1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
52 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54 
55 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
56 #define POWERNV_IOMMU_MAX_LEVELS	5
57 
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59 
60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61 			    const char *fmt, ...)
62 {
63 	struct va_format vaf;
64 	va_list args;
65 	char pfix[32];
66 
67 	va_start(args, fmt);
68 
69 	vaf.fmt = fmt;
70 	vaf.va = &args;
71 
72 	if (pe->flags & PNV_IODA_PE_DEV)
73 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75 		sprintf(pfix, "%04x:%02x     ",
76 			pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78 	else if (pe->flags & PNV_IODA_PE_VF)
79 		sprintf(pfix, "%04x:%02x:%2x.%d",
80 			pci_domain_nr(pe->parent_dev->bus),
81 			(pe->rid & 0xff00) >> 8,
82 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84 
85 	printk("%spci %s: [PE# %.3d] %pV",
86 	       level, pfix, pe->pe_number, &vaf);
87 
88 	va_end(args);
89 }
90 
91 static bool pnv_iommu_bypass_disabled __read_mostly;
92 
93 static int __init iommu_setup(char *str)
94 {
95 	if (!str)
96 		return -EINVAL;
97 
98 	while (*str) {
99 		if (!strncmp(str, "nobypass", 8)) {
100 			pnv_iommu_bypass_disabled = true;
101 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
102 			break;
103 		}
104 		str += strcspn(str, ",");
105 		if (*str == ',')
106 			str++;
107 	}
108 
109 	return 0;
110 }
111 early_param("iommu", iommu_setup);
112 
113 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
114 {
115 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
116 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
117 }
118 
119 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
120 {
121 	phb->ioda.pe_array[pe_no].phb = phb;
122 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
123 
124 	return &phb->ioda.pe_array[pe_no];
125 }
126 
127 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
128 {
129 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
130 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
131 			__func__, pe_no, phb->hose->global_number);
132 		return;
133 	}
134 
135 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
136 		pr_debug("%s: PE %d was reserved on PHB#%x\n",
137 			 __func__, pe_no, phb->hose->global_number);
138 
139 	pnv_ioda_init_pe(phb, pe_no);
140 }
141 
142 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
143 {
144 	unsigned long pe;
145 
146 	do {
147 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
148 					phb->ioda.total_pe_num, 0);
149 		if (pe >= phb->ioda.total_pe_num)
150 			return NULL;
151 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
152 
153 	return pnv_ioda_init_pe(phb, pe);
154 }
155 
156 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
157 {
158 	struct pnv_phb *phb = pe->phb;
159 
160 	WARN_ON(pe->pdev);
161 
162 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
163 	clear_bit(pe->pe_number, phb->ioda.pe_alloc);
164 }
165 
166 /* The default M64 BAR is shared by all PEs */
167 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
168 {
169 	const char *desc;
170 	struct resource *r;
171 	s64 rc;
172 
173 	/* Configure the default M64 BAR */
174 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
175 					 OPAL_M64_WINDOW_TYPE,
176 					 phb->ioda.m64_bar_idx,
177 					 phb->ioda.m64_base,
178 					 0, /* unused */
179 					 phb->ioda.m64_size);
180 	if (rc != OPAL_SUCCESS) {
181 		desc = "configuring";
182 		goto fail;
183 	}
184 
185 	/* Enable the default M64 BAR */
186 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
187 				      OPAL_M64_WINDOW_TYPE,
188 				      phb->ioda.m64_bar_idx,
189 				      OPAL_ENABLE_M64_SPLIT);
190 	if (rc != OPAL_SUCCESS) {
191 		desc = "enabling";
192 		goto fail;
193 	}
194 
195 	/* Mark the M64 BAR assigned */
196 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
197 
198 	/*
199 	 * Strip off the segment used by the reserved PE, which is
200 	 * expected to be 0 or last one of PE capabicity.
201 	 */
202 	r = &phb->hose->mem_resources[1];
203 	if (phb->ioda.reserved_pe_idx == 0)
204 		r->start += phb->ioda.m64_segsize;
205 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
206 		r->end -= phb->ioda.m64_segsize;
207 	else
208 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
209 			phb->ioda.reserved_pe_idx);
210 
211 	return 0;
212 
213 fail:
214 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
215 		rc, desc, phb->ioda.m64_bar_idx);
216 	opal_pci_phb_mmio_enable(phb->opal_id,
217 				 OPAL_M64_WINDOW_TYPE,
218 				 phb->ioda.m64_bar_idx,
219 				 OPAL_DISABLE_M64);
220 	return -EIO;
221 }
222 
223 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
224 					 unsigned long *pe_bitmap)
225 {
226 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
227 	struct pnv_phb *phb = hose->private_data;
228 	struct resource *r;
229 	resource_size_t base, sgsz, start, end;
230 	int segno, i;
231 
232 	base = phb->ioda.m64_base;
233 	sgsz = phb->ioda.m64_segsize;
234 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
235 		r = &pdev->resource[i];
236 		if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
237 			continue;
238 
239 		start = _ALIGN_DOWN(r->start - base, sgsz);
240 		end = _ALIGN_UP(r->end - base, sgsz);
241 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
242 			if (pe_bitmap)
243 				set_bit(segno, pe_bitmap);
244 			else
245 				pnv_ioda_reserve_pe(phb, segno);
246 		}
247 	}
248 }
249 
250 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
251 {
252 	struct resource *r;
253 	int index;
254 
255 	/*
256 	 * There are 16 M64 BARs, each of which has 8 segments. So
257 	 * there are as many M64 segments as the maximum number of
258 	 * PEs, which is 128.
259 	 */
260 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
261 		unsigned long base, segsz = phb->ioda.m64_segsize;
262 		int64_t rc;
263 
264 		base = phb->ioda.m64_base +
265 		       index * PNV_IODA1_M64_SEGS * segsz;
266 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
267 				OPAL_M64_WINDOW_TYPE, index, base, 0,
268 				PNV_IODA1_M64_SEGS * segsz);
269 		if (rc != OPAL_SUCCESS) {
270 			pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
271 				rc, phb->hose->global_number, index);
272 			goto fail;
273 		}
274 
275 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
276 				OPAL_M64_WINDOW_TYPE, index,
277 				OPAL_ENABLE_M64_SPLIT);
278 		if (rc != OPAL_SUCCESS) {
279 			pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
280 				rc, phb->hose->global_number, index);
281 			goto fail;
282 		}
283 	}
284 
285 	/*
286 	 * Exclude the segment used by the reserved PE, which
287 	 * is expected to be 0 or last supported PE#.
288 	 */
289 	r = &phb->hose->mem_resources[1];
290 	if (phb->ioda.reserved_pe_idx == 0)
291 		r->start += phb->ioda.m64_segsize;
292 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
293 		r->end -= phb->ioda.m64_segsize;
294 	else
295 		WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
296 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
297 
298 	return 0;
299 
300 fail:
301 	for ( ; index >= 0; index--)
302 		opal_pci_phb_mmio_enable(phb->opal_id,
303 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
304 
305 	return -EIO;
306 }
307 
308 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
309 				    unsigned long *pe_bitmap,
310 				    bool all)
311 {
312 	struct pci_dev *pdev;
313 
314 	list_for_each_entry(pdev, &bus->devices, bus_list) {
315 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
316 
317 		if (all && pdev->subordinate)
318 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
319 						pe_bitmap, all);
320 	}
321 }
322 
323 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
324 {
325 	struct pci_controller *hose = pci_bus_to_host(bus);
326 	struct pnv_phb *phb = hose->private_data;
327 	struct pnv_ioda_pe *master_pe, *pe;
328 	unsigned long size, *pe_alloc;
329 	int i;
330 
331 	/* Root bus shouldn't use M64 */
332 	if (pci_is_root_bus(bus))
333 		return NULL;
334 
335 	/* Allocate bitmap */
336 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
337 	pe_alloc = kzalloc(size, GFP_KERNEL);
338 	if (!pe_alloc) {
339 		pr_warn("%s: Out of memory !\n",
340 			__func__);
341 		return NULL;
342 	}
343 
344 	/* Figure out reserved PE numbers by the PE */
345 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
346 
347 	/*
348 	 * the current bus might not own M64 window and that's all
349 	 * contributed by its child buses. For the case, we needn't
350 	 * pick M64 dependent PE#.
351 	 */
352 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
353 		kfree(pe_alloc);
354 		return NULL;
355 	}
356 
357 	/*
358 	 * Figure out the master PE and put all slave PEs to master
359 	 * PE's list to form compound PE.
360 	 */
361 	master_pe = NULL;
362 	i = -1;
363 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
364 		phb->ioda.total_pe_num) {
365 		pe = &phb->ioda.pe_array[i];
366 
367 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
368 		if (!master_pe) {
369 			pe->flags |= PNV_IODA_PE_MASTER;
370 			INIT_LIST_HEAD(&pe->slaves);
371 			master_pe = pe;
372 		} else {
373 			pe->flags |= PNV_IODA_PE_SLAVE;
374 			pe->master = master_pe;
375 			list_add_tail(&pe->list, &master_pe->slaves);
376 		}
377 
378 		/*
379 		 * P7IOC supports M64DT, which helps mapping M64 segment
380 		 * to one particular PE#. However, PHB3 has fixed mapping
381 		 * between M64 segment and PE#. In order to have same logic
382 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
383 		 * segment and PE# on P7IOC.
384 		 */
385 		if (phb->type == PNV_PHB_IODA1) {
386 			int64_t rc;
387 
388 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
389 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
390 					pe->pe_number / PNV_IODA1_M64_SEGS,
391 					pe->pe_number % PNV_IODA1_M64_SEGS);
392 			if (rc != OPAL_SUCCESS)
393 				pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
394 					__func__, rc, phb->hose->global_number,
395 					pe->pe_number);
396 		}
397 	}
398 
399 	kfree(pe_alloc);
400 	return master_pe;
401 }
402 
403 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
404 {
405 	struct pci_controller *hose = phb->hose;
406 	struct device_node *dn = hose->dn;
407 	struct resource *res;
408 	const u32 *r;
409 	u64 pci_addr;
410 
411 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
412 		pr_info("  Not support M64 window\n");
413 		return;
414 	}
415 
416 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
417 		pr_info("  Firmware too old to support M64 window\n");
418 		return;
419 	}
420 
421 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
422 	if (!r) {
423 		pr_info("  No <ibm,opal-m64-window> on %s\n",
424 			dn->full_name);
425 		return;
426 	}
427 
428 	res = &hose->mem_resources[1];
429 	res->name = dn->full_name;
430 	res->start = of_translate_address(dn, r + 2);
431 	res->end = res->start + of_read_number(r + 4, 2) - 1;
432 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
433 	pci_addr = of_read_number(r, 2);
434 	hose->mem_offset[1] = res->start - pci_addr;
435 
436 	phb->ioda.m64_size = resource_size(res);
437 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
438 	phb->ioda.m64_base = pci_addr;
439 
440 	pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
441 			res->start, res->end, pci_addr);
442 
443 	/* Use last M64 BAR to cover M64 window */
444 	phb->ioda.m64_bar_idx = 15;
445 	if (phb->type == PNV_PHB_IODA1)
446 		phb->init_m64 = pnv_ioda1_init_m64;
447 	else
448 		phb->init_m64 = pnv_ioda2_init_m64;
449 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
450 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
451 }
452 
453 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
454 {
455 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
456 	struct pnv_ioda_pe *slave;
457 	s64 rc;
458 
459 	/* Fetch master PE */
460 	if (pe->flags & PNV_IODA_PE_SLAVE) {
461 		pe = pe->master;
462 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
463 			return;
464 
465 		pe_no = pe->pe_number;
466 	}
467 
468 	/* Freeze master PE */
469 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
470 				     pe_no,
471 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
472 	if (rc != OPAL_SUCCESS) {
473 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
474 			__func__, rc, phb->hose->global_number, pe_no);
475 		return;
476 	}
477 
478 	/* Freeze slave PEs */
479 	if (!(pe->flags & PNV_IODA_PE_MASTER))
480 		return;
481 
482 	list_for_each_entry(slave, &pe->slaves, list) {
483 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
484 					     slave->pe_number,
485 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
486 		if (rc != OPAL_SUCCESS)
487 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
488 				__func__, rc, phb->hose->global_number,
489 				slave->pe_number);
490 	}
491 }
492 
493 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
494 {
495 	struct pnv_ioda_pe *pe, *slave;
496 	s64 rc;
497 
498 	/* Find master PE */
499 	pe = &phb->ioda.pe_array[pe_no];
500 	if (pe->flags & PNV_IODA_PE_SLAVE) {
501 		pe = pe->master;
502 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
503 		pe_no = pe->pe_number;
504 	}
505 
506 	/* Clear frozen state for master PE */
507 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
508 	if (rc != OPAL_SUCCESS) {
509 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
510 			__func__, rc, opt, phb->hose->global_number, pe_no);
511 		return -EIO;
512 	}
513 
514 	if (!(pe->flags & PNV_IODA_PE_MASTER))
515 		return 0;
516 
517 	/* Clear frozen state for slave PEs */
518 	list_for_each_entry(slave, &pe->slaves, list) {
519 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
520 					     slave->pe_number,
521 					     opt);
522 		if (rc != OPAL_SUCCESS) {
523 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
524 				__func__, rc, opt, phb->hose->global_number,
525 				slave->pe_number);
526 			return -EIO;
527 		}
528 	}
529 
530 	return 0;
531 }
532 
533 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
534 {
535 	struct pnv_ioda_pe *slave, *pe;
536 	u8 fstate, state;
537 	__be16 pcierr;
538 	s64 rc;
539 
540 	/* Sanity check on PE number */
541 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
542 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
543 
544 	/*
545 	 * Fetch the master PE and the PE instance might be
546 	 * not initialized yet.
