ioda_setup_bus_dma(pe, pe->pbus, true); 2232 2233 return; 2234 fail: 2235 /* XXX Failure: Try to fallback to 64-bit only ? */ 2236 if (tce_mem) 2237 __free_pages(tce_mem, get_order(tce32_segsz * segs)); 2238 if (tbl) { 2239 pnv_pci_unlink_table_and_group(tbl, &pe->table_group); 2240 iommu_tce_table_put(tbl); 2241 } 2242 } 2243 2244 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, 2245 int num, struct iommu_table *tbl) 2246 { 2247 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2248 table_group); 2249 struct pnv_phb *phb = pe->phb; 2250 int64_t rc; 2251 const unsigned long size = tbl->it_indirect_levels ? 2252 tbl->it_level_size : tbl->it_size; 2253 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; 2254 const __u64 win_size = tbl->it_size << tbl->it_page_shift; 2255 2256 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num, 2257 start_addr, start_addr + win_size - 1, 2258 IOMMU_PAGE_SIZE(tbl)); 2259 2260 /* 2261 * Map TCE table through TVT. The TVE index is the PE number 2262 * shifted by 1 bit for 32-bits DMA space. 2263 */ 2264 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2265 pe->pe_number, 2266 (pe->pe_number << 1) + num, 2267 tbl->it_indirect_levels + 1, 2268 __pa(tbl->it_base), 2269 size << 3, 2270 IOMMU_PAGE_SIZE(tbl)); 2271 if (rc) { 2272 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc); 2273 return rc; 2274 } 2275 2276 pnv_pci_link_table_and_group(phb->hose->node, num, 2277 tbl, &pe->table_group); 2278 pnv_pci_ioda2_tce_invalidate_pe(pe); 2279 2280 return 0; 2281 } 2282 2283 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) 2284 { 2285 uint16_t window_id = (pe->pe_number << 1 ) + 1; 2286 int64_t rc; 2287 2288 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); 2289 if (enable) { 2290 phys_addr_t top = memblock_end_of_DRAM(); 2291 2292 top = roundup_pow_of_two(top); 2293 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2294 pe->pe_number, 2295 window_id, 2296 pe->tce_bypass_base, 2297 top); 2298 } else { 2299 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2300 pe->pe_number, 2301 window_id, 2302 pe->tce_bypass_base, 2303 0); 2304 } 2305 if (rc) 2306 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); 2307 else 2308 pe->tce_bypass_enabled = enable; 2309 } 2310 2311 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2312 __u32 page_shift, __u64 window_size, __u32 levels, 2313 struct iommu_table *tbl); 2314 2315 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, 2316 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2317 struct iommu_table **ptbl) 2318 { 2319 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2320 table_group); 2321 int nid = pe->phb->hose->node; 2322 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; 2323 long ret; 2324 struct iommu_table *tbl; 2325 2326 tbl = pnv_pci_table_alloc(nid); 2327 if (!tbl) 2328 return -ENOMEM; 2329 2330 tbl->it_ops = &pnv_ioda2_iommu_ops; 2331 2332 ret = pnv_pci_ioda2_table_alloc_pages(nid, 2333 bus_offset, page_shift, window_size, 2334 levels, tbl); 2335 if (ret) { 2336 iommu_tce_table_put(tbl); 2337 return ret; 2338 } 2339 2340 *ptbl = tbl; 2341 2342 return 0; 2343 } 2344 2345 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) 2346 { 2347 struct iommu_table *tbl = NULL; 2348 long rc; 2349 2350 /* 2351 * crashkernel= specifies the kdump kernel's maximum memory at 2352 * some offset and there is no guaranteed the result is a power 2353 * of 2, which will cause errors later. 2354 */ 2355 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); 2356 2357 /* 2358 * In memory constrained environments, e.g. kdump kernel, the 2359 * DMA window can be larger than available memory, which will 2360 * cause errors later. 2361 */ 2362 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory); 2363 2364 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, 2365 IOMMU_PAGE_SHIFT_4K, 2366 window_size, 2367 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl); 2368 if (rc) { 2369 pe_err(pe, "Failed to create 32-bit TCE table, err %ld", 2370 rc); 2371 return rc; 2372 } 2373 2374 iommu_init_table(tbl, pe->phb->hose->node); 2375 2376 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); 2377 if (rc) { 2378 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", 2379 rc); 2380 iommu_tce_table_put(tbl); 2381 return rc; 2382 } 2383 2384 if (!pnv_iommu_bypass_disabled) 2385 pnv_pci_ioda2_set_bypass(pe, true); 2386 2387 /* 2388 * Setting table base here only for carrying iommu_group 2389 * further down to let iommu_add_device() do the job. 2390 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2391 */ 2392 if (pe->flags & PNV_IODA_PE_DEV) 2393 set_iommu_table_base(&pe->pdev->dev, tbl); 2394 2395 return 0; 2396 } 2397 2398 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV) 2399 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 2400 int num) 2401 { 2402 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2403 table_group); 2404 struct pnv_phb *phb = pe->phb; 2405 long ret; 2406 2407 pe_info(pe, "Removing DMA window #%d\n", num); 2408 2409 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 2410 (pe->pe_number << 1) + num, 2411 0/* levels */, 0/* table address */, 2412 0/* table size */, 0/* page size */); 2413 if (ret) 2414 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); 2415 else 2416 pnv_pci_ioda2_tce_invalidate_pe(pe); 2417 2418 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 2419 2420 return ret; 2421 } 2422 #endif 2423 2424 #ifdef CONFIG_IOMMU_API 2425 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, 2426 __u64 window_size, __u32 levels) 2427 { 2428 unsigned long bytes = 0; 2429 const unsigned window_shift = ilog2(window_size); 2430 unsigned entries_shift = window_shift - page_shift; 2431 unsigned table_shift = entries_shift + 3; 2432 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); 2433 unsigned long direct_table_size; 2434 2435 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || 2436 (window_size > memory_hotplug_max()) || 2437 !is_power_of_2(window_size)) 2438 return 0; 2439 2440 /* Calculate a direct table size from window_size and levels */ 2441 entries_shift = (entries_shift + levels - 1) / levels; 2442 table_shift = entries_shift + 3; 2443 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); 2444 direct_table_size = 1UL << table_shift; 2445 2446 for ( ; levels; --levels) { 2447 bytes += _ALIGN_UP(tce_table_size, direct_table_size); 2448 2449 tce_table_size /= direct_table_size; 2450 tce_table_size <<= 3; 2451 tce_table_size = max_t(unsigned long, 2452 tce_table_size, direct_table_size); 2453 } 2454 2455 return bytes; 2456 } 2457 