1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Support PCI/PCIe on PowerNV platforms 4 * 5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 6 */ 7 8 #undef DEBUG 9 10 #include <linux/kernel.h> 11 #include <linux/pci.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/string.h> 15 #include <linux/init.h> 16 #include <linux/memblock.h> 17 #include <linux/irq.h> 18 #include <linux/io.h> 19 #include <linux/msi.h> 20 #include <linux/iommu.h> 21 #include <linux/rculist.h> 22 #include <linux/sizes.h> 23 24 #include <asm/sections.h> 25 #include <asm/io.h> 26 #include <asm/prom.h> 27 #include <asm/pci-bridge.h> 28 #include <asm/machdep.h> 29 #include <asm/msi_bitmap.h> 30 #include <asm/ppc-pci.h> 31 #include <asm/opal.h> 32 #include <asm/iommu.h> 33 #include <asm/tce.h> 34 #include <asm/xics.h> 35 #include <asm/debugfs.h> 36 #include <asm/firmware.h> 37 #include <asm/pnv-pci.h> 38 #include <asm/mmzone.h> 39 40 #include <misc/cxl-base.h> 41 42 #include "powernv.h" 43 #include "pci.h" 44 #include "../../../../drivers/pci/pci.h" 45 46 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ 47 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ 48 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 49 50 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK", 51 "NPU_OCAPI" }; 52 53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable); 54 55 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, 56 const char *fmt, ...) 57 { 58 struct va_format vaf; 59 va_list args; 60 char pfix[32]; 61 62 va_start(args, fmt); 63 64 vaf.fmt = fmt; 65 vaf.va = &args; 66 67 if (pe->flags & PNV_IODA_PE_DEV) 68 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); 69 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 70 sprintf(pfix, "%04x:%02x ", 71 pci_domain_nr(pe->pbus), pe->pbus->number); 72 #ifdef CONFIG_PCI_IOV 73 else if (pe->flags & PNV_IODA_PE_VF) 74 sprintf(pfix, "%04x:%02x:%2x.%d", 75 pci_domain_nr(pe->parent_dev->bus), 76 (pe->rid & 0xff00) >> 8, 77 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); 78 #endif /* CONFIG_PCI_IOV*/ 79 80 printk("%spci %s: [PE# %.2x] %pV", 81 level, pfix, pe->pe_number, &vaf); 82 83 va_end(args); 84 } 85 86 static bool pnv_iommu_bypass_disabled __read_mostly; 87 static bool pci_reset_phbs __read_mostly; 88 89 static int __init iommu_setup(char *str) 90 { 91 if (!str) 92 return -EINVAL; 93 94 while (*str) { 95 if (!strncmp(str, "nobypass", 8)) { 96 pnv_iommu_bypass_disabled = true; 97 pr_info("PowerNV: IOMMU bypass window disabled.\n"); 98 break; 99 } 100 str += strcspn(str, ","); 101 if (*str == ',') 102 str++; 103 } 104 105 return 0; 106 } 107 early_param("iommu", iommu_setup); 108 109 static int __init pci_reset_phbs_setup(char *str) 110 { 111 pci_reset_phbs = true; 112 return 0; 113 } 114 115 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup); 116 117 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r) 118 { 119 /* 120 * WARNING: We cannot rely on the resource flags. The Linux PCI 121 * allocation code sometimes decides to put a 64-bit prefetchable 122 * BAR in the 32-bit window, so we have to compare the addresses. 123 * 124 * For simplicity we only test resource start. 125 */ 126 return (r->start >= phb->ioda.m64_base && 127 r->start < (phb->ioda.m64_base + phb->ioda.m64_size)); 128 } 129 130 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags) 131 { 132 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 133 134 return (resource_flags & flags) == flags; 135 } 136 137 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) 138 { 139 s64 rc; 140 141 phb->ioda.pe_array[pe_no].phb = phb; 142 phb->ioda.pe_array[pe_no].pe_number = pe_no; 143 144 /* 145 * Clear the PE frozen state as it might be put into frozen state 146 * in the last PCI remove path. It's not harmful to do so when the 147 * PE is already in unfrozen state. 148 */ 149 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, 150 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 151 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 152 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n", 153 __func__, rc, phb->hose->global_number, pe_no); 154 155 return &phb->ioda.pe_array[pe_no]; 156 } 157 158 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) 159 { 160 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { 161 pr_warn("%s: Invalid PE %x on PHB#%x\n", 162 __func__, pe_no, phb->hose->global_number); 163 return; 164 } 165 166 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) 167 pr_debug("%s: PE %x was reserved on PHB#%x\n", 168 __func__, pe_no, phb->hose->global_number); 169 170 pnv_ioda_init_pe(phb, pe_no); 171 } 172 173 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb) 174 { 175 long pe; 176 177 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { 178 if (!test_and_set_bit(pe, phb->ioda.pe_alloc)) 179 return pnv_ioda_init_pe(phb, pe); 180 } 181 182 return NULL; 183 } 184 185 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) 186 { 187 struct pnv_phb *phb = pe->phb; 188 unsigned int pe_num = pe->pe_number; 189 190 WARN_ON(pe->pdev); 191 WARN_ON(pe->npucomp); /* NPUs for nvlink are not supposed to be freed */ 192 kfree(pe->npucomp); 193 memset(pe, 0, sizeof(struct pnv_ioda_pe)); 194 clear_bit(pe_num, phb->ioda.pe_alloc); 195 } 196 197 /* The default M64 BAR is shared by all PEs */ 198 static int pnv_ioda2_init_m64(struct pnv_phb *phb) 199 { 200 const char *desc; 201 struct resource *r; 202 s64 rc; 203 204 /* Configure the default M64 BAR */ 205 rc = opal_pci_set_phb_mem_window(phb->opal_id, 206 OPAL_M64_WINDOW_TYPE, 207 phb->ioda.m64_bar_idx, 208 phb->ioda.m64_base, 209 0, /* unused */ 210 phb->ioda.m64_size); 211 if (rc != OPAL_SUCCESS) { 212 desc = "configuring"; 213 goto fail; 214 } 215 216 /* Enable the default M64 BAR */ 217 rc = opal_pci_phb_mmio_enable(phb->opal_id, 218 OPAL_M64_WINDOW_TYPE, 219 phb->ioda.m64_bar_idx, 220 OPAL_ENABLE_M64_SPLIT); 221 if (rc != OPAL_SUCCESS) { 222 desc = "enabling"; 223 goto fail; 224 } 225 226 /* 227 * Exclude the segments for reserved and root bus PE, which 228 * are first or last two PEs. 229 */ 230 r = &phb->hose->mem_resources[1]; 231 if (phb->ioda.reserved_pe_idx == 0) 232 r->start += (2 * phb->ioda.m64_segsize); 233 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 234 r->end -= (2 * phb->ioda.m64_segsize); 235 else 236 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n", 237 phb->ioda.reserved_pe_idx); 238 239 return 0; 240 241 fail: 242 pr_warn(" Failure %lld %s M64 BAR#%d\n", 243 rc, desc, phb->ioda.m64_bar_idx); 244 opal_pci_phb_mmio_enable(phb->opal_id, 245 OPAL_M64_WINDOW_TYPE, 246 phb->ioda.m64_bar_idx, 247 OPAL_DISABLE_M64); 248 return -EIO; 249 } 250 251 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, 252 unsigned long *pe_bitmap) 253 { 254 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 255 struct pnv_phb *phb = hose->private_data; 256 struct resource *r; 257 resource_size_t base, sgsz, start, end; 258 int segno, i; 259 260 base = phb->ioda.m64_base; 261 sgsz = phb->ioda.m64_segsize; 262 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 263 r = &pdev->resource[i]; 264 if (!r->parent || !pnv_pci_is_m64(phb, r)) 265 continue; 266 267 start = _ALIGN_DOWN(r->start - base, sgsz); 268 end = _ALIGN_UP(r->end - base, sgsz); 269 for (segno = start / sgsz; segno < end / sgsz; segno++) { 270 if (pe_bitmap) 271 set_bit(segno, pe_bitmap); 272 else 273 pnv_ioda_reserve_pe(phb, segno); 274 } 275 } 276 } 277 278 static int pnv_ioda1_init_m64(struct pnv_phb *phb) 279 { 280 struct resource *r; 281 int index; 282 283 /* 284 * There are 16 M64 BARs, each of which has 8 segments. So 285 * there are as many M64 segments as the maximum number of 286 * PEs, which is 128. 287 */ 288 for (index = 0; index < PNV_IODA1_M64_NUM; index++) { 289 unsigned long base, segsz = phb->ioda.m64_segsize; 290 int64_t rc; 291 292 base = phb->ioda.m64_base + 293 index * PNV_IODA1_M64_SEGS * segsz; 294 rc = opal_pci_set_phb_mem_window(phb->opal_id, 295 OPAL_M64_WINDOW_TYPE, index, base, 0, 296 PNV_IODA1_M64_SEGS * segsz); 297 if (rc != OPAL_SUCCESS) { 298 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n", 299 rc, phb->hose->global_number, index); 300 goto fail; 301 } 302 303 rc = opal_pci_phb_mmio_enable(phb->opal_id, 304 OPAL_M64_WINDOW_TYPE, index, 305 OPAL_ENABLE_M64_SPLIT); 306 if (rc != OPAL_SUCCESS) { 307 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n", 308 rc, phb->hose->global_number, index); 309 goto fail; 310 } 311 } 312 313 /* 314 * Exclude the segments for reserved and root bus PE, which 315 * are first or last two PEs. 316 */ 317 r = &phb->hose->mem_resources[1]; 318 if (phb->ioda.reserved_pe_idx == 0) 319 r->start += (2 * phb->ioda.m64_segsize); 320 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 321 r->end -= (2 * phb->ioda.m64_segsize); 322 else 323 WARN(1, "Wrong reserved PE#%x on PHB#%x\n", 324 phb->ioda.reserved_pe_idx, phb->hose->global_number); 325 326 return 0; 327 328 fail: 329 for ( ; index >= 0; index--) 330 opal_pci_phb_mmio_enable(phb->opal_id, 331 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); 332 333 return -EIO; 334 } 335 336 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, 337 unsigned long *pe_bitmap, 338 bool all) 339 { 340 struct pci_dev *pdev; 341 342 list_for_each_entry(pdev, &bus->devices, bus_list) { 343 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); 344 345 if (all && pdev->subordinate) 346 pnv_ioda_reserve_m64_pe(pdev->subordinate, 347 pe_bitmap, all); 348 } 349 } 350 351 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) 352 { 353 struct pci_controller *hose = pci_bus_to_host(bus); 354 struct pnv_phb *phb = hose->private_data; 355 struct pnv_ioda_pe *master_pe, *pe; 356 unsigned long size, *pe_alloc; 357 int i; 358 359 /* Root bus shouldn't use M64 */ 360 if (pci_is_root_bus(bus)) 361 return NULL; 362 363 /* Allocate bitmap */ 364 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); 365 pe_alloc = kzalloc(size, GFP_KERNEL); 366 if (!pe_alloc) { 367 pr_warn("%s: Out of memory !\n", 368 __func__); 369 return NULL; 370 } 371 372 /* Figure out reserved PE numbers by the PE */ 373 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); 374 375 /* 376 * the current bus might not own M64 window and that's all 377 * contributed by its child buses. For the case, we needn't 378 * pick M64 dependent PE#. 379 */ 380 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { 381 kfree(pe_alloc); 382 return NULL; 383 } 384 385 /* 386 * Figure out the master PE and put all slave PEs to master 387 * PE's list to form compound PE. 388 */ 389 master_pe = NULL; 390 i = -1; 391 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < 392 phb->ioda.total_pe_num) { 393 pe = &phb->ioda.pe_array[i]; 394 395 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; 396 if (!master_pe) { 397 pe->flags |= PNV_IODA_PE_MASTER; 398 INIT_LIST_HEAD(&pe->slaves); 399 master_pe = pe; 400 } else { 401 pe->flags |= PNV_IODA_PE_SLAVE; 402 pe->master = master_pe; 403 list_add_tail(&pe->list, &master_pe->slaves); 404 } 405 406 /* 407 * P7IOC supports M64DT, which helps mapping M64 segment 408 * to one particular PE#. However, PHB3 has fixed mapping 409 * between M64 segment and PE#. In order to have same logic 410 * for P7IOC and PHB3, we enforce fixed mapping between M64 411 * segment and PE# on P7IOC. 412 */ 413 if (phb->type == PNV_PHB_IODA1) { 414 int64_t rc; 415 416 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 417 pe->pe_number, OPAL_M64_WINDOW_TYPE, 418 pe->pe_number / PNV_IODA1_M64_SEGS, 419 pe->pe_number % PNV_IODA1_M64_SEGS); 420 if (rc != OPAL_SUCCESS) 421 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n", 422 __func__, rc, phb->hose->global_number, 423 pe->pe_number); 424 } 425 } 426 427 kfree(pe_alloc); 428 return master_pe; 429 } 430 431 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) 432 { 433 struct pci_controller *hose = phb->hose; 434 struct device_node *dn = hose->dn; 435 struct resource *res; 436 u32 m64_range[2], i; 437 const __be32 *r; 438 u64 pci_addr; 439 440 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { 441 pr_info(" Not support M64 window\n"); 442 return; 443 } 444 445 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 446 pr_info(" Firmware too old to support M64 window\n"); 447 return; 448 } 449 450 r = of_get_property(dn, "ibm,opal-m64-window", NULL); 451 if (!r) { 452 pr_info(" No <ibm,opal-m64-window> on %pOF\n", 453 dn); 454 return; 455 } 456 457 /* 458 * Find the available M64 BAR range and pickup the last one for 459 * covering the whole 64-bits space. We support only one range. 460 */ 461 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", 462 m64_range, 2)) { 463 /* In absence of the property, assume 0..15 */ 464 m64_range[0] = 0; 465 m64_range[1] = 16; 466 } 467 /* We only support 64 bits in our allocator */ 468 if (m64_range[1] > 63) { 469 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", 470 __func__, m64_range[1], phb->hose->global_number); 471 m64_range[1] = 63; 472 } 473 /* Empty range, no m64 */ 474 if (m64_range[1] <= m64_range[0]) { 475 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", 476 __func__, phb->hose->global_number); 477 return; 478 } 479 480 /* Configure M64 informations */ 481 res = &hose->mem_resources[1]; 482 res->name = dn->full_name; 483 res->start = of_translate_address(dn, r + 2); 484 res->end = res->start + of_read_number(r + 4, 2) - 1; 485 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 486 pci_addr = of_read_number(r, 2); 487 hose->mem_offset[1] = res->start - pci_addr; 488 489 phb->ioda.m64_size = resource_size(res); 490 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; 491 phb->ioda.m64_base = pci_addr; 492 493 /* This lines up nicely with the display from processing OF ranges */ 494 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", 495 res->start, res->end, pci_addr, m64_range[0], 496 m64_range[0] + m64_range[1] - 1); 497 498 /* Mark all M64 used up by default */ 499 phb->ioda.m64_bar_alloc = (unsigned long)-1; 500 501 /* Use last M64 BAR to cover M64 window */ 502 m64_range[1]--; 503 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; 504 505 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); 506 507 /* Mark remaining ones free */ 508 for (i = m64_range[0]; i < m64_range[1]; i++) 509 clear_bit(i, &phb->ioda.m64_bar_alloc); 510 511 /* 512 * Setup init functions for M64 based on IODA version, IODA3 uses 513 * the IODA2 code. 514 */ 515 if (phb->type == PNV_PHB_IODA1) 516 phb->init_m64 = pnv_ioda1_init_m64; 517 else 518 phb->init_m64 = pnv_ioda2_init_m64; 519 } 520 521 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) 522 { 523 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; 524 struct pnv_ioda_pe *slave; 525 s64 rc; 526 527 /* Fetch master PE */ 528 if (pe->flags & PNV_IODA_PE_SLAVE) { 529 pe = pe->master; 530 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) 531 return; 532 533 pe_no = pe->pe_number; 534 } 535 536 /* Freeze master PE */ 537 rc = opal_pci_eeh_freeze_set(phb->opal_id, 538 pe_no, 539 OPAL_EEH_ACTION_SET_FREEZE_ALL); 540 if (rc != OPAL_SUCCESS) { 541 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 542 __func__, rc, phb->hose->global_number, pe_no); 543 return; 544 } 545 546 /* Freeze slave PEs */ 547 if (!