1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
44 
45 #include <misc/cxl-base.h>
46 
47 #include "powernv.h"
48 #include "pci.h"
49 
50 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
51 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
52 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
53 
54 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
55 #define POWERNV_IOMMU_MAX_LEVELS	5
56 
57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59 
60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61 			    const char *fmt, ...)
62 {
63 	struct va_format vaf;
64 	va_list args;
65 	char pfix[32];
66 
67 	va_start(args, fmt);
68 
69 	vaf.fmt = fmt;
70 	vaf.va = &args;
71 
72 	if (pe->flags & PNV_IODA_PE_DEV)
73 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75 		sprintf(pfix, "%04x:%02x     ",
76 			pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78 	else if (pe->flags & PNV_IODA_PE_VF)
79 		sprintf(pfix, "%04x:%02x:%2x.%d",
80 			pci_domain_nr(pe->parent_dev->bus),
81 			(pe->rid & 0xff00) >> 8,
82 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84 
85 	printk("%spci %s: [PE# %.2x] %pV",
86 	       level, pfix, pe->pe_number, &vaf);
87 
88 	va_end(args);
89 }
90 
91 static bool pnv_iommu_bypass_disabled __read_mostly;
92 
93 static int __init iommu_setup(char *str)
94 {
95 	if (!str)
96 		return -EINVAL;
97 
98 	while (*str) {
99 		if (!strncmp(str, "nobypass", 8)) {
100 			pnv_iommu_bypass_disabled = true;
101 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
102 			break;
103 		}
104 		str += strcspn(str, ",");
105 		if (*str == ',')
106 			str++;
107 	}
108 
109 	return 0;
110 }
111 early_param("iommu", iommu_setup);
112 
113 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
114 {
115 	/*
116 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
117 	 * allocation code sometimes decides to put a 64-bit prefetchable
118 	 * BAR in the 32-bit window, so we have to compare the addresses.
119 	 *
120 	 * For simplicity we only test resource start.
121 	 */
122 	return (r->start >= phb->ioda.m64_base &&
123 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
124 }
125 
126 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
127 {
128 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
129 
130 	return (resource_flags & flags) == flags;
131 }
132 
133 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
134 {
135 	s64 rc;
136 
137 	phb->ioda.pe_array[pe_no].phb = phb;
138 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
139 
140 	/*
141 	 * Clear the PE frozen state as it might be put into frozen state
142 	 * in the last PCI remove path. It's not harmful to do so when the
143 	 * PE is already in unfrozen state.
144 	 */
145 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
146 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
147 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
148 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
149 			__func__, rc, phb->hose->global_number, pe_no);
150 
151 	return &phb->ioda.pe_array[pe_no];
152 }
153 
154 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
155 {
156 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
157 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
158 			__func__, pe_no, phb->hose->global_number);
159 		return;
160 	}
161 
162 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
163 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
164 			 __func__, pe_no, phb->hose->global_number);
165 
166 	pnv_ioda_init_pe(phb, pe_no);
167 }
168 
169 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
170 {
171 	long pe;
172 
173 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
174 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
175 			return pnv_ioda_init_pe(phb, pe);
176 	}
177 
178 	return NULL;
179 }
180 
181 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
182 {
183 	struct pnv_phb *phb = pe->phb;
184 	unsigned int pe_num = pe->pe_number;
185 
186 	WARN_ON(pe->pdev);
187 
188 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
189 	clear_bit(pe_num, phb->ioda.pe_alloc);
190 }
191 
192 /* The default M64 BAR is shared by all PEs */
193 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
194 {
195 	const char *desc;
196 	struct resource *r;
197 	s64 rc;
198 
199 	/* Configure the default M64 BAR */
200 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
201 					 OPAL_M64_WINDOW_TYPE,
202 					 phb->ioda.m64_bar_idx,
203 					 phb->ioda.m64_base,
204 					 0, /* unused */
205 					 phb->ioda.m64_size);
206 	if (rc != OPAL_SUCCESS) {
207 		desc = "configuring";
208 		goto fail;
209 	}
210 
211 	/* Enable the default M64 BAR */
212 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
213 				      OPAL_M64_WINDOW_TYPE,
214 				      phb->ioda.m64_bar_idx,
215 				      OPAL_ENABLE_M64_SPLIT);
216 	if (rc != OPAL_SUCCESS) {
217 		desc = "enabling";
218 		goto fail;
219 	}
220 
221 	/*
222 	 * Exclude the segments for reserved and root bus PE, which
223 	 * are first or last two PEs.
224 	 */
225 	r = &phb->hose->mem_resources[1];
226 	if (phb->ioda.reserved_pe_idx == 0)
227 		r->start += (2 * phb->ioda.m64_segsize);
228 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
229 		r->end -= (2 * phb->ioda.m64_segsize);
230 	else
231 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
232 			phb->ioda.reserved_pe_idx);
233 
234 	return 0;
235 
236 fail:
237 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
238 		rc, desc, phb->ioda.m64_bar_idx);
239 	opal_pci_phb_mmio_enable(phb->opal_id,
240 				 OPAL_M64_WINDOW_TYPE,
241 				 phb->ioda.m64_bar_idx,
242 				 OPAL_DISABLE_M64);
243 	return -EIO;
244 }
245 
246 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
247 					 unsigned long *pe_bitmap)
248 {
249 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
250 	struct pnv_phb *phb = hose->private_data;
251 	struct resource *r;
252 	resource_size_t base, sgsz, start, end;
253 	int segno, i;
254 
255 	base = phb->ioda.m64_base;
256 	sgsz = phb->ioda.m64_segsize;
257 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
258 		r = &pdev->resource[i];
259 		if (!r->parent || !pnv_pci_is_m64(phb, r))
260 			continue;
261 
262 		start = _ALIGN_DOWN(r->start - base, sgsz);
263 		end = _ALIGN_UP(r->end - base, sgsz);
264 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
265 			if (pe_bitmap)
266 				set_bit(segno, pe_bitmap);
267 			else
268 				pnv_ioda_reserve_pe(phb, segno);
269 		}
270 	}
271 }
272 
273 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
274 {
275 	struct resource *r;
276 	int index;
277 
278 	/*
279 	 * There are 16 M64 BARs, each of which has 8 segments. So
280 	 * there are as many M64 segments as the maximum number of
281 	 * PEs, which is 128.
282 	 */
283 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
284 		unsigned long base, segsz = phb->ioda.m64_segsize;
285 		int64_t rc;
286 
287 		base = phb->ioda.m64_base +
288 		       index * PNV_IODA1_M64_SEGS * segsz;
289 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
290 				OPAL_M64_WINDOW_TYPE, index, base, 0,
291 				PNV_IODA1_M64_SEGS * segsz);
292 		if (rc != OPAL_SUCCESS) {
293 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
294 				rc, phb->hose->global_number, index);
295 			goto fail;
296 		}
297 
298 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
299 				OPAL_M64_WINDOW_TYPE, index,
300 				OPAL_ENABLE_M64_SPLIT);
301 		if (rc != OPAL_SUCCESS) {
302 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
303 				rc, phb->hose->global_number, index);
304 			goto fail;
305 		}
306 	}
307 
308 	/*
309 	 * Exclude the segments for reserved and root bus PE, which
310 	 * are first or last two PEs.
311 	 */
312 	r = &phb->hose->mem_resources[1];
313 	if (phb->ioda.reserved_pe_idx == 0)
314 		r->start += (2 * phb->ioda.m64_segsize);
315 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
316 		r->end -= (2 * phb->ioda.m64_segsize);
317 	else
318 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
319 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
320 
321 	return 0;
322 
323 fail:
324 	for ( ; index >= 0; index--)
325 		opal_pci_phb_mmio_enable(phb->opal_id,
326 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
327 
328 	return -EIO;
329 }
330 
331 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
332 				    unsigned long *pe_bitmap,
333 				    bool all)
334 {
335 	struct pci_dev *pdev;
336 
337 	list_for_each_entry(pdev, &bus->devices, bus_list) {
338 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
339 
340 		if (all && pdev->subordinate)
341 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
342 						pe_bitmap, all);
343 	}
344 }
345 
346 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
347 {
348 	struct pci_controller *hose = pci_bus_to_host(bus);
349 	struct pnv_phb *phb = hose->private_data;
350 	struct pnv_ioda_pe *master_pe, *pe;
351 	unsigned long size, *pe_alloc;
352 	int i;
353 
354 	/* Root bus shouldn't use M64 */
355 	if (pci_is_root_bus(bus))
356 		return NULL;
357 
358 	/* Allocate bitmap */
359 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
360 	pe_alloc = kzalloc(size, GFP_KERNEL);
361 	if (!pe_alloc) {
362 		pr_warn("%s: Out of memory !\n",
363 			__func__);
364 		return NULL;
365 	}
366 
367 	/* Figure out reserved PE numbers by the PE */
368 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
369 
370 	/*
371 	 * the current bus might not own M64 window and that's all
372 	 * contributed by its child buses. For the case, we needn't
373 	 * pick M64 dependent PE#.
374 	 */
375 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
376 		kfree(pe_alloc);
377 		return NULL;
378 	}
379 
380 	/*
381 	 * Figure out the master PE and put all slave PEs to master
382 	 * PE's list to form compound PE.
383 	 */
384 	master_pe = NULL;
385 	i = -1;
386 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
387 		phb->ioda.total_pe_num) {
388 		pe = &phb->ioda.pe_array[i];
389 
390 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
391 		if (!master_pe) {
392 			pe->flags |= PNV_IODA_PE_MASTER;
393 			INIT_LIST_HEAD(&pe->slaves);
394 			master_pe = pe;
395 		} else {
396 			pe->flags |= PNV_IODA_PE_SLAVE;
397 			pe->master = master_pe;
398 			list_add_tail(&pe->list, &master_pe->slaves);
399 		}
400 
401 		/*
402 		 * P7IOC supports M64DT, which helps mapping M64 segment
403 		 * to one particular PE#. However, PHB3 has fixed mapping
404 		 * between M64 segment and PE#. In order to have same logic
405 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
406 		 * segment and PE# on P7IOC.
407 		 */
408 		if (phb->type == PNV_PHB_IODA1) {
409 			int64_t rc;
410 
411 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
412 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
413 					pe->pe_number / PNV_IODA1_M64_SEGS,
414 					pe->pe_number % PNV_IODA1_M64_SEGS);
415 			if (rc != OPAL_SUCCESS)
416 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
417 					__func__, rc, phb->hose->global_number,
418 					pe->pe_number);
419 		}
420 	}
421 
422 	kfree(pe_alloc);
423 	return master_pe;
424 }
425 
426 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
427 {
428 	struct pci_controller *hose = phb->hose;
429 	struct device_node *dn = hose->dn;
430 	struct resource *res;
431 	u32 m64_range[2], i;
432 	const __be32 *r;
433 	u64 pci_addr;
434 
435 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
436 		pr_info("  Not support M64 window\n");
437 		return;
438 	}
439 
440 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
441 		pr_info("  Firmware too old to support M64 window\n");
442 		return;
443 	}
444 
445 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
446 	if (!r) {
447 		pr_info("  No <ibm,opal-m64-window> on %s\n",
448 			dn->full_name);
449 		return;
450 	}
451 
452 	/*
453 	 * Find the available M64 BAR range and pickup the last one for
454 	 * covering the whole 64-bits space. We support only one range.
455 	 */
456 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
457 				       m64_range, 2)) {
458 		/* In absence of the property, assume 0..15 */
459 		m64_range[0] = 0;
460 		m64_range[1] = 16;
461 	}
462 	/* We only support 64 bits in our allocator */
463 	if (m64_range[1] > 63) {
464 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
465 			__func__, m64_range[1], phb->hose->global_number);
466 		m64_range[1] = 63;
467 	}
468 	/* Empty range, no m64 */
469 	if (m64_range[1] <= m64_range[0]) {
470 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
471 			__func__, phb->hose->global_number);
472 		return;
473 	}
474 
475 	/* Configure M64 informations */
476 	res = &hose->mem_resources[1];
477 	res->name = dn->full_name;
478 	res->start = of_translate_address(dn, r + 2);
479 	res->end = res->start + of_read_number(r + 4, 2) - 1;
480 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
481 	pci_addr = of_read_number(r, 2);
482 	hose->mem_offset[1] = res->start - pci_addr;
483 
484 	phb->ioda.m64_size = resource_size(res);
485 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
486 	phb->ioda.m64_base = pci_addr;
487 
488 	/* This lines up nicely with the display from processing OF ranges */
489 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
490 		res->start, res->end, pci_addr, m64_range[0],
491 		m64_range[0] + m64_range[1] - 1);
492 
493 	/* Mark all M64 used up by default */
494 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
495 
496 	/* Use last M64 BAR to cover M64 window */
497 	m64_range[1]--;
498 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
499 
500 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
501 
502 	/* Mark remaining ones free */
503 	for (i = m64_range[0]; i < m64_range[1]; i++)
504 		clear_bit(i, &phb->ioda.m64_bar_alloc);
505 
506 	/*
507 	 * Setup init functions for M64 based on IODA version, IODA3 uses
508 	 * the IODA2 code.
