1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7 
8 #undef DEBUG
9 
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/prom.h>
27 #include <asm/pci-bridge.h>
28 #include <asm/machdep.h>
29 #include <asm/msi_bitmap.h>
30 #include <asm/ppc-pci.h>
31 #include <asm/opal.h>
32 #include <asm/iommu.h>
33 #include <asm/tce.h>
34 #include <asm/xics.h>
35 #include <asm/debugfs.h>
36 #include <asm/firmware.h>
37 #include <asm/pnv-pci.h>
38 #include <asm/mmzone.h>
39 
40 #include <misc/cxl-base.h>
41 
42 #include "powernv.h"
43 #include "pci.h"
44 #include "../../../../drivers/pci/pci.h"
45 
46 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
47 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
48 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
49 
50 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
51 					      "NPU_OCAPI" };
52 
53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
54 static void pnv_pci_configure_bus(struct pci_bus *bus);
55 
56 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
57 			    const char *fmt, ...)
58 {
59 	struct va_format vaf;
60 	va_list args;
61 	char pfix[32];
62 
63 	va_start(args, fmt);
64 
65 	vaf.fmt = fmt;
66 	vaf.va = &args;
67 
68 	if (pe->flags & PNV_IODA_PE_DEV)
69 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
70 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
71 		sprintf(pfix, "%04x:%02x     ",
72 			pci_domain_nr(pe->pbus), pe->pbus->number);
73 #ifdef CONFIG_PCI_IOV
74 	else if (pe->flags & PNV_IODA_PE_VF)
75 		sprintf(pfix, "%04x:%02x:%2x.%d",
76 			pci_domain_nr(pe->parent_dev->bus),
77 			(pe->rid & 0xff00) >> 8,
78 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
79 #endif /* CONFIG_PCI_IOV*/
80 
81 	printk("%spci %s: [PE# %.2x] %pV",
82 	       level, pfix, pe->pe_number, &vaf);
83 
84 	va_end(args);
85 }
86 
87 static bool pnv_iommu_bypass_disabled __read_mostly;
88 static bool pci_reset_phbs __read_mostly;
89 
90 static int __init iommu_setup(char *str)
91 {
92 	if (!str)
93 		return -EINVAL;
94 
95 	while (*str) {
96 		if (!strncmp(str, "nobypass", 8)) {
97 			pnv_iommu_bypass_disabled = true;
98 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
99 			break;
100 		}
101 		str += strcspn(str, ",");
102 		if (*str == ',')
103 			str++;
104 	}
105 
106 	return 0;
107 }
108 early_param("iommu", iommu_setup);
109 
110 static int __init pci_reset_phbs_setup(char *str)
111 {
112 	pci_reset_phbs = true;
113 	return 0;
114 }
115 
116 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
117 
118 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
119 {
120 	s64 rc;
121 
122 	phb->ioda.pe_array[pe_no].phb = phb;
123 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
124 	phb->ioda.pe_array[pe_no].dma_setup_done = false;
125 
126 	/*
127 	 * Clear the PE frozen state as it might be put into frozen state
128 	 * in the last PCI remove path. It's not harmful to do so when the
129 	 * PE is already in unfrozen state.
130 	 */
131 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
132 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
133 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
134 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
135 			__func__, rc, phb->hose->global_number, pe_no);
136 
137 	return &phb->ioda.pe_array[pe_no];
138 }
139 
140 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
141 {
142 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
143 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
144 			__func__, pe_no, phb->hose->global_number);
145 		return;
146 	}
147 
148 	mutex_lock(&phb->ioda.pe_alloc_mutex);
149 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
150 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
151 			 __func__, pe_no, phb->hose->global_number);
152 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
153 
154 	pnv_ioda_init_pe(phb, pe_no);
155 }
156 
157 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
158 {
159 	struct pnv_ioda_pe *ret = NULL;
160 	int run = 0, pe, i;
161 
162 	mutex_lock(&phb->ioda.pe_alloc_mutex);
163 
164 	/* scan backwards for a run of @count cleared bits */
165 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
166 		if (test_bit(pe, phb->ioda.pe_alloc)) {
167 			run = 0;
168 			continue;
169 		}
170 
171 		run++;
172 		if (run == count)
173 			break;
174 	}
175 	if (run != count)
176 		goto out;
177 
178 	for (i = pe; i < pe + count; i++) {
179 		set_bit(i, phb->ioda.pe_alloc);
180 		pnv_ioda_init_pe(phb, i);
181 	}
182 	ret = &phb->ioda.pe_array[pe];
183 
184 out:
185 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
186 	return ret;
187 }
188 
189 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
190 {
191 	struct pnv_phb *phb = pe->phb;
192 	unsigned int pe_num = pe->pe_number;
193 
194 	WARN_ON(pe->pdev);
195 	WARN_ON(pe->npucomp); /* NPUs for nvlink are not supposed to be freed */
196 	kfree(pe->npucomp);
197 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
198 
199 	mutex_lock(&phb->ioda.pe_alloc_mutex);
200 	clear_bit(pe_num, phb->ioda.pe_alloc);
201 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
202 }
203 
204 /* The default M64 BAR is shared by all PEs */
205 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
206 {
207 	const char *desc;
208 	struct resource *r;
209 	s64 rc;
210 
211 	/* Configure the default M64 BAR */
212 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
213 					 OPAL_M64_WINDOW_TYPE,
214 					 phb->ioda.m64_bar_idx,
215 					 phb->ioda.m64_base,
216 					 0, /* unused */
217 					 phb->ioda.m64_size);
218 	if (rc != OPAL_SUCCESS) {
219 		desc = "configuring";
220 		goto fail;
221 	}
222 
223 	/* Enable the default M64 BAR */
224 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
225 				      OPAL_M64_WINDOW_TYPE,
226 				      phb->ioda.m64_bar_idx,
227 				      OPAL_ENABLE_M64_SPLIT);
228 	if (rc != OPAL_SUCCESS) {
229 		desc = "enabling";
230 		goto fail;
231 	}
232 
233 	/*
234 	 * Exclude the segments for reserved and root bus PE, which
235 	 * are first or last two PEs.