2458 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) 2459 { 2460 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2461 table_group); 2462 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ 2463 struct iommu_table *tbl = pe->table_group.tables[0]; 2464 2465 pnv_pci_ioda2_set_bypass(pe, false); 2466 pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2467 if (pe->pbus) 2468 pnv_ioda_setup_bus_dma(pe, pe->pbus, false); 2469 iommu_tce_table_put(tbl); 2470 } 2471 2472 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) 2473 { 2474 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2475 table_group); 2476 2477 pnv_pci_ioda2_setup_default_config(pe); 2478 if (pe->pbus) 2479 pnv_ioda_setup_bus_dma(pe, pe->pbus, false); 2480 } 2481 2482 static struct iommu_table_group_ops pnv_pci_ioda2_ops = { 2483 .get_table_size = pnv_pci_ioda2_get_table_size, 2484 .create_table = pnv_pci_ioda2_create_table, 2485 .set_window = pnv_pci_ioda2_set_window, 2486 .unset_window = pnv_pci_ioda2_unset_window, 2487 .take_ownership = pnv_ioda2_take_ownership, 2488 .release_ownership = pnv_ioda2_release_ownership, 2489 }; 2490 2491 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque) 2492 { 2493 struct pci_controller *hose; 2494 struct pnv_phb *phb; 2495 struct pnv_ioda_pe **ptmppe = opaque; 2496 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev); 2497 struct pci_dn *pdn = pci_get_pdn(pdev); 2498 2499 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 2500 return 0; 2501 2502 hose = pci_bus_to_host(pdev->bus); 2503 phb = hose->private_data; 2504 if (phb->type != PNV_PHB_NPU) 2505 return 0; 2506 2507 *ptmppe = &phb->ioda.pe_array[pdn->pe_number]; 2508 2509 return 1; 2510 } 2511 2512 /* 2513 * This returns PE of associated NPU. 2514 * This assumes that NPU is in the same IOMMU group with GPU and there is 2515 * no other PEs. 2516 */ 2517 static struct pnv_ioda_pe *gpe_table_group_to_npe( 2518 struct iommu_table_group *table_group) 2519 { 2520 struct pnv_ioda_pe *npe = NULL; 2521 int ret = iommu_group_for_each_dev(table_group->group, &npe, 2522 gpe_table_group_to_npe_cb); 2523 2524 BUG_ON(!ret || !npe); 2525 2526 return npe; 2527 } 2528 2529 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group, 2530 int num, struct iommu_table *tbl) 2531 { 2532 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl); 2533 2534 if (ret) 2535 return ret; 2536 2537 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl); 2538 if (ret) 2539 pnv_pci_ioda2_unset_window(table_group, num); 2540 2541 return ret; 2542 } 2543 2544 static long pnv_pci_ioda2_npu_unset_window( 2545 struct iommu_table_group *table_group, 2546 int num) 2547 { 2548 long ret = pnv_pci_ioda2_unset_window(table_group, num); 2549 2550 if (ret) 2551 return ret; 2552 2553 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num); 2554 } 2555 2556 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group) 2557 { 2558 /* 2559 * Detach NPU first as pnv_ioda2_take_ownership() will destroy 2560 * the iommu_table if 32bit DMA is enabled. 2561 */ 2562 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group)); 2563 pnv_ioda2_take_ownership(table_group); 2564 } 2565 2566 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = { 2567 .get_table_size = pnv_pci_ioda2_get_table_size, 2568 .create_table = pnv_pci_ioda2_create_table, 2569 .set_window = pnv_pci_ioda2_npu_set_window, 2570 .unset_window = pnv_pci_ioda2_npu_unset_window, 2571 .take_ownership = pnv_ioda2_npu_take_ownership, 2572 .release_ownership = pnv_ioda2_release_ownership, 2573 }; 2574 2575 static void pnv_pci_ioda_setup_iommu_api(void) 2576 { 2577 struct pci_controller *hose, *tmp; 2578 struct pnv_phb *phb; 2579 struct pnv_ioda_pe *pe, *gpe; 2580 2581 /* 2582 * Now we have all PHBs discovered, time to add NPU devices to 2583 * the corresponding IOMMU groups. 2584 */ 2585 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 2586 phb = hose->private_data; 2587 2588 if (phb->type != PNV_PHB_NPU) 2589 continue; 2590 2591 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2592 gpe = pnv_pci_npu_setup_iommu(pe); 2593 if (gpe) 2594 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops; 2595 } 2596 } 2597 } 2598 #else /* !CONFIG_IOMMU_API */ 2599 static void pnv_pci_ioda_setup_iommu_api(void) { }; 2600 #endif 2601 2602 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift, 2603 unsigned levels, unsigned long limit, 2604 unsigned long *current_offset, unsigned long *total_allocated) 2605 { 2606 struct page *tce_mem = NULL; 2607 __be64 *addr, *tmp; 2608 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT; 2609 unsigned long allocated = 1UL << (order + PAGE_SHIFT); 2610 unsigned entries = 1UL << (shift - 3); 2611 long i; 2612 2613 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order); 2614 if (!tce_mem) { 2615 pr_err("Failed to allocate a TCE memory, order=%d\n", order); 2616 return NULL; 2617 } 2618 addr = page_address(tce_mem); 2619 memset(addr, 0, allocated); 2620 *total_allocated += allocated; 2621 2622 --levels; 2623 if (!levels) { 2624 *current_offset += allocated; 2625 return addr; 2626 } 2627 2628 for (i = 0; i < entries; ++i) { 2629 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift, 2630 levels, limit, current_offset, total_allocated); 2631 if (!tmp) 2632 break; 2633 2634 addr[i] = cpu_to_be64(__pa(tmp) | 2635 TCE_PCI_READ | TCE_PCI_WRITE); 2636 2637 if (*current_offset >= limit) 2638 break; 2639 } 2640 2641 return addr; 2642 } 2643 2644 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2645 unsigned long size, unsigned level); 2646 2647 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2648 __u32 page_shift, __u64 window_size, __u32 levels, 2649 struct iommu_table *tbl) 2650 { 2651 void *addr; 2652 unsigned long offset = 0, level_shift, total_allocated = 0; 2653 const unsigned window_shift = ilog2(window_size); 2654 unsigned entries_shift = window_shift - page_shift; 2655 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT); 2656 const unsigned long tce_table_size = 1UL << table_shift; 2657 2658 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS)) 2659 return -EINVAL; 2660 2661 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size)) 2662 return -EINVAL; 2663 2664 /* Adjust direct table size from window_size and levels */ 2665 entries_shift = (entries_shift + levels - 1) / levels; 2666 level_shift = entries_shift + 3; 2667 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT); 2668 2669 if ((level_shift - 3) * levels + page_shift >= 60) 2670 return -EINVAL; 2671 2672 /* Allocate TCE table */ 2673 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift, 2674 levels, tce_table_size, &offset, &total_allocated); 2675 2676 /* addr==NULL means that the first level allocation failed */ 2677 if (!addr) 2678 return -ENOMEM; 2679 2680 /* 2681 * First level was allocated but some lower level failed as 2682 * we did not allocate as much as we wanted, 2683 * release partially allocated table. 