509 	 */
510 	if (phb->type == PNV_PHB_IODA1)
511 		phb->init_m64 = pnv_ioda1_init_m64;
512 	else
513 		phb->init_m64 = pnv_ioda2_init_m64;
514 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
515 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
516 }
517 
518 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
519 {
520 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
521 	struct pnv_ioda_pe *slave;
522 	s64 rc;
523 
524 	/* Fetch master PE */
525 	if (pe->flags & PNV_IODA_PE_SLAVE) {
526 		pe = pe->master;
527 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
528 			return;
529 
530 		pe_no = pe->pe_number;
531 	}
532 
533 	/* Freeze master PE */
534 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
535 				     pe_no,
536 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
537 	if (rc != OPAL_SUCCESS) {
538 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
539 			__func__, rc, phb->hose->global_number, pe_no);
540 		return;
541 	}
542 
543 	/* Freeze slave PEs */
544 	if (!(pe->flags & PNV_IODA_PE_MASTER))
545 		return;
546 
547 	list_for_each_entry(slave, &pe->slaves, list) {
548 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
549 					     slave->pe_number,
550 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
551 		if (rc != OPAL_SUCCESS)
552 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
553 				__func__, rc, phb->hose->global_number,
554 				slave->pe_number);
555 	}
556 }
557 
558 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
559 {
560 	struct pnv_ioda_pe *pe, *slave;
561 	s64 rc;
562 
563 	/* Find master PE */
564 	pe = &phb->ioda.pe_array[pe_no];
565 	if (pe->flags & PNV_IODA_PE_SLAVE) {
566 		pe = pe->master;
567 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
568 		pe_no = pe->pe_number;
569 	}
570 
571 	/* Clear frozen state for master PE */
572 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
573 	if (rc != OPAL_SUCCESS) {
574 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
575 			__func__, rc, opt, phb->hose->global_number, pe_no);
576 		return -EIO;
577 	}
578 
579 	if (!(pe->flags & PNV_IODA_PE_MASTER))
580 		return 0;
581 
582 	/* Clear frozen state for slave PEs */
583 	list_for_each_entry(slave, &pe->slaves, list) {
584 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
585 					     slave->pe_number,
586 					     opt);
587 		if (rc != OPAL_SUCCESS) {
588 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
589 				__func__, rc, opt, phb->hose->global_number,
590 				slave->pe_number);
591 			return -EIO;
592 		}
593 	}
594 
595 	return 0;
596 }
597 
598 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
599 {
600 	struct pnv_ioda_pe *slave, *pe;
601 	u8 fstate, state;
602 	__be16 pcierr;
603 	s64 rc;
604 
605 	/* Sanity check on PE number */
606 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
607 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
608 
609 	/*
610 	 * Fetch the master PE and the PE instance might be
611 	 * not initialized yet.
612 	 */
613 	pe = &phb->ioda.pe_array[pe_no];
614 	if (pe->flags & PNV_IODA_PE_SLAVE) {
615 		pe = pe->master;
616 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
617 		pe_no = pe->pe_number;
618 	}
619 
620 	/* Check the master PE */
621 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
622 					&state, &pcierr, NULL);
623 	if (rc != OPAL_SUCCESS) {
624 		pr_warn("%s: Failure %lld getting "
625 			"PHB#%x-PE#%x state\n",
626 			__func__, rc,
627 			phb->hose->global_number, pe_no);
628 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
629 	}
630 
631 	/* Check the slave PE */
632 	if (!(pe->flags & PNV_IODA_PE_MASTER))
633 		return state;
634 
635 	list_for_each_entry(slave, &pe->slaves, list) {
636 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
637 						slave->pe_number,
638 						&fstate,
639 						&pcierr,
640 						NULL);
641 		if (rc != OPAL_SUCCESS) {
642 			pr_warn("%s: Failure %lld getting "
643 				"PHB#%x-PE#%x state\n",
644 				__func__, rc,
645 				phb->hose->global_number, slave->pe_number);
646 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
647 		}
648 
649 		/*
650 		 * Override the result based on the ascending
651 		 * priority.
652 		 */
653 		if (fstate > state)
654 			state = fstate;
655 	}
656 
657 	return state;
658 }
659 
660 /* Currently those 2 are only used when MSIs are enabled, this will change
661  * but in the meantime, we need to protect them to avoid warnings
662  */
663 #ifdef CONFIG_PCI_MSI
664 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
665 {
666 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
667 	struct pnv_phb *phb = hose->private_data;
668 	struct pci_dn *pdn = pci_get_pdn(dev);
669 
670 	if (!pdn)
671 		return NULL;
672 	if (pdn->pe_number == IODA_INVALID_PE)
673 		return NULL;
674 	return &phb->ioda.pe_array[pdn->pe_number];
675 }
676 #endif /* CONFIG_PCI_MSI */
677 
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679 				  struct pnv_ioda_pe *parent,
680 				  struct pnv_ioda_pe *child,
681 				  bool is_add)
682 {
683 	const char *desc = is_add ? "adding" : "removing";
684 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685 			      OPAL_REMOVE_PE_FROM_DOMAIN;
686 	struct pnv_ioda_pe *slave;
687 	long rc;
688 
689 	/* Parent PE affects child PE */
690 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691 				child->pe_number, op);
692 	if (rc != OPAL_SUCCESS) {
693 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694 			rc, desc);
695 		return -ENXIO;
696 	}
697 
698 	if (!(child->flags & PNV_IODA_PE_MASTER))
699 		return 0;
700 
701 	/* Compound case: parent PE affects slave PEs */
702 	list_for_each_entry(slave, &child->slaves, list) {
703 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704 					slave->pe_number, op);
705 		if (rc != OPAL_SUCCESS) {
706 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707 				rc, desc);
708 			return -ENXIO;
709 		}
710 	}
711 
712 	return 0;
713 }
714 
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716 			      struct pnv_ioda_pe *pe,
717 			      bool is_add)
718 {
719 	struct pnv_ioda_pe *slave;
720 	struct pci_dev *pdev = NULL;
721 	int ret;
722 
723 	/*
724 	 * Clear PE frozen state. If it's master PE, we need
725 	 * clear slave PE frozen state as well.
726 	 */
727 	if (is_add) {
728 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730 		if (pe->flags & PNV_IODA_PE_MASTER) {
731 			list_for_each_entry(slave, &pe->slaves, list)
732 				opal_pci_eeh_freeze_clear(phb->opal_id,
733 							  slave->pe_number,
734 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735 		}
736 	}
737 
738 	/*
739 	 * Associate PE in PELT. We need add the PE into the
740 	 * corresponding PELT-V as well. Otherwise, the error
741 	 * originated from the PE might contribute to other
742 	 * PEs.
743 	 */
744 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745 	if (ret)
746 		return ret;
747 
748 	/* For compound PEs, any one affects all of them */
749 	if (pe->flags & PNV_IODA_PE_MASTER) {
750 		list_for_each_entry(slave, &pe->slaves, list) {
751 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752 			if (ret)
753 				return ret;
754 		}
755 	}
756 
757 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758 		pdev = pe->pbus->self;
759 	else if (pe->flags & PNV_IODA_PE_DEV)
760 		pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762 	else if (pe->flags & PNV_IODA_PE_VF)
763 		pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765 	while (pdev) {
766 		struct pci_dn *pdn = pci_get_pdn(pdev);
767 		struct pnv_ioda_pe *parent;
768 
769 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 			parent = &phb->ioda.pe_array[pdn->pe_number];
771 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772 			if (ret)
773 				return ret;
774 		}
775 
776 		pdev = pdev->bus->self;
777 	}
778 
779 	return 0;
780 }
781 
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784 	struct pci_dev *parent;
785 	uint8_t bcomp, dcomp, fcomp;
786 	int64_t rc;
787 	long rid_end, rid;
788 
789 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790 	if (pe->pbus) {
791 		int count;
792 
793 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795 		parent = pe->pbus->self;
796 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
797 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798 		else
799 			count = 1;
800 
801 		switch(count) {
802 		case  1: bcomp = OpalPciBusAll;         break;
803 		case  2: bcomp = OpalPciBus7Bits;       break;
804 		case  4: bcomp = OpalPciBus6Bits;       break;
805 		case  8: bcomp = OpalPciBus5Bits;       break;
806 		case 16: bcomp = OpalPciBus4Bits;       break;
807 		case 32: bcomp = OpalPciBus3Bits;       break;
808 		default:
809 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810 			        count);
811 			/* Do an exact match only */
812 			bcomp = OpalPciBusAll;
813 		}
814 		rid_end = pe->rid + (count << 8);
815 	} else {
816 #ifdef CONFIG_PCI_IOV
817 		if (pe->flags & PNV_IODA_PE_VF)
818 			parent = pe->parent_dev;
819 		else
820 #endif
821 			parent = pe->pdev->bus->self;
822 		bcomp = OpalPciBusAll;
823 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825 		rid_end = pe->rid + 1;
826 	}
827 
828 	/* Clear the reverse map */
829 	for (rid = pe->rid; rid < rid_end; rid++)
830 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831 
832 	/* Release from all parents PELT-V */
833 	while (parent) {
834 		struct pci_dn *pdn = pci_get_pdn(parent);
835 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838 			/* XXX What to do in case of error ? */
839 		}
840 		parent = parent->bus->self;
841 	}
842 
843 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845 
846 	/* Disassociate PE in PELT */
847 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849 	if (rc)
850 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
851 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853 	if (rc)
854 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855 
856 	pe->pbus = NULL;
857 	pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859 	pe->parent_dev = NULL;
860 #endif
861 
862 	return 0;
863 }
864 
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867 	struct pci_dev *parent;
868 	uint8_t bcomp, dcomp, fcomp;
869 	long rc, rid_end, rid;
870 
871 	/* Bus validation ? */
872 	if (pe->pbus) {
873 		int count;
874 
875 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877 		parent = pe->pbus->self;
878 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
879 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880 		else
881 			count = 1;
882 
883 		switch(count) {
884 		case  1: bcomp = OpalPciBusAll;		break;
885 		case  2: bcomp = OpalPciBus7Bits;	break;
886 		case  4: bcomp = OpalPciBus6Bits;	break;
887 		case  8: bcomp = OpalPciBus5Bits;	break;
888 		case 16: bcomp = OpalPciBus4Bits;	break;
889 		case 32: bcomp = OpalPciBus3Bits;	break;
890 		default:
891 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892 			        count);
893 			/* Do an exact match only */
894 			bcomp = OpalPciBusAll;
895 		}
896 		rid_end = pe->rid + (count << 8);
897 	} else {
898 #ifdef CONFIG_PCI_IOV
899 		if (pe->flags & PNV_IODA_PE_VF)
900 			parent = pe->parent_dev;
901 		else
902 #endif /* CONFIG_PCI_IOV */
903 			parent = pe->pdev->bus->self;
904 		bcomp = OpalPciBusAll;
905 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907 		rid_end = pe->rid + 1;
908 	}
909 
910 	/*
911 	 * Associate PE in PELT. We need add the PE into the
912 	 * corresponding PELT-V as well. Otherwise, the error
913 	 * originated from the PE might contribute to other
914 	 * PEs.
915 	 */
916 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
918 	if (rc) {
919 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920 		return -ENXIO;
921 	}
922 
923 	/*
924 	 * Configure PELTV. NPUs don't have a PELTV table so skip
925 	 * configuration on them.
926 	 */
927 	if (phb->type != PNV_PHB_NPU)
928 		pnv_ioda_set_peltv(phb, pe, true);
929 
930 	/* Setup reverse map */
931 	for (rid = pe->rid; rid < rid_end; rid++)
932 		phb->ioda.pe_rmap[rid] = pe->pe_number;
933 
934 	/* Setup one MVTs on IODA1 */
935 	if (phb->type != PNV_PHB_IODA1) {
936 		pe->mve_number = 0;
937 		goto out;
938 	}
939 
940 	pe->mve_number = pe->pe_number;
941 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942 	if (rc != OPAL_SUCCESS) {
943 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944 		       rc, pe->mve_number);
945 		pe->mve_number = -1;
946 	} else {
947 		rc = opal_pci_set_mve_enable(phb->opal_id,
948 					     pe->mve_number, OPAL_ENABLE_MVE);
949 		if (rc) {
950 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951 			       rc, pe->mve_number);
952 			pe->mve_number = -1;
953 		}
954 	}
955 
956 out:
957 	return 0;
958 }
959 
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963 	struct pci_dn *pdn = pci_get_pdn(dev);
964 	int i;
965 	struct resource *res, res2;
966 	resource_size_t size;
967 	u16 num_vfs;
968 
969 	if (!dev->is_physfn)
970 		return -EINVAL;
971 
972 	/*
973 	 * "offset" is in VFs.  The M64 windows are sized so that when they
974 	 * are segmented, each segment is the same size as the IOV BAR.
975 	 * Each segment is in a separate PE, and the high order bits of the
976 	 * address are the PE number.  Therefore, each VF's BAR is in a
977 	 * separate PE, and changing the IOV BAR start address changes the
978 	 * range of PEs the VFs are in.
979 	 */
980 	num_vfs = pdn->num_vfs;
981 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982 		res = &dev->resource[i + PCI_IOV_RESOURCES];
983 		if (!res->flags || !res->parent)
984 			continue;
985 
986 		/*
987 		 * The actual IOV BAR range is determined by the start address
988 		 * and the actual size for num_vfs VFs BAR.  This check is to
989 		 * make sure that after shifting, the range will not overlap
990 		 * with another device.
991 		 */
992 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993 		res2.flags = res->flags;
994 		res2.start = res->start + (size * offset);
995 		res2.end = res2.start + (size * num_vfs) - 1;
996 
997 		if (res2.end > res->end) {
998 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999 				i, &res2, res, num_vfs, offset);
1000 			return -EBUSY;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * After doing so, there would be a "hole" in the /proc/iomem when
1006 	 * offset is a positive value. It looks like the device return some
1007 	 * mmio back to the system, which actually no one could use it.