236 	 */
237 	r = &phb->hose->mem_resources[1];
238 	if (phb->ioda.reserved_pe_idx == 0)
239 		r->start += (2 * phb->ioda.m64_segsize);
240 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
241 		r->end -= (2 * phb->ioda.m64_segsize);
242 	else
243 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
244 			phb->ioda.reserved_pe_idx);
245 
246 	return 0;
247 
248 fail:
249 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
250 		rc, desc, phb->ioda.m64_bar_idx);
251 	opal_pci_phb_mmio_enable(phb->opal_id,
252 				 OPAL_M64_WINDOW_TYPE,
253 				 phb->ioda.m64_bar_idx,
254 				 OPAL_DISABLE_M64);
255 	return -EIO;
256 }
257 
258 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
259 					 unsigned long *pe_bitmap)
260 {
261 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
262 	struct resource *r;
263 	resource_size_t base, sgsz, start, end;
264 	int segno, i;
265 
266 	base = phb->ioda.m64_base;
267 	sgsz = phb->ioda.m64_segsize;
268 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
269 		r = &pdev->resource[i];
270 		if (!r->parent || !pnv_pci_is_m64(phb, r))
271 			continue;
272 
273 		start = ALIGN_DOWN(r->start - base, sgsz);
274 		end = ALIGN(r->end - base, sgsz);
275 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
276 			if (pe_bitmap)
277 				set_bit(segno, pe_bitmap);
278 			else
279 				pnv_ioda_reserve_pe(phb, segno);
280 		}
281 	}
282 }
283 
284 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
285 {
286 	struct resource *r;
287 	int index;
288 
289 	/*
290 	 * There are 16 M64 BARs, each of which has 8 segments. So
291 	 * there are as many M64 segments as the maximum number of
292 	 * PEs, which is 128.
293 	 */
294 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
295 		unsigned long base, segsz = phb->ioda.m64_segsize;
296 		int64_t rc;
297 
298 		base = phb->ioda.m64_base +
299 		       index * PNV_IODA1_M64_SEGS * segsz;
300 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
301 				OPAL_M64_WINDOW_TYPE, index, base, 0,
302 				PNV_IODA1_M64_SEGS * segsz);
303 		if (rc != OPAL_SUCCESS) {
304 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
305 				rc, phb->hose->global_number, index);
306 			goto fail;
307 		}
308 
309 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
310 				OPAL_M64_WINDOW_TYPE, index,
311 				OPAL_ENABLE_M64_SPLIT);
312 		if (rc != OPAL_SUCCESS) {
313 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
314 				rc, phb->hose->global_number, index);
315 			goto fail;
316 		}
317 	}
318 
319 	for (index = 0; index < phb->ioda.total_pe_num; index++) {
320 		int64_t rc;
321 
322 		/*
323 		 * P7IOC supports M64DT, which helps mapping M64 segment
324 		 * to one particular PE#. However, PHB3 has fixed mapping
325 		 * between M64 segment and PE#. In order to have same logic
326 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
327 		 * segment and PE# on P7IOC.
328 		 */
329 		rc = opal_pci_map_pe_mmio_window(phb->opal_id,
330 				index, OPAL_M64_WINDOW_TYPE,
331 				index / PNV_IODA1_M64_SEGS,
332 				index % PNV_IODA1_M64_SEGS);
333 		if (rc != OPAL_SUCCESS) {
334 			pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
335 				__func__, rc, phb->hose->global_number,
336 				index);
337 			goto fail;
338 		}
339 	}
340 
341 	/*
342 	 * Exclude the segments for reserved and root bus PE, which
343 	 * are first or last two PEs.
344 	 */
345 	r = &phb->hose->mem_resources[1];
346 	if (phb->ioda.reserved_pe_idx == 0)
347 		r->start += (2 * phb->ioda.m64_segsize);
348 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
349 		r->end -= (2 * phb->ioda.m64_segsize);
350 	else
351 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
352 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
353 
354 	return 0;
355 
356 fail:
357 	for ( ; index >= 0; index--)
358 		opal_pci_phb_mmio_enable(phb->opal_id,
359 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
360 
361 	return -EIO;
362 }
363 
364 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
365 				    unsigned long *pe_bitmap,
366 				    bool all)
367 {
368 	struct pci_dev *pdev;
369 
370 	list_for_each_entry(pdev, &bus->devices, bus_list) {
371 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
372 
373 		if (all && pