1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/memblock.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/iommu.h>
25 #include <linux/rculist.h>
26 #include <linux/sizes.h>
27 
28 #include <asm/sections.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/pci-bridge.h>
32 #include <asm/machdep.h>
33 #include <asm/msi_bitmap.h>
34 #include <asm/ppc-pci.h>
35 #include <asm/opal.h>
36 #include <asm/iommu.h>
37 #include <asm/tce.h>
38 #include <asm/xics.h>
39 #include <asm/debugfs.h>
40 #include <asm/firmware.h>
41 #include <asm/pnv-pci.h>
42 #include <asm/mmzone.h>
43 
44 #include <misc/cxl-base.h>
45 
46 #include "powernv.h"
47 #include "pci.h"
48 #include "../../../../drivers/pci/pci.h"
49 
50 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
51 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
52 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
53 
54 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
55 					      "NPU_OCAPI" };
56 
57 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
58 			    const char *fmt, ...)
59 {
60 	struct va_format vaf;
61 	va_list args;
62 	char pfix[32];
63 
64 	va_start(args, fmt);
65 
66 	vaf.fmt = fmt;
67 	vaf.va = &args;
68 
69 	if (pe->flags & PNV_IODA_PE_DEV)
70 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
71 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
72 		sprintf(pfix, "%04x:%02x     ",
73 			pci_domain_nr(pe->pbus), pe->pbus->number);
74 #ifdef CONFIG_PCI_IOV
75 	else if (pe->flags & PNV_IODA_PE_VF)
76 		sprintf(pfix, "%04x:%02x:%2x.%d",
77 			pci_domain_nr(pe->parent_dev->bus),
78 			(pe->rid & 0xff00) >> 8,
79 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
80 #endif /* CONFIG_PCI_IOV*/
81 
82 	printk("%spci %s: [PE# %.2x] %pV",
83 	       level, pfix, pe->pe_number, &vaf);
84 
85 	va_end(args);
86 }
87 
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89 static bool pci_reset_phbs __read_mostly;
90 
91 static int __init iommu_setup(char *str)
92 {
93 	if (!str)
94 		return -EINVAL;
95 
96 	while (*str) {
97 		if (!strncmp(str, "nobypass", 8)) {
98 			pnv_iommu_bypass_disabled = true;
99 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
100 			break;
101 		}
102 		str += strcspn(str, ",");
103 		if (*str == ',')
104 			str++;
105 	}
106 
107 	return 0;
108 }
109 early_param("iommu", iommu_setup);
110 
111 static int __init pci_reset_phbs_setup(char *str)
112 {
113 	pci_reset_phbs = true;
114 	return 0;
115 }
116 
117 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
118 
119 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
120 {
121 	/*
122 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
123 	 * allocation code sometimes decides to put a 64-bit prefetchable
124 	 * BAR in the 32-bit window, so we have to compare the addresses.
125 	 *
126 	 * For simplicity we only test resource start.
127 	 */
128 	return (r->start >= phb->ioda.m64_base &&
129 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
130 }
131 
132 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
133 {
134 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
135 
136 	return (resource_flags & flags) == flags;
137 }
138 
139 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
140 {
141 	s64 rc;
142 
143 	phb->ioda.pe_array[pe_no].phb = phb;
144 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
145 
146 	/*
147 	 * Clear the PE frozen state as it might be put into frozen state
148 	 * in the last PCI remove path. It's not harmful to do so when the
149 	 * PE is already in unfrozen state.
150 	 */
151 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
152 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
153 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
154 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
155 			__func__, rc, phb->hose->global_number, pe_no);
156 
157 	return &phb->ioda.pe_array[pe_no];
158 }
159 
160 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
161 {
162 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
163 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
164 			__func__, pe_no, phb->hose->global_number);
165 		return;
166 	}
167 
168 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
169 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
170 			 __func__, pe_no, phb->hose->global_number);
171 
172 	pnv_ioda_init_pe(phb, pe_no);
173 }
174 
175 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
176 {
177 	long pe;
178 
179 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
180 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
181 			return pnv_ioda_init_pe(phb, pe);
182 	}
183 
184 	return NULL;
185 }
186 
187 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
188 {
189 	struct pnv_phb *phb = pe->phb;
190 	unsigned int pe_num = pe->pe_number;
191 
192 	WARN_ON(pe->pdev);
193 
194 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
195 	clear_bit(pe_num, phb->ioda.pe_alloc);
196 }
197 
198 /* The default M64 BAR is shared by all PEs */
199 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
200 {
201 	const char *desc;
202 	struct resource *r;
203 	s64 rc;
204 
205 	/* Configure the default M64 BAR */
206 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
207 					 OPAL_M64_WINDOW_TYPE,
208 					 phb->ioda.m64_bar_idx,
209 					 phb->ioda.m64_base,
210 					 0, /* unused */
211 					 phb->ioda.m64_size);
212 	if (rc != OPAL_SUCCESS) {
213 		desc = "configuring";
214 		goto fail;
215 	}
216 
217 	/* Enable the default M64 BAR */
218 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
219 				      OPAL_M64_WINDOW_TYPE,
220 				      phb->ioda.m64_bar_idx,
221 				      OPAL_ENABLE_M64_SPLIT);
222 	if (rc != OPAL_SUCCESS) {
223 		desc = "enabling";
224 		goto fail;
225 	}
226 
227 	/*
228 	 * Exclude the segments for reserved and root bus PE, which
229 	 * are first or last two PEs.
230 	 */
231 	r = &phb->hose->mem_resources[1];
232 	if (phb->ioda.reserved_pe_idx == 0)
233 		r->start += (2 * phb->ioda.m64_segsize);
234 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
235 		r->end -= (2 * phb->ioda.m64_segsize);
236 	else
237 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
238 			phb->ioda.reserved_pe_idx);
239 
240 	return 0;
241 
242 fail:
243 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
244 		rc, desc, phb->ioda.m64_bar_idx);
245 	opal_pci_phb_mmio_enable(phb->opal_id,
246 				 OPAL_M64_WINDOW_TYPE,
247 				 phb->ioda.m64_bar_idx,
248 				 OPAL_DISABLE_M64);
249 	return -EIO;
250 }
251 
252 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
253 					 unsigned long *pe_bitmap)
254 {
255 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
256 	struct pnv_phb *phb = hose->private_data;
257 	struct resource *r;
258 	resource_size_t base, sgsz, start, end;
259 	int segno, i;
260 
261 	base = phb->ioda.m64_base;
262 	sgsz = phb->ioda.m64_segsize;
263 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
264 		r = &pdev->resource[i];
265 		if (!r->parent || !pnv_pci_is_m64(phb, r))
266 			continue;
267 
268 		start = _ALIGN_DOWN(r->start - base, sgsz);
269 		end = _ALIGN_UP(r->end - base, sgsz);
270 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
271 			if (pe_bitmap)
272 				set_bit(segno, pe_bitmap);
273 			else
274 				pnv_ioda_reserve_pe(phb, segno);
275 		}
276 	}
277 }
278 
279 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
280 {
281 	struct resource *r;
282 	int index;
283 
284 	/*
285 	 * There are 16 M64 BARs, each of which has 8 segments. So
286 	 * there are as many M64 segments as the maximum number of
287 	 * PEs, which is 128.
288 	 */
289 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
290 		unsigned long base, segsz = phb->ioda.m64_segsize;
291 		int64_t rc;
292 
293 		base = phb->ioda.m64_base +
294 		       index * PNV_IODA1_M64_SEGS * segsz;
295 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
296 				OPAL_M64_WINDOW_TYPE, index, base, 0,
297 				PNV_IODA1_M64_SEGS * segsz);
298 		if (rc != OPAL_SUCCESS) {
299 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
300 				rc, phb->hose->global_number, index);
301 			goto fail;
302 		}
303 
304 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
305 				OPAL_M64_WINDOW_TYPE, index,
306 				OPAL_ENABLE_M64_SPLIT);
307 		if (rc != OPAL_SUCCESS) {
308 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
309 				rc, phb->hose->global_number, index);
310 			goto fail;
311 		}
312 	}
313 
314 	/*
315 	 * Exclude the segments for reserved and root bus PE, which
316 	 * are first or last two PEs.
317 	 */
318 	r = &phb->hose->mem_resources[1];
319 	if (phb->ioda.reserved_pe_idx == 0)
320 		r->start += (2 * phb->ioda.m64_segsize);
321 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
322 		r->end -= (2 * phb->ioda.m64_segsize);
323 	else
324 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
325 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
326 
327 	return 0;
328 
329 fail:
330 	for ( ; index >= 0; index--)
331 		opal_pci_phb_mmio_enable(phb->opal_id,
332 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
333 
334 	return -EIO;
335 }
336 
337 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
338 				    unsigned long *pe_bitmap,
339 				    bool all)
340 {
341 	struct pci_dev *pdev;
342 
343 	list_for_each_entry(pdev, &bus->devices, bus_list) {
344 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
345 
346 		if (all && pdev->subordinate)
347 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
348 						pe_bitmap, all);
349 	}
350 }
351 
352 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
353 {
354 	struct pci_controller *hose = pci_bus_to_host(bus);
355 	struct pnv_phb *phb = hose->private_data;
356 	struct pnv_ioda_pe *master_pe, *pe;
357 	unsigned long size, *pe_alloc;
358 	int i;
359 
360 	/* Root bus shouldn't use M64 */
361 	if (pci_is_root_bus(bus))
362 		return NULL;
363 
364 	/* Allocate bitmap */
365 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
366 	pe_alloc = kzalloc(size, GFP_KERNEL);
367 	if (!pe_alloc) {
368 		pr_warn("%s: Out of memory !\n",
369 			__func__);
370 		return NULL;
371 	}
372 
373 	/* Figure out reserved PE numbers by the PE */
374 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
375 
376 	/*
377 	 * the current bus might not own M64 window and that's all
378 	 * contributed by its child buses. For the case, we needn't
379 	 * pick M64 dependent PE#.
380 	 */
381 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
382 		kfree(pe_alloc);
383 		return NULL;
384 	}
385 
386 	/*
387 	 * Figure out the master PE and put all slave PEs to master
388 	 * PE's list to form compound PE.
389 	 */
390 	master_pe = NULL;
391 	i = -1;
392 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
393 		phb->ioda.total_pe_num) {
394 		pe = &phb->ioda.pe_array[i];
395 
396 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
397 		if (!master_pe) {
398 			pe->flags |= PNV_IODA_PE_MASTER;
399 			INIT_LIST_HEAD(&pe->slaves);
400 			master_pe = pe;
401 		} else {
402 			pe->flags |= PNV_IODA_PE_SLAVE;
403 			pe->master = master_pe;
404 			list_add_tail(&pe->list, &master_pe->slaves);
405 		}
406 
407 		/*
408 		 * P7IOC supports M64DT, which helps mapping M64 segment
409 		 * to one particular PE#. However, PHB3 has fixed mapping
410 		 * between M64 segment and PE#. In order to have same logic
411 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
412 		 * segment and PE# on P7IOC.
413 		 */
414 		if (phb->type == PNV_PHB_IODA1) {
415 			int64_t rc;
416 
417 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
418 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
419 					pe->pe_number / PNV_IODA1_M64_SEGS,
420 					pe->pe_number % PNV_IODA1_M64_SEGS);
421 			if (rc != OPAL_SUCCESS)
422 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
423 					__func__, rc, phb->hose->global_number,
424 					pe->pe_number);
425 		}
426 	}
427 
428 	kfree(pe_alloc);
429 	return master_pe;
430 }
431 
432 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
433 {
434 	struct pci_controller *hose = phb->hose;
435 	struct device_node *dn = hose->dn;
436 	struct resource *res;
437 	u32 m64_range[2], i;
438 	const __be32 *r;
439 	u64 pci_addr;
440 
441 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
442 		pr_info("  Not support M64 window\n");
443 		return;
444 	}
445 
446 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
447 		pr_info("  Firmware too old to support M64 window\n");
448 		return;
449 	}
450 
451 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
452 	if (!r) {
453 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
454 			dn);
455 		return;
456 	}
457 
458 	/*
459 	 * Find the available M64 BAR range and pickup the last one for
460 	 * covering the whole 64-bits space. We support only one range.
461 	 */
462 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
463 				       m64_range, 2)) {
464 		/* In absence of the property, assume 0..15 */
465 		m64_range[0] = 0;
466 		m64_range[1] = 16;
467 	}
468 	/* We only support 64 bits in our allocator */
469 	if (m64_range[1] > 63) {
470 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
471 			__func__, m64_range[1], phb->hose->global_number);
472 		m64_range[1] = 63;
473 	}
474 	/* Empty range, no m64 */
475 	if (m64_range[1] <= m64_range[0]) {
476 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
477 			__func__, phb->hose->global_number);
478 		return;
479 	}
480 
481 	/* Configure M64 informations */
482 	res = &hose->mem_resources[1];
483 	res->name = dn->full_name;
484 	res->start = of_translate_address(dn, r + 2);
485 	res->end = res->start + of_read_number(r + 4, 2) - 1;
486 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
487 	pci_addr = of_read_number(r, 2);
488 	hose->mem_offset[1] = res->start - pci_addr;
489 
490 	phb->ioda.m64_size = resource_size(res);
491 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
492 	phb->ioda.m64_base = pci_addr;
493 
494 	/* This lines up nicely with the display from processing OF ranges */
495 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
496 		res->start, res->end, pci_addr, m64_range[0],
497 		m64_range[0] + m64_range[1] - 1);
498 
499 	/* Mark all M64 used up by default */
500 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
501 
502 	/* Use last M64 BAR to cover M64 window */
503 	m64_range[1]--;
504 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
505 
506 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
507 
508 	/* Mark remaining ones free */
509 	for (i = m64_range[0]; i < m64_range[1]; i++)
510 		clear_bit(i, &phb->ioda.m64_bar_alloc);
511 
512 	/*
513 	 * Setup init functions for M64 based on IODA version, IODA3 uses
514 	 * the IODA2 code.