547 	 */
548 	pe = &phb->ioda.pe_array[pe_no];
549 	if (pe->flags & PNV_IODA_PE_SLAVE) {
550 		pe = pe->master;
551 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
552 		pe_no = pe->pe_number;
553 	}
554 
555 	/* Check the master PE */
556 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
557 					&state, &pcierr, NULL);
558 	if (rc != OPAL_SUCCESS) {
559 		pr_warn("%s: Failure %lld getting "
560 			"PHB#%x-PE#%x state\n",
561 			__func__, rc,
562 			phb->hose->global_number, pe_no);
563 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
564 	}
565 
566 	/* Check the slave PE */
567 	if (!(pe->flags & PNV_IODA_PE_MASTER))
568 		return state;
569 
570 	list_for_each_entry(slave, &pe->slaves, list) {
571 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
572 						slave->pe_number,
573 						&fstate,
574 						&pcierr,
575 						NULL);
576 		if (rc != OPAL_SUCCESS) {
577 			pr_warn("%s: Failure %lld getting "
578 				"PHB#%x-PE#%x state\n",
579 				__func__, rc,
580 				phb->hose->global_number, slave->pe_number);
581 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
582 		}
583 
584 		/*
585 		 * Override the result based on the ascending
586 		 * priority.
587 		 */
588 		if (fstate > state)
589 			state = fstate;
590 	}
591 
592 	return state;
593 }
594 
595 /* Currently those 2 are only used when MSIs are enabled, this will change
596  * but in the meantime, we need to protect them to avoid warnings
597  */
598 #ifdef CONFIG_PCI_MSI
599 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
600 {
601 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
602 	struct pnv_phb *phb = hose->private_data;
603 	struct pci_dn *pdn = pci_get_pdn(dev);
604 
605 	if (!pdn)
606 		return NULL;
607 	if (pdn->pe_number == IODA_INVALID_PE)
608 		return NULL;
609 	return &phb->ioda.pe_array[pdn->pe_number];
610 }
611 #endif /* CONFIG_PCI_MSI */
612 
613 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
614 				  struct pnv_ioda_pe *parent,
615 				  struct pnv_ioda_pe *child,
616 				  bool is_add)
617 {
618 	const char *desc = is_add ? "adding" : "removing";
619 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
620 			      OPAL_REMOVE_PE_FROM_DOMAIN;
621 	struct pnv_ioda_pe *slave;
622 	long rc;
623 
624 	/* Parent PE affects child PE */
625 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
626 				child->pe_number, op);
627 	if (rc != OPAL_SUCCESS) {
628 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
629 			rc, desc);
630 		return -ENXIO;
631 	}
632 
633 	if (!(child->flags & PNV_IODA_PE_MASTER))
634 		return 0;
635 
636 	/* Compound case: parent PE affects slave PEs */
637 	list_for_each_entry(slave, &child->slaves, list) {
638 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
639 					slave->pe_number, op);
640 		if (rc != OPAL_SUCCESS) {
641 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
642 				rc, desc);
643 			return -ENXIO;
644 		}
645 	}
646 
647 	return 0;
648 }
649 
650 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
651 			      struct pnv_ioda_pe *pe,
652 			      bool is_add)
653 {
654 	struct pnv_ioda_pe *slave;
655 	struct pci_dev *pdev = NULL;
656 	int ret;
657 
658 	/*
659 	 * Clear PE frozen state. If it's master PE, we need
660 	 * clear slave PE frozen state as well.
661 	 */
662 	if (is_add) {
663 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
664 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
665 		if (pe->flags & PNV_IODA_PE_MASTER) {
666 			list_for_each_entry(slave, &pe->slaves, list)
667 				opal_pci_eeh_freeze_clear(phb->opal_id,
668 							  slave->pe_number,
669 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
670 		}
671 	}
672 
673 	/*
674 	 * Associate PE in PELT. We need add the PE into the
675 	 * corresponding PELT-V as well. Otherwise, the error
676 	 * originated from the PE might contribute to other
677 	 * PEs.
678 	 */
679 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
680 	if (ret)
681 		return ret;
682 
683 	/* For compound PEs, any one affects all of them */
684 	if (pe->flags & PNV_IODA_PE_MASTER) {
685 		list_for_each_entry(slave, &pe->slaves, list) {
686 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
687 			if (ret)
688 				return ret;
689 		}
690 	}
691 
692 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
693 		pdev = pe->pbus->self;
694 	else if (pe->flags & PNV_IODA_PE_DEV)
695 		pdev = pe->pdev->bus->self;
696 #ifdef CONFIG_PCI_IOV
697 	else if (pe->flags & PNV_IODA_PE_VF)
698 		pdev = pe->parent_dev;
699 #endif /* CONFIG_PCI_IOV */
700 	while (pdev) {
701 		struct pci_dn *pdn = pci_get_pdn(pdev);
702 		struct pnv_ioda_pe *parent;
703 
704 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
705 			parent = &phb->ioda.pe_array[pdn->pe_number];
706 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
707 			if (ret)
708 				return ret;
709 		}
710 
711 		pdev = pdev->bus->self;
712 	}
713 
714 	return 0;
715 }
716 
717 #ifdef CONFIG_PCI_IOV
718 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
719 {
720 	struct pci_dev *parent;
721 	uint8_t bcomp, dcomp, fcomp;
722 	int64_t rc;
723 	long rid_end, rid;
724 
725 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
726 	if (pe->pbus) {
727 		int count;
728 
729 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
730 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
731 		parent = pe->pbus->self;
732 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
733 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
734 		else
735 			count = 1;
736 
737 		switch(count) {
738 		case  1: bcomp = OpalPciBusAll;         break;
739 		case  2: bcomp = OpalPciBus7Bits;       break;
740 		case  4: bcomp = OpalPciBus6Bits;       break;
741 		case  8: bcomp = OpalPciBus5Bits;       break;
742 		case 16: bcomp = OpalPciBus4Bits;       break;
743 		case 32: bcomp = OpalPciBus3Bits;       break;
744 		default:
745 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
746 			        count);
747 			/* Do an exact match only */
748 			bcomp = OpalPciBusAll;
749 		}
750 		rid_end = pe->rid + (count << 8);
751 	} else {
752 		if (pe->flags & PNV_IODA_PE_VF)
753 			parent = pe->parent_dev;
754 		else
755 			parent = pe->pdev->bus->self;
756 		bcomp = OpalPciBusAll;
757 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
758 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
759 		rid_end = pe->rid + 1;
760 	}
761 
762 	/* Clear the reverse map */
763 	for (rid = pe->rid; rid < rid_end; rid++)
764 		phb->ioda.pe_rmap[rid] = 0;
765 
766 	/* Release from all parents PELT-V */
767 	while (parent) {
768 		struct pci_dn *pdn = pci_get_pdn(parent);
769 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
771 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
772 			/* XXX What to do in case of error ? */
773 		}
774 		parent = parent->bus->self;
775 	}
776 
777 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
778 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
779 
780 	/* Disassociate PE in PELT */
781 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
782 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
783 	if (rc)
784 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
785 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
786 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
787 	if (rc)
788 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
789 
790 	pe->pbus = NULL;
791 	pe->pdev = NULL;
792 	pe->parent_dev = NULL;
793 
794 	return 0;
795 }
796 #endif /* CONFIG_PCI_IOV */
797 
798 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
799 {
800 	struct pci_dev *parent;
801 	uint8_t bcomp, dcomp, fcomp;
802 	long rc, rid_end, rid;
803 
804 	/* Bus validation ? */
805 	if (pe->pbus) {
806 		int count;
807 
808 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
809 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
810 		parent = pe->pbus->self;
811 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
812 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
813 		else
814 			count = 1;
815 
816 		switch(count) {
817 		case  1: bcomp = OpalPciBusAll;		break;
818 		case  2: bcomp = OpalPciBus7Bits;	break;
819 		case  4: bcomp = OpalPciBus6Bits;	break;
820 		case  8: bcomp = OpalPciBus5Bits;	break;
821 		case 16: bcomp = OpalPciBus4Bits;	break;
822 		case 32: bcomp = OpalPciBus3Bits;	break;
823 		default:
824 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
825 			        count);
826 			/* Do an exact match only */
827 			bcomp = OpalPciBusAll;
828 		}
829 		rid_end = pe->rid + (count << 8);
830 	} else {
831 #ifdef CONFIG_PCI_IOV
832 		if (pe->flags & PNV_IODA_PE_VF)
833 			parent = pe->parent_dev;
834 		else
835 #endif /* CONFIG_PCI_IOV */
836 			parent = pe->pdev->bus->self;
837 		bcomp = OpalPciBusAll;
838 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
839 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
840 		rid_end = pe->rid + 1;
841 	}
842 
843 	/*
844 	 * Associate PE in PELT. We need add the PE into the
845 	 * corresponding PELT-V as well. Otherwise, the error
846 	 * originated from the PE might contribute to other
847 	 * PEs.
848 	 */
849 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
850 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
851 	if (rc) {
852 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
853 		return -ENXIO;
854 	}
855 
856 	/*
857 	 * Configure PELTV. NPUs don't have a PELTV table so skip
858 	 * configuration on them.
859 	 */
860 	if (phb->type != PNV_PHB_NPU)
861 		pnv_ioda_set_peltv(phb, pe, true);
862 
863 	/* Setup reverse map */
864 	for (rid = pe->rid; rid < rid_end; rid++)
865 		phb->ioda.pe_rmap[rid] = pe->pe_number;
866 
867 	/* Setup one MVTs on IODA1 */
868 	if (phb->type != PNV_PHB_IODA1) {
869 		pe->mve_number = 0;
870 		goto out;
871 	}
872 
873 	pe->mve_number = pe->pe_number;
874 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
875 	if (rc != OPAL_SUCCESS) {
876 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
877 		       rc, pe->mve_number);
878 		pe->mve_number = -1;
879 	} else {
880 		rc = opal_pci_set_mve_enable(phb->opal_id,
881 					     pe->mve_number, OPAL_ENABLE_MVE);
882 		if (rc) {
883 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
884 			       rc, pe->mve_number);
885 			pe->mve_number = -1;
886 		}
887 	}
888 
889 out:
890 	return 0;
891 }
892 
893 #ifdef CONFIG_PCI_IOV
894 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
895 {
896 	struct pci_dn *pdn = pci_get_pdn(dev);
897 	int i;
898 	struct resource *res, res2;
899 	resource_size_t size;
900 	u16 num_vfs;
901 
902 	if (!dev->is_physfn)
903 		return -EINVAL;
904 
905 	/*
906 	 * "offset" is in VFs.  The M64 windows are sized so that when they
907 	 * are segmented, each segment is the same size as the IOV BAR.
908 	 * Each segment is in a separate PE, and the high order bits of the
909 	 * address are the PE number.  Therefore, each VF's BAR is in a
910 	 * separate PE, and changing the IOV BAR start address changes the
911 	 * range of PEs the VFs are in.
912 	 */
913 	num_vfs = pdn->num_vfs;
914 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
915 		res = &dev->resource[i + PCI_IOV_RESOURCES];
916 		if (!res->flags || !res->parent)
917 			continue;
918 
919 		/*
920 		 * The actual IOV BAR range is determined by the start address
921 		 * and the actual size for num_vfs VFs BAR.  This check is to
922 		 * make sure that after shifting, the range will not overlap
923 		 * with another device.
924 		 */
925 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
926 		res2.flags = res->flags;
927 		res2.start = res->start + (size * offset);
928 		res2.end = res2.start + (size * num_vfs) - 1;
929 
930 		if (res2.end > res->end) {
931 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
932 				i, &res2, res, num_vfs, offset);
933 			return -EBUSY;
934 		}
935 	}
936 
937 	/*
938 	 * After doing so, there would be a "hole" in the /proc/iomem when
939 	 * offset is a positive value. It looks like the device return some
940 	 * mmio back to the system, which actually no one could use it.