2684 */ 2685 if (offset < tce_table_size) { 2686 pnv_pci_ioda2_table_do_free_pages(addr, 2687 1ULL << (level_shift - 3), levels - 1); 2688 return -ENOMEM; 2689 } 2690 2691 /* Setup linux iommu table */ 2692 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset, 2693 page_shift); 2694 tbl->it_level_size = 1ULL << (level_shift - 3); 2695 tbl->it_indirect_levels = levels - 1; 2696 tbl->it_allocated_size = total_allocated; 2697 2698 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n", 2699 window_size, tce_table_size, bus_offset); 2700 2701 return 0; 2702 } 2703 2704 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2705 unsigned long size, unsigned level) 2706 { 2707 const unsigned long addr_ul = (unsigned long) addr & 2708 ~(TCE_PCI_READ | TCE_PCI_WRITE); 2709 2710 if (level) { 2711 long i; 2712 u64 *tmp = (u64 *) addr_ul; 2713 2714 for (i = 0; i < size; ++i) { 2715 unsigned long hpa = be64_to_cpu(tmp[i]); 2716 2717 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE))) 2718 continue; 2719 2720 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size, 2721 level - 1); 2722 } 2723 } 2724 2725 free_pages(addr_ul, get_order(size << 3)); 2726 } 2727 2728 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl) 2729 { 2730 const unsigned long size = tbl->it_indirect_levels ? 2731 tbl->it_level_size : tbl->it_size; 2732 2733 if (!tbl->it_size) 2734 return; 2735 2736 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size, 2737 tbl->it_indirect_levels); 2738 } 2739 2740 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 2741 struct pnv_ioda_pe *pe) 2742 { 2743 int64_t rc; 2744 2745 if (!pnv_pci_ioda_pe_dma_weight(pe)) 2746 return; 2747 2748 /* TVE #1 is selected by PCI address bit 59 */ 2749 pe->tce_bypass_base = 1ull << 59; 2750 2751 iommu_register_group(&pe->table_group, phb->hose->global_number, 2752 pe->pe_number); 2753 2754 /* The PE will reserve all possible 32-bits space */ 2755 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", 2756 phb->ioda.m32_pci_base); 2757 2758 /* Setup linux iommu table */ 2759 pe->table_group.tce32_start = 0; 2760 pe->table_group.tce32_size = phb->ioda.m32_pci_base; 2761 pe->table_group.max_dynamic_windows_supported = 2762 IOMMU_TABLE_GROUP_MAX_TABLES; 2763 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; 2764 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M; 2765 #ifdef CONFIG_IOMMU_API 2766 pe->table_group.ops = &pnv_pci_ioda2_ops; 2767 #endif 2768 2769 rc = pnv_pci_ioda2_setup_default_config(pe); 2770 if (rc) 2771 return; 2772 2773 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2774 pnv_ioda_setup_bus_dma(pe, pe->pbus, true); 2775 } 2776 2777 #ifdef CONFIG_PCI_MSI 2778 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq) 2779 { 2780 struct pnv_phb *phb = container_of(chip, struct pnv_phb, 2781 ioda.irq_chip); 2782 2783 return opal_pci_msi_eoi(phb->opal_id, hw_irq); 2784 } 2785 2786 static void pnv_ioda2_msi_eoi(struct irq_data *d) 2787 { 2788 int64_t rc; 2789 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 2790 struct irq_chip *chip = irq_data_get_irq_chip(d); 2791 2792 rc = pnv_opal_pci_msi_eoi(chip, hw_irq); 2793 WARN_ON_ONCE(rc); 2794 2795 icp_native_eoi(d); 2796 } 2797 2798 2799 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) 2800 { 2801 struct irq_data *idata; 2802 struct irq_chip *ichip; 2803 2804 /* The MSI EOI OPAL call is only needed on PHB3 */ 2805 if (phb->model != PNV_PHB_MODEL_PHB3) 2806 return; 2807 2808 if (!phb->ioda.irq_chip_init) { 2809 /* 2810 * First time we setup an MSI IRQ, we need to setup the 2811 * corresponding IRQ chip to route correctly. 2812 */ 2813 idata = irq_get_irq_data(virq); 2814 ichip = irq_data_get_irq_chip(idata); 2815 phb->ioda.irq_chip_init = 1; 2816 phb->ioda.irq_chip = *ichip; 2817 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; 2818 } 2819 irq_set_chip(virq, &phb->ioda.irq_chip); 2820 } 2821 2822 /* 2823 * Returns true iff chip is something that we could call 2824 * pnv_opal_pci_msi_eoi for. 2825 */ 2826 bool is_pnv_opal_msi(struct irq_chip *chip) 2827 { 2828 return chip->irq_eoi == pnv_ioda2_msi_eoi; 2829 } 2830 EXPORT_SYMBOL_GPL(is_pnv_opal_msi); 2831 2832 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, 2833 unsigned int hwirq, unsigned int virq, 2834 unsigned int is_64, struct msi_msg *msg) 2835 { 2836 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); 2837 unsigned int xive_num = hwirq - phb->msi_base; 2838 __be32 data; 2839 int rc; 2840 2841 /* No PE assigned ? bail out ... no MSI for you ! */ 2842 if (pe == NULL) 2843 return -ENXIO; 2844 2845 /* Check if we have an MVE */ 2846 if (pe->mve_number < 0) 2847 return -ENXIO; 2848 2849 /* Force 32-bit MSI on some broken devices */ 2850 if (dev->no_64bit_msi) 2851 is_64 = 0; 2852 2853 /* Assign XIVE to PE */ 2854 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); 2855 if (rc) { 2856 pr_warn("%s: OPAL error %d setting XIVE %d PE\n", 2857 pci_name(dev), rc, xive_num); 2858 return -EIO; 2859 } 2860 2861 if (is_64) { 2862 __be64 addr64; 2863 2864 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, 2865 &addr64, &data); 2866 if (rc) { 2867 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", 2868 pci_name(dev), rc); 2869 return -EIO; 2870 } 2871 msg->address_hi = be64_to_cpu(addr64) >> 32; 2872 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; 2873 } else { 2874 __be32 addr32; 2875 2876 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, 2877 &addr32, &data); 2878 if (rc) { 2879 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", 2880 pci_name(dev), rc); 2881 return -EIO; 2882 } 2883 msg->address_hi = 0; 2884 msg->address_lo = be32_to_cpu(addr32); 2885 } 2886 msg->data = be32_to_cpu(data); 2887 2888 pnv_set_msi_irq_chip(phb, virq); 2889 2890 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," 2891 " address=%x_%08x data=%x PE# %x\n", 2892 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, 2893 msg->address_hi, msg->address_lo, data, pe->pe_number); 2894 2895 return 0; 2896 } 2897 2898 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) 2899 { 2900 unsigned int count; 2901 const __be32 *prop = of_get_property(phb->hose->dn, 2902 "ibm,opal-msi-ranges", NULL); 2903 if (!prop) { 2904 /* BML Fallback */ 2905 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); 2906 } 2907 if (!prop) 2908 return; 2909 2910 phb->msi_base = be32_to_cpup(prop); 2911 count = be32_to_cpup(prop + 1); 2912 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { 2913 pr_err("PCI %d: Failed to allocate MSI bitmap !