(pe->flags & PNV_IODA_PE_MASTER)) 548 return; 549 550 list_for_each_entry(slave, &pe->slaves, list) { 551 rc = opal_pci_eeh_freeze_set(phb->opal_id, 552 slave->pe_number, 553 OPAL_EEH_ACTION_SET_FREEZE_ALL); 554 if (rc != OPAL_SUCCESS) 555 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 556 __func__, rc, phb->hose->global_number, 557 slave->pe_number); 558 } 559 } 560 561 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) 562 { 563 struct pnv_ioda_pe *pe, *slave; 564 s64 rc; 565 566 /* Find master PE */ 567 pe = &phb->ioda.pe_array[pe_no]; 568 if (pe->flags & PNV_IODA_PE_SLAVE) { 569 pe = pe->master; 570 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 571 pe_no = pe->pe_number; 572 } 573 574 /* Clear frozen state for master PE */ 575 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); 576 if (rc != OPAL_SUCCESS) { 577 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 578 __func__, rc, opt, phb->hose->global_number, pe_no); 579 return -EIO; 580 } 581 582 if (!(pe->flags & PNV_IODA_PE_MASTER)) 583 return 0; 584 585 /* Clear frozen state for slave PEs */ 586 list_for_each_entry(slave, &pe->slaves, list) { 587 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 588 slave->pe_number, 589 opt); 590 if (rc != OPAL_SUCCESS) { 591 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 592 __func__, rc, opt, phb->hose->global_number, 593 slave->pe_number); 594 return -EIO; 595 } 596 } 597 598 return 0; 599 } 600 601 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) 602 { 603 struct pnv_ioda_pe *slave, *pe; 604 u8 fstate = 0, state; 605 __be16 pcierr = 0; 606 s64 rc; 607 608 /* Sanity check on PE number */ 609 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) 610 return OPAL_EEH_STOPPED_PERM_UNAVAIL; 611 612 /* 613 * Fetch the master PE and the PE instance might be 614 * not initialized yet. 615 */ 616 pe = &phb->ioda.pe_array[pe_no]; 617 if (pe->flags & PNV_IODA_PE_SLAVE) { 618 pe = pe->master; 619 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 620 pe_no = pe->pe_number; 621 } 622 623 /* Check the master PE */ 624 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, 625 &state, &pcierr, NULL); 626 if (rc != OPAL_SUCCESS) { 627 pr_warn("%s: Failure %lld getting " 628 "PHB#%x-PE#%x state\n", 629 __func__, rc, 630 phb->hose->global_number, pe_no); 631 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 632 } 633 634 /* Check the slave PE */ 635 if (!(pe->flags & PNV_IODA_PE_MASTER)) 636 return state; 637 638 list_for_each_entry(slave, &pe->slaves, list) { 639 rc = opal_pci_eeh_freeze_status(phb->opal_id, 640 slave->pe_number, 641 &fstate, 642 &pcierr, 643 NULL); 644 if (rc != OPAL_SUCCESS) { 645 pr_warn("%s: Failure %lld getting " 646 "PHB#%x-PE#%x state\n", 647 __func__, rc, 648 phb->hose->global_number, slave->pe_number); 649 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 650 } 651 652 /* 653 * Override the result based on the ascending 654 * priority. 655 */ 656 if (fstate > state) 657 state = fstate; 658 } 659 660 return state; 661 } 662 663 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) 664 { 665 struct pci_controller *hose = pci_bus_to_host(dev->bus); 666 struct pnv_phb *phb = hose->private_data; 667 struct pci_dn *pdn = pci_get_pdn(dev); 668 669 if (!pdn) 670 return NULL; 671 if (pdn->pe_number == IODA_INVALID_PE) 672 return NULL; 673 return &phb->ioda.pe_array[pdn->pe_number]; 674 } 675 676 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, 677 struct pnv_ioda_pe *parent, 678 struct pnv_ioda_pe *child, 679 bool is_add) 680 { 681 const char *desc = is_add ? "adding" : "removing"; 682 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : 683 OPAL_REMOVE_PE_FROM_DOMAIN; 684 struct pnv_ioda_pe *slave; 685 long rc; 686 687 /* Parent PE affects child PE */ 688 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 689 child->pe_number, op); 690 if (rc != OPAL_SUCCESS) { 691 pe_warn(child, "OPAL error %ld %s to parent PELTV\n", 692 rc, desc); 693 return -ENXIO; 694 } 695 696 if (!(child->flags & PNV_IODA_PE_MASTER)) 697 return 0; 698 699 /* Compound case: parent PE affects slave PEs */ 700 list_for_each_entry(slave, &child->slaves, list) { 701 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 702 slave->pe_number, op); 703 if (rc != OPAL_SUCCESS) { 704 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", 705 rc, desc); 706 return -ENXIO; 707 } 708 } 709 710 return 0; 711 } 712 713 static int pnv_ioda_set_peltv(struct pnv_phb *phb, 714 struct pnv_ioda_pe *pe, 715 bool is_add) 716 { 717 struct pnv_ioda_pe *slave; 718 struct pci_dev *pdev = NULL; 719 int ret; 720 721 /* 722 * Clear PE frozen state. If it's master PE, we need 723 * clear slave PE frozen state as well. 724 */ 725 if (is_add) { 726 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 727 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 728 if (pe->flags & PNV_IODA_PE_MASTER) { 729 list_for_each_entry(slave, &pe->slaves, list) 730 opal_pci_eeh_freeze_clear(phb->opal_id, 731 slave->pe_number, 732 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 733 } 734 } 735 736 /* 737 * Associate PE in PELT. We need add the PE into the 738 * corresponding PELT-V as well. Otherwise, the error 739 * originated from the PE might contribute to other 740 * PEs. 741 */ 742 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); 743 if (ret) 744 return ret; 745 746 /* For compound PEs, any one affects all of them */ 747 if (pe->flags & PNV_IODA_PE_MASTER) { 748 list_for_each_entry(slave, &pe->slaves, list) { 749 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); 750 if (ret) 751 return ret; 752 } 753 } 754 755 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) 756 pdev = pe->pbus->self; 757 else if (pe->flags & PNV_IODA_PE_DEV) 758 pdev = pe->pdev->bus->self; 759 #ifdef CONFIG_PCI_IOV 760 else if (pe->flags & PNV_IODA_PE_VF) 761 pdev = pe->parent_dev; 762 #endif /* CONFIG_PCI_IOV */ 763 while (pdev) { 764 struct pci_dn *pdn = pci_get_pdn(pdev); 765 struct pnv_ioda_pe *parent; 766 767 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 768 parent = &phb->ioda.pe_array[pdn->pe_number]; 769 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); 770 if (ret) 771 return ret; 772 } 773 774 pdev = pdev->bus->self; 775 } 776 777 return 0; 778 } 779 780 static void pnv_ioda_unset_peltv(struct pnv_phb *phb, 781 struct pnv_ioda_pe *pe, 782 struct pci_dev *parent) 783 { 784 int64_t rc; 785 786 while (parent) { 787 struct pci_dn *pdn = pci_get_pdn(parent); 788 789 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 790 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, 791 pe->pe_number, 792 OPAL_REMOVE_PE_FROM_DOMAIN); 793 /* XXX What to do in case of error ? */ 794 } 795 parent = parent->bus->self; 796 } 797 798 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 799 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 800 801 /* Disassociate PE in PELT */ 802 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, 803 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 804 if (rc) 805 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc); 806 } 807 808 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 809 { 810 struct pci_dev *parent; 811 uint8_t bcomp, dcomp, fcomp; 812 int64_t rc; 813 long rid_end, rid; 814 815 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ 816 if (pe->pbus) { 817 int count; 818 819 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 820 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 821 parent = pe->pbus->self; 822 if (pe->flags & PNV_IODA_PE_BUS_ALL) 823 count = resource_size(&pe->pbus->busn_res); 824 else 825 count = 1; 826 827 switch(count) { 828 case 1: bcomp = OpalPciBusAll; break; 829 case 2: bcomp = OpalPciBus7Bits; break; 830 case 4: bcomp = OpalPciBus6Bits; break; 831 case 8: bcomp = OpalPciBus5Bits; break; 832 case 16: bcomp = OpalPciBus4Bits; break; 833 case 32: bcomp = OpalPciBus3Bits; break; 834 default: 835 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 836 count); 837 /* Do an exact match only */ 838 bcomp = OpalPciBusAll; 839 } 840 rid_end = pe->rid + (count << 8); 841 } else { 842 #ifdef CONFIG_PCI_IOV 843 if (pe->flags & PNV_IODA_PE_VF) 844 parent = pe->parent_dev; 845 else 846 #endif 847 parent = pe->pdev->bus->self; 848 bcomp = OpalPciBusAll; 849 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 850 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 851 rid_end = pe->rid + 1; 852 } 853 854 /* Clear the reverse map */ 855 for (rid = pe->rid; rid < rid_end; rid++) 856 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; 857 858 /* 859 * Release from all parents PELT-V. NPUs don't have a PELTV 860 * table 861 */ 862 if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI) 863 pnv_ioda_unset_peltv(phb, pe, parent); 864 865 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 866 bcomp, dcomp, fcomp, OPAL_UNMAP_PE); 867 if (rc) 868 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc); 869 870 pe->pbus = NULL; 871 pe->pdev = NULL; 872 #ifdef CONFIG_PCI_IOV 873 pe->parent_dev = NULL; 874 #endif 875 876 return 0; 877 } 878 879 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 880 { 881 struct pci_dev *parent; 882 uint8_t bcomp, dcomp, fcomp; 883 long rc, rid_end, rid; 884 885 /* Bus validation ? */ 886 if (pe->pbus) { 887 int count; 888 889 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 890 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 891 parent = pe->pbus->self; 892 if (pe->flags & PNV_IODA_PE_BUS_ALL) 893 count = resource_size(&pe->pbus->busn_res); 894 else 895 count = 1; 896 897 switch(count) { 898 case 1: bcomp = OpalPciBusAll; break; 899 case 2: bcomp = OpalPciBus7Bits; break; 900 case 4: bcomp = OpalPciBus6Bits; break; 901 case 8: bcomp = OpalPciBus5Bits; break; 902 case 16: bcomp = OpalPciBus4Bits; break; 903 case 32: bcomp = OpalPciBus3Bits; break; 904 default: 905 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 906 count); 907 /* Do an exact match only */ 908 bcomp = OpalPciBusAll; 909 } 910 rid_end = pe->rid + (count << 8); 911 } else { 912 #ifdef CONFIG_PCI_IOV 913 if (pe->flags & PNV_IODA_PE_VF) 914 parent = pe->parent_dev; 915 else 916 #endif /* CONFIG_PCI_IOV */ 917 parent = pe->pdev->bus->self; 918 bcomp = OpalPciBusAll; 919 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 920 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 921 rid_end = pe->rid + 1; 922 } 923 924 /* 925 * Associate PE in PELT. We need add the PE into the 926 * corresponding PELT-V as well. Otherwise, the error 927 * originated from the PE might contribute to other 928 * PEs. 929 */ 930 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 931 bcomp, dcomp, fcomp, OPAL_MAP_PE); 932 if (rc) { 933 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 934 return -ENXIO; 935 } 936 937 /* 938 * Configure PELTV. NPUs don't have a PELTV table so skip 939 * configuration on them. 940 */ 941 if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI) 942 pnv_ioda_set_peltv(phb, pe, true); 943 944 /* Setup reverse map */ 945 for (rid = pe->rid; rid < rid_end; rid++) 946 phb->ioda.pe_rmap[rid] = pe->pe_number; 947 948 /* Setup one MVTs on IODA1 */ 949 if (phb->type != PNV_PHB_IODA1) { 950 pe->mve_number = 0; 951 goto out; 952 } 953 954 pe->mve_number = pe->pe_number; 955 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); 956 if (rc != OPAL_SUCCESS) { 957 pe_err(pe, "OPAL error %ld setting up MVE %x\n", 958 rc, pe->mve_number); 959 pe->mve_number = -1; 960 } else { 961 rc = opal_pci_set_mve_enable(phb->opal_id, 962 pe->mve_number, OPAL_ENABLE_MVE); 963 if (rc) { 964 pe_err(pe, "OPAL error %ld enabling MVE %x\n", 965 rc, pe->mve_number); 966 pe->mve_number = -1; 967 } 968 } 969 970 out: 971 return 0; 972 } 973 974 #ifdef CONFIG_PCI_IOV 975 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) 976 { 977 struct pci_dn *pdn = pci_get_pdn(dev); 978 int i; 979 struct resource *res, res2; 980 resource_size_t size; 981 u16 num_vfs; 982 983 if (!dev->is_physfn) 984 return -EINVAL; 985 986 /* 987 * "offset" is in VFs. The M64 windows are sized so that when they 988 * are segmented, each segment is the same size as the IOV BAR. 989 * Each segment is in a separate PE, and the high order bits of the 990 * address are the PE number. Therefore, each VF's BAR is in a 991 * separate PE, and changing the IOV BAR start address changes the 992 * range of PEs the VFs are in. 993 */ 994 num_vfs = pdn->num_vfs; 995 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 996 res = &dev->resource[i + PCI_IOV_RESOURCES]; 997 if (!res->flags || !res->parent) 998 continue; 999 1000 /* 1001 * The actual IOV BAR range is determined by the start address 1002 * and the actual size for num_vfs VFs BAR. This check is to 1003 * make sure that after shifting, the range will not overlap 1004 * with another device. 1005 */ 1006 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 1007 res2.flags = res->flags; 1008 res2.start = res->start + (size * offset); 1009 res2.end = res2.start + (size * num_vfs) - 1; 1010 1011 if (res2.end > res->end) { 1012 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", 1013 i, &res2, res, num_vfs, offset); 1014 return -EBUSY; 1015 } 1016 } 1017 1018 /* 1019 * Since M64 BAR shares segments among all possible 256 PEs, 1020 * we have to shift the beginning of PF IOV BAR to make it start from 1021 * the segment which belongs to the PE number assigned to the first VF. 1022 * This creates a "hole" in the /proc/iomem which could be used for 1023 * allocating other resources so we reserve this area below and 1024 * release when IOV is released. 1025 */ 1026 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1027 res = &dev->resource[i + PCI_IOV_RESOURCES]; 1028 if (!res->flags || !res->parent) 1029 continue; 1030 1031 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 1032 res2 = *res; 1033 res->start += size * offset; 1034 1035 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", 1036 i, &res2, res, (offset > 0) ? "En" : "Dis", 1037 num_vfs, offset); 1038 1039 if (offset < 0) { 1040 devm_release_resource(&dev->dev, &pdn->holes[i]); 1041 memset(&pdn->holes[i], 0, sizeof(pdn->holes[i])); 1042 } 1043 1044 pci_update_resource(dev, i + PCI_IOV_RESOURCES); 1045 1046 if (offset > 0) { 1047 pdn->holes[i].start = res2.start; 1048 pdn->holes[i].end = res2.start + size * offset - 1; 1049 pdn->holes[i].flags = IORESOURCE_BUS; 1050 pdn->holes[i].name = "pnv_iov_reserved"; 1051 devm_request_resource(&dev->dev, res->parent, 1052 &pdn->holes[i]); 1053 } 1054 } 1055 return 0; 1056 } 1057 #endif /* CONFIG_PCI_IOV */ 1058 1059 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) 1060 { 1061 struct pci_controller *hose = pci_bus_to_host(dev->bus); 1062 struct pnv_phb *phb = hose->private_data; 1063 struct pci_dn *pdn = pci_get_pdn(dev); 1064 struct pnv_ioda_pe *pe; 1065 1066 if (!pdn) { 1067 pr_err("%s: Device tree node not associated properly\n", 1068 pci_name(dev)); 1069 return NULL; 1070 } 1071 if (pdn->pe_number != IODA_INVALID_PE) 1072 return NULL; 1073 1074 pe = pnv_ioda_alloc_pe(phb); 1075 if (!pe) { 1076 pr_warn("%s: Not enough PE# available, disabling device\n", 1077 pci_name(dev)); 1078 return NULL; 1079 } 1080 1081 /* NOTE: We don't get a reference for the pointer in the PE 1082 * data structure, both the device and PE structures should be 1083 * destroyed at the same time. However, removing nvlink 1084 * devices will need some work. 1085 * 1086 * At some point we want to remove the PDN completely anyways 1087 */ 1088 pdn->pe_number = pe->pe_number; 1089 pe->flags = PNV_IODA_PE_DEV; 1090 pe->pdev = dev; 1091 pe->pbus = NULL; 1092 pe->mve_number = -1; 1093 pe->rid = dev->bus->number << 8 | pdn->devfn; 1094 pe->device_count++; 1095 1096 pe_info(pe, "Associated device to PE\n"); 1097 1098 if (pnv_ioda_configure_pe(phb, pe)) { 1099 /* XXX What do we do here ? */ 1100 pnv_ioda_free_pe(pe); 1101 pdn->pe_number = IODA_INVALID_PE; 1102 pe->pdev = NULL; 1103 return NULL; 1104 } 1105 1106 /* Put PE to the list */ 1107 mutex_lock(&phb->ioda.pe_list_mutex); 1108 list_add_tail(&pe->list, &phb->ioda.pe_list); 1109 mutex_unlock(&phb->ioda.pe_list_mutex); 1110 return pe; 1111 } 1112 1113 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe) 1114 { 1115 struct pci_dev *dev; 1116 1117 list_for_each_entry(dev, &bus->devices, bus_list) { 1118 struct pci_dn *pdn = pci_get_pdn(dev); 1119 1120 if (pdn == NULL) { 1121 pr_warn("%s: No device node associated with device !