515 	 */
516 	if (phb->type == PNV_PHB_IODA1)
517 		phb->init_m64 = pnv_ioda1_init_m64;
518 	else
519 		phb->init_m64 = pnv_ioda2_init_m64;
520 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
521 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
522 }
523 
524 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
525 {
526 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
527 	struct pnv_ioda_pe *slave;
528 	s64 rc;
529 
530 	/* Fetch master PE */
531 	if (pe->flags & PNV_IODA_PE_SLAVE) {
532 		pe = pe->master;
533 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
534 			return;
535 
536 		pe_no = pe->pe_number;
537 	}
538 
539 	/* Freeze master PE */
540 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
541 				     pe_no,
542 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
543 	if (rc != OPAL_SUCCESS) {
544 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
545 			__func__, rc, phb->hose->global_number, pe_no);
546 		return;
547 	}
548 
549 	/* Freeze slave PEs */
550 	if (!(pe->flags & PNV_IODA_PE_MASTER))
551 		return;
552 
553 	list_for_each_entry(slave, &pe->slaves, list) {
554 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
555 					     slave->pe_number,
556 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
557 		if (rc != OPAL_SUCCESS)
558 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
559 				__func__, rc, phb->hose->global_number,
560 				slave->pe_number);
561 	}
562 }
563 
564 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
565 {
566 	struct pnv_ioda_pe *pe, *slave;
567 	s64 rc;
568 
569 	/* Find master PE */
570 	pe = &phb->ioda.pe_array[pe_no];
571 	if (pe->flags & PNV_IODA_PE_SLAVE) {
572 		pe = pe->master;
573 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
574 		pe_no = pe->pe_number;
575 	}
576 
577 	/* Clear frozen state for master PE */
578 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
579 	if (rc != OPAL_SUCCESS) {
580 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
581 			__func__, rc, opt, phb->hose->global_number, pe_no);
582 		return -EIO;
583 	}
584 
585 	if (!(pe->flags & PNV_IODA_PE_MASTER))
586 		return 0;
587 
588 	/* Clear frozen state for slave PEs */
589 	list_for_each_entry(slave, &pe->slaves, list) {
590 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
591 					     slave->pe_number,
592 					     opt);
593 		if (rc != OPAL_SUCCESS) {
594 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
595 				__func__, rc, opt, phb->hose->global_number,
596 				slave->pe_number);
597 			return -EIO;
598 		}
599 	}
600 
601 	return 0;
602 }
603 
604 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
605 {
606 	struct pnv_ioda_pe *slave, *pe;
607 	u8 fstate, state;
608 	__be16 pcierr;
609 	s64 rc;
610 
611 	/* Sanity check on PE number */
612 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
613 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
614 
615 	/*
616 	 * Fetch the master PE and the PE instance might be
617 	 * not initialized yet.
618 	 */
619 	pe = &phb->ioda.pe_array[pe_no];
620 	if (pe->flags & PNV_IODA_PE_SLAVE) {
621 		pe = pe->master;
622 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
623 		pe_no = pe->pe_number;
624 	}
625 
626 	/* Check the master PE */
627 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
628 					&state, &pcierr, NULL);
629 	if (rc != OPAL_SUCCESS) {
630 		pr_warn("%s: Failure %lld getting "
631 			"PHB#%x-PE#%x state\n",
632 			__func__, rc,
633 			phb->hose->global_number, pe_no);
634 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
635 	}
636 
637 	/* Check the slave PE */
638 	if (!(pe->flags & PNV_IODA_PE_MASTER))
639 		return state;
640 
641 	list_for_each_entry(slave, &pe->slaves, list) {
642 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
643 						slave->pe_number,
644 						&fstate,
645 						&pcierr,
646 						NULL);
647 		if (rc != OPAL_SUCCESS) {
648 			pr_warn("%s: Failure %lld getting "
649 				"PHB#%x-PE#%x state\n",
650 				__func__, rc,
651 				phb->hose->global_number, slave->pe_number);
652 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
653 		}
654 
655 		/*
656 		 * Override the result based on the ascending
657 		 * priority.
658 		 */
659 		if (fstate > state)
660 			state = fstate;
661 	}
662 
663 	return state;
664 }
665 
666 /* Currently those 2 are only used when MSIs are enabled, this will change
667  * but in the meantime, we need to protect them to avoid warnings
668  */
669 #ifdef CONFIG_PCI_MSI
670 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
671 {
672 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
673 	struct pnv_phb *phb = hose->private_data;
674 	struct pci_dn *pdn = pci_get_pdn(dev);
675 
676 	if (!pdn)
677 		return NULL;
678 	if (pdn->pe_number == IODA_INVALID_PE)
679 		return NULL;
680 	return &phb->ioda.pe_array[pdn->pe_number];
681 }
682 #endif /* CONFIG_PCI_MSI */
683 
684 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
685 				  struct pnv_ioda_pe *parent,
686 				  struct pnv_ioda_pe *child,
687 				  bool is_add)
688 {
689 	const char *desc = is_add ? "adding" : "removing";
690 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
691 			      OPAL_REMOVE_PE_FROM_DOMAIN;
692 	struct pnv_ioda_pe *slave;
693 	long rc;
694 
695 	/* Parent PE affects child PE */
696 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
697 				child->pe_number, op);
698 	if (rc != OPAL_SUCCESS) {
699 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
700 			rc, desc);
701 		return -ENXIO;
702 	}
703 
704 	if (!(child->flags & PNV_IODA_PE_MASTER))
705 		return 0;
706 
707 	/* Compound case: parent PE affects slave PEs */
708 	list_for_each_entry(slave, &child->slaves, list) {
709 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
710 					slave->pe_number, op);
711 		if (rc != OPAL_SUCCESS) {
712 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
713 				rc, desc);
714 			return -ENXIO;
715 		}
716 	}
717 
718 	return 0;
719 }
720 
721 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
722 			      struct pnv_ioda_pe *pe,
723 			      bool is_add)
724 {
725 	struct pnv_ioda_pe *slave;
726 	struct pci_dev *pdev = NULL;
727 	int ret;
728 
729 	/*
730 	 * Clear PE frozen state. If it's master PE, we need
731 	 * clear slave PE frozen state as well.
732 	 */
733 	if (is_add) {
734 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
735 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
736 		if (pe->flags & PNV_IODA_PE_MASTER) {
737 			list_for_each_entry(slave, &pe->slaves, list)
738 				opal_pci_eeh_freeze_clear(phb->opal_id,
739 							  slave->pe_number,
740 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
741 		}
742 	}
743 
744 	/*
745 	 * Associate PE in PELT. We need add the PE into the
746 	 * corresponding PELT-V as well. Otherwise, the error
747 	 * originated from the PE might contribute to other
748 	 * PEs.
749 	 */
750 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
751 	if (ret)
752 		return ret;
753 
754 	/* For compound PEs, any one affects all of them */
755 	if (pe->flags & PNV_IODA_PE_MASTER) {
756 		list_for_each_entry(slave, &pe->slaves, list) {
757 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
758 			if (ret)
759 				return ret;
760 		}
761 	}
762 
763 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
764 		pdev = pe->pbus->self;
765 	else if (pe->flags & PNV_IODA_PE_DEV)
766 		pdev = pe->pdev->bus->self;
767 #ifdef CONFIG_PCI_IOV
768 	else if (pe->flags & PNV_IODA_PE_VF)
769 		pdev = pe->parent_dev;
770 #endif /* CONFIG_PCI_IOV */
771 	while (pdev) {
772 		struct pci_dn *pdn = pci_get_pdn(pdev);
773 		struct pnv_ioda_pe *parent;
774 
775 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
776 			parent = &phb->ioda.pe_array[pdn->pe_number];
777 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
778 			if (ret)
779 				return ret;
780 		}
781 
782 		pdev = pdev->bus->self;
783 	}
784 
785 	return 0;
786 }
787 
788 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
789 {
790 	struct pci_dev *parent;
791 	uint8_t bcomp, dcomp, fcomp;
792 	int64_t rc;
793 	long rid_end, rid;
794 
795 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
796 	if (pe->pbus) {
797 		int count;
798 
799 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
800 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
801 		parent = pe->pbus->self;
802 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
803 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
804 		else
805 			count = 1;
806 
807 		switch(count) {
808 		case  1: bcomp = OpalPciBusAll;         break;
809 		case  2: bcomp = OpalPciBus7Bits;       break;
810 		case  4: bcomp = OpalPciBus6Bits;       break;
811 		case  8: bcomp = OpalPciBus5Bits;       break;
812 		case 16: bcomp = OpalPciBus4Bits;       break;
813 		case 32: bcomp = OpalPciBus3Bits;       break;
814 		default:
815 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
816 			        count);
817 			/* Do an exact match only */
818 			bcomp = OpalPciBusAll;
819 		}
820 		rid_end = pe->rid + (count << 8);
821 	} else {
822 #ifdef CONFIG_PCI_IOV
823 		if (pe->flags & PNV_IODA_PE_VF)
824 			parent = pe->parent_dev;
825 		else
826 #endif
827 			parent = pe->pdev->bus->self;
828 		bcomp = OpalPciBusAll;
829 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
830 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
831 		rid_end = pe->rid + 1;
832 	}
833 
834 	/* Clear the reverse map */
835 	for (rid = pe->rid; rid < rid_end; rid++)
836 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
837 
838 	/* Release from all parents PELT-V */
839 	while (parent) {
840 		struct pci_dn *pdn = pci_get_pdn(parent);
841 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
842 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
843 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
844 			/* XXX What to do in case of error ? */
845 		}
846 		parent = parent->bus->self;
847 	}
848 
849 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
850 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
851 
852 	/* Disassociate PE in PELT */
853 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
854 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
855 	if (rc)
856 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
857 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
858 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
859 	if (rc)
860 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
861 
862 	pe->pbus = NULL;
863 	pe->pdev = NULL;
864 #ifdef CONFIG_PCI_IOV
865 	pe->parent_dev = NULL;
866 #endif
867 
868 	return 0;
869 }
870 
871 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
872 {
873 	struct pci_dev *parent;
874 	uint8_t bcomp, dcomp, fcomp;
875 	long rc, rid_end, rid;
876 
877 	/* Bus validation ? */
878 	if (pe->pbus) {
879 		int count;
880 
881 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
882 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
883 		parent = pe->pbus->self;
884 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
885 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
886 		else
887 			count = 1;
888 
889 		switch(count) {
890 		case  1: bcomp = OpalPciBusAll;		break;
891 		case  2: bcomp = OpalPciBus7Bits;	break;
892 		case  4: bcomp = OpalPciBus6Bits;	break;
893 		case  8: bcomp = OpalPciBus5Bits;	break;
894 		case 16: bcomp = OpalPciBus4Bits;	break;
895 		case 32: bcomp = OpalPciBus3Bits;	break;
896 		default:
897 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
898 			        count);
899 			/* Do an exact match only */
900 			bcomp = OpalPciBusAll;
901 		}
902 		rid_end = pe->rid + (count << 8);
903 	} else {
904 #ifdef CONFIG_PCI_IOV
905 		if (pe->flags & PNV_IODA_PE_VF)
906 			parent = pe->parent_dev;
907 		else
908 #endif /* CONFIG_PCI_IOV */
909 			parent = pe->pdev->bus->self;
910 		bcomp = OpalPciBusAll;
911 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
912 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
913 		rid_end = pe->rid + 1;
914 	}
915 
916 	/*
917 	 * Associate PE in PELT. We need add the PE into the
918 	 * corresponding PELT-V as well. Otherwise, the error
919 	 * originated from the PE might contribute to other
920 	 * PEs.
921 	 */
922 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
923 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
924 	if (rc) {
925 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
926 		return -ENXIO;
927 	}
928 
929 	/*
930 	 * Configure PELTV. NPUs don't have a PELTV table so skip
931 	 * configuration on them.
932 	 */
933 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
934 		pnv_ioda_set_peltv(phb, pe, true);
935 
936 	/* Setup reverse map */
937 	for (rid = pe->rid; rid < rid_end; rid++)
938 		phb->ioda.pe_rmap[rid] = pe->pe_number;
939 
940 	/* Setup one MVTs on IODA1 */
941 	if (phb->type != PNV_PHB_IODA1) {
942 		pe->mve_number = 0;
943 		goto out;
944 	}
945 
946 	pe->mve_number = pe->pe_number;
947 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
948 	if (rc != OPAL_SUCCESS) {
949 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
950 		       rc, pe->mve_number);
951 		pe->mve_number = -1;
952 	} else {
953 		rc = opal_pci_set_mve_enable(phb->opal_id,
954 					     pe->mve_number, OPAL_ENABLE_MVE);
955 		if (rc) {
956 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
957 			       rc, pe->mve_number);
958 			pe->mve_number = -1;
959 		}
960 	}
961 
962 out:
963 	return 0;
964 }
965 
966 #ifdef CONFIG_PCI_IOV
967 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
968 {
969 	struct pci_dn *pdn = pci_get_pdn(dev);
970 	int i;
971 	struct resource *res, res2;
972 	resource_size_t size;
973 	u16 num_vfs;
974 
975 	if (!dev->is_physfn)
976 		return -EINVAL;
977 
978 	/*
979 	 * "offset" is in VFs.  The M64 windows are sized so that when they
980 	 * are segmented, each segment is the same size as the IOV BAR.
981 	 * Each segment is in a separate PE, and the high order bits of the
982 	 * address are the PE number.  Therefore, each VF's BAR is in a
983 	 * separate PE, and changing the IOV BAR start address changes the
984 	 * range of PEs the VFs are in.
985 	 */
986 	num_vfs = pdn->num_vfs;
987 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
988 		res = &dev->resource[i + PCI_IOV_RESOURCES];
989 		if (!res->flags || !res->parent)
990 			continue;
991 
992 		/*
993 		 * The actual IOV BAR range is determined by the start address
994 		 * and the actual size for num_vfs VFs BAR.  This check is to
995 		 * make sure that after shifting, the range will not overlap
996 		 * with another device.
997 		 */
998 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
999 		res2.flags = res->flags;
1000 		res2.start = res->start + (size * offset);
1001 		res2.end = res2.start + (size * num_vfs) - 1;
1002 
1003 		if (res2.end > res->end) {
1004 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1005 				i, &res2, res, num_vfs, offset);
1006 			return -EBUSY;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * Since M64 BAR shares segments among all possible 256 PEs,
1012 	 * we have to shift the beginning of PF IOV BAR to make it start from
1013 	 * the segment which belongs to the PE number assigned to the first VF.
1014 	 * This creates a "hole" in the /proc/iomem which could be used for
1015 	 * allocating other resources so we reserve this area below and
1016 	 * release when IOV is released.