1008 	 */
1009 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1010 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1011 		if (!res->flags || !res->parent)
1012 			continue;
1013 
1014 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1015 		res2 = *res;
1016 		res->start += size * offset;
1017 
1018 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1019 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1020 			 num_vfs, offset);
1021 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1022 	}
1023 	return 0;
1024 }
1025 #endif /* CONFIG_PCI_IOV */
1026 
1027 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1028 {
1029 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1030 	struct pnv_phb *phb = hose->private_data;
1031 	struct pci_dn *pdn = pci_get_pdn(dev);
1032 	struct pnv_ioda_pe *pe;
1033 
1034 	if (!pdn) {
1035 		pr_err("%s: Device tree node not associated properly\n",
1036 			   pci_name(dev));
1037 		return NULL;
1038 	}
1039 	if (pdn->pe_number != IODA_INVALID_PE)
1040 		return NULL;
1041 
1042 	pe = pnv_ioda_alloc_pe(phb);
1043 	if (!pe) {
1044 		pr_warning("%s: Not enough PE# available, disabling device\n",
1045 			   pci_name(dev));
1046 		return NULL;
1047 	}
1048 
1049 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1050 	 * pointer in the PE data structure, both should be destroyed at the
1051 	 * same time. However, this needs to be looked at more closely again
1052 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1053 	 *
1054 	 * At some point we want to remove the PDN completely anyways
1055 	 */
1056 	pci_dev_get(dev);
1057 	pdn->pcidev = dev;
1058 	pdn->pe_number = pe->pe_number;
1059 	pe->flags = PNV_IODA_PE_DEV;
1060 	pe->pdev = dev;
1061 	pe->pbus = NULL;
1062 	pe->mve_number = -1;
1063 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1064 
1065 	pe_info(pe, "Associated device to PE\n");
1066 
1067 	if (pnv_ioda_configure_pe(phb, pe)) {
1068 		/* XXX What do we do here ? */
1069 		pnv_ioda_free_pe(pe);
1070 		pdn->pe_number = IODA_INVALID_PE;
1071 		pe->pdev = NULL;
1072 		pci_dev_put(dev);
1073 		return NULL;
1074 	}
1075 
1076 	/* Put PE to the list */
1077 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1078 
1079 	return pe;
1080 }
1081 
1082 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1083 {
1084 	struct pci_dev *dev;
1085 
1086 	list_for_each_entry(dev, &bus->devices, bus_list) {
1087 		struct pci_dn *pdn = pci_get_pdn(dev);
1088 
1089 		if (pdn == NULL) {
1090 			pr_warn("%s: No device node associated with device !\n",
1091 				pci_name(dev));
1092 			continue;
1093 		}
1094 
1095 		/*
1096 		 * In partial hotplug case, the PCI device might be still
1097 		 * associated with the PE and needn't attach it to the PE
1098 		 * again.
1099 		 */
1100 		if (pdn->pe_number != IODA_INVALID_PE)
1101 			continue;
1102 
1103 		pe->device_count++;
1104 		pdn->pcidev = dev;
1105 		pdn->pe_number = pe->pe_number;
1106 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1107 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1108 	}
1109 }
1110 
1111 /*
1112  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1113  * single PCI bus. Another one that contains the primary PCI bus and its
1114  * subordinate PCI devices and buses. The second type of PE is normally
1115  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1116  */
1117 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1118 {
1119 	struct pci_controller *hose = pci_bus_to_host(bus);
1120 	struct pnv_phb *phb = hose->private_data;
1121 	struct pnv_ioda_pe *pe = NULL;
1122 	unsigned int pe_num;
1123 
1124 	/*
1125 	 * In partial hotplug case, the PE instance might be still alive.
1126 	 * We should reuse it instead of allocating a new one.
1127 	 */
1128 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1129 	if (pe_num != IODA_INVALID_PE) {
1130 		pe = &phb->ioda.pe_array[pe_num];
1131 		pnv_ioda_setup_same_PE(bus, pe);
1132 		return NULL;
1133 	}
1134 
1135 	/* PE number for root bus should have been reserved */
1136 	if (pci_is_root_bus(bus) &&
1137 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1138 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1139 
1140 	/* Check if PE is determined by M64 */
1141 	if (!pe && phb->pick_m64_pe)
1142 		pe = phb->pick_m64_pe(bus, all);
1143 
1144 	/* The PE number isn't pinned by M64 */
1145 	if (!pe)
1146 		pe = pnv_ioda_alloc_pe(phb);
1147 
1148 	if (!pe) {
1149 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1150 			__func__, pci_domain_nr(bus), bus->number);
1151 		return NULL;
1152 	}
1153 
1154 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1155 	pe->pbus = bus;
1156 	pe->pdev = NULL;
1157 	pe->mve_number = -1;
1158 	pe->rid = bus->busn_res.start << 8;
1159 
1160 	if (all)
1161 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1162 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1163 	else
1164 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1165 			bus->busn_res.start, pe->pe_number);
1166 
1167 	if (pnv_ioda_configure_pe(phb, pe)) {
1168 		/* XXX What do we do here ? */
1169 		pnv_ioda_free_pe(pe);
1170 		pe->pbus = NULL;
1171 		return NULL;
1172 	}
1173 
1174 	/* Associate it with all child devices */
1175 	pnv_ioda_setup_same_PE(bus, pe);
1176 
1177 	/* Put PE to the list */
1178 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1179 
1180 	return pe;
1181 }
1182 
1183 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1184 {
1185 	int pe_num, found_pe = false, rc;
1186 	long rid;
1187 	struct pnv_ioda_pe *pe;
1188 	struct pci_dev *gpu_pdev;
1189 	struct pci_dn *npu_pdn;
1190 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1191 	struct pnv_phb *phb = hose->private_data;
1192 
1193 	/*
1194 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1195 	 * error handling. This means we only have three PEs remaining
1196 	 * which need to be assigned to four links, implying some
1197 	 * links must share PEs.
1198 	 *
1199 	 * To achieve this we assign PEs such that NPUs linking the
1200 	 * same GPU get assigned the same PE.
1201 	 */
1202 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1203 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1204 		pe = &phb->ioda.pe_array[pe_num];
1205 		if (!pe->pdev)
1206 			continue;
1207 
1208 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1209 			/*
1210 			 * This device has the same peer GPU so should
1211 			 * be assigned the same PE as the existing
1212 			 * peer NPU.
1213 			 */
1214 			dev_info(&npu_pdev->dev,
1215 				"Associating to existing PE %x\n", pe_num);
1216 			pci_dev_get(npu_pdev);
1217 			npu_pdn = pci_get_pdn(npu_pdev);
1218 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1219 			npu_pdn->pcidev = npu_pdev;
1220 			npu_pdn->pe_number = pe_num;
1221 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1222 
1223 			/* Map the PE to this link */
1224 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1225 					OpalPciBusAll,
1226 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1227 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1228 					OPAL_MAP_PE);
1229 			WARN_ON(rc != OPAL_SUCCESS);
1230 			found_pe = true;
1231 			break;
1232 		}
1233 	}
1234 
1235 	if (!found_pe)
1236 		/*
1237 		 * Could not find an existing PE so allocate a new
1238 		 * one.
1239 		 */
1240 		return pnv_ioda_setup_dev_PE(npu_pdev);
1241 	else
1242 		return pe;
1243 }
1244 
1245 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1246 {
1247 	struct pci_dev *pdev;
1248 
1249 	list_for_each_entry(pdev, &bus->devices, bus_list)
1250 		pnv_ioda_setup_npu_PE(pdev);
1251 }
1252 
1253 static void pnv_pci_ioda_setup_PEs(void)
1254 {
1255 	struct pci_controller *hose, *tmp;
1256 	struct pnv_phb *phb;
1257 
1258 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1259 		phb = hose->private_data;
1260 		if (phb->type == PNV_PHB_NPU) {
1261 			/* PE#0 is needed for error reporting */
1262 			pnv_ioda_reserve_pe(phb, 0);
1263 			pnv_ioda_setup_npu_PEs(hose->bus);
1264 			if (phb->model == PNV_PHB_MODEL_NPU2)
1265 				pnv_npu2_init(phb);
1266 		}
1267 	}
1268 }
1269 
1270 #ifdef CONFIG_PCI_IOV
1271 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1272 {
1273 	struct pci_bus        *bus;
1274 	struct pci_controller *hose;
1275 	struct pnv_phb        *phb;
1276 	struct pci_dn         *pdn;
1277 	int                    i, j;
1278 	int                    m64_bars;
1279 
1280 	bus = pdev->bus;
1281 	hose = pci_bus_to_host(bus);
1282 	phb = hose->private_data;
1283 	pdn = pci_get_pdn(pdev);
1284 
1285 	if (pdn->m64_single_mode)
1286 		m64_bars = num_vfs;
1287 	else
1288 		m64_bars = 1;
1289 
1290 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1291 		for (j = 0; j < m64_bars; j++) {
1292 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1293 				continue;
1294 			opal_pci_phb_mmio_enable(phb->opal_id,
1295 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1296 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1297 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1298 		}
1299 
1300 	kfree(pdn->m64_map);
1301 	return 0;
1302 }
1303 
1304 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1305 {
1306 	struct pci_bus        *bus;
1307 	struct pci_controller *hose;
1308 	struct pnv_phb        *phb;
1309 	struct pci_dn         *pdn;
1310 	unsigned int           win;
1311 	struct resource       *res;
1312 	int                    i, j;
1313 	int64_t                rc;
1314 	int                    total_vfs;
1315 	resource_size_t        size, start;
1316 	int                    pe_num;
1317 	int                    m64_bars;
1318 
1319 	bus = pdev->bus;
1320 	hose = pci_bus_to_host(bus);
1321 	phb = hose->private_data;
1322 	pdn = pci_get_pdn(pdev);
1323 	total_vfs = pci_sriov_get_totalvfs(pdev);
1324 
1325 	if (pdn->m64_single_mode)
1326 		m64_bars = num_vfs;
1327 	else
1328 		m64_bars = 1;
1329 
1330 	pdn->m64_map = kmalloc_array(m64_bars,
1331 				     sizeof(*pdn->m64_map),
1332 				     GFP_KERNEL);
1333 	if (!pdn->m64_map)
1334 		return -ENOMEM;
1335 	/* Initialize the m64_map to IODA_INVALID_M64 */
1336 	for (i = 0; i < m64_bars ; i++)
1337 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1338 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1339 
1340 
1341 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1342 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1343 		if (!res->flags || !res->parent)
1344 			continue;
1345 
1346 		for (j = 0; j < m64_bars; j++) {
1347 			do {
1348 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1349 						phb->ioda.m64_bar_idx + 1, 0);
1350 
1351 				if (win >= phb->ioda.m64_bar_idx + 1)
1352 					goto m64_failed;
1353 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1354 
1355 			pdn->m64_map[j][i] = win;
1356 
1357 			if (pdn->m64_single_mode) {
1358 				size = pci_iov_resource_size(pdev,
1359 							PCI_IOV_RESOURCES + i);
1360 				start = res->start + size * j;
1361 			} else {
1362 				size = resource_size(res);
1363 				start = res->start;
1364 			}
1365 
1366 			/* Map the M64 here */
1367 			if (pdn->m64_single_mode) {
1368 				pe_num = pdn->pe_num_map[j];
1369 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1370 						pe_num, OPAL_M64_WINDOW_TYPE,
1371 						pdn->m64_map[j][i], 0);
1372 			}
1373 
1374 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1375 						 OPAL_M64_WINDOW_TYPE,
1376 						 pdn->m64_map[j][i],
1377 						 start,
1378 						 0, /* unused */
1379 						 size);
1380 
1381 
1382 			if (rc != OPAL_SUCCESS) {
1383 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1384 					win, rc);
1385 				goto m64_failed;
1386 			}
1387 
1388 			if (pdn->m64_single_mode)
1389 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1390 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1391 			else
1392 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1393 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1394 
1395 			if (rc != OPAL_SUCCESS) {
1396 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1397 					win, rc);
1398 				goto m64_failed;
1399 			}
1400 		}
1401 	}
1402 	return 0;
1403 
1404 m64_failed:
1405 	pnv_pci_vf_release_m64(pdev, num_vfs);
1406 	return -EBUSY;
1407 }
1408 
1409 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1410 		int num);
1411 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1412 
1413 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1414 {
1415 	struct iommu_table    *tbl;
1416 	int64_t               rc;
1417 
1418 	tbl = pe->table_group.tables[0];
1419 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1420 	if (rc)
1421 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1422 
1423 	pnv_pci_ioda2_set_bypass(pe, false);
1424 	if (pe->table_group.group) {
1425 		iommu_group_put(pe->table_group.group);
1426 		BUG_ON(pe->table_group.group);
1427 	}
1428 	iommu_tce_table_put(tbl);
1429 }
1430 
1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1432 {
1433 	struct pci_bus        *bus;
1434 	struct pci_controller *hose;
1435 	struct pnv_phb        *phb;
1436 	struct pnv_ioda_pe    *pe, *pe_n;
1437 	struct pci_dn         *pdn;
1438 
1439 	bus = pdev->bus;
1440 	hose = pci_bus_to_host(bus);
1441 	phb = hose->private_data;
1442 	pdn = pci_get_pdn(pdev);
1443 
1444 	if (!pdev->is_physfn)
1445 		return;
1446 
1447 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1448 		if (pe->parent_dev != pdev)
1449 			continue;
1450 
1451 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1452 
1453 		/* Remove from list */
1454 		mutex_lock(&phb->ioda.pe_list_mutex);
1455 		list_del(&pe->list);
1456 		mutex_unlock(&phb->ioda.pe_list_mutex);
1457 
1458 		pnv_ioda_deconfigure_pe(phb, pe);
1459 
1460 		pnv_ioda_free_pe(pe);
1461 	}
1462 }
1463 
1464 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1465 {
1466 	struct pci_bus        *bus;
1467 	struct pci_controller *hose;
1468 	struct pnv_phb        *phb;
1469 	struct pnv_ioda_pe    *pe;
1470 	struct pci_dn         *pdn;
1471 	u16                    num_vfs, i;
1472 
1473 	bus = pdev->bus;
1474 	hose = pci_bus_to_host(bus);
1475 	phb = hose->private_data;
1476 	pdn = pci_get_pdn(pdev);
1477 	num_vfs = pdn->num_vfs;
1478 
1479 	/* Release VF PEs */
1480 	pnv_ioda_release_vf_PE(pdev);
1481 
1482 	if (phb->type == PNV_PHB_IODA2) {
1483 		if (!pdn->m64_single_mode)
1484 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1485 
1486 		/* Release M64 windows */
1487 		pnv_pci_vf_release_m64(pdev, num_vfs);
1488 
1489 		/* Release PE numbers */
1490 		if (pdn->m64_single_mode) {
1491 			for (i = 0; i < num_vfs; i++) {
1492 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1493 					continue;
1494 
1495 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1496 				pnv_ioda_free_pe(pe);
1497 			}
1498 		} else
1499 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1500 		/* Releasing pe_num_map */
1501 		kfree(pdn->pe_num_map);
1502 	}
1503 }
1504 
1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1506 				       struct pnv_ioda_pe *pe);
1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509 	struct pci_bus        *bus;
1510 	struct pci_controller *hose;
1511 	struct pnv_phb        *phb;
1512 	struct pnv_ioda_pe    *pe;
1513 	int                    pe_num;
1514 	u16                    vf_index;
1515 	struct pci_dn         *pdn;
1516 
1517 	bus = pdev->bus;
1518 	hose = pci_bus_to_host(bus);
1519 	phb = hose->private_data;
1520 	pdn = pci_get_pdn(pdev);
1521 
1522 	if (!pdev->is_physfn)
1523 		return;
1524 
1525 	/* Reserve PE for each VF */
1526 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1527 		if (pdn->m64_single_mode)
1528 			pe_num = pdn->pe_num_map[vf_index];
1529 		else
1530 			pe_num = *pdn->pe_num_map + vf_index;
1531 
1532 		pe = &phb->ioda.pe_array[pe_num];
1533 		pe->pe_number = pe_num;
1534 		pe->phb = phb;
1535 		pe->flags = PNV_IODA_PE_VF;
1536 		pe->pbus = NULL;
1537 		pe->parent_dev = pdev;
1538 		pe->mve_number = -1;
1539 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1540 			   pci_iov_virtfn_devfn(pdev, vf_index);
1541 
1542 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1543 			hose->global_number, pdev->bus->number,
1544 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1545 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1546 
1547 		if (pnv_ioda_configure_pe(phb, pe)) {
1548 			/* XXX What do we do here ? */
1549 			pnv_ioda_free_pe(pe);
1550 			pe->pdev = NULL;
1551 			continue;
1552 		}
1553 
1554 		/* Put PE to the list */
1555 		mutex_lock(&phb->ioda.pe_list_mutex);
1556 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1557 		mutex_unlock(&phb->ioda.pe_list_mutex);
1558 
1559 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1560 	}
1561 }
1562 
1563 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1564 {
1565 	struct pci_bus        *bus;
1566 	struct pci_controller *hose;
1567 	struct pnv_phb        *phb;
1568 	struct pnv_ioda_pe    *pe;
1569 	struct pci_dn         *pdn;
1570 	int                    ret;
1571 	u16                    i;
1572 
1573 	bus = pdev->bus;
1574 	hose = pci_bus_to_host(bus);
1575 	phb = hose->private_data;
1576 	pdn = pci_get_pdn(pdev);
1577 
1578 	if (phb->type == PNV_PHB_IODA2) {
1579 		if (!pdn->vfs_expanded) {
1580 			dev_info(&pdev->dev, "don't support this SRIOV device"
1581 				" with non 64bit-prefetchable IOV BAR\n");
1582 			return -ENOSPC;
1583 		}
1584 
1585 		/*
1586 		 * When M64 BARs functions in Single PE mode, the number of VFs
1587 		 * could be enabled must be less than the number of M64 BARs.