\n", 1122 pci_name(dev)); 1123 continue; 1124 } 1125 1126 /* 1127 * In partial hotplug case, the PCI device might be still 1128 * associated with the PE and needn't attach it to the PE 1129 * again. 1130 */ 1131 if (pdn->pe_number != IODA_INVALID_PE) 1132 continue; 1133 1134 pe->device_count++; 1135 pdn->pe_number = pe->pe_number; 1136 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1137 pnv_ioda_setup_same_PE(dev->subordinate, pe); 1138 } 1139 } 1140 1141 /* 1142 * There're 2 types of PCI bus sensitive PEs: One that is compromised of 1143 * single PCI bus. Another one that contains the primary PCI bus and its 1144 * subordinate PCI devices and buses. The second type of PE is normally 1145 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. 1146 */ 1147 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) 1148 { 1149 struct pci_controller *hose = pci_bus_to_host(bus); 1150 struct pnv_phb *phb = hose->private_data; 1151 struct pnv_ioda_pe *pe = NULL; 1152 unsigned int pe_num; 1153 1154 /* 1155 * In partial hotplug case, the PE instance might be still alive. 1156 * We should reuse it instead of allocating a new one. 1157 */ 1158 pe_num = phb->ioda.pe_rmap[bus->number << 8]; 1159 if (pe_num != IODA_INVALID_PE) { 1160 pe = &phb->ioda.pe_array[pe_num]; 1161 pnv_ioda_setup_same_PE(bus, pe); 1162 return NULL; 1163 } 1164 1165 /* PE number for root bus should have been reserved */ 1166 if (pci_is_root_bus(bus) && 1167 phb->ioda.root_pe_idx != IODA_INVALID_PE) 1168 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; 1169 1170 /* Check if PE is determined by M64 */ 1171 if (!pe) 1172 pe = pnv_ioda_pick_m64_pe(bus, all); 1173 1174 /* The PE number isn't pinned by M64 */ 1175 if (!pe) 1176 pe = pnv_ioda_alloc_pe(phb); 1177 1178 if (!pe) { 1179 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n", 1180 __func__, pci_domain_nr(bus), bus->number); 1181 return NULL; 1182 } 1183 1184 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); 1185 pe->pbus = bus; 1186 pe->pdev = NULL; 1187 pe->mve_number = -1; 1188 pe->rid = bus->busn_res.start << 8; 1189 1190 if (all) 1191 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n", 1192 &bus->busn_res.start, &bus->busn_res.end, 1193 pe->pe_number); 1194 else 1195 pe_info(pe, "Secondary bus %pad associated with PE#%x\n", 1196 &bus->busn_res.start, pe->pe_number); 1197 1198 if (pnv_ioda_configure_pe(phb, pe)) { 1199 /* XXX What do we do here ? */ 1200 pnv_ioda_free_pe(pe); 1201 pe->pbus = NULL; 1202 return NULL; 1203 } 1204 1205 /* Associate it with all child devices */ 1206 pnv_ioda_setup_same_PE(bus, pe); 1207 1208 /* Put PE to the list */ 1209 list_add_tail(&pe->list, &phb->ioda.pe_list); 1210 1211 return pe; 1212 } 1213 1214 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev) 1215 { 1216 int pe_num, found_pe = false, rc; 1217 long rid; 1218 struct pnv_ioda_pe *pe; 1219 struct pci_dev *gpu_pdev; 1220 struct pci_dn *npu_pdn; 1221 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus); 1222 struct pnv_phb *phb = hose->private_data; 1223 1224 /* 1225 * Intentionally leak a reference on the npu device (for 1226 * nvlink only; this is not an opencapi path) to make sure it 1227 * never goes away, as it's been the case all along and some 1228 * work is needed otherwise. 1229 */ 1230 pci_dev_get(npu_pdev); 1231 1232 /* 1233 * Due to a hardware errata PE#0 on the NPU is reserved for 1234 * error handling. This means we only have three PEs remaining 1235 * which need to be assigned to four links, implying some 1236 * links must share PEs. 1237 * 1238 * To achieve this we assign PEs such that NPUs linking the 1239 * same GPU get assigned the same PE. 1240 */ 1241 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev); 1242 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 1243 pe = &phb->ioda.pe_array[pe_num]; 1244 if (!pe->pdev) 1245 continue; 1246 1247 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) { 1248 /* 1249 * This device has the same peer GPU so should 1250 * be assigned the same PE as the existing 1251 * peer NPU. 1252 */ 1253 dev_info(&npu_pdev->dev, 1254 "Associating to existing PE %x\n", pe_num); 1255 npu_pdn = pci_get_pdn(npu_pdev); 1256 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn; 1257 npu_pdn->pe_number = pe_num; 1258 phb->ioda.pe_rmap[rid] = pe->pe_number; 1259 pe->device_count++; 1260 1261 /* Map the PE to this link */ 1262 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid, 1263 OpalPciBusAll, 1264 OPAL_COMPARE_RID_DEVICE_NUMBER, 1265 OPAL_COMPARE_RID_FUNCTION_NUMBER, 1266 OPAL_MAP_PE); 1267 WARN_ON(rc != OPAL_SUCCESS); 1268 found_pe = true; 1269 break; 1270 } 1271 } 1272 1273 if (!found_pe) 1274 /* 1275 * Could not find an existing PE so allocate a new 1276 * one. 1277 */ 1278 return pnv_ioda_setup_dev_PE(npu_pdev); 1279 else 1280 return pe; 1281 } 1282 1283 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus) 1284 { 1285 struct pci_dev *pdev; 1286 1287 list_for_each_entry(pdev, &bus->devices, bus_list) 1288 pnv_ioda_setup_npu_PE(pdev); 1289 } 1290 1291 static void pnv_pci_ioda_setup_PEs(void) 1292 { 1293 struct pci_controller *hose; 1294 struct pnv_phb *phb; 1295 struct pnv_ioda_pe *pe; 1296 1297 list_for_each_entry(hose, &hose_list, list_node) { 1298 phb = hose->private_data; 1299 if (phb->type == PNV_PHB_NPU_NVLINK) { 1300 /* PE#0 is needed for error reporting */ 1301 pnv_ioda_reserve_pe(phb, 0); 1302 pnv_ioda_setup_npu_PEs(hose->bus); 1303 if (phb->model == PNV_PHB_MODEL_NPU2) 1304 WARN_ON_ONCE(pnv_npu2_init(hose)); 1305 } 1306 } 1307 list_for_each_entry(hose, &hose_list, list_node) { 1308 phb = hose->private_data; 1309 if (phb->type != PNV_PHB_IODA2) 1310 continue; 1311 1312 list_for_each_entry(pe, &phb->ioda.pe_list, list) 1313 pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV); 1314 } 1315 } 1316 1317 #ifdef CONFIG_PCI_IOV 1318 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) 1319 { 1320 struct pci_bus *bus; 1321 struct pci_controller *hose; 1322 struct pnv_phb *phb; 1323 struct pci_dn *pdn; 1324 int i, j; 1325 int m64_bars; 1326 1327 bus = pdev->bus; 1328 hose = pci_bus_to_host(bus); 1329 phb = hose->private_data; 1330 pdn = pci_get_pdn(pdev); 1331 1332 if (pdn->m64_single_mode) 1333 m64_bars = num_vfs; 1334 else 1335 m64_bars = 1; 1336 1337 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) 1338 for (j = 0; j < m64_bars; j++) { 1339 if (pdn->m64_map[j][i] == IODA_INVALID_M64) 1340 continue; 1341 opal_pci_phb_mmio_enable(phb->opal_id, 1342 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0); 1343 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc); 1344 pdn->m64_map[j][i] = IODA_INVALID_M64; 1345 } 1346 1347 kfree(pdn->m64_map); 1348 return 0; 1349 } 1350 1351 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) 1352 { 1353 struct pci_bus *bus; 1354 struct pci_controller *hose; 1355 struct pnv_phb *phb; 1356 struct pci_dn *pdn; 1357 unsigned int win; 1358 struct resource *res; 1359 int i, j; 1360 int64_t rc; 1361 int total_vfs; 1362 resource_size_t size, start; 1363 int pe_num; 1364 int m64_bars; 1365 1366 bus = pdev->bus; 1367 hose = pci_bus_to_host(bus); 1368 phb = hose->private_data; 1369 pdn = pci_get_pdn(pdev); 1370 total_vfs = pci_sriov_get_totalvfs(pdev); 1371 1372 if (pdn->m64_single_mode) 1373 m64_bars = num_vfs; 1374 else 1375 m64_bars = 1; 1376 1377 pdn->m64_map = kmalloc_array(m64_bars, 1378 sizeof(*pdn->m64_map), 1379 GFP_KERNEL); 1380 if (!pdn->m64_map) 1381 return -ENOMEM; 1382 /* Initialize the m64_map to IODA_INVALID_M64 */ 1383 for (i = 0; i < m64_bars ; i++) 1384 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++) 1385 pdn->m64_map[i][j] = IODA_INVALID_M64; 1386 1387 1388 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1389 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 1390 if (!res->flags || !res->parent) 1391 continue; 1392 1393 for (j = 0; j < m64_bars; j++) { 1394 do { 1395 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, 1396 phb->ioda.m64_bar_idx + 1, 0); 1397 1398 if (win >= phb->ioda.m64_bar_idx + 1) 1399 goto m64_failed; 1400 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); 1401 1402 pdn->m64_map[j][i] = win; 1403 1404 if (pdn->m64_single_mode) { 1405 size = pci_iov_resource_size(pdev, 1406 PCI_IOV_RESOURCES + i); 1407 start = res->start + size * j; 1408 } else { 1409 size = resource_size(res); 1410 start = res->start; 1411 } 1412 1413 /* Map the M64 here */ 1414 if (pdn->m64_single_mode) { 1415 pe_num = pdn->pe_num_map[j]; 1416 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 1417 pe_num, OPAL_M64_WINDOW_TYPE, 1418 pdn->m64_map[j][i], 0); 1419 } 1420 1421 rc = opal_pci_set_phb_mem_window(phb->opal_id, 1422 OPAL_M64_WINDOW_TYPE, 1423 pdn->m64_map[j][i], 1424 start, 1425 0, /* unused */ 1426 size); 1427 1428 1429 if (rc != OPAL_SUCCESS) { 1430 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n", 1431 win, rc); 1432 goto m64_failed; 1433 } 1434 1435 if (pdn->m64_single_mode) 1436 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1437 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2); 1438 else 1439 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1440 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1); 1441 1442 if (rc != OPAL_SUCCESS) { 1443 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n", 1444 win, rc); 1445 goto m64_failed; 1446 } 1447 } 1448 } 1449 return 0; 1450 1451 m64_failed: 1452 pnv_pci_vf_release_m64(pdev, num_vfs); 1453 return -EBUSY; 1454 } 1455 1456 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 1457 int num); 1458 1459 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe) 1460 { 1461 struct iommu_table *tbl; 1462 int64_t rc; 1463 1464 tbl = pe->table_group.tables[0]; 1465 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 1466 if (rc) 1467 pe_warn(pe, "OPAL error %lld release DMA window\n", rc); 1468 1469 pnv_pci_ioda2_set_bypass(pe, false); 1470 if (pe->table_group.group) { 1471 iommu_group_put(pe->table_group.group); 1472 BUG_ON(pe->table_group.group); 1473 } 1474 iommu_tce_table_put(tbl); 1475 } 1476 1477 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev) 1478 { 1479 struct pci_bus *bus; 1480 struct pci_controller *hose; 1481 struct pnv_phb *phb; 1482 struct pnv_ioda_pe *pe, *pe_n; 1483 struct pci_dn *pdn; 1484 1485 bus = pdev->bus; 1486 hose = pci_bus_to_host(bus); 1487 phb = hose->private_data; 1488 pdn = pci_get_pdn(pdev); 1489 1490 if (!pdev->is_physfn) 1491 return; 1492 1493 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { 1494 if (pe->parent_dev != pdev) 1495 continue; 1496 1497 pnv_pci_ioda2_release_dma_pe(pdev, pe); 1498 1499 /* Remove from list */ 1500 mutex_lock(&phb->ioda.pe_list_mutex); 1501 list_del(&pe->list); 1502 mutex_unlock(&phb->ioda.pe_list_mutex); 1503 1504 pnv_ioda_deconfigure_pe(phb, pe); 1505 1506 pnv_ioda_free_pe(pe); 1507 } 1508 } 1509 1510 void pnv_pci_sriov_disable(struct pci_dev *pdev) 1511 { 1512 struct pci_bus *bus; 1513 struct pci_controller *hose; 1514 struct pnv_phb *phb; 1515 struct pnv_ioda_pe *pe; 1516 struct pci_dn *pdn; 1517 u16 num_vfs, i; 1518 1519 bus = pdev->bus; 1520 hose = pci_bus_to_host(bus); 1521 phb = hose->private_data; 1522 pdn = pci_get_pdn(pdev); 1523 num_vfs = pdn->num_vfs; 1524 1525 /* Release VF PEs */ 1526 pnv_ioda_release_vf_PE(pdev); 1527 1528 if (phb->type == PNV_PHB_IODA2) { 1529 if (!pdn->m64_single_mode) 1530 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map); 1531 1532 /* Release M64 windows */ 1533 pnv_pci_vf_release_m64(pdev, num_vfs); 1534 1535 /* Release PE numbers */ 1536 if (pdn->m64_single_mode) { 1537 for (i = 0; i < num_vfs; i++) { 1538 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1539 continue; 1540 1541 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1542 pnv_ioda_free_pe(pe); 1543 } 1544 } else 1545 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1546 /* Releasing pe_num_map */ 1547 kfree(pdn->pe_num_map); 1548 } 1549 } 1550 1551 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 1552 struct pnv_ioda_pe *pe); 1553 #ifdef CONFIG_IOMMU_API 1554 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe, 1555 struct iommu_table_group *table_group, struct pci_bus *bus); 1556 1557 #endif 1558 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) 1559 { 1560 struct pci_bus *bus; 1561 struct pci_controller *hose; 1562 struct pnv_phb *phb; 1563 struct pnv_ioda_pe *pe; 1564 int pe_num; 1565 u16 vf_index; 1566 struct pci_dn *pdn; 1567 1568 bus = pdev->bus; 1569 hose = pci_bus_to_host(bus); 1570 phb = hose->private_data; 1571 pdn = pci_get_pdn(pdev); 1572 1573 if (!pdev->is_physfn) 1574 return; 1575 1576 /* Reserve PE for each VF */ 1577 for (vf_index = 0; vf_index < num_vfs; vf_index++) { 1578 int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index); 1579 int vf_bus = pci_iov_virtfn_bus(pdev, vf_index); 1580 struct pci_dn *vf_pdn; 1581 1582 if (pdn->m64_single_mode) 1583 pe_num = pdn->pe_num_map[vf_index]; 1584 else 1585 pe_num = *pdn->pe_num_map + vf_index; 1586 1587 pe = &phb->ioda.pe_array[pe_num]; 1588 pe->pe_number = pe_num; 1589 pe->phb = phb; 1590 pe->flags = PNV_IODA_PE_VF; 1591 pe->pbus = NULL; 1592 pe->parent_dev = pdev; 1593 pe->mve_number = -1; 1594 pe->rid = (vf_bus << 8) | vf_devfn; 1595 1596 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n", 1597 hose->global_number, pdev->bus->number, 1598 PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num); 1599 1600 if (pnv_ioda_configure_pe(phb, pe)) { 1601 /* XXX What do we do here ? */ 1602 pnv_ioda_free_pe(pe); 1603 pe->pdev = NULL; 1604 continue; 1605 } 1606 1607 /* Put PE to the list */ 1608 mutex_lock(&phb->ioda.pe_list_mutex); 1609 list_add_tail(&pe->list, &phb->ioda.pe_list); 1610 mutex_unlock(&phb->ioda.pe_list_mutex); 1611 1612 /* associate this pe to it's pdn */ 1613 list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) { 1614 if (vf_pdn->busno == vf_bus && 1615 vf_pdn->devfn == vf_devfn) { 1616 vf_pdn->pe_number = pe_num; 1617 break; 1618 } 1619 } 1620 1621 pnv_pci_ioda2_setup_dma_pe(phb, pe); 