1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/memblock.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/iommu.h>
25 #include <linux/rculist.h>
26 #include <linux/sizes.h>
27 
28 #include <asm/sections.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/pci-bridge.h>
32 #include <asm/machdep.h>
33 #include <asm/msi_bitmap.h>
34 #include <asm/ppc-pci.h>
35 #include <asm/opal.h>
36 #include <asm/iommu.h>
37 #include <asm/tce.h>
38 #include <asm/xics.h>
39 #include <asm/debugfs.h>
40 #include <asm/firmware.h>
41 #include <asm/pnv-pci.h>
42 #include <asm/mmzone.h>
43 
44 #include <misc/cxl-base.h>
45 
46 #include "powernv.h"
47 #include "pci.h"
48 #include "../../../../drivers/pci/pci.h"
49 
50 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
51 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
52 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
53 
54 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
55 					      "NPU_OCAPI" };
56 
57 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
58 			    const char *fmt, ...)
59 {
60 	struct va_format vaf;
61 	va_list args;
62 	char pfix[32];
63 
64 	va_start(args, fmt);
65 
66 	vaf.fmt = fmt;
67 	vaf.va = &args;
68 
69 	if (pe->flags & PNV_IODA_PE_DEV)
70 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
71 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
72 		sprintf(pfix, "%04x:%02x     ",
73 			pci_domain_nr(pe->pbus), pe->pbus->number);
74 #ifdef CONFIG_PCI_IOV
75 	else if (pe->flags & PNV_IODA_PE_VF)
76 		sprintf(pfix, "%04x:%02x:%2x.%d",
77 			pci_domain_nr(pe->parent_dev->bus),
78 			(pe->rid & 0xff00) >> 8,
79 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
80 #endif /* CONFIG_PCI_IOV*/
81 
82 	printk("%spci %s: [PE# %.2x] %pV",
83 	       level, pfix, pe->pe_number, &vaf);
84 
85 	va_end(args);
86 }
87 
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89 static bool pci_reset_phbs __read_mostly;
90 
91 static int __init iommu_setup(char *str)
92 {
93 	if (!str)
94 		return -EINVAL;
95 
96 	while (*str) {
97 		if (!strncmp(str, "nobypass", 8)) {
98 			pnv_iommu_bypass_disabled = true;
99 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
100 			break;
101 		}
102 		str += strcspn(str, ",");
103 		if (*str == ',')
104 			str++;
105 	}
106 
107 	return 0;
108 }
109 early_param("iommu", iommu_setup);
110 
111 static int __init pci_reset_phbs_setup(char *str)
112 {
113 	pci_reset_phbs = true;
114 	return 0;
115 }
116 
117 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
118 
119 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
120 {
121 	/*
122 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
123 	 * allocation code sometimes decides to put a 64-bit prefetchable
124 	 * BAR in the 32-bit window, so we have to compare the addresses.
125 	 *
126 	 * For simplicity we only test resource start.
127 	 */
128 	return (r->start >= phb->ioda.m64_base &&
129 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
130 }
131 
132 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
133 {
134 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
135 
136 	return (resource_flags & flags) == flags;
137 }
138 
139 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
140 {
141 	s64 rc;
142 
143 	phb->ioda.pe_array[pe_no].phb = phb;
144 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
145 
146 	/*
147 	 * Clear the PE frozen state as it might be put into frozen state
148 	 * in the last PCI remove path. It's not harmful to do so when the
149 	 * PE is already in unfrozen state.
150 	 */
151 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
152 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
153 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
154 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
155 			__func__, rc, phb->hose->global_number, pe_no);
156 
157 	return &phb->ioda.pe_array[pe_no];
158 }
159 
160 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
161 {
162 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
163 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
164 			__func__, pe_no, phb->hose->global_number);
165 		return;
166 	}
167 
168 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
169 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
170 			 __func__, pe_no, phb->hose->global_number);
171 
172 	pnv_ioda_init_pe(phb, pe_no);
173 }
174 
175 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
176 {
177 	long pe;
178 
179 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
180 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
181 			return pnv_ioda_init_pe(phb, pe);
182 	}
183 
184 	return NULL;
185 }
186 
187 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
188 {
189 	struct pnv_phb *phb = pe->phb;
190 	unsigned int pe_num = pe->pe_number;
191 
192 	WARN_ON(pe->pdev);
193 	WARN_ON(pe->npucomp); /* NPUs are not supposed to be freed */
194 	kfree(pe->npucomp);
195 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
196 	clear_bit(pe_num, phb->ioda.pe_alloc);
197 }
198 
199 /* The default M64 BAR is shared by all PEs */
200 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
201 {
202 	const char *desc;
203 	struct resource *r;
204 	s64 rc;
205 
206 	/* Configure the default M64 BAR */
207 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
208 					 OPAL_M64_WINDOW_TYPE,
209 					 phb->ioda.m64_bar_idx,
210 					 phb->ioda.m64_base,
211 					 0, /* unused */
212 					 phb->ioda.m64_size);
213 	if (rc != OPAL_SUCCESS) {
214 		desc = "configuring";
215 		goto fail;
216 	}
217 
218 	/* Enable the default M64 BAR */
219 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
220 				      OPAL_M64_WINDOW_TYPE,
221 				      phb->ioda.m64_bar_idx,
222 				      OPAL_ENABLE_M64_SPLIT);
223 	if (rc != OPAL_SUCCESS) {
224 		desc = "enabling";
225 		goto fail;
226 	}
227 
228 	/*
229 	 * Exclude the segments for reserved and root bus PE, which
230 	 * are first or last two PEs.
231 	 */
232 	r = &phb->hose->mem_resources[1];
233 	if (phb->ioda.reserved_pe_idx == 0)
234 		r->start += (2 * phb->ioda.m64_segsize);
235 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
236 		r->end -= (2 * phb->ioda.m64_segsize);
237 	else
238 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
239 			phb->ioda.reserved_pe_idx);
240 
241 	return 0;
242 
243 fail:
244 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
245 		rc, desc, phb->ioda.m64_bar_idx);
246 	opal_pci_phb_mmio_enable(phb->opal_id,
247 				 OPAL_M64_WINDOW_TYPE,
248 				 phb->ioda.m64_bar_idx,
249 				 OPAL_DISABLE_M64);
250 	return -EIO;
251 }
252 
253 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
254 					 unsigned long *pe_bitmap)
255 {
256 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
257 	struct pnv_phb *phb = hose->private_data;
258 	struct resource *r;
259 	resource_size_t base, sgsz, start, end;
260 	int segno, i;
261 
262 	base = phb->ioda.m64_base;
263 	sgsz = phb->ioda.m64_segsize;
264 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
265 		r = &pdev->resource[i];
266 		if (!r->parent || !pnv_pci_is_m64(phb, r))
267 			continue;
268 
269 		start = _ALIGN_DOWN(r->start - base, sgsz);
270 		end = _ALIGN_UP(r->end - base, sgsz);
271 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
272 			if (pe_bitmap)
273 				set_bit(segno, pe_bitmap);
274 			else
275 				pnv_ioda_reserve_pe(phb, segno);
276 		}
277 	}
278 }
279 
280 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
281 {
282 	struct resource *r;
283 	int index;
284 
285 	/*
286 	 * There are 16 M64 BARs, each of which has 8 segments. So
287 	 * there are as many M64 segments as the maximum number of
288 	 * PEs, which is 128.
289 	 */
290 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
291 		unsigned long base, segsz = phb->ioda.m64_segsize;
292 		int64_t rc;
293 
294 		base = phb->ioda.m64_base +
295 		       index * PNV_IODA1_M64_SEGS * segsz;
296 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
297 				OPAL_M64_WINDOW_TYPE, index, base, 0,
298 				PNV_IODA1_M64_SEGS * segsz);
299 		if (rc != OPAL_SUCCESS) {
300 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
301 				rc, phb->hose->global_number, index);
302 			goto fail;
303 		}
304 
305 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
306 				OPAL_M64_WINDOW_TYPE, index,
307 				OPAL_ENABLE_M64_SPLIT);
308 		if (rc != OPAL_SUCCESS) {
309 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
310 				rc, phb->hose->global_number, index);
311 			goto fail;
312 		}
313 	}
314 
315 	/*
316 	 * Exclude the segments for reserved and root bus PE, which
317 	 * are first or last two PEs.
318 	 */
319 	r = &phb->hose->mem_resources[1];
320 	if (phb->ioda.reserved_pe_idx == 0)
321 		r->start += (2 * phb->ioda.m64_segsize);
322 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
323 		r->end -= (2 * phb->ioda.m64_segsize);
324 	else
325 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
326 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
327 
328 	return 0;
329 
330 fail:
331 	for ( ; index >= 0; index--)
332 		opal_pci_phb_mmio_enable(phb->opal_id,
333 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
334 
335 	return -EIO;
336 }
337 
338 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
339 				    unsigned long *pe_bitmap,
340 				    bool all)
341 {
342 	struct pci_dev *pdev;
343 
344 	list_for_each_entry(pdev, &bus->devices, bus_list) {
345 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
346 
347 		if (all && pdev->subordinate)
348 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
349 						pe_bitmap, all);
350 	}
351 }
352 
353 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
354 {
355 	struct pci_controller *hose = pci_bus_to_host(bus);
356 	struct pnv_phb *phb = hose->private_data;
357 	struct pnv_ioda_pe *master_pe, *pe;
358 	unsigned long size, *pe_alloc;
359 	int i;
360 
361 	/* Root bus shouldn't use M64 */
362 	if (pci_is_root_bus(bus))
363 		return NULL;
364 
365 	/* Allocate bitmap */
366 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
367 	pe_alloc = kzalloc(size, GFP_KERNEL);
368 	if (!pe_alloc) {
369 		pr_warn("%s: Out of memory !\n",
370 			__func__);
371 		return NULL;
372 	}
373 
374 	/* Figure out reserved PE numbers by the PE */
375 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
376 
377 	/*
378 	 * the current bus might not own M64 window and that's all
379 	 * contributed by its child buses. For the case, we needn't
380 	 * pick M64 dependent PE#.
381 	 */
382 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
383 		kfree(pe_alloc);
384 		return NULL;
385 	}
386 
387 	/*
388 	 * Figure out the master PE and put all slave PEs to master
389 	 * PE's list to form compound PE.
390 	 */
391 	master_pe = NULL;
392 	i = -1;
393 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
394 		phb->ioda.total_pe_num) {
395 		pe = &phb->ioda.pe_array[i];
396 
397 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
398 		if (!master_pe) {
399 			pe->flags |= PNV_IODA_PE_MASTER;
400 			INIT_LIST_HEAD(&pe->slaves);
401 			master_pe = pe;
402 		} else {
403 			pe->flags |= PNV_IODA_PE_SLAVE;
404 			pe->master = master_pe;
405 			list_add_tail(&pe->list, &master_pe->slaves);
406 		}
407 
408 		/*
409 		 * P7IOC supports M64DT, which helps mapping M64 segment
410 		 * to one particular PE#. However, PHB3 has fixed mapping
411 		 * between M64 segment and PE#. In order to have same logic
412 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
413 		 * segment and PE# on P7IOC.
414 		 */
415 		if (phb->type == PNV_PHB_IODA1) {
416 			int64_t rc;
417 
418 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
419 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
420 					pe->pe_number / PNV_IODA1_M64_SEGS,
421 					pe->pe_number % PNV_IODA1_M64_SEGS);
422 			if (rc != OPAL_SUCCESS)
423 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
424 					__func__, rc, phb->hose->global_number,
425 					pe->pe_number);
426 		}
427 	}
428 
429 	kfree(pe_alloc);
430 	return master_pe;
431 }
432 
433 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
434 {
435 	struct pci_controller *hose = phb->hose;
436 	struct device_node *dn = hose->dn;
437 	struct resource *res;
438 	u32 m64_range[2], i;
439 	const __be32 *r;
440 	u64 pci_addr;
441 
442 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
443 		pr_info("  Not support M64 window\n");
444 		return;
445 	}
446 
447 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
448 		pr_info("  Firmware too old to support M64 window\n");
449 		return;
450 	}
451 
452 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
453 	if (!r) {
454 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
455 			dn);
456 		return;
457 	}
458 
459 	/*
460 	 * Find the available M64 BAR range and pickup the last one for
461 	 * covering the whole 64-bits space. We support only one range.
462 	 */
463 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
464 				       m64_range, 2)) {
465 		/* In absence of the property, assume 0..15 */
466 		m64_range[0] = 0;
467 		m64_range[1] = 16;
468 	}
469 	/* We only support 64 bits in our allocator */
470 	if (m64_range[1] > 63) {
471 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
472 			__func__, m64_range[1], phb->hose->global_number);
473 		m64_range[1] = 63;
474 	}
475 	/* Empty range, no m64 */
476 	if (m64_range[1] <= m64_range[0]) {
477 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
478 			__func__, phb->hose->global_number);
479 		return;
480 	}
481 
482 	/* Configure M64 informations */
483 	res = &hose->mem_resources[1];
484 	res->name = dn->full_name;
485 	res->start = of_translate_address(dn, r + 2);
486 	res->end = res->start + of_read_number(r + 4, 2) - 1;
487 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
488 	pci_addr = of_read_number(r, 2);
489 	hose->mem_offset[1] = res->start - pci_addr;
490 
491 	phb->ioda.m64_size = resource_size(res);
492 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
493 	phb->ioda.m64_base = pci_addr;
494 
495 	/* This lines up nicely with the display from processing OF ranges */
496 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
497 		res->start, res->end, pci_addr, m64_range[0],
498 		m64_range[0] + m64_range[1] - 1);
499 
500 	/* Mark all M64 used up by default */
501 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
502 
503 	/* Use last M64 BAR to cover M64 window */
504 	m64_range[1]--;
505 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
506 
507 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
508 
509 	/* Mark remaining ones free */
510 	for (i = m64_range[0]; i < m64_range[1]; i++)
511 		clear_bit(i, &phb->ioda.m64_bar_alloc);
512 
513 	/*
514 	 * Setup init functions for M64 based on IODA version, IODA3 uses
515 	 * the IODA2 code.
516 	 */
517 	if (phb->type == PNV_PHB_IODA1)
518 		phb->init_m64 = pnv_ioda1_init_m64;
519 	else
520 		phb->init_m64 = pnv_ioda2_init_m64;
521 }
522 
523 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
524 {
525 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
526 	struct pnv_ioda_pe *slave;
527 	s64 rc;
528 
529 	/* Fetch master PE */
530 	if (pe->flags & PNV_IODA_PE_SLAVE) {
531 		pe = pe->master;
532 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
533 			return;
534 
535 		pe_no = pe->pe_number;
536 	}
537 
538 	/* Freeze master PE */
539 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
540 				     pe_no,
541 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
542 	if (rc != OPAL_SUCCESS) {
543 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
544 			__func__, rc, phb->hose->global_number, pe_no);
545 		return;
546 	}
547 
548 	/* Freeze slave PEs */
549 	if (!(pe->flags & PNV_IODA_PE_MASTER))
550 		return;
551 
552 	list_for_each_entry(slave, &pe->slaves, list) {
553 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
554 					     slave->pe_number,
555 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
556 		if (rc != OPAL_SUCCESS)
557 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
558 				__func__, rc, phb->hose->global_number,
559 				slave->pe_number);
560 	}
561 }
562 
563 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
564 {
565 	struct pnv_ioda_pe *pe, *slave;
566 	s64 rc;
567 
568 	/* Find master PE */
569 	pe = &phb->ioda.pe_array[pe_no];
570 	if (pe->flags & PNV_IODA_PE_SLAVE) {
571 		pe = pe->master;
572 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
573 		pe_no = pe->pe_number;
574 	}
575 
576 	/* Clear frozen state for master PE */
577 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
578 	if (rc != OPAL_SUCCESS) {
579 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
580 			__func__, rc, opt, phb->hose->global_number, pe_no);
581 		return -EIO;
582 	}
583 
584 	if (!(pe->flags & PNV_IODA_PE_MASTER))
585 		return 0;
586 
587 	/* Clear frozen state for slave PEs */
588 	list_for_each_entry(slave, &pe->slaves, list) {
589 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
590 					     slave->pe_number,
591 					     opt);
592 		if (rc != OPAL_SUCCESS) {
593 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
594 				__func__, rc, opt, phb->hose->global_number,
595 				slave->pe_number);
596 			return -EIO;
597 		}
598 	}
599 
600 	return 0;
601 }
602 
603 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
604 {
605 	struct pnv_ioda_pe *slave, *pe;
606 	u8 fstate = 0, state;
607 	__be16 pcierr = 0;
608 	s64 rc;
609 
610 	/* Sanity check on PE number */
611 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
612 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
613 
614 	/*
615 	 * Fetch the master PE and the PE instance might be
616 	 * not initialized yet.
617 	 */
618 	pe = &phb->ioda.pe_array[pe_no];
619 	if (pe->flags & PNV_IODA_PE_SLAVE) {
620 		pe = pe->master;
621 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
622 		pe_no = pe->pe_number;
623 	}
624 
625 	/* Check the master PE */
626 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
627 					&state, &pcierr, NULL);
628 	if (rc != OPAL_SUCCESS) {
629 		pr_warn("%s: Failure %lld getting "
630 			"PHB#%x-PE#%x state\n",
631 			__func__, rc,
632 			phb->hose->global_number, pe_no);
633 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
634 	}
635 
636 	/* Check the slave PE */
637 	if (!(pe->flags & PNV_IODA_PE_MASTER))
638 		return state;
639 
640 	list_for_each_entry(slave, &pe->slaves, list) {
641 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
642 						slave->pe_number,
643 						&fstate,
644 						&pcierr,
645 						NULL);
646 		if (rc != OPAL_SUCCESS) {
647 			pr_warn("%s: Failure %lld getting "
648 				"PHB#%x-PE#%x state\n",
649 				__func__, rc,
650 				phb->hose->global_number, slave->pe_number);
651 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
652 		}
653 
654 		/*
655 		 * Override the result based on the ascending
656 		 * priority.
657 		 */
658 		if (fstate > state)
659 			state = fstate;
660 	}
661 
662 	return state;
663 }
664 
665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 {
667 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
668 	struct pnv_phb *phb = hose->private_data;
669 	struct pci_dn *pdn = pci_get_pdn(dev);
670 
671 	if (!pdn)
672 		return NULL;
673 	if (pdn->pe_number == IODA_INVALID_PE)
674 		return NULL;
675 	return &phb->ioda.pe_array[pdn->pe_number];
676 }
677 
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679 				  struct pnv_ioda_pe *parent,
680 				  struct pnv_ioda_pe *child,
681 				  bool is_add)
682 {
683 	const char *desc = is_add ? "adding" : "removing";
684 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685 			      OPAL_REMOVE_PE_FROM_DOMAIN;
686 	struct pnv_ioda_pe *slave;
687 	long rc;
688 
689 	/* Parent PE affects child PE */
690 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691 				child->pe_number, op);
692 	if (rc != OPAL_SUCCESS) {
693 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694 			rc, desc);
695 		return -ENXIO;
696 	}
697 
698 	if (!(child->flags & PNV_IODA_PE_MASTER))
699 		return 0;
700 
701 	/* Compound case: parent PE affects slave PEs */
702 	list_for_each_entry(slave, &child->slaves, list) {
703 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704 					slave->pe_number, op);
705 		if (rc != OPAL_SUCCESS) {
706 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707 				rc, desc);
708 			return -ENXIO;
709 		}
710 	}
711 
712 	return 0;
713 }
714 
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716 			      struct pnv_ioda_pe *pe,
717 			      bool is_add)
718 {
719 	struct pnv_ioda_pe *slave;
720 	struct pci_dev *pdev = NULL;
721 	int ret;
722 
723 	/*
724 	 * Clear PE frozen state. If it's master PE, we need
725 	 * clear slave PE frozen state as well.
726 	 */
727 	if (is_add) {
728 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730 		if (pe->flags & PNV_IODA_PE_MASTER) {
731 			list_for_each_entry(slave, &pe->slaves, list)
732 				opal_pci_eeh_freeze_clear(phb->opal_id,
733 							  slave->pe_number,
734 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735 		}
736 	}
737 
738 	/*
739 	 * Associate PE in PELT. We need add the PE into the
740 	 * corresponding PELT-V as well. Otherwise, the error
741 	 * originated from the PE might contribute to other
742 	 * PEs.
743 	 */
744 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745 	if (ret)
746 		return ret;
747 
748 	/* For compound PEs, any one affects all of them */
749 	if (pe->flags & PNV_IODA_PE_MASTER) {
750 		list_for_each_entry(slave, &pe->slaves, list) {
751 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752 			if (ret)
753 				return ret;
754 		}
755 	}
756 
757 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758 		pdev = pe->pbus->self;
759 	else if (pe->flags & PNV_IODA_PE_DEV)
760 		pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762 	else if (pe->flags & PNV_IODA_PE_VF)
763 		pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765 	while (pdev) {
766 		struct pci_dn *pdn = pci_get_pdn(pdev);
767 		struct pnv_ioda_pe *parent;
768 
769 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 			parent = &phb->ioda.pe_array[pdn->pe_number];
771 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772 			if (ret)
773 				return ret;
774 		}
775 
776 		pdev = pdev->bus->self;
777 	}
778 
779 	return 0;
780 }
781 
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784 	struct pci_dev *parent;
785 	uint8_t bcomp, dcomp, fcomp;
786 	int64_t rc;
787 	long rid_end, rid;
788 
789 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790 	if (pe->pbus) {
791 		int count;
792 
793 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795 		parent = pe->pbus->self;
796 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
797 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798 		else
799 			count = 1;
800 
801 		switch(count) {
802 		case  1: bcomp = OpalPciBusAll;         break;
803 		case  2: bcomp = OpalPciBus7Bits;       break;
804 		case  4: bcomp = OpalPciBus6Bits;       break;
805 		case  8: bcomp = OpalPciBus5Bits;       break;
806 		case 16: bcomp = OpalPciBus4Bits;       break;
807 		case 32: bcomp = OpalPciBus3Bits;       break;
808 		default:
809 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810 			        count);
811 			/* Do an exact match only */
812 			bcomp = OpalPciBusAll;
813 		}
814 		rid_end = pe->rid + (count << 8);
815 	} else {
816 #ifdef CONFIG_PCI_IOV
817 		if (pe->flags & PNV_IODA_PE_VF)
818 			parent = pe->parent_dev;
819 		else
820 #endif
821 			parent = pe->pdev->bus->self;
822 		bcomp = OpalPciBusAll;
823 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825 		rid_end = pe->rid + 1;
826 	}
827 
828 	/* Clear the reverse map */
829 	for (rid = pe->rid; rid < rid_end; rid++)
830 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831 
832 	/* Release from all parents PELT-V */
833 	while (parent) {
834 		struct pci_dn *pdn = pci_get_pdn(parent);
835 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838 			/* XXX What to do in case of error ? */
839 		}
840 		parent = parent->bus->self;
841 	}
842 
843 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845 
846 	/* Disassociate PE in PELT */
847 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849 	if (rc)
850 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
851 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853 	if (rc)
854 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855 
856 	pe->pbus = NULL;
857 	pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859 	pe->parent_dev = NULL;
860 #endif
861 
862 	return 0;
863 }
864 
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867 	struct pci_dev *parent;
868 	uint8_t bcomp, dcomp, fcomp;
869 	long rc, rid_end, rid;
870 
871 	/* Bus validation ? */
872 	if (pe->pbus) {
873 		int count;
874 
875 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877 		parent = pe->pbus->self;
878 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
879 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880 		else
881 			count = 1;
882 
883 		switch(count) {
884 		case  1: bcomp = OpalPciBusAll;		break;
885 		case  2: bcomp = OpalPciBus7Bits;	break;
886 		case  4: bcomp = OpalPciBus6Bits;	break;
887 		case  8: bcomp = OpalPciBus5Bits;	break;
888 		case 16: bcomp = OpalPciBus4Bits;	break;
889 		case 32: bcomp = OpalPciBus3Bits;	break;
890 		default:
891 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892 			        count);
893 			/* Do an exact match only */
894 			bcomp = OpalPciBusAll;
895 		}
896 		rid_end = pe->rid + (count << 8);
897 	} else {
898 #ifdef CONFIG_PCI_IOV
899 		if (pe->flags & PNV_IODA_PE_VF)
900 			parent = pe->parent_dev;
901 		else
902 #endif /* CONFIG_PCI_IOV */
903 			parent = pe->pdev->bus->self;
904 		bcomp = OpalPciBusAll;
905 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907 		rid_end = pe->rid + 1;
908 	}
909 
910 	/*
911 	 * Associate PE in PELT. We need add the PE into the
912 	 * corresponding PELT-V as well. Otherwise, the error
913 	 * originated from the PE might contribute to other
914 	 * PEs.
915 	 */
916 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
918 	if (rc) {
919 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920 		return -ENXIO;
921 	}
922 
923 	/*
924 	 * Configure PELTV. NPUs don't have a PELTV table so skip
925 	 * configuration on them.
926 	 */
927 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
928 		pnv_ioda_set_peltv(phb, pe, true);
929 
930 	/* Setup reverse map */
931 	for (rid = pe->rid; rid < rid_end; rid++)
932 		phb->ioda.pe_rmap[rid] = pe->pe_number;
933 
934 	/* Setup one MVTs on IODA1 */
935 	if (phb->type != PNV_PHB_IODA1) {
936 		pe->mve_number = 0;
937 		goto out;
938 	}
939 
940 	pe->mve_number = pe->pe_number;
941 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942 	if (rc != OPAL_SUCCESS) {
943 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944 		       rc, pe->mve_number);
945 		pe->mve_number = -1;
946 	} else {
947 		rc = opal_pci_set_mve_enable(phb->opal_id,
948 					     pe->mve_number, OPAL_ENABLE_MVE);
949 		if (rc) {
950 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951 			       rc, pe->mve_number);
952 			pe->mve_number = -1;
953 		}
954 	}
955 
956 out:
957 	return 0;
958 }
959 
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963 	struct pci_dn *pdn = pci_get_pdn(dev);
964 	int i;
965 	struct resource *res, res2;
966 	resource_size_t size;
967 	u16 num_vfs;
968 
969 	if (!dev->is_physfn)
970 		return -EINVAL;
971 
972 	/*
973 	 * "offset" is in VFs.  The M64 windows are sized so that when they
974 	 * are segmented, each segment is the same size as the IOV BAR.
975 	 * Each segment is in a separate PE, and the high order bits of the
976 	 * address are the PE number.  Therefore, each VF's BAR is in a
977 	 * separate PE, and changing the IOV BAR start address changes the
978 	 * range of PEs the VFs are in.
979 	 */
980 	num_vfs = pdn->num_vfs;
981 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982 		res = &dev->resource[i + PCI_IOV_RESOURCES];
983 		if (!res->flags || !res->parent)
984 			continue;
985 
986 		/*
987 		 * The actual IOV BAR range is determined by the start address
988 		 * and the actual size for num_vfs VFs BAR.  This check is to
989 		 * make sure that after shifting, the range will not overlap
990 		 * with another device.
991 		 */
992 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993 		res2.flags = res->flags;
994 		res2.start = res->start + (size * offset);
995 		res2.end = res2.start + (size * num_vfs) - 1;
996 
997 		if (res2.end > res->end) {
998 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999 				i, &res2, res, num_vfs, offset);
1000 			return -EBUSY;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * Since M64 BAR shares segments among all possible 256 PEs,
1006 	 * we have to shift the beginning of PF IOV BAR to make it start from
1007 	 * the segment which belongs to the PE number assigned to the first VF.
1008 	 * This creates a "hole" in the /proc/iomem which could be used for
1009 	 * allocating other resources so we reserve this area below and
1010 	 * release when IOV is released.