1017 	 */
1018 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1019 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1020 		if (!res->flags || !res->parent)
1021 			continue;
1022 
1023 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1024 		res2 = *res;
1025 		res->start += size * offset;
1026 
1027 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1028 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1029 			 num_vfs, offset);
1030 
1031 		if (offset < 0) {
1032 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1033 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1034 		}
1035 
1036 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1037 
1038 		if (offset > 0) {
1039 			pdn->holes[i].start = res2.start;
1040 			pdn->holes[i].end = res2.start + size * offset - 1;
1041 			pdn->holes[i].flags = IORESOURCE_BUS;
1042 			pdn->holes[i].name = "pnv_iov_reserved";
1043 			devm_request_resource(&dev->dev, res->parent,
1044 					&pdn->holes[i]);
1045 		}
1046 	}
1047 	return 0;
1048 }
1049 #endif /* CONFIG_PCI_IOV */
1050 
1051 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1052 {
1053 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1054 	struct pnv_phb *phb = hose->private_data;
1055 	struct pci_dn *pdn = pci_get_pdn(dev);
1056 	struct pnv_ioda_pe *pe;
1057 
1058 	if (!pdn) {
1059 		pr_err("%s: Device tree node not associated properly\n",
1060 			   pci_name(dev));
1061 		return NULL;
1062 	}
1063 	if (pdn->pe_number != IODA_INVALID_PE)
1064 		return NULL;
1065 
1066 	pe = pnv_ioda_alloc_pe(phb);
1067 	if (!pe) {
1068 		pr_warn("%s: Not enough PE# available, disabling device\n",
1069 			pci_name(dev));
1070 		return NULL;
1071 	}
1072 
1073 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1074 	 * pointer in the PE data structure, both should be destroyed at the
1075 	 * same time. However, this needs to be looked at more closely again
1076 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1077 	 *
1078 	 * At some point we want to remove the PDN completely anyways
1079 	 */
1080 	pci_dev_get(dev);
1081 	pdn->pe_number = pe->pe_number;
1082 	pe->flags = PNV_IODA_PE_DEV;
1083 	pe->pdev = dev;
1084 	pe->pbus = NULL;
1085 	pe->mve_number = -1;
1086 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1087 
1088 	pe_info(pe, "Associated device to PE\n");
1089 
1090 	if (pnv_ioda_configure_pe(phb, pe)) {
1091 		/* XXX What do we do here ? */
1092 		pnv_ioda_free_pe(pe);
1093 		pdn->pe_number = IODA_INVALID_PE;
1094 		pe->pdev = NULL;
1095 		pci_dev_put(dev);
1096 		return NULL;
1097 	}
1098 
1099 	/* Put PE to the list */
1100 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1101 
1102 	return pe;
1103 }
1104 
1105 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1106 {
1107 	struct pci_dev *dev;
1108 
1109 	list_for_each_entry(dev, &bus->devices, bus_list) {
1110 		struct pci_dn *pdn = pci_get_pdn(dev);
1111 
1112 		if (pdn == NULL) {
1113 			pr_warn("%s: No device node associated with device !\n",
1114 				pci_name(dev));
1115 			continue;
1116 		}
1117 
1118 		/*
1119 		 * In partial hotplug case, the PCI device might be still
1120 		 * associated with the PE and needn't attach it to the PE
1121 		 * again.
1122 		 */
1123 		if (pdn->pe_number != IODA_INVALID_PE)
1124 			continue;
1125 
1126 		pe->device_count++;
1127 		pdn->pe_number = pe->pe_number;
1128 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1129 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1130 	}
1131 }
1132 
1133 /*
1134  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1135  * single PCI bus. Another one that contains the primary PCI bus and its
1136  * subordinate PCI devices and buses. The second type of PE is normally
1137  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1138  */
1139 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1140 {
1141 	struct pci_controller *hose = pci_bus_to_host(bus);
1142 	struct pnv_phb *phb = hose->private_data;
1143 	struct pnv_ioda_pe *pe = NULL;
1144 	unsigned int pe_num;
1145 
1146 	/*
1147 	 * In partial hotplug case, the PE instance might be still alive.
1148 	 * We should reuse it instead of allocating a new one.
1149 	 */
1150 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1151 	if (pe_num != IODA_INVALID_PE) {
1152 		pe = &phb->ioda.pe_array[pe_num];
1153 		pnv_ioda_setup_same_PE(bus, pe);
1154 		return NULL;
1155 	}
1156 
1157 	/* PE number for root bus should have been reserved */
1158 	if (pci_is_root_bus(bus) &&
1159 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1160 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1161 
1162 	/* Check if PE is determined by M64 */
1163 	if (!pe && phb->pick_m64_pe)
1164 		pe = phb->pick_m64_pe(bus, all);
1165 
1166 	/* The PE number isn't pinned by M64 */
1167 	if (!pe)
1168 		pe = pnv_ioda_alloc_pe(phb);
1169 
1170 	if (!pe) {
1171 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1172 			__func__, pci_domain_nr(bus), bus->number);
1173 		return NULL;
1174 	}
1175 
1176 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1177 	pe->pbus = bus;
1178 	pe->pdev = NULL;
1179 	pe->mve_number = -1;
1180 	pe->rid = bus->busn_res.start << 8;
1181 
1182 	if (all)
1183 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1184 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1185 	else
1186 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1187 			bus->busn_res.start, pe->pe_number);
1188 
1189 	if (pnv_ioda_configure_pe(phb, pe)) {
1190 		/* XXX What do we do here ? */
1191 		pnv_ioda_free_pe(pe);
1192 		pe->pbus = NULL;
1193 		return NULL;
1194 	}
1195 
1196 	/* Associate it with all child devices */
1197 	pnv_ioda_setup_same_PE(bus, pe);
1198 
1199 	/* Put PE to the list */
1200 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1201 
1202 	return pe;
1203 }
1204 
1205 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1206 {
1207 	int pe_num, found_pe = false, rc;
1208 	long rid;
1209 	struct pnv_ioda_pe *pe;
1210 	struct pci_dev *gpu_pdev;
1211 	struct pci_dn *npu_pdn;
1212 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1213 	struct pnv_phb *phb = hose->private_data;
1214 
1215 	/*
1216 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1217 	 * error handling. This means we only have three PEs remaining
1218 	 * which need to be assigned to four links, implying some
1219 	 * links must share PEs.
1220 	 *
1221 	 * To achieve this we assign PEs such that NPUs linking the
1222 	 * same GPU get assigned the same PE.
1223 	 */
1224 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1225 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1226 		pe = &phb->ioda.pe_array[pe_num];
1227 		if (!pe->pdev)
1228 			continue;
1229 
1230 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1231 			/*
1232 			 * This device has the same peer GPU so should
1233 			 * be assigned the same PE as the existing
1234 			 * peer NPU.
1235 			 */
1236 			dev_info(&npu_pdev->dev,
1237 				"Associating to existing PE %x\n", pe_num);
1238 			pci_dev_get(npu_pdev);
1239 			npu_pdn = pci_get_pdn(npu_pdev);
1240 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1241 			npu_pdn->pe_number = pe_num;
1242 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1243 
1244 			/* Map the PE to this link */
1245 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1246 					OpalPciBusAll,
1247 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1248 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1249 					OPAL_MAP_PE);
1250 			WARN_ON(rc != OPAL_SUCCESS);
1251 			found_pe = true;
1252 			break;
1253 		}
1254 	}
1255 
1256 	if (!found_pe)
1257 		/*
1258 		 * Could not find an existing PE so allocate a new
1259 		 * one.
1260 		 */
1261 		return pnv_ioda_setup_dev_PE(npu_pdev);
1262 	else
1263 		return pe;
1264 }
1265 
1266 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1267 {
1268 	struct pci_dev *pdev;
1269 
1270 	list_for_each_entry(pdev, &bus->devices, bus_list)
1271 		pnv_ioda_setup_npu_PE(pdev);
1272 }
1273 
1274 static void pnv_pci_ioda_setup_PEs(void)
1275 {
1276 	struct pci_controller *hose, *tmp;
1277 	struct pnv_phb *phb;
1278 	struct pci_bus *bus;
1279 	struct pci_dev *pdev;
1280 
1281 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1282 		phb = hose->private_data;
1283 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1284 			/* PE#0 is needed for error reporting */
1285 			pnv_ioda_reserve_pe(phb, 0);
1286 			pnv_ioda_setup_npu_PEs(hose->bus);
1287 			if (phb->model == PNV_PHB_MODEL_NPU2)
1288 				pnv_npu2_init(phb);
1289 		}
1290 		if (phb->type == PNV_PHB_NPU_OCAPI) {
1291 			bus = hose->bus;
1292 			list_for_each_entry(pdev, &bus->devices, bus_list)
1293 				pnv_ioda_setup_dev_PE(pdev);
1294 		}
1295 	}
1296 }
1297 
1298 #ifdef CONFIG_PCI_IOV
1299 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1300 {
1301 	struct pci_bus        *bus;
1302 	struct pci_controller *hose;
1303 	struct pnv_phb        *phb;
1304 	struct pci_dn         *pdn;
1305 	int                    i, j;
1306 	int                    m64_bars;
1307 
1308 	bus = pdev->bus;
1309 	hose = pci_bus_to_host(bus);
1310 	phb = hose->private_data;
1311 	pdn = pci_get_pdn(pdev);
1312 
1313 	if (pdn->m64_single_mode)
1314 		m64_bars = num_vfs;
1315 	else
1316 		m64_bars = 1;
1317 
1318 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1319 		for (j = 0; j < m64_bars; j++) {
1320 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1321 				continue;
1322 			opal_pci_phb_mmio_enable(phb->opal_id,
1323 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1324 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1325 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1326 		}
1327 
1328 	kfree(pdn->m64_map);
1329 	return 0;
1330 }
1331 
1332 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1333 {
1334 	struct pci_bus        *bus;
1335 	struct pci_controller *hose;
1336 	struct pnv_phb        *phb;
1337 	struct pci_dn         *pdn;
1338 	unsigned int           win;
1339 	struct resource       *res;
1340 	int                    i, j;
1341 	int64_t                rc;
1342 	int                    total_vfs;
1343 	resource_size_t        size, start;
1344 	int                    pe_num;
1345 	int                    m64_bars;
1346 
1347 	bus = pdev->bus;
1348 	hose = pci_bus_to_host(bus);
1349 	phb = hose->private_data;
1350 	pdn = pci_get_pdn(pdev);
1351 	total_vfs = pci_sriov_get_totalvfs(pdev);
1352 
1353 	if (pdn->m64_single_mode)
1354 		m64_bars = num_vfs;
1355 	else
1356 		m64_bars = 1;
1357 
1358 	pdn->m64_map = kmalloc_array(m64_bars,
1359 				     sizeof(*pdn->m64_map),
1360 				     GFP_KERNEL);
1361 	if (!pdn->m64_map)
1362 		return -ENOMEM;
1363 	/* Initialize the m64_map to IODA_INVALID_M64 */
1364 	for (i = 0; i < m64_bars ; i++)
1365 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1366 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1367 
1368 
1369 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1370 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1371 		if (!res->flags || !res->parent)
1372 			continue;
1373 
1374 		for (j = 0; j < m64_bars; j++) {
1375 			do {
1376 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1377 						phb->ioda.m64_bar_idx + 1, 0);
1378 
1379 				if (win >= phb->ioda.m64_bar_idx + 1)
1380 					goto m64_failed;
1381 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1382 
1383 			pdn->m64_map[j][i] = win;
1384 
1385 			if (pdn->m64_single_mode) {
1386 				size = pci_iov_resource_size(pdev,
1387 							PCI_IOV_RESOURCES + i);
1388 				start = res->start + size * j;
1389 			} else {
1390 				size = resource_size(res);
1391 				start = res->start;
1392 			}
1393 
1394 			/* Map the M64 here */
1395 			if (pdn->m64_single_mode) {
1396 				pe_num = pdn->pe_num_map[j];
1397 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1398 						pe_num, OPAL_M64_WINDOW_TYPE,
1399 						pdn->m64_map[j][i], 0);
1400 			}
1401 
1402 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1403 						 OPAL_M64_WINDOW_TYPE,
1404 						 pdn->m64_map[j][i],
1405 						 start,
1406 						 0, /* unused */
1407 						 size);
1408 
1409 
1410 			if (rc != OPAL_SUCCESS) {
1411 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1412 					win, rc);
1413 				goto m64_failed;
1414 			}
1415 
1416 			if (pdn->m64_single_mode)
1417 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1418 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1419 			else
1420 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1421 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1422 
1423 			if (rc != OPAL_SUCCESS) {
1424 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1425 					win, rc);
1426 				goto m64_failed;
1427 			}
1428 		}
1429 	}
1430 	return 0;
1431 
1432 m64_failed:
1433 	pnv_pci_vf_release_m64(pdev, num_vfs);
1434 	return -EBUSY;
1435 }
1436 
1437 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1438 		int num);
1439 
1440 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1441 {
1442 	struct iommu_table    *tbl;
1443 	int64_t               rc;
1444 
1445 	tbl = pe->table_group.tables[0];
1446 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1447 	if (rc)
1448 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1449 
1450 	pnv_pci_ioda2_set_bypass(pe, false);
1451 	if (pe->table_group.group) {
1452 		iommu_group_put(pe->table_group.group);
1453 		BUG_ON(pe->table_group.group);
1454 	}
1455 	iommu_tce_table_put(tbl);
1456 }
1457 
1458 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1459 {
1460 	struct pci_bus        *bus;
1461 	struct pci_controller *hose;
1462 	struct pnv_phb        *phb;
1463 	struct pnv_ioda_pe    *pe, *pe_n;
1464 	struct pci_dn         *pdn;
1465 
1466 	bus = pdev->bus;
1467 	hose = pci_bus_to_host(bus);
1468 	phb = hose->private_data;
1469 	pdn = pci_get_pdn(pdev);
1470 
1471 	if (!pdev->is_physfn)
1472 		return;
1473 
1474 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1475 		if (pe->parent_dev != pdev)
1476 			continue;
1477 
1478 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1479 
1480 		/* Remove from list */
1481 		mutex_lock(&phb->ioda.pe_list_mutex);
1482 		list_del(&pe->list);
1483 		mutex_unlock(&phb->ioda.pe_list_mutex);
1484 
1485 		pnv_ioda_deconfigure_pe(phb, pe);
1486 
1487 		pnv_ioda_free_pe(pe);
1488 	}
1489 }
1490 
1491 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1492 {
1493 	struct pci_bus        *bus;
1494 	struct pci_controller *hose;
1495 	struct pnv_phb        *phb;
1496 	struct pnv_ioda_pe    *pe;
1497 	struct pci_dn         *pdn;
1498 	u16                    num_vfs, i;
1499 
1500 	bus = pdev->bus;
1501 	hose = pci_bus_to_host(bus);
1502 	phb = hose->private_data;
1503 	pdn = pci_get_pdn(pdev);
1504 	num_vfs = pdn->num_vfs;
1505 
1506 	/* Release VF PEs */
1507 	pnv_ioda_release_vf_PE(pdev);
1508 
1509 	if (phb->type == PNV_PHB_IODA2) {
1510 		if (!pdn->m64_single_mode)
1511 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1512 
1513 		/* Release M64 windows */
1514 		pnv_pci_vf_release_m64(pdev, num_vfs);
1515 
1516 		/* Release PE numbers */
1517 		if (pdn->m64_single_mode) {
1518 			for (i = 0; i < num_vfs; i++) {
1519 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1520 					continue;
1521 
1522 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1523 				pnv_ioda_free_pe(pe);
1524 			}
1525 		} else
1526 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1527 		/* Releasing pe_num_map */
1528 		kfree(pdn->pe_num_map);
1529 	}
1530 }
1531 
1532 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1533 				       struct pnv_ioda_pe *pe);
1534 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1535 {
1536 	struct pci_bus        *bus;
1537 	struct pci_controller *hose;
1538 	struct pnv_phb        *phb;
1539 	struct pnv_ioda_pe    *pe;
1540 	int                    pe_num;
1541 	u16                    vf_index;
1542 	struct pci_dn         *pdn;
1543 
1544 	bus = pdev->bus;
1545 	hose = pci_bus_to_host(bus);
1546 	phb = hose->private_data;
1547 	pdn = pci_get_pdn(pdev);
1548 
1549 	if (!pdev->is_physfn)
1550 		return;
1551 
1552 	/* Reserve PE for each VF */
1553 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1554 		if (pdn->m64_single_mode)
1555 			pe_num = pdn->pe_num_map[vf_index];
1556 		else
1557 			pe_num = *pdn->pe_num_map + vf_index;
1558 
1559 		pe = &phb->ioda.pe_array[pe_num];
1560 		pe->pe_number = pe_num;
1561 		pe->phb = phb;
1562 		pe->flags = PNV_IODA_PE_VF;
1563 		pe->pbus = NULL;
1564 		pe->parent_dev = pdev;
1565 		pe->mve_number = -1;
1566 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1567 			   pci_iov_virtfn_devfn(pdev, vf_index);
1568 
1569 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1570 			hose->global_number, pdev->bus->number,
1571 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1572 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1573 
1574 		if (pnv_ioda_configure_pe(phb, pe)) {
1575 			/* XXX What do we do here ? */
1576 			pnv_ioda_free_pe(pe);
1577 			pe->pdev = NULL;
1578 			continue;
1579 		}
1580 
1581 		/* Put PE to the list */
1582 		mutex_lock(&phb->ioda.pe_list_mutex);
1583 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1584 		mutex_unlock(&phb->ioda.pe_list_mutex);
1585 
1586 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1587 	}
1588 }
1589 
1590 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1591 {
1592 	struct pci_bus        *bus;
1593 	struct pci_controller *hose;
1594 	struct pnv_phb        *phb;
1595 	struct pnv_ioda_pe    *pe;
1596 	struct pci_dn         *pdn;
1597 	int                    ret;
1598 	u16                    i;
1599 
1600 	bus = pdev->bus;
1601 	hose = pci_bus_to_host(bus);
1602 	phb = hose->private_data;
1603 	pdn = pci_get_pdn(pdev);
1604 
1605 	if (phb->type == PNV_PHB_IODA2) {
1606 		if (!pdn->vfs_expanded) {
1607 			dev_info(&pdev->dev, "don't support this SRIOV device"
1608 				" with non 64bit-prefetchable IOV BAR\n");
1609 			return -ENOSPC;
1610 		}
1611 
1612 		/*
1613 		 * When M64 BARs functions in Single PE mode, the number of VFs
1614 		 * could be enabled must be less than the number of M64 BARs.