1622 #ifdef CONFIG_IOMMU_API 1623 iommu_register_group(&pe->table_group, 1624 pe->phb->hose->global_number, pe->pe_number); 1625 pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL); 1626 #endif 1627 } 1628 } 1629 1630 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1631 { 1632 struct pci_bus *bus; 1633 struct pci_controller *hose; 1634 struct pnv_phb *phb; 1635 struct pnv_ioda_pe *pe; 1636 struct pci_dn *pdn; 1637 int ret; 1638 u16 i; 1639 1640 bus = pdev->bus; 1641 hose = pci_bus_to_host(bus); 1642 phb = hose->private_data; 1643 pdn = pci_get_pdn(pdev); 1644 1645 if (phb->type == PNV_PHB_IODA2) { 1646 if (!pdn->vfs_expanded) { 1647 dev_info(&pdev->dev, "don't support this SRIOV device" 1648 " with non 64bit-prefetchable IOV BAR\n"); 1649 return -ENOSPC; 1650 } 1651 1652 /* 1653 * When M64 BARs functions in Single PE mode, the number of VFs 1654 * could be enabled must be less than the number of M64 BARs. 1655 */ 1656 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) { 1657 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n"); 1658 return -EBUSY; 1659 } 1660 1661 /* Allocating pe_num_map */ 1662 if (pdn->m64_single_mode) 1663 pdn->pe_num_map = kmalloc_array(num_vfs, 1664 sizeof(*pdn->pe_num_map), 1665 GFP_KERNEL); 1666 else 1667 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL); 1668 1669 if (!pdn->pe_num_map) 1670 return -ENOMEM; 1671 1672 if (pdn->m64_single_mode) 1673 for (i = 0; i < num_vfs; i++) 1674 pdn->pe_num_map[i] = IODA_INVALID_PE; 1675 1676 /* Calculate available PE for required VFs */ 1677 if (pdn->m64_single_mode) { 1678 for (i = 0; i < num_vfs; i++) { 1679 pe = pnv_ioda_alloc_pe(phb); 1680 if (!pe) { 1681 ret = -EBUSY; 1682 goto m64_failed; 1683 } 1684 1685 pdn->pe_num_map[i] = pe->pe_number; 1686 } 1687 } else { 1688 mutex_lock(&phb->ioda.pe_alloc_mutex); 1689 *pdn->pe_num_map = bitmap_find_next_zero_area( 1690 phb->ioda.pe_alloc, phb->ioda.total_pe_num, 1691 0, num_vfs, 0); 1692 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) { 1693 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1694 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs); 1695 kfree(pdn->pe_num_map); 1696 return -EBUSY; 1697 } 1698 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1699 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1700 } 1701 pdn->num_vfs = num_vfs; 1702 1703 /* Assign M64 window accordingly */ 1704 ret = pnv_pci_vf_assign_m64(pdev, num_vfs); 1705 if (ret) { 1706 dev_info(&pdev->dev, "Not enough M64 window resources\n"); 1707 goto m64_failed; 1708 } 1709 1710 /* 1711 * When using one M64 BAR to map one IOV BAR, we need to shift 1712 * the IOV BAR according to the PE# allocated to the VFs. 1713 * Otherwise, the PE# for the VF will conflict with others. 1714 */ 1715 if (!pdn->m64_single_mode) { 1716 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map); 1717 if (ret) 1718 goto m64_failed; 1719 } 1720 } 1721 1722 /* Setup VF PEs */ 1723 pnv_ioda_setup_vf_PE(pdev, num_vfs); 1724 1725 return 0; 1726 1727 m64_failed: 1728 if (pdn->m64_single_mode) { 1729 for (i = 0; i < num_vfs; i++) { 1730 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1731 continue; 1732 1733 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1734 pnv_ioda_free_pe(pe); 1735 } 1736 } else 1737 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1738 1739 /* Releasing pe_num_map */ 1740 kfree(pdn->pe_num_map); 1741 1742 return ret; 1743 } 1744 1745 int pnv_pcibios_sriov_disable(struct pci_dev *pdev) 1746 { 1747 pnv_pci_sriov_disable(pdev); 1748 1749 /* Release PCI data */ 1750 remove_sriov_vf_pdns(pdev); 1751 return 0; 1752 } 1753 1754 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1755 { 1756 /* Allocate PCI data */ 1757 add_sriov_vf_pdns(pdev); 1758 1759 return pnv_pci_sriov_enable(pdev, num_vfs); 1760 } 1761 #endif /* CONFIG_PCI_IOV */ 1762 1763 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev) 1764 { 1765 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1766 struct pnv_phb *phb = hose->private_data; 1767 struct pci_dn *pdn = pci_get_pdn(pdev); 1768 struct pnv_ioda_pe *pe; 1769 1770 /* 1771 * The function can be called while the PE# 1772 * hasn't been assigned. Do nothing for the 1773 * case. 1774 */ 1775 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 1776 return; 1777 1778 pe = &phb->ioda.pe_array[pdn->pe_number]; 1779 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); 1780 pdev->dev.archdata.dma_offset = pe->tce_bypass_base; 1781 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); 1782 /* 1783 * Note: iommu_add_device() will fail here as 1784 * for physical PE: the device is already added by now; 1785 * for virtual PE: sysfs entries are not ready yet and 1786 * tce_iommu_bus_notifier will add the device to a group later. 1787 */ 1788 } 1789 1790 /* 1791 * Reconfigure TVE#0 to be usable as 64-bit DMA space. 1792 * 1793 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses. 1794 * Devices can only access more than that if bit 59 of the PCI address is set 1795 * by hardware, which indicates TVE#1 should be used instead of TVE#0. 1796 * Many PCI devices are not capable of addressing that many bits, and as a 1797 * result are limited to the 4GB of virtual memory made available to 32-bit 1798 * devices in TVE#0. 1799 * 1800 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit 1801 * devices by configuring the virtual memory past the first 4GB inaccessible 1802 * by 64-bit DMAs. This should only be used by devices that want more than 1803 * 4GB, and only on PEs that have no 32-bit devices. 1804 * 1805 * Currently this will only work on PHB3 (POWER8). 1806 */ 1807 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe) 1808 { 1809 u64 window_size, table_size, tce_count, addr; 1810 struct page *table_pages; 1811 u64 tce_order = 28; /* 256MB TCEs */ 1812 __be64 *tces; 1813 s64 rc; 1814 1815 /* 1816 * Window size needs to be a power of two, but needs to account for 1817 * shifting memory by the 4GB offset required to skip 32bit space. 1818 */ 1819 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32)); 1820 tce_count = window_size >> tce_order; 1821 table_size = tce_count << 3; 1822 1823 if (table_size < PAGE_SIZE) 1824 table_size = PAGE_SIZE; 1825 1826 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL, 1827 get_order(table_size)); 1828 if (!table_pages) 1829 goto err; 1830 1831 tces = page_address(table_pages); 1832 if (!tces) 1833 goto err; 1834 1835 memset(tces, 0, table_size); 1836 1837 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) { 1838 tces[(addr + (1ULL << 32)) >> tce_order] = 1839 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE); 1840 } 1841 1842 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id, 1843 pe->pe_number, 1844 /* reconfigure window 0 */ 1845 (pe->pe_number << 1) + 0, 1846 1, 1847 __pa(tces), 1848 table_size, 1849 1 << tce_order); 1850 if (rc == OPAL_SUCCESS) { 1851 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n"); 1852 return 0; 1853 } 1854 err: 1855 pe_err(pe, "Error configuring 64-bit DMA bypass\n"); 1856 return -EIO; 1857 } 1858 1859 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev, 1860 u64 dma_mask) 1861 { 1862 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1863 struct pnv_phb *phb = hose->private_data; 1864 struct pci_dn *pdn = pci_get_pdn(pdev); 1865 struct pnv_ioda_pe *pe; 1866 1867 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1868 return false; 1869 1870 pe = &phb->ioda.pe_array[pdn->pe_number]; 1871 if (pe->tce_bypass_enabled) { 1872 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; 1873 if (dma_mask >= top) 1874 return true; 1875 } 1876 1877 /* 1878 * If the device can't set the TCE bypass bit but still wants 1879 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to 1880 * bypass the 32-bit region and be usable for 64-bit DMAs. 1881 * The device needs to be able to address all of this space. 1882 */ 1883 if (dma_mask >> 32 && 1884 dma_mask > (memory_hotplug_max() + (1ULL << 32)) && 1885 /* pe->pdev should be set if it's a single device, pe->pbus if not */ 1886 (pe->device_count == 1 || !pe->pbus) && 1887 phb->model == PNV_PHB_MODEL_PHB3) { 1888 /* Configure the bypass mode */ 1889 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe); 1890 if (rc) 1891 return false; 1892 /* 4GB offset bypasses 32-bit space */ 1893 pdev->dev.archdata.dma_offset = (1ULL << 32); 1894 return true; 1895 } 1896 1897 return false; 1898 } 1899 1900 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus) 1901 { 1902 struct pci_dev *dev; 1903 1904 list_for_each_entry(dev, &bus->devices, bus_list) { 1905 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); 1906 dev->dev.archdata.dma_offset = pe->tce_bypass_base; 1907 1908 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1909 pnv_ioda_setup_bus_dma(pe, dev->subordinate); 1910 } 1911 } 1912 1913 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, 1914 bool real_mode) 1915 { 1916 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : 1917 (phb->regs + 0x210); 1918 } 1919 1920 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, 1921 unsigned long index, unsigned long npages, bool rm) 1922 { 1923 struct iommu_table_group_link *tgl = list_first_entry_or_null( 1924 &tbl->it_group_list, struct iommu_table_group_link, 1925 next); 1926 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1927 struct pnv_ioda_pe, table_group); 1928 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1929 unsigned long start, end, inc; 1930 1931 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); 1932 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + 1933 npages - 1); 1934 1935 /* p7ioc-style invalidation, 2 TCEs per write */ 1936 start |= (1ull << 63); 1937 end |= (1ull << 63); 1938 inc = 16; 1939 end |= inc - 1; /* round up end to be different than start */ 1940 1941 mb(); /* Ensure above stores are visible */ 1942 while (start <= end) { 1943 if (rm) 1944 __raw_rm_writeq_be(start, invalidate); 1945 else 1946 __raw_writeq_be(start, invalidate); 1947 1948 start += inc; 1949 } 1950 1951 /* 1952 * The iommu layer will do another mb() for us on build() 1953 * and we don't care on free() 1954 */ 1955 } 1956 1957 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, 1958 long npages, unsigned long uaddr, 1959 enum dma_data_direction direction, 1960 unsigned long attrs) 1961 { 1962 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1963 attrs); 1964 1965 if (!ret) 1966 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1967 1968 return ret; 1969 } 1970 1971 #ifdef CONFIG_IOMMU_API 1972 /* Common for IODA1 and IODA2 */ 1973 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index, 1974 unsigned long *hpa, enum dma_data_direction *direction, 1975 bool realmode) 1976 { 1977 return pnv_tce_xchg(tbl, index, hpa, direction, !realmode); 1978 } 1979 #endif 1980 1981 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, 1982 long npages) 1983 { 1984 pnv_tce_free(tbl, index, npages); 1985 1986 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1987 } 1988 1989 static struct iommu_table_ops pnv_ioda1_iommu_ops = { 1990 .set = pnv_ioda1_tce_build, 1991 #ifdef CONFIG_IOMMU_API 1992 .xchg_no_kill = pnv_ioda_tce_xchg_no_kill, 1993 .tce_kill = pnv_pci_p7ioc_tce_invalidate, 1994 .useraddrptr = pnv_tce_useraddrptr, 1995 #endif 1996 .clear = pnv_ioda1_tce_free, 1997 .get = pnv_tce_get, 1998 }; 1999 2000 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) 2001 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) 2002 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) 2003 2004 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 2005 { 2006 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm); 2007 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL; 2008 2009 mb(); /* Ensure previous TCE table stores are visible */ 2010 if (rm) 2011 __raw_rm_writeq_be(val, invalidate); 2012 else 2013 __raw_writeq_be(val, invalidate); 2014 } 2015 2016 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) 2017 { 2018 /* 01xb - invalidate TCEs that match the specified PE# */ 2019 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); 2020 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); 2021 2022 mb(); /* Ensure above stores are visible */ 2023 __raw_writeq_be(val, invalidate); 2024 } 2025 2026 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, 2027 unsigned shift, unsigned long index, 2028 unsigned long npages) 2029 { 2030 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 2031 unsigned long start, end, inc; 2032 2033 /* We'll invalidate DMA address in PE scope */ 2034 start = PHB3_TCE_KILL_INVAL_ONE; 2035 start |= (pe->pe_number & 0xFF); 2036 end = start; 2037 2038 /* Figure out the start, end and step */ 2039 start |= (index << shift); 2040 end |= ((index + npages - 1) << shift); 2041 inc = (0x1ull << shift); 2042 mb(); 2043 2044 while (start <= end) { 2045 if (rm) 2046 __raw_rm_writeq_be(start, invalidate); 2047 else 2048 __raw_writeq_be(start, invalidate); 2049 start += inc; 2050 } 2051 } 2052 2053 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) 2054 { 2055 struct pnv_phb *phb = pe->phb; 2056 2057 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 2058 pnv_pci_phb3_tce_invalidate_pe(pe); 2059 else 2060 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, 2061 pe->pe_number, 0, 0, 0); 2062 } 2063 2064 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, 2065 unsigned long index, unsigned long npages, bool rm) 2066 { 2067 struct iommu_table_group_link *tgl; 2068 2069 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) { 2070 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 2071 struct pnv_ioda_pe, table_group); 2072 struct pnv_phb *phb = pe->phb; 2073 unsigned int shift = tbl->it_page_shift; 2074 2075 /* 2076 * NVLink1 can use the TCE kill register directly as 2077 * it's the same as PHB3. NVLink2 is different and 2078 * should go via the OPAL call. 2079 */ 2080 if (phb->model == PNV_PHB_MODEL_NPU) { 2081 /* 2082 * The NVLink hardware does not support TCE kill 2083 * per TCE entry so we have to invalidate 2084 * the entire cache for it. 2085 */ 2086 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 2087 continue; 2088 } 2089 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 2090 pnv_pci_phb3_tce_invalidate(pe, rm, shift, 2091 index, npages); 2092 else 2093 opal_pci_tce_kill(phb->opal_id, 2094 OPAL_PCI_TCE_KILL_PAGES, 2095 pe->pe_number, 1u << shift, 2096 index << shift, npages); 2097 } 2098 } 2099 2100 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 2101 { 2102 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3) 2103 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 2104 else 2105 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0); 2106 } 2107 2108 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, 2109 long npages, unsigned long uaddr, 2110 enum dma_data_direction direction, 2111 unsigned long attrs) 2112 { 2113 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 2114 attrs); 2115 2116 if (!ret) 2117 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2118 2119 return ret; 2120 } 2121 2122 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, 2123 long npages) 2124 { 2125 pnv_tce_free(tbl, index, npages); 2126 2127 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2128 } 2129 2130 static struct iommu_table_ops pnv_ioda2_iommu_ops = { 2131 .set = pnv_ioda2_tce_build, 2132 #ifdef CONFIG_IOMMU_API 2133 .xchg_no_kill = pnv_ioda_tce_xchg_no_kill, 2134 .tce_kill = pnv_pci_ioda2_tce_invalidate, 2135 .useraddrptr = pnv_tce_useraddrptr, 2136 #endif 2137 .clear = pnv_ioda2_tce_free, 2138 .get = pnv_tce_get, 2139 .free = pnv_pci_ioda2_table_free_pages, 2140 }; 2141 2142 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) 2143 { 2144 unsigned int *weight = (unsigned int *)data; 2145 2146 /* This is quite simplistic. The "base" weight of a device 2147 * is 10. 