1011 	 */
1012 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1013 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1014 		if (!res->flags || !res->parent)
1015 			continue;
1016 
1017 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1018 		res2 = *res;
1019 		res->start += size * offset;
1020 
1021 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1022 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1023 			 num_vfs, offset);
1024 
1025 		if (offset < 0) {
1026 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1027 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1028 		}
1029 
1030 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1031 
1032 		if (offset > 0) {
1033 			pdn->holes[i].start = res2.start;
1034 			pdn->holes[i].end = res2.start + size * offset - 1;
1035 			pdn->holes[i].flags = IORESOURCE_BUS;
1036 			pdn->holes[i].name = "pnv_iov_reserved";
1037 			devm_request_resource(&dev->dev, res->parent,
1038 					&pdn->holes[i]);
1039 		}
1040 	}
1041 	return 0;
1042 }
1043 #endif /* CONFIG_PCI_IOV */
1044 
1045 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1046 {
1047 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1048 	struct pnv_phb *phb = hose->private_data;
1049 	struct pci_dn *pdn = pci_get_pdn(dev);
1050 	struct pnv_ioda_pe *pe;
1051 
1052 	if (!pdn) {
1053 		pr_err("%s: Device tree node not associated properly\n",
1054 			   pci_name(dev));
1055 		return NULL;
1056 	}
1057 	if (pdn->pe_number != IODA_INVALID_PE)
1058 		return NULL;
1059 
1060 	pe = pnv_ioda_alloc_pe(phb);
1061 	if (!pe) {
1062 		pr_warn("%s: Not enough PE# available, disabling device\n",
1063 			pci_name(dev));
1064 		return NULL;
1065 	}
1066 
1067 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1068 	 * pointer in the PE data structure, both should be destroyed at the
1069 	 * same time. However, this needs to be looked at more closely again
1070 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1071 	 *
1072 	 * At some point we want to remove the PDN completely anyways
1073 	 */
1074 	pci_dev_get(dev);
1075 	pdn->pe_number = pe->pe_number;
1076 	pe->flags = PNV_IODA_PE_DEV;
1077 	pe->pdev = dev;
1078 	pe->pbus = NULL;
1079 	pe->mve_number = -1;
1080 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1081 
1082 	pe_info(pe, "Associated device to PE\n");
1083 
1084 	if (pnv_ioda_configure_pe(phb, pe)) {
1085 		/* XXX What do we do here ? */
1086 		pnv_ioda_free_pe(pe);
1087 		pdn->pe_number = IODA_INVALID_PE;
1088 		pe->pdev = NULL;
1089 		pci_dev_put(dev);
1090 		return NULL;
1091 	}
1092 
1093 	/* Put PE to the list */
1094 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1095 
1096 	return pe;
1097 }
1098 
1099 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1100 {
1101 	struct pci_dev *dev;
1102 
1103 	list_for_each_entry(dev, &bus->devices, bus_list) {
1104 		struct pci_dn *pdn = pci_get_pdn(dev);
1105 
1106 		if (pdn == NULL) {
1107 			pr_warn("%s: No device node associated with device !\n",
1108 				pci_name(dev));
1109 			continue;
1110 		}
1111 
1112 		/*
1113 		 * In partial hotplug case, the PCI device might be still
1114 		 * associated with the PE and needn't attach it to the PE
1115 		 * again.
1116 		 */
1117 		if (pdn->pe_number != IODA_INVALID_PE)
1118 			continue;
1119 
1120 		pe->device_count++;
1121 		pdn->pe_number = pe->pe_number;
1122 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1123 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1124 	}
1125 }
1126 
1127 /*
1128  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1129  * single PCI bus. Another one that contains the primary PCI bus and its
1130  * subordinate PCI devices and buses. The second type of PE is normally
1131  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1132  */
1133 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1134 {
1135 	struct pci_controller *hose = pci_bus_to_host(bus);
1136 	struct pnv_phb *phb = hose->private_data;
1137 	struct pnv_ioda_pe *pe = NULL;
1138 	unsigned int pe_num;
1139 
1140 	/*
1141 	 * In partial hotplug case, the PE instance might be still alive.
1142 	 * We should reuse it instead of allocating a new one.
1143 	 */
1144 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1145 	if (pe_num != IODA_INVALID_PE) {
1146 		pe = &phb->ioda.pe_array[pe_num];
1147 		pnv_ioda_setup_same_PE(bus, pe);
1148 		return NULL;
1149 	}
1150 
1151 	/* PE number for root bus should have been reserved */
1152 	if (pci_is_root_bus(bus) &&
1153 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1154 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1155 
1156 	/* Check if PE is determined by M64 */
1157 	if (!pe)
1158 		pe = pnv_ioda_pick_m64_pe(bus, all);
1159 
1160 	/* The PE number isn't pinned by M64 */
1161 	if (!pe)
1162 		pe = pnv_ioda_alloc_pe(phb);
1163 
1164 	if (!pe) {
1165 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1166 			__func__, pci_domain_nr(bus), bus->number);
1167 		return NULL;
1168 	}
1169 
1170 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1171 	pe->pbus = bus;
1172 	pe->pdev = NULL;
1173 	pe->mve_number = -1;
1174 	pe->rid = bus->busn_res.start << 8;
1175 
1176 	if (all)
1177 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1178 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1179 	else
1180 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1181 			bus->busn_res.start, pe->pe_number);
1182 
1183 	if (pnv_ioda_configure_pe(phb, pe)) {
1184 		/* XXX What do we do here ? */
1185 		pnv_ioda_free_pe(pe);
1186 		pe->pbus = NULL;
1187 		return NULL;
1188 	}
1189 
1190 	/* Associate it with all child devices */
1191 	pnv_ioda_setup_same_PE(bus, pe);
1192 
1193 	/* Put PE to the list */
1194 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1195 
1196 	return pe;
1197 }
1198 
1199 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1200 {
1201 	int pe_num, found_pe = false, rc;
1202 	long rid;
1203 	struct pnv_ioda_pe *pe;
1204 	struct pci_dev *gpu_pdev;
1205 	struct pci_dn *npu_pdn;
1206 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1207 	struct pnv_phb *phb = hose->private_data;
1208 
1209 	/*
1210 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1211 	 * error handling. This means we only have three PEs remaining
1212 	 * which need to be assigned to four links, implying some
1213 	 * links must share PEs.
1214 	 *
1215 	 * To achieve this we assign PEs such that NPUs linking the
1216 	 * same GPU get assigned the same PE.
1217 	 */
1218 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1219 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1220 		pe = &phb->ioda.pe_array[pe_num];
1221 		if (!pe->pdev)
1222 			continue;
1223 
1224 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1225 			/*
1226 			 * This device has the same peer GPU so should
1227 			 * be assigned the same PE as the existing
1228 			 * peer NPU.
1229 			 */
1230 			dev_info(&npu_pdev->dev,
1231 				"Associating to existing PE %x\n", pe_num);
1232 			pci_dev_get(npu_pdev);
1233 			npu_pdn = pci_get_pdn(npu_pdev);
1234 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1235 			npu_pdn->pe_number = pe_num;
1236 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1237 
1238 			/* Map the PE to this link */
1239 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1240 					OpalPciBusAll,
1241 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1242 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1243 					OPAL_MAP_PE);
1244 			WARN_ON(rc != OPAL_SUCCESS);
1245 			found_pe = true;
1246 			break;
1247 		}
1248 	}
1249 
1250 	if (!found_pe)
1251 		/*
1252 		 * Could not find an existing PE so allocate a new
1253 		 * one.
1254 		 */
1255 		return pnv_ioda_setup_dev_PE(npu_pdev);
1256 	else
1257 		return pe;
1258 }
1259 
1260 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1261 {
1262 	struct pci_dev *pdev;
1263 
1264 	list_for_each_entry(pdev, &bus->devices, bus_list)
1265 		pnv_ioda_setup_npu_PE(pdev);
1266 }
1267 
1268 static void pnv_pci_ioda_setup_PEs(void)
1269 {
1270 	struct pci_controller *hose;
1271 	struct pnv_phb *phb;
1272 	struct pci_bus *bus;
1273 	struct pci_dev *pdev;
1274 	struct pnv_ioda_pe *pe;
1275 
1276 	list_for_each_entry(hose, &hose_list, list_node) {
1277 		phb = hose->private_data;
1278 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1279 			/* PE#0 is needed for error reporting */
1280 			pnv_ioda_reserve_pe(phb, 0);
1281 			pnv_ioda_setup_npu_PEs(hose->bus);
1282 			if (phb->model == PNV_PHB_MODEL_NPU2)
1283 				WARN_ON_ONCE(pnv_npu2_init(hose));
1284 		}
1285 		if (phb->type == PNV_PHB_NPU_OCAPI) {
1286 			bus = hose->bus;
1287 			list_for_each_entry(pdev, &bus->devices, bus_list)
1288 				pnv_ioda_setup_dev_PE(pdev);
1289 		}
1290 	}
1291 	list_for_each_entry(hose, &hose_list, list_node) {
1292 		phb = hose->private_data;
1293 		if (phb->type != PNV_PHB_IODA2)
1294 			continue;
1295 
1296 		list_for_each_entry(pe, &phb->ioda.pe_list, list)
1297 			pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1298 	}
1299 }
1300 
1301 #ifdef CONFIG_PCI_IOV
1302 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1303 {
1304 	struct pci_bus        *bus;
1305 	struct pci_controller *hose;
1306 	struct pnv_phb        *phb;
1307 	struct pci_dn         *pdn;
1308 	int                    i, j;
1309 	int                    m64_bars;
1310 
1311 	bus = pdev->bus;
1312 	hose = pci_bus_to_host(bus);
1313 	phb = hose->private_data;
1314 	pdn = pci_get_pdn(pdev);
1315 
1316 	if (pdn->m64_single_mode)
1317 		m64_bars = num_vfs;
1318 	else
1319 		m64_bars = 1;
1320 
1321 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1322 		for (j = 0; j < m64_bars; j++) {
1323 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1324 				continue;
1325 			opal_pci_phb_mmio_enable(phb->opal_id,
1326 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1327 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1328 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1329 		}
1330 
1331 	kfree(pdn->m64_map);
1332 	return 0;
1333 }
1334 
1335 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1336 {
1337 	struct pci_bus        *bus;
1338 	struct pci_controller *hose;
1339 	struct pnv_phb        *phb;
1340 	struct pci_dn         *pdn;
1341 	unsigned int           win;
1342 	struct resource       *res;
1343 	int                    i, j;
1344 	int64_t                rc;
1345 	int                    total_vfs;
1346 	resource_size_t        size, start;
1347 	int                    pe_num;
1348 	int                    m64_bars;
1349 
1350 	bus = pdev->bus;
1351 	hose = pci_bus_to_host(bus);
1352 	phb = hose->private_data;
1353 	pdn = pci_get_pdn(pdev);
1354 	total_vfs = pci_sriov_get_totalvfs(pdev);
1355 
1356 	if (pdn->m64_single_mode)
1357 		m64_bars = num_vfs;
1358 	else
1359 		m64_bars = 1;
1360 
1361 	pdn->m64_map = kmalloc_array(m64_bars,
1362 				     sizeof(*pdn->m64_map),
1363 				     GFP_KERNEL);
1364 	if (!pdn->m64_map)
1365 		return -ENOMEM;
1366 	/* Initialize the m64_map to IODA_INVALID_M64 */
1367 	for (i = 0; i < m64_bars ; i++)
1368 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1369 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1370 
1371 
1372 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1373 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1374 		if (!res->flags || !res->parent)
1375 			continue;
1376 
1377 		for (j = 0; j < m64_bars; j++) {
1378 			do {
1379 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1380 						phb->ioda.m64_bar_idx + 1, 0);
1381 
1382 				if (win >= phb->ioda.m64_bar_idx + 1)
1383 					goto m64_failed;
1384 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1385 
1386 			pdn->m64_map[j][i] = win;
1387 
1388 			if (pdn->m64_single_mode) {
1389 				size = pci_iov_resource_size(pdev,
1390 							PCI_IOV_RESOURCES + i);
1391 				start = res->start + size * j;
1392 			} else {
1393 				size = resource_size(res);
1394 				start = res->start;
1395 			}
1396 
1397 			/* Map the M64 here */
1398 			if (pdn->m64_single_mode) {
1399 				pe_num = pdn->pe_num_map[j];
1400 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1401 						pe_num, OPAL_M64_WINDOW_TYPE,
1402 						pdn->m64_map[j][i], 0);
1403 			}
1404 
1405 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1406 						 OPAL_M64_WINDOW_TYPE,
1407 						 pdn->m64_map[j][i],
1408 						 start,
1409 						 0, /* unused */
1410 						 size);
1411 
1412 
1413 			if (rc != OPAL_SUCCESS) {
1414 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1415 					win, rc);
1416 				goto m64_failed;
1417 			}
1418 
1419 			if (pdn->m64_single_mode)
1420 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1421 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1422 			else
1423 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1424 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1425 
1426 			if (rc != OPAL_SUCCESS) {
1427 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1428 					win, rc);
1429 				goto m64_failed;
1430 			}
1431 		}
1432 	}
1433 	return 0;
1434 
1435 m64_failed:
1436 	pnv_pci_vf_release_m64(pdev, num_vfs);
1437 	return -EBUSY;
1438 }
1439 
1440 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1441 		int num);
1442 
1443 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1444 {
1445 	struct iommu_table    *tbl;
1446 	int64_t               rc;
1447 
1448 	tbl = pe->table_group.tables[0];
1449 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1450 	if (rc)
1451 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1452 
1453 	pnv_pci_ioda2_set_bypass(pe, false);
1454 	if (pe->table_group.group) {
1455 		iommu_group_put(pe->table_group.group);
1456 		BUG_ON(pe->table_group.group);
1457 	}
1458 	iommu_tce_table_put(tbl);
1459 }
1460 
1461 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1462 {
1463 	struct pci_bus        *bus;
1464 	struct pci_controller *hose;
1465 	struct pnv_phb        *phb;
1466 	struct pnv_ioda_pe    *pe, *pe_n;
1467 	struct pci_dn         *pdn;
1468 
1469 	bus = pdev->bus;
1470 	hose = pci_bus_to_host(bus);
1471 	phb = hose->private_data;
1472 	pdn = pci_get_pdn(pdev);
1473 
1474 	if (!pdev->is_physfn)
1475 		return;
1476 
1477 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1478 		if (pe->parent_dev != pdev)
1479 			continue;
1480 
1481 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1482 
1483 		/* Remove from list */
1484 		mutex_lock(&phb->ioda.pe_list_mutex);
1485 		list_del(&pe->list);
1486 		mutex_unlock(&phb->ioda.pe_list_mutex);
1487 
1488 		pnv_ioda_deconfigure_pe(phb, pe);
1489 
1490 		pnv_ioda_free_pe(pe);
1491 	}
1492 }
1493 
1494 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1495 {
1496 	struct pci_bus        *bus;
1497 	struct pci_controller *hose;
1498 	struct pnv_phb        *phb;
1499 	struct pnv_ioda_pe    *pe;
1500 	struct pci_dn         *pdn;
1501 	u16                    num_vfs, i;
1502 
1503 	bus = pdev->bus;
1504 	hose = pci_bus_to_host(bus);
1505 	phb = hose->private_data;
1506 	pdn = pci_get_pdn(pdev);
1507 	num_vfs = pdn->num_vfs;
1508 
1509 	/* Release VF PEs */
1510 	pnv_ioda_release_vf_PE(pdev);
1511 
1512 	if (phb->type == PNV_PHB_IODA2) {
1513 		if (!pdn->m64_single_mode)
1514 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1515 
1516 		/* Release M64 windows */
1517 		pnv_pci_vf_release_m64(pdev, num_vfs);
1518 
1519 		/* Release PE numbers */
1520 		if (pdn->m64_single_mode) {
1521 			for (i = 0; i < num_vfs; i++) {
1522 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1523 					continue;
1524 
1525 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1526 				pnv_ioda_free_pe(pe);
1527 			}
1528 		} else
1529 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1530 		/* Releasing pe_num_map */
1531 		kfree(pdn->pe_num_map);
1532 	}
1533 }
1534 
1535 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1536 				       struct pnv_ioda_pe *pe);
1537 #ifdef CONFIG_IOMMU_API
1538 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
1539 		struct iommu_table_group *table_group, struct pci_bus *bus);
1540 
1541 #endif
1542 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1543 {
1544 	struct pci_bus        *bus;
1545 	struct pci_controller *hose;
1546 	struct pnv_phb        *phb;
1547 	struct pnv_ioda_pe    *pe;
1548 	int                    pe_num;
1549 	u16                    vf_index;
1550 	struct pci_dn         *pdn;
1551 
1552 	bus = pdev->bus;
1553 	hose = pci_bus_to_host(bus);
1554 	phb = hose->private_data;
1555 	pdn = pci_get_pdn(pdev);
1556 
1557 	if (!pdev->is_physfn)
1558 		return;
1559 
1560 	/* Reserve PE for each VF */
1561 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1562 		if (pdn->m64_single_mode)
1563 			pe_num = pdn->pe_num_map[vf_index];
1564 		else
1565 			pe_num = *pdn->pe_num_map + vf_index;
1566 
1567 		pe = &phb->ioda.pe_array[pe_num];
1568 		pe->pe_number = pe_num;
1569 		pe->phb = phb;
1570 		pe->flags = PNV_IODA_PE_VF;
1571 		pe->pbus = NULL;
1572 		pe->parent_dev = pdev;
1573 		pe->mve_number = -1;
1574 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1575 			   pci_iov_virtfn_devfn(pdev, vf_index);
1576 
1577 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1578 			hose->global_number, pdev->bus->number,
1579 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1580 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1581 
1582 		if (pnv_ioda_configure_pe(phb, pe)) {
1583 			/* XXX What do we do here ? */
1584 			pnv_ioda_free_pe(pe);
1585 			pe->pdev = NULL;
1586 			continue;
1587 		}
1588 
1589 		/* Put PE to the list */
1590 		mutex_lock(&phb->ioda.pe_list_mutex);
1591 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1592 		mutex_unlock(&phb->ioda.pe_list_mutex);
1593 
1594 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1595 #ifdef CONFIG_IOMMU_API
1596 		pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL);
1597 #endif
1598 	}
1599 }
1600 
1601 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1602 {
1603 	struct pci_bus        *bus;
1604 	struct pci_controller *hose;
1605 	struct pnv_phb        *phb;
1606 	struct pnv_ioda_pe    *pe;
1607 	struct pci_dn         *pdn;
1608 	int                    ret;
1609 	u16                    i;
1610 
1611 	bus = pdev->bus;
1612 	hose = pci_bus_to_host(bus);
1613 	phb = hose->private_data;
1614 	pdn = pci_get_pdn(pdev);
1615 
1616 	if (phb->type == PNV_PHB_IODA2) {
1617 		if (!pdn->vfs_expanded) {
1618 			dev_info(&pdev->dev, "don't support this SRIOV device"
1619 				" with non 64bit-prefetchable IOV BAR\n");
1620 			return -ENOSPC;
1621 		}
1622 
1623 		/*
1624 		 * When M64 BARs functions in Single PE mode, the number of VFs
1625 		 * could be enabled must be less than the number of M64 BARs.