1588 		 */
1589 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1590 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1591 			return -EBUSY;
1592 		}
1593 
1594 		/* Allocating pe_num_map */
1595 		if (pdn->m64_single_mode)
1596 			pdn->pe_num_map = kmalloc_array(num_vfs,
1597 							sizeof(*pdn->pe_num_map),
1598 							GFP_KERNEL);
1599 		else
1600 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1601 
1602 		if (!pdn->pe_num_map)
1603 			return -ENOMEM;
1604 
1605 		if (pdn->m64_single_mode)
1606 			for (i = 0; i < num_vfs; i++)
1607 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1608 
1609 		/* Calculate available PE for required VFs */
1610 		if (pdn->m64_single_mode) {
1611 			for (i = 0; i < num_vfs; i++) {
1612 				pe = pnv_ioda_alloc_pe(phb);
1613 				if (!pe) {
1614 					ret = -EBUSY;
1615 					goto m64_failed;
1616 				}
1617 
1618 				pdn->pe_num_map[i] = pe->pe_number;
1619 			}
1620 		} else {
1621 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1622 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1623 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1624 				0, num_vfs, 0);
1625 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1626 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1627 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1628 				kfree(pdn->pe_num_map);
1629 				return -EBUSY;
1630 			}
1631 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1632 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1633 		}
1634 		pdn->num_vfs = num_vfs;
1635 
1636 		/* Assign M64 window accordingly */
1637 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1638 		if (ret) {
1639 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1640 			goto m64_failed;
1641 		}
1642 
1643 		/*
1644 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1645 		 * the IOV BAR according to the PE# allocated to the VFs.
1646 		 * Otherwise, the PE# for the VF will conflict with others.
1647 		 */
1648 		if (!pdn->m64_single_mode) {
1649 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1650 			if (ret)
1651 				goto m64_failed;
1652 		}
1653 	}
1654 
1655 	/* Setup VF PEs */
1656 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1657 
1658 	return 0;
1659 
1660 m64_failed:
1661 	if (pdn->m64_single_mode) {
1662 		for (i = 0; i < num_vfs; i++) {
1663 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1664 				continue;
1665 
1666 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1667 			pnv_ioda_free_pe(pe);
1668 		}
1669 	} else
1670 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1671 
1672 	/* Releasing pe_num_map */
1673 	kfree(pdn->pe_num_map);
1674 
1675 	return ret;
1676 }
1677 
1678 int pcibios_sriov_disable(struct pci_dev *pdev)
1679 {
1680 	pnv_pci_sriov_disable(pdev);
1681 
1682 	/* Release PCI data */
1683 	remove_dev_pci_data(pdev);
1684 	return 0;
1685 }
1686 
1687 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1688 {
1689 	/* Allocate PCI data */
1690 	add_dev_pci_data(pdev);
1691 
1692 	return pnv_pci_sriov_enable(pdev, num_vfs);
1693 }
1694 #endif /* CONFIG_PCI_IOV */
1695 
1696 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1697 {
1698 	struct pci_dn *pdn = pci_get_pdn(pdev);
1699 	struct pnv_ioda_pe *pe;
1700 
1701 	/*
1702 	 * The function can be called while the PE#
1703 	 * hasn't been assigned. Do nothing for the
1704 	 * case.
1705 	 */
1706 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1707 		return;
1708 
1709 	pe = &phb->ioda.pe_array[pdn->pe_number];
1710 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1711 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1712 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1713 	/*
1714 	 * Note: iommu_add_device() will fail here as
1715 	 * for physical PE: the device is already added by now;
1716 	 * for virtual PE: sysfs entries are not ready yet and
1717 	 * tce_iommu_bus_notifier will add the device to a group later.
1718 	 */
1719 }
1720 
1721 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1722 {
1723 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1724 	struct pnv_phb *phb = hose->private_data;
1725 	struct pci_dn *pdn = pci_get_pdn(pdev);
1726 	struct pnv_ioda_pe *pe;
1727 	uint64_t top;
1728 	bool bypass = false;
1729 
1730 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1731 		return -ENODEV;;
1732 
1733 	pe = &phb->ioda.pe_array[pdn->pe_number];
1734 	if (pe->tce_bypass_enabled) {
1735 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1736 		bypass = (dma_mask >= top);
1737 	}
1738 
1739 	if (bypass) {
1740 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1741 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1742 	} else {
1743 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1744 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1745 	}
1746 	*pdev->dev.dma_mask = dma_mask;
1747 
1748 	/* Update peer npu devices */
1749 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1750 
1751 	return 0;
1752 }
1753 
1754 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1755 {
1756 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1757 	struct pnv_phb *phb = hose->private_data;
1758 	struct pci_dn *pdn = pci_get_pdn(pdev);
1759 	struct pnv_ioda_pe *pe;
1760 	u64 end, mask;
1761 
1762 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1763 		return 0;
1764 
1765 	pe = &phb->ioda.pe_array[pdn->pe_number];
1766 	if (!pe->tce_bypass_enabled)
1767 		return __dma_get_required_mask(&pdev->dev);
1768 
1769 
1770 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1771 	mask = 1ULL << (fls64(end) - 1);
1772 	mask += mask - 1;
1773 
1774 	return mask;
1775 }
1776 
1777 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1778 				   struct pci_bus *bus,
1779 				   bool add_to_group)
1780 {
1781 	struct pci_dev *dev;
1782 
1783 	list_for_each_entry(dev, &bus->devices, bus_list) {
1784 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1785 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1786 		if (add_to_group)
1787 			iommu_add_device(&dev->dev);
1788 
1789 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1790 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1791 					add_to_group);
1792 	}
1793 }
1794 
1795 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1796 						     bool real_mode)
1797 {
1798 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1799 		(phb->regs + 0x210);
1800 }
1801 
1802 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1803 		unsigned long index, unsigned long npages, bool rm)
1804 {
1805 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1806 			&tbl->it_group_list, struct iommu_table_group_link,
1807 			next);
1808 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1809 			struct pnv_ioda_pe, table_group);
1810 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1811 	unsigned long start, end, inc;
1812 
1813 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1814 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1815 			npages - 1);
1816 
1817 	/* p7ioc-style invalidation, 2 TCEs per write */
1818 	start |= (1ull << 63);
1819 	end |= (1ull << 63);
1820 	inc = 16;
1821         end |= inc - 1;	/* round up end to be different than start */
1822 
1823         mb(); /* Ensure above stores are visible */
1824         while (start <= end) {
1825 		if (rm)
1826 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1827 		else
1828 			__raw_writeq(cpu_to_be64(start), invalidate);
1829                 start += inc;
1830         }
1831 
1832 	/*
1833 	 * The iommu layer will do another mb() for us on build()
1834 	 * and we don't care on free()
1835 	 */
1836 }
1837 
1838 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1839 		long npages, unsigned long uaddr,
1840 		enum dma_data_direction direction,
1841 		unsigned long attrs)
1842 {
1843 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1844 			attrs);
1845 
1846 	if (!ret)
1847 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1848 
1849 	return ret;
1850 }
1851 
1852 #ifdef CONFIG_IOMMU_API
1853 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1854 		unsigned long *hpa, enum dma_data_direction *direction)
1855 {
1856 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1857 
1858 	if (!ret)
1859 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1860 
1861 	return ret;
1862 }
1863 
1864 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
1865 		unsigned long *hpa, enum dma_data_direction *direction)
1866 {
1867 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1868 
1869 	if (!ret)
1870 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
1871 
1872 	return ret;
1873 }
1874 #endif
1875 
1876 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1877 		long npages)
1878 {
1879 	pnv_tce_free(tbl, index, npages);
1880 
1881 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1882 }
1883 
1884 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1885 	.set = pnv_ioda1_tce_build,
1886 #ifdef CONFIG_IOMMU_API
1887 	.exchange = pnv_ioda1_tce_xchg,
1888 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
1889 #endif
1890 	.clear = pnv_ioda1_tce_free,
1891 	.get = pnv_tce_get,
1892 };
1893 
1894 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1895 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1896 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1897 
1898 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1899 {
1900 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1901 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1902 
1903 	mb(); /* Ensure previous TCE table stores are visible */
1904 	if (rm)
1905 		__raw_rm_writeq(cpu_to_be64(val), invalidate);
1906 	else
1907 		__raw_writeq(cpu_to_be64(val), invalidate);
1908 }
1909 
1910 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1911 {
1912 	/* 01xb - invalidate TCEs that match the specified PE# */
1913 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1914 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1915 
1916 	mb(); /* Ensure above stores are visible */
1917 	__raw_writeq(cpu_to_be64(val), invalidate);
1918 }
1919 
1920 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1921 					unsigned shift, unsigned long index,
1922 					unsigned long npages)
1923 {
1924 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1925 	unsigned long start, end, inc;
1926 
1927 	/* We'll invalidate DMA address in PE scope */
1928 	start = PHB3_TCE_KILL_INVAL_ONE;
1929 	start |= (pe->pe_number & 0xFF);
1930 	end = start;
1931 
1932 	/* Figure out the start, end and step */
1933 	start |= (index << shift);
1934 	end |= ((index + npages - 1) << shift);
1935 	inc = (0x1ull << shift);
1936 	mb();
1937 
1938 	while (start <= end) {
1939 		if (rm)
1940 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1941 		else
1942 			__raw_writeq(cpu_to_be64(start), invalidate);
1943 		start += inc;
1944 	}
1945 }
1946 
1947 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1948 {
1949 	struct pnv_phb *phb = pe->phb;
1950 
1951 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1952 		pnv_pci_phb3_tce_invalidate_pe(pe);
1953 	else
1954 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1955 				  pe->pe_number, 0, 0, 0);
1956 }
1957 
1958 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1959 		unsigned long index, unsigned long npages, bool rm)
1960 {
1961 	struct iommu_table_group_link *tgl;
1962 
1963 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1964 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1965 				struct pnv_ioda_pe, table_group);
1966 		struct pnv_phb *phb = pe->phb;
1967 		unsigned int shift = tbl->it_page_shift;
1968 
1969 		/*
1970 		 * NVLink1 can use the TCE kill register directly as
1971 		 * it's the same as PHB3. NVLink2 is different and
1972 		 * should go via the OPAL call.
1973 		 */
1974 		if (phb->model == PNV_PHB_MODEL_NPU) {
1975 			/*
1976 			 * The NVLink hardware does not support TCE kill
1977 			 * per TCE entry so we have to invalidate
1978 			 * the entire cache for it.