941 	 */
942 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
943 		res = &dev->resource[i + PCI_IOV_RESOURCES];
944 		if (!res->flags || !res->parent)
945 			continue;
946 
947 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
948 		res2 = *res;
949 		res->start += size * offset;
950 
951 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
952 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
953 			 num_vfs, offset);
954 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
955 	}
956 	return 0;
957 }
958 #endif /* CONFIG_PCI_IOV */
959 
960 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
961 {
962 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
963 	struct pnv_phb *phb = hose->private_data;
964 	struct pci_dn *pdn = pci_get_pdn(dev);
965 	struct pnv_ioda_pe *pe;
966 
967 	if (!pdn) {
968 		pr_err("%s: Device tree node not associated properly\n",
969 			   pci_name(dev));
970 		return NULL;
971 	}
972 	if (pdn->pe_number != IODA_INVALID_PE)
973 		return NULL;
974 
975 	pe = pnv_ioda_alloc_pe(phb);
976 	if (!pe) {
977 		pr_warning("%s: Not enough PE# available, disabling device\n",
978 			   pci_name(dev));
979 		return NULL;
980 	}
981 
982 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
983 	 * pointer in the PE data structure, both should be destroyed at the
984 	 * same time. However, this needs to be looked at more closely again
985 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
986 	 *
987 	 * At some point we want to remove the PDN completely anyways
988 	 */
989 	pci_dev_get(dev);
990 	pdn->pcidev = dev;
991 	pdn->pe_number = pe->pe_number;
992 	pe->flags = PNV_IODA_PE_DEV;
993 	pe->pdev = dev;
994 	pe->pbus = NULL;
995 	pe->mve_number = -1;
996 	pe->rid = dev->bus->number << 8 | pdn->devfn;
997 
998 	pe_info(pe, "Associated device to PE\n");
999 
1000 	if (pnv_ioda_configure_pe(phb, pe)) {
1001 		/* XXX What do we do here ? */
1002 		pnv_ioda_free_pe(pe);
1003 		pdn->pe_number = IODA_INVALID_PE;
1004 		pe->pdev = NULL;
1005 		pci_dev_put(dev);
1006 		return NULL;
1007 	}
1008 
1009 	return pe;
1010 }
1011 
1012 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1013 {
1014 	struct pci_dev *dev;
1015 
1016 	list_for_each_entry(dev, &bus->devices, bus_list) {
1017 		struct pci_dn *pdn = pci_get_pdn(dev);
1018 
1019 		if (pdn == NULL) {
1020 			pr_warn("%s: No device node associated with device !\n",
1021 				pci_name(dev));
1022 			continue;
1023 		}
1024 		pdn->pcidev = dev;
1025 		pdn->pe_number = pe->pe_number;
1026 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1027 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1028 	}
1029 }
1030 
1031 /*
1032  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1033  * single PCI bus. Another one that contains the primary PCI bus and its
1034  * subordinate PCI devices and buses. The second type of PE is normally
1035  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1036  */
1037 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1038 {
1039 	struct pci_controller *hose = pci_bus_to_host(bus);
1040 	struct pnv_phb *phb = hose->private_data;
1041 	struct pnv_ioda_pe *pe = NULL;
1042 
1043 	/* Check if PE is determined by M64 */
1044 	if (phb->pick_m64_pe)
1045 		pe = phb->pick_m64_pe(bus, all);
1046 
1047 	/* The PE number isn't pinned by M64 */
1048 	if (!pe)
1049 		pe = pnv_ioda_alloc_pe(phb);
1050 
1051 	if (!pe) {
1052 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1053 			__func__, pci_domain_nr(bus), bus->number);
1054 		return NULL;
1055 	}
1056 
1057 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1058 	pe->pbus = bus;
1059 	pe->pdev = NULL;
1060 	pe->mve_number = -1;
1061 	pe->rid = bus->busn_res.start << 8;
1062 
1063 	if (all)
1064 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1065 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1066 	else
1067 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1068 			bus->busn_res.start, pe->pe_number);
1069 
1070 	if (pnv_ioda_configure_pe(phb, pe)) {
1071 		/* XXX What do we do here ? */
1072 		pnv_ioda_free_pe(pe);
1073 		pe->pbus = NULL;
1074 		return NULL;
1075 	}
1076 
1077 	/* Associate it with all child devices */
1078 	pnv_ioda_setup_same_PE(bus, pe);
1079 
1080 	/* Put PE to the list */
1081 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1082 
1083 	return pe;
1084 }
1085 
1086 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1087 {
1088 	int pe_num, found_pe = false, rc;
1089 	long rid;
1090 	struct pnv_ioda_pe *pe;
1091 	struct pci_dev *gpu_pdev;
1092 	struct pci_dn *npu_pdn;
1093 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1094 	struct pnv_phb *phb = hose->private_data;
1095 
1096 	/*
1097 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1098 	 * error handling. This means we only have three PEs remaining
1099 	 * which need to be assigned to four links, implying some
1100 	 * links must share PEs.
1101 	 *
1102 	 * To achieve this we assign PEs such that NPUs linking the
1103 	 * same GPU get assigned the same PE.
1104 	 */
1105 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1106 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1107 		pe = &phb->ioda.pe_array[pe_num];
1108 		if (!pe->pdev)
1109 			continue;
1110 
1111 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1112 			/*
1113 			 * This device has the same peer GPU so should
1114 			 * be assigned the same PE as the existing
1115 			 * peer NPU.
1116 			 */
1117 			dev_info(&npu_pdev->dev,
1118 				"Associating to existing PE %d\n", pe_num);
1119 			pci_dev_get(npu_pdev);
1120 			npu_pdn = pci_get_pdn(npu_pdev);
1121 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1122 			npu_pdn->pcidev = npu_pdev;
1123 			npu_pdn->pe_number = pe_num;
1124 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1125 
1126 			/* Map the PE to this link */
1127 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1128 					OpalPciBusAll,
1129 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1130 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1131 					OPAL_MAP_PE);
1132 			WARN_ON(rc != OPAL_SUCCESS);
1133 			found_pe = true;
1134 			break;
1135 		}
1136 	}
1137 
1138 	if (!found_pe)
1139 		/*
1140 		 * Could not find an existing PE so allocate a new
1141 		 * one.
1142 		 */
1143 		return pnv_ioda_setup_dev_PE(npu_pdev);
1144 	else
1145 		return pe;
1146 }
1147 
1148 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1149 {
1150 	struct pci_dev *pdev;
1151 
1152 	list_for_each_entry(pdev, &bus->devices, bus_list)
1153 		pnv_ioda_setup_npu_PE(pdev);
1154 }
1155 
1156 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1157 {
1158 	struct pci_dev *dev;
1159 
1160 	pnv_ioda_setup_bus_PE(bus, false);
1161 
1162 	list_for_each_entry(dev, &bus->devices, bus_list) {
1163 		if (dev->subordinate) {
1164 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1165 				pnv_ioda_setup_bus_PE(dev->subordinate, true);
1166 			else
1167 				pnv_ioda_setup_PEs(dev->subordinate);
1168 		}
1169 	}
1170 }
1171 
1172 /*
1173  * Configure PEs so that the downstream PCI buses and devices
1174  * could have their associated PE#. Unfortunately, we didn't
1175  * figure out the way to identify the PLX bridge yet. So we
1176  * simply put the PCI bus and the subordinate behind the root
1177  * port to PE# here. The game rule here is expected to be changed
1178  * as soon as we can detected PLX bridge correctly.
1179  */
1180 static void pnv_pci_ioda_setup_PEs(void)
1181 {
1182 	struct pci_controller *hose, *tmp;
1183 	struct pnv_phb *phb;
1184 
1185 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1186 		phb = hose->private_data;
1187 
1188 		/* M64 layout might affect PE allocation */
1189 		if (phb->reserve_m64_pe)
1190 			phb->reserve_m64_pe(hose->bus, NULL, true);
1191 
1192 		/*
1193 		 * On NPU PHB, we expect separate PEs for individual PCI
1194 		 * functions. PCI bus dependent PEs are required for the
1195 		 * remaining types of PHBs.
1196 		 */
1197 		if (phb->type == PNV_PHB_NPU) {
1198 			/* PE#0 is needed for error reporting */
1199 			pnv_ioda_reserve_pe(phb, 0);
1200 			pnv_ioda_setup_npu_PEs(hose->bus);
1201 		} else
1202 			pnv_ioda_setup_PEs(hose->bus);
1203 	}
1204 }
1205 
1206 #ifdef CONFIG_PCI_IOV
1207 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1208 {
1209 	struct pci_bus        *bus;
1210 	struct pci_controller *hose;
1211 	struct pnv_phb        *phb;
1212 	struct pci_dn         *pdn;
1213 	int                    i, j;
1214 	int                    m64_bars;
1215 
1216 	bus = pdev->bus;
1217 	hose = pci_bus_to_host(bus);
1218 	phb = hose->private_data;
1219 	pdn = pci_get_pdn(pdev);
1220 
1221 	if (pdn->m64_single_mode)
1222 		m64_bars = num_vfs;
1223 	else
1224 		m64_bars = 1;
1225 
1226 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1227 		for (j = 0; j < m64_bars; j++) {
1228 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1229 				continue;
1230 			opal_pci_phb_mmio_enable(phb->opal_id,
1231 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1232 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1233 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1234 		}
1235 
1236 	kfree(pdn->m64_map);
1237 	return 0;
1238 }
1239 
1240 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1241 {
1242 	struct pci_bus        *bus;
1243 	struct pci_controller *hose;
1244 	struct pnv_phb        *phb;
1245 	struct pci_dn         *pdn;
1246 	unsigned int           win;
1247 	struct resource       *res;
1248 	int                    i, j;
1249 	int64_t                rc;
1250 	int                    total_vfs;
1251 	resource_size_t        size, start;
1252 	int                    pe_num;
1253 	int                    m64_bars;
1254 
1255 	bus = pdev->bus;
1256 	hose = pci_bus_to_host(bus);
1257 	phb = hose->private_data;
1258 	pdn = pci_get_pdn(pdev);
1259 	total_vfs = pci_sriov_get_totalvfs(pdev);
1260 
1261 	if (pdn->m64_single_mode)
1262 		m64_bars = num_vfs;
1263 	else
1264 		m64_bars = 1;
1265 
1266 	pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1267 	if (!pdn->m64_map)
1268 		return -ENOMEM;
1269 	/* Initialize the m64_map to IODA_INVALID_M64 */
1270 	for (i = 0; i < m64_bars ; i++)
1271 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1272 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1273 
1274 
1275 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1276 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1277 		if (!res->flags || !res->parent)
1278 			continue;
1279 
1280 		for (j = 0; j < m64_bars; j++) {
1281 			do {
1282 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1283 						phb->ioda.m64_bar_idx + 1, 0);
1284 
1285 				if (win >= phb->ioda.m64_bar_idx + 1)
1286 					goto m64_failed;
1287 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1288 
1289 			pdn->m64_map[j][i] = win;
1290 
1291 			if (pdn->m64_single_mode) {
1292 				size = pci_iov_resource_size(pdev,
1293 							PCI_IOV_RESOURCES + i);
1294 				start = res->start + size * j;
1295 			} else {
1296 				size = resource_size(res);
1297 				start = res->start;
1298 			}
1299 
1300 			/* Map the M64 here */
1301 			if (pdn->m64_single_mode) {
1302 				pe_num = pdn->pe_num_map[j];
1303 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1304 						pe_num, OPAL_M64_WINDOW_TYPE,
1305 						pdn->m64_map[j][i], 0);
1306 			}
1307 
1308 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1309 						 OPAL_M64_WINDOW_TYPE,
1310 						 pdn->m64_map[j][i],
1311 						 start,
1312 						 0, /* unused */
1313 						 size);
1314 
1315 
1316 			if (rc != OPAL_SUCCESS) {
1317 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1318 					win, rc);
1319 				goto m64_failed;
1320 			}
1321 
1322 			if (pdn->m64_single_mode)
1323 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1324 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1325 			else
1326 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1327 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1328 
1329 			if (rc != OPAL_SUCCESS) {
1330 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1331 					win, rc);
1332 				goto m64_failed;
1333 			}
1334 		}
1335 	}
1336 	return 0;
1337 
1338 m64_failed:
1339 	pnv_pci_vf_release_m64(pdev, num_vfs);
1340 	return -EBUSY;
1341 }
1342 
1343 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1344 		int num);
1345 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1346 
1347 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1348 {
1349 	struct iommu_table    *tbl;
1350 	int64_t               rc;
1351 
1352 	tbl = pe->table_group.tables[0];
1353 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1354 	if (rc)
1355 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1356 
1357 	pnv_pci_ioda2_set_bypass(pe, false);
1358 	if (pe->table_group.group) {
1359 		iommu_group_put(pe->table_group.group);
1360 		BUG_ON(pe->table_group.group);
1361 	}
1362 	pnv_pci_ioda2_table_free_pages(tbl);
1363 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1364 }
1365 
1366 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1367 {
1368 	struct pci_bus        *bus;
1369 	struct pci_controller *hose;
1370 	struct pnv_phb        *phb;
1371 	struct pnv_ioda_pe    *pe, *pe_n;
1372 	struct pci_dn         *pdn;
1373 
1374 	bus = pdev->bus;
1375 	hose = pci_bus_to_host(bus);
1376 	phb = hose->private_data;
1377 	pdn = pci_get_pdn(pdev);
1378 
1379 	if (!pdev->is_physfn)
1380 		return;
1381 
1382 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1383 		if (pe->parent_dev != pdev)
1384 			continue;
1385 
1386 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1387 
1388 		/* Remove from list */
1389 		mutex_lock(&phb->ioda.pe_list_mutex);
1390 		list_del(&pe->list);
1391 		mutex_unlock(&phb->ioda.pe_list_mutex);
1392 
1393 		pnv_ioda_deconfigure_pe(phb, pe);
1394 
1395 		pnv_ioda_free_pe(pe);
1396 	}
1397 }
1398 
1399 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1400 {
1401 	struct pci_bus        *bus;
1402 	struct pci_controller *hose;
1403 	struct pnv_phb        *phb;
1404 	struct pnv_ioda_pe    *pe;
1405 	struct pci_dn         *pdn;
1406 	struct pci_sriov      *iov;
1407 	u16                    num_vfs, i;
1408 
1409 	bus = pdev->bus;
1410 	hose = pci_bus_to_host(bus);
1411 	phb = hose->private_data;
1412 	pdn = pci_get_pdn(pdev);
1413 	iov = pdev->sriov;
1414 	num_vfs = pdn->num_vfs;
1415 
1416 	/* Release VF PEs */
1417 	pnv_ioda_release_vf_PE(pdev);
1418 
1419 	if (phb->type == PNV_PHB_IODA2) {
1420 		if (!pdn->m64_single_mode)