\n", 2914 phb->hose->global_number); 2915 return; 2916 } 2917 2918 phb->msi_setup = pnv_pci_ioda_msi_setup; 2919 phb->msi32_support = 1; 2920 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", 2921 count, phb->msi_base); 2922 } 2923 #else 2924 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { } 2925 #endif /* CONFIG_PCI_MSI */ 2926 2927 #ifdef CONFIG_PCI_IOV 2928 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) 2929 { 2930 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 2931 struct pnv_phb *phb = hose->private_data; 2932 const resource_size_t gate = phb->ioda.m64_segsize >> 2; 2933 struct resource *res; 2934 int i; 2935 resource_size_t size, total_vf_bar_sz; 2936 struct pci_dn *pdn; 2937 int mul, total_vfs; 2938 2939 if (!pdev->is_physfn || pdev->is_added) 2940 return; 2941 2942 pdn = pci_get_pdn(pdev); 2943 pdn->vfs_expanded = 0; 2944 pdn->m64_single_mode = false; 2945 2946 total_vfs = pci_sriov_get_totalvfs(pdev); 2947 mul = phb->ioda.total_pe_num; 2948 total_vf_bar_sz = 0; 2949 2950 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2951 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2952 if (!res->flags || res->parent) 2953 continue; 2954 if (!pnv_pci_is_m64_flags(res->flags)) { 2955 dev_warn(&pdev->dev, "Don't support SR-IOV with" 2956 " non M64 VF BAR%d: %pR. \n", 2957 i, res); 2958 goto truncate_iov; 2959 } 2960 2961 total_vf_bar_sz += pci_iov_resource_size(pdev, 2962 i + PCI_IOV_RESOURCES); 2963 2964 /* 2965 * If bigger than quarter of M64 segment size, just round up 2966 * power of two. 2967 * 2968 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict 2969 * with other devices, IOV BAR size is expanded to be 2970 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64 2971 * segment size , the expanded size would equal to half of the 2972 * whole M64 space size, which will exhaust the M64 Space and 2973 * limit the system flexibility. This is a design decision to 2974 * set the boundary to quarter of the M64 segment size. 2975 */ 2976 if (total_vf_bar_sz > gate) { 2977 mul = roundup_pow_of_two(total_vfs); 2978 dev_info(&pdev->dev, 2979 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n", 2980 total_vf_bar_sz, gate, mul); 2981 pdn->m64_single_mode = true; 2982 break; 2983 } 2984 } 2985 2986 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2987 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2988 if (!res->flags || res->parent) 2989 continue; 2990 2991 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); 2992 /* 2993 * On PHB3, the minimum size alignment of M64 BAR in single 2994 * mode is 32MB. 2995 */ 2996 if (pdn->m64_single_mode && (size < SZ_32M)) 2997 goto truncate_iov; 2998 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res); 2999 res->end = res->start + size * mul - 1; 3000 dev_dbg(&pdev->dev, " %pR\n", res); 3001 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", 3002 i, res, mul); 3003 } 3004 pdn->vfs_expanded = mul; 3005 3006 return; 3007 3008 truncate_iov: 3009 /* To save MMIO space, IOV BAR is truncated. */ 3010 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 3011 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 3012 res->flags = 0; 3013 res->end = res->start - 1; 3014 } 3015 } 3016 #endif /* CONFIG_PCI_IOV */ 3017 3018 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, 3019 struct resource *res) 3020 { 3021 struct pnv_phb *phb = pe->phb; 3022 struct pci_bus_region region; 3023 int index; 3024 int64_t rc; 3025 3026 if (!res || !res->flags || res->start > res->end) 3027 return; 3028 3029 if (res->flags & IORESOURCE_IO) { 3030 region.start = res->start - phb->ioda.io_pci_base; 3031 region.end = res->end - phb->ioda.io_pci_base; 3032 index = region.start / phb->ioda.io_segsize; 3033 3034 while (index < phb->ioda.total_pe_num && 3035 region.start <= region.end) { 3036 phb->ioda.io_segmap[index] = pe->pe_number; 3037 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3038 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); 3039 if (rc != OPAL_SUCCESS) { 3040 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n", 3041 __func__, rc, index, pe->pe_number); 3042 break; 3043 } 3044 3045 region.start += phb->ioda.io_segsize; 3046 index++; 3047 } 3048 } else if ((res->flags & IORESOURCE_MEM) && 3049 !pnv_pci_is_m64(phb, res)) { 3050 region.start = res->start - 3051 phb->hose->mem_offset[0] - 3052 phb->ioda.m32_pci_base; 3053 region.end = res->end - 3054 phb->hose->mem_offset[0] - 3055 phb->ioda.m32_pci_base; 3056 index = region.start / phb->ioda.m32_segsize; 3057 3058 while (index < phb->ioda.total_pe_num && 3059 region.start <= region.end) { 3060 phb->ioda.m32_segmap[index] = pe->pe_number; 3061 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3062 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); 3063 if (rc != OPAL_SUCCESS) { 3064 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x", 3065 __func__, rc, index, pe->pe_number); 3066 break; 3067 } 3068 3069 region.start += phb->ioda.m32_segsize; 3070 index++; 3071 } 3072 } 3073 } 3074 3075 /* 3076 * This function is supposed to be called on basis of PE from top 3077 * to bottom style. So the the I/O or MMIO segment assigned to 3078 * parent PE could be overridden by its child PEs if necessary. 3079 */ 3080 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) 3081 { 3082 struct pci_dev *pdev; 3083 int i; 3084 3085 /* 3086 * NOTE: We only care PCI bus based PE for now. For PCI 3087 * device based PE, for example SRIOV sensitive VF should 3088 * be figured out later. 