1979 			 */
1980 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1981 			continue;
1982 		}
1983 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1984 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1985 						    index, npages);
1986 		else
1987 			opal_pci_tce_kill(phb->opal_id,
1988 					  OPAL_PCI_TCE_KILL_PAGES,
1989 					  pe->pe_number, 1u << shift,
1990 					  index << shift, npages);
1991 	}
1992 }
1993 
1994 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1995 {
1996 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
1997 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1998 	else
1999 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2000 }
2001 
2002 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2003 		long npages, unsigned long uaddr,
2004 		enum dma_data_direction direction,
2005 		unsigned long attrs)
2006 {
2007 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2008 			attrs);
2009 
2010 	if (!ret)
2011 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2012 
2013 	return ret;
2014 }
2015 
2016 #ifdef CONFIG_IOMMU_API
2017 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2018 		unsigned long *hpa, enum dma_data_direction *direction)
2019 {
2020 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2021 
2022 	if (!ret)
2023 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2024 
2025 	return ret;
2026 }
2027 
2028 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2029 		unsigned long *hpa, enum dma_data_direction *direction)
2030 {
2031 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2032 
2033 	if (!ret)
2034 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2035 
2036 	return ret;
2037 }
2038 #endif
2039 
2040 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2041 		long npages)
2042 {
2043 	pnv_tce_free(tbl, index, npages);
2044 
2045 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2046 }
2047 
2048 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2049 {
2050 	pnv_pci_ioda2_table_free_pages(tbl);
2051 }
2052 
2053 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2054 	.set = pnv_ioda2_tce_build,
2055 #ifdef CONFIG_IOMMU_API
2056 	.exchange = pnv_ioda2_tce_xchg,
2057 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2058 #endif
2059 	.clear = pnv_ioda2_tce_free,
2060 	.get = pnv_tce_get,
2061 	.free = pnv_ioda2_table_free,
2062 };
2063 
2064 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2065 {
2066 	unsigned int *weight = (unsigned int *)data;
2067 
2068 	/* This is quite simplistic. The "base" weight of a device
2069 	 * is 10. 0 means no DMA is to be accounted for it.
2070 	 */
2071 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2072 		return 0;
2073 
2074 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2075 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2076 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2077 		*weight += 3;
2078 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2079 		*weight += 15;
2080 	else
2081 		*weight += 10;
2082 
2083 	return 0;
2084 }
2085 
2086 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2087 {
2088 	unsigned int weight = 0;
2089 
2090 	/* SRIOV VF has same DMA32 weight as its PF */
2091 #ifdef CONFIG_PCI_IOV
2092 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2093 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2094 		return weight;
2095 	}
2096 #endif
2097 
2098 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2099 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2100 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2101 		struct pci_dev *pdev;
2102 
2103 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2104 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2105 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2106 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2107 	}
2108 
2109 	return weight;
2110 }
2111 
2112 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2113 				       struct pnv_ioda_pe *pe)
2114 {
2115 
2116 	struct page *tce_mem = NULL;
2117 	struct iommu_table *tbl;
2118 	unsigned int weight, total_weight = 0;
2119 	unsigned int tce32_segsz, base, segs, avail, i;
2120 	int64_t rc;
2121 	void *addr;
2122 
2123 	/* XXX FIXME: Handle 64-bit only DMA devices */
2124 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2125 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2126 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2127 	if (!weight)
2128 		return;
2129 
2130 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2131 		     &total_weight);
2132 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2133 	if (!segs)
2134 		segs = 1;
2135 
2136 	/*
2137 	 * Allocate contiguous DMA32 segments. We begin with the expected
2138 	 * number of segments. With one more attempt, the number of DMA32
2139 	 * segments to be allocated is decreased by one until one segment
2140 	 * is allocated successfully.
2141 	 */
2142 	do {
2143 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2144 			for (avail = 0, i = base; i < base + segs; i++) {
2145 				if (phb->ioda.dma32_segmap[i] ==
2146 				    IODA_INVALID_PE)
2147 					avail++;
2148 			}
2149 
2150 			if (avail == segs)
2151 				goto found;
2152 		}
2153 	} while (--segs);
2154 
2155 	if (!segs) {
2156 		pe_warn(pe, "No available DMA32 segments\n");
2157 		return;
2158 	}
2159 
2160 found:
2161 	tbl = pnv_pci_table_alloc(phb->hose->node);
2162 	if (WARN_ON(!tbl))
2163 		return;
2164 
2165 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2166 			pe->pe_number);
2167 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2168 
2169 	/* Grab a 32-bit TCE table */
2170 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2171 		weight, total_weight, base, segs);
2172 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2173 		base * PNV_IODA1_DMA32_SEGSIZE,
2174 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2175 
2176 	/* XXX Currently, we allocate one big contiguous table for the
2177 	 * TCEs. We only really need one chunk per 256M of TCE space
2178 	 * (ie per segment) but that's an optimization for later, it
2179 	 * requires some added smarts with our get/put_tce implementation
2180 	 *
2181 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2182 	 * bytes
2183 	 */
2184 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2185 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2186 				   get_order(tce32_segsz * segs));
2187 	if (!tce_mem) {
2188 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2189 		goto fail;
2190 	}
2191 	addr = page_address(tce_mem);
2192 	memset(addr, 0, tce32_segsz * segs);
2193 
2194 	/* Configure HW */
2195 	for (i = 0; i < segs; i++) {
2196 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2197 					      pe->pe_number,
2198 					      base + i, 1,
2199 					      __pa(addr) + tce32_segsz * i,
2200 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2201 		if (rc) {
2202 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2203 			       " err %ld\n", rc);
2204 			goto fail;
2205 		}
2206 	}
2207 
2208 	/* Setup DMA32 segment mapping */
2209 	for (i = base; i < base + segs; i++)
2210 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2211 
2212 	/* Setup linux iommu table */
2213 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2214 				  base * PNV_IODA1_DMA32_SEGSIZE,
2215 				  IOMMU_PAGE_SHIFT_4K);
2216 
2217 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2218 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2219 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2220 	iommu_init_table(tbl, phb->hose->node);
2221 
2222 	if (pe->flags & PNV_IODA_PE_DEV) {
2223 		/*
2224 		 * Setting table base here only for carrying iommu_group
2225 		 * further down to let iommu_add_device() do the job.
2226 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2227 		 */
2228 		set_iommu_table_base(&pe->pdev->dev, tbl);
2229 		iommu_add_device(&pe->pdev->dev);
2230 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2231 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2232 
2233 	return;
2234  fail:
2235 	/* XXX Failure: Try to fallback to 64-bit only ? */
2236 	if (tce_mem)
2237 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2238 	if (tbl) {
2239 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2240 		iommu_tce_table_put(tbl);
2241 	}
2242 }
2243 
2244 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2245 		int num, struct iommu_table *tbl)
2246 {
2247 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2248 			table_group);
2249 	struct pnv_phb *phb = pe->phb;
2250 	int64_t rc;
2251 	const unsigned long size = tbl->it_indirect_levels ?
2252 			tbl->it_level_size : tbl->it_size;
2253 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2254 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2255 
2256 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2257 			start_addr, start_addr + win_size - 1,
2258 			IOMMU_PAGE_SIZE(tbl));
2259 
2260 	/*
2261 	 * Map TCE table through TVT. The TVE index is the PE number
2262 	 * shifted by 1 bit for 32-bits DMA space.
2263 	 */
2264 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2265 			pe->pe_number,
2266 			(pe->pe_number << 1) + num,
2267 			tbl->it_indirect_levels + 1,
2268 			__pa(tbl->it_base),
2269 			size << 3,
2270 			IOMMU_PAGE_SIZE(tbl));
2271 	if (rc) {
2272 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2273 		return rc;
2274 	}
2275 
2276 	pnv_pci_link_table_and_group(phb->hose->node, num,
2277 			tbl, &pe->table_group);
2278 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2279 
2280 	return 0;
2281 }
2282 
2283 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2284 {
2285 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2286 	int64_t rc;
2287 
2288 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2289 	if (enable) {
2290 		phys_addr_t top = memblock_end_of_DRAM();
2291 
2292 		top = roundup_pow_of_two(top);
2293 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2294 						     pe->pe_number,
2295 						     window_id,
2296 						     pe->tce_bypass_base,
2297 						     top);
2298 	} else {
2299 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2300 						     pe->pe_number,
2301 						     window_id,
2302 						     pe->tce_bypass_base,
2303 						     0);
2304 	}
2305 	if (rc)
2306 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2307 	else
2308 		pe->tce_bypass_enabled = enable;
2309 }
2310 
2311 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2312 		__u32 page_shift, __u64 window_size, __u32 levels,
2313 		struct iommu_table *tbl);
2314 
2315 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2316 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2317 		struct iommu_table **ptbl)
2318 {
2319 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2320 			table_group);
2321 	int nid = pe->phb->hose->node;
2322 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2323 	long ret;
2324 	struct iommu_table *tbl;
2325 
2326 	tbl = pnv_pci_table_alloc(nid);
2327 	if (!tbl)
2328 		return -ENOMEM;
2329 
2330 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2331 
2332 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2333 			bus_offset, page_shift, window_size,
2334 			levels, tbl);
2335 	if (ret) {
2336 		iommu_tce_table_put(tbl);
2337 		return ret;
2338 	}
2339 
2340 	*ptbl = tbl;
2341 
2342 	return 0;
2343 }
2344 
2345 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2346 {
2347 	struct iommu_table *tbl = NULL;
2348 	long rc;
2349 
2350 	/*
2351 	 * crashkernel= specifies the kdump kernel's maximum memory at
2352 	 * some offset and there is no guaranteed the result is a power
2353 	 * of 2, which will cause errors later.
2354 	 */
2355 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2356 
2357 	/*
2358 	 * In memory constrained environments, e.g. kdump kernel, the
2359 	 * DMA window can be larger than available memory, which will
2360 	 * cause errors later.
2361 	 */
2362 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2363 
2364 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2365 			IOMMU_PAGE_SHIFT_4K,
2366 			window_size,
2367 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2368 	if (rc) {
2369 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2370 				rc);
2371 		return rc;
2372 	}
2373 
2374 	iommu_init_table(tbl, pe->phb->hose->node);
2375 
2376 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2377 	if (rc) {
2378 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2379 				rc);
2380 		iommu_tce_table_put(tbl);
2381 		return rc;
2382 	}
2383 
2384 	if (!pnv_iommu_bypass_disabled)
2385 		pnv_pci_ioda2_set_bypass(pe, true);
2386 
2387 	/*
2388 	 * Setting table base here only for carrying iommu_group
2389 	 * further down to let iommu_add_device() do the job.
2390 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2391 	 */
2392 	if (pe->flags & PNV_IODA_PE_DEV)
2393 		set_iommu_table_base(&pe->pdev->dev, tbl);
2394 
2395 	return 0;
2396 }
2397 
2398 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2399 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2400 		int num)
2401 {
2402 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2403 			table_group);
2404 	struct pnv_phb *phb = pe->phb;
2405 	long ret;
2406 
2407 	pe_info(pe, "Removing DMA window #%d\n", num);
2408 
2409 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2410 			(pe->pe_number << 1) + num,
2411 			0/* levels */, 0/* table address */,
2412 			0/* table size */, 0/* page size */);
2413 	if (ret)
2414 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2415 	else
2416 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2417 
2418 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2419 
2420 	return ret;
2421 }
2422 #endif
2423 
2424 #ifdef CONFIG_IOMMU_API
2425 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2426 		__u64 window_size, __u32 levels)
2427 {
2428 	unsigned long bytes = 0;
2429 	const unsigned window_shift = ilog2(window_size);
2430 	unsigned entries_shift = window_shift - page_shift;
2431 	unsigned table_shift = entries_shift + 3;
2432 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2433 	unsigned long direct_table_size;
2434 
2435 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2436 			(window_size > memory_hotplug_max()) ||
2437 			!is_power_of_2(window_size))
2438 		return 0;
2439 
2440 	/* Calculate a direct table size from window_size and levels */
2441 	entries_shift = (entries_shift + levels - 1) / levels;
2442 	table_shift = entries_shift + 3;
2443 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2444 	direct_table_size =  1UL << table_shift;
2445 
2446 	for ( ; levels; --levels) {
2447 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2448 
2449 		tce_table_size /= direct_table_size;
2450 		tce_table_size <<= 3;
2451 		tce_table_size = max_t(unsigned long,
2452 				tce_table_size, direct_table_size);
2453 	}
2454 
2455 	return bytes;
2456 }
2457 
2458 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2459 {
2460 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2461 						table_group);
2462 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2463 	struct iommu_table *tbl = pe->table_group.tables[0];
2464 
2465 	pnv_pci_ioda2_set_bypass(pe, false);
2466 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2467 	if (pe->pbus)
2468 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2469 	iommu_tce_table_put(tbl);
2470 }
2471 
2472 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2473 {
2474 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2475 						table_group);
2476 
2477 	pnv_pci_ioda2_setup_default_config(pe);
2478 	if (pe->pbus)
2479 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2480 }
2481 
2482 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2483 	.get_table_size = pnv_pci_ioda2_get_table_size,
2484 	.create_table = pnv_pci_ioda2_create_table,
2485 	.set_window = pnv_pci_ioda2_set_window,
2486 	.unset_window = pnv_pci_ioda2_unset_window,
2487 	.take_ownership = pnv_ioda2_take_ownership,
2488 	.release_ownership = pnv_ioda2_release_ownership,
2489 };
2490 
2491 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2492 {
2493 	struct pci_controller *hose;
2494 	struct pnv_phb *phb;
2495 	struct pnv_ioda_pe **ptmppe = opaque;
2496 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2497 	struct pci_dn *pdn = pci_get_pdn(pdev);
2498 
2499 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2500 		return 0;
2501 
2502 	hose = pci_bus_to_host(pdev->bus);
2503 	phb = hose->private_data;
2504 	if (phb->type != PNV_PHB_NPU)
2505 		return 0;
2506 
2507 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2508 
2509 	return 1;
2510 }
2511 
2512 /*
2513  * This returns PE of associated NPU.
2514  * This assumes that NPU is in the same IOMMU group with GPU and there is
2515  * no other PEs.