1626 		 */
1627 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1628 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1629 			return -EBUSY;
1630 		}
1631 
1632 		/* Allocating pe_num_map */
1633 		if (pdn->m64_single_mode)
1634 			pdn->pe_num_map = kmalloc_array(num_vfs,
1635 							sizeof(*pdn->pe_num_map),
1636 							GFP_KERNEL);
1637 		else
1638 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1639 
1640 		if (!pdn->pe_num_map)
1641 			return -ENOMEM;
1642 
1643 		if (pdn->m64_single_mode)
1644 			for (i = 0; i < num_vfs; i++)
1645 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1646 
1647 		/* Calculate available PE for required VFs */
1648 		if (pdn->m64_single_mode) {
1649 			for (i = 0; i < num_vfs; i++) {
1650 				pe = pnv_ioda_alloc_pe(phb);
1651 				if (!pe) {
1652 					ret = -EBUSY;
1653 					goto m64_failed;
1654 				}
1655 
1656 				pdn->pe_num_map[i] = pe->pe_number;
1657 			}
1658 		} else {
1659 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1660 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1661 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1662 				0, num_vfs, 0);
1663 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1664 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1665 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1666 				kfree(pdn->pe_num_map);
1667 				return -EBUSY;
1668 			}
1669 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1670 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1671 		}
1672 		pdn->num_vfs = num_vfs;
1673 
1674 		/* Assign M64 window accordingly */
1675 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1676 		if (ret) {
1677 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1678 			goto m64_failed;
1679 		}
1680 
1681 		/*
1682 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1683 		 * the IOV BAR according to the PE# allocated to the VFs.
1684 		 * Otherwise, the PE# for the VF will conflict with others.
1685 		 */
1686 		if (!pdn->m64_single_mode) {
1687 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1688 			if (ret)
1689 				goto m64_failed;
1690 		}
1691 	}
1692 
1693 	/* Setup VF PEs */
1694 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1695 
1696 	return 0;
1697 
1698 m64_failed:
1699 	if (pdn->m64_single_mode) {
1700 		for (i = 0; i < num_vfs; i++) {
1701 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1702 				continue;
1703 
1704 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1705 			pnv_ioda_free_pe(pe);
1706 		}
1707 	} else
1708 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1709 
1710 	/* Releasing pe_num_map */
1711 	kfree(pdn->pe_num_map);
1712 
1713 	return ret;
1714 }
1715 
1716 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1717 {
1718 	pnv_pci_sriov_disable(pdev);
1719 
1720 	/* Release PCI data */
1721 	remove_dev_pci_data(pdev);
1722 	return 0;
1723 }
1724 
1725 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1726 {
1727 	/* Allocate PCI data */
1728 	add_dev_pci_data(pdev);
1729 
1730 	return pnv_pci_sriov_enable(pdev, num_vfs);
1731 }
1732 #endif /* CONFIG_PCI_IOV */
1733 
1734 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1735 {
1736 	struct pci_dn *pdn = pci_get_pdn(pdev);
1737 	struct pnv_ioda_pe *pe;
1738 
1739 	/*
1740 	 * The function can be called while the PE#
1741 	 * hasn't been assigned. Do nothing for the
1742 	 * case.
1743 	 */
1744 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1745 		return;
1746 
1747 	pe = &phb->ioda.pe_array[pdn->pe_number];
1748 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1749 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1750 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1751 	/*
1752 	 * Note: iommu_add_device() will fail here as
1753 	 * for physical PE: the device is already added by now;
1754 	 * for virtual PE: sysfs entries are not ready yet and
1755 	 * tce_iommu_bus_notifier will add the device to a group later.
1756 	 */
1757 }
1758 
1759 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1760 {
1761 	unsigned short vendor = 0;
1762 	struct pci_dev *pdev;
1763 
1764 	if (pe->device_count == 1)
1765 		return true;
1766 
1767 	/* pe->pdev should be set if it's a single device, pe->pbus if not */
1768 	if (!pe->pbus)
1769 		return true;
1770 
1771 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1772 		if (!vendor) {
1773 			vendor = pdev->vendor;
1774 			continue;
1775 		}
1776 
1777 		if (pdev->vendor != vendor)
1778 			return false;
1779 	}
1780 
1781 	return true;
1782 }
1783 
1784 /*
1785  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1786  *
1787  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1788  * Devices can only access more than that if bit 59 of the PCI address is set
1789  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1790  * Many PCI devices are not capable of addressing that many bits, and as a
1791  * result are limited to the 4GB of virtual memory made available to 32-bit
1792  * devices in TVE#0.
1793  *
1794  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1795  * devices by configuring the virtual memory past the first 4GB inaccessible
1796  * by 64-bit DMAs.  This should only be used by devices that want more than
1797  * 4GB, and only on PEs that have no 32-bit devices.
1798  *
1799  * Currently this will only work on PHB3 (POWER8).
1800  */
1801 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1802 {
1803 	u64 window_size, table_size, tce_count, addr;
1804 	struct page *table_pages;
1805 	u64 tce_order = 28; /* 256MB TCEs */
1806 	__be64 *tces;
1807 	s64 rc;
1808 
1809 	/*
1810 	 * Window size needs to be a power of two, but needs to account for
1811 	 * shifting memory by the 4GB offset required to skip 32bit space.
1812 	 */
1813 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1814 	tce_count = window_size >> tce_order;
1815 	table_size = tce_count << 3;
1816 
1817 	if (table_size < PAGE_SIZE)
1818 		table_size = PAGE_SIZE;
1819 
1820 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1821 				       get_order(table_size));
1822 	if (!table_pages)
1823 		goto err;
1824 
1825 	tces = page_address(table_pages);
1826 	if (!tces)
1827 		goto err;
1828 
1829 	memset(tces, 0, table_size);
1830 
1831 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1832 		tces[(addr + (1ULL << 32)) >> tce_order] =
1833 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1834 	}
1835 
1836 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1837 					pe->pe_number,
1838 					/* reconfigure window 0 */
1839 					(pe->pe_number << 1) + 0,
1840 					1,
1841 					__pa(tces),
1842 					table_size,
1843 					1 << tce_order);
1844 	if (rc == OPAL_SUCCESS) {
1845 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1846 		return 0;
1847 	}
1848 err:
1849 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1850 	return -EIO;
1851 }
1852 
1853 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1854 {
1855 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1856 	struct pnv_phb *phb = hose->private_data;
1857 	struct pci_dn *pdn = pci_get_pdn(pdev);
1858 	struct pnv_ioda_pe *pe;
1859 	uint64_t top;
1860 	bool bypass = false;
1861 	s64 rc;
1862 
1863 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1864 		return -ENODEV;
1865 
1866 	pe = &phb->ioda.pe_array[pdn->pe_number];
1867 	if (pe->tce_bypass_enabled) {
1868 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1869 		bypass = (dma_mask >= top);
1870 	}
1871 
1872 	if (bypass) {
1873 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1874 		set_dma_ops(&pdev->dev, &dma_nommu_ops);
1875 	} else {
1876 		/*
1877 		 * If the device can't set the TCE bypass bit but still wants
1878 		 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1879 		 * bypass the 32-bit region and be usable for 64-bit DMAs.
1880 		 * The device needs to be able to address all of this space.
1881 		 */
1882 		if (dma_mask >> 32 &&
1883 		    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1884 		    pnv_pci_ioda_pe_single_vendor(pe) &&
1885 		    phb->model == PNV_PHB_MODEL_PHB3) {
1886 			/* Configure the bypass mode */
1887 			rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1888 			if (rc)
1889 				return rc;
1890 			/* 4GB offset bypasses 32-bit space */
1891 			set_dma_offset(&pdev->dev, (1ULL << 32));
1892 			set_dma_ops(&pdev->dev, &dma_nommu_ops);
1893 		} else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1894 			/*
1895 			 * Fail the request if a DMA mask between 32 and 64 bits
1896 			 * was requested but couldn't be fulfilled. Ideally we
1897 			 * would do this for 64-bits but historically we have
1898 			 * always fallen back to 32-bits.