3089 */ 3090 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); 3091 3092 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 3093 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 3094 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); 3095 3096 /* 3097 * If the PE contains all subordinate PCI buses, the 3098 * windows of the child bridges should be mapped to 3099 * the PE as well. 3100 */ 3101 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) 3102 continue; 3103 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) 3104 pnv_ioda_setup_pe_res(pe, 3105 &pdev->resource[PCI_BRIDGE_RESOURCES + i]); 3106 } 3107 } 3108 3109 #ifdef CONFIG_DEBUG_FS 3110 static int pnv_pci_diag_data_set(void *data, u64 val) 3111 { 3112 struct pci_controller *hose; 3113 struct pnv_phb *phb; 3114 s64 ret; 3115 3116 if (val != 1ULL) 3117 return -EINVAL; 3118 3119 hose = (struct pci_controller *)data; 3120 if (!hose || !hose->private_data) 3121 return -ENODEV; 3122 3123 phb = hose->private_data; 3124 3125 /* Retrieve the diag data from firmware */ 3126 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob, 3127 PNV_PCI_DIAG_BUF_SIZE); 3128 if (ret != OPAL_SUCCESS) 3129 return -EIO; 3130 3131 /* Print the diag data to the kernel log */ 3132 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob); 3133 return 0; 3134 } 3135 3136 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, 3137 pnv_pci_diag_data_set, "%llu\n"); 3138 3139 #endif /* CONFIG_DEBUG_FS */ 3140 3141 static void pnv_pci_ioda_create_dbgfs(void) 3142 { 3143 #ifdef CONFIG_DEBUG_FS 3144 struct pci_controller *hose, *tmp; 3145 struct pnv_phb *phb; 3146 char name[16]; 3147 3148 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 3149 phb = hose->private_data; 3150 3151 /* Notify initialization of PHB done */ 3152 phb->initialized = 1; 3153 3154 sprintf(name, "PCI%04x", hose->global_number); 3155 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); 3156 if (!phb->dbgfs) { 3157 pr_warning("%s: Error on creating debugfs on PHB#%x\n", 3158 __func__, hose->global_number); 3159 continue; 3160 } 3161 3162 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose, 3163 &pnv_pci_diag_data_fops); 3164 } 3165 #endif /* CONFIG_DEBUG_FS */ 3166 } 3167 3168 static void pnv_pci_ioda_fixup(void) 3169 { 3170 pnv_pci_ioda_setup_PEs(); 3171 pnv_pci_ioda_setup_iommu_api(); 3172 pnv_pci_ioda_create_dbgfs(); 3173 3174 #ifdef CONFIG_EEH 3175 eeh_init(); 3176 eeh_addr_cache_build(); 3177 #endif 3178 } 3179 3180 /* 3181 * Returns the alignment for I/O or memory windows for P2P 3182 * bridges. That actually depends on how PEs are segmented. 3183 * For now, we return I/O or M32 segment size for PE sensitive 3184 * P2P bridges. Otherwise, the default values (4KiB for I/O, 3185 * 1MiB for memory) will be returned. 3186 * 3187 * The current PCI bus might be put into one PE, which was 3188 * create against the parent PCI bridge. For that case, we 3189 * needn't enlarge the alignment so that we can save some 3190 * resources. 3191 */ 3192 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, 3193 unsigned long type) 3194 { 3195 struct pci_dev *bridge; 3196 struct pci_controller *hose = pci_bus_to_host(bus); 3197 struct pnv_phb *phb = hose->private_data; 3198 int num_pci_bridges = 0; 3199 3200 bridge = bus->self; 3201 while (bridge) { 3202 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { 3203 num_pci_bridges++; 3204 if (num_pci_bridges >= 2) 3205 return 1; 3206 } 3207 3208 bridge = bridge->bus->self; 3209 } 3210 3211 /* 3212 * We fall back to M32 if M64 isn't supported. We enforce the M64 3213 * alignment for any 64-bit resource, PCIe doesn't care and 3214 * bridges only do 64-bit prefetchable anyway. 3215 */ 3216 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type)) 3217 return phb->ioda.m64_segsize; 3218 if (type & IORESOURCE_MEM) 3219 return phb->ioda.m32_segsize; 3220 3221 return phb->ioda.io_segsize; 3222 } 3223 3224 /* 3225 * We are updating root port or the upstream port of the 3226 * bridge behind the root port with PHB's windows in order 3227 * to accommodate the changes on required resources during 3228 * PCI (slot) hotplug, which is connected to either root 3229 * port or the downstream ports of PCIe switch behind the 3230 * root port. 3231 */ 3232 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, 3233 unsigned long type) 3234 { 3235 struct pci_controller *hose = pci_bus_to_host(bus); 3236 struct pnv_phb *phb = hose->private_data; 3237 struct pci_dev *bridge = bus->self; 3238 struct resource *r, *w; 3239 bool msi_region = false; 3240 int i; 3241 3242 /* Check if we need apply fixup to the bridge's windows */ 3243 if (!pci_is_root_bus(bridge->bus) && 3244 !pci_is_root_bus(bridge->bus->self->bus)) 3245 return; 3246 3247 /* Fixup the resources */ 3248 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { 3249 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; 3250 if (!r->flags || !r->parent) 3251 continue; 3252 3253 w = NULL; 3254 if (r->flags & type & IORESOURCE_IO) 3255 w = &hose->io_resource; 3256 else if (pnv_pci_is_m64(phb, r) && 3257 (type & IORESOURCE_PREFETCH) && 3258 phb->ioda.m64_segsize) 3259 w = &hose->mem_resources[1]; 3260 else if (r->flags & type & IORESOURCE_MEM) { 3261 w = &hose->mem_resources[0]; 3262 msi_region = true; 3263 } 3264 3265 r->start = w->start; 3266 r->end = w->end; 3267 3268 /* The 64KB 32-bits MSI region shouldn't be included in 3269 * the 32-bits bridge window. Otherwise, we can see strange 3270 * issues. One of them is EEH error observed on Garrison. 3271 * 3272 * Exclude top 1MB region which is the minimal alignment of 3273 * 32-bits bridge window. 3274 */ 3275 if (msi_region) { 3276 r->end += 0x10000; 3277 r->end -= 0x100000; 3278 } 3279 } 3280 } 3281 3282 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type) 3283 { 3284 struct pci_controller *hose = pci_bus_to_host(bus); 3285 struct pnv_phb *phb = hose->private_data; 3286 struct pci_dev *bridge = bus->self; 3287 struct pnv_ioda_pe *pe; 3288 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); 3289 3290 /* Extend bridge's windows if necessary */ 3291 pnv_pci_fixup_bridge_resources(bus, type); 3292 3293 /* The PE for root bus should be realized before any one else */ 3294 if (!phb->ioda.root_pe_populated) { 3295 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false); 3296 if (pe) { 3297 phb->ioda.root_pe_idx = pe->pe_number; 3298 phb->ioda.root_pe_populated = true; 3299 } 3300 } 3301 3302 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ 3303 if (list_empty(&bus->devices)) 3304 return; 3305 3306 /* Reserve PEs according to used M64 resources */ 3307 if (phb->reserve_m64_pe) 3308 phb->reserve_m64_pe(bus, NULL, all); 3309 3310 /* 3311 * Assign PE. We might run here because of partial hotplug. 3312 * For the case, we just pick up the existing PE and should 3313 * not allocate resources again. 3314 */ 3315 pe = pnv_ioda_setup_bus_PE(bus, all); 3316 if (!pe) 3317 return; 3318 3319 pnv_ioda_setup_pe_seg(pe); 3320 switch (phb->type) { 3321 case PNV_PHB_IODA1: 3322 pnv_pci_ioda1_setup_dma_pe(phb, pe); 3323 break; 3324 case PNV_PHB_IODA2: 3325 pnv_pci_ioda2_setup_dma_pe(phb, pe); 3326 break; 3327 default: 3328 pr_warn("%s: No DMA for PHB#%x (type %d)\n", 3329 __func__, phb->hose->global_number, phb->type); 3330 } 3331 } 3332 3333 static resource_size_t pnv_pci_default_alignment(void) 3334 { 3335 return PAGE_SIZE; 3336 } 3337 3338 #ifdef CONFIG_PCI_IOV 3339 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, 3340 int resno) 3341 { 3342 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3343 struct pnv_phb *phb = hose->private_data; 3344 struct pci_dn *pdn = pci_get_pdn(pdev); 3345 resource_size_t align; 3346 3347 /* 3348 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the 3349 * SR-IOV. While from hardware perspective, the range mapped by M64 3350 * BAR should be size aligned. 