2516  */
2517 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2518 		struct iommu_table_group *table_group)
2519 {
2520 	struct pnv_ioda_pe *npe = NULL;
2521 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2522 			gpe_table_group_to_npe_cb);
2523 
2524 	BUG_ON(!ret || !npe);
2525 
2526 	return npe;
2527 }
2528 
2529 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2530 		int num, struct iommu_table *tbl)
2531 {
2532 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2533 
2534 	if (ret)
2535 		return ret;
2536 
2537 	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2538 	if (ret)
2539 		pnv_pci_ioda2_unset_window(table_group, num);
2540 
2541 	return ret;
2542 }
2543 
2544 static long pnv_pci_ioda2_npu_unset_window(
2545 		struct iommu_table_group *table_group,
2546 		int num)
2547 {
2548 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2549 
2550 	if (ret)
2551 		return ret;
2552 
2553 	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2554 }
2555 
2556 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2557 {
2558 	/*
2559 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2560 	 * the iommu_table if 32bit DMA is enabled.
2561 	 */
2562 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2563 	pnv_ioda2_take_ownership(table_group);
2564 }
2565 
2566 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2567 	.get_table_size = pnv_pci_ioda2_get_table_size,
2568 	.create_table = pnv_pci_ioda2_create_table,
2569 	.set_window = pnv_pci_ioda2_npu_set_window,
2570 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2571 	.take_ownership = pnv_ioda2_npu_take_ownership,
2572 	.release_ownership = pnv_ioda2_release_ownership,
2573 };
2574 
2575 static void pnv_pci_ioda_setup_iommu_api(void)
2576 {
2577 	struct pci_controller *hose, *tmp;
2578 	struct pnv_phb *phb;
2579 	struct pnv_ioda_pe *pe, *gpe;
2580 
2581 	/*
2582 	 * Now we have all PHBs discovered, time to add NPU devices to
2583 	 * the corresponding IOMMU groups.
2584 	 */
2585 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2586 		phb = hose->private_data;
2587 
2588 		if (phb->type != PNV_PHB_NPU)
2589 			continue;
2590 
2591 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2592 			gpe = pnv_pci_npu_setup_iommu(pe);
2593 			if (gpe)
2594 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2595 		}
2596 	}
2597 }
2598 #else /* !CONFIG_IOMMU_API */
2599 static void pnv_pci_ioda_setup_iommu_api(void) { };
2600 #endif
2601 
2602 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2603 		unsigned levels, unsigned long limit,
2604 		unsigned long *current_offset, unsigned long *total_allocated)
2605 {
2606 	struct page *tce_mem = NULL;
2607 	__be64 *addr, *tmp;
2608 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2609 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2610 	unsigned entries = 1UL << (shift - 3);
2611 	long i;
2612 
2613 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2614 	if (!tce_mem) {
2615 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2616 		return NULL;
2617 	}
2618 	addr = page_address(tce_mem);
2619 	memset(addr, 0, allocated);
2620 	*total_allocated += allocated;
2621 
2622 	--levels;
2623 	if (!levels) {
2624 		*current_offset += allocated;
2625 		return addr;
2626 	}
2627 
2628 	for (i = 0; i < entries; ++i) {
2629 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2630 				levels, limit, current_offset, total_allocated);
2631 		if (!tmp)
2632 			break;
2633 
2634 		addr[i] = cpu_to_be64(__pa(tmp) |
2635 				TCE_PCI_READ | TCE_PCI_WRITE);
2636 
2637 		if (*current_offset >= limit)
2638 			break;
2639 	}
2640 
2641 	return addr;
2642 }
2643 
2644 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2645 		unsigned long size, unsigned level);
2646 
2647 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2648 		__u32 page_shift, __u64 window_size, __u32 levels,
2649 		struct iommu_table *tbl)
2650 {
2651 	void *addr;
2652 	unsigned long offset = 0, level_shift, total_allocated = 0;
2653 	const unsigned window_shift = ilog2(window_size);
2654 	unsigned entries_shift = window_shift - page_shift;
2655 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2656 	const unsigned long tce_table_size = 1UL << table_shift;
2657 
2658 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2659 		return -EINVAL;
2660 
2661 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2662 		return -EINVAL;
2663 
2664 	/* Adjust direct table size from window_size and levels */
2665 	entries_shift = (entries_shift + levels - 1) / levels;
2666 	level_shift = entries_shift + 3;
2667 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2668 
2669 	if ((level_shift - 3) * levels + page_shift >= 60)
2670 		return -EINVAL;
2671 
2672 	/* Allocate TCE table */
2673 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2674 			levels, tce_table_size, &offset, &total_allocated);
2675 
2676 	/* addr==NULL means that the first level allocation failed */
2677 	if (!addr)
2678 		return -ENOMEM;
2679 
2680 	/*
2681 	 * First level was allocated but some lower level failed as
2682 	 * we did not allocate as much as we wanted,
2683 	 * release partially allocated table.
2684 	 */
2685 	if (offset < tce_table_size) {
2686 		pnv_pci_ioda2_table_do_free_pages(addr,
2687 				1ULL << (level_shift - 3), levels - 1);
2688 		return -ENOMEM;
2689 	}
2690 
2691 	/* Setup linux iommu table */
2692 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2693 			page_shift);
2694 	tbl->it_level_size = 1ULL << (level_shift - 3);
2695 	tbl->it_indirect_levels = levels - 1;
2696 	tbl->it_allocated_size = total_allocated;
2697 
2698 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2699 			window_size, tce_table_size, bus_offset);
2700 
2701 	return 0;
2702 }
2703 
2704 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2705 		unsigned long size, unsigned level)
2706 {
2707 	const unsigned long addr_ul = (unsigned long) addr &
2708 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2709 
2710 	if (level) {
2711 		long i;
2712 		u64 *tmp = (u64 *) addr_ul;
2713 
2714 		for (i = 0; i < size; ++i) {
2715 			unsigned long hpa = be64_to_cpu(tmp[i]);
2716 
2717 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2718 				continue;
2719 
2720 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2721 					level - 1);
2722 		}
2723 	}
2724 
2725 	free_pages(addr_ul, get_order(size << 3));
2726 }
2727 
2728 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2729 {
2730 	const unsigned long size = tbl->it_indirect_levels ?
2731 			tbl->it_level_size : tbl->it_size;
2732 
2733 	if (!tbl->it_size)
2734 		return;
2735 
2736 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2737 			tbl->it_indirect_levels);
2738 }
2739 
2740 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2741 				       struct pnv_ioda_pe *pe)
2742 {
2743 	int64_t rc;
2744 
2745 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2746 		return;
2747 
2748 	/* TVE #1 is selected by PCI address bit 59 */
2749 	pe->tce_bypass_base = 1ull << 59;
2750 
2751 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2752 			pe->pe_number);
2753 
2754 	/* The PE will reserve all possible 32-bits space */
2755 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2756 		phb->ioda.m32_pci_base);
2757 
2758 	/* Setup linux iommu table */
2759 	pe->table_group.tce32_start = 0;
2760 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2761 	pe->table_group.max_dynamic_windows_supported =
2762 			IOMMU_TABLE_GROUP_MAX_TABLES;
2763 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2764 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2765 #ifdef CONFIG_IOMMU_API
2766 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2767 #endif
2768 
2769 	rc = pnv_pci_ioda2_setup_default_config(pe);
2770 	if (rc)
2771 		return;
2772 
2773 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2774 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2775 }
2776 
2777 #ifdef CONFIG_PCI_MSI
2778 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2779 {
2780 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2781 					   ioda.irq_chip);
2782 
2783 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2784 }
2785 
2786 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2787 {
2788 	int64_t rc;
2789 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2790 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2791 
2792 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2793 	WARN_ON_ONCE(rc);
2794 
2795 	icp_native_eoi(d);
2796 }
2797 
2798 
2799 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2800 {
2801 	struct irq_data *idata;
2802 	struct irq_chip *ichip;
2803 
2804 	/* The MSI EOI OPAL call is only needed on PHB3 */
2805 	if (phb->model != PNV_PHB_MODEL_PHB3)
2806 		return;
2807 
2808 	if (!phb->ioda.irq_chip_init) {
2809 		/*
2810 		 * First time we setup an MSI IRQ, we need to setup the
2811 		 * corresponding IRQ chip to route correctly.
2812 		 */
2813 		idata = irq_get_irq_data(virq);
2814 		ichip = irq_data_get_irq_chip(idata);
2815 		phb->ioda.irq_chip_init = 1;
2816 		phb->ioda.irq_chip = *ichip;
2817 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2818 	}
2819 	irq_set_chip(virq, &phb->ioda.irq_chip);
2820 }
2821 
2822 /*
2823  * Returns true iff chip is something that we could call
2824  * pnv_opal_pci_msi_eoi for.
2825  */
2826 bool is_pnv_opal_msi(struct irq_chip *chip)
2827 {
2828 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2829 }
2830 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2831 
2832 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2833 				  unsigned int hwirq, unsigned int virq,
2834 				  unsigned int is_64, struct msi_msg *msg)
2835 {
2836 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2837 	unsigned int xive_num = hwirq - phb->msi_base;
2838 	__be32 data;
2839 	int rc;
2840 
2841 	/* No PE assigned ? bail out ... no MSI for you ! */
2842 	if (pe == NULL)
2843 		return -ENXIO;
2844 
2845 	/* Check if we have an MVE */
2846 	if (pe->mve_number < 0)
2847 		return -ENXIO;
2848 
2849 	/* Force 32-bit MSI on some broken devices */
2850 	if (dev->no_64bit_msi)
2851 		is_64 = 0;
2852 
2853 	/* Assign XIVE to PE */
2854 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2855 	if (rc) {
2856 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2857 			pci_name(dev), rc, xive_num);
2858 		return -EIO;
2859 	}
2860 
2861 	if (is_64) {
2862 		__be64 addr64;
2863 
2864 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2865 				     &addr64, &data);
2866 		if (rc) {
2867 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2868 				pci_name(dev), rc);
2869 			return -EIO;
2870 		}
2871 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2872 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2873 	} else {
2874 		__be32 addr32;
2875 
2876 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2877 				     &addr32, &data);
2878 		if (rc) {
2879 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2880 				pci_name(dev), rc);
2881 			return -EIO;
2882 		}
2883 		msg->address_hi = 0;
2884 		msg->address_lo = be32_to_cpu(addr32);
2885 	}
2886 	msg->data = be32_to_cpu(data);
2887 
2888 	pnv_set_msi_irq_chip(phb, virq);
2889 
2890 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2891 		 " address=%x_%08x data=%x PE# %x\n",
2892 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2893 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2894 
2895 	return 0;
2896 }
2897 
2898 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2899 {
2900 	unsigned int count;
2901 	const __be32 *prop = of_get_property(phb->hose->dn,
2902 					     "ibm,opal-msi-ranges", NULL);
2903 	if (!prop) {
2904 		/* BML Fallback */
2905 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2906 	}
2907 	if (!prop)
2908 		return;
2909 
2910 	phb->msi_base = be32_to_cpup(prop);
2911 	count = be32_to_cpup(prop + 1);
2912 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2913 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2914 		       phb->hose->global_number);
2915 		return;
2916 	}
2917 
2918 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2919 	phb->msi32_support = 1;
2920 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2921 		count, phb->msi_base);
2922 }
2923 #else
2924 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2925 #endif /* CONFIG_PCI_MSI */
2926 
2927 #ifdef CONFIG_PCI_IOV
2928 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2929 {
2930 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2931 	struct pnv_phb *phb = hose->private_data;
2932 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2933 	struct resource *res;
2934 	int i;
2935 	resource_size_t size, total_vf_bar_sz;
2936 	struct pci_dn *pdn;
2937 	int mul, total_vfs;
2938 
2939 	if (!pdev->is_physfn || pdev->is_added)
2940 		return;
2941 
2942 	pdn = pci_get_pdn(pdev);
2943 	pdn->vfs_expanded = 0;
2944 	pdn->m64_single_mode = false;
2945 
2946 	total_vfs = pci_sriov_get_totalvfs(pdev);
2947 	mul = phb->ioda.total_pe_num;
2948 	total_vf_bar_sz = 0;
2949 
2950 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2951 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2952 		if (!res->flags || res->parent)
2953 			continue;
2954 		if (!pnv_pci_is_m64_flags(res->flags)) {
2955 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2956 					" non M64 VF BAR%d: %pR. \n",
2957 				 i, res);
2958 			goto truncate_iov;
2959 		}
2960 
2961 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2962 				i + PCI_IOV_RESOURCES);
2963 
2964 		/*
2965 		 * If bigger than quarter of M64 segment size, just round up
2966 		 * power of two.
2967 		 *
2968 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2969 		 * with other devices, IOV BAR size is expanded to be
2970 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2971 		 * segment size , the expanded size would equal to half of the
2972 		 * whole M64 space size, which will exhaust the M64 Space and
2973 		 * limit the system flexibility.  This is a design decision to
2974 		 * set the boundary to quarter of the M64 segment size.
2975 		 */
2976 		if (total_vf_bar_sz > gate) {
2977 			mul = roundup_pow_of_two(total_vfs);
2978 			dev_info(&pdev->dev,
2979 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2980 				total_vf_bar_sz, gate, mul);
2981 			pdn->m64_single_mode = true;
2982 			break;
2983 		}
2984 	}
2985 
2986 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2987 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2988 		if (!res->flags || res->parent)
2989 			continue;
2990 
2991 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2992 		/*
2993 		 * On PHB3, the minimum size alignment of M64 BAR in single
2994 		 * mode is 32MB.