1899 			 */
1900 			return -ENOMEM;
1901 		} else {
1902 			dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1903 			set_dma_ops(&pdev->dev, &dma_iommu_ops);
1904 		}
1905 	}
1906 	*pdev->dev.dma_mask = dma_mask;
1907 
1908 	/* Update peer npu devices */
1909 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1910 
1911 	return 0;
1912 }
1913 
1914 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1915 {
1916 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1917 	struct pnv_phb *phb = hose->private_data;
1918 	struct pci_dn *pdn = pci_get_pdn(pdev);
1919 	struct pnv_ioda_pe *pe;
1920 	u64 end, mask;
1921 
1922 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1923 		return 0;
1924 
1925 	pe = &phb->ioda.pe_array[pdn->pe_number];
1926 	if (!pe->tce_bypass_enabled)
1927 		return __dma_get_required_mask(&pdev->dev);
1928 
1929 
1930 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1931 	mask = 1ULL << (fls64(end) - 1);
1932 	mask += mask - 1;
1933 
1934 	return mask;
1935 }
1936 
1937 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1938 {
1939 	struct pci_dev *dev;
1940 
1941 	list_for_each_entry(dev, &bus->devices, bus_list) {
1942 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1943 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1944 
1945 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1946 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1947 	}
1948 }
1949 
1950 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1951 						     bool real_mode)
1952 {
1953 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1954 		(phb->regs + 0x210);
1955 }
1956 
1957 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1958 		unsigned long index, unsigned long npages, bool rm)
1959 {
1960 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1961 			&tbl->it_group_list, struct iommu_table_group_link,
1962 			next);
1963 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1964 			struct pnv_ioda_pe, table_group);
1965 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1966 	unsigned long start, end, inc;
1967 
1968 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1969 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1970 			npages - 1);
1971 
1972 	/* p7ioc-style invalidation, 2 TCEs per write */
1973 	start |= (1ull << 63);
1974 	end |= (1ull << 63);
1975 	inc = 16;
1976         end |= inc - 1;	/* round up end to be different than start */
1977 
1978         mb(); /* Ensure above stores are visible */
1979         while (start <= end) {
1980 		if (rm)
1981 			__raw_rm_writeq_be(start, invalidate);
1982 		else
1983 			__raw_writeq_be(start, invalidate);
1984 
1985                 start += inc;
1986         }
1987 
1988 	/*
1989 	 * The iommu layer will do another mb() for us on build()
1990 	 * and we don't care on free()
1991 	 */
1992 }
1993 
1994 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1995 		long npages, unsigned long uaddr,
1996 		enum dma_data_direction direction,
1997 		unsigned long attrs)
1998 {
1999 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2000 			attrs);
2001 
2002 	if (!ret)
2003 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2004 
2005 	return ret;
2006 }
2007 
2008 #ifdef CONFIG_IOMMU_API
2009 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
2010 		unsigned long *hpa, enum dma_data_direction *direction)
2011 {
2012 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2013 
2014 	if (!ret)
2015 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
2016 
2017 	return ret;
2018 }
2019 
2020 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2021 		unsigned long *hpa, enum dma_data_direction *direction)
2022 {
2023 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2024 
2025 	if (!ret)
2026 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2027 
2028 	return ret;
2029 }
2030 #endif
2031 
2032 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2033 		long npages)
2034 {
2035 	pnv_tce_free(tbl, index, npages);
2036 
2037 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2038 }
2039 
2040 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2041 	.set = pnv_ioda1_tce_build,
2042 #ifdef CONFIG_IOMMU_API
2043 	.exchange = pnv_ioda1_tce_xchg,
2044 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
2045 	.useraddrptr = pnv_tce_useraddrptr,
2046 #endif
2047 	.clear = pnv_ioda1_tce_free,
2048 	.get = pnv_tce_get,
2049 };
2050 
2051 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
2052 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
2053 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
2054 
2055 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2056 {
2057 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2058 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2059 
2060 	mb(); /* Ensure previous TCE table stores are visible */
2061 	if (rm)
2062 		__raw_rm_writeq_be(val, invalidate);
2063 	else
2064 		__raw_writeq_be(val, invalidate);
2065 }
2066 
2067 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2068 {
2069 	/* 01xb - invalidate TCEs that match the specified PE# */
2070 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2071 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2072 
2073 	mb(); /* Ensure above stores are visible */
2074 	__raw_writeq_be(val, invalidate);
2075 }
2076 
2077 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2078 					unsigned shift, unsigned long index,
2079 					unsigned long npages)
2080 {
2081 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2082 	unsigned long start, end, inc;
2083 
2084 	/* We'll invalidate DMA address in PE scope */
2085 	start = PHB3_TCE_KILL_INVAL_ONE;
2086 	start |= (pe->pe_number & 0xFF);
2087 	end = start;
2088 
2089 	/* Figure out the start, end and step */
2090 	start |= (index << shift);
2091 	end |= ((index + npages - 1) << shift);
2092 	inc = (0x1ull << shift);
2093 	mb();
2094 
2095 	while (start <= end) {
2096 		if (rm)
2097 			__raw_rm_writeq_be(start, invalidate);
2098 		else
2099 			__raw_writeq_be(start, invalidate);
2100 		start += inc;
2101 	}
2102 }
2103 
2104 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2105 {
2106 	struct pnv_phb *phb = pe->phb;
2107 
2108 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2109 		pnv_pci_phb3_tce_invalidate_pe(pe);
2110 	else
2111 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2112 				  pe->pe_number, 0, 0, 0);
2113 }
2114 
2115 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2116 		unsigned long index, unsigned long npages, bool rm)
2117 {
2118 	struct iommu_table_group_link *tgl;
2119 
2120 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2121 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2122 				struct pnv_ioda_pe, table_group);
2123 		struct pnv_phb *phb = pe->phb;
2124 		unsigned int shift = tbl->it_page_shift;
2125 
2126 		/*
2127 		 * NVLink1 can use the TCE kill register directly as
2128 		 * it's the same as PHB3. NVLink2 is different and
2129 		 * should go via the OPAL call.
2130 		 */
2131 		if (phb->model == PNV_PHB_MODEL_NPU) {
2132 			/*
2133 			 * The NVLink hardware does not support TCE kill
2134 			 * per TCE entry so we have to invalidate
2135 			 * the entire cache for it.
2136 			 */
2137 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2138 			continue;
2139 		}
2140 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2141 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2142 						    index, npages);
2143 		else
2144 			opal_pci_tce_kill(phb->opal_id,
2145 					  OPAL_PCI_TCE_KILL_PAGES,
2146 					  pe->pe_number, 1u << shift,
2147 					  index << shift, npages);
2148 	}
2149 }
2150 
2151 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2152 {
2153 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2154 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2155 	else
2156 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2157 }
2158 
2159 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2160 		long npages, unsigned long uaddr,
2161 		enum dma_data_direction direction,
2162 		unsigned long attrs)
2163 {
2164 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2165 			attrs);
2166 
2167 	if (!ret)
2168 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2169 
2170 	return ret;
2171 }
2172 
2173 #ifdef CONFIG_IOMMU_API
2174 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2175 		unsigned long *hpa, enum dma_data_direction *direction)
2176 {
2177 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2178 
2179 	if (!ret)
2180 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2181 
2182 	return ret;
2183 }
2184 
2185 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2186 		unsigned long *hpa, enum dma_data_direction *direction)
2187 {
2188 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2189 
2190 	if (!ret)
2191 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2192 
2193 	return ret;
2194 }
2195 #endif
2196 
2197 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2198 		long npages)
2199 {
2200 	pnv_tce_free(tbl, index, npages);
2201 
2202 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2203 }
2204 
2205 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2206 	.set = pnv_ioda2_tce_build,
2207 #ifdef CONFIG_IOMMU_API
2208 	.exchange = pnv_ioda2_tce_xchg,
2209 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2210 	.useraddrptr = pnv_tce_useraddrptr,
2211 #endif
2212 	.clear = pnv_ioda2_tce_free,
2213 	.get = pnv_tce_get,
2214 	.free = pnv_pci_ioda2_table_free_pages,
2215 };
2216 
2217 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2218 {
2219 	unsigned int *weight = (unsigned int *)data;
2220 
2221 	/* This is quite simplistic. The "base" weight of a device
2222 	 * is 10. 0 means no DMA is to be accounted for it.
2223 	 */
2224 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2225 		return 0;
2226 
2227 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2228 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2229 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2230 		*weight += 3;
2231 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2232 		*weight += 15;
2233 	else
2234 		*weight += 10;
2235 
2236 	return 0;
2237 }
2238 
2239 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2240 {
2241 	unsigned int weight = 0;
2242 
2243 	/* SRIOV VF has same DMA32 weight as its PF */
2244 #ifdef CONFIG_PCI_IOV
2245 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2246 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2247 		return weight;
2248 	}
2249 #endif
2250 
2251 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2252 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2253 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2254 		struct pci_dev *pdev;
2255 
2256 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2257 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2258 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2259 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2260 	}
2261 
2262 	return weight;
2263 }
2264 
2265 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2266 				       struct pnv_ioda_pe *pe)
2267 {
2268 
2269 	struct page *tce_mem = NULL;
2270 	struct iommu_table *tbl;
2271 	unsigned int weight, total_weight = 0;
2272 	unsigned int tce32_segsz, base, segs, avail, i;
2273 	int64_t rc;
2274 	void *addr;
2275 
2276 	/* XXX FIXME: Handle 64-bit only DMA devices */
2277 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2278 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2279 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2280 	if (!weight)
2281 		return;
2282 
2283 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2284 		     &total_weight);
2285 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2286 	if (!segs)
2287 		segs = 1;
2288 
2289 	/*
2290 	 * Allocate contiguous DMA32 segments. We begin with the expected
2291 	 * number of segments. With one more attempt, the number of DMA32
2292 	 * segments to be allocated is decreased by one until one segment
2293 	 * is allocated successfully.
2294 	 */
2295 	do {
2296 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2297 			for (avail = 0, i = base; i < base + segs; i++) {
2298 				if (phb->ioda.dma32_segmap[i] ==
2299 				    IODA_INVALID_PE)
2300 					avail++;
2301 			}
2302 
2303 			if (avail == segs)
2304 				goto found;
2305 		}
2306 	} while (--segs);
2307 
2308 	if (!segs) {
2309 		pe_warn(pe, "No available DMA32 segments\n");
2310 		return;
2311 	}
2312 
2313 found:
2314 	tbl = pnv_pci_table_alloc(phb->hose->node);
2315 	if (WARN_ON(!tbl))
2316 		return;
2317 
2318 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2319 			pe->pe_number);
2320 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2321 
2322 	/* Grab a 32-bit TCE table */
2323 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2324 		weight, total_weight, base, segs);
2325 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2326 		base * PNV_IODA1_DMA32_SEGSIZE,
2327 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2328 
2329 	/* XXX Currently, we allocate one big contiguous table for the
2330 	 * TCEs. We only really need one chunk per 256M of TCE space
2331 	 * (ie per segment) but that's an optimization for later, it
2332 	 * requires some added smarts with our get/put_tce implementation
2333 	 *
2334 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2335 	 * bytes
2336 	 */
2337 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2338 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2339 				   get_order(tce32_segsz * segs));
2340 	if (!tce_mem) {
2341 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2342 		goto fail;
2343 	}
2344 	addr = page_address(tce_mem);
2345 	memset(addr, 0, tce32_segsz * segs);
2346 
2347 	/* Configure HW */
2348 	for (i = 0; i < segs; i++) {
2349 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2350 					      pe->pe_number,
2351 					      base + i, 1,
2352 					      __pa(addr) + tce32_segsz * i,
2353 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2354 		if (rc) {
2355 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2356 			       " err %ld\n", rc);
2357 			goto fail;
2358 		}
2359 	}
2360 
2361 	/* Setup DMA32 segment mapping */
2362 	for (i = base; i < base + segs; i++)
2363 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2364 
2365 	/* Setup linux iommu table */
2366 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2367 				  base * PNV_IODA1_DMA32_SEGSIZE,
2368 				  IOMMU_PAGE_SHIFT_4K);
2369 
2370 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2371 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2372 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2373 	iommu_init_table(tbl, phb->hose->node);
2374 
2375 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2376 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2377 
2378 	return;
2379  fail:
2380 	/* XXX Failure: Try to fallback to 64-bit only ? */
2381 	if (tce_mem)
2382 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2383 	if (tbl) {
2384 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2385 		iommu_tce_table_put(tbl);
2386 	}
2387 }
2388 
2389 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2390 		int num, struct iommu_table *tbl)
2391 {
2392 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2393 			table_group);
2394 	struct pnv_phb *phb = pe->phb;
2395 	int64_t rc;
2396 	const unsigned long size = tbl->it_indirect_levels ?
2397 			tbl->it_level_size : tbl->it_size;
2398 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2399 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2400 
2401 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2402 			start_addr, start_addr + win_size - 1,
2403 			IOMMU_PAGE_SIZE(tbl));
2404 
2405 	/*
2406 	 * Map TCE table through TVT. The TVE index is the PE number
2407 	 * shifted by 1 bit for 32-bits DMA space.
2408 	 */
2409 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2410 			pe->pe_number,
2411 			(pe->pe_number << 1) + num,
2412 			tbl->it_indirect_levels + 1,
2413 			__pa(tbl->it_base),
2414 			size << 3,
2415 			IOMMU_PAGE_SIZE(tbl));
2416 	if (rc) {
2417 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2418 		return rc;
2419 	}
2420 
2421 	pnv_pci_link_table_and_group(phb->hose->node, num,
2422 			tbl, &pe->table_group);
2423 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2424 
2425 	return 0;
2426 }
2427 
2428 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2429 {
2430 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2431 	int64_t rc;
2432 
2433 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2434 	if (enable) {
2435 		phys_addr_t top = memblock_end_of_DRAM();
2436 
2437 		top = roundup_pow_of_two(top);
2438 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2439 						     pe->pe_number,
2440 						     window_id,
2441 						     pe->tce_bypass_base,
2442 						     top);
2443 	} else {
2444 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2445 						     pe->pe_number,
2446 						     window_id,
2447 						     pe->tce_bypass_base,
2448 						     0);
2449 	}
2450 	if (rc)
2451 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2452 	else
2453 		pe->tce_bypass_enabled = enable;
2454 }
2455 
2456 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2457 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2458 		bool alloc_userspace_copy, struct iommu_table **ptbl)
2459 {
2460 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2461 			table_group);
2462 	int nid = pe->phb->hose->node;
2463 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2464 	long ret;
2465 	struct iommu_table *tbl;
2466 
2467 	tbl = pnv_pci_table_alloc(nid);
2468 	if (!tbl)
2469 		return -ENOMEM;
2470 
2471 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2472 
2473 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2474 			bus_offset, page_shift, window_size,
2475 			levels, alloc_userspace_copy, tbl);
2476 	if (ret) {
2477 		iommu_tce_table_put(tbl);
2478 		return ret;
2479 	}
2480 
2481 	*ptbl = tbl;
2482 
2483 	return 0;
2484 }
2485 
2486 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2487 {
2488 	struct iommu_table *tbl = NULL;
2489 	long rc;
2490 
2491 	/*
2492 	 * crashkernel= specifies the kdump kernel's maximum memory at
2493 	 * some offset and there is no guaranteed the result is a power
2494 	 * of 2, which will cause errors later.
2495 	 */
2496 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2497 
2498 	/*
2499 	 * In memory constrained environments, e.g. kdump kernel, the
2500 	 * DMA window can be larger than available memory, which will
2501 	 * cause errors later.