3351 * 3352 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra 3353 * powernv-specific hardware restriction is gone. But if just use the 3354 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with 3355 * in one segment of M64 #15, which introduces the PE conflict between 3356 * PF and VF. Based on this, the minimum alignment of an IOV BAR is 3357 * m64_segsize. 3358 * 3359 * This function returns the total IOV BAR size if M64 BAR is in 3360 * Shared PE mode or just VF BAR size if not. 3361 * If the M64 BAR is in Single PE mode, return the VF BAR size or 3362 * M64 segment size if IOV BAR size is less. 3363 */ 3364 align = pci_iov_resource_size(pdev, resno); 3365 if (!pdn->vfs_expanded) 3366 return align; 3367 if (pdn->m64_single_mode) 3368 return max(align, (resource_size_t)phb->ioda.m64_segsize); 3369 3370 return pdn->vfs_expanded * align; 3371 } 3372 #endif /* CONFIG_PCI_IOV */ 3373 3374 /* Prevent enabling devices for which we couldn't properly 3375 * assign a PE 3376 */ 3377 bool pnv_pci_enable_device_hook(struct pci_dev *dev) 3378 { 3379 struct pci_controller *hose = pci_bus_to_host(dev->bus); 3380 struct pnv_phb *phb = hose->private_data; 3381 struct pci_dn *pdn; 3382 3383 /* The function is probably called while the PEs have 3384 * not be created yet. For example, resource reassignment 3385 * during PCI probe period. We just skip the check if 3386 * PEs isn't ready. 3387 */ 3388 if (!phb->initialized) 3389 return true; 3390 3391 pdn = pci_get_pdn(dev); 3392 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3393 return false; 3394 3395 return true; 3396 } 3397 3398 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, 3399 int num) 3400 { 3401 struct pnv_ioda_pe *pe = container_of(table_group, 3402 struct pnv_ioda_pe, table_group); 3403 struct pnv_phb *phb = pe->phb; 3404 unsigned int idx; 3405 long rc; 3406 3407 pe_info(pe, "Removing DMA window #%d\n", num); 3408 for (idx = 0; idx < phb->ioda.dma32_count; idx++) { 3409 if (phb->ioda.dma32_segmap[idx] != pe->pe_number) 3410 continue; 3411 3412 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 3413 idx, 0, 0ul, 0ul, 0ul); 3414 if (rc != OPAL_SUCCESS) { 3415 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", 3416 rc, idx); 3417 return rc; 3418 } 3419 3420 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; 3421 } 3422 3423 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 3424 return OPAL_SUCCESS; 3425 } 3426 3427 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) 3428 { 3429 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3430 struct iommu_table *tbl = pe->table_group.tables[0]; 3431 int64_t rc; 3432 3433 if (!weight) 3434 return; 3435 3436 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); 3437 if (rc != OPAL_SUCCESS) 3438 return; 3439 3440 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); 3441 if (pe->table_group.group) { 3442 iommu_group_put(pe->table_group.group); 3443 WARN_ON(pe->table_group.group); 3444 } 3445 3446 free_pages(tbl->it_base, get_order(tbl->it_size << 3)); 3447 iommu_tce_table_put(tbl); 3448 } 3449 3450 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) 3451 { 3452 struct iommu_table *tbl = pe->table_group.tables[0]; 3453 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3454 #ifdef CONFIG_IOMMU_API 3455 int64_t rc; 3456 #endif 3457 3458 if (!weight) 3459 return; 3460 3461 #ifdef CONFIG_IOMMU_API 3462 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 3463 if (rc) 3464 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 3465 #endif 3466 3467 pnv_pci_ioda2_set_bypass(pe, false); 3468 if (pe->table_group.group) { 3469 iommu_group_put(pe->table_group.group); 3470 WARN_ON(pe->table_group.group); 3471 } 3472 3473 pnv_pci_ioda2_table_free_pages(tbl); 3474 iommu_tce_table_put(tbl); 3475 } 3476 3477 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, 3478 unsigned short win, 3479 unsigned int *map) 3480 { 3481 struct pnv_phb *phb = pe->phb; 3482 int idx; 3483 int64_t rc; 3484 3485 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { 3486 if (map[idx] != pe->pe_number) 3487 continue; 3488 3489 if (win == OPAL_M64_WINDOW_TYPE) 3490 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3491 phb->ioda.reserved_pe_idx, win, 3492 idx / PNV_IODA1_M64_SEGS, 3493 idx % PNV_IODA1_M64_SEGS); 3494 else 3495 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3496 phb->ioda.reserved_pe_idx, win, 0, idx); 3497 3498 if (rc != OPAL_SUCCESS) 3499 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n", 3500 rc, win, idx); 3501 3502 map[idx] = IODA_INVALID_PE; 3503 } 3504 } 3505 3506 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) 3507 { 3508 struct pnv_phb *phb = pe->phb; 3509 3510 if (phb->type == PNV_PHB_IODA1) { 3511 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, 3512 phb->ioda.io_segmap); 3513 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3514 phb->ioda.m32_segmap); 3515 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE, 3516 phb->ioda.m64_segmap); 3517 } else if (phb->type == PNV_PHB_IODA2) { 3518 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3519 phb->ioda.m32_segmap); 3520 } 3521 } 3522 3523 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) 3524 { 3525 struct pnv_phb *phb = pe->phb; 3526 struct pnv_ioda_pe *slave, *tmp; 3527 3528 list_del(&pe->list); 3529 switch (phb->type) { 3530 case PNV_PHB_IODA1: 3531 pnv_pci_ioda1_release_pe_dma(pe); 3532 break; 3533 case PNV_PHB_IODA2: 3534 pnv_pci_ioda2_release_pe_dma(pe); 3535 break; 3536 default: 3537 WARN_ON(1); 3538 } 3539 3540 pnv_ioda_release_pe_seg(pe); 3541 pnv_ioda_deconfigure_pe(pe->phb, pe); 3542 3543 /* Release slave PEs in the compound PE */ 3544 if (pe->flags & PNV_IODA_PE_MASTER) { 3545 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { 3546 list_del(&slave->list); 3547 pnv_ioda_free_pe(slave); 3548 } 3549 } 3550 3551 /* 3552 * The PE for root bus can be removed because of hotplug in EEH 3553 * recovery for fenced PHB error. We need to mark the PE dead so 3554 * that it can be populated again in PCI hot add path. The PE 3555 * shouldn't be destroyed as it's the global reserved resource. 