0 means no DMA is to be accounted for it. 2148 */ 2149 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2150 return 0; 2151 2152 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || 2153 dev->class == PCI_CLASS_SERIAL_USB_OHCI || 2154 dev->class == PCI_CLASS_SERIAL_USB_EHCI) 2155 *weight += 3; 2156 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) 2157 *weight += 15; 2158 else 2159 *weight += 10; 2160 2161 return 0; 2162 } 2163 2164 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) 2165 { 2166 unsigned int weight = 0; 2167 2168 /* SRIOV VF has same DMA32 weight as its PF */ 2169 #ifdef CONFIG_PCI_IOV 2170 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { 2171 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); 2172 return weight; 2173 } 2174 #endif 2175 2176 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { 2177 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); 2178 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { 2179 struct pci_dev *pdev; 2180 2181 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) 2182 pnv_pci_ioda_dev_dma_weight(pdev, &weight); 2183 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { 2184 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); 2185 } 2186 2187 return weight; 2188 } 2189 2190 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, 2191 struct pnv_ioda_pe *pe) 2192 { 2193 2194 struct page *tce_mem = NULL; 2195 struct iommu_table *tbl; 2196 unsigned int weight, total_weight = 0; 2197 unsigned int tce32_segsz, base, segs, avail, i; 2198 int64_t rc; 2199 void *addr; 2200 2201 /* XXX FIXME: Handle 64-bit only DMA devices */ 2202 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ 2203 /* XXX FIXME: Allocate multi-level tables on PHB3 */ 2204 weight = pnv_pci_ioda_pe_dma_weight(pe); 2205 if (!weight) 2206 return; 2207 2208 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, 2209 &total_weight); 2210 segs = (weight * phb->ioda.dma32_count) / total_weight; 2211 if (!segs) 2212 segs = 1; 2213 2214 /* 2215 * Allocate contiguous DMA32 segments. We begin with the expected 2216 * number of segments. With one more attempt, the number of DMA32 2217 * segments to be allocated is decreased by one until one segment 2218 * is allocated successfully. 2219 */ 2220 do { 2221 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { 2222 for (avail = 0, i = base; i < base + segs; i++) { 2223 if (phb->ioda.dma32_segmap[i] == 2224 IODA_INVALID_PE) 2225 avail++; 2226 } 2227 2228 if (avail == segs) 2229 goto found; 2230 } 2231 } while (--segs); 2232 2233 if (!segs) { 2234 pe_warn(pe, "No available DMA32 segments\n"); 2235 return; 2236 } 2237 2238 found: 2239 tbl = pnv_pci_table_alloc(phb->hose->node); 2240 if (WARN_ON(!tbl)) 2241 return; 2242 2243 iommu_register_group(&pe->table_group, phb->hose->global_number, 2244 pe->pe_number); 2245 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); 2246 2247 /* Grab a 32-bit TCE table */ 2248 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", 2249 weight, total_weight, base, segs); 2250 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", 2251 base * PNV_IODA1_DMA32_SEGSIZE, 2252 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); 2253 2254 /* XXX Currently, we allocate one big contiguous table for the 2255 * TCEs. We only really need one chunk per 256M of TCE space 2256 * (ie per segment) but that's an optimization for later, it 2257 * requires some added smarts with our get/put_tce implementation 2258 * 2259 * Each TCE page is 4KB in size and each TCE entry occupies 8 2260 * bytes 2261 */ 2262 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); 2263 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, 2264 get_order(tce32_segsz * segs)); 2265 if (!tce_mem) { 2266 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); 2267 goto fail; 2268 } 2269 addr = page_address(tce_mem); 2270 memset(addr, 0, tce32_segsz * segs); 2271 2272 /* Configure HW */ 2273 for (i = 0; i < segs; i++) { 2274 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2275 pe->pe_number, 2276 base + i, 1, 2277 __pa(addr) + tce32_segsz * i, 2278 tce32_segsz, IOMMU_PAGE_SIZE_4K); 2279 if (rc) { 2280 pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n", 2281 rc); 2282 goto fail; 2283 } 2284 } 2285 2286 /* Setup DMA32 segment mapping */ 2287 for (i = base; i < base + segs; i++) 2288 phb->ioda.dma32_segmap[i] = pe->pe_number; 2289 2290 /* Setup linux iommu table */ 2291 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, 2292 base * PNV_IODA1_DMA32_SEGSIZE, 2293 IOMMU_PAGE_SHIFT_4K); 2294 2295 tbl->it_ops = &pnv_ioda1_iommu_ops; 2296 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; 2297 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; 2298 iommu_init_table(tbl, phb->hose->node, 0, 0); 2299 2300 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2301 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2302 2303 return; 2304 fail: 2305 /* XXX Failure: Try to fallback to 64-bit only ? */ 2306 if (tce_mem) 2307 __free_pages(tce_mem, get_order(tce32_segsz * segs)); 2308 if (tbl) { 2309 pnv_pci_unlink_table_and_group(tbl, &pe->table_group); 2310 iommu_tce_table_put(tbl); 2311 } 2312 } 2313 2314 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, 2315 int num, struct iommu_table *tbl) 2316 { 2317 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2318 table_group); 2319 struct pnv_phb *phb = pe->phb; 2320 int64_t rc; 2321 const unsigned long size = tbl->it_indirect_levels ? 2322 tbl->it_level_size : tbl->it_size; 2323 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; 2324 const __u64 win_size = tbl->it_size << tbl->it_page_shift; 2325 2326 pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n", 2327 num, start_addr, start_addr + win_size - 1, 2328 IOMMU_PAGE_SIZE(tbl)); 2329 2330 /* 2331 * Map TCE table through TVT. The TVE index is the PE number 2332 * shifted by 1 bit for 32-bits DMA space. 2333 */ 2334 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2335 pe->pe_number, 2336 (pe->pe_number << 1) + num, 2337 tbl->it_indirect_levels + 1, 2338 __pa(tbl->it_base), 2339 size << 3, 2340 IOMMU_PAGE_SIZE(tbl)); 2341 if (rc) { 2342 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc); 2343 return rc; 2344 } 2345 2346 pnv_pci_link_table_and_group(phb->hose->node, num, 2347 tbl, &pe->table_group); 2348 pnv_pci_ioda2_tce_invalidate_pe(pe); 2349 2350 return 0; 2351 } 2352 2353 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) 2354 { 2355 uint16_t window_id = (pe->pe_number << 1 ) + 1; 2356 int64_t rc; 2357 2358 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); 2359 if (enable) { 2360 phys_addr_t top = memblock_end_of_DRAM(); 2361 2362 top = roundup_pow_of_two(top); 2363 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2364 pe->pe_number, 2365 window_id, 2366 pe->tce_bypass_base, 2367 top); 2368 } else { 2369 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2370 pe->pe_number, 2371 window_id, 2372 pe->tce_bypass_base, 2373 0); 2374 } 2375 if (rc) 2376 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); 2377 else 2378 pe->tce_bypass_enabled = enable; 2379 } 2380 2381 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, 2382 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2383 bool alloc_userspace_copy, struct iommu_table **ptbl) 2384 { 2385 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2386 table_group); 2387 int nid = pe->phb->hose->node; 2388 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; 2389 long ret; 2390 struct iommu_table *tbl; 2391 2392 tbl = pnv_pci_table_alloc(nid); 2393 if (!tbl) 2394 return -ENOMEM; 2395 2396 tbl->it_ops = &pnv_ioda2_iommu_ops; 2397 2398 ret = pnv_pci_ioda2_table_alloc_pages(nid, 2399 bus_offset, page_shift, window_size, 2400 levels, alloc_userspace_copy, tbl); 2401 if (ret) { 2402 iommu_tce_table_put(tbl); 2403 return ret; 2404 } 2405 2406 *ptbl = tbl; 2407 2408 return 0; 2409 } 2410 2411 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) 2412 { 2413 struct iommu_table *tbl = NULL; 2414 long rc; 2415 unsigned long res_start, res_end; 2416 2417 /* 2418 * crashkernel= specifies the kdump kernel's maximum memory at 2419 * some offset and there is no guaranteed the result is a power 2420 * of 2, which will cause errors later. 2421 */ 2422 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); 2423 2424 /* 2425 * In memory constrained environments, e.g. kdump kernel, the 2426 * DMA window can be larger than available memory, which will 2427 * cause errors later. 2428 */ 2429 const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1); 2430 2431 /* 2432 * We create the default window as big as we can. The constraint is 2433 * the max order of allocation possible. The TCE table is likely to 2434 * end up being multilevel and with on-demand allocation in place, 2435 * the initial use is not going to be huge as the default window aims 2436 * to support crippled devices (i.e. not fully 64bit DMAble) only. 2437 */ 2438 /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */ 2439 const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory); 2440 /* Each TCE level cannot exceed maxblock so go multilevel if needed */ 2441 unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT); 2442 unsigned long tcelevel_order = ilog2(maxblock >> 3); 2443 unsigned int levels = tces_order / tcelevel_order; 2444 2445 if (tces_order % tcelevel_order) 2446 levels += 1; 2447 /* 2448 * We try to stick to default levels (which is >1 at the moment) in 2449 * order to save memory by relying on on-demain TCE level allocation. 2450 */ 2451 levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS); 2452 2453 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT, 2454 window_size, levels, false, &tbl); 2455 if (rc) { 2456 pe_err(pe, "Failed to create 32-bit TCE table, err %ld", 2457 rc); 2458 return rc; 2459 } 2460 2461 /* We use top part of 32bit space for MMIO so exclude it from DMA */ 2462 res_start = 0; 2463 res_end = 0; 2464 if (window_size > pe->phb->ioda.m32_pci_base) { 2465 res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift; 2466 res_end = min(window_size, SZ_4G) >> tbl->it_page_shift; 2467 } 2468 iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end); 2469 2470 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); 2471 if (rc) { 2472 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", 2473 rc); 2474 iommu_tce_table_put(tbl); 2475 return rc; 2476 } 2477 2478 if (!pnv_iommu_bypass_disabled) 2479 pnv_pci_ioda2_set_bypass(pe, true); 2480 2481 /* 2482 * Set table base for the case of IOMMU DMA use. Usually this is done 2483 * from dma_dev_setup() which is not called when a device is returned 2484 * from VFIO so do it here. 2485 */ 2486 if (pe->pdev) 2487 set_iommu_table_base(&pe->pdev->dev, tbl); 2488 2489 return 0; 2490 } 2491 2492 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV) 2493 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 2494 int num) 2495 { 2496 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2497 table_group); 2498 struct pnv_phb *phb = pe->phb; 2499 long ret; 2500 2501 pe_info(pe, "Removing DMA window #%d\n", num); 2502 2503 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 2504 (pe->pe_number << 1) + num, 2505 0/* levels */, 0/* table address */, 2506 0/* table size */, 0/* page size */); 2507 if (ret) 2508 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); 2509 else 2510 pnv_pci_ioda2_tce_invalidate_pe(pe); 2511 2512 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 2513 2514 return ret; 2515 } 2516 #endif 2517 2518 #ifdef CONFIG_IOMMU_API 2519 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, 2520 __u64 window_size, __u32 levels) 2521 { 2522 unsigned long bytes = 0; 2523 const unsigned window_shift = ilog2(window_size); 2524 unsigned entries_shift = window_shift - page_shift; 2525 unsigned table_shift = entries_shift + 3; 2526 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); 2527 unsigned long direct_table_size; 2528 2529 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || 2530 !is_power_of_2(window_size)) 2531 return 0; 2532 2533 /* Calculate a direct table size from window_size and levels */ 2534 entries_shift = (entries_shift + levels - 1) / levels; 2535 table_shift = entries_shift + 3; 2536 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); 2537 direct_table_size = 1UL << table_shift; 2538 2539 for ( ; levels; --levels) { 2540 bytes += _ALIGN_UP(tce_table_size, direct_table_size); 2541 2542 tce_table_size /= direct_table_size; 2543 tce_table_size <<= 3; 2544 tce_table_size = max_t(unsigned long, 2545 tce_table_size, direct_table_size); 2546 } 2547 2548 return bytes + bytes; /* one for HW table, one for userspace copy */ 2549 } 2550 2551 static long pnv_pci_ioda2_create_table_userspace( 2552 struct iommu_table_group *table_group, 2553 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2554 struct iommu_table **ptbl) 2555 { 2556 long ret = pnv_pci_ioda2_create_table(table_group, 2557 num, page_shift, window_size, levels, true, ptbl); 2558 2559 if (!ret) 2560 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size( 2561 page_shift, window_size, levels); 2562 return ret; 2563 } 2564 2565 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) 2566 { 2567 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2568 table_group); 2569 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ 2570 struct iommu_table *tbl = pe->table_group.tables[0]; 2571 2572 pnv_pci_ioda2_set_bypass(pe, false); 2573 pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2574 if (pe->pbus) 2575 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2576 else if (pe->pdev) 2577 set_iommu_table_base(&pe->pdev->dev, NULL); 2578 iommu_tce_table_put(tbl); 2579 } 2580 2581 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) 2582 { 2583 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2584 table_group); 2585 2586 pnv_pci_ioda2_setup_default_config(pe); 2587 if (pe->pbus) 2588 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2589 } 2590 2591 static struct iommu_table_group_ops pnv_pci_ioda2_ops = { 2592 .get_table_size = pnv_pci_ioda2_get_table_size, 2593 .create_table = pnv_pci_ioda2_create_table_userspace, 2594 .set_window = pnv_pci_ioda2_set_window, 2595 .unset_window = pnv_pci_ioda2_unset_window, 2596 .take_ownership = pnv_ioda2_take_ownership, 2597 .release_ownership = pnv_ioda2_release_ownership, 2598 }; 2599 2600 static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe, 2601 struct iommu_table_group *table_group, 2602 struct pci_bus *bus) 2603 { 2604 struct pci_dev *dev; 2605 2606 list_for_each_entry(dev, &bus->devices, bus_list) { 2607 iommu_add_device(table_group, &dev->dev); 2608 2609 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 2610 pnv_ioda_setup_bus_iommu_group_add_devices(pe, 2611 table_group, dev->subordinate); 2612 } 2613 } 2614 2615 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe, 2616 struct iommu_table_group *table_group, struct pci_bus *bus) 2617 { 2618 2619 if (pe->flags & PNV_IODA_PE_DEV) 2620 iommu_add_device(table_group, &pe->pdev->dev); 2621 2622 if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus) 2623 pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group, 2624 bus); 2625 } 2626 2627 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb); 2628 2629 static void pnv_pci_ioda_setup_iommu_api(void) 2630 { 2631 struct pci_controller *hose; 2632 struct pnv_phb *phb; 2633 struct pnv_ioda_pe *pe; 2634 2635 /* 2636 * There are 4 types of PEs: 2637 * - PNV_IODA_PE_BUS: a downstream port with an adapter, 2638 * created from pnv_pci_setup_bridge(); 2639 * - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it, 2640 * created from pnv_pci_setup_bridge(); 2641 * - PNV_IODA_PE_VF: a SRIOV virtual function, 2642 * created from pnv_pcibios_sriov_enable(); 2643 * - PNV_IODA_PE_DEV: an NPU or OCAPI device, 2644 * created from pnv_pci_ioda_fixup(). 