2995 		 */
2996 		if (pdn->m64_single_mode && (size < SZ_32M))
2997 			goto truncate_iov;
2998 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2999 		res->end = res->start + size * mul - 1;
3000 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3001 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3002 			 i, res, mul);
3003 	}
3004 	pdn->vfs_expanded = mul;
3005 
3006 	return;
3007 
3008 truncate_iov:
3009 	/* To save MMIO space, IOV BAR is truncated. */
3010 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3011 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3012 		res->flags = 0;
3013 		res->end = res->start - 1;
3014 	}
3015 }
3016 #endif /* CONFIG_PCI_IOV */
3017 
3018 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3019 				  struct resource *res)
3020 {
3021 	struct pnv_phb *phb = pe->phb;
3022 	struct pci_bus_region region;
3023 	int index;
3024 	int64_t rc;
3025 
3026 	if (!res || !res->flags || res->start > res->end)
3027 		return;
3028 
3029 	if (res->flags & IORESOURCE_IO) {
3030 		region.start = res->start - phb->ioda.io_pci_base;
3031 		region.end   = res->end - phb->ioda.io_pci_base;
3032 		index = region.start / phb->ioda.io_segsize;
3033 
3034 		while (index < phb->ioda.total_pe_num &&
3035 		       region.start <= region.end) {
3036 			phb->ioda.io_segmap[index] = pe->pe_number;
3037 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3038 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3039 			if (rc != OPAL_SUCCESS) {
3040 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3041 				       __func__, rc, index, pe->pe_number);
3042 				break;
3043 			}
3044 
3045 			region.start += phb->ioda.io_segsize;
3046 			index++;
3047 		}
3048 	} else if ((res->flags & IORESOURCE_MEM) &&
3049 		   !pnv_pci_is_m64(phb, res)) {
3050 		region.start = res->start -
3051 			       phb->hose->mem_offset[0] -
3052 			       phb->ioda.m32_pci_base;
3053 		region.end   = res->end -
3054 			       phb->hose->mem_offset[0] -
3055 			       phb->ioda.m32_pci_base;
3056 		index = region.start / phb->ioda.m32_segsize;
3057 
3058 		while (index < phb->ioda.total_pe_num &&
3059 		       region.start <= region.end) {
3060 			phb->ioda.m32_segmap[index] = pe->pe_number;
3061 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3062 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3063 			if (rc != OPAL_SUCCESS) {
3064 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3065 				       __func__, rc, index, pe->pe_number);
3066 				break;
3067 			}
3068 
3069 			region.start += phb->ioda.m32_segsize;
3070 			index++;
3071 		}
3072 	}
3073 }
3074 
3075 /*
3076  * This function is supposed to be called on basis of PE from top
3077  * to bottom style. So the the I/O or MMIO segment assigned to
3078  * parent PE could be overridden by its child PEs if necessary.
3079  */
3080 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3081 {
3082 	struct pci_dev *pdev;
3083 	int i;
3084 
3085 	/*
3086 	 * NOTE: We only care PCI bus based PE for now. For PCI
3087 	 * device based PE, for example SRIOV sensitive VF should
3088 	 * be figured out later.
3089 	 */
3090 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3091 
3092 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3093 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3094 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3095 
3096 		/*
3097 		 * If the PE contains all subordinate PCI buses, the
3098 		 * windows of the child bridges should be mapped to
3099 		 * the PE as well.
3100 		 */
3101 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3102 			continue;
3103 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3104 			pnv_ioda_setup_pe_res(pe,
3105 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3106 	}
3107 }
3108 
3109 #ifdef CONFIG_DEBUG_FS
3110 static int pnv_pci_diag_data_set(void *data, u64 val)
3111 {
3112 	struct pci_controller *hose;
3113 	struct pnv_phb *phb;
3114 	s64 ret;
3115 
3116 	if (val != 1ULL)
3117 		return -EINVAL;
3118 
3119 	hose = (struct pci_controller *)data;
3120 	if (!hose || !hose->private_data)
3121 		return -ENODEV;
3122 
3123 	phb = hose->private_data;
3124 
3125 	/* Retrieve the diag data from firmware */
3126 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
3127 					  PNV_PCI_DIAG_BUF_SIZE);
3128 	if (ret != OPAL_SUCCESS)
3129 		return -EIO;
3130 
3131 	/* Print the diag data to the kernel log */
3132 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob);
3133 	return 0;
3134 }
3135 
3136 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3137 			pnv_pci_diag_data_set, "%llu\n");
3138 
3139 #endif /* CONFIG_DEBUG_FS */
3140 
3141 static void pnv_pci_ioda_create_dbgfs(void)
3142 {
3143 #ifdef CONFIG_DEBUG_FS
3144 	struct pci_controller *hose, *tmp;
3145 	struct pnv_phb *phb;
3146 	char name[16];
3147 
3148 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3149 		phb = hose->private_data;
3150 
3151 		/* Notify initialization of PHB done */
3152 		phb->initialized = 1;
3153 
3154 		sprintf(name, "PCI%04x", hose->global_number);
3155 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3156 		if (!phb->dbgfs) {
3157 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3158 				__func__, hose->global_number);
3159 			continue;
3160 		}
3161 
3162 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3163 				    &pnv_pci_diag_data_fops);
3164 	}
3165 #endif /* CONFIG_DEBUG_FS */
3166 }
3167 
3168 static void pnv_pci_ioda_fixup(void)
3169 {
3170 	pnv_pci_ioda_setup_PEs();
3171 	pnv_pci_ioda_setup_iommu_api();
3172 	pnv_pci_ioda_create_dbgfs();
3173 
3174 #ifdef CONFIG_EEH
3175 	eeh_init();
3176 	eeh_addr_cache_build();
3177 #endif
3178 }
3179 
3180 /*
3181  * Returns the alignment for I/O or memory windows for P2P
3182  * bridges. That actually depends on how PEs are segmented.
3183  * For now, we return I/O or M32 segment size for PE sensitive
3184  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3185  * 1MiB for memory) will be returned.
3186  *
3187  * The current PCI bus might be put into one PE, which was
3188  * create against the parent PCI bridge. For that case, we
3189  * needn't enlarge the alignment so that we can save some
3190  * resources.
3191  */
3192 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3193 						unsigned long type)
3194 {
3195 	struct pci_dev *bridge;
3196 	struct pci_controller *hose = pci_bus_to_host(bus);
3197 	struct pnv_phb *phb = hose->private_data;
3198 	int num_pci_bridges = 0;
3199 
3200 	bridge = bus->self;
3201 	while (bridge) {
3202 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3203 			num_pci_bridges++;
3204 			if (num_pci_bridges >= 2)
3205 				return 1;
3206 		}
3207 
3208 		bridge = bridge->bus->self;
3209 	}
3210 
3211 	/*
3212 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3213 	 * alignment for any 64-bit resource, PCIe doesn't care and
3214 	 * bridges only do 64-bit prefetchable anyway.
3215 	 */
3216 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3217 		return phb->ioda.m64_segsize;
3218 	if (type & IORESOURCE_MEM)
3219 		return phb->ioda.m32_segsize;
3220 
3221 	return phb->ioda.io_segsize;
3222 }
3223 
3224 /*
3225  * We are updating root port or the upstream port of the
3226  * bridge behind the root port with PHB's windows in order
3227  * to accommodate the changes on required resources during
3228  * PCI (slot) hotplug, which is connected to either root
3229  * port or the downstream ports of PCIe switch behind the
3230  * root port.
3231  */
3232 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3233 					   unsigned long type)
3234 {
3235 	struct pci_controller *hose = pci_bus_to_host(bus);
3236 	struct pnv_phb *phb = hose->private_data;
3237 	struct pci_dev *bridge = bus->self;
3238 	struct resource *r, *w;
3239 	bool msi_region = false;
3240 	int i;
3241 
3242 	/* Check if we need apply fixup to the bridge's windows */
3243 	if (!pci_is_root_bus(bridge->bus) &&
3244 	    !pci_is_root_bus(bridge->bus->self->bus))
3245 		return;
3246 
3247 	/* Fixup the resources */
3248 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3249 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3250 		if (!r->flags || !r->parent)
3251 			continue;
3252 
3253 		w = NULL;
3254 		if (r->flags & type & IORESOURCE_IO)
3255 			w = &hose->io_resource;
3256 		else if (pnv_pci_is_m64(phb, r) &&
3257 			 (type & IORESOURCE_PREFETCH) &&
3258 			 phb->ioda.m64_segsize)
3259 			w = &hose->mem_resources[1];
3260 		else if (r->flags & type & IORESOURCE_MEM) {
3261 			w = &hose->mem_resources[0];
3262 			msi_region = true;
3263 		}
3264 
3265 		r->start = w->start;
3266 		r->end = w->end;
3267 
3268 		/* The 64KB 32-bits MSI region shouldn't be included in
3269 		 * the 32-bits bridge window. Otherwise, we can see strange
3270 		 * issues. One of them is EEH error observed on Garrison.
3271 		 *
3272 		 * Exclude top 1MB region which is the minimal alignment of
3273 		 * 32-bits bridge window.
3274 		 */
3275 		if (msi_region) {
3276 			r->end += 0x10000;
3277 			r->end -= 0x100000;
3278 		}
3279 	}
3280 }
3281 
3282 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3283 {
3284 	struct pci_controller *hose = pci_bus_to_host(bus);
3285 	struct pnv_phb *phb = hose->private_data;
3286 	struct pci_dev *bridge = bus->self;
3287 	struct pnv_ioda_pe *pe;
3288 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3289 
3290 	/* Extend bridge's windows if necessary */
3291 	pnv_pci_fixup_bridge_resources(bus, type);
3292 
3293 	/* The PE for root bus should be realized before any one else */
3294 	if (!phb->ioda.root_pe_populated) {
3295 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3296 		if (pe) {
3297 			phb->ioda.root_pe_idx = pe->pe_number;
3298 			phb->ioda.root_pe_populated = true;
3299 		}
3300 	}
3301 
3302 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3303 	if (list_empty(&bus->devices))
3304 		return;
3305 
3306 	/* Reserve PEs according to used M64 resources */
3307 	if (phb->reserve_m64_pe)
3308 		phb->reserve_m64_pe(bus, NULL, all);
3309 
3310 	/*
3311 	 * Assign PE. We might run here because of partial hotplug.
3312 	 * For the case, we just pick up the existing PE and should
3313 	 * not allocate resources again.
3314 	 */
3315 	pe = pnv_ioda_setup_bus_PE(bus, all);
3316 	if (!pe)
3317 		return;
3318 
3319 	pnv_ioda_setup_pe_seg(pe);
3320 	switch (phb->type) {
3321 	case PNV_PHB_IODA1:
3322 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3323 		break;
3324 	case PNV_PHB_IODA2:
3325 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3326 		break;
3327 	default:
3328 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3329 			__func__, phb->hose->global_number, phb->type);
3330 	}
3331 }
3332 
3333 static resource_size_t pnv_pci_default_alignment(void)
3334 {
3335 	return PAGE_SIZE;
3336 }
3337 
3338 #ifdef CONFIG_PCI_IOV
3339 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3340 						      int resno)
3341 {
3342 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3343 	struct pnv_phb *phb = hose->private_data;
3344 	struct pci_dn *pdn = pci_get_pdn(pdev);
3345 	resource_size_t align;
3346 
3347 	/*
3348 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3349 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3350 	 * BAR should be size aligned.
3351 	 *
3352 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3353 	 * powernv-specific hardware restriction is gone. But if just use the
3354 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3355 	 * in one segment of M64 #15, which introduces the PE conflict between
3356 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3357 	 * m64_segsize.
3358 	 *
3359 	 * This function returns the total IOV BAR size if M64 BAR is in
3360 	 * Shared PE mode or just VF BAR size if not.
3361 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3362 	 * M64 segment size if IOV BAR size is less.
3363 	 */
3364 	align = pci_iov_resource_size(pdev, resno);
3365 	if (!pdn->vfs_expanded)
3366 		return align;
3367 	if (pdn->m64_single_mode)
3368 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3369 
3370 	return pdn->vfs_expanded * align;
3371 }
3372 #endif /* CONFIG_PCI_IOV */
3373 
3374 /* Prevent enabling devices for which we couldn't properly
3375  * assign a PE
3376  */
3377 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3378 {
3379 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3380 	struct pnv_phb *phb = hose->private_data;
3381 	struct pci_dn *pdn;
3382 
3383 	/* The function is probably called while the PEs have
3384 	 * not be created yet. For example, resource reassignment
3385 	 * during PCI probe period. We just skip the check if
3386 	 * PEs isn't ready.