3556 */ 3557 if (phb->ioda.root_pe_populated && 3558 phb->ioda.root_pe_idx == pe->pe_number) 3559 phb->ioda.root_pe_populated = false; 3560 else 3561 pnv_ioda_free_pe(pe); 3562 } 3563 3564 static void pnv_pci_release_device(struct pci_dev *pdev) 3565 { 3566 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3567 struct pnv_phb *phb = hose->private_data; 3568 struct pci_dn *pdn = pci_get_pdn(pdev); 3569 struct pnv_ioda_pe *pe; 3570 3571 if (pdev->is_virtfn) 3572 return; 3573 3574 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3575 return; 3576 3577 /* 3578 * PCI hotplug can happen as part of EEH error recovery. The @pdn 3579 * isn't removed and added afterwards in this scenario. We should 3580 * set the PE number in @pdn to an invalid one. Otherwise, the PE's 3581 * device count is decreased on removing devices while failing to 3582 * be increased on adding devices. It leads to unbalanced PE's device 3583 * count and eventually make normal PCI hotplug path broken. 3584 */ 3585 pe = &phb->ioda.pe_array[pdn->pe_number]; 3586 pdn->pe_number = IODA_INVALID_PE; 3587 3588 WARN_ON(--pe->device_count < 0); 3589 if (pe->device_count == 0) 3590 pnv_ioda_release_pe(pe); 3591 } 3592 3593 static void pnv_pci_ioda_shutdown(struct pci_controller *hose) 3594 { 3595 struct pnv_phb *phb = hose->private_data; 3596 3597 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, 3598 OPAL_ASSERT_RESET); 3599 } 3600 3601 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { 3602 .dma_dev_setup = pnv_pci_dma_dev_setup, 3603 .dma_bus_setup = pnv_pci_dma_bus_setup, 3604 #ifdef CONFIG_PCI_MSI 3605 .setup_msi_irqs = pnv_setup_msi_irqs, 3606 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3607 #endif 3608 .enable_device_hook = pnv_pci_enable_device_hook, 3609 .release_device = pnv_pci_release_device, 3610 .window_alignment = pnv_pci_window_alignment, 3611 .setup_bridge = pnv_pci_setup_bridge, 3612 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3613 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3614 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3615 .shutdown = pnv_pci_ioda_shutdown, 3616 }; 3617 3618 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask) 3619 { 3620 dev_err_once(&npdev->dev, 3621 "%s operation unsupported for NVLink devices\n", 3622 __func__); 3623 return -EPERM; 3624 } 3625 3626 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = { 3627 .dma_dev_setup = pnv_pci_dma_dev_setup, 3628 #ifdef CONFIG_PCI_MSI 3629 .setup_msi_irqs = pnv_setup_msi_irqs, 3630 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3631 #endif 3632 .enable_device_hook = pnv_pci_enable_device_hook, 3633 .window_alignment = pnv_pci_window_alignment, 3634 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3635 .dma_set_mask = pnv_npu_dma_set_mask, 3636 .shutdown = pnv_pci_ioda_shutdown, 3637 }; 3638 3639 #ifdef CONFIG_CXL_BASE 3640 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = { 3641 .dma_dev_setup = pnv_pci_dma_dev_setup, 3642 .dma_bus_setup = pnv_pci_dma_bus_setup, 3643 #ifdef CONFIG_PCI_MSI 3644 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs, 3645 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs, 3646 #endif 3647 .enable_device_hook = pnv_cxl_enable_device_hook, 3648 .disable_device = pnv_cxl_disable_device, 3649 .release_device = pnv_pci_release_device, 3650 .window_alignment = pnv_pci_window_alignment, 3651 .setup_bridge = pnv_pci_setup_bridge, 3652 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3653 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3654 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3655 .shutdown = pnv_pci_ioda_shutdown, 3656 }; 3657 #endif 3658 3659 static void __init pnv_pci_init_ioda_phb(struct device_node *np, 3660 u64 hub_id, int ioda_type) 3661 { 3662 struct pci_controller *hose; 3663 struct pnv_phb *phb; 3664 unsigned long size, m64map_off, m32map_off, pemap_off; 3665 unsigned long iomap_off = 0, dma32map_off = 0; 3666 struct resource r; 3667 const __be64 *prop64; 3668 const __be32 *prop32; 3669 int len; 3670 unsigned int segno; 3671 u64 phb_id; 3672 void *aux; 3673 long rc; 3674 3675 if (!of_device_is_available(np)) 3676 return; 3677 3678 pr_info("Initializing %s PHB (%s)\n", 3679 pnv_phb_names[ioda_type], of_node_full_name(np)); 3680 3681 prop64 = of_get_property(np, "ibm,opal-phbid", NULL); 3682 if (!prop64) { 3683 pr_err(" Missing \"ibm,opal-phbid\" property !\n"); 3684 return; 3685 } 3686 phb_id = be64_to_cpup(prop64); 3687 pr_debug(" PHB-ID : 0x%016llx\n", phb_id); 3688 3689 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0); 3690 3691 /* Allocate PCI controller */ 3692 phb->hose = hose = pcibios_alloc_controller(np); 3693 if (!phb->hose) { 3694 pr_err(" Can't allocate PCI controller for %s\n", 3695 np->full_name); 3696 memblock_free(__pa(phb), sizeof(struct pnv_phb)); 3697 return; 3698 } 3699 3700 spin_lock_init(&phb->lock); 3701 prop32 = of_get_property(np, "bus-range", &len); 3702 if (prop32 && len == 8) { 3703 hose->first_busno = be32_to_cpu(prop32[0]); 3704 hose->last_busno = be32_to_cpu(prop32[1]); 3705 } else { 3706 pr_warn(" Broken <bus-range> on %s\n", np->full_name); 3707 hose->first_busno = 0; 3708 hose->last_busno = 0xff; 3709 } 3710 hose->private_data = phb; 3711 phb->hub_id = hub_id; 3712 phb->opal_id = phb_id; 3713 phb->type = ioda_type; 3714 mutex_init(&phb->ioda.pe_alloc_mutex); 3715 3716 /* Detect specific models for error handling */ 3717 if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) 3718 phb->model = PNV_PHB_MODEL_P7IOC; 3719 else if (of_device_is_compatible(np, "ibm,power8-pciex")) 3720 phb->model = PNV_PHB_MODEL_PHB3; 3721 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex")) 3722 phb->model = PNV_PHB_MODEL_NPU; 3723 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex")) 3724 phb->model = PNV_PHB_MODEL_NPU2; 3725 else 3726 phb->model = PNV_PHB_MODEL_UNKNOWN; 3727 3728 /* Parse 32-bit and IO ranges (if any) */ 3729 pci_process_bridge_OF_ranges(hose, np, !hose->global_number); 3730 3731 /* Get registers */ 3732 if (!of_address_to_resource(np, 0, &r)) { 3733 phb->regs_phys = r.start; 3734 phb->regs = ioremap(r.start, resource_size(&r)); 3735 if (phb->regs == NULL) 3736 pr_err(" Failed to map registers !