2645 * 2646 * Normally a PE is represented by an IOMMU group, however for 2647 * devices with side channels the groups need to be more strict. 2648 */ 2649 list_for_each_entry(hose, &hose_list, list_node) { 2650 phb = hose->private_data; 2651 2652 if (phb->type == PNV_PHB_NPU_NVLINK || 2653 phb->type == PNV_PHB_NPU_OCAPI) 2654 continue; 2655 2656 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2657 struct iommu_table_group *table_group; 2658 2659 table_group = pnv_try_setup_npu_table_group(pe); 2660 if (!table_group) { 2661 if (!pnv_pci_ioda_pe_dma_weight(pe)) 2662 continue; 2663 2664 table_group = &pe->table_group; 2665 iommu_register_group(&pe->table_group, 2666 pe->phb->hose->global_number, 2667 pe->pe_number); 2668 } 2669 pnv_ioda_setup_bus_iommu_group(pe, table_group, 2670 pe->pbus); 2671 } 2672 } 2673 2674 /* 2675 * Now we have all PHBs discovered, time to add NPU devices to 2676 * the corresponding IOMMU groups. 2677 */ 2678 list_for_each_entry(hose, &hose_list, list_node) { 2679 unsigned long pgsizes; 2680 2681 phb = hose->private_data; 2682 2683 if (phb->type != PNV_PHB_NPU_NVLINK) 2684 continue; 2685 2686 pgsizes = pnv_ioda_parse_tce_sizes(phb); 2687 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2688 /* 2689 * IODA2 bridges get this set up from 2690 * pci_controller_ops::setup_bridge but NPU bridges 2691 * do not have this hook defined so we do it here. 2692 */ 2693 pe->table_group.pgsizes = pgsizes; 2694 pnv_npu_compound_attach(pe); 2695 } 2696 } 2697 } 2698 #else /* !CONFIG_IOMMU_API */ 2699 static void pnv_pci_ioda_setup_iommu_api(void) { }; 2700 #endif 2701 2702 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb) 2703 { 2704 struct pci_controller *hose = phb->hose; 2705 struct device_node *dn = hose->dn; 2706 unsigned long mask = 0; 2707 int i, rc, count; 2708 u32 val; 2709 2710 count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes"); 2711 if (count <= 0) { 2712 mask = SZ_4K | SZ_64K; 2713 /* Add 16M for POWER8 by default */ 2714 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 2715 !cpu_has_feature(CPU_FTR_ARCH_300)) 2716 mask |= SZ_16M | SZ_256M; 2717 return mask; 2718 } 2719 2720 for (i = 0; i < count; i++) { 2721 rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes", 2722 i, &val); 2723 if (rc == 0) 2724 mask |= 1ULL << val; 2725 } 2726 2727 return mask; 2728 } 2729 2730 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 2731 struct pnv_ioda_pe *pe) 2732 { 2733 int64_t rc; 2734 2735 if (!pnv_pci_ioda_pe_dma_weight(pe)) 2736 return; 2737 2738 /* TVE #1 is selected by PCI address bit 59 */ 2739 pe->tce_bypass_base = 1ull << 59; 2740 2741 /* The PE will reserve all possible 32-bits space */ 2742 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", 2743 phb->ioda.m32_pci_base); 2744 2745 /* Setup linux iommu table */ 2746 pe->table_group.tce32_start = 0; 2747 pe->table_group.tce32_size = phb->ioda.m32_pci_base; 2748 pe->table_group.max_dynamic_windows_supported = 2749 IOMMU_TABLE_GROUP_MAX_TABLES; 2750 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; 2751 pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb); 2752 #ifdef CONFIG_IOMMU_API 2753 pe->table_group.ops = &pnv_pci_ioda2_ops; 2754 #endif 2755 2756 rc = pnv_pci_ioda2_setup_default_config(pe); 2757 if (rc) 2758 return; 2759 2760 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2761 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2762 } 2763 2764 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq) 2765 { 2766 struct pnv_phb *phb = container_of(chip, struct pnv_phb, 2767 ioda.irq_chip); 2768 2769 return opal_pci_msi_eoi(phb->opal_id, hw_irq); 2770 } 2771 2772 static void pnv_ioda2_msi_eoi(struct irq_data *d) 2773 { 2774 int64_t rc; 2775 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 2776 struct irq_chip *chip = irq_data_get_irq_chip(d); 2777 2778 rc = pnv_opal_pci_msi_eoi(chip, hw_irq); 2779 WARN_ON_ONCE(rc); 2780 2781 icp_native_eoi(d); 2782 } 2783 2784 2785 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) 2786 { 2787 struct irq_data *idata; 2788 struct irq_chip *ichip; 2789 2790 /* The MSI EOI OPAL call is only needed on PHB3 */ 2791 if (phb->model != PNV_PHB_MODEL_PHB3) 2792 return; 2793 2794 if (!phb->ioda.irq_chip_init) { 2795 /* 2796 * First time we setup an MSI IRQ, we need to setup the 2797 * corresponding IRQ chip to route correctly. 2798 */ 2799 idata = irq_get_irq_data(virq); 2800 ichip = irq_data_get_irq_chip(idata); 2801 phb->ioda.irq_chip_init = 1; 2802 phb->ioda.irq_chip = *ichip; 2803 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; 2804 } 2805 irq_set_chip(virq, &phb->ioda.irq_chip); 2806 } 2807 2808 /* 2809 * Returns true iff chip is something that we could call 2810 * pnv_opal_pci_msi_eoi for. 2811 */ 2812 bool is_pnv_opal_msi(struct irq_chip *chip) 2813 { 2814 return chip->irq_eoi == pnv_ioda2_msi_eoi; 2815 } 2816 EXPORT_SYMBOL_GPL(is_pnv_opal_msi); 2817 2818 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, 2819 unsigned int hwirq, unsigned int virq, 2820 unsigned int is_64, struct msi_msg *msg) 2821 { 2822 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); 2823 unsigned int xive_num = hwirq - phb->msi_base; 2824 __be32 data; 2825 int rc; 2826 2827 /* No PE assigned ? bail out ... no MSI for you ! */ 2828 if (pe == NULL) 2829 return -ENXIO; 2830 2831 /* Check if we have an MVE */ 2832 if (pe->mve_number < 0) 2833 return -ENXIO; 2834 2835 /* Force 32-bit MSI on some broken devices */ 2836 if (dev->no_64bit_msi) 2837 is_64 = 0; 2838 2839 /* Assign XIVE to PE */ 2840 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); 2841 if (rc) { 2842 pr_warn("%s: OPAL error %d setting XIVE %d PE\n", 2843 pci_name(dev), rc, xive_num); 2844 return -EIO; 2845 } 2846 2847 if (is_64) { 2848 __be64 addr64; 2849 2850 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, 2851 &addr64, &data); 2852 if (rc) { 2853 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", 2854 pci_name(dev), rc); 2855 return -EIO; 2856 } 2857 msg->address_hi = be64_to_cpu(addr64) >> 32; 2858 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; 2859 } else { 2860 __be32 addr32; 2861 2862 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, 2863 &addr32, &data); 2864 if (rc) { 2865 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", 2866 pci_name(dev), rc); 2867 return -EIO; 2868 } 2869 msg->address_hi = 0; 2870 msg->address_lo = be32_to_cpu(addr32); 2871 } 2872 msg->data = be32_to_cpu(data); 2873 2874 pnv_set_msi_irq_chip(phb, virq); 2875 2876 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," 2877 " address=%x_%08x data=%x PE# %x\n", 2878 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, 2879 msg->address_hi, msg->address_lo, data, pe->pe_number); 2880 2881 return 0; 2882 } 2883 2884 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) 2885 { 2886 unsigned int count; 2887 const __be32 *prop = of_get_property(phb->hose->dn, 2888 "ibm,opal-msi-ranges", NULL); 2889 if (!prop) { 2890 /* BML Fallback */ 2891 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); 2892 } 2893 if (!prop) 2894 return; 2895 2896 phb->msi_base = be32_to_cpup(prop); 2897 count = be32_to_cpup(prop + 1); 2898 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { 2899 pr_err("PCI %d: Failed to allocate MSI bitmap !\n", 2900 phb->hose->global_number); 2901 return; 2902 } 2903 2904 phb->msi_setup = pnv_pci_ioda_msi_setup; 2905 phb->msi32_support = 1; 2906 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", 2907 count, phb->msi_base); 2908 } 2909 2910 #ifdef CONFIG_PCI_IOV 2911 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) 2912 { 2913 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 2914 struct pnv_phb *phb = hose->private_data; 2915 const resource_size_t gate = phb->ioda.m64_segsize >> 2; 2916 struct resource *res; 2917 int i; 2918 resource_size_t size, total_vf_bar_sz; 2919 struct pci_dn *pdn; 2920 int mul, total_vfs; 2921 2922 pdn = pci_get_pdn(pdev); 2923 pdn->vfs_expanded = 0; 2924 pdn->m64_single_mode = false; 2925 2926 total_vfs = pci_sriov_get_totalvfs(pdev); 2927 mul = phb->ioda.total_pe_num; 2928 total_vf_bar_sz = 0; 2929 2930 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2931 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2932 if (!res->flags || res->parent) 2933 continue; 2934 if (!pnv_pci_is_m64_flags(res->flags)) { 2935 dev_warn(&pdev->dev, "Don't support SR-IOV with" 2936 " non M64 VF BAR%d: %pR. \n", 2937 i, res); 2938 goto truncate_iov; 2939 } 2940 2941 total_vf_bar_sz += pci_iov_resource_size(pdev, 2942 i + PCI_IOV_RESOURCES); 2943 2944 /* 2945 * If bigger than quarter of M64 segment size, just round up 2946 * power of two. 2947 * 2948 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict 2949 * with other devices, IOV BAR size is expanded to be 2950 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64 2951 * segment size , the expanded size would equal to half of the 2952 * whole M64 space size, which will exhaust the M64 Space and 2953 * limit the system flexibility. This is a design decision to 2954 * set the boundary to quarter of the M64 segment size. 2955 */ 2956 if (total_vf_bar_sz > gate) { 2957 mul = roundup_pow_of_two(total_vfs); 2958 dev_info(&pdev->dev, 2959 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n", 2960 total_vf_bar_sz, gate, mul); 2961 pdn->m64_single_mode = true; 2962 break; 2963 } 2964 } 2965 2966 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2967 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2968 if (!res->flags || res->parent) 2969 continue; 2970 2971 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); 2972 /* 2973 * On PHB3, the minimum size alignment of M64 BAR in single 2974 * mode is 32MB. 2975 */ 2976 if (pdn->m64_single_mode && (size < SZ_32M)) 2977 goto truncate_iov; 2978 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res); 2979 res->end = res->start + size * mul - 1; 2980 dev_dbg(&pdev->dev, " %pR\n", res); 2981 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", 2982 i, res, mul); 2983 } 2984 pdn->vfs_expanded = mul; 2985 2986 return; 2987 2988 truncate_iov: 2989 /* To save MMIO space, IOV BAR is truncated. */ 2990 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2991 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2992 res->flags = 0; 2993 res->end = res->start - 1; 2994 } 2995 } 2996 2997 static void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev) 2998 { 2999 if (WARN_ON(pci_dev_is_added(pdev))) 3000 return; 3001 3002 if (pdev->is_virtfn) { 3003 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev); 3004 3005 /* 3006 * VF PEs are single-device PEs so their pdev pointer needs to 3007 * be set. The pdev doesn't exist when the PE is allocated (in 3008 * (pcibios_sriov_enable()) so we fix it up here. 3009 */ 3010 pe->pdev = pdev; 3011 WARN_ON(!(pe->flags & PNV_IODA_PE_VF)); 3012 } else if (pdev->is_physfn) { 3013 /* 3014 * For PFs adjust their allocated IOV resources to match what 3015 * the PHB can support using it's M64 BAR table. 3016 */ 3017 pnv_pci_ioda_fixup_iov_resources(pdev); 3018 } 3019 } 3020 #endif /* CONFIG_PCI_IOV */ 3021 3022 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, 3023 struct resource *res) 3024 { 3025 struct pnv_phb *phb = pe->phb; 3026 struct pci_bus_region region; 3027 int index; 3028 int64_t rc; 3029 3030 if (!res || !res->flags || res->start > res->end) 3031 return; 3032 3033 if (res->flags & IORESOURCE_IO) { 3034 region.start = res->start - phb->ioda.io_pci_base; 3035 region.end = res->end - phb->ioda.io_pci_base; 3036 index = region.start / phb->ioda.io_segsize; 3037 3038 while (index < phb->ioda.total_pe_num && 3039 region.start <= region.end) { 3040 phb->ioda.io_segmap[index] = pe->pe_number; 3041 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3042 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); 3043 if (rc != OPAL_SUCCESS) { 3044 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n", 3045 __func__, rc, index, pe->pe_number); 3046 break; 3047 } 3048 3049 region.start += phb->ioda.io_segsize; 3050 index++; 3051 } 3052 } else if ((res->flags & IORESOURCE_MEM) && 3053 !pnv_pci_is_m64(phb, res)) { 3054 region.start = res->start - 3055 phb->hose->mem_offset[0] - 3056 phb->ioda.m32_pci_base; 3057 region.end = res->end - 3058 phb->hose->mem_offset[0] - 3059 phb->ioda.m32_pci_base; 3060 index = region.start / phb->ioda.m32_segsize; 3061 3062 while (index < phb->ioda.total_pe_num && 3063 region.start <= region.end) { 3064 phb->ioda.m32_segmap[index] = pe->pe_number; 3065 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3066 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); 3067 if (rc != OPAL_SUCCESS) { 3068 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x", 3069 __func__, rc, index, pe->pe_number); 3070 break; 3071 } 3072 3073 region.start += phb->ioda.m32_segsize; 3074 index++; 3075 } 3076 } 3077 } 3078 3079 /* 3080 * This function is supposed to be called on basis of PE from top 3081 * to bottom style. So the the I/O or MMIO segment assigned to 3082 * parent PE could be overridden by its child PEs if necessary. 3083 */ 3084 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) 3085 { 3086 struct pci_dev *pdev; 3087 int i; 3088 3089 /* 3090 * NOTE: We only care PCI bus based PE for now. For PCI 3091 * device based PE, for example SRIOV sensitive VF should 3092 * be figured out later. 