1615 		 */
1616 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1617 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1618 			return -EBUSY;
1619 		}
1620 
1621 		/* Allocating pe_num_map */
1622 		if (pdn->m64_single_mode)
1623 			pdn->pe_num_map = kmalloc_array(num_vfs,
1624 							sizeof(*pdn->pe_num_map),
1625 							GFP_KERNEL);
1626 		else
1627 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1628 
1629 		if (!pdn->pe_num_map)
1630 			return -ENOMEM;
1631 
1632 		if (pdn->m64_single_mode)
1633 			for (i = 0; i < num_vfs; i++)
1634 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1635 
1636 		/* Calculate available PE for required VFs */
1637 		if (pdn->m64_single_mode) {
1638 			for (i = 0; i < num_vfs; i++) {
1639 				pe = pnv_ioda_alloc_pe(phb);
1640 				if (!pe) {
1641 					ret = -EBUSY;
1642 					goto m64_failed;
1643 				}
1644 
1645 				pdn->pe_num_map[i] = pe->pe_number;
1646 			}
1647 		} else {
1648 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1649 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1650 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1651 				0, num_vfs, 0);
1652 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1653 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1654 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1655 				kfree(pdn->pe_num_map);
1656 				return -EBUSY;
1657 			}
1658 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1659 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1660 		}
1661 		pdn->num_vfs = num_vfs;
1662 
1663 		/* Assign M64 window accordingly */
1664 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1665 		if (ret) {
1666 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1667 			goto m64_failed;
1668 		}
1669 
1670 		/*
1671 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1672 		 * the IOV BAR according to the PE# allocated to the VFs.
1673 		 * Otherwise, the PE# for the VF will conflict with others.
1674 		 */
1675 		if (!pdn->m64_single_mode) {
1676 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1677 			if (ret)
1678 				goto m64_failed;
1679 		}
1680 	}
1681 
1682 	/* Setup VF PEs */
1683 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1684 
1685 	return 0;
1686 
1687 m64_failed:
1688 	if (pdn->m64_single_mode) {
1689 		for (i = 0; i < num_vfs; i++) {
1690 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1691 				continue;
1692 
1693 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1694 			pnv_ioda_free_pe(pe);
1695 		}
1696 	} else
1697 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1698 
1699 	/* Releasing pe_num_map */
1700 	kfree(pdn->pe_num_map);
1701 
1702 	return ret;
1703 }
1704 
1705 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1706 {
1707 	pnv_pci_sriov_disable(pdev);
1708 
1709 	/* Release PCI data */
1710 	remove_dev_pci_data(pdev);
1711 	return 0;
1712 }
1713 
1714 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1715 {
1716 	/* Allocate PCI data */
1717 	add_dev_pci_data(pdev);
1718 
1719 	return pnv_pci_sriov_enable(pdev, num_vfs);
1720 }
1721 #endif /* CONFIG_PCI_IOV */
1722 
1723 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1724 {
1725 	struct pci_dn *pdn = pci_get_pdn(pdev);
1726 	struct pnv_ioda_pe *pe;
1727 
1728 	/*
1729 	 * The function can be called while the PE#
1730 	 * hasn't been assigned. Do nothing for the
1731 	 * case.
1732 	 */
1733 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1734 		return;
1735 
1736 	pe = &phb->ioda.pe_array[pdn->pe_number];
1737 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1738 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1739 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1740 	/*
1741 	 * Note: iommu_add_device() will fail here as
1742 	 * for physical PE: the device is already added by now;
1743 	 * for virtual PE: sysfs entries are not ready yet and
1744 	 * tce_iommu_bus_notifier will add the device to a group later.
1745 	 */
1746 }
1747 
1748 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1749 {
1750 	unsigned short vendor = 0;
1751 	struct pci_dev *pdev;
1752 
1753 	if (pe->device_count == 1)
1754 		return true;
1755 
1756 	/* pe->pdev should be set if it's a single device, pe->pbus if not */
1757 	if (!pe->pbus)
1758 		return true;
1759 
1760 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1761 		if (!vendor) {
1762 			vendor = pdev->vendor;
1763 			continue;
1764 		}
1765 
1766 		if (pdev->vendor != vendor)
1767 			return false;
1768 	}
1769 
1770 	return true;
1771 }
1772 
1773 /*
1774  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1775  *
1776  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1777  * Devices can only access more than that if bit 59 of the PCI address is set
1778  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1779  * Many PCI devices are not capable of addressing that many bits, and as a
1780  * result are limited to the 4GB of virtual memory made available to 32-bit
1781  * devices in TVE#0.
1782  *
1783  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1784  * devices by configuring the virtual memory past the first 4GB inaccessible
1785  * by 64-bit DMAs.  This should only be used by devices that want more than
1786  * 4GB, and only on PEs that have no 32-bit devices.
1787  *
1788  * Currently this will only work on PHB3 (POWER8).
1789  */
1790 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1791 {
1792 	u64 window_size, table_size, tce_count, addr;
1793 	struct page *table_pages;
1794 	u64 tce_order = 28; /* 256MB TCEs */
1795 	__be64 *tces;
1796 	s64 rc;
1797 
1798 	/*
1799 	 * Window size needs to be a power of two, but needs to account for
1800 	 * shifting memory by the 4GB offset required to skip 32bit space.
1801 	 */
1802 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1803 	tce_count = window_size >> tce_order;
1804 	table_size = tce_count << 3;
1805 
1806 	if (table_size < PAGE_SIZE)
1807 		table_size = PAGE_SIZE;
1808 
1809 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1810 				       get_order(table_size));
1811 	if (!table_pages)
1812 		goto err;
1813 
1814 	tces = page_address(table_pages);
1815 	if (!tces)
1816 		goto err;
1817 
1818 	memset(tces, 0, table_size);
1819 
1820 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1821 		tces[(addr + (1ULL << 32)) >> tce_order] =
1822 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1823 	}
1824 
1825 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1826 					pe->pe_number,
1827 					/* reconfigure window 0 */
1828 					(pe->pe_number << 1) + 0,
1829 					1,
1830 					__pa(tces),
1831 					table_size,
1832 					1 << tce_order);
1833 	if (rc == OPAL_SUCCESS) {
1834 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1835 		return 0;
1836 	}
1837 err:
1838 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1839 	return -EIO;
1840 }
1841 
1842 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1843 {
1844 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1845 	struct pnv_phb *phb = hose->private_data;
1846 	struct pci_dn *pdn = pci_get_pdn(pdev);
1847 	struct pnv_ioda_pe *pe;
1848 	uint64_t top;
1849 	bool bypass = false;
1850 	s64 rc;
1851 
1852 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1853 		return -ENODEV;
1854 
1855 	pe = &phb->ioda.pe_array[pdn->pe_number];
1856 	if (pe->tce_bypass_enabled) {
1857 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1858 		bypass = (dma_mask >= top);
1859 	}
1860 
1861 	if (bypass) {
1862 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1863 		set_dma_ops(&pdev->dev, &dma_nommu_ops);
1864 	} else {
1865 		/*
1866 		 * If the device can't set the TCE bypass bit but still wants
1867 		 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1868 		 * bypass the 32-bit region and be usable for 64-bit DMAs.
1869 		 * The device needs to be able to address all of this space.
1870 		 */
1871 		if (dma_mask >> 32 &&
1872 		    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1873 		    pnv_pci_ioda_pe_single_vendor(pe) &&
1874 		    phb->model == PNV_PHB_MODEL_PHB3) {
1875 			/* Configure the bypass mode */
1876 			rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1877 			if (rc)
1878 				return rc;
1879 			/* 4GB offset bypasses 32-bit space */
1880 			set_dma_offset(&pdev->dev, (1ULL << 32));
1881 			set_dma_ops(&pdev->dev, &dma_nommu_ops);
1882 		} else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1883 			/*
1884 			 * Fail the request if a DMA mask between 32 and 64 bits
1885 			 * was requested but couldn't be fulfilled. Ideally we
1886 			 * would do this for 64-bits but historically we have
1887 			 * always fallen back to 32-bits.
1888 			 */
1889 			return -ENOMEM;
1890 		} else {
1891 			dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1892 			set_dma_ops(&pdev->dev, &dma_iommu_ops);
1893 		}
1894 	}
1895 	*pdev->dev.dma_mask = dma_mask;
1896 
1897 	/* Update peer npu devices */
1898 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1899 
1900 	return 0;
1901 }
1902 
1903 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1904 {
1905 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1906 	struct pnv_phb *phb = hose->private_data;
1907 	struct pci_dn *pdn = pci_get_pdn(pdev);
1908 	struct pnv_ioda_pe *pe;
1909 	u64 end, mask;
1910 
1911 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1912 		return 0;
1913 
1914 	pe = &phb->ioda.pe_array[pdn->pe_number];
1915 	if (!pe->tce_bypass_enabled)
1916 		return __dma_get_required_mask(&pdev->dev);
1917 
1918 
1919 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1920 	mask = 1ULL << (fls64(end) - 1);
1921 	mask += mask - 1;
1922 
1923 	return mask;
1924 }
1925 
1926 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1927 				   struct pci_bus *bus,
1928 				   bool add_to_group)
1929 {
1930 	struct pci_dev *dev;
1931 
1932 	list_for_each_entry(dev, &bus->devices, bus_list) {
1933 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1934 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1935 		if (add_to_group)
1936 			iommu_add_device(&dev->dev);
1937 
1938 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1939 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1940 					add_to_group);
1941 	}
1942 }
1943 
1944 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1945 						     bool real_mode)
1946 {
1947 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1948 		(phb->regs + 0x210);
1949 }
1950 
1951 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1952 		unsigned long index, unsigned long npages, bool rm)
1953 {
1954 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1955 			&tbl->it_group_list, struct iommu_table_group_link,
1956 			next);
1957 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1958 			struct pnv_ioda_pe, table_group);
1959 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1960 	unsigned long start, end, inc;
1961 
1962 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1963 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1964 			npages - 1);
1965 
1966 	/* p7ioc-style invalidation, 2 TCEs per write */
1967 	start |= (1ull << 63);
1968 	end |= (1ull << 63);
1969 	inc = 16;
1970         end |= inc - 1;	/* round up end to be different than start */
1971 
1972         mb(); /* Ensure above stores are visible */
1973         while (start <= end) {
1974 		if (rm)
1975 			__raw_rm_writeq_be(start, invalidate);
1976 		else
1977 			__raw_writeq_be(start, invalidate);
1978 
1979                 start += inc;
1980         }
1981 
1982 	/*
1983 	 * The iommu layer will do another mb() for us on build()
1984 	 * and we don't care on free()
1985 	 */
1986 }
1987 
1988 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1989 		long npages, unsigned long uaddr,
1990 		enum dma_data_direction direction,
1991 		unsigned long attrs)
1992 {
1993 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1994 			attrs);
1995 
1996 	if (!ret)
1997 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1998 
1999 	return ret;
2000 }
2001 
2002 #ifdef CONFIG_IOMMU_API
2003 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
2004 		unsigned long *hpa, enum dma_data_direction *direction)
2005 {
2006 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2007 
2008 	if (!ret)
2009 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
2010 
2011 	return ret;
2012 }
2013 
2014 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2015 		unsigned long *hpa, enum dma_data_direction *direction)
2016 {
2017 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2018 
2019 	if (!ret)
2020 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2021 
2022 	return ret;
2023 }
2024 #endif
2025 
2026 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2027 		long npages)
2028 {
2029 	pnv_tce_free(tbl, index, npages);
2030 
2031 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2032 }
2033 
2034 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2035 	.set = pnv_ioda1_tce_build,
2036 #ifdef CONFIG_IOMMU_API
2037 	.exchange = pnv_ioda1_tce_xchg,
2038 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
2039 	.useraddrptr = pnv_tce_useraddrptr,
2040 #endif
2041 	.clear = pnv_ioda1_tce_free,
2042 	.get = pnv_tce_get,
2043 };
2044 
2045 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
2046 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
2047 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
2048 
2049 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2050 {
2051 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2052 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2053 
2054 	mb(); /* Ensure previous TCE table stores are visible */
2055 	if (rm)
2056 		__raw_rm_writeq_be(val, invalidate);
2057 	else
2058 		__raw_writeq_be(val, invalidate);
2059 }
2060 
2061 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2062 {
2063 	/* 01xb - invalidate TCEs that match the specified PE# */
2064 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2065 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2066 
2067 	mb(); /* Ensure above stores are visible */
2068 	__raw_writeq_be(val, invalidate);
2069 }
2070 
2071 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2072 					unsigned shift, unsigned long index,
2073 					unsigned long npages)
2074 {
2075 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2076 	unsigned long start, end, inc;
2077 
2078 	/* We'll invalidate DMA address in PE scope */
2079 	start = PHB3_TCE_KILL_INVAL_ONE;
2080 	start |= (pe->pe_number & 0xFF);
2081 	end = start;
2082 
2083 	/* Figure out the start, end and step */
2084 	start |= (index << shift);
2085 	end |= ((index + npages - 1) << shift);
2086 	inc = (0x1ull << shift);
2087 	mb();
2088 
2089 	while (start <= end) {
2090 		if (rm)
2091 			__raw_rm_writeq_be(start, invalidate);
2092 		else
2093 			__raw_writeq_be(start, invalidate);
2094 		start += inc;
2095 	}
2096 }
2097 
2098 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2099 {
2100 	struct pnv_phb *phb = pe->phb;
2101 
2102 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2103 		pnv_pci_phb3_tce_invalidate_pe(pe);
2104 	else
2105 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2106 				  pe->pe_number, 0, 0, 0);
2107 }
2108 
2109 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2110 		unsigned long index, unsigned long npages, bool rm)
2111 {
2112 	struct iommu_table_group_link *tgl;
2113 
2114 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2115 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2116 				struct pnv_ioda_pe, table_group);
2117 		struct pnv_phb *phb = pe->phb;
2118 		unsigned int shift = tbl->it_page_shift;
2119 
2120 		/*
2121 		 * NVLink1 can use the TCE kill register directly as
2122 		 * it's the same as PHB3. NVLink2 is different and
2123 		 * should go via the OPAL call.