1421 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1422 
1423 		/* Release M64 windows */
1424 		pnv_pci_vf_release_m64(pdev, num_vfs);
1425 
1426 		/* Release PE numbers */
1427 		if (pdn->m64_single_mode) {
1428 			for (i = 0; i < num_vfs; i++) {
1429 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1430 					continue;
1431 
1432 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1433 				pnv_ioda_free_pe(pe);
1434 			}
1435 		} else
1436 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1437 		/* Releasing pe_num_map */
1438 		kfree(pdn->pe_num_map);
1439 	}
1440 }
1441 
1442 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1443 				       struct pnv_ioda_pe *pe);
1444 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1445 {
1446 	struct pci_bus        *bus;
1447 	struct pci_controller *hose;
1448 	struct pnv_phb        *phb;
1449 	struct pnv_ioda_pe    *pe;
1450 	int                    pe_num;
1451 	u16                    vf_index;
1452 	struct pci_dn         *pdn;
1453 
1454 	bus = pdev->bus;
1455 	hose = pci_bus_to_host(bus);
1456 	phb = hose->private_data;
1457 	pdn = pci_get_pdn(pdev);
1458 
1459 	if (!pdev->is_physfn)
1460 		return;
1461 
1462 	/* Reserve PE for each VF */
1463 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1464 		if (pdn->m64_single_mode)
1465 			pe_num = pdn->pe_num_map[vf_index];
1466 		else
1467 			pe_num = *pdn->pe_num_map + vf_index;
1468 
1469 		pe = &phb->ioda.pe_array[pe_num];
1470 		pe->pe_number = pe_num;
1471 		pe->phb = phb;
1472 		pe->flags = PNV_IODA_PE_VF;
1473 		pe->pbus = NULL;
1474 		pe->parent_dev = pdev;
1475 		pe->mve_number = -1;
1476 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1477 			   pci_iov_virtfn_devfn(pdev, vf_index);
1478 
1479 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1480 			hose->global_number, pdev->bus->number,
1481 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1482 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1483 
1484 		if (pnv_ioda_configure_pe(phb, pe)) {
1485 			/* XXX What do we do here ? */
1486 			pnv_ioda_free_pe(pe);
1487 			pe->pdev = NULL;
1488 			continue;
1489 		}
1490 
1491 		/* Put PE to the list */
1492 		mutex_lock(&phb->ioda.pe_list_mutex);
1493 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1494 		mutex_unlock(&phb->ioda.pe_list_mutex);
1495 
1496 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1497 	}
1498 }
1499 
1500 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1501 {
1502 	struct pci_bus        *bus;
1503 	struct pci_controller *hose;
1504 	struct pnv_phb        *phb;
1505 	struct pnv_ioda_pe    *pe;
1506 	struct pci_dn         *pdn;
1507 	int                    ret;
1508 	u16                    i;
1509 
1510 	bus = pdev->bus;
1511 	hose = pci_bus_to_host(bus);
1512 	phb = hose->private_data;
1513 	pdn = pci_get_pdn(pdev);
1514 
1515 	if (phb->type == PNV_PHB_IODA2) {
1516 		if (!pdn->vfs_expanded) {
1517 			dev_info(&pdev->dev, "don't support this SRIOV device"
1518 				" with non 64bit-prefetchable IOV BAR\n");
1519 			return -ENOSPC;
1520 		}
1521 
1522 		/*
1523 		 * When M64 BARs functions in Single PE mode, the number of VFs
1524 		 * could be enabled must be less than the number of M64 BARs.
1525 		 */
1526 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1527 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1528 			return -EBUSY;
1529 		}
1530 
1531 		/* Allocating pe_num_map */
1532 		if (pdn->m64_single_mode)
1533 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1534 					GFP_KERNEL);
1535 		else
1536 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1537 
1538 		if (!pdn->pe_num_map)
1539 			return -ENOMEM;
1540 
1541 		if (pdn->m64_single_mode)
1542 			for (i = 0; i < num_vfs; i++)
1543 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1544 
1545 		/* Calculate available PE for required VFs */
1546 		if (pdn->m64_single_mode) {
1547 			for (i = 0; i < num_vfs; i++) {
1548 				pe = pnv_ioda_alloc_pe(phb);
1549 				if (!pe) {
1550 					ret = -EBUSY;
1551 					goto m64_failed;
1552 				}
1553 
1554 				pdn->pe_num_map[i] = pe->pe_number;
1555 			}
1556 		} else {
1557 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1558 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1559 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1560 				0, num_vfs, 0);
1561 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1562 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1563 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1564 				kfree(pdn->pe_num_map);
1565 				return -EBUSY;
1566 			}
1567 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1568 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1569 		}
1570 		pdn->num_vfs = num_vfs;
1571 
1572 		/* Assign M64 window accordingly */
1573 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1574 		if (ret) {
1575 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1576 			goto m64_failed;
1577 		}
1578 
1579 		/*
1580 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1581 		 * the IOV BAR according to the PE# allocated to the VFs.
1582 		 * Otherwise, the PE# for the VF will conflict with others.
1583 		 */
1584 		if (!pdn->m64_single_mode) {
1585 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1586 			if (ret)
1587 				goto m64_failed;
1588 		}
1589 	}
1590 
1591 	/* Setup VF PEs */
1592 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1593 
1594 	return 0;
1595 
1596 m64_failed:
1597 	if (pdn->m64_single_mode) {
1598 		for (i = 0; i < num_vfs; i++) {
1599 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1600 				continue;
1601 
1602 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1603 			pnv_ioda_free_pe(pe);
1604 		}
1605 	} else
1606 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1607 
1608 	/* Releasing pe_num_map */
1609 	kfree(pdn->pe_num_map);
1610 
1611 	return ret;
1612 }
1613 
1614 int pcibios_sriov_disable(struct pci_dev *pdev)
1615 {
1616 	pnv_pci_sriov_disable(pdev);
1617 
1618 	/* Release PCI data */
1619 	remove_dev_pci_data(pdev);
1620 	return 0;
1621 }
1622 
1623 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1624 {
1625 	/* Allocate PCI data */
1626 	add_dev_pci_data(pdev);
1627 
1628 	return pnv_pci_sriov_enable(pdev, num_vfs);
1629 }
1630 #endif /* CONFIG_PCI_IOV */
1631 
1632 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1633 {
1634 	struct pci_dn *pdn = pci_get_pdn(pdev);
1635 	struct pnv_ioda_pe *pe;
1636 
1637 	/*
1638 	 * The function can be called while the PE#
1639 	 * hasn't been assigned. Do nothing for the
1640 	 * case.
1641 	 */
1642 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1643 		return;
1644 
1645 	pe = &phb->ioda.pe_array[pdn->pe_number];
1646 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1647 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1648 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1649 	/*
1650 	 * Note: iommu_add_device() will fail here as
1651 	 * for physical PE: the device is already added by now;
1652 	 * for virtual PE: sysfs entries are not ready yet and
1653 	 * tce_iommu_bus_notifier will add the device to a group later.
1654 	 */
1655 }
1656 
1657 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1658 {
1659 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1660 	struct pnv_phb *phb = hose->private_data;
1661 	struct pci_dn *pdn = pci_get_pdn(pdev);
1662 	struct pnv_ioda_pe *pe;
1663 	uint64_t top;
1664 	bool bypass = false;
1665 
1666 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1667 		return -ENODEV;;
1668 
1669 	pe = &phb->ioda.pe_array[pdn->pe_number];
1670 	if (pe->tce_bypass_enabled) {
1671 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1672 		bypass = (dma_mask >= top);
1673 	}
1674 
1675 	if (bypass) {
1676 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1677 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1678 	} else {
1679 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1680 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1681 	}
1682 	*pdev->dev.dma_mask = dma_mask;
1683 
1684 	/* Update peer npu devices */
1685 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1686 
1687 	return 0;
1688 }
1689 
1690 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1691 {
1692 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1693 	struct pnv_phb *phb = hose->private_data;
1694 	struct pci_dn *pdn = pci_get_pdn(pdev);
1695 	struct pnv_ioda_pe *pe;
1696 	u64 end, mask;
1697 
1698 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1699 		return 0;
1700 
1701 	pe = &phb->ioda.pe_array[pdn->pe_number];
1702 	if (!pe->tce_bypass_enabled)
1703 		return __dma_get_required_mask(&pdev->dev);
1704 
1705 
1706 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1707 	mask = 1ULL << (fls64(end) - 1);
1708 	mask += mask - 1;
1709 
1710 	return mask;
1711 }
1712 
1713 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1714 				   struct pci_bus *bus)
1715 {
1716 	struct pci_dev *dev;
1717 
1718 	list_for_each_entry(dev, &bus->devices, bus_list) {
1719 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1720 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1721 		iommu_add_device(&dev->dev);
1722 
1723 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1724 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1725 	}
1726 }
1727 
1728 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1729 		unsigned long index, unsigned long npages, bool rm)
1730 {
1731 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1732 			&tbl->it_group_list, struct iommu_table_group_link,
1733 			next);
1734 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1735 			struct pnv_ioda_pe, table_group);
1736 	__be64 __iomem *invalidate = rm ?
1737 		(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1738 		pe->phb->ioda.tce_inval_reg;
1739 	unsigned long start, end, inc;
1740 	const unsigned shift = tbl->it_page_shift;
1741 
1742 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1743 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1744 			npages - 1);
1745 
1746 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1747 	if (tbl->it_busno) {
1748 		start <<= shift;
1749 		end <<= shift;
1750 		inc = 128ull << shift;
1751 		start |= tbl->it_busno;
1752 		end |= tbl->it_busno;
1753 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1754 		/* p7ioc-style invalidation, 2 TCEs per write */
1755 		start |= (1ull << 63);
1756 		end |= (1ull << 63);
1757 		inc = 16;
1758         } else {
1759 		/* Default (older HW) */
1760                 inc = 128;
1761 	}
1762 
1763         end |= inc - 1;	/* round up end to be different than start */
1764 
1765         mb(); /* Ensure above stores are visible */
1766         while (start <= end) {
1767 		if (rm)
1768 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1769 		else
1770 			__raw_writeq(cpu_to_be64(start), invalidate);
1771                 start += inc;
1772         }
1773 
1774 	/*
1775 	 * The iommu layer will do another mb() for us on build()
1776 	 * and we don't care on free()
1777 	 */
1778 }
1779 
1780 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1781 		long npages, unsigned long uaddr,
1782 		enum dma_data_direction direction,
1783 		struct dma_attrs *attrs)
1784 {
1785 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1786 			attrs);
1787 
1788 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1789 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1790 
1791 	return ret;
1792 }
1793 
1794 #ifdef CONFIG_IOMMU_API
1795 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1796 		unsigned long *hpa, enum dma_data_direction *direction)
1797 {
1798 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1799 
1800 	if (!ret && (tbl->it_type &
1801 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1802 		pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1803 
1804 	return ret;
1805 }
1806 #endif
1807 
1808 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1809 		long npages)
1810 {
1811 	pnv_tce_free(tbl, index, npages);
1812 
1813 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1814 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1815 }
1816 
1817 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1818 	.set = pnv_ioda1_tce_build,
1819 #ifdef CONFIG_IOMMU_API
1820 	.exchange = pnv_ioda1_tce_xchg,
1821 #endif
1822 	.clear = pnv_ioda1_tce_free,
1823 	.get = pnv_tce_get,
1824 };
1825 
1826 #define TCE_KILL_INVAL_ALL  PPC_BIT(0)
1827 #define TCE_KILL_INVAL_PE   PPC_BIT(1)
1828 #define TCE_KILL_INVAL_TCE  PPC_BIT(2)
1829 
1830 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1831 {
1832 	const unsigned long val = TCE_KILL_INVAL_ALL;
1833 
1834 	mb(); /* Ensure previous TCE table stores are visible */
1835 	if (rm)
1836 		__raw_rm_writeq(cpu_to_be64(val),
1837 				(__be64 __iomem *)
1838 				phb->ioda.tce_inval_reg_phys);
1839 	else
1840 		__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1841 }
1842 
1843 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1844 {
1845 	/* 01xb - invalidate TCEs that match the specified PE# */
1846 	unsigned long val = TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1847 	struct pnv_phb *phb = pe->phb;
1848 
1849 	if (!phb->ioda.tce_inval_reg)
1850 		return;
1851 
1852 	mb(); /* Ensure above stores are visible */
1853 	__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1854 }
1855 
1856 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1857 		__be64 __iomem *invalidate, unsigned shift,
1858 		unsigned long index, unsigned long npages)
1859 {
1860 	unsigned long start, end, inc;
1861 
1862 	/* We'll invalidate DMA address in PE scope */
1863 	start = TCE_KILL_INVAL_TCE;
1864 	start |= (pe_number & 0xFF);
1865 	end = start;
1866 
1867 	/* Figure out the start, end and step */
1868 	start |= (index << shift);
1869 	end |= ((index + npages - 1) << shift);
1870 	inc = (0x1ull << shift);
1871 	mb();
1872 
1873 	while (start <= end) {
1874 		if (rm)
1875 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1876 		else
1877 			__raw_writeq(cpu_to_be64(start), invalidate);
1878 		start += inc;
1879 	}
1880 }
1881 
1882 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1883 		unsigned long index, unsigned long npages, bool rm)
1884 {
1885 	struct iommu_table_group_link *tgl;
1886 
1887 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1888 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1889 				struct pnv_ioda_pe, table_group);
1890 		__be64 __iomem *invalidate = rm ?