3387 	 */
3388 	if (!phb->initialized)
3389 		return true;
3390 
3391 	pdn = pci_get_pdn(dev);
3392 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3393 		return false;
3394 
3395 	return true;
3396 }
3397 
3398 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3399 				       int num)
3400 {
3401 	struct pnv_ioda_pe *pe = container_of(table_group,
3402 					      struct pnv_ioda_pe, table_group);
3403 	struct pnv_phb *phb = pe->phb;
3404 	unsigned int idx;
3405 	long rc;
3406 
3407 	pe_info(pe, "Removing DMA window #%d\n", num);
3408 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3409 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3410 			continue;
3411 
3412 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3413 						idx, 0, 0ul, 0ul, 0ul);
3414 		if (rc != OPAL_SUCCESS) {
3415 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3416 				rc, idx);
3417 			return rc;
3418 		}
3419 
3420 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3421 	}
3422 
3423 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3424 	return OPAL_SUCCESS;
3425 }
3426 
3427 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3428 {
3429 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3430 	struct iommu_table *tbl = pe->table_group.tables[0];
3431 	int64_t rc;
3432 
3433 	if (!weight)
3434 		return;
3435 
3436 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3437 	if (rc != OPAL_SUCCESS)
3438 		return;
3439 
3440 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3441 	if (pe->table_group.group) {
3442 		iommu_group_put(pe->table_group.group);
3443 		WARN_ON(pe->table_group.group);
3444 	}
3445 
3446 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3447 	iommu_tce_table_put(tbl);
3448 }
3449 
3450 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3451 {
3452 	struct iommu_table *tbl = pe->table_group.tables[0];
3453 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3454 #ifdef CONFIG_IOMMU_API
3455 	int64_t rc;
3456 #endif
3457 
3458 	if (!weight)
3459 		return;
3460 
3461 #ifdef CONFIG_IOMMU_API
3462 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3463 	if (rc)
3464 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3465 #endif
3466 
3467 	pnv_pci_ioda2_set_bypass(pe, false);
3468 	if (pe->table_group.group) {
3469 		iommu_group_put(pe->table_group.group);
3470 		WARN_ON(pe->table_group.group);
3471 	}
3472 
3473 	pnv_pci_ioda2_table_free_pages(tbl);
3474 	iommu_tce_table_put(tbl);
3475 }
3476 
3477 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3478 				 unsigned short win,
3479 				 unsigned int *map)
3480 {
3481 	struct pnv_phb *phb = pe->phb;
3482 	int idx;
3483 	int64_t rc;
3484 
3485 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3486 		if (map[idx] != pe->pe_number)
3487 			continue;
3488 
3489 		if (win == OPAL_M64_WINDOW_TYPE)
3490 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3491 					phb->ioda.reserved_pe_idx, win,
3492 					idx / PNV_IODA1_M64_SEGS,
3493 					idx % PNV_IODA1_M64_SEGS);
3494 		else
3495 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3496 					phb->ioda.reserved_pe_idx, win, 0, idx);
3497 
3498 		if (rc != OPAL_SUCCESS)
3499 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3500 				rc, win, idx);
3501 
3502 		map[idx] = IODA_INVALID_PE;
3503 	}
3504 }
3505 
3506 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3507 {
3508 	struct pnv_phb *phb = pe->phb;
3509 
3510 	if (phb->type == PNV_PHB_IODA1) {
3511 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3512 				     phb->ioda.io_segmap);
3513 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3514 				     phb->ioda.m32_segmap);
3515 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3516 				     phb->ioda.m64_segmap);
3517 	} else if (phb->type == PNV_PHB_IODA2) {
3518 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3519 				     phb->ioda.m32_segmap);
3520 	}
3521 }
3522 
3523 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3524 {
3525 	struct pnv_phb *phb = pe->phb;
3526 	struct pnv_ioda_pe *slave, *tmp;
3527 
3528 	list_del(&pe->list);
3529 	switch (phb->type) {
3530 	case PNV_PHB_IODA1:
3531 		pnv_pci_ioda1_release_pe_dma(pe);
3532 		break;
3533 	case PNV_PHB_IODA2:
3534 		pnv_pci_ioda2_release_pe_dma(pe);
3535 		break;
3536 	default:
3537 		WARN_ON(1);
3538 	}
3539 
3540 	pnv_ioda_release_pe_seg(pe);
3541 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3542 
3543 	/* Release slave PEs in the compound PE */
3544 	if (pe->flags & PNV_IODA_PE_MASTER) {
3545 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3546 			list_del(&slave->list);
3547 			pnv_ioda_free_pe(slave);
3548 		}
3549 	}
3550 
3551 	/*
3552 	 * The PE for root bus can be removed because of hotplug in EEH
3553 	 * recovery for fenced PHB error. We need to mark the PE dead so
3554 	 * that it can be populated again in PCI hot add path. The PE
3555 	 * shouldn't be destroyed as it's the global reserved resource.
3556 	 */
3557 	if (phb->ioda.root_pe_populated &&
3558 	    phb->ioda.root_pe_idx == pe->pe_number)
3559 		phb->ioda.root_pe_populated = false;
3560 	else
3561 		pnv_ioda_free_pe(pe);
3562 }
3563 
3564 static void pnv_pci_release_device(struct pci_dev *pdev)
3565 {
3566 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3567 	struct pnv_phb *phb = hose->private_data;
3568 	struct pci_dn *pdn = pci_get_pdn(pdev);
3569 	struct pnv_ioda_pe *pe;
3570 
3571 	if (pdev->is_virtfn)
3572 		return;
3573 
3574 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3575 		return;
3576 
3577 	/*
3578 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3579 	 * isn't removed and added afterwards in this scenario. We should
3580 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3581 	 * device count is decreased on removing devices while failing to
3582 	 * be increased on adding devices. It leads to unbalanced PE's device
3583 	 * count and eventually make normal PCI hotplug path broken.
3584 	 */
3585 	pe = &phb->ioda.pe_array[pdn->pe_number];
3586 	pdn->pe_number = IODA_INVALID_PE;
3587 
3588 	WARN_ON(--pe->device_count < 0);
3589 	if (pe->device_count == 0)
3590 		pnv_ioda_release_pe(pe);
3591 }
3592 
3593 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3594 {
3595 	struct pnv_phb *phb = hose->private_data;
3596 
3597 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3598 		       OPAL_ASSERT_RESET);
3599 }
3600 
3601 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3602 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3603 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3604 #ifdef CONFIG_PCI_MSI
3605 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3606 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3607 #endif
3608 	.enable_device_hook	= pnv_pci_enable_device_hook,
3609 	.release_device		= pnv_pci_release_device,
3610 	.window_alignment	= pnv_pci_window_alignment,
3611 	.setup_bridge		= pnv_pci_setup_bridge,
3612 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3613 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3614 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3615 	.shutdown		= pnv_pci_ioda_shutdown,
3616 };
3617 
3618 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3619 {
3620 	dev_err_once(&npdev->dev,
3621 			"%s operation unsupported for NVLink devices\n",
3622 			__func__);
3623 	return -EPERM;
3624 }
3625 
3626 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3627 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3628 #ifdef CONFIG_PCI_MSI
3629 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3630 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3631 #endif
3632 	.enable_device_hook	= pnv_pci_enable_device_hook,
3633 	.window_alignment	= pnv_pci_window_alignment,
3634 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3635 	.dma_set_mask		= pnv_npu_dma_set_mask,
3636 	.shutdown		= pnv_pci_ioda_shutdown,
3637 };
3638 
3639 #ifdef CONFIG_CXL_BASE
3640 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3641 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3642 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3643 #ifdef CONFIG_PCI_MSI
3644 	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
3645 	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
3646 #endif
3647 	.enable_device_hook	= pnv_cxl_enable_device_hook,
3648 	.disable_device		= pnv_cxl_disable_device,
3649 	.release_device		= pnv_pci_release_device,
3650 	.window_alignment	= pnv_pci_window_alignment,
3651 	.setup_bridge		= pnv_pci_setup_bridge,
3652 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3653 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3654 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3655 	.shutdown		= pnv_pci_ioda_shutdown,
3656 };
3657 #endif
3658 
3659 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3660 					 u64 hub_id, int ioda_type)
3661 {
3662 	struct pci_controller *hose;
3663 	struct pnv_phb *phb;
3664 	unsigned long size, m64map_off, m32map_off, pemap_off;
3665 	unsigned long iomap_off = 0, dma32map_off = 0;
3666 	struct resource r;
3667 	const __be64 *prop64;
3668 	const __be32 *prop32;
3669 	int len;
3670 	unsigned int segno;
3671 	u64 phb_id;
3672 	void *aux;
3673 	long rc;
3674 
3675 	if (!of_device_is_available(np))
3676 		return;
3677 
3678 	pr_info("Initializing %s PHB (%s)\n",
3679 		pnv_phb_names[ioda_type], of_node_full_name(np));
3680 
3681 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3682 	if (!prop64) {
3683 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3684 		return;
3685 	}
3686 	phb_id = be64_to_cpup(prop64);
3687 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3688 
3689 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3690 
3691 	/* Allocate PCI controller */
3692 	phb->hose = hose = pcibios_alloc_controller(np);
3693 	if (!phb->hose) {
3694 		pr_err("  Can't allocate PCI controller for %s\n",
3695 		       np->full_name);
3696 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3697 		return;
3698 	}
3699 
3700 	spin_lock_init(&phb->lock);
3701 	prop32 = of_get_property(np, "bus-range", &len);
3702 	if (prop32 && len == 8) {
3703 		hose->first_busno = be32_to_cpu(prop32[0]);
3704 		hose->last_busno = be32_to_cpu(prop32[1]);
3705 	} else {
3706 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3707 		hose->first_busno = 0;
3708 		hose->last_busno = 0xff;
3709 	}
3710 	hose->private_data = phb;
3711 	phb->hub_id = hub_id;
3712 	phb->opal_id = phb_id;
3713 	phb->type = ioda_type;
3714 	mutex_init(&phb->ioda.pe_alloc_mutex);
3715 
3716 	/* Detect specific models for error handling */
3717 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3718 		phb->model = PNV_PHB_MODEL_P7IOC;
3719 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3720 		phb->model = PNV_PHB_MODEL_PHB3;
3721 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3722 		phb->model = PNV_PHB_MODEL_NPU;
3723 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3724 		phb->model = PNV_PHB_MODEL_NPU2;
3725 	else
3726 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3727 
3728 	/* Parse 32-bit and IO ranges (if any) */
3729 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3730 
3731 	/* Get registers */
3732 	if (!of_address_to_resource(np, 0, &r)) {
3733 		phb->regs_phys = r.start;
3734 		phb->regs = ioremap(r.start, resource_size(&r));
3735 		if (phb->regs == NULL)
3736 			pr_err("  Failed to map registers !\n");
3737 	}
3738 
3739 	/* Initialize more IODA stuff */
3740 	phb->ioda.total_pe_num = 1;
3741 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3742 	if (prop32)
3743 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3744 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3745 	if (prop32)
3746 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3747 
3748 	/* Invalidate RID to PE# mapping */
3749 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3750 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3751 
3752 	/* Parse 64-bit MMIO range */
3753 	pnv_ioda_parse_m64_window(phb);
3754 
3755 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3756 	/* FW Has already off top 64k of M32 space (MSI space) */
3757 	phb->ioda.m32_size += 0x10000;
3758 
3759 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3760 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3761 	phb->ioda.io_size = hose->pci_io_size;
3762 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3763 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3764 
3765 	/* Calculate how many 32-bit TCE segments we have */
3766 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3767 				PNV_IODA1_DMA32_SEGSIZE;
3768 
3769 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3770 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3771 			sizeof(unsigned long));
3772 	m64map_off = size;
3773 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3774 	m32map_off = size;
3775 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3776 	if (phb->type == PNV_PHB_IODA1) {
3777 		iomap_off = size;
3778 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3779 		dma32map_off = size;
3780 		size += phb->ioda.dma32_count *
3781 			sizeof(phb->ioda.dma32_segmap[0]);
3782 	}
3783 	pemap_off = size;
3784 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3785 	aux = memblock_virt_alloc(size, 0);
3786 	phb->ioda.pe_alloc = aux;
3787 	phb->ioda.m64_segmap = aux + m64map_off;
3788 	phb->ioda.m32_segmap = aux + m32map_off;
3789 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3790 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3791 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3792 	}
3793 	if (phb->type == PNV_PHB_IODA1) {
3794 		phb->ioda.io_segmap = aux + iomap_off;
3795 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3796 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3797 
3798 		phb->ioda.dma32_segmap = aux + dma32map_off;
3799 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3800 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3801 	}
3802 	phb->ioda.pe_array = aux + pemap_off;
3803 
3804 	/*
3805 	 * Choose PE number for root bus, which shouldn't have
3806 	 * M64 resources consumed by its child devices. To pick
3807 	 * the PE number adjacent to the reserved one if possible.
3808 	 */
3809 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3810 	if (phb->ioda.reserved_pe_idx == 0) {
3811 		phb->ioda.root_pe_idx = 1;
3812 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3813 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3814 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3815 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3816 	} else {
3817 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3818 	}
3819 
3820 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3821 	mutex_init(&phb->ioda.pe_list_mutex);
3822 
3823 	/* Calculate how many 32-bit TCE segments we have */
3824 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3825 				PNV_IODA1_DMA32_SEGSIZE;
3826 
3827 #if 0 /* We should really do that ... */
3828 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3829 					 window_type,
3830 					 window_num,
3831 					 starting_real_address,
3832 					 starting_pci_address,
3833 					 segment_size);
3834 #endif
3835 
3836 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3837 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3838 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3839 	if (phb->ioda.m64_size)
3840 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3841 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3842 	if (phb->ioda.io_size)
3843 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3844 			phb->ioda.io_size, phb->ioda.io_segsize);
3845 
3846 
3847 	phb->hose->ops = &pnv_pci_ops;
3848 	phb->get_pe_state = pnv_ioda_get_pe_state;
3849 	phb->freeze_pe = pnv_ioda_freeze_pe;
3850 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3851 
3852 	/* Setup MSI support */
3853 	pnv_pci_init_ioda_msis(phb);
3854 
3855 	/*
3856 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3857 	 * to let the PCI core do resource assignment. It's supposed
3858 	 * that the PCI core will do correct I/O and MMIO alignment
3859 	 * for the P2P bridge bars so that each PCI bus (excluding
3860 	 * the child P2P bridges) can form individual PE.
3861 	 */
3862 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3863 
3864 	if (phb->type == PNV_PHB_NPU) {
3865 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3866 	} else {
3867 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3868 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3869 	}
3870 
3871 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3872 
3873 #ifdef CONFIG_PCI_IOV
3874 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3875 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3876 #endif
3877 
3878 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3879 
3880 	/* Reset IODA tables to a clean state */
3881 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3882 	if (rc)
3883 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3884 
3885 	/*
3886 	 * If we're running in kdump kernel, the previous kernel never
3887 	 * shutdown PCI devices correctly. We already got IODA table
3888 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3889 	 * transactions from previous kernel.
3890 	 */
3891 	if (is_kdump_kernel()) {
3892 		pr_info("  Issue PHB reset ...\n");
3893 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3894 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3895 	}
3896 
3897 	/* Remove M64 resource if we can't configure it successfully */
3898 	if (!phb->init_m64 || phb->init_m64(phb))
3899 		hose->mem_resources[1].flags = 0;
3900 }
3901 
3902 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3903 {
3904 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3905 }
3906 
3907 void __init pnv_pci_init_npu_phb(struct device_node *np)
3908 {
3909 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3910 }
3911 
3912 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3913 {
3914 	struct device_node *phbn;
3915 	const __be64 *prop64;
3916 	u64 hub_id;
3917 
3918 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3919 
3920 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3921 	if (!prop64) {
3922 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3923 		return;
3924 	}
3925 	hub_id = be64_to_cpup(prop64);
3926 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3927 
3928 	/* Count child PHBs */
3929 	for_each_child_of_node(np, phbn) {
3930 		/* Look for IODA1 PHBs */
3931 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3932 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3933 	}
3934 }
3935