2502 	 */
2503 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2504 
2505 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2506 			IOMMU_PAGE_SHIFT_4K,
2507 			window_size,
2508 			POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl);
2509 	if (rc) {
2510 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2511 				rc);
2512 		return rc;
2513 	}
2514 
2515 	iommu_init_table(tbl, pe->phb->hose->node);
2516 
2517 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2518 	if (rc) {
2519 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2520 				rc);
2521 		iommu_tce_table_put(tbl);
2522 		return rc;
2523 	}
2524 
2525 	if (!pnv_iommu_bypass_disabled)
2526 		pnv_pci_ioda2_set_bypass(pe, true);
2527 
2528 	return 0;
2529 }
2530 
2531 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2532 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2533 		int num)
2534 {
2535 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2536 			table_group);
2537 	struct pnv_phb *phb = pe->phb;
2538 	long ret;
2539 
2540 	pe_info(pe, "Removing DMA window #%d\n", num);
2541 
2542 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2543 			(pe->pe_number << 1) + num,
2544 			0/* levels */, 0/* table address */,
2545 			0/* table size */, 0/* page size */);
2546 	if (ret)
2547 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2548 	else
2549 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2550 
2551 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2552 
2553 	return ret;
2554 }
2555 #endif
2556 
2557 #ifdef CONFIG_IOMMU_API
2558 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2559 		__u64 window_size, __u32 levels)
2560 {
2561 	unsigned long bytes = 0;
2562 	const unsigned window_shift = ilog2(window_size);
2563 	unsigned entries_shift = window_shift - page_shift;
2564 	unsigned table_shift = entries_shift + 3;
2565 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2566 	unsigned long direct_table_size;
2567 
2568 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2569 			!is_power_of_2(window_size))
2570 		return 0;
2571 
2572 	/* Calculate a direct table size from window_size and levels */
2573 	entries_shift = (entries_shift + levels - 1) / levels;
2574 	table_shift = entries_shift + 3;
2575 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2576 	direct_table_size =  1UL << table_shift;
2577 
2578 	for ( ; levels; --levels) {
2579 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2580 
2581 		tce_table_size /= direct_table_size;
2582 		tce_table_size <<= 3;
2583 		tce_table_size = max_t(unsigned long,
2584 				tce_table_size, direct_table_size);
2585 	}
2586 
2587 	return bytes + bytes; /* one for HW table, one for userspace copy */
2588 }
2589 
2590 static long pnv_pci_ioda2_create_table_userspace(
2591 		struct iommu_table_group *table_group,
2592 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2593 		struct iommu_table **ptbl)
2594 {
2595 	return pnv_pci_ioda2_create_table(table_group,
2596 			num, page_shift, window_size, levels, true, ptbl);
2597 }
2598 
2599 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2600 {
2601 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2602 						table_group);
2603 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2604 	struct iommu_table *tbl = pe->table_group.tables[0];
2605 
2606 	pnv_pci_ioda2_set_bypass(pe, false);
2607 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2608 	if (pe->pbus)
2609 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2610 	iommu_tce_table_put(tbl);
2611 }
2612 
2613 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2614 {
2615 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2616 						table_group);
2617 
2618 	pnv_pci_ioda2_setup_default_config(pe);
2619 	if (pe->pbus)
2620 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2621 }
2622 
2623 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2624 	.get_table_size = pnv_pci_ioda2_get_table_size,
2625 	.create_table = pnv_pci_ioda2_create_table_userspace,
2626 	.set_window = pnv_pci_ioda2_set_window,
2627 	.unset_window = pnv_pci_ioda2_unset_window,
2628 	.take_ownership = pnv_ioda2_take_ownership,
2629 	.release_ownership = pnv_ioda2_release_ownership,
2630 };
2631 
2632 static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe,
2633 		struct iommu_table_group *table_group,
2634 		struct pci_bus *bus)
2635 {
2636 	struct pci_dev *dev;
2637 
2638 	list_for_each_entry(dev, &bus->devices, bus_list) {
2639 		iommu_add_device(table_group, &dev->dev);
2640 
2641 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2642 			pnv_ioda_setup_bus_iommu_group_add_devices(pe,
2643 					table_group, dev->subordinate);
2644 	}
2645 }
2646 
2647 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
2648 		struct iommu_table_group *table_group, struct pci_bus *bus)
2649 {
2650 
2651 	if (pe->flags & PNV_IODA_PE_DEV)
2652 		iommu_add_device(table_group, &pe->pdev->dev);
2653 
2654 	if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus)
2655 		pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group,
2656 				bus);
2657 }
2658 
2659 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
2660 
2661 static void pnv_pci_ioda_setup_iommu_api(void)
2662 {
2663 	struct pci_controller *hose;
2664 	struct pnv_phb *phb;
2665 	struct pnv_ioda_pe *pe;
2666 
2667 	/*
2668 	 * There are 4 types of PEs:
2669 	 * - PNV_IODA_PE_BUS: a downstream port with an adapter,
2670 	 *   created from pnv_pci_setup_bridge();
2671 	 * - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it,
2672 	 *   created from pnv_pci_setup_bridge();
2673 	 * - PNV_IODA_PE_VF: a SRIOV virtual function,
2674 	 *   created from pnv_pcibios_sriov_enable();
2675 	 * - PNV_IODA_PE_DEV: an NPU or OCAPI device,
2676 	 *   created from pnv_pci_ioda_fixup().
2677 	 *
2678 	 * Normally a PE is represented by an IOMMU group, however for
2679 	 * devices with side channels the groups need to be more strict.
2680 	 */
2681 	list_for_each_entry(hose, &hose_list, list_node) {
2682 		phb = hose->private_data;
2683 
2684 		if (phb->type == PNV_PHB_NPU_NVLINK ||
2685 		    phb->type == PNV_PHB_NPU_OCAPI)
2686 			continue;
2687 
2688 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2689 			struct iommu_table_group *table_group;
2690 
2691 			table_group = pnv_try_setup_npu_table_group(pe);
2692 			if (!table_group) {
2693 				if (!pnv_pci_ioda_pe_dma_weight(pe))
2694 					continue;
2695 
2696 				table_group = &pe->table_group;
2697 				iommu_register_group(&pe->table_group,
2698 						pe->phb->hose->global_number,
2699 						pe->pe_number);
2700 			}
2701 			pnv_ioda_setup_bus_iommu_group(pe, table_group,
2702 					pe->pbus);
2703 		}
2704 	}
2705 
2706 	/*
2707 	 * Now we have all PHBs discovered, time to add NPU devices to
2708 	 * the corresponding IOMMU groups.
2709 	 */
2710 	list_for_each_entry(hose, &hose_list, list_node) {
2711 		unsigned long  pgsizes;
2712 
2713 		phb = hose->private_data;
2714 
2715 		if (phb->type != PNV_PHB_NPU_NVLINK)
2716 			continue;
2717 
2718 		pgsizes = pnv_ioda_parse_tce_sizes(phb);
2719 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2720 			/*
2721 			 * IODA2 bridges get this set up from
2722 			 * pci_controller_ops::setup_bridge but NPU bridges
2723 			 * do not have this hook defined so we do it here.
2724 			 */
2725 			pe->table_group.pgsizes = pgsizes;
2726 			pnv_npu_compound_attach(pe);
2727 		}
2728 	}
2729 }
2730 #else /* !CONFIG_IOMMU_API */
2731 static void pnv_pci_ioda_setup_iommu_api(void) { };
2732 #endif
2733 
2734 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2735 {
2736 	struct pci_controller *hose = phb->hose;
2737 	struct device_node *dn = hose->dn;
2738 	unsigned long mask = 0;
2739 	int i, rc, count;
2740 	u32 val;
2741 
2742 	count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2743 	if (count <= 0) {
2744 		mask = SZ_4K | SZ_64K;
2745 		/* Add 16M for POWER8 by default */
2746 		if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2747 				!cpu_has_feature(CPU_FTR_ARCH_300))
2748 			mask |= SZ_16M | SZ_256M;
2749 		return mask;
2750 	}
2751 
2752 	for (i = 0; i < count; i++) {
2753 		rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2754 						i, &val);
2755 		if (rc == 0)
2756 			mask |= 1ULL << val;
2757 	}
2758 
2759 	return mask;
2760 }
2761 
2762 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2763 				       struct pnv_ioda_pe *pe)
2764 {
2765 	int64_t rc;
2766 
2767 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2768 		return;
2769 
2770 	/* TVE #1 is selected by PCI address bit 59 */
2771 	pe->tce_bypass_base = 1ull << 59;
2772 
2773 	/* The PE will reserve all possible 32-bits space */
2774 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2775 		phb->ioda.m32_pci_base);
2776 
2777 	/* Setup linux iommu table */
2778 	pe->table_group.tce32_start = 0;
2779 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2780 	pe->table_group.max_dynamic_windows_supported =
2781 			IOMMU_TABLE_GROUP_MAX_TABLES;
2782 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2783 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2784 #ifdef CONFIG_IOMMU_API
2785 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2786 #endif
2787 
2788 	rc = pnv_pci_ioda2_setup_default_config(pe);
2789 	if (rc)
2790 		return;
2791 
2792 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2793 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2794 }
2795 
2796 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2797 {
2798 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2799 					   ioda.irq_chip);
2800 
2801 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2802 }
2803 
2804 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2805 {
2806 	int64_t rc;
2807 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2808 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2809 
2810 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2811 	WARN_ON_ONCE(rc);
2812 
2813 	icp_native_eoi(d);
2814 }
2815 
2816 
2817 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2818 {
2819 	struct irq_data *idata;
2820 	struct irq_chip *ichip;
2821 
2822 	/* The MSI EOI OPAL call is only needed on PHB3 */
2823 	if (phb->model != PNV_PHB_MODEL_PHB3)
2824 		return;
2825 
2826 	if (!phb->ioda.irq_chip_init) {
2827 		/*
2828 		 * First time we setup an MSI IRQ, we need to setup the
2829 		 * corresponding IRQ chip to route correctly.
2830 		 */
2831 		idata = irq_get_irq_data(virq);
2832 		ichip = irq_data_get_irq_chip(idata);
2833 		phb->ioda.irq_chip_init = 1;
2834 		phb->ioda.irq_chip = *ichip;
2835 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2836 	}
2837 	irq_set_chip(virq, &phb->ioda.irq_chip);
2838 }
2839 
2840 /*
2841  * Returns true iff chip is something that we could call
2842  * pnv_opal_pci_msi_eoi for.
2843  */
2844 bool is_pnv_opal_msi(struct irq_chip *chip)
2845 {
2846 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2847 }
2848 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2849 
2850 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2851 				  unsigned int hwirq, unsigned int virq,
2852 				  unsigned int is_64, struct msi_msg *msg)
2853 {
2854 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2855 	unsigned int xive_num = hwirq - phb->msi_base;
2856 	__be32 data;
2857 	int rc;
2858 
2859 	/* No PE assigned ? bail out ... no MSI for you ! */
2860 	if (pe == NULL)
2861 		return -ENXIO;
2862 
2863 	/* Check if we have an MVE */
2864 	if (pe->mve_number < 0)
2865 		return -ENXIO;
2866 
2867 	/* Force 32-bit MSI on some broken devices */
2868 	if (dev->no_64bit_msi)
2869 		is_64 = 0;
2870 
2871 	/* Assign XIVE to PE */
2872 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2873 	if (rc) {
2874 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2875 			pci_name(dev), rc, xive_num);
2876 		return -EIO;
2877 	}
2878 
2879 	if (is_64) {
2880 		__be64 addr64;
2881 
2882 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2883 				     &addr64, &data);
2884 		if (rc) {
2885 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2886 				pci_name(dev), rc);
2887 			return -EIO;
2888 		}
2889 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2890 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2891 	} else {
2892 		__be32 addr32;
2893 
2894 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2895 				     &addr32, &data);
2896 		if (rc) {
2897 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2898 				pci_name(dev), rc);
2899 			return -EIO;
2900 		}
2901 		msg->address_hi = 0;
2902 		msg->address_lo = be32_to_cpu(addr32);
2903 	}
2904 	msg->data = be32_to_cpu(data);
2905 
2906 	pnv_set_msi_irq_chip(phb, virq);
2907 
2908 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2909 		 " address=%x_%08x data=%x PE# %x\n",
2910 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2911 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2912 
2913 	return 0;
2914 }
2915 
2916 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2917 {
2918 	unsigned int count;
2919 	const __be32 *prop = of_get_property(phb->hose->dn,
2920 					     "ibm,opal-msi-ranges", NULL);
2921 	if (!prop) {
2922 		/* BML Fallback */
2923 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2924 	}
2925 	if (!prop)
2926 		return;
2927 
2928 	phb->msi_base = be32_to_cpup(prop);
2929 	count = be32_to_cpup(prop + 1);
2930 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2931 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2932 		       phb->hose->global_number);
2933 		return;
2934 	}
2935 
2936 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2937 	phb->msi32_support = 1;
2938 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2939 		count, phb->msi_base);
2940 }
2941 
2942 #ifdef CONFIG_PCI_IOV
2943 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2944 {
2945 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2946 	struct pnv_phb *phb = hose->private_data;
2947 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2948 	struct resource *res;
2949 	int i;
2950 	resource_size_t size, total_vf_bar_sz;
2951 	struct pci_dn *pdn;
2952 	int mul, total_vfs;
2953 
2954 	if (!pdev->is_physfn || pci_dev_is_added(pdev))
2955 		return;
2956 
2957 	pdn = pci_get_pdn(pdev);
2958 	pdn->vfs_expanded = 0;
2959 	pdn->m64_single_mode = false;
2960 
2961 	total_vfs = pci_sriov_get_totalvfs(pdev);
2962 	mul = phb->ioda.total_pe_num;
2963 	total_vf_bar_sz = 0;
2964 
2965 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2966 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2967 		if (!res->flags || res->parent)
2968 			continue;
2969 		if (!pnv_pci_is_m64_flags(res->flags)) {
2970 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2971 					" non M64 VF BAR%d: %pR. \n",
2972 				 i, res);
2973 			goto truncate_iov;
2974 		}
2975 
2976 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2977 				i + PCI_IOV_RESOURCES);
2978 
2979 		/*
2980 		 * If bigger than quarter of M64 segment size, just round up
2981 		 * power of two.
2982 		 *
2983 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2984 		 * with other devices, IOV BAR size is expanded to be
2985 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2986 		 * segment size , the expanded size would equal to half of the
2987 		 * whole M64 space size, which will exhaust the M64 Space and
2988 		 * limit the system flexibility.  This is a design decision to
2989 		 * set the boundary to quarter of the M64 segment size.
2990 		 */
2991 		if (total_vf_bar_sz > gate) {
2992 			mul = roundup_pow_of_two(total_vfs);
2993 			dev_info(&pdev->dev,
2994 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2995 				total_vf_bar_sz, gate, mul);
2996 			pdn->m64_single_mode = true;
2997 			break;
2998 		}
2999 	}
3000 
3001 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3002 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3003 		if (!res->flags || res->parent)
3004 			continue;
3005 
3006 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3007 		/*
3008 		 * On PHB3, the minimum size alignment of M64 BAR in single
3009 		 * mode is 32MB.