2124 		 */
2125 		if (phb->model == PNV_PHB_MODEL_NPU) {
2126 			/*
2127 			 * The NVLink hardware does not support TCE kill
2128 			 * per TCE entry so we have to invalidate
2129 			 * the entire cache for it.
2130 			 */
2131 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2132 			continue;
2133 		}
2134 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2135 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2136 						    index, npages);
2137 		else
2138 			opal_pci_tce_kill(phb->opal_id,
2139 					  OPAL_PCI_TCE_KILL_PAGES,
2140 					  pe->pe_number, 1u << shift,
2141 					  index << shift, npages);
2142 	}
2143 }
2144 
2145 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2146 {
2147 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2148 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2149 	else
2150 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2151 }
2152 
2153 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2154 		long npages, unsigned long uaddr,
2155 		enum dma_data_direction direction,
2156 		unsigned long attrs)
2157 {
2158 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2159 			attrs);
2160 
2161 	if (!ret)
2162 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2163 
2164 	return ret;
2165 }
2166 
2167 #ifdef CONFIG_IOMMU_API
2168 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2169 		unsigned long *hpa, enum dma_data_direction *direction)
2170 {
2171 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2172 
2173 	if (!ret)
2174 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2175 
2176 	return ret;
2177 }
2178 
2179 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2180 		unsigned long *hpa, enum dma_data_direction *direction)
2181 {
2182 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2183 
2184 	if (!ret)
2185 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2186 
2187 	return ret;
2188 }
2189 #endif
2190 
2191 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2192 		long npages)
2193 {
2194 	pnv_tce_free(tbl, index, npages);
2195 
2196 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2197 }
2198 
2199 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2200 	.set = pnv_ioda2_tce_build,
2201 #ifdef CONFIG_IOMMU_API
2202 	.exchange = pnv_ioda2_tce_xchg,
2203 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2204 	.useraddrptr = pnv_tce_useraddrptr,
2205 #endif
2206 	.clear = pnv_ioda2_tce_free,
2207 	.get = pnv_tce_get,
2208 	.free = pnv_pci_ioda2_table_free_pages,
2209 };
2210 
2211 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2212 {
2213 	unsigned int *weight = (unsigned int *)data;
2214 
2215 	/* This is quite simplistic. The "base" weight of a device
2216 	 * is 10. 0 means no DMA is to be accounted for it.
2217 	 */
2218 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2219 		return 0;
2220 
2221 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2222 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2223 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2224 		*weight += 3;
2225 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2226 		*weight += 15;
2227 	else
2228 		*weight += 10;
2229 
2230 	return 0;
2231 }
2232 
2233 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2234 {
2235 	unsigned int weight = 0;
2236 
2237 	/* SRIOV VF has same DMA32 weight as its PF */
2238 #ifdef CONFIG_PCI_IOV
2239 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2240 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2241 		return weight;
2242 	}
2243 #endif
2244 
2245 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2246 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2247 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2248 		struct pci_dev *pdev;
2249 
2250 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2251 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2252 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2253 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2254 	}
2255 
2256 	return weight;
2257 }
2258 
2259 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2260 				       struct pnv_ioda_pe *pe)
2261 {
2262 
2263 	struct page *tce_mem = NULL;
2264 	struct iommu_table *tbl;
2265 	unsigned int weight, total_weight = 0;
2266 	unsigned int tce32_segsz, base, segs, avail, i;
2267 	int64_t rc;
2268 	void *addr;
2269 
2270 	/* XXX FIXME: Handle 64-bit only DMA devices */
2271 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2272 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2273 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2274 	if (!weight)
2275 		return;
2276 
2277 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2278 		     &total_weight);
2279 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2280 	if (!segs)
2281 		segs = 1;
2282 
2283 	/*
2284 	 * Allocate contiguous DMA32 segments. We begin with the expected
2285 	 * number of segments. With one more attempt, the number of DMA32
2286 	 * segments to be allocated is decreased by one until one segment
2287 	 * is allocated successfully.
2288 	 */
2289 	do {
2290 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2291 			for (avail = 0, i = base; i < base + segs; i++) {
2292 				if (phb->ioda.dma32_segmap[i] ==
2293 				    IODA_INVALID_PE)
2294 					avail++;
2295 			}
2296 
2297 			if (avail == segs)
2298 				goto found;
2299 		}
2300 	} while (--segs);
2301 
2302 	if (!segs) {
2303 		pe_warn(pe, "No available DMA32 segments\n");
2304 		return;
2305 	}
2306 
2307 found:
2308 	tbl = pnv_pci_table_alloc(phb->hose->node);
2309 	if (WARN_ON(!tbl))
2310 		return;
2311 
2312 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2313 			pe->pe_number);
2314 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2315 
2316 	/* Grab a 32-bit TCE table */
2317 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2318 		weight, total_weight, base, segs);
2319 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2320 		base * PNV_IODA1_DMA32_SEGSIZE,
2321 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2322 
2323 	/* XXX Currently, we allocate one big contiguous table for the
2324 	 * TCEs. We only really need one chunk per 256M of TCE space
2325 	 * (ie per segment) but that's an optimization for later, it
2326 	 * requires some added smarts with our get/put_tce implementation
2327 	 *
2328 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2329 	 * bytes
2330 	 */
2331 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2332 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2333 				   get_order(tce32_segsz * segs));
2334 	if (!tce_mem) {
2335 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2336 		goto fail;
2337 	}
2338 	addr = page_address(tce_mem);
2339 	memset(addr, 0, tce32_segsz * segs);
2340 
2341 	/* Configure HW */
2342 	for (i = 0; i < segs; i++) {
2343 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2344 					      pe->pe_number,
2345 					      base + i, 1,
2346 					      __pa(addr) + tce32_segsz * i,
2347 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2348 		if (rc) {
2349 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2350 			       " err %ld\n", rc);
2351 			goto fail;
2352 		}
2353 	}
2354 
2355 	/* Setup DMA32 segment mapping */
2356 	for (i = base; i < base + segs; i++)
2357 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2358 
2359 	/* Setup linux iommu table */
2360 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2361 				  base * PNV_IODA1_DMA32_SEGSIZE,
2362 				  IOMMU_PAGE_SHIFT_4K);
2363 
2364 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2365 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2366 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2367 	iommu_init_table(tbl, phb->hose->node);
2368 
2369 	if (pe->flags & PNV_IODA_PE_DEV) {
2370 		/*
2371 		 * Setting table base here only for carrying iommu_group
2372 		 * further down to let iommu_add_device() do the job.
2373 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2374 		 */
2375 		set_iommu_table_base(&pe->pdev->dev, tbl);
2376 		iommu_add_device(&pe->pdev->dev);
2377 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2378 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2379 
2380 	return;
2381  fail:
2382 	/* XXX Failure: Try to fallback to 64-bit only ? */
2383 	if (tce_mem)
2384 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2385 	if (tbl) {
2386 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2387 		iommu_tce_table_put(tbl);
2388 	}
2389 }
2390 
2391 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2392 		int num, struct iommu_table *tbl)
2393 {
2394 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2395 			table_group);
2396 	struct pnv_phb *phb = pe->phb;
2397 	int64_t rc;
2398 	const unsigned long size = tbl->it_indirect_levels ?
2399 			tbl->it_level_size : tbl->it_size;
2400 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2401 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2402 
2403 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2404 			start_addr, start_addr + win_size - 1,
2405 			IOMMU_PAGE_SIZE(tbl));
2406 
2407 	/*
2408 	 * Map TCE table through TVT. The TVE index is the PE number
2409 	 * shifted by 1 bit for 32-bits DMA space.
2410 	 */
2411 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2412 			pe->pe_number,
2413 			(pe->pe_number << 1) + num,
2414 			tbl->it_indirect_levels + 1,
2415 			__pa(tbl->it_base),
2416 			size << 3,
2417 			IOMMU_PAGE_SIZE(tbl));
2418 	if (rc) {
2419 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2420 		return rc;
2421 	}
2422 
2423 	pnv_pci_link_table_and_group(phb->hose->node, num,
2424 			tbl, &pe->table_group);
2425 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2426 
2427 	return 0;
2428 }
2429 
2430 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2431 {
2432 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2433 	int64_t rc;
2434 
2435 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2436 	if (enable) {
2437 		phys_addr_t top = memblock_end_of_DRAM();
2438 
2439 		top = roundup_pow_of_two(top);
2440 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2441 						     pe->pe_number,
2442 						     window_id,
2443 						     pe->tce_bypass_base,
2444 						     top);
2445 	} else {
2446 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2447 						     pe->pe_number,
2448 						     window_id,
2449 						     pe->tce_bypass_base,
2450 						     0);
2451 	}
2452 	if (rc)
2453 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2454 	else
2455 		pe->tce_bypass_enabled = enable;
2456 }
2457 
2458 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2459 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2460 		bool alloc_userspace_copy, struct iommu_table **ptbl)
2461 {
2462 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2463 			table_group);
2464 	int nid = pe->phb->hose->node;
2465 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2466 	long ret;
2467 	struct iommu_table *tbl;
2468 
2469 	tbl = pnv_pci_table_alloc(nid);
2470 	if (!tbl)
2471 		return -ENOMEM;
2472 
2473 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2474 
2475 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2476 			bus_offset, page_shift, window_size,
2477 			levels, alloc_userspace_copy, tbl);
2478 	if (ret) {
2479 		iommu_tce_table_put(tbl);
2480 		return ret;
2481 	}
2482 
2483 	*ptbl = tbl;
2484 
2485 	return 0;
2486 }
2487 
2488 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2489 {
2490 	struct iommu_table *tbl = NULL;
2491 	long rc;
2492 
2493 	/*
2494 	 * crashkernel= specifies the kdump kernel's maximum memory at
2495 	 * some offset and there is no guaranteed the result is a power
2496 	 * of 2, which will cause errors later.
2497 	 */
2498 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2499 
2500 	/*
2501 	 * In memory constrained environments, e.g. kdump kernel, the
2502 	 * DMA window can be larger than available memory, which will
2503 	 * cause errors later.
2504 	 */
2505 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2506 
2507 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2508 			IOMMU_PAGE_SHIFT_4K,
2509 			window_size,
2510 			POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl);
2511 	if (rc) {
2512 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2513 				rc);
2514 		return rc;
2515 	}
2516 
2517 	iommu_init_table(tbl, pe->phb->hose->node);
2518 
2519 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2520 	if (rc) {
2521 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2522 				rc);
2523 		iommu_tce_table_put(tbl);
2524 		return rc;
2525 	}
2526 
2527 	if (!pnv_iommu_bypass_disabled)
2528 		pnv_pci_ioda2_set_bypass(pe, true);
2529 
2530 	/*
2531 	 * Setting table base here only for carrying iommu_group
2532 	 * further down to let iommu_add_device() do the job.