1891 			(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1892 			pe->phb->ioda.tce_inval_reg;
1893 
1894 		if (pe->phb->type == PNV_PHB_NPU) {
1895 			/*
1896 			 * The NVLink hardware does not support TCE kill
1897 			 * per TCE entry so we have to invalidate
1898 			 * the entire cache for it.
1899 			 */
1900 			pnv_pci_ioda2_tce_invalidate_entire(pe->phb, rm);
1901 			continue;
1902 		}
1903 		pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1904 			invalidate, tbl->it_page_shift,
1905 			index, npages);
1906 	}
1907 }
1908 
1909 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1910 		long npages, unsigned long uaddr,
1911 		enum dma_data_direction direction,
1912 		struct dma_attrs *attrs)
1913 {
1914 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1915 			attrs);
1916 
1917 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1918 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1919 
1920 	return ret;
1921 }
1922 
1923 #ifdef CONFIG_IOMMU_API
1924 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1925 		unsigned long *hpa, enum dma_data_direction *direction)
1926 {
1927 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1928 
1929 	if (!ret && (tbl->it_type &
1930 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1931 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1932 
1933 	return ret;
1934 }
1935 #endif
1936 
1937 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1938 		long npages)
1939 {
1940 	pnv_tce_free(tbl, index, npages);
1941 
1942 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1943 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1944 }
1945 
1946 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1947 {
1948 	pnv_pci_ioda2_table_free_pages(tbl);
1949 	iommu_free_table(tbl, "pnv");
1950 }
1951 
1952 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1953 	.set = pnv_ioda2_tce_build,
1954 #ifdef CONFIG_IOMMU_API
1955 	.exchange = pnv_ioda2_tce_xchg,
1956 #endif
1957 	.clear = pnv_ioda2_tce_free,
1958 	.get = pnv_tce_get,
1959 	.free = pnv_ioda2_table_free,
1960 };
1961 
1962 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1963 {
1964 	unsigned int *weight = (unsigned int *)data;
1965 
1966 	/* This is quite simplistic. The "base" weight of a device
1967 	 * is 10. 0 means no DMA is to be accounted for it.
1968 	 */
1969 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1970 		return 0;
1971 
1972 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1973 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1974 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1975 		*weight += 3;
1976 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1977 		*weight += 15;
1978 	else
1979 		*weight += 10;
1980 
1981 	return 0;
1982 }
1983 
1984 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1985 {
1986 	unsigned int weight = 0;
1987 
1988 	/* SRIOV VF has same DMA32 weight as its PF */
1989 #ifdef CONFIG_PCI_IOV
1990 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1991 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1992 		return weight;
1993 	}
1994 #endif
1995 
1996 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1997 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1998 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1999 		struct pci_dev *pdev;
2000 
2001 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2002 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2003 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2004 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2005 	}
2006 
2007 	return weight;
2008 }
2009 
2010 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2011 				       struct pnv_ioda_pe *pe)
2012 {
2013 
2014 	struct page *tce_mem = NULL;
2015 	struct iommu_table *tbl;
2016 	unsigned int weight, total_weight = 0;
2017 	unsigned int tce32_segsz, base, segs, avail, i;
2018 	int64_t rc;
2019 	void *addr;
2020 
2021 	/* XXX FIXME: Handle 64-bit only DMA devices */
2022 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2023 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2024 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2025 	if (!weight)
2026 		return;
2027 
2028 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2029 		     &total_weight);
2030 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2031 	if (!segs)
2032 		segs = 1;
2033 
2034 	/*
2035 	 * Allocate contiguous DMA32 segments. We begin with the expected
2036 	 * number of segments. With one more attempt, the number of DMA32
2037 	 * segments to be allocated is decreased by one until one segment
2038 	 * is allocated successfully.
2039 	 */
2040 	do {
2041 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2042 			for (avail = 0, i = base; i < base + segs; i++) {
2043 				if (phb->ioda.dma32_segmap[i] ==
2044 				    IODA_INVALID_PE)
2045 					avail++;
2046 			}
2047 
2048 			if (avail == segs)
2049 				goto found;
2050 		}
2051 	} while (--segs);
2052 
2053 	if (!segs) {
2054 		pe_warn(pe, "No available DMA32 segments\n");
2055 		return;
2056 	}
2057 
2058 found:
2059 	tbl = pnv_pci_table_alloc(phb->hose->node);
2060 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2061 			pe->pe_number);
2062 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2063 
2064 	/* Grab a 32-bit TCE table */
2065 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2066 		weight, total_weight, base, segs);
2067 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2068 		base * PNV_IODA1_DMA32_SEGSIZE,
2069 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2070 
2071 	/* XXX Currently, we allocate one big contiguous table for the
2072 	 * TCEs. We only really need one chunk per 256M of TCE space
2073 	 * (ie per segment) but that's an optimization for later, it
2074 	 * requires some added smarts with our get/put_tce implementation
2075 	 *
2076 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2077 	 * bytes
2078 	 */
2079 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2080 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2081 				   get_order(tce32_segsz * segs));
2082 	if (!tce_mem) {
2083 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2084 		goto fail;
2085 	}
2086 	addr = page_address(tce_mem);
2087 	memset(addr, 0, tce32_segsz * segs);
2088 
2089 	/* Configure HW */
2090 	for (i = 0; i < segs; i++) {
2091 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2092 					      pe->pe_number,
2093 					      base + i, 1,
2094 					      __pa(addr) + tce32_segsz * i,
2095 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2096 		if (rc) {
2097 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2098 			       " err %ld\n", rc);
2099 			goto fail;
2100 		}
2101 	}
2102 
2103 	/* Setup DMA32 segment mapping */
2104 	for (i = base; i < base + segs; i++)
2105 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2106 
2107 	/* Setup linux iommu table */
2108 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2109 				  base * PNV_IODA1_DMA32_SEGSIZE,
2110 				  IOMMU_PAGE_SHIFT_4K);
2111 
2112 	/* OPAL variant of P7IOC SW invalidated TCEs */
2113 	if (phb->ioda.tce_inval_reg)
2114 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2115 				 TCE_PCI_SWINV_FREE   |
2116 				 TCE_PCI_SWINV_PAIR);
2117 
2118 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2119 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2120 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2121 	iommu_init_table(tbl, phb->hose->node);
2122 
2123 	if (pe->flags & PNV_IODA_PE_DEV) {
2124 		/*
2125 		 * Setting table base here only for carrying iommu_group
2126 		 * further down to let iommu_add_device() do the job.
2127 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2128 		 */
2129 		set_iommu_table_base(&pe->pdev->dev, tbl);
2130 		iommu_add_device(&pe->pdev->dev);
2131 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2132 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2133 
2134 	return;
2135  fail:
2136 	/* XXX Failure: Try to fallback to 64-bit only ? */
2137 	if (tce_mem)
2138 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2139 	if (tbl) {
2140 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2141 		iommu_free_table(tbl, "pnv");
2142 	}
2143 }
2144 
2145 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2146 		int num, struct iommu_table *tbl)
2147 {
2148 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2149 			table_group);
2150 	struct pnv_phb *phb = pe->phb;
2151 	int64_t rc;
2152 	const unsigned long size = tbl->it_indirect_levels ?
2153 			tbl->it_level_size : tbl->it_size;
2154 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2155 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2156 
2157 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2158 			start_addr, start_addr + win_size - 1,
2159 			IOMMU_PAGE_SIZE(tbl));
2160 
2161 	/*
2162 	 * Map TCE table through TVT. The TVE index is the PE number
2163 	 * shifted by 1 bit for 32-bits DMA space.
2164 	 */
2165 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2166 			pe->pe_number,
2167 			(pe->pe_number << 1) + num,
2168 			tbl->it_indirect_levels + 1,
2169 			__pa(tbl->it_base),
2170 			size << 3,
2171 			IOMMU_PAGE_SIZE(tbl));
2172 	if (rc) {
2173 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2174 		return rc;
2175 	}
2176 
2177 	pnv_pci_link_table_and_group(phb->hose->node, num,
2178 			tbl, &pe->table_group);
2179 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2180 
2181 	return 0;
2182 }
2183 
2184 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2185 {
2186 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2187 	int64_t rc;
2188 
2189 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2190 	if (enable) {
2191 		phys_addr_t top = memblock_end_of_DRAM();
2192 
2193 		top = roundup_pow_of_two(top);
2194 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2195 						     pe->pe_number,
2196 						     window_id,
2197 						     pe->tce_bypass_base,
2198 						     top);
2199 	} else {
2200 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2201 						     pe->pe_number,
2202 						     window_id,
2203 						     pe->tce_bypass_base,
2204 						     0);
2205 	}
2206 	if (rc)
2207 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2208 	else
2209 		pe->tce_bypass_enabled = enable;
2210 }
2211 
2212 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2213 		__u32 page_shift, __u64 window_size, __u32 levels,
2214 		struct iommu_table *tbl);
2215 
2216 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2217 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2218 		struct iommu_table **ptbl)
2219 {
2220 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2221 			table_group);
2222 	int nid = pe->phb->hose->node;
2223 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2224 	long ret;
2225 	struct iommu_table *tbl;
2226 
2227 	tbl = pnv_pci_table_alloc(nid);
2228 	if (!tbl)
2229 		return -ENOMEM;
2230 
2231 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2232 			bus_offset, page_shift, window_size,
2233 			levels, tbl);
2234 	if (ret) {
2235 		iommu_free_table(tbl, "pnv");
2236 		return ret;
2237 	}
2238 
2239 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2240 	if (pe->phb->ioda.tce_inval_reg)
2241 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2242 
2243 	*ptbl = tbl;
2244 
2245 	return 0;
2246 }
2247 
2248 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2249 {
2250 	struct iommu_table *tbl = NULL;
2251 	long rc;
2252 
2253 	/*
2254 	 * crashkernel= specifies the kdump kernel's maximum memory at
2255 	 * some offset and there is no guaranteed the result is a power
2256 	 * of 2, which will cause errors later.
2257 	 */
2258 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2259 
2260 	/*
2261 	 * In memory constrained environments, e.g. kdump kernel, the
2262 	 * DMA window can be larger than available memory, which will
2263 	 * cause errors later.
2264 	 */
2265 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2266 
2267 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2268 			IOMMU_PAGE_SHIFT_4K,
2269 			window_size,
2270 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2271 	if (rc) {
2272 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2273 				rc);
2274 		return rc;
2275 	}
2276 
2277 	iommu_init_table(tbl, pe->phb->hose->node);
2278 
2279 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2280 	if (rc) {
2281 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2282 				rc);
2283 		pnv_ioda2_table_free(tbl);
2284 		return rc;
2285 	}
2286 
2287 	if (!pnv_iommu_bypass_disabled)
2288 		pnv_pci_ioda2_set_bypass(pe, true);
2289 
2290 	/* OPAL variant of PHB3 invalidated TCEs */
2291 	if (pe->phb->ioda.tce_inval_reg)
2292 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2293 
2294 	/*
2295 	 * Setting table base here only for carrying iommu_group
2296 	 * further down to let iommu_add_device() do the job.