3010 		 */
3011 		if (pdn->m64_single_mode && (size < SZ_32M))
3012 			goto truncate_iov;
3013 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3014 		res->end = res->start + size * mul - 1;
3015 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3016 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3017 			 i, res, mul);
3018 	}
3019 	pdn->vfs_expanded = mul;
3020 
3021 	return;
3022 
3023 truncate_iov:
3024 	/* To save MMIO space, IOV BAR is truncated. */
3025 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3026 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3027 		res->flags = 0;
3028 		res->end = res->start - 1;
3029 	}
3030 }
3031 #endif /* CONFIG_PCI_IOV */
3032 
3033 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3034 				  struct resource *res)
3035 {
3036 	struct pnv_phb *phb = pe->phb;
3037 	struct pci_bus_region region;
3038 	int index;
3039 	int64_t rc;
3040 
3041 	if (!res || !res->flags || res->start > res->end)
3042 		return;
3043 
3044 	if (res->flags & IORESOURCE_IO) {
3045 		region.start = res->start - phb->ioda.io_pci_base;
3046 		region.end   = res->end - phb->ioda.io_pci_base;
3047 		index = region.start / phb->ioda.io_segsize;
3048 
3049 		while (index < phb->ioda.total_pe_num &&
3050 		       region.start <= region.end) {
3051 			phb->ioda.io_segmap[index] = pe->pe_number;
3052 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3053 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3054 			if (rc != OPAL_SUCCESS) {
3055 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3056 				       __func__, rc, index, pe->pe_number);
3057 				break;
3058 			}
3059 
3060 			region.start += phb->ioda.io_segsize;
3061 			index++;
3062 		}
3063 	} else if ((res->flags & IORESOURCE_MEM) &&
3064 		   !pnv_pci_is_m64(phb, res)) {
3065 		region.start = res->start -
3066 			       phb->hose->mem_offset[0] -
3067 			       phb->ioda.m32_pci_base;
3068 		region.end   = res->end -
3069 			       phb->hose->mem_offset[0] -
3070 			       phb->ioda.m32_pci_base;
3071 		index = region.start / phb->ioda.m32_segsize;
3072 
3073 		while (index < phb->ioda.total_pe_num &&
3074 		       region.start <= region.end) {
3075 			phb->ioda.m32_segmap[index] = pe->pe_number;
3076 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3077 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3078 			if (rc != OPAL_SUCCESS) {
3079 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3080 				       __func__, rc, index, pe->pe_number);
3081 				break;
3082 			}
3083 
3084 			region.start += phb->ioda.m32_segsize;
3085 			index++;
3086 		}
3087 	}
3088 }
3089 
3090 /*
3091  * This function is supposed to be called on basis of PE from top
3092  * to bottom style. So the the I/O or MMIO segment assigned to
3093  * parent PE could be overridden by its child PEs if necessary.
3094  */
3095 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3096 {
3097 	struct pci_dev *pdev;
3098 	int i;
3099 
3100 	/*
3101 	 * NOTE: We only care PCI bus based PE for now. For PCI
3102 	 * device based PE, for example SRIOV sensitive VF should
3103 	 * be figured out later.
3104 	 */
3105 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3106 
3107 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3108 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3109 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3110 
3111 		/*
3112 		 * If the PE contains all subordinate PCI buses, the
3113 		 * windows of the child bridges should be mapped to
3114 		 * the PE as well.
3115 		 */
3116 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3117 			continue;
3118 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3119 			pnv_ioda_setup_pe_res(pe,
3120 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3121 	}
3122 }
3123 
3124 #ifdef CONFIG_DEBUG_FS
3125 static int pnv_pci_diag_data_set(void *data, u64 val)
3126 {
3127 	struct pci_controller *hose;
3128 	struct pnv_phb *phb;
3129 	s64 ret;
3130 
3131 	if (val != 1ULL)
3132 		return -EINVAL;
3133 
3134 	hose = (struct pci_controller *)data;
3135 	if (!hose || !hose->private_data)
3136 		return -ENODEV;
3137 
3138 	phb = hose->private_data;
3139 
3140 	/* Retrieve the diag data from firmware */
3141 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3142 					  phb->diag_data_size);
3143 	if (ret != OPAL_SUCCESS)
3144 		return -EIO;
3145 
3146 	/* Print the diag data to the kernel log */
3147 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3148 	return 0;
3149 }
3150 
3151 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3152 			pnv_pci_diag_data_set, "%llu\n");
3153 
3154 #endif /* CONFIG_DEBUG_FS */
3155 
3156 static void pnv_pci_ioda_create_dbgfs(void)
3157 {
3158 #ifdef CONFIG_DEBUG_FS
3159 	struct pci_controller *hose, *tmp;
3160 	struct pnv_phb *phb;
3161 	char name[16];
3162 
3163 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3164 		phb = hose->private_data;
3165 
3166 		/* Notify initialization of PHB done */
3167 		phb->initialized = 1;
3168 
3169 		sprintf(name, "PCI%04x", hose->global_number);
3170 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3171 		if (!phb->dbgfs) {
3172 			pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3173 				__func__, hose->global_number);
3174 			continue;
3175 		}
3176 
3177 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3178 				    &pnv_pci_diag_data_fops);
3179 	}
3180 #endif /* CONFIG_DEBUG_FS */
3181 }
3182 
3183 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3184 {
3185 	struct pci_dev *dev = bus->self;
3186 	struct pci_bus *child;
3187 
3188 	/* Empty bus ? bail */
3189 	if (list_empty(&bus->devices))
3190 		return;
3191 
3192 	/*
3193 	 * If there's a bridge associated with that bus enable it. This works
3194 	 * around races in the generic code if the enabling is done during
3195 	 * parallel probing. This can be removed once those races have been
3196 	 * fixed.
3197 	 */
3198 	if (dev) {
3199 		int rc = pci_enable_device(dev);
3200 		if (rc)
3201 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
3202 		pci_set_master(dev);
3203 	}
3204 
3205 	/* Perform the same to child busses */
3206 	list_for_each_entry(child, &bus->children, node)
3207 		pnv_pci_enable_bridge(child);
3208 }
3209 
3210 static void pnv_pci_enable_bridges(void)
3211 {
3212 	struct pci_controller *hose;
3213 
3214 	list_for_each_entry(hose, &hose_list, list_node)
3215 		pnv_pci_enable_bridge(hose->bus);
3216 }
3217 
3218 static void pnv_pci_ioda_fixup(void)
3219 {
3220 	pnv_pci_ioda_setup_PEs();
3221 	pnv_pci_ioda_setup_iommu_api();
3222 	pnv_pci_ioda_create_dbgfs();
3223 
3224 	pnv_pci_enable_bridges();
3225 
3226 #ifdef CONFIG_EEH
3227 	pnv_eeh_post_init();
3228 #endif
3229 }
3230 
3231 /*
3232  * Returns the alignment for I/O or memory windows for P2P
3233  * bridges. That actually depends on how PEs are segmented.
3234  * For now, we return I/O or M32 segment size for PE sensitive
3235  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3236  * 1MiB for memory) will be returned.
3237  *
3238  * The current PCI bus might be put into one PE, which was
3239  * create against the parent PCI bridge. For that case, we
3240  * needn't enlarge the alignment so that we can save some
3241  * resources.
3242  */
3243 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3244 						unsigned long type)
3245 {
3246 	struct pci_dev *bridge;
3247 	struct pci_controller *hose = pci_bus_to_host(bus);
3248 	struct pnv_phb *phb = hose->private_data;
3249 	int num_pci_bridges = 0;
3250 
3251 	bridge = bus->self;
3252 	while (bridge) {
3253 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3254 			num_pci_bridges++;
3255 			if (num_pci_bridges >= 2)
3256 				return 1;
3257 		}
3258 
3259 		bridge = bridge->bus->self;
3260 	}
3261 
3262 	/*
3263 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3264 	 * alignment for any 64-bit resource, PCIe doesn't care and
3265 	 * bridges only do 64-bit prefetchable anyway.
3266 	 */
3267 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3268 		return phb->ioda.m64_segsize;
3269 	if (type & IORESOURCE_MEM)
3270 		return phb->ioda.m32_segsize;
3271 
3272 	return phb->ioda.io_segsize;
3273 }
3274 
3275 /*
3276  * We are updating root port or the upstream port of the
3277  * bridge behind the root port with PHB's windows in order
3278  * to accommodate the changes on required resources during
3279  * PCI (slot) hotplug, which is connected to either root
3280  * port or the downstream ports of PCIe switch behind the
3281  * root port.
3282  */
3283 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3284 					   unsigned long type)
3285 {
3286 	struct pci_controller *hose = pci_bus_to_host(bus);
3287 	struct pnv_phb *phb = hose->private_data;
3288 	struct pci_dev *bridge = bus->self;
3289 	struct resource *r, *w;
3290 	bool msi_region = false;
3291 	int i;
3292 
3293 	/* Check if we need apply fixup to the bridge's windows */
3294 	if (!pci_is_root_bus(bridge->bus) &&
3295 	    !pci_is_root_bus(bridge->bus->self->bus))
3296 		return;
3297 
3298 	/* Fixup the resources */
3299 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3300 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3301 		if (!r->flags || !r->parent)
3302 			continue;
3303 
3304 		w = NULL;
3305 		if (r->flags & type & IORESOURCE_IO)
3306 			w = &hose->io_resource;
3307 		else if (pnv_pci_is_m64(phb, r) &&
3308 			 (type & IORESOURCE_PREFETCH) &&
3309 			 phb->ioda.m64_segsize)
3310 			w = &hose->mem_resources[1];
3311 		else if (r->flags & type & IORESOURCE_MEM) {
3312 			w = &hose->mem_resources[0];
3313 			msi_region = true;
3314 		}
3315 
3316 		r->start = w->start;
3317 		r->end = w->end;
3318 
3319 		/* The 64KB 32-bits MSI region shouldn't be included in
3320 		 * the 32-bits bridge window. Otherwise, we can see strange
3321 		 * issues. One of them is EEH error observed on Garrison.
3322 		 *
3323 		 * Exclude top 1MB region which is the minimal alignment of
3324 		 * 32-bits bridge window.
3325 		 */
3326 		if (msi_region) {
3327 			r->end += 0x10000;
3328 			r->end -= 0x100000;
3329 		}
3330 	}
3331 }
3332 
3333 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3334 {
3335 	struct pci_controller *hose = pci_bus_to_host(bus);
3336 	struct pnv_phb *phb = hose->private_data;
3337 	struct pci_dev *bridge = bus->self;
3338 	struct pnv_ioda_pe *pe;
3339 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3340 
3341 	/* Extend bridge's windows if necessary */
3342 	pnv_pci_fixup_bridge_resources(bus, type);
3343 
3344 	/* The PE for root bus should be realized before any one else */
3345 	if (!phb->ioda.root_pe_populated) {
3346 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3347 		if (pe) {
3348 			phb->ioda.root_pe_idx = pe->pe_number;
3349 			phb->ioda.root_pe_populated = true;
3350 		}
3351 	}
3352 
3353 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3354 	if (list_empty(&bus->devices))
3355 		return;
3356 
3357 	/* Reserve PEs according to used M64 resources */
3358 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
3359 
3360 	/*
3361 	 * Assign PE. We might run here because of partial hotplug.
3362 	 * For the case, we just pick up the existing PE and should
3363 	 * not allocate resources again.
3364 	 */
3365 	pe = pnv_ioda_setup_bus_PE(bus, all);
3366 	if (!pe)
3367 		return;
3368 
3369 	pnv_ioda_setup_pe_seg(pe);
3370 	switch (phb->type) {
3371 	case PNV_PHB_IODA1:
3372 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3373 		break;
3374 	case PNV_PHB_IODA2:
3375 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3376 		break;
3377 	default:
3378 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3379 			__func__, phb->hose->global_number, phb->type);
3380 	}
3381 }
3382 
3383 static resource_size_t pnv_pci_default_alignment(void)
3384 {
3385 	return PAGE_SIZE;
3386 }
3387 
3388 #ifdef CONFIG_PCI_IOV
3389 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3390 						      int resno)
3391 {
3392 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3393 	struct pnv_phb *phb = hose->private_data;
3394 	struct pci_dn *pdn = pci_get_pdn(pdev);
3395 	resource_size_t align;
3396 
3397 	/*
3398 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3399 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3400 	 * BAR should be size aligned.
3401 	 *
3402 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3403 	 * powernv-specific hardware restriction is gone. But if just use the
3404 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3405 	 * in one segment of M64 #15, which introduces the PE conflict between
3406 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3407 	 * m64_segsize.
3408 	 *
3409 	 * This function returns the total IOV BAR size if M64 BAR is in
3410 	 * Shared PE mode or just VF BAR size if not.
3411 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3412 	 * M64 segment size if IOV BAR size is less.
3413 	 */
3414 	align = pci_iov_resource_size(pdev, resno);
3415 	if (!pdn->vfs_expanded)
3416 		return align;
3417 	if (pdn->m64_single_mode)
3418 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3419 
3420 	return pdn->vfs_expanded * align;
3421 }
3422 #endif /* CONFIG_PCI_IOV */
3423 
3424 /* Prevent enabling devices for which we couldn't properly
3425  * assign a PE
3426  */
3427 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3428 {
3429 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3430 	struct pnv_phb *phb = hose->private_data;
3431 	struct pci_dn *pdn;
3432 
3433 	/* The function is probably called while the PEs have
3434 	 * not be created yet. For example, resource reassignment
3435 	 * during PCI probe period. We just skip the check if
3436 	 * PEs isn't ready.