2533 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2534 	 */
2535 	if (pe->flags & PNV_IODA_PE_DEV)
2536 		set_iommu_table_base(&pe->pdev->dev, tbl);
2537 
2538 	return 0;
2539 }
2540 
2541 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2542 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2543 		int num)
2544 {
2545 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2546 			table_group);
2547 	struct pnv_phb *phb = pe->phb;
2548 	long ret;
2549 
2550 	pe_info(pe, "Removing DMA window #%d\n", num);
2551 
2552 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2553 			(pe->pe_number << 1) + num,
2554 			0/* levels */, 0/* table address */,
2555 			0/* table size */, 0/* page size */);
2556 	if (ret)
2557 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2558 	else
2559 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2560 
2561 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2562 
2563 	return ret;
2564 }
2565 #endif
2566 
2567 #ifdef CONFIG_IOMMU_API
2568 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2569 		__u64 window_size, __u32 levels)
2570 {
2571 	unsigned long bytes = 0;
2572 	const unsigned window_shift = ilog2(window_size);
2573 	unsigned entries_shift = window_shift - page_shift;
2574 	unsigned table_shift = entries_shift + 3;
2575 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2576 	unsigned long direct_table_size;
2577 
2578 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2579 			!is_power_of_2(window_size))
2580 		return 0;
2581 
2582 	/* Calculate a direct table size from window_size and levels */
2583 	entries_shift = (entries_shift + levels - 1) / levels;
2584 	table_shift = entries_shift + 3;
2585 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2586 	direct_table_size =  1UL << table_shift;
2587 
2588 	for ( ; levels; --levels) {
2589 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2590 
2591 		tce_table_size /= direct_table_size;
2592 		tce_table_size <<= 3;
2593 		tce_table_size = max_t(unsigned long,
2594 				tce_table_size, direct_table_size);
2595 	}
2596 
2597 	return bytes + bytes; /* one for HW table, one for userspace copy */
2598 }
2599 
2600 static long pnv_pci_ioda2_create_table_userspace(
2601 		struct iommu_table_group *table_group,
2602 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2603 		struct iommu_table **ptbl)
2604 {
2605 	return pnv_pci_ioda2_create_table(table_group,
2606 			num, page_shift, window_size, levels, true, ptbl);
2607 }
2608 
2609 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2610 {
2611 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2612 						table_group);
2613 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2614 	struct iommu_table *tbl = pe->table_group.tables[0];
2615 
2616 	pnv_pci_ioda2_set_bypass(pe, false);
2617 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2618 	if (pe->pbus)
2619 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2620 	iommu_tce_table_put(tbl);
2621 }
2622 
2623 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2624 {
2625 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2626 						table_group);
2627 
2628 	pnv_pci_ioda2_setup_default_config(pe);
2629 	if (pe->pbus)
2630 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2631 }
2632 
2633 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2634 	.get_table_size = pnv_pci_ioda2_get_table_size,
2635 	.create_table = pnv_pci_ioda2_create_table_userspace,
2636 	.set_window = pnv_pci_ioda2_set_window,
2637 	.unset_window = pnv_pci_ioda2_unset_window,
2638 	.take_ownership = pnv_ioda2_take_ownership,
2639 	.release_ownership = pnv_ioda2_release_ownership,
2640 };
2641 
2642 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2643 {
2644 	struct pci_controller *hose;
2645 	struct pnv_phb *phb;
2646 	struct pnv_ioda_pe **ptmppe = opaque;
2647 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2648 	struct pci_dn *pdn = pci_get_pdn(pdev);
2649 
2650 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2651 		return 0;
2652 
2653 	hose = pci_bus_to_host(pdev->bus);
2654 	phb = hose->private_data;
2655 	if (phb->type != PNV_PHB_NPU_NVLINK)
2656 		return 0;
2657 
2658 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2659 
2660 	return 1;
2661 }
2662 
2663 /*
2664  * This returns PE of associated NPU.
2665  * This assumes that NPU is in the same IOMMU group with GPU and there is
2666  * no other PEs.
2667  */
2668 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2669 		struct iommu_table_group *table_group)
2670 {
2671 	struct pnv_ioda_pe *npe = NULL;
2672 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2673 			gpe_table_group_to_npe_cb);
2674 
2675 	BUG_ON(!ret || !npe);
2676 
2677 	return npe;
2678 }
2679 
2680 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2681 		int num, struct iommu_table *tbl)
2682 {
2683 	struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2684 	int num2 = (num == 0) ? 1 : 0;
2685 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2686 
2687 	if (ret)
2688 		return ret;
2689 
2690 	if (table_group->tables[num2])
2691 		pnv_npu_unset_window(npe, num2);
2692 
2693 	ret = pnv_npu_set_window(npe, num, tbl);
2694 	if (ret) {
2695 		pnv_pci_ioda2_unset_window(table_group, num);
2696 		if (table_group->tables[num2])
2697 			pnv_npu_set_window(npe, num2,
2698 					table_group->tables[num2]);
2699 	}
2700 
2701 	return ret;
2702 }
2703 
2704 static long pnv_pci_ioda2_npu_unset_window(
2705 		struct iommu_table_group *table_group,
2706 		int num)
2707 {
2708 	struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2709 	int num2 = (num == 0) ? 1 : 0;
2710 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2711 
2712 	if (ret)
2713 		return ret;
2714 
2715 	if (!npe->table_group.tables[num])
2716 		return 0;
2717 
2718 	ret = pnv_npu_unset_window(npe, num);
2719 	if (ret)
2720 		return ret;
2721 
2722 	if (table_group->tables[num2])
2723 		ret = pnv_npu_set_window(npe, num2, table_group->tables[num2]);
2724 
2725 	return ret;
2726 }
2727 
2728 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2729 {
2730 	/*
2731 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2732 	 * the iommu_table if 32bit DMA is enabled.
2733 	 */
2734 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2735 	pnv_ioda2_take_ownership(table_group);
2736 }
2737 
2738 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2739 	.get_table_size = pnv_pci_ioda2_get_table_size,
2740 	.create_table = pnv_pci_ioda2_create_table_userspace,
2741 	.set_window = pnv_pci_ioda2_npu_set_window,
2742 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2743 	.take_ownership = pnv_ioda2_npu_take_ownership,
2744 	.release_ownership = pnv_ioda2_release_ownership,
2745 };
2746 
2747 static void pnv_pci_ioda_setup_iommu_api(void)
2748 {
2749 	struct pci_controller *hose, *tmp;
2750 	struct pnv_phb *phb;
2751 	struct pnv_ioda_pe *pe, *gpe;
2752 
2753 	/*
2754 	 * Now we have all PHBs discovered, time to add NPU devices to
2755 	 * the corresponding IOMMU groups.
2756 	 */
2757 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2758 		phb = hose->private_data;
2759 
2760 		if (phb->type != PNV_PHB_NPU_NVLINK)
2761 			continue;
2762 
2763 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2764 			gpe = pnv_pci_npu_setup_iommu(pe);
2765 			if (gpe)
2766 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2767 		}
2768 	}
2769 }
2770 #else /* !CONFIG_IOMMU_API */
2771 static void pnv_pci_ioda_setup_iommu_api(void) { };
2772 #endif
2773 
2774 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2775 {
2776 	struct pci_controller *hose = phb->hose;
2777 	struct device_node *dn = hose->dn;
2778 	unsigned long mask = 0;
2779 	int i, rc, count;
2780 	u32 val;
2781 
2782 	count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2783 	if (count <= 0) {
2784 		mask = SZ_4K | SZ_64K;
2785 		/* Add 16M for POWER8 by default */
2786 		if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2787 				!cpu_has_feature(CPU_FTR_ARCH_300))
2788 			mask |= SZ_16M | SZ_256M;
2789 		return mask;
2790 	}
2791 
2792 	for (i = 0; i < count; i++) {
2793 		rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2794 						i, &val);
2795 		if (rc == 0)
2796 			mask |= 1ULL << val;
2797 	}
2798 
2799 	return mask;
2800 }
2801 
2802 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2803 				       struct pnv_ioda_pe *pe)
2804 {
2805 	int64_t rc;
2806 
2807 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2808 		return;
2809 
2810 	/* TVE #1 is selected by PCI address bit 59 */
2811 	pe->tce_bypass_base = 1ull << 59;
2812 
2813 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2814 			pe->pe_number);
2815 
2816 	/* The PE will reserve all possible 32-bits space */
2817 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2818 		phb->ioda.m32_pci_base);
2819 
2820 	/* Setup linux iommu table */
2821 	pe->table_group.tce32_start = 0;
2822 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2823 	pe->table_group.max_dynamic_windows_supported =
2824 			IOMMU_TABLE_GROUP_MAX_TABLES;
2825 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2826 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2827 #ifdef CONFIG_IOMMU_API
2828 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2829 #endif
2830 
2831 	rc = pnv_pci_ioda2_setup_default_config(pe);
2832 	if (rc)
2833 		return;
2834 
2835 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2836 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2837 }
2838 
2839 #ifdef CONFIG_PCI_MSI
2840 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2841 {
2842 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2843 					   ioda.irq_chip);
2844 
2845 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2846 }
2847 
2848 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2849 {
2850 	int64_t rc;
2851 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2852 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2853 
2854 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2855 	WARN_ON_ONCE(rc);
2856 
2857 	icp_native_eoi(d);
2858 }
2859 
2860 
2861 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2862 {
2863 	struct irq_data *idata;
2864 	struct irq_chip *ichip;
2865 
2866 	/* The MSI EOI OPAL call is only needed on PHB3 */
2867 	if (phb->model != PNV_PHB_MODEL_PHB3)
2868 		return;
2869 
2870 	if (!phb->ioda.irq_chip_init) {
2871 		/*
2872 		 * First time we setup an MSI IRQ, we need to setup the
2873 		 * corresponding IRQ chip to route correctly.
2874 		 */
2875 		idata = irq_get_irq_data(virq);
2876 		ichip = irq_data_get_irq_chip(idata);
2877 		phb->ioda.irq_chip_init = 1;
2878 		phb->ioda.irq_chip = *ichip;
2879 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2880 	}
2881 	irq_set_chip(virq, &phb->ioda.irq_chip);
2882 }
2883 
2884 /*
2885  * Returns true iff chip is something that we could call
2886  * pnv_opal_pci_msi_eoi for.
2887  */
2888 bool is_pnv_opal_msi(struct irq_chip *chip)
2889 {
2890 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2891 }
2892 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2893 
2894 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2895 				  unsigned int hwirq, unsigned int virq,
2896 				  unsigned int is_64, struct msi_msg *msg)
2897 {
2898 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2899 	unsigned int xive_num = hwirq - phb->msi_base;
2900 	__be32 data;
2901 	int rc;
2902 
2903 	/* No PE assigned ? bail out ... no MSI for you ! */
2904 	if (pe == NULL)
2905 		return -ENXIO;
2906 
2907 	/* Check if we have an MVE */
2908 	if (pe->mve_number < 0)
2909 		return -ENXIO;
2910 
2911 	/* Force 32-bit MSI on some broken devices */
2912 	if (dev->no_64bit_msi)
2913 		is_64 = 0;
2914 
2915 	/* Assign XIVE to PE */
2916 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2917 	if (rc) {
2918 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2919 			pci_name(dev), rc, xive_num);
2920 		return -EIO;
2921 	}
2922 
2923 	if (is_64) {
2924 		__be64 addr64;
2925 
2926 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2927 				     &addr64, &data);
2928 		if (rc) {
2929 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2930 				pci_name(dev), rc);
2931 			return -EIO;
2932 		}
2933 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2934 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2935 	} else {
2936 		__be32 addr32;
2937 
2938 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2939 				     &addr32, &data);
2940 		if (rc) {
2941 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2942 				pci_name(dev), rc);
2943 			return -EIO;
2944 		}
2945 		msg->address_hi = 0;
2946 		msg->address_lo = be32_to_cpu(addr32);
2947 	}
2948 	msg->data = be32_to_cpu(data);
2949 
2950 	pnv_set_msi_irq_chip(phb, virq);
2951 
2952 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2953 		 " address=%x_%08x data=%x PE# %x\n",
2954 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2955 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2956 
2957 	return 0;
2958 }
2959 
2960 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2961 {
2962 	unsigned int count;
2963 	const __be32 *prop = of_get_property(phb->hose->dn,
2964 					     "ibm,opal-msi-ranges", NULL);
2965 	if (!prop) {
2966 		/* BML Fallback */
2967 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2968 	}
2969 	if (!prop)
2970 		return;
2971 
2972 	phb->msi_base = be32_to_cpup(prop);
2973 	count = be32_to_cpup(prop + 1);
2974 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2975 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2976 		       phb->hose->global_number);
2977 		return;
2978 	}
2979 
2980 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2981 	phb->msi32_support = 1;
2982 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2983 		count, phb->msi_base);
2984 }
2985 #else
2986 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2987 #endif /* CONFIG_PCI_MSI */
2988 
2989 #ifdef CONFIG_PCI_IOV
2990 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2991 {
2992 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2993 	struct pnv_phb *phb = hose->private_data;
2994 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2995 	struct resource *res;
2996 	int i;
2997 	resource_size_t size, total_vf_bar_sz;
2998 	struct pci_dn *pdn;
2999 	int mul, total_vfs;
3000 
3001 	if (!pdev->is_physfn || pci_dev_is_added(pdev))
3002 		return;
3003 
3004 	pdn = pci_get_pdn(pdev);
3005 	pdn->vfs_expanded = 0;
3006 	pdn->m64_single_mode = false;
3007 
3008 	total_vfs = pci_sriov_get_totalvfs(pdev);
3009 	mul = phb->ioda.total_pe_num;
3010 	total_vf_bar_sz = 0;
3011 
3012 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3013 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3014 		if (!res->flags || res->parent)
3015 			continue;
3016 		if (!pnv_pci_is_m64_flags(res->flags)) {
3017 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
3018 					" non M64 VF BAR%d: %pR. \n",
3019 				 i, res);
3020 			goto truncate_iov;
3021 		}
3022 
3023 		total_vf_bar_sz += pci_iov_resource_size(pdev,
3024 				i + PCI_IOV_RESOURCES);
3025 
3026 		/*
3027 		 * If bigger than quarter of M64 segment size, just round up
3028 		 * power of two.
3029 		 *
3030 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3031 		 * with other devices, IOV BAR size is expanded to be
3032 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3033 		 * segment size , the expanded size would equal to half of the
3034 		 * whole M64 space size, which will exhaust the M64 Space and
3035 		 * limit the system flexibility.  This is a design decision to
3036 		 * set the boundary to quarter of the M64 segment size.
3037 		 */
3038 		if (total_vf_bar_sz > gate) {
3039 			mul = roundup_pow_of_two(total_vfs);
3040 			dev_info(&pdev->dev,
3041 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3042 				total_vf_bar_sz, gate, mul);
3043 			pdn->m64_single_mode = true;
3044 			break;
3045 		}
3046 	}
3047 
3048 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3049 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3050 		if (!res->flags || res->parent)
3051 			continue;
3052 
3053 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3054 		/*
3055 		 * On PHB3, the minimum size alignment of M64 BAR in single
3056 		 * mode is 32MB.