3093 */ 3094 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); 3095 3096 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 3097 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 3098 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); 3099 3100 /* 3101 * If the PE contains all subordinate PCI buses, the 3102 * windows of the child bridges should be mapped to 3103 * the PE as well. 3104 */ 3105 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) 3106 continue; 3107 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) 3108 pnv_ioda_setup_pe_res(pe, 3109 &pdev->resource[PCI_BRIDGE_RESOURCES + i]); 3110 } 3111 } 3112 3113 #ifdef CONFIG_DEBUG_FS 3114 static int pnv_pci_diag_data_set(void *data, u64 val) 3115 { 3116 struct pnv_phb *phb = data; 3117 s64 ret; 3118 3119 /* Retrieve the diag data from firmware */ 3120 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data, 3121 phb->diag_data_size); 3122 if (ret != OPAL_SUCCESS) 3123 return -EIO; 3124 3125 /* Print the diag data to the kernel log */ 3126 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data); 3127 return 0; 3128 } 3129 3130 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set, 3131 "%llu\n"); 3132 3133 static int pnv_pci_ioda_pe_dump(void *data, u64 val) 3134 { 3135 struct pnv_phb *phb = data; 3136 int pe_num; 3137 3138 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 3139 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num]; 3140 3141 if (!test_bit(pe_num, phb->ioda.pe_alloc)) 3142 continue; 3143 3144 pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n", 3145 pe->rid, pe->device_count, 3146 (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "", 3147 (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "", 3148 (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "", 3149 (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "", 3150 (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "", 3151 (pe->flags & PNV_IODA_PE_VF) ? "vf " : ""); 3152 } 3153 3154 return 0; 3155 } 3156 3157 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL, 3158 pnv_pci_ioda_pe_dump, "%llu\n"); 3159 3160 #endif /* CONFIG_DEBUG_FS */ 3161 3162 static void pnv_pci_ioda_create_dbgfs(void) 3163 { 3164 #ifdef CONFIG_DEBUG_FS 3165 struct pci_controller *hose, *tmp; 3166 struct pnv_phb *phb; 3167 char name[16]; 3168 3169 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 3170 phb = hose->private_data; 3171 3172 /* Notify initialization of PHB done */ 3173 phb->initialized = 1; 3174 3175 sprintf(name, "PCI%04x", hose->global_number); 3176 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); 3177 3178 debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs, 3179 phb, &pnv_pci_diag_data_fops); 3180 debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs, 3181 phb, &pnv_pci_ioda_pe_dump_fops); 3182 } 3183 #endif /* CONFIG_DEBUG_FS */ 3184 } 3185 3186 static void pnv_pci_enable_bridge(struct pci_bus *bus) 3187 { 3188 struct pci_dev *dev = bus->self; 3189 struct pci_bus *child; 3190 3191 /* Empty bus ? bail */ 3192 if (list_empty(&bus->devices)) 3193 return; 3194 3195 /* 3196 * If there's a bridge associated with that bus enable it. This works 3197 * around races in the generic code if the enabling is done during 3198 * parallel probing. This can be removed once those races have been 3199 * fixed. 3200 */ 3201 if (dev) { 3202 int rc = pci_enable_device(dev); 3203 if (rc) 3204 pci_err(dev, "Error enabling bridge (%d)\n", rc); 3205 pci_set_master(dev); 3206 } 3207 3208 /* Perform the same to child busses */ 3209 list_for_each_entry(child, &bus->children, node) 3210 pnv_pci_enable_bridge(child); 3211 } 3212 3213 static void pnv_pci_enable_bridges(void) 3214 { 3215 struct pci_controller *hose; 3216 3217 list_for_each_entry(hose, &hose_list, list_node) 3218 pnv_pci_enable_bridge(hose->bus); 3219 } 3220 3221 static void pnv_pci_ioda_fixup(void) 3222 { 3223 pnv_pci_ioda_setup_PEs(); 3224 pnv_pci_ioda_setup_iommu_api(); 3225 pnv_pci_ioda_create_dbgfs(); 3226 3227 pnv_pci_enable_bridges(); 3228 3229 #ifdef CONFIG_EEH 3230 pnv_eeh_post_init(); 3231 #endif 3232 } 3233 3234 /* 3235 * Returns the alignment for I/O or memory windows for P2P 3236 * bridges. That actually depends on how PEs are segmented. 3237 * For now, we return I/O or M32 segment size for PE sensitive 3238 * P2P bridges. Otherwise, the default values (4KiB for I/O, 3239 * 1MiB for memory) will be returned. 3240 * 3241 * The current PCI bus might be put into one PE, which was 3242 * create against the parent PCI bridge. For that case, we 3243 * needn't enlarge the alignment so that we can save some 3244 * resources. 3245 */ 3246 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, 3247 unsigned long type) 3248 { 3249 struct pci_dev *bridge; 3250 struct pci_controller *hose = pci_bus_to_host(bus); 3251 struct pnv_phb *phb = hose->private_data; 3252 int num_pci_bridges = 0; 3253 3254 bridge = bus->self; 3255 while (bridge) { 3256 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { 3257 num_pci_bridges++; 3258 if (num_pci_bridges >= 2) 3259 return 1; 3260 } 3261 3262 bridge = bridge->bus->self; 3263 } 3264 3265 /* 3266 * We fall back to M32 if M64 isn't supported. We enforce the M64 3267 * alignment for any 64-bit resource, PCIe doesn't care and 3268 * bridges only do 64-bit prefetchable anyway. 3269 */ 3270 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type)) 3271 return phb->ioda.m64_segsize; 3272 if (type & IORESOURCE_MEM) 3273 return phb->ioda.m32_segsize; 3274 3275 return phb->ioda.io_segsize; 3276 } 3277 3278 /* 3279 * We are updating root port or the upstream port of the 3280 * bridge behind the root port with PHB's windows in order 3281 * to accommodate the changes on required resources during 3282 * PCI (slot) hotplug, which is connected to either root 3283 * port or the downstream ports of PCIe switch behind the 3284 * root port. 3285 */ 3286 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, 3287 unsigned long type) 3288 { 3289 struct pci_controller *hose = pci_bus_to_host(bus); 3290 struct pnv_phb *phb = hose->private_data; 3291 struct pci_dev *bridge = bus->self; 3292 struct resource *r, *w; 3293 bool msi_region = false; 3294 int i; 3295 3296 /* Check if we need apply fixup to the bridge's windows */ 3297 if (!pci_is_root_bus(bridge->bus) && 3298 !pci_is_root_bus(bridge->bus->self->bus)) 3299 return; 3300 3301 /* Fixup the resources */ 3302 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { 3303 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; 3304 if (!r->flags || !r->parent) 3305 continue; 3306 3307 w = NULL; 3308 if (r->flags & type & IORESOURCE_IO) 3309 w = &hose->io_resource; 3310 else if (pnv_pci_is_m64(phb, r) && 3311 (type & IORESOURCE_PREFETCH) && 3312 phb->ioda.m64_segsize) 3313 w = &hose->mem_resources[1]; 3314 else if (r->flags & type & IORESOURCE_MEM) { 3315 w = &hose->mem_resources[0]; 3316 msi_region = true; 3317 } 3318 3319 r->start = w->start; 3320 r->end = w->end; 3321 3322 /* The 64KB 32-bits MSI region shouldn't be included in 3323 * the 32-bits bridge window. Otherwise, we can see strange 3324 * issues. One of them is EEH error observed on Garrison. 3325 * 3326 * Exclude top 1MB region which is the minimal alignment of 3327 * 32-bits bridge window. 3328 */ 3329 if (msi_region) { 3330 r->end += 0x10000; 3331 r->end -= 0x100000; 3332 } 3333 } 3334 } 3335 3336 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type) 3337 { 3338 struct pci_controller *hose = pci_bus_to_host(bus); 3339 struct pnv_phb *phb = hose->private_data; 3340 struct pci_dev *bridge = bus->self; 3341 struct pnv_ioda_pe *pe; 3342 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); 3343 3344 /* Extend bridge's windows if necessary */ 3345 pnv_pci_fixup_bridge_resources(bus, type); 3346 3347 /* The PE for root bus should be realized before any one else */ 3348 if (!phb->ioda.root_pe_populated) { 3349 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false); 3350 if (pe) { 3351 phb->ioda.root_pe_idx = pe->pe_number; 3352 phb->ioda.root_pe_populated = true; 3353 } 3354 } 3355 3356 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ 3357 if (list_empty(&bus->devices)) 3358 return; 3359 3360 /* Reserve PEs according to used M64 resources */ 3361 pnv_ioda_reserve_m64_pe(bus, NULL, all); 3362 3363 /* 3364 * Assign PE. We might run here because of partial hotplug. 3365 * For the case, we just pick up the existing PE and should 3366 * not allocate resources again. 3367 */ 3368 pe = pnv_ioda_setup_bus_PE(bus, all); 3369 if (!pe) 3370 return; 3371 3372 pnv_ioda_setup_pe_seg(pe); 3373 switch (phb->type) { 3374 case PNV_PHB_IODA1: 3375 pnv_pci_ioda1_setup_dma_pe(phb, pe); 3376 break; 3377 case PNV_PHB_IODA2: 3378 pnv_pci_ioda2_setup_dma_pe(phb, pe); 3379 break; 3380 default: 3381 pr_warn("%s: No DMA for PHB#%x (type %d)\n", 3382 __func__, phb->hose->global_number, phb->type); 3383 } 3384 } 3385 3386 static resource_size_t pnv_pci_default_alignment(void) 3387 { 3388 return PAGE_SIZE; 3389 } 3390 3391 #ifdef CONFIG_PCI_IOV 3392 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, 3393 int resno) 3394 { 3395 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3396 struct pnv_phb *phb = hose->private_data; 3397 struct pci_dn *pdn = pci_get_pdn(pdev); 3398 resource_size_t align; 3399 3400 /* 3401 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the 3402 * SR-IOV. While from hardware perspective, the range mapped by M64 3403 * BAR should be size aligned. 3404 * 3405 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra 3406 * powernv-specific hardware restriction is gone. But if just use the 3407 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with 3408 * in one segment of M64 #15, which introduces the PE conflict between 3409 * PF and VF. Based on this, the minimum alignment of an IOV BAR is 3410 * m64_segsize. 3411 * 3412 * This function returns the total IOV BAR size if M64 BAR is in 3413 * Shared PE mode or just VF BAR size if not. 3414 * If the M64 BAR is in Single PE mode, return the VF BAR size or 3415 * M64 segment size if IOV BAR size is less. 3416 */ 3417 align = pci_iov_resource_size(pdev, resno); 3418 if (!pdn->vfs_expanded) 3419 return align; 3420 if (pdn->m64_single_mode) 3421 return max(align, (resource_size_t)phb->ioda.m64_segsize); 3422 3423 return pdn->vfs_expanded * align; 3424 } 3425 #endif /* CONFIG_PCI_IOV */ 3426 3427 /* Prevent enabling devices for which we couldn't properly 3428 * assign a PE 3429 */ 3430 static bool pnv_pci_enable_device_hook(struct pci_dev *dev) 3431 { 3432 struct pci_controller *hose = pci_bus_to_host(dev->bus); 3433 struct pnv_phb *phb = hose->private_data; 3434 struct pci_dn *pdn; 3435 3436 /* The function is probably called while the PEs have 3437 * not be created yet. For example, resource reassignment 3438 * during PCI probe period. We just skip the check if 3439 * PEs isn't ready. 3440 */ 3441 if (!phb->initialized) 3442 return true; 3443 3444 pdn = pci_get_pdn(dev); 3445 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3446 return false; 3447 3448 return true; 3449 } 3450 3451 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev) 3452 { 3453 struct pci_controller *hose = pci_bus_to_host(dev->bus); 3454 struct pnv_phb *phb = hose->private_data; 3455 struct pci_dn *pdn; 3456 struct pnv_ioda_pe *pe; 3457 3458 if (!phb->initialized) 3459 return true; 3460 3461 pdn = pci_get_pdn(dev); 3462 if (!pdn) 3463 return false; 3464 3465 if (pdn->pe_number == IODA_INVALID_PE) { 3466 pe = pnv_ioda_setup_dev_PE(dev); 3467 if (!pe) 3468 return false; 3469 } 3470 return true; 3471 } 3472 3473 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, 3474 int num) 3475 { 3476 struct pnv_ioda_pe *pe = container_of(table_group, 3477 struct pnv_ioda_pe, table_group); 3478 struct pnv_phb *phb = pe->phb; 3479 unsigned int idx; 3480 long rc; 3481 3482 pe_info(pe, "Removing DMA window #%d\n", num); 3483 for (idx = 0; idx < phb->ioda.dma32_count; idx++) { 3484 if (phb->ioda.dma32_segmap[idx] != pe->pe_number) 3485 continue; 3486 3487 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 3488 idx, 0, 0ul, 0ul, 0ul); 3489 if (rc != OPAL_SUCCESS) { 3490 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", 3491 rc, idx); 3492 return rc; 3493 } 3494 3495 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; 3496 } 3497 3498 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 3499 return OPAL_SUCCESS; 3500 } 3501 3502 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) 3503 { 3504 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3505 struct iommu_table *tbl = pe->table_group.tables[0]; 3506 int64_t rc; 3507 3508 if (!weight) 3509 return; 3510 3511 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); 3512 if (rc != OPAL_SUCCESS) 3513 return; 3514 3515 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); 3516 if (pe->table_group.group) { 3517 iommu_group_put(pe->table_group.group); 3518 WARN_ON(pe->table_group.group); 3519 } 3520 3521 free_pages(tbl->it_base, get_order(tbl->it_size << 3)); 3522 iommu_tce_table_put(tbl); 3523 } 3524 3525 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) 3526 { 3527 struct iommu_table *tbl = pe->table_group.tables[0]; 3528 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3529 #ifdef CONFIG_IOMMU_API 3530 int64_t rc; 3531 #endif 3532 3533 if (!weight) 3534 return; 3535 3536 #ifdef CONFIG_IOMMU_API 3537 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 3538 if (rc) 3539 pe_warn(pe, "OPAL error %lld release DMA window\n", rc); 3540 #endif 3541 3542 pnv_pci_ioda2_set_bypass(pe, false); 3543 if (pe->table_group.group) { 3544 iommu_group_put(pe->table_group.group); 3545 WARN_ON(pe->table_group.group); 3546 } 3547 3548 iommu_tce_table_put(tbl); 3549 } 3550 3551 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, 3552 unsigned short win, 3553 unsigned int *map) 3554 { 3555 struct pnv_phb *phb = pe->phb; 3556 int idx; 3557 int64_t rc; 3558 3559 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { 3560 if (map[idx] != pe->pe_number) 3561 continue; 3562 3563 if (win == OPAL_M64_WINDOW_TYPE) 3564 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3565 phb->ioda.reserved_pe_idx, win, 3566 idx / PNV_IODA1_M64_SEGS, 3567 idx % PNV_IODA1_M64_SEGS); 3568 else 3569 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3570 phb->ioda.reserved_pe_idx, win, 0, idx); 3571 3572 if (rc != OPAL_SUCCESS) 3573 pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n", 3574 rc, win, idx); 3575 3576 map[idx] = IODA_INVALID_PE; 3577 } 3578 } 3579 3580 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) 3581 { 3582 struct pnv_phb *phb = pe->phb; 3583 3584 if (phb->type == PNV_PHB_IODA1) { 3585 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, 3586 phb->ioda.io_segmap); 3587 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3588 phb->ioda.m32_segmap); 3589 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE, 3590 phb->ioda.m64_segmap); 3591 } else if (phb->type == PNV_PHB_IODA2) { 3592 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3593 phb->ioda.m32_segmap); 3594 } 3595 } 3596 3597 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) 3598 { 3599 struct pnv_phb *phb = pe->phb; 3600 struct pnv_ioda_pe *slave, *tmp; 3601 3602 mutex_lock(&phb->ioda.pe_list_mutex); 3603 list_del(&pe->list); 3604 mutex_unlock(&phb->ioda.pe_list_mutex); 3605 3606 switch (phb->type) { 3607 case PNV_PHB_IODA1: 3608 pnv_pci_ioda1_release_pe_dma(pe); 3609 break; 3610 case PNV_PHB_IODA2: 3611 pnv_pci_ioda2_release_pe_dma(pe); 3612 break; 3613 case PNV_PHB_NPU_OCAPI: 3614 break; 3615 default: 3616 WARN_ON(1); 3617 } 3618 3619 pnv_ioda_release_pe_seg(pe); 3620 pnv_ioda_deconfigure_pe(pe->phb, pe); 3621 3622 /* Release slave PEs in the compound PE */ 3623 if (pe->flags & PNV_IODA_PE_MASTER) { 3624 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { 3625 list_del(&slave->list); 3626 pnv_ioda_free_pe(slave); 3627 } 3628 } 3629 3630 /* 3631 * The PE for root bus can be removed because of hotplug in EEH 3632 * recovery for fenced PHB error. We need to mark the PE dead so 3633 * that it can be populated again in PCI hot add path. The PE 3634 * shouldn't be destroyed as it's the global reserved resource. 