3437 	 */
3438 	if (!phb->initialized)
3439 		return true;
3440 
3441 	pdn = pci_get_pdn(dev);
3442 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3443 		return false;
3444 
3445 	return true;
3446 }
3447 
3448 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3449 				       int num)
3450 {
3451 	struct pnv_ioda_pe *pe = container_of(table_group,
3452 					      struct pnv_ioda_pe, table_group);
3453 	struct pnv_phb *phb = pe->phb;
3454 	unsigned int idx;
3455 	long rc;
3456 
3457 	pe_info(pe, "Removing DMA window #%d\n", num);
3458 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3459 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3460 			continue;
3461 
3462 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3463 						idx, 0, 0ul, 0ul, 0ul);
3464 		if (rc != OPAL_SUCCESS) {
3465 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3466 				rc, idx);
3467 			return rc;
3468 		}
3469 
3470 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3471 	}
3472 
3473 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3474 	return OPAL_SUCCESS;
3475 }
3476 
3477 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3478 {
3479 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3480 	struct iommu_table *tbl = pe->table_group.tables[0];
3481 	int64_t rc;
3482 
3483 	if (!weight)
3484 		return;
3485 
3486 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3487 	if (rc != OPAL_SUCCESS)
3488 		return;
3489 
3490 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3491 	if (pe->table_group.group) {
3492 		iommu_group_put(pe->table_group.group);
3493 		WARN_ON(pe->table_group.group);
3494 	}
3495 
3496 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3497 	iommu_tce_table_put(tbl);
3498 }
3499 
3500 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3501 {
3502 	struct iommu_table *tbl = pe->table_group.tables[0];
3503 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3504 #ifdef CONFIG_IOMMU_API
3505 	int64_t rc;
3506 #endif
3507 
3508 	if (!weight)
3509 		return;
3510 
3511 #ifdef CONFIG_IOMMU_API
3512 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3513 	if (rc)
3514 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3515 #endif
3516 
3517 	pnv_pci_ioda2_set_bypass(pe, false);
3518 	if (pe->table_group.group) {
3519 		iommu_group_put(pe->table_group.group);
3520 		WARN_ON(pe->table_group.group);
3521 	}
3522 
3523 	iommu_tce_table_put(tbl);
3524 }
3525 
3526 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3527 				 unsigned short win,
3528 				 unsigned int *map)
3529 {
3530 	struct pnv_phb *phb = pe->phb;
3531 	int idx;
3532 	int64_t rc;
3533 
3534 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3535 		if (map[idx] != pe->pe_number)
3536 			continue;
3537 
3538 		if (win == OPAL_M64_WINDOW_TYPE)
3539 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3540 					phb->ioda.reserved_pe_idx, win,
3541 					idx / PNV_IODA1_M64_SEGS,
3542 					idx % PNV_IODA1_M64_SEGS);
3543 		else
3544 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3545 					phb->ioda.reserved_pe_idx, win, 0, idx);
3546 
3547 		if (rc != OPAL_SUCCESS)
3548 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3549 				rc, win, idx);
3550 
3551 		map[idx] = IODA_INVALID_PE;
3552 	}
3553 }
3554 
3555 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3556 {
3557 	struct pnv_phb *phb = pe->phb;
3558 
3559 	if (phb->type == PNV_PHB_IODA1) {
3560 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3561 				     phb->ioda.io_segmap);
3562 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3563 				     phb->ioda.m32_segmap);
3564 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3565 				     phb->ioda.m64_segmap);
3566 	} else if (phb->type == PNV_PHB_IODA2) {
3567 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3568 				     phb->ioda.m32_segmap);
3569 	}
3570 }
3571 
3572 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3573 {
3574 	struct pnv_phb *phb = pe->phb;
3575 	struct pnv_ioda_pe *slave, *tmp;
3576 
3577 	list_del(&pe->list);
3578 	switch (phb->type) {
3579 	case PNV_PHB_IODA1:
3580 		pnv_pci_ioda1_release_pe_dma(pe);
3581 		break;
3582 	case PNV_PHB_IODA2:
3583 		pnv_pci_ioda2_release_pe_dma(pe);
3584 		break;
3585 	default:
3586 		WARN_ON(1);
3587 	}
3588 
3589 	pnv_ioda_release_pe_seg(pe);
3590 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3591 
3592 	/* Release slave PEs in the compound PE */
3593 	if (pe->flags & PNV_IODA_PE_MASTER) {
3594 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3595 			list_del(&slave->list);
3596 			pnv_ioda_free_pe(slave);
3597 		}
3598 	}
3599 
3600 	/*
3601 	 * The PE for root bus can be removed because of hotplug in EEH
3602 	 * recovery for fenced PHB error. We need to mark the PE dead so
3603 	 * that it can be populated again in PCI hot add path. The PE
3604 	 * shouldn't be destroyed as it's the global reserved resource.
3605 	 */
3606 	if (phb->ioda.root_pe_populated &&
3607 	    phb->ioda.root_pe_idx == pe->pe_number)
3608 		phb->ioda.root_pe_populated = false;
3609 	else
3610 		pnv_ioda_free_pe(pe);
3611 }
3612 
3613 static void pnv_pci_release_device(struct pci_dev *pdev)
3614 {
3615 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3616 	struct pnv_phb *phb = hose->private_data;
3617 	struct pci_dn *pdn = pci_get_pdn(pdev);
3618 	struct pnv_ioda_pe *pe;
3619 
3620 	if (pdev->is_virtfn)
3621 		return;
3622 
3623 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3624 		return;
3625 
3626 	/*
3627 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3628 	 * isn't removed and added afterwards in this scenario. We should
3629 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3630 	 * device count is decreased on removing devices while failing to
3631 	 * be increased on adding devices. It leads to unbalanced PE's device
3632 	 * count and eventually make normal PCI hotplug path broken.
3633 	 */
3634 	pe = &phb->ioda.pe_array[pdn->pe_number];
3635 	pdn->pe_number = IODA_INVALID_PE;
3636 
3637 	WARN_ON(--pe->device_count < 0);
3638 	if (pe->device_count == 0)
3639 		pnv_ioda_release_pe(pe);
3640 }
3641 
3642 static void pnv_npu_disable_device(struct pci_dev *pdev)
3643 {
3644 	struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
3645 	struct eeh_pe *eehpe = edev ? edev->pe : NULL;
3646 
3647 	if (eehpe && eeh_ops && eeh_ops->reset)
3648 		eeh_ops->reset(eehpe, EEH_RESET_HOT);
3649 }
3650 
3651 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3652 {
3653 	struct pnv_phb *phb = hose->private_data;
3654 
3655 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3656 		       OPAL_ASSERT_RESET);
3657 }
3658 
3659 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3660 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3661 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3662 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3663 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3664 	.enable_device_hook	= pnv_pci_enable_device_hook,
3665 	.release_device		= pnv_pci_release_device,
3666 	.window_alignment	= pnv_pci_window_alignment,
3667 	.setup_bridge		= pnv_pci_setup_bridge,
3668 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3669 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3670 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3671 	.shutdown		= pnv_pci_ioda_shutdown,
3672 };
3673 
3674 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3675 {
3676 	dev_err_once(&npdev->dev,
3677 			"%s operation unsupported for NVLink devices\n",
3678 			__func__);
3679 	return -EPERM;
3680 }
3681 
3682 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3683 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3684 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3685 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3686 	.enable_device_hook	= pnv_pci_enable_device_hook,
3687 	.window_alignment	= pnv_pci_window_alignment,
3688 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3689 	.dma_set_mask		= pnv_npu_dma_set_mask,
3690 	.shutdown		= pnv_pci_ioda_shutdown,
3691 	.disable_device		= pnv_npu_disable_device,
3692 };
3693 
3694 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3695 	.enable_device_hook	= pnv_pci_enable_device_hook,
3696 	.window_alignment	= pnv_pci_window_alignment,
3697 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3698 	.shutdown		= pnv_pci_ioda_shutdown,
3699 };
3700 
3701 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3702 					 u64 hub_id, int ioda_type)
3703 {
3704 	struct pci_controller *hose;
3705 	struct pnv_phb *phb;
3706 	unsigned long size, m64map_off, m32map_off, pemap_off;
3707 	unsigned long iomap_off = 0, dma32map_off = 0;
3708 	struct resource r;
3709 	const __be64 *prop64;
3710 	const __be32 *prop32;
3711 	int len;
3712 	unsigned int segno;
3713 	u64 phb_id;
3714 	void *aux;
3715 	long rc;
3716 
3717 	if (!of_device_is_available(np))
3718 		return;
3719 
3720 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3721 
3722 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3723 	if (!prop64) {
3724 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3725 		return;
3726 	}
3727 	phb_id = be64_to_cpup(prop64);
3728 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3729 
3730 	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3731 
3732 	/* Allocate PCI controller */
3733 	phb->hose = hose = pcibios_alloc_controller(np);
3734 	if (!phb->hose) {
3735 		pr_err("  Can't allocate PCI controller for %pOF\n",
3736 		       np);
3737 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3738 		return;
3739 	}
3740 
3741 	spin_lock_init(&phb->lock);
3742 	prop32 = of_get_property(np, "bus-range", &len);
3743 	if (prop32 && len == 8) {
3744 		hose->first_busno = be32_to_cpu(prop32[0]);
3745 		hose->last_busno = be32_to_cpu(prop32[1]);
3746 	} else {
3747 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3748 		hose->first_busno = 0;
3749 		hose->last_busno = 0xff;
3750 	}
3751 	hose->private_data = phb;
3752 	phb->hub_id = hub_id;
3753 	phb->opal_id = phb_id;
3754 	phb->type = ioda_type;
3755 	mutex_init(&phb->ioda.pe_alloc_mutex);
3756 
3757 	/* Detect specific models for error handling */
3758 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3759 		phb->model = PNV_PHB_MODEL_P7IOC;
3760 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3761 		phb->model = PNV_PHB_MODEL_PHB3;
3762 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3763 		phb->model = PNV_PHB_MODEL_NPU;
3764 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3765 		phb->model = PNV_PHB_MODEL_NPU2;
3766 	else
3767 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3768 
3769 	/* Initialize diagnostic data buffer */
3770 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3771 	if (prop32)
3772 		phb->diag_data_size = be32_to_cpup(prop32);
3773 	else
3774 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3775 
3776 	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3777 
3778 	/* Parse 32-bit and IO ranges (if any) */
3779 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3780 
3781 	/* Get registers */
3782 	if (!of_address_to_resource(np, 0, &r)) {
3783 		phb->regs_phys = r.start;
3784 		phb->regs = ioremap(r.start, resource_size(&r));
3785 		if (phb->regs == NULL)
3786 			pr_err("  Failed to map registers !\n");
3787 	}
3788 
3789 	/* Initialize more IODA stuff */
3790 	phb->ioda.total_pe_num = 1;
3791 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3792 	if (prop32)
3793 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3794 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3795 	if (prop32)
3796 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3797 
3798 	/* Invalidate RID to PE# mapping */
3799 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3800 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3801 
3802 	/* Parse 64-bit MMIO range */
3803 	pnv_ioda_parse_m64_window(phb);
3804 
3805 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3806 	/* FW Has already off top 64k of M32 space (MSI space) */
3807 	phb->ioda.m32_size += 0x10000;
3808 
3809 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3810 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3811 	phb->ioda.io_size = hose->pci_io_size;
3812 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3813 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3814 
3815 	/* Calculate how many 32-bit TCE segments we have */
3816 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3817 				PNV_IODA1_DMA32_SEGSIZE;
3818 
3819 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3820 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3821 			sizeof(unsigned long));
3822 	m64map_off = size;
3823 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3824 	m32map_off = size;
3825 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3826 	if (phb->type == PNV_PHB_IODA1) {
3827 		iomap_off = size;
3828 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3829 		dma32map_off = size;
3830 		size += phb->ioda.dma32_count *
3831 			sizeof(phb->ioda.dma32_segmap[0]);
3832 	}
3833 	pemap_off = size;
3834 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3835 	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3836 	phb->ioda.pe_alloc = aux;
3837 	phb->ioda.m64_segmap = aux + m64map_off;
3838 	phb->ioda.m32_segmap = aux + m32map_off;
3839 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3840 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3841 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3842 	}
3843 	if (phb->type == PNV_PHB_IODA1) {
3844 		phb->ioda.io_segmap = aux + iomap_off;
3845 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3846 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3847 
3848 		phb->ioda.dma32_segmap = aux + dma32map_off;
3849 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3850 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3851 	}
3852 	phb->ioda.pe_array = aux + pemap_off;
3853 
3854 	/*
3855 	 * Choose PE number for root bus, which shouldn't have
3856 	 * M64 resources consumed by its child devices. To pick
3857 	 * the PE number adjacent to the reserved one if possible.
3858 	 */
3859 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3860 	if (phb->ioda.reserved_pe_idx == 0) {
3861 		phb->ioda.root_pe_idx = 1;
3862 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3863 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3864 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3865 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3866 	} else {
3867 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3868 	}
3869 
3870 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3871 	mutex_init(&phb->ioda.pe_list_mutex);
3872 
3873 	/* Calculate how many 32-bit TCE segments we have */
3874 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3875 				PNV_IODA1_DMA32_SEGSIZE;
3876 
3877 #if 0 /* We should really do that ... */
3878 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3879 					 window_type,
3880 					 window_num,
3881 					 starting_real_address,
3882 					 starting_pci_address,
3883 					 segment_size);
3884 #endif
3885 
3886 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3887 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3888 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3889 	if (phb->ioda.m64_size)
3890 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3891 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3892 	if (phb->ioda.io_size)
3893 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3894 			phb->ioda.io_size, phb->ioda.io_segsize);
3895 
3896 
3897 	phb->hose->ops = &pnv_pci_ops;
3898 	phb->get_pe_state = pnv_ioda_get_pe_state;
3899 	phb->freeze_pe = pnv_ioda_freeze_pe;
3900 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3901 
3902 	/* Setup MSI support */
3903 	pnv_pci_init_ioda_msis(phb);
3904 
3905 	/*
3906 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3907 	 * to let the PCI core do resource assignment. It's supposed
3908 	 * that the PCI core will do correct I/O and MMIO alignment
3909 	 * for the P2P bridge bars so that each PCI bus (excluding
3910 	 * the child P2P bridges) can form individual PE.
3911 	 */
3912 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3913 
3914 	switch (phb->type) {
3915 	case PNV_PHB_NPU_NVLINK:
3916 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3917 		break;
3918 	case PNV_PHB_NPU_OCAPI:
3919 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3920 		break;
3921 	default:
3922 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3923 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3924 	}
3925 
3926 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3927 
3928 #ifdef CONFIG_PCI_IOV
3929 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3930 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3931 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3932 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3933 #endif
3934 
3935 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3936 
3937 	/* Reset IODA tables to a clean state */
3938 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3939 	if (rc)
3940 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3941 
3942 	/*
3943 	 * If we're running in kdump kernel, the previous kernel never
3944 	 * shutdown PCI devices correctly. We already got IODA table
3945 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3946 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3947 	 * kernel parameter will force this reset too.
3948 	 */
3949 	if (is_kdump_kernel() || pci_reset_phbs) {
3950 		pr_info("  Issue PHB reset ...\n");
3951 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3952 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3953 	}
3954 
3955 	/* Remove M64 resource if we can't configure it successfully */
3956 	if (!phb->init_m64 || phb->init_m64(phb))
3957 		hose->mem_resources[1].flags = 0;
3958 }
3959 
3960 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3961 {
3962 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3963 }
3964 
3965 void __init pnv_pci_init_npu_phb(struct device_node *np)
3966 {
3967 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3968 }
3969 
3970 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3971 {
3972 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3973 }
3974 
3975 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3976 {
3977 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3978 	struct pnv_phb *phb = hose->private_data;
3979 
3980 	if (!machine_is(powernv))
3981 		return;
3982 
3983 	if (phb->type == PNV_PHB_NPU_OCAPI)
3984 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3985 }
3986 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3987 
3988 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3989 {
3990 	struct device_node *phbn;
3991 	const __be64 *prop64;
3992 	u64 hub_id;
3993 
3994 	pr_info("Probing IODA IO-Hub %pOF\n", np);
3995 
3996 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3997 	if (!prop64) {
3998 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3999 		return;
4000 	}
4001 	hub_id = be64_to_cpup(prop64);
4002 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4003 
4004 	/* Count child PHBs */
4005 	for_each_child_of_node(np, phbn) {
4006 		/* Look for IODA1 PHBs */
4007 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4008 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4009 	}
4010 }
4011