3057 		 */
3058 		if (pdn->m64_single_mode && (size < SZ_32M))
3059 			goto truncate_iov;
3060 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3061 		res->end = res->start + size * mul - 1;
3062 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3063 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3064 			 i, res, mul);
3065 	}
3066 	pdn->vfs_expanded = mul;
3067 
3068 	return;
3069 
3070 truncate_iov:
3071 	/* To save MMIO space, IOV BAR is truncated. */
3072 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3073 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3074 		res->flags = 0;
3075 		res->end = res->start - 1;
3076 	}
3077 }
3078 #endif /* CONFIG_PCI_IOV */
3079 
3080 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3081 				  struct resource *res)
3082 {
3083 	struct pnv_phb *phb = pe->phb;
3084 	struct pci_bus_region region;
3085 	int index;
3086 	int64_t rc;
3087 
3088 	if (!res || !res->flags || res->start > res->end)
3089 		return;
3090 
3091 	if (res->flags & IORESOURCE_IO) {
3092 		region.start = res->start - phb->ioda.io_pci_base;
3093 		region.end   = res->end - phb->ioda.io_pci_base;
3094 		index = region.start / phb->ioda.io_segsize;
3095 
3096 		while (index < phb->ioda.total_pe_num &&
3097 		       region.start <= region.end) {
3098 			phb->ioda.io_segmap[index] = pe->pe_number;
3099 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3100 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3101 			if (rc != OPAL_SUCCESS) {
3102 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3103 				       __func__, rc, index, pe->pe_number);
3104 				break;
3105 			}
3106 
3107 			region.start += phb->ioda.io_segsize;
3108 			index++;
3109 		}
3110 	} else if ((res->flags & IORESOURCE_MEM) &&
3111 		   !pnv_pci_is_m64(phb, res)) {
3112 		region.start = res->start -
3113 			       phb->hose->mem_offset[0] -
3114 			       phb->ioda.m32_pci_base;
3115 		region.end   = res->end -
3116 			       phb->hose->mem_offset[0] -
3117 			       phb->ioda.m32_pci_base;
3118 		index = region.start / phb->ioda.m32_segsize;
3119 
3120 		while (index < phb->ioda.total_pe_num &&
3121 		       region.start <= region.end) {
3122 			phb->ioda.m32_segmap[index] = pe->pe_number;
3123 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3124 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3125 			if (rc != OPAL_SUCCESS) {
3126 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3127 				       __func__, rc, index, pe->pe_number);
3128 				break;
3129 			}
3130 
3131 			region.start += phb->ioda.m32_segsize;
3132 			index++;
3133 		}
3134 	}
3135 }
3136 
3137 /*
3138  * This function is supposed to be called on basis of PE from top
3139  * to bottom style. So the the I/O or MMIO segment assigned to
3140  * parent PE could be overridden by its child PEs if necessary.
3141  */
3142 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3143 {
3144 	struct pci_dev *pdev;
3145 	int i;
3146 
3147 	/*
3148 	 * NOTE: We only care PCI bus based PE for now. For PCI
3149 	 * device based PE, for example SRIOV sensitive VF should
3150 	 * be figured out later.
3151 	 */
3152 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3153 
3154 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3155 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3156 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3157 
3158 		/*
3159 		 * If the PE contains all subordinate PCI buses, the
3160 		 * windows of the child bridges should be mapped to
3161 		 * the PE as well.
3162 		 */
3163 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3164 			continue;
3165 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3166 			pnv_ioda_setup_pe_res(pe,
3167 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3168 	}
3169 }
3170 
3171 #ifdef CONFIG_DEBUG_FS
3172 static int pnv_pci_diag_data_set(void *data, u64 val)
3173 {
3174 	struct pci_controller *hose;
3175 	struct pnv_phb *phb;
3176 	s64 ret;
3177 
3178 	if (val != 1ULL)
3179 		return -EINVAL;
3180 
3181 	hose = (struct pci_controller *)data;
3182 	if (!hose || !hose->private_data)
3183 		return -ENODEV;
3184 
3185 	phb = hose->private_data;
3186 
3187 	/* Retrieve the diag data from firmware */
3188 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3189 					  phb->diag_data_size);
3190 	if (ret != OPAL_SUCCESS)
3191 		return -EIO;
3192 
3193 	/* Print the diag data to the kernel log */
3194 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3195 	return 0;
3196 }
3197 
3198 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3199 			pnv_pci_diag_data_set, "%llu\n");
3200 
3201 #endif /* CONFIG_DEBUG_FS */
3202 
3203 static void pnv_pci_ioda_create_dbgfs(void)
3204 {
3205 #ifdef CONFIG_DEBUG_FS
3206 	struct pci_controller *hose, *tmp;
3207 	struct pnv_phb *phb;
3208 	char name[16];
3209 
3210 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3211 		phb = hose->private_data;
3212 
3213 		/* Notify initialization of PHB done */
3214 		phb->initialized = 1;
3215 
3216 		sprintf(name, "PCI%04x", hose->global_number);
3217 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3218 		if (!phb->dbgfs) {
3219 			pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3220 				__func__, hose->global_number);
3221 			continue;
3222 		}
3223 
3224 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3225 				    &pnv_pci_diag_data_fops);
3226 	}
3227 #endif /* CONFIG_DEBUG_FS */
3228 }
3229 
3230 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3231 {
3232 	struct pci_dev *dev = bus->self;
3233 	struct pci_bus *child;
3234 
3235 	/* Empty bus ? bail */
3236 	if (list_empty(&bus->devices))
3237 		return;
3238 
3239 	/*
3240 	 * If there's a bridge associated with that bus enable it. This works
3241 	 * around races in the generic code if the enabling is done during
3242 	 * parallel probing. This can be removed once those races have been
3243 	 * fixed.
3244 	 */
3245 	if (dev) {
3246 		int rc = pci_enable_device(dev);
3247 		if (rc)
3248 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
3249 		pci_set_master(dev);
3250 	}
3251 
3252 	/* Perform the same to child busses */
3253 	list_for_each_entry(child, &bus->children, node)
3254 		pnv_pci_enable_bridge(child);
3255 }
3256 
3257 static void pnv_pci_enable_bridges(void)
3258 {
3259 	struct pci_controller *hose;
3260 
3261 	list_for_each_entry(hose, &hose_list, list_node)
3262 		pnv_pci_enable_bridge(hose->bus);
3263 }
3264 
3265 static void pnv_pci_ioda_fixup(void)
3266 {
3267 	pnv_pci_ioda_setup_PEs();
3268 	pnv_pci_ioda_setup_iommu_api();
3269 	pnv_pci_ioda_create_dbgfs();
3270 
3271 	pnv_pci_enable_bridges();
3272 
3273 #ifdef CONFIG_EEH
3274 	pnv_eeh_post_init();
3275 #endif
3276 }
3277 
3278 /*
3279  * Returns the alignment for I/O or memory windows for P2P
3280  * bridges. That actually depends on how PEs are segmented.
3281  * For now, we return I/O or M32 segment size for PE sensitive
3282  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3283  * 1MiB for memory) will be returned.
3284  *
3285  * The current PCI bus might be put into one PE, which was
3286  * create against the parent PCI bridge. For that case, we
3287  * needn't enlarge the alignment so that we can save some
3288  * resources.
3289  */
3290 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3291 						unsigned long type)
3292 {
3293 	struct pci_dev *bridge;
3294 	struct pci_controller *hose = pci_bus_to_host(bus);
3295 	struct pnv_phb *phb = hose->private_data;
3296 	int num_pci_bridges = 0;
3297 
3298 	bridge = bus->self;
3299 	while (bridge) {
3300 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3301 			num_pci_bridges++;
3302 			if (num_pci_bridges >= 2)
3303 				return 1;
3304 		}
3305 
3306 		bridge = bridge->bus->self;
3307 	}
3308 
3309 	/*
3310 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3311 	 * alignment for any 64-bit resource, PCIe doesn't care and
3312 	 * bridges only do 64-bit prefetchable anyway.
3313 	 */
3314 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3315 		return phb->ioda.m64_segsize;
3316 	if (type & IORESOURCE_MEM)
3317 		return phb->ioda.m32_segsize;
3318 
3319 	return phb->ioda.io_segsize;
3320 }
3321 
3322 /*
3323  * We are updating root port or the upstream port of the
3324  * bridge behind the root port with PHB's windows in order
3325  * to accommodate the changes on required resources during
3326  * PCI (slot) hotplug, which is connected to either root
3327  * port or the downstream ports of PCIe switch behind the
3328  * root port.
3329  */
3330 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3331 					   unsigned long type)
3332 {
3333 	struct pci_controller *hose = pci_bus_to_host(bus);
3334 	struct pnv_phb *phb = hose->private_data;
3335 	struct pci_dev *bridge = bus->self;
3336 	struct resource *r, *w;
3337 	bool msi_region = false;
3338 	int i;
3339 
3340 	/* Check if we need apply fixup to the bridge's windows */
3341 	if (!pci_is_root_bus(bridge->bus) &&
3342 	    !pci_is_root_bus(bridge->bus->self->bus))
3343 		return;
3344 
3345 	/* Fixup the resources */
3346 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3347 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3348 		if (!r->flags || !r->parent)
3349 			continue;
3350 
3351 		w = NULL;
3352 		if (r->flags & type & IORESOURCE_IO)
3353 			w = &hose->io_resource;
3354 		else if (pnv_pci_is_m64(phb, r) &&
3355 			 (type & IORESOURCE_PREFETCH) &&
3356 			 phb->ioda.m64_segsize)
3357 			w = &hose->mem_resources[1];
3358 		else if (r->flags & type & IORESOURCE_MEM) {
3359 			w = &hose->mem_resources[0];
3360 			msi_region = true;
3361 		}
3362 
3363 		r->start = w->start;
3364 		r->end = w->end;
3365 
3366 		/* The 64KB 32-bits MSI region shouldn't be included in
3367 		 * the 32-bits bridge window. Otherwise, we can see strange
3368 		 * issues. One of them is EEH error observed on Garrison.
3369 		 *
3370 		 * Exclude top 1MB region which is the minimal alignment of
3371 		 * 32-bits bridge window.
3372 		 */
3373 		if (msi_region) {
3374 			r->end += 0x10000;
3375 			r->end -= 0x100000;
3376 		}
3377 	}
3378 }
3379 
3380 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3381 {
3382 	struct pci_controller *hose = pci_bus_to_host(bus);
3383 	struct pnv_phb *phb = hose->private_data;
3384 	struct pci_dev *bridge = bus->self;
3385 	struct pnv_ioda_pe *pe;
3386 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3387 
3388 	/* Extend bridge's windows if necessary */
3389 	pnv_pci_fixup_bridge_resources(bus, type);
3390 
3391 	/* The PE for root bus should be realized before any one else */
3392 	if (!phb->ioda.root_pe_populated) {
3393 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3394 		if (pe) {
3395 			phb->ioda.root_pe_idx = pe->pe_number;
3396 			phb->ioda.root_pe_populated = true;
3397 		}
3398 	}
3399 
3400 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3401 	if (list_empty(&bus->devices))
3402 		return;
3403 
3404 	/* Reserve PEs according to used M64 resources */
3405 	if (phb->reserve_m64_pe)
3406 		phb->reserve_m64_pe(bus, NULL, all);
3407 
3408 	/*
3409 	 * Assign PE. We might run here because of partial hotplug.
3410 	 * For the case, we just pick up the existing PE and should
3411 	 * not allocate resources again.
3412 	 */
3413 	pe = pnv_ioda_setup_bus_PE(bus, all);
3414 	if (!pe)
3415 		return;
3416 
3417 	pnv_ioda_setup_pe_seg(pe);
3418 	switch (phb->type) {
3419 	case PNV_PHB_IODA1:
3420 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3421 		break;
3422 	case PNV_PHB_IODA2:
3423 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3424 		break;
3425 	default:
3426 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3427 			__func__, phb->hose->global_number, phb->type);
3428 	}
3429 }
3430 
3431 static resource_size_t pnv_pci_default_alignment(void)
3432 {
3433 	return PAGE_SIZE;
3434 }
3435 
3436 #ifdef CONFIG_PCI_IOV
3437 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3438 						      int resno)
3439 {
3440 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3441 	struct pnv_phb *phb = hose->private_data;
3442 	struct pci_dn *pdn = pci_get_pdn(pdev);
3443 	resource_size_t align;
3444 
3445 	/*
3446 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3447 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3448 	 * BAR should be size aligned.
3449 	 *
3450 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3451 	 * powernv-specific hardware restriction is gone. But if just use the
3452 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3453 	 * in one segment of M64 #15, which introduces the PE conflict between
3454 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3455 	 * m64_segsize.
3456 	 *
3457 	 * This function returns the total IOV BAR size if M64 BAR is in
3458 	 * Shared PE mode or just VF BAR size if not.
3459 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3460 	 * M64 segment size if IOV BAR size is less.
3461 	 */
3462 	align = pci_iov_resource_size(pdev, resno);
3463 	if (!pdn->vfs_expanded)
3464 		return align;
3465 	if (pdn->m64_single_mode)
3466 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3467 
3468 	return pdn->vfs_expanded * align;
3469 }
3470 #endif /* CONFIG_PCI_IOV */
3471 
3472 /* Prevent enabling devices for which we couldn't properly
3473  * assign a PE
3474  */
3475 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3476 {
3477 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3478 	struct pnv_phb *phb = hose->private_data;
3479 	struct pci_dn *pdn;
3480 
3481 	/* The function is probably called while the PEs have
3482 	 * not be created yet. For example, resource reassignment
3483 	 * during PCI probe period. We just skip the check if
3484 	 * PEs isn't ready.