2297 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2298 	 */
2299 	if (pe->flags & PNV_IODA_PE_DEV)
2300 		set_iommu_table_base(&pe->pdev->dev, tbl);
2301 
2302 	return 0;
2303 }
2304 
2305 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2306 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2307 		int num)
2308 {
2309 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2310 			table_group);
2311 	struct pnv_phb *phb = pe->phb;
2312 	long ret;
2313 
2314 	pe_info(pe, "Removing DMA window #%d\n", num);
2315 
2316 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2317 			(pe->pe_number << 1) + num,
2318 			0/* levels */, 0/* table address */,
2319 			0/* table size */, 0/* page size */);
2320 	if (ret)
2321 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2322 	else
2323 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2324 
2325 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2326 
2327 	return ret;
2328 }
2329 #endif
2330 
2331 #ifdef CONFIG_IOMMU_API
2332 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2333 		__u64 window_size, __u32 levels)
2334 {
2335 	unsigned long bytes = 0;
2336 	const unsigned window_shift = ilog2(window_size);
2337 	unsigned entries_shift = window_shift - page_shift;
2338 	unsigned table_shift = entries_shift + 3;
2339 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2340 	unsigned long direct_table_size;
2341 
2342 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2343 			(window_size > memory_hotplug_max()) ||
2344 			!is_power_of_2(window_size))
2345 		return 0;
2346 
2347 	/* Calculate a direct table size from window_size and levels */
2348 	entries_shift = (entries_shift + levels - 1) / levels;
2349 	table_shift = entries_shift + 3;
2350 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2351 	direct_table_size =  1UL << table_shift;
2352 
2353 	for ( ; levels; --levels) {
2354 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2355 
2356 		tce_table_size /= direct_table_size;
2357 		tce_table_size <<= 3;
2358 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2359 	}
2360 
2361 	return bytes;
2362 }
2363 
2364 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2365 {
2366 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2367 						table_group);
2368 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2369 	struct iommu_table *tbl = pe->table_group.tables[0];
2370 
2371 	pnv_pci_ioda2_set_bypass(pe, false);
2372 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2373 	pnv_ioda2_table_free(tbl);
2374 }
2375 
2376 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2377 {
2378 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2379 						table_group);
2380 
2381 	pnv_pci_ioda2_setup_default_config(pe);
2382 }
2383 
2384 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2385 	.get_table_size = pnv_pci_ioda2_get_table_size,
2386 	.create_table = pnv_pci_ioda2_create_table,
2387 	.set_window = pnv_pci_ioda2_set_window,
2388 	.unset_window = pnv_pci_ioda2_unset_window,
2389 	.take_ownership = pnv_ioda2_take_ownership,
2390 	.release_ownership = pnv_ioda2_release_ownership,
2391 };
2392 
2393 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2394 {
2395 	struct pci_controller *hose;
2396 	struct pnv_phb *phb;
2397 	struct pnv_ioda_pe **ptmppe = opaque;
2398 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2399 	struct pci_dn *pdn = pci_get_pdn(pdev);
2400 
2401 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2402 		return 0;
2403 
2404 	hose = pci_bus_to_host(pdev->bus);
2405 	phb = hose->private_data;
2406 	if (phb->type != PNV_PHB_NPU)
2407 		return 0;
2408 
2409 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2410 
2411 	return 1;
2412 }
2413 
2414 /*
2415  * This returns PE of associated NPU.
2416  * This assumes that NPU is in the same IOMMU group with GPU and there is
2417  * no other PEs.
2418  */
2419 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2420 		struct iommu_table_group *table_group)
2421 {
2422 	struct pnv_ioda_pe *npe = NULL;
2423 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2424 			gpe_table_group_to_npe_cb);
2425 
2426 	BUG_ON(!ret || !npe);
2427 
2428 	return npe;
2429 }
2430 
2431 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2432 		int num, struct iommu_table *tbl)
2433 {
2434 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2435 
2436 	if (ret)
2437 		return ret;
2438 
2439 	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2440 	if (ret)
2441 		pnv_pci_ioda2_unset_window(table_group, num);
2442 
2443 	return ret;
2444 }
2445 
2446 static long pnv_pci_ioda2_npu_unset_window(
2447 		struct iommu_table_group *table_group,
2448 		int num)
2449 {
2450 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2451 
2452 	if (ret)
2453 		return ret;
2454 
2455 	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2456 }
2457 
2458 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2459 {
2460 	/*
2461 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2462 	 * the iommu_table if 32bit DMA is enabled.
2463 	 */
2464 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2465 	pnv_ioda2_take_ownership(table_group);
2466 }
2467 
2468 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2469 	.get_table_size = pnv_pci_ioda2_get_table_size,
2470 	.create_table = pnv_pci_ioda2_create_table,
2471 	.set_window = pnv_pci_ioda2_npu_set_window,
2472 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2473 	.take_ownership = pnv_ioda2_npu_take_ownership,
2474 	.release_ownership = pnv_ioda2_release_ownership,
2475 };
2476 
2477 static void pnv_pci_ioda_setup_iommu_api(void)
2478 {
2479 	struct pci_controller *hose, *tmp;
2480 	struct pnv_phb *phb;
2481 	struct pnv_ioda_pe *pe, *gpe;
2482 
2483 	/*
2484 	 * Now we have all PHBs discovered, time to add NPU devices to
2485 	 * the corresponding IOMMU groups.
2486 	 */
2487 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2488 		phb = hose->private_data;
2489 
2490 		if (phb->type != PNV_PHB_NPU)
2491 			continue;
2492 
2493 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2494 			gpe = pnv_pci_npu_setup_iommu(pe);
2495 			if (gpe)
2496 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2497 		}
2498 	}
2499 }
2500 #else /* !CONFIG_IOMMU_API */
2501 static void pnv_pci_ioda_setup_iommu_api(void) { };
2502 #endif
2503 
2504 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2505 {
2506 	const __be64 *swinvp;
2507 
2508 	/* OPAL variant of PHB3 invalidated TCEs */
2509 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2510 	if (!swinvp)
2511 		return;
2512 
2513 	phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2514 	phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2515 }
2516 
2517 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2518 		unsigned levels, unsigned long limit,
2519 		unsigned long *current_offset, unsigned long *total_allocated)
2520 {
2521 	struct page *tce_mem = NULL;
2522 	__be64 *addr, *tmp;
2523 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2524 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2525 	unsigned entries = 1UL << (shift - 3);
2526 	long i;
2527 
2528 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2529 	if (!tce_mem) {
2530 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2531 		return NULL;
2532 	}
2533 	addr = page_address(tce_mem);
2534 	memset(addr, 0, allocated);
2535 	*total_allocated += allocated;
2536 
2537 	--levels;
2538 	if (!levels) {
2539 		*current_offset += allocated;
2540 		return addr;
2541 	}
2542 
2543 	for (i = 0; i < entries; ++i) {
2544 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2545 				levels, limit, current_offset, total_allocated);
2546 		if (!tmp)
2547 			break;
2548 
2549 		addr[i] = cpu_to_be64(__pa(tmp) |
2550 				TCE_PCI_READ | TCE_PCI_WRITE);
2551 
2552 		if (*current_offset >= limit)
2553 			break;
2554 	}
2555 
2556 	return addr;
2557 }
2558 
2559 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2560 		unsigned long size, unsigned level);
2561 
2562 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2563 		__u32 page_shift, __u64 window_size, __u32 levels,
2564 		struct iommu_table *tbl)
2565 {
2566 	void *addr;
2567 	unsigned long offset = 0, level_shift, total_allocated = 0;
2568 	const unsigned window_shift = ilog2(window_size);
2569 	unsigned entries_shift = window_shift - page_shift;
2570 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2571 	const unsigned long tce_table_size = 1UL << table_shift;
2572 
2573 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2574 		return -EINVAL;
2575 
2576 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2577 		return -EINVAL;
2578 
2579 	/* Adjust direct table size from window_size and levels */
2580 	entries_shift = (entries_shift + levels - 1) / levels;
2581 	level_shift = entries_shift + 3;
2582 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2583 
2584 	/* Allocate TCE table */
2585 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2586 			levels, tce_table_size, &offset, &total_allocated);
2587 
2588 	/* addr==NULL means that the first level allocation failed */
2589 	if (!addr)
2590 		return -ENOMEM;
2591 
2592 	/*
2593 	 * First level was allocated but some lower level failed as
2594 	 * we did not allocate as much as we wanted,
2595 	 * release partially allocated table.
2596 	 */
2597 	if (offset < tce_table_size) {
2598 		pnv_pci_ioda2_table_do_free_pages(addr,
2599 				1ULL << (level_shift - 3), levels - 1);
2600 		return -ENOMEM;
2601 	}
2602 
2603 	/* Setup linux iommu table */
2604 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2605 			page_shift);
2606 	tbl->it_level_size = 1ULL << (level_shift - 3);
2607 	tbl->it_indirect_levels = levels - 1;
2608 	tbl->it_allocated_size = total_allocated;
2609 
2610 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2611 			window_size, tce_table_size, bus_offset);
2612 
2613 	return 0;
2614 }
2615 
2616 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2617 		unsigned long size, unsigned level)
2618 {
2619 	const unsigned long addr_ul = (unsigned long) addr &
2620 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2621 
2622 	if (level) {
2623 		long i;
2624 		u64 *tmp = (u64 *) addr_ul;
2625 
2626 		for (i = 0; i < size; ++i) {
2627 			unsigned long hpa = be64_to_cpu(tmp[i]);
2628 
2629 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2630 				continue;
2631 
2632 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2633 					level - 1);
2634 		}
2635 	}
2636 
2637 	free_pages(addr_ul, get_order(size << 3));
2638 }
2639 
2640 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2641 {
2642 	const unsigned long size = tbl->it_indirect_levels ?
2643 			tbl->it_level_size : tbl->it_size;
2644 
2645 	if (!tbl->it_size)
2646 		return;
2647 
2648 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2649 			tbl->it_indirect_levels);
2650 }
2651 
2652 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2653 				       struct pnv_ioda_pe *pe)
2654 {
2655 	int64_t rc;
2656 
2657 	/* TVE #1 is selected by PCI address bit 59 */
2658 	pe->tce_bypass_base = 1ull << 59;
2659 
2660 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2661 			pe->pe_number);
2662 
2663 	/* The PE will reserve all possible 32-bits space */
2664 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2665 		phb->ioda.m32_pci_base);
2666 
2667 	/* Setup linux iommu table */
2668 	pe->table_group.tce32_start = 0;
2669 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2670 	pe->table_group.max_dynamic_windows_supported =
2671 			IOMMU_TABLE_GROUP_MAX_TABLES;
2672 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2673 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2674 #ifdef CONFIG_IOMMU_API
2675 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2676 #endif
2677 
2678 	rc = pnv_pci_ioda2_setup_default_config(pe);
2679 	if (rc)
2680 		return;
2681 
2682 	if (pe->flags & PNV_IODA_PE_DEV)
2683 		iommu_add_device(&pe->pdev->dev);
2684 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2685 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2686 }
2687 
2688 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2689 {
2690 	struct pci_controller *hose = phb->hose;
2691 	struct pnv_ioda_pe *pe;
2692 	unsigned int weight;
2693 
2694 	/* If we have more PE# than segments available, hand out one
2695 	 * per PE until we run out and let the rest fail. If not,
2696 	 * then we assign at least one segment per PE, plus more based
2697 	 * on the amount of devices under that PE
2698 	 */
2699 	pr_info("PCI: Domain %04x has %d available 32-bit DMA segments\n",
2700 		hose->global_number, phb->ioda.dma32_count);
2701 
2702 	pnv_pci_ioda_setup_opal_tce_kill(phb);
2703 
2704 	/* Walk our PE list and configure their DMA segments */
2705 	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2706 		weight = pnv_pci_ioda_pe_dma_weight(pe);
2707 		if (!weight)
2708 			continue;
2709 
2710 		/*
2711 		 * For IODA2 compliant PHB3, we needn't care about the weight.
2712 		 * The all available 32-bits DMA space will be assigned to
2713 		 * the specific PE.
2714 		 */
2715 		if (phb->type == PNV_PHB_IODA1) {
2716 			pnv_pci_ioda1_setup_dma_pe(phb, pe);
2717 		} else if (phb->type == PNV_PHB_IODA2) {
2718 			pe_info(pe, "Assign DMA32 space\n");
2719 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
2720 		} else if (phb->type == PNV_PHB_NPU) {
2721 			/*
2722 			 * We initialise the DMA space for an NPU PHB
2723 			 * after setup of the PHB is complete as we
2724 			 * point the NPU TVT to the the same location
2725 			 * as the PHB3 TVT.
2726 			 */
2727 		}
2728 	}
2729 }
2730 
2731 #ifdef CONFIG_PCI_MSI
2732 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2733 {
2734 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2735 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2736 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2737 					   ioda.irq_chip);
2738 	int64_t rc;
2739 
2740 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2741 	WARN_ON_ONCE(rc);
2742 
2743 	icp_native_eoi(d);
2744 }
2745 
2746 
2747 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2748 {
2749 	struct irq_data *idata;
2750 	struct irq_chip *ichip;
2751 
2752 	if (phb->type != PNV_PHB_IODA2)
2753 		return;
2754 
2755 	if (!phb->ioda.irq_chip_init) {
2756 		/*
2757 		 * First time we setup an MSI IRQ, we need to setup the
2758 		 * corresponding IRQ chip to route correctly.