\n"); 3737 } 3738 3739 /* Initialize more IODA stuff */ 3740 phb->ioda.total_pe_num = 1; 3741 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); 3742 if (prop32) 3743 phb->ioda.total_pe_num = be32_to_cpup(prop32); 3744 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); 3745 if (prop32) 3746 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); 3747 3748 /* Invalidate RID to PE# mapping */ 3749 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) 3750 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; 3751 3752 /* Parse 64-bit MMIO range */ 3753 pnv_ioda_parse_m64_window(phb); 3754 3755 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); 3756 /* FW Has already off top 64k of M32 space (MSI space) */ 3757 phb->ioda.m32_size += 0x10000; 3758 3759 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; 3760 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; 3761 phb->ioda.io_size = hose->pci_io_size; 3762 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; 3763 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ 3764 3765 /* Calculate how many 32-bit TCE segments we have */ 3766 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3767 PNV_IODA1_DMA32_SEGSIZE; 3768 3769 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ 3770 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, 3771 sizeof(unsigned long)); 3772 m64map_off = size; 3773 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); 3774 m32map_off = size; 3775 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); 3776 if (phb->type == PNV_PHB_IODA1) { 3777 iomap_off = size; 3778 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); 3779 dma32map_off = size; 3780 size += phb->ioda.dma32_count * 3781 sizeof(phb->ioda.dma32_segmap[0]); 3782 } 3783 pemap_off = size; 3784 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); 3785 aux = memblock_virt_alloc(size, 0); 3786 phb->ioda.pe_alloc = aux; 3787 phb->ioda.m64_segmap = aux + m64map_off; 3788 phb->ioda.m32_segmap = aux + m32map_off; 3789 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { 3790 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; 3791 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; 3792 } 3793 if (phb->type == PNV_PHB_IODA1) { 3794 phb->ioda.io_segmap = aux + iomap_off; 3795 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) 3796 phb->ioda.io_segmap[segno] = IODA_INVALID_PE; 3797 3798 phb->ioda.dma32_segmap = aux + dma32map_off; 3799 for (segno = 0; segno < phb->ioda.dma32_count; segno++) 3800 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; 3801 } 3802 phb->ioda.pe_array = aux + pemap_off; 3803 3804 /* 3805 * Choose PE number for root bus, which shouldn't have 3806 * M64 resources consumed by its child devices. To pick 3807 * the PE number adjacent to the reserved one if possible. 3808 */ 3809 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); 3810 if (phb->ioda.reserved_pe_idx == 0) { 3811 phb->ioda.root_pe_idx = 1; 3812 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3813 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { 3814 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; 3815 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3816 } else { 3817 phb->ioda.root_pe_idx = IODA_INVALID_PE; 3818 } 3819 3820 INIT_LIST_HEAD(&phb->ioda.pe_list); 3821 mutex_init(&phb->ioda.pe_list_mutex); 3822 3823 /* Calculate how many 32-bit TCE segments we have */ 3824 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3825 PNV_IODA1_DMA32_SEGSIZE; 3826 3827 #if 0 /* We should really do that ... */ 3828 rc = opal_pci_set_phb_mem_window(opal->phb_id, 3829 window_type, 3830 window_num, 3831 starting_real_address, 3832 starting_pci_address, 3833 segment_size); 3834 #endif 3835 3836 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", 3837 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, 3838 phb->ioda.m32_size, phb->ioda.m32_segsize); 3839 if (phb->ioda.m64_size) 3840 pr_info(" M64: 0x%lx [segment=0x%lx]\n", 3841 phb->ioda.m64_size, phb->ioda.m64_segsize); 3842 if (phb->ioda.io_size) 3843 pr_info(" IO: 0x%x [segment=0x%x]\n", 3844 phb->ioda.io_size, phb->ioda.io_segsize); 3845 3846 3847 phb->hose->ops = &pnv_pci_ops; 3848 phb->get_pe_state = pnv_ioda_get_pe_state; 3849 phb->freeze_pe = pnv_ioda_freeze_pe; 3850 phb->unfreeze_pe = pnv_ioda_unfreeze_pe; 3851 3852 /* Setup MSI support */ 3853 pnv_pci_init_ioda_msis(phb); 3854 3855 /* 3856 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here 3857 * to let the PCI core do resource assignment. It's supposed 3858 * that the PCI core will do correct I/O and MMIO alignment 3859 * for the P2P bridge bars so that each PCI bus (excluding 3860 * the child P2P bridges) can form individual PE. 3861 */ 3862 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; 3863 3864 if (phb->type == PNV_PHB_NPU) { 3865 hose->controller_ops = pnv_npu_ioda_controller_ops; 3866 } else { 3867 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup; 3868 hose->controller_ops = pnv_pci_ioda_controller_ops; 3869 } 3870 3871 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment; 3872 3873 #ifdef CONFIG_PCI_IOV 3874 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources; 3875 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; 3876 #endif 3877 3878 pci_add_flags(PCI_REASSIGN_ALL_RSRC); 3879 3880 /* Reset IODA tables to a clean state */ 3881 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); 3882 if (rc) 3883 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc); 3884 3885 /* 3886 * If we're running in kdump kernel, the previous kernel never 3887 * shutdown PCI devices correctly. We already got IODA table 3888 * cleaned out. So we have to issue PHB reset to stop all PCI 3889 * transactions from previous kernel. 3890 */ 3891 if (is_kdump_kernel()) { 3892 pr_info(" Issue PHB reset ...\n"); 3893 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); 3894 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); 3895 } 3896 3897 /* Remove M64 resource if we can't configure it successfully */ 3898 if (!phb->init_m64 || phb->init_m64(phb)) 3899 hose->mem_resources[1].flags = 0; 3900 } 3901 3902 void __init pnv_pci_init_ioda2_phb(struct device_node *np) 3903 { 3904 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); 3905 } 3906 3907 void __init pnv_pci_init_npu_phb(struct device_node *np) 3908 { 3909 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU); 3910 } 3911 3912 void __init pnv_pci_init_ioda_hub(struct device_node *np) 3913 { 3914 struct device_node *phbn; 3915 const __be64 *prop64; 3916 u64 hub_id; 3917 3918 pr_info("Probing IODA IO-Hub %s\n", np->full_name); 3919 3920 prop64 = of_get_property(np, "ibm,opal-hubid", NULL); 3921 if (!prop64) { 3922 pr_err(" Missing \"ibm,opal-hubid\" property !\n"); 3923 return; 3924 } 3925 hub_id = be64_to_cpup(prop64); 3926 pr_devel(" HUB-ID : 0x%016llx\n", hub_id); 3927 3928 /* Count child PHBs */ 3929 for_each_child_of_node(np, phbn) { 3930 /* Look for IODA1 PHBs */ 3931 if (of_device_is_compatible(phbn, "ibm,ioda-phb")) 3932 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); 3933 } 3934 } 3935