3635 */ 3636 if (phb->ioda.root_pe_populated && 3637 phb->ioda.root_pe_idx == pe->pe_number) 3638 phb->ioda.root_pe_populated = false; 3639 else 3640 pnv_ioda_free_pe(pe); 3641 } 3642 3643 static void pnv_pci_release_device(struct pci_dev *pdev) 3644 { 3645 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3646 struct pnv_phb *phb = hose->private_data; 3647 struct pci_dn *pdn = pci_get_pdn(pdev); 3648 struct pnv_ioda_pe *pe; 3649 3650 if (pdev->is_virtfn) 3651 return; 3652 3653 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3654 return; 3655 3656 /* 3657 * PCI hotplug can happen as part of EEH error recovery. The @pdn 3658 * isn't removed and added afterwards in this scenario. We should 3659 * set the PE number in @pdn to an invalid one. Otherwise, the PE's 3660 * device count is decreased on removing devices while failing to 3661 * be increased on adding devices. It leads to unbalanced PE's device 3662 * count and eventually make normal PCI hotplug path broken. 3663 */ 3664 pe = &phb->ioda.pe_array[pdn->pe_number]; 3665 pdn->pe_number = IODA_INVALID_PE; 3666 3667 WARN_ON(--pe->device_count < 0); 3668 if (pe->device_count == 0) 3669 pnv_ioda_release_pe(pe); 3670 } 3671 3672 static void pnv_npu_disable_device(struct pci_dev *pdev) 3673 { 3674 struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev); 3675 struct eeh_pe *eehpe = edev ? edev->pe : NULL; 3676 3677 if (eehpe && eeh_ops && eeh_ops->reset) 3678 eeh_ops->reset(eehpe, EEH_RESET_HOT); 3679 } 3680 3681 static void pnv_pci_ioda_shutdown(struct pci_controller *hose) 3682 { 3683 struct pnv_phb *phb = hose->private_data; 3684 3685 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, 3686 OPAL_ASSERT_RESET); 3687 } 3688 3689 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus) 3690 { 3691 struct pci_controller *hose = bus->sysdata; 3692 struct pnv_phb *phb = hose->private_data; 3693 struct pnv_ioda_pe *pe; 3694 3695 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 3696 if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))) 3697 continue; 3698 3699 if (!pe->pbus) 3700 continue; 3701 3702 if (bus->number == ((pe->rid >> 8) & 0xFF)) { 3703 pe->pbus = bus; 3704 break; 3705 } 3706 } 3707 } 3708 3709 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { 3710 .dma_dev_setup = pnv_pci_ioda_dma_dev_setup, 3711 .dma_bus_setup = pnv_pci_ioda_dma_bus_setup, 3712 .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported, 3713 .setup_msi_irqs = pnv_setup_msi_irqs, 3714 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3715 .enable_device_hook = pnv_pci_enable_device_hook, 3716 .release_device = pnv_pci_release_device, 3717 .window_alignment = pnv_pci_window_alignment, 3718 .setup_bridge = pnv_pci_setup_bridge, 3719 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3720 .shutdown = pnv_pci_ioda_shutdown, 3721 }; 3722 3723 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = { 3724 .setup_msi_irqs = pnv_setup_msi_irqs, 3725 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3726 .enable_device_hook = pnv_pci_enable_device_hook, 3727 .window_alignment = pnv_pci_window_alignment, 3728 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3729 .shutdown = pnv_pci_ioda_shutdown, 3730 .disable_device = pnv_npu_disable_device, 3731 }; 3732 3733 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = { 3734 .enable_device_hook = pnv_ocapi_enable_device_hook, 3735 .release_device = pnv_pci_release_device, 3736 .window_alignment = pnv_pci_window_alignment, 3737 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3738 .shutdown = pnv_pci_ioda_shutdown, 3739 }; 3740 3741 static void __init pnv_pci_init_ioda_phb(struct device_node *np, 3742 u64 hub_id, int ioda_type) 3743 { 3744 struct pci_controller *hose; 3745 struct pnv_phb *phb; 3746 unsigned long size, m64map_off, m32map_off, pemap_off; 3747 unsigned long iomap_off = 0, dma32map_off = 0; 3748 struct resource r; 3749 const __be64 *prop64; 3750 const __be32 *prop32; 3751 int len; 3752 unsigned int segno; 3753 u64 phb_id; 3754 void *aux; 3755 long rc; 3756 3757 if (!of_device_is_available(np)) 3758 return; 3759 3760 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np); 3761 3762 prop64 = of_get_property(np, "ibm,opal-phbid", NULL); 3763 if (!prop64) { 3764 pr_err(" Missing \"ibm,opal-phbid\" property !\n"); 3765 return; 3766 } 3767 phb_id = be64_to_cpup(prop64); 3768 pr_debug(" PHB-ID : 0x%016llx\n", phb_id); 3769 3770 phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES); 3771 if (!phb) 3772 panic("%s: Failed to allocate %zu bytes\n", __func__, 3773 sizeof(*phb)); 3774 3775 /* Allocate PCI controller */ 3776 phb->hose = hose = pcibios_alloc_controller(np); 3777 if (!phb->hose) { 3778 pr_err(" Can't allocate PCI controller for %pOF\n", 3779 np); 3780 memblock_free(__pa(phb), sizeof(struct pnv_phb)); 3781 return; 3782 } 3783 3784 spin_lock_init(&phb->lock); 3785 prop32 = of_get_property(np, "bus-range", &len); 3786 if (prop32 && len == 8) { 3787 hose->first_busno = be32_to_cpu(prop32[0]); 3788 hose->last_busno = be32_to_cpu(prop32[1]); 3789 } else { 3790 pr_warn(" Broken <bus-range> on %pOF\n", np); 3791 hose->first_busno = 0; 3792 hose->last_busno = 0xff; 3793 } 3794 hose->private_data = phb; 3795 phb->hub_id = hub_id; 3796 phb->opal_id = phb_id; 3797 phb->type = ioda_type; 3798 mutex_init(&phb->ioda.pe_alloc_mutex); 3799 3800 /* Detect specific models for error handling */ 3801 if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) 3802 phb->model = PNV_PHB_MODEL_P7IOC; 3803 else if (of_device_is_compatible(np, "ibm,power8-pciex")) 3804 phb->model = PNV_PHB_MODEL_PHB3; 3805 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex")) 3806 phb->model = PNV_PHB_MODEL_NPU; 3807 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex")) 3808 phb->model = PNV_PHB_MODEL_NPU2; 3809 else 3810 phb->model = PNV_PHB_MODEL_UNKNOWN; 3811 3812 /* Initialize diagnostic data buffer */ 3813 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL); 3814 if (prop32) 3815 phb->diag_data_size = be32_to_cpup(prop32); 3816 else 3817 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE; 3818 3819 phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES); 3820 if (!phb->diag_data) 3821 panic("%s: Failed to allocate %u bytes\n", __func__, 3822 phb->diag_data_size); 3823 3824 /* Parse 32-bit and IO ranges (if any) */ 3825 pci_process_bridge_OF_ranges(hose, np, !hose->global_number); 3826 3827 /* Get registers */ 3828 if (!of_address_to_resource(np, 0, &r)) { 3829 phb->regs_phys = r.start; 3830 phb->regs = ioremap(r.start, resource_size(&r)); 3831 if (phb->regs == NULL) 3832 pr_err(" Failed to map registers !\n"); 3833 } 3834 3835 /* Initialize more IODA stuff */ 3836 phb->ioda.total_pe_num = 1; 3837 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); 3838 if (prop32) 3839 phb->ioda.total_pe_num = be32_to_cpup(prop32); 3840 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); 3841 if (prop32) 3842 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); 3843 3844 /* Invalidate RID to PE# mapping */ 3845 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) 3846 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; 3847 3848 /* Parse 64-bit MMIO range */ 3849 pnv_ioda_parse_m64_window(phb); 3850 3851 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); 3852 /* FW Has already off top 64k of M32 space (MSI space) */ 3853 phb->ioda.m32_size += 0x10000; 3854 3855 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; 3856 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; 3857 phb->ioda.io_size = hose->pci_io_size; 3858 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; 3859 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ 3860 3861 /* Calculate how many 32-bit TCE segments we have */ 3862 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3863 PNV_IODA1_DMA32_SEGSIZE; 3864 3865 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ 3866 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, 3867 sizeof(unsigned long)); 3868 m64map_off = size; 3869 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); 3870 m32map_off = size; 3871 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); 3872 if (phb->type == PNV_PHB_IODA1) { 3873 iomap_off = size; 3874 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); 3875 dma32map_off = size; 3876 size += phb->ioda.dma32_count * 3877 sizeof(phb->ioda.dma32_segmap[0]); 3878 } 3879 pemap_off = size; 3880 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); 3881 aux = memblock_alloc(size, SMP_CACHE_BYTES); 3882 if (!aux) 3883 panic("%s: Failed to allocate %lu bytes\n", __func__, size); 3884 phb->ioda.pe_alloc = aux; 3885 phb->ioda.m64_segmap = aux + m64map_off; 3886 phb->ioda.m32_segmap = aux + m32map_off; 3887 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { 3888 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; 3889 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; 3890 } 3891 if (phb->type == PNV_PHB_IODA1) { 3892 phb->ioda.io_segmap = aux + iomap_off; 3893 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) 3894 phb->ioda.io_segmap[segno] = IODA_INVALID_PE; 3895 3896 phb->ioda.dma32_segmap = aux + dma32map_off; 3897 for (segno = 0; segno < phb->ioda.dma32_count; segno++) 3898 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; 3899 } 3900 phb->ioda.pe_array = aux + pemap_off; 3901 3902 /* 3903 * Choose PE number for root bus, which shouldn't have 3904 * M64 resources consumed by its child devices. To pick 3905 * the PE number adjacent to the reserved one if possible. 3906 */ 3907 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); 3908 if (phb->ioda.reserved_pe_idx == 0) { 3909 phb->ioda.root_pe_idx = 1; 3910 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3911 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { 3912 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; 3913 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3914 } else { 3915 phb->ioda.root_pe_idx = IODA_INVALID_PE; 3916 } 3917 3918 INIT_LIST_HEAD(&phb->ioda.pe_list); 3919 mutex_init(&phb->ioda.pe_list_mutex); 3920 3921 /* Calculate how many 32-bit TCE segments we have */ 3922 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3923 PNV_IODA1_DMA32_SEGSIZE; 3924 3925 #if 0 /* We should really do that ... */ 3926 rc = opal_pci_set_phb_mem_window(opal->phb_id, 3927 window_type, 3928 window_num, 3929 starting_real_address, 3930 starting_pci_address, 3931 segment_size); 3932 #endif 3933 3934 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", 3935 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, 3936 phb->ioda.m32_size, phb->ioda.m32_segsize); 3937 if (phb->ioda.m64_size) 3938 pr_info(" M64: 0x%lx [segment=0x%lx]\n", 3939 phb->ioda.m64_size, phb->ioda.m64_segsize); 3940 if (phb->ioda.io_size) 3941 pr_info(" IO: 0x%x [segment=0x%x]\n", 3942 phb->ioda.io_size, phb->ioda.io_segsize); 3943 3944 3945 phb->hose->ops = &pnv_pci_ops; 3946 phb->get_pe_state = pnv_ioda_get_pe_state; 3947 phb->freeze_pe = pnv_ioda_freeze_pe; 3948 phb->unfreeze_pe = pnv_ioda_unfreeze_pe; 3949 3950 /* Setup MSI support */ 3951 pnv_pci_init_ioda_msis(phb); 3952 3953 /* 3954 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here 3955 * to let the PCI core do resource assignment. It's supposed 3956 * that the PCI core will do correct I/O and MMIO alignment 3957 * for the P2P bridge bars so that each PCI bus (excluding 3958 * the child P2P bridges) can form individual PE. 3959 */ 3960 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; 3961 3962 switch (phb->type) { 3963 case PNV_PHB_NPU_NVLINK: 3964 hose->controller_ops = pnv_npu_ioda_controller_ops; 3965 break; 3966 case PNV_PHB_NPU_OCAPI: 3967 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops; 3968 break; 3969 default: 3970 hose->controller_ops = pnv_pci_ioda_controller_ops; 3971 } 3972 3973 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment; 3974 3975 #ifdef CONFIG_PCI_IOV 3976 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov; 3977 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; 3978 ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable; 3979 ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable; 3980 #endif 3981 3982 pci_add_flags(PCI_REASSIGN_ALL_RSRC); 3983 3984 /* Reset IODA tables to a clean state */ 3985 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); 3986 if (rc) 3987 pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc); 3988 3989 /* 3990 * If we're running in kdump kernel, the previous kernel never 3991 * shutdown PCI devices correctly. We already got IODA table 3992 * cleaned out. So we have to issue PHB reset to stop all PCI 3993 * transactions from previous kernel. The ppc_pci_reset_phbs 3994 * kernel parameter will force this reset too. Additionally, 3995 * if the IODA reset above failed then use a bigger hammer. 3996 * This can happen if we get a PHB fatal error in very early 3997 * boot. 3998 */ 3999 if (is_kdump_kernel() || pci_reset_phbs || rc) { 4000 pr_info(" Issue PHB reset ...\n"); 4001 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); 4002 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); 4003 } 4004 4005 /* Remove M64 resource if we can't configure it successfully */ 4006 if (!phb->init_m64 || phb->init_m64(phb)) 4007 hose->mem_resources[1].flags = 0; 4008 } 4009 4010 void __init pnv_pci_init_ioda2_phb(struct device_node *np) 4011 { 4012 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); 4013 } 4014 4015 void __init pnv_pci_init_npu_phb(struct device_node *np) 4016 { 4017 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK); 4018 } 4019 4020 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np) 4021 { 4022 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI); 4023 } 4024 4025 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev) 4026 { 4027 struct pci_controller *hose = pci_bus_to_host(dev->bus); 4028 struct pnv_phb *phb = hose->private_data; 4029 4030 if (!machine_is(powernv)) 4031 return; 4032 4033 if (phb->type == PNV_PHB_NPU_OCAPI) 4034 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE; 4035 } 4036 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup); 4037 4038 void __init pnv_pci_init_ioda_hub(struct device_node *np) 4039 { 4040 struct device_node *phbn; 4041 const __be64 *prop64; 4042 u64 hub_id; 4043 4044 pr_info("Probing IODA IO-Hub %pOF\n", np); 4045 4046 prop64 = of_get_property(np, "ibm,opal-hubid", NULL); 4047 if (!prop64) { 4048 pr_err(" Missing \"ibm,opal-hubid\" property !\n"); 4049 return; 4050 } 4051 hub_id = be64_to_cpup(prop64); 4052 pr_devel(" HUB-ID : 0x%016llx\n", hub_id); 4053 4054 /* Count child PHBs */ 4055 for_each_child_of_node(np, phbn) { 4056 /* Look for IODA1 PHBs */ 4057 if (of_device_is_compatible(phbn, "ibm,ioda-phb")) 4058 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); 4059 } 4060 } 4061