2759 		 */
2760 		idata = irq_get_irq_data(virq);
2761 		ichip = irq_data_get_irq_chip(idata);
2762 		phb->ioda.irq_chip_init = 1;
2763 		phb->ioda.irq_chip = *ichip;
2764 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2765 	}
2766 	irq_set_chip(virq, &phb->ioda.irq_chip);
2767 }
2768 
2769 #ifdef CONFIG_CXL_BASE
2770 
2771 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2772 {
2773 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2774 
2775 	return of_node_get(hose->dn);
2776 }
2777 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2778 
2779 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2780 {
2781 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2782 	struct pnv_phb *phb = hose->private_data;
2783 	struct pnv_ioda_pe *pe;
2784 	int rc;
2785 
2786 	pe = pnv_ioda_get_pe(dev);
2787 	if (!pe)
2788 		return -ENODEV;
2789 
2790 	pe_info(pe, "Switching PHB to CXL\n");
2791 
2792 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2793 	if (rc)
2794 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2795 
2796 	return rc;
2797 }
2798 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2799 
2800 /* Find PHB for cxl dev and allocate MSI hwirqs?
2801  * Returns the absolute hardware IRQ number
2802  */
2803 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2804 {
2805 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2806 	struct pnv_phb *phb = hose->private_data;
2807 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2808 
2809 	if (hwirq < 0) {
2810 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
2811 		return -ENOSPC;
2812 	}
2813 
2814 	return phb->msi_base + hwirq;
2815 }
2816 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2817 
2818 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2819 {
2820 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2821 	struct pnv_phb *phb = hose->private_data;
2822 
2823 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2824 }
2825 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2826 
2827 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2828 				  struct pci_dev *dev)
2829 {
2830 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2831 	struct pnv_phb *phb = hose->private_data;
2832 	int i, hwirq;
2833 
2834 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
2835 		if (!irqs->range[i])
2836 			continue;
2837 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2838 			 i, irqs->offset[i],
2839 			 irqs->range[i]);
2840 		hwirq = irqs->offset[i] - phb->msi_base;
2841 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2842 				       irqs->range[i]);
2843 	}
2844 }
2845 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2846 
2847 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2848 			       struct pci_dev *dev, int num)
2849 {
2850 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2851 	struct pnv_phb *phb = hose->private_data;
2852 	int i, hwirq, try;
2853 
2854 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2855 
2856 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
2857 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2858 		try = num;
2859 		while (try) {
2860 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2861 			if (hwirq >= 0)
2862 				break;
2863 			try /= 2;
2864 		}
2865 		if (!try)
2866 			goto fail;
2867 
2868 		irqs->offset[i] = phb->msi_base + hwirq;
2869 		irqs->range[i] = try;
2870 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2871 			 i, irqs->offset[i], irqs->range[i]);
2872 		num -= try;
2873 	}
2874 	if (num)
2875 		goto fail;
2876 
2877 	return 0;
2878 fail:
2879 	pnv_cxl_release_hwirq_ranges(irqs, dev);
2880 	return -ENOSPC;
2881 }
2882 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2883 
2884 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2885 {
2886 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2887 	struct pnv_phb *phb = hose->private_data;
2888 
2889 	return phb->msi_bmp.irq_count;
2890 }
2891 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2892 
2893 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2894 			   unsigned int virq)
2895 {
2896 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2897 	struct pnv_phb *phb = hose->private_data;
2898 	unsigned int xive_num = hwirq - phb->msi_base;
2899 	struct pnv_ioda_pe *pe;
2900 	int rc;
2901 
2902 	if (!(pe = pnv_ioda_get_pe(dev)))
2903 		return -ENODEV;
2904 
2905 	/* Assign XIVE to PE */
2906 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2907 	if (rc) {
2908 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2909 			"hwirq 0x%x XIVE 0x%x PE\n",
2910 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2911 		return -EIO;
2912 	}
2913 	set_msi_irq_chip(phb, virq);
2914 
2915 	return 0;
2916 }
2917 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2918 #endif
2919 
2920 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2921 				  unsigned int hwirq, unsigned int virq,
2922 				  unsigned int is_64, struct msi_msg *msg)
2923 {
2924 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2925 	unsigned int xive_num = hwirq - phb->msi_base;
2926 	__be32 data;
2927 	int rc;
2928 
2929 	/* No PE assigned ? bail out ... no MSI for you ! */
2930 	if (pe == NULL)
2931 		return -ENXIO;
2932 
2933 	/* Check if we have an MVE */
2934 	if (pe->mve_number < 0)
2935 		return -ENXIO;
2936 
2937 	/* Force 32-bit MSI on some broken devices */
2938 	if (dev->no_64bit_msi)
2939 		is_64 = 0;
2940 
2941 	/* Assign XIVE to PE */
2942 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2943 	if (rc) {
2944 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2945 			pci_name(dev), rc, xive_num);
2946 		return -EIO;
2947 	}
2948 
2949 	if (is_64) {
2950 		__be64 addr64;
2951 
2952 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2953 				     &addr64, &data);
2954 		if (rc) {
2955 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2956 				pci_name(dev), rc);
2957 			return -EIO;
2958 		}
2959 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2960 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2961 	} else {
2962 		__be32 addr32;
2963 
2964 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2965 				     &addr32, &data);
2966 		if (rc) {
2967 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2968 				pci_name(dev), rc);
2969 			return -EIO;
2970 		}
2971 		msg->address_hi = 0;
2972 		msg->address_lo = be32_to_cpu(addr32);
2973 	}
2974 	msg->data = be32_to_cpu(data);
2975 
2976 	set_msi_irq_chip(phb, virq);
2977 
2978 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2979 		 " address=%x_%08x data=%x PE# %d\n",
2980 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2981 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2982 
2983 	return 0;
2984 }
2985 
2986 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2987 {
2988 	unsigned int count;
2989 	const __be32 *prop = of_get_property(phb->hose->dn,
2990 					     "ibm,opal-msi-ranges", NULL);
2991 	if (!prop) {
2992 		/* BML Fallback */
2993 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2994 	}
2995 	if (!prop)
2996 		return;
2997 
2998 	phb->msi_base = be32_to_cpup(prop);
2999 	count = be32_to_cpup(prop + 1);
3000 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
3001 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3002 		       phb->hose->global_number);
3003 		return;
3004 	}
3005 
3006 	phb->msi_setup = pnv_pci_ioda_msi_setup;
3007 	phb->msi32_support = 1;
3008 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3009 		count, phb->msi_base);
3010 }
3011 #else
3012 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3013 #endif /* CONFIG_PCI_MSI */
3014 
3015 #ifdef CONFIG_PCI_IOV
3016 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3017 {
3018 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3019 	struct pnv_phb *phb = hose->private_data;
3020 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3021 	struct resource *res;
3022 	int i;
3023 	resource_size_t size, total_vf_bar_sz;
3024 	struct pci_dn *pdn;
3025 	int mul, total_vfs;
3026 
3027 	if (!pdev->is_physfn || pdev->is_added)
3028 		return;
3029 
3030 	pdn = pci_get_pdn(pdev);
3031 	pdn->vfs_expanded = 0;
3032 	pdn->m64_single_mode = false;
3033 
3034 	total_vfs = pci_sriov_get_totalvfs(pdev);
3035 	mul = phb->ioda.total_pe_num;
3036 	total_vf_bar_sz = 0;
3037 
3038 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3039 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3040 		if (!res->flags || res->parent)
3041 			continue;
3042 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
3043 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
3044 					" non M64 VF BAR%d: %pR. \n",
3045 				 i, res);
3046 			goto truncate_iov;
3047 		}
3048 
3049 		total_vf_bar_sz += pci_iov_resource_size(pdev,
3050 				i + PCI_IOV_RESOURCES);
3051 
3052 		/*
3053 		 * If bigger than quarter of M64 segment size, just round up
3054 		 * power of two.
3055 		 *
3056 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3057 		 * with other devices, IOV BAR size is expanded to be
3058 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3059 		 * segment size , the expanded size would equal to half of the
3060 		 * whole M64 space size, which will exhaust the M64 Space and
3061 		 * limit the system flexibility.  This is a design decision to
3062 		 * set the boundary to quarter of the M64 segment size.
3063 		 */
3064 		if (total_vf_bar_sz > gate) {
3065 			mul = roundup_pow_of_two(total_vfs);
3066 			dev_info(&pdev->dev,
3067 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3068 				total_vf_bar_sz, gate, mul);
3069 			pdn->m64_single_mode = true;
3070 			break;
3071 		}
3072 	}
3073 
3074 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3075 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3076 		if (!res->flags || res->parent)
3077 			continue;
3078 
3079 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3080 		/*
3081 		 * On PHB3, the minimum size alignment of M64 BAR in single
3082 		 * mode is 32MB.
3083 		 */
3084 		if (pdn->m64_single_mode && (size < SZ_32M))
3085 			goto truncate_iov;
3086 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3087 		res->end = res->start + size * mul - 1;
3088 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3089 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3090 			 i, res, mul);
3091 	}
3092 	pdn->vfs_expanded = mul;
3093 
3094 	return;
3095 
3096 truncate_iov:
3097 	/* To save MMIO space, IOV BAR is truncated. */
3098 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3099 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3100 		res->flags = 0;
3101 		res->end = res->start - 1;
3102 	}
3103 }
3104 #endif /* CONFIG_PCI_IOV */
3105 
3106 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3107 				  struct resource *res)
3108 {
3109 	struct pnv_phb *phb = pe->phb;
3110 	struct pci_bus_region region;
3111 	int index;
3112 	int64_t rc;
3113 
3114 	if (!res || !res->flags || res->start > res->end)
3115 		return;
3116 
3117 	if (res->flags & IORESOURCE_IO) {
3118 		region.start = res->start - phb->ioda.io_pci_base;
3119 		region.end   = res->end - phb->ioda.io_pci_base;
3120 		index = region.start / phb->ioda.io_segsize;
3121 
3122 		while (index < phb->ioda.total_pe_num &&
3123 		       region.start <= region.end) {
3124 			phb->ioda.io_segmap[index] = pe->pe_number;
3125 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3126 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3127 			if (rc != OPAL_SUCCESS) {
3128 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
3129 				       __func__, rc, index, pe->pe_number);
3130 				break;
3131 			}
3132 
3133 			region.start += phb->ioda.io_segsize;
3134 			index++;
3135 		}
3136 	} else if ((res->flags & IORESOURCE_MEM) &&
3137 		   !pnv_pci_is_mem_pref_64(res->flags)) {
3138 		region.start = res->start -
3139 			       phb->hose->mem_offset[0] -
3140 			       phb->ioda.m32_pci_base;
3141 		region.end   = res->end -
3142 			       phb->hose->mem_offset[0] -
3143 			       phb->ioda.m32_pci_base;
3144 		index = region.start / phb->ioda.m32_segsize;
3145 
3146 		while (index < phb->ioda.total_pe_num &&
3147 		       region.start <= region.end) {
3148 			phb->ioda.m32_segmap[index] = pe->pe_number;
3149 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3150 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3151 			if (rc != OPAL_SUCCESS) {
3152 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
3153 				       __func__, rc, index, pe->pe_number);
3154 				break;
3155 			}
3156 
3157 			region.start += phb->ioda.m32_segsize;
3158 			index++;
3159 		}
3160 	}
3161 }
3162 
3163 /*
3164  * This function is supposed to be called on basis of PE from top
3165  * to bottom style. So the the I/O or MMIO segment assigned to
3166  * parent PE could be overrided by its child PEs if necessary.
3167  */
3168 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3169 {
3170 	struct pci_dev *pdev;
3171 	int i;
3172 
3173 	/*
3174 	 * NOTE: We only care PCI bus based PE for now. For PCI
3175 	 * device based PE, for example SRIOV sensitive VF should
3176 	 * be figured out later.
3177 	 */
3178 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3179 
3180 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3181 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3182 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3183 
3184 		/*
3185 		 * If the PE contains all subordinate PCI buses, the
3186 		 * windows of the child bridges should be mapped to
3187 		 * the PE as well.