3485 	 */
3486 	if (!phb->initialized)
3487 		return true;
3488 
3489 	pdn = pci_get_pdn(dev);
3490 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3491 		return false;
3492 
3493 	return true;
3494 }
3495 
3496 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3497 				       int num)
3498 {
3499 	struct pnv_ioda_pe *pe = container_of(table_group,
3500 					      struct pnv_ioda_pe, table_group);
3501 	struct pnv_phb *phb = pe->phb;
3502 	unsigned int idx;
3503 	long rc;
3504 
3505 	pe_info(pe, "Removing DMA window #%d\n", num);
3506 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3507 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3508 			continue;
3509 
3510 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3511 						idx, 0, 0ul, 0ul, 0ul);
3512 		if (rc != OPAL_SUCCESS) {
3513 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3514 				rc, idx);
3515 			return rc;
3516 		}
3517 
3518 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3519 	}
3520 
3521 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3522 	return OPAL_SUCCESS;
3523 }
3524 
3525 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3526 {
3527 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3528 	struct iommu_table *tbl = pe->table_group.tables[0];
3529 	int64_t rc;
3530 
3531 	if (!weight)
3532 		return;
3533 
3534 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3535 	if (rc != OPAL_SUCCESS)
3536 		return;
3537 
3538 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3539 	if (pe->table_group.group) {
3540 		iommu_group_put(pe->table_group.group);
3541 		WARN_ON(pe->table_group.group);
3542 	}
3543 
3544 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3545 	iommu_tce_table_put(tbl);
3546 }
3547 
3548 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3549 {
3550 	struct iommu_table *tbl = pe->table_group.tables[0];
3551 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3552 #ifdef CONFIG_IOMMU_API
3553 	int64_t rc;
3554 #endif
3555 
3556 	if (!weight)
3557 		return;
3558 
3559 #ifdef CONFIG_IOMMU_API
3560 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3561 	if (rc)
3562 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3563 #endif
3564 
3565 	pnv_pci_ioda2_set_bypass(pe, false);
3566 	if (pe->table_group.group) {
3567 		iommu_group_put(pe->table_group.group);
3568 		WARN_ON(pe->table_group.group);
3569 	}
3570 
3571 	iommu_tce_table_put(tbl);
3572 }
3573 
3574 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3575 				 unsigned short win,
3576 				 unsigned int *map)
3577 {
3578 	struct pnv_phb *phb = pe->phb;
3579 	int idx;
3580 	int64_t rc;
3581 
3582 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3583 		if (map[idx] != pe->pe_number)
3584 			continue;
3585 
3586 		if (win == OPAL_M64_WINDOW_TYPE)
3587 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3588 					phb->ioda.reserved_pe_idx, win,
3589 					idx / PNV_IODA1_M64_SEGS,
3590 					idx % PNV_IODA1_M64_SEGS);
3591 		else
3592 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3593 					phb->ioda.reserved_pe_idx, win, 0, idx);
3594 
3595 		if (rc != OPAL_SUCCESS)
3596 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3597 				rc, win, idx);
3598 
3599 		map[idx] = IODA_INVALID_PE;
3600 	}
3601 }
3602 
3603 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3604 {
3605 	struct pnv_phb *phb = pe->phb;
3606 
3607 	if (phb->type == PNV_PHB_IODA1) {
3608 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3609 				     phb->ioda.io_segmap);
3610 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3611 				     phb->ioda.m32_segmap);
3612 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3613 				     phb->ioda.m64_segmap);
3614 	} else if (phb->type == PNV_PHB_IODA2) {
3615 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3616 				     phb->ioda.m32_segmap);
3617 	}
3618 }
3619 
3620 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3621 {
3622 	struct pnv_phb *phb = pe->phb;
3623 	struct pnv_ioda_pe *slave, *tmp;
3624 
3625 	list_del(&pe->list);
3626 	switch (phb->type) {
3627 	case PNV_PHB_IODA1:
3628 		pnv_pci_ioda1_release_pe_dma(pe);
3629 		break;
3630 	case PNV_PHB_IODA2:
3631 		pnv_pci_ioda2_release_pe_dma(pe);
3632 		break;
3633 	default:
3634 		WARN_ON(1);
3635 	}
3636 
3637 	pnv_ioda_release_pe_seg(pe);
3638 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3639 
3640 	/* Release slave PEs in the compound PE */
3641 	if (pe->flags & PNV_IODA_PE_MASTER) {
3642 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3643 			list_del(&slave->list);
3644 			pnv_ioda_free_pe(slave);
3645 		}
3646 	}
3647 
3648 	/*
3649 	 * The PE for root bus can be removed because of hotplug in EEH
3650 	 * recovery for fenced PHB error. We need to mark the PE dead so
3651 	 * that it can be populated again in PCI hot add path. The PE
3652 	 * shouldn't be destroyed as it's the global reserved resource.
3653 	 */
3654 	if (phb->ioda.root_pe_populated &&
3655 	    phb->ioda.root_pe_idx == pe->pe_number)
3656 		phb->ioda.root_pe_populated = false;
3657 	else
3658 		pnv_ioda_free_pe(pe);
3659 }
3660 
3661 static void pnv_pci_release_device(struct pci_dev *pdev)
3662 {
3663 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3664 	struct pnv_phb *phb = hose->private_data;
3665 	struct pci_dn *pdn = pci_get_pdn(pdev);
3666 	struct pnv_ioda_pe *pe;
3667 
3668 	if (pdev->is_virtfn)
3669 		return;
3670 
3671 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3672 		return;
3673 
3674 	/*
3675 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3676 	 * isn't removed and added afterwards in this scenario. We should
3677 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3678 	 * device count is decreased on removing devices while failing to
3679 	 * be increased on adding devices. It leads to unbalanced PE's device
3680 	 * count and eventually make normal PCI hotplug path broken.
3681 	 */
3682 	pe = &phb->ioda.pe_array[pdn->pe_number];
3683 	pdn->pe_number = IODA_INVALID_PE;
3684 
3685 	WARN_ON(--pe->device_count < 0);
3686 	if (pe->device_count == 0)
3687 		pnv_ioda_release_pe(pe);
3688 }
3689 
3690 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3691 {
3692 	struct pnv_phb *phb = hose->private_data;
3693 
3694 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3695 		       OPAL_ASSERT_RESET);
3696 }
3697 
3698 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3699 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3700 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3701 #ifdef CONFIG_PCI_MSI
3702 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3703 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3704 #endif
3705 	.enable_device_hook	= pnv_pci_enable_device_hook,
3706 	.release_device		= pnv_pci_release_device,
3707 	.window_alignment	= pnv_pci_window_alignment,
3708 	.setup_bridge		= pnv_pci_setup_bridge,
3709 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3710 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3711 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3712 	.shutdown		= pnv_pci_ioda_shutdown,
3713 };
3714 
3715 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3716 {
3717 	dev_err_once(&npdev->dev,
3718 			"%s operation unsupported for NVLink devices\n",
3719 			__func__);
3720 	return -EPERM;
3721 }
3722 
3723 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3724 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3725 #ifdef CONFIG_PCI_MSI
3726 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3727 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3728 #endif
3729 	.enable_device_hook	= pnv_pci_enable_device_hook,
3730 	.window_alignment	= pnv_pci_window_alignment,
3731 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3732 	.dma_set_mask		= pnv_npu_dma_set_mask,
3733 	.shutdown		= pnv_pci_ioda_shutdown,
3734 };
3735 
3736 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3737 	.enable_device_hook	= pnv_pci_enable_device_hook,
3738 	.window_alignment	= pnv_pci_window_alignment,
3739 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3740 	.shutdown		= pnv_pci_ioda_shutdown,
3741 };
3742 
3743 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3744 					 u64 hub_id, int ioda_type)
3745 {
3746 	struct pci_controller *hose;
3747 	struct pnv_phb *phb;
3748 	unsigned long size, m64map_off, m32map_off, pemap_off;
3749 	unsigned long iomap_off = 0, dma32map_off = 0;
3750 	struct resource r;
3751 	const __be64 *prop64;
3752 	const __be32 *prop32;
3753 	int len;
3754 	unsigned int segno;
3755 	u64 phb_id;
3756 	void *aux;
3757 	long rc;
3758 
3759 	if (!of_device_is_available(np))
3760 		return;
3761 
3762 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3763 
3764 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3765 	if (!prop64) {
3766 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3767 		return;
3768 	}
3769 	phb_id = be64_to_cpup(prop64);
3770 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3771 
3772 	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3773 
3774 	/* Allocate PCI controller */
3775 	phb->hose = hose = pcibios_alloc_controller(np);
3776 	if (!phb->hose) {
3777 		pr_err("  Can't allocate PCI controller for %pOF\n",
3778 		       np);
3779 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3780 		return;
3781 	}
3782 
3783 	spin_lock_init(&phb->lock);
3784 	prop32 = of_get_property(np, "bus-range", &len);
3785 	if (prop32 && len == 8) {
3786 		hose->first_busno = be32_to_cpu(prop32[0]);
3787 		hose->last_busno = be32_to_cpu(prop32[1]);
3788 	} else {
3789 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3790 		hose->first_busno = 0;
3791 		hose->last_busno = 0xff;
3792 	}
3793 	hose->private_data = phb;
3794 	phb->hub_id = hub_id;
3795 	phb->opal_id = phb_id;
3796 	phb->type = ioda_type;
3797 	mutex_init(&phb->ioda.pe_alloc_mutex);
3798 
3799 	/* Detect specific models for error handling */
3800 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3801 		phb->model = PNV_PHB_MODEL_P7IOC;
3802 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3803 		phb->model = PNV_PHB_MODEL_PHB3;
3804 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3805 		phb->model = PNV_PHB_MODEL_NPU;
3806 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3807 		phb->model = PNV_PHB_MODEL_NPU2;
3808 	else
3809 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3810 
3811 	/* Initialize diagnostic data buffer */
3812 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3813 	if (prop32)
3814 		phb->diag_data_size = be32_to_cpup(prop32);
3815 	else
3816 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3817 
3818 	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3819 
3820 	/* Parse 32-bit and IO ranges (if any) */
3821 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3822 
3823 	/* Get registers */
3824 	if (!of_address_to_resource(np, 0, &r)) {
3825 		phb->regs_phys = r.start;
3826 		phb->regs = ioremap(r.start, resource_size(&r));
3827 		if (phb->regs == NULL)
3828 			pr_err("  Failed to map registers !\n");
3829 	}
3830 
3831 	/* Initialize more IODA stuff */
3832 	phb->ioda.total_pe_num = 1;
3833 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3834 	if (prop32)
3835 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3836 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3837 	if (prop32)
3838 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3839 
3840 	/* Invalidate RID to PE# mapping */
3841 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3842 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3843 
3844 	/* Parse 64-bit MMIO range */
3845 	pnv_ioda_parse_m64_window(phb);
3846 
3847 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3848 	/* FW Has already off top 64k of M32 space (MSI space) */
3849 	phb->ioda.m32_size += 0x10000;
3850 
3851 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3852 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3853 	phb->ioda.io_size = hose->pci_io_size;
3854 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3855 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3856 
3857 	/* Calculate how many 32-bit TCE segments we have */
3858 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3859 				PNV_IODA1_DMA32_SEGSIZE;
3860 
3861 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3862 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3863 			sizeof(unsigned long));
3864 	m64map_off = size;
3865 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3866 	m32map_off = size;
3867 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3868 	if (phb->type == PNV_PHB_IODA1) {
3869 		iomap_off = size;
3870 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3871 		dma32map_off = size;
3872 		size += phb->ioda.dma32_count *
3873 			sizeof(phb->ioda.dma32_segmap[0]);
3874 	}
3875 	pemap_off = size;
3876 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3877 	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3878 	phb->ioda.pe_alloc = aux;
3879 	phb->ioda.m64_segmap = aux + m64map_off;
3880 	phb->ioda.m32_segmap = aux + m32map_off;
3881 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3882 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3883 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3884 	}
3885 	if (phb->type == PNV_PHB_IODA1) {
3886 		phb->ioda.io_segmap = aux + iomap_off;
3887 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3888 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3889 
3890 		phb->ioda.dma32_segmap = aux + dma32map_off;
3891 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3892 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3893 	}
3894 	phb->ioda.pe_array = aux + pemap_off;
3895 
3896 	/*
3897 	 * Choose PE number for root bus, which shouldn't have
3898 	 * M64 resources consumed by its child devices. To pick
3899 	 * the PE number adjacent to the reserved one if possible.
3900 	 */
3901 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3902 	if (phb->ioda.reserved_pe_idx == 0) {
3903 		phb->ioda.root_pe_idx = 1;
3904 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3905 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3906 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3907 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3908 	} else {
3909 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3910 	}
3911 
3912 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3913 	mutex_init(&phb->ioda.pe_list_mutex);
3914 
3915 	/* Calculate how many 32-bit TCE segments we have */
3916 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3917 				PNV_IODA1_DMA32_SEGSIZE;
3918 
3919 #if 0 /* We should really do that ... */
3920 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3921 					 window_type,
3922 					 window_num,
3923 					 starting_real_address,
3924 					 starting_pci_address,
3925 					 segment_size);
3926 #endif
3927 
3928 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3929 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3930 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3931 	if (phb->ioda.m64_size)
3932 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3933 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3934 	if (phb->ioda.io_size)
3935 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3936 			phb->ioda.io_size, phb->ioda.io_segsize);
3937 
3938 
3939 	phb->hose->ops = &pnv_pci_ops;
3940 	phb->get_pe_state = pnv_ioda_get_pe_state;
3941 	phb->freeze_pe = pnv_ioda_freeze_pe;
3942 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3943 
3944 	/* Setup MSI support */
3945 	pnv_pci_init_ioda_msis(phb);
3946 
3947 	/*
3948 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3949 	 * to let the PCI core do resource assignment. It's supposed
3950 	 * that the PCI core will do correct I/O and MMIO alignment
3951 	 * for the P2P bridge bars so that each PCI bus (excluding
3952 	 * the child P2P bridges) can form individual PE.
3953 	 */
3954 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3955 
3956 	switch (phb->type) {
3957 	case PNV_PHB_NPU_NVLINK:
3958 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3959 		break;
3960 	case PNV_PHB_NPU_OCAPI:
3961 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3962 		break;
3963 	default:
3964 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3965 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3966 	}
3967 
3968 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3969 
3970 #ifdef CONFIG_PCI_IOV
3971 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3972 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3973 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3974 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3975 #endif
3976 
3977 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3978 
3979 	/* Reset IODA tables to a clean state */
3980 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3981 	if (rc)
3982 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3983 
3984 	/*
3985 	 * If we're running in kdump kernel, the previous kernel never
3986 	 * shutdown PCI devices correctly. We already got IODA table
3987 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3988 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3989 	 * kernel parameter will force this reset too.
3990 	 */
3991 	if (is_kdump_kernel() || pci_reset_phbs) {
3992 		pr_info("  Issue PHB reset ...\n");
3993 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3994 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3995 	}
3996 
3997 	/* Remove M64 resource if we can't configure it successfully */
3998 	if (!phb->init_m64 || phb->init_m64(phb))
3999 		hose->mem_resources[1].flags = 0;
4000 }
4001 
4002 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4003 {
4004 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4005 }
4006 
4007 void __init pnv_pci_init_npu_phb(struct device_node *np)
4008 {
4009 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
4010 }
4011 
4012 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
4013 {
4014 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
4015 }
4016 
4017 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
4018 {
4019 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
4020 	struct pnv_phb *phb = hose->private_data;
4021 
4022 	if (!machine_is(powernv))
4023 		return;
4024 
4025 	if (phb->type == PNV_PHB_NPU_OCAPI)
4026 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
4027 }
4028 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
4029 
4030 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4031 {
4032 	struct device_node *phbn;
4033 	const __be64 *prop64;
4034 	u64 hub_id;
4035 
4036 	pr_info("Probing IODA IO-Hub %pOF\n", np);
4037 
4038 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4039 	if (!prop64) {
4040 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4041 		return;
4042 	}
4043 	hub_id = be64_to_cpup(prop64);
4044 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4045 
4046 	/* Count child PHBs */
4047 	for_each_child_of_node(np, phbn) {
4048 		/* Look for IODA1 PHBs */
4049 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4050 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4051 	}
4052 }
4053