3188 		 */
3189 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3190 			continue;
3191 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3192 			pnv_ioda_setup_pe_res(pe,
3193 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3194 	}
3195 }
3196 
3197 static void pnv_pci_ioda_setup_seg(void)
3198 {
3199 	struct pci_controller *tmp, *hose;
3200 	struct pnv_phb *phb;
3201 	struct pnv_ioda_pe *pe;
3202 
3203 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3204 		phb = hose->private_data;
3205 
3206 		/* NPU PHB does not support IO or MMIO segmentation */
3207 		if (phb->type == PNV_PHB_NPU)
3208 			continue;
3209 
3210 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3211 			pnv_ioda_setup_pe_seg(pe);
3212 		}
3213 	}
3214 }
3215 
3216 static void pnv_pci_ioda_setup_DMA(void)
3217 {
3218 	struct pci_controller *hose, *tmp;
3219 	struct pnv_phb *phb;
3220 
3221 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3222 		pnv_ioda_setup_dma(hose->private_data);
3223 
3224 		/* Mark the PHB initialization done */
3225 		phb = hose->private_data;
3226 		phb->initialized = 1;
3227 	}
3228 
3229 	pnv_pci_ioda_setup_iommu_api();
3230 }
3231 
3232 static void pnv_pci_ioda_create_dbgfs(void)
3233 {
3234 #ifdef CONFIG_DEBUG_FS
3235 	struct pci_controller *hose, *tmp;
3236 	struct pnv_phb *phb;
3237 	char name[16];
3238 
3239 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3240 		phb = hose->private_data;
3241 
3242 		sprintf(name, "PCI%04x", hose->global_number);
3243 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3244 		if (!phb->dbgfs)
3245 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3246 				__func__, hose->global_number);
3247 	}
3248 #endif /* CONFIG_DEBUG_FS */
3249 }
3250 
3251 static void pnv_pci_ioda_fixup(void)
3252 {
3253 	pnv_pci_ioda_setup_PEs();
3254 	pnv_pci_ioda_setup_seg();
3255 	pnv_pci_ioda_setup_DMA();
3256 
3257 	pnv_pci_ioda_create_dbgfs();
3258 
3259 #ifdef CONFIG_EEH
3260 	eeh_init();
3261 	eeh_addr_cache_build();
3262 #endif
3263 }
3264 
3265 /*
3266  * Returns the alignment for I/O or memory windows for P2P
3267  * bridges. That actually depends on how PEs are segmented.
3268  * For now, we return I/O or M32 segment size for PE sensitive
3269  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3270  * 1MiB for memory) will be returned.
3271  *
3272  * The current PCI bus might be put into one PE, which was
3273  * create against the parent PCI bridge. For that case, we
3274  * needn't enlarge the alignment so that we can save some
3275  * resources.
3276  */
3277 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3278 						unsigned long type)
3279 {
3280 	struct pci_dev *bridge;
3281 	struct pci_controller *hose = pci_bus_to_host(bus);
3282 	struct pnv_phb *phb = hose->private_data;
3283 	int num_pci_bridges = 0;
3284 
3285 	bridge = bus->self;
3286 	while (bridge) {
3287 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3288 			num_pci_bridges++;
3289 			if (num_pci_bridges >= 2)
3290 				return 1;
3291 		}
3292 
3293 		bridge = bridge->bus->self;
3294 	}
3295 
3296 	/* We fail back to M32 if M64 isn't supported */
3297 	if (phb->ioda.m64_segsize &&
3298 	    pnv_pci_is_mem_pref_64(type))
3299 		return phb->ioda.m64_segsize;
3300 	if (type & IORESOURCE_MEM)
3301 		return phb->ioda.m32_segsize;
3302 
3303 	return phb->ioda.io_segsize;
3304 }
3305 
3306 #ifdef CONFIG_PCI_IOV
3307 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3308 						      int resno)
3309 {
3310 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3311 	struct pnv_phb *phb = hose->private_data;
3312 	struct pci_dn *pdn = pci_get_pdn(pdev);
3313 	resource_size_t align;
3314 
3315 	/*
3316 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3317 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3318 	 * BAR should be size aligned.
3319 	 *
3320 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3321 	 * powernv-specific hardware restriction is gone. But if just use the
3322 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3323 	 * in one segment of M64 #15, which introduces the PE conflict between
3324 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3325 	 * m64_segsize.
3326 	 *
3327 	 * This function returns the total IOV BAR size if M64 BAR is in
3328 	 * Shared PE mode or just VF BAR size if not.
3329 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3330 	 * M64 segment size if IOV BAR size is less.
3331 	 */
3332 	align = pci_iov_resource_size(pdev, resno);
3333 	if (!pdn->vfs_expanded)
3334 		return align;
3335 	if (pdn->m64_single_mode)
3336 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3337 
3338 	return pdn->vfs_expanded * align;
3339 }
3340 #endif /* CONFIG_PCI_IOV */
3341 
3342 /* Prevent enabling devices for which we couldn't properly
3343  * assign a PE
3344  */
3345 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3346 {
3347 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3348 	struct pnv_phb *phb = hose->private_data;
3349 	struct pci_dn *pdn;
3350 
3351 	/* The function is probably called while the PEs have
3352 	 * not be created yet. For example, resource reassignment
3353 	 * during PCI probe period. We just skip the check if
3354 	 * PEs isn't ready.
3355 	 */
3356 	if (!phb->initialized)
3357 		return true;
3358 
3359 	pdn = pci_get_pdn(dev);
3360 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3361 		return false;
3362 
3363 	return true;
3364 }
3365 
3366 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3367 {
3368 	struct pnv_phb *phb = hose->private_data;
3369 
3370 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3371 		       OPAL_ASSERT_RESET);
3372 }
3373 
3374 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3375 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3376 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3377 #ifdef CONFIG_PCI_MSI
3378 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3379 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3380 #endif
3381 	.enable_device_hook	= pnv_pci_enable_device_hook,
3382 	.window_alignment	= pnv_pci_window_alignment,
3383 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3384 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3385 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3386 	.shutdown		= pnv_pci_ioda_shutdown,
3387 };
3388 
3389 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3390 {
3391 	dev_err_once(&npdev->dev,
3392 			"%s operation unsupported for NVLink devices\n",
3393 			__func__);
3394 	return -EPERM;
3395 }
3396 
3397 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3398 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3399 #ifdef CONFIG_PCI_MSI
3400 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3401 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3402 #endif
3403 	.enable_device_hook	= pnv_pci_enable_device_hook,
3404 	.window_alignment	= pnv_pci_window_alignment,
3405 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3406 	.dma_set_mask		= pnv_npu_dma_set_mask,
3407 	.shutdown		= pnv_pci_ioda_shutdown,
3408 };
3409 
3410 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3411 					 u64 hub_id, int ioda_type)
3412 {
3413 	struct pci_controller *hose;
3414 	struct pnv_phb *phb;
3415 	unsigned long size, m64map_off, m32map_off, pemap_off;
3416 	unsigned long iomap_off = 0, dma32map_off = 0;
3417 	const __be64 *prop64;
3418 	const __be32 *prop32;
3419 	int len;
3420 	unsigned int segno;
3421 	u64 phb_id;
3422 	void *aux;
3423 	long rc;
3424 
3425 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3426 
3427 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3428 	if (!prop64) {
3429 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3430 		return;
3431 	}
3432 	phb_id = be64_to_cpup(prop64);
3433 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3434 
3435 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3436 
3437 	/* Allocate PCI controller */
3438 	phb->hose = hose = pcibios_alloc_controller(np);
3439 	if (!phb->hose) {
3440 		pr_err("  Can't allocate PCI controller for %s\n",
3441 		       np->full_name);
3442 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3443 		return;
3444 	}
3445 
3446 	spin_lock_init(&phb->lock);
3447 	prop32 = of_get_property(np, "bus-range", &len);
3448 	if (prop32 && len == 8) {
3449 		hose->first_busno = be32_to_cpu(prop32[0]);
3450 		hose->last_busno = be32_to_cpu(prop32[1]);
3451 	} else {
3452 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3453 		hose->first_busno = 0;
3454 		hose->last_busno = 0xff;
3455 	}
3456 	hose->private_data = phb;
3457 	phb->hub_id = hub_id;
3458 	phb->opal_id = phb_id;
3459 	phb->type = ioda_type;
3460 	mutex_init(&phb->ioda.pe_alloc_mutex);
3461 
3462 	/* Detect specific models for error handling */
3463 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3464 		phb->model = PNV_PHB_MODEL_P7IOC;
3465 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3466 		phb->model = PNV_PHB_MODEL_PHB3;
3467 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3468 		phb->model = PNV_PHB_MODEL_NPU;
3469 	else
3470 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3471 
3472 	/* Parse 32-bit and IO ranges (if any) */
3473 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3474 
3475 	/* Get registers */
3476 	phb->regs = of_iomap(np, 0);
3477 	if (phb->regs == NULL)
3478 		pr_err("  Failed to map registers !\n");
3479 
3480 	/* Initialize more IODA stuff */
3481 	phb->ioda.total_pe_num = 1;
3482 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3483 	if (prop32)
3484 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3485 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3486 	if (prop32)
3487 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3488 
3489 	/* Parse 64-bit MMIO range */
3490 	pnv_ioda_parse_m64_window(phb);
3491 
3492 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3493 	/* FW Has already off top 64k of M32 space (MSI space) */
3494 	phb->ioda.m32_size += 0x10000;
3495 
3496 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3497 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3498 	phb->ioda.io_size = hose->pci_io_size;
3499 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3500 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3501 
3502 	/* Calculate how many 32-bit TCE segments we have */
3503 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3504 				PNV_IODA1_DMA32_SEGSIZE;
3505 
3506 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3507 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3508 			sizeof(unsigned long));
3509 	m64map_off = size;
3510 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3511 	m32map_off = size;
3512 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3513 	if (phb->type == PNV_PHB_IODA1) {
3514 		iomap_off = size;
3515 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3516 		dma32map_off = size;
3517 		size += phb->ioda.dma32_count *
3518 			sizeof(phb->ioda.dma32_segmap[0]);
3519 	}
3520 	pemap_off = size;
3521 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3522 	aux = memblock_virt_alloc(size, 0);
3523 	phb->ioda.pe_alloc = aux;
3524 	phb->ioda.m64_segmap = aux + m64map_off;
3525 	phb->ioda.m32_segmap = aux + m32map_off;
3526 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3527 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3528 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3529 	}
3530 	if (phb->type == PNV_PHB_IODA1) {
3531 		phb->ioda.io_segmap = aux + iomap_off;
3532 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3533 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3534 
3535 		phb->ioda.dma32_segmap = aux + dma32map_off;
3536 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3537 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3538 	}
3539 	phb->ioda.pe_array = aux + pemap_off;
3540 	set_bit(phb->ioda.reserved_pe_idx, phb->ioda.pe_alloc);
3541 
3542 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3543 	mutex_init(&phb->ioda.pe_list_mutex);
3544 
3545 	/* Calculate how many 32-bit TCE segments we have */
3546 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3547 				PNV_IODA1_DMA32_SEGSIZE;
3548 
3549 #if 0 /* We should really do that ... */
3550 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3551 					 window_type,
3552 					 window_num,
3553 					 starting_real_address,
3554 					 starting_pci_address,
3555 					 segment_size);
3556 #endif
3557 
3558 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3559 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3560 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3561 	if (phb->ioda.m64_size)
3562 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3563 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3564 	if (phb->ioda.io_size)
3565 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3566 			phb->ioda.io_size, phb->ioda.io_segsize);
3567 
3568 
3569 	phb->hose->ops = &pnv_pci_ops;
3570 	phb->get_pe_state = pnv_ioda_get_pe_state;
3571 	phb->freeze_pe = pnv_ioda_freeze_pe;
3572 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3573 
3574 	/* Setup MSI support */
3575 	pnv_pci_init_ioda_msis(phb);
3576 
3577 	/*
3578 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3579 	 * to let the PCI core do resource assignment. It's supposed
3580 	 * that the PCI core will do correct I/O and MMIO alignment
3581 	 * for the P2P bridge bars so that each PCI bus (excluding
3582 	 * the child P2P bridges) can form individual PE.
3583 	 */
3584 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3585 
3586 	if (phb->type == PNV_PHB_NPU) {
3587 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3588 	} else {
3589 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3590 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3591 	}
3592 
3593 #ifdef CONFIG_PCI_IOV
3594 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3595 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3596 #endif
3597 
3598 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3599 
3600 	/* Reset IODA tables to a clean state */
3601 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3602 	if (rc)
3603 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3604 
3605 	/* If we're running in kdump kerenl, the previous kerenl never
3606 	 * shutdown PCI devices correctly. We already got IODA table
3607 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3608 	 * transactions from previous kerenl.
3609 	 */
3610 	if (is_kdump_kernel()) {
3611 		pr_info("  Issue PHB reset ...\n");
3612 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3613 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3614 	}
3615 
3616 	/* Remove M64 resource if we can't configure it successfully */
3617 	if (!phb->init_m64 || phb->init_m64(phb))
3618 		hose->mem_resources[1].flags = 0;
3619 }
3620 
3621 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3622 {
3623 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3624 }
3625 
3626 void __init pnv_pci_init_npu_phb(struct device_node *np)
3627 {
3628 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3629 }
3630 
3631 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3632 {
3633 	struct device_node *phbn;
3634 	const __be64 *prop64;
3635 	u64 hub_id;
3636 
3637 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3638 
3639 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3640 	if (!prop64) {
3641 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3642 		return;
3643 	}
3644 	hub_id = be64_to_cpup(prop64);
3645 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3646 
3647 	/* Count child PHBs */
3648 	for_each_child_of_node(np, phbn) {
3649 		/* Look for IODA1 PHBs */
3650 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3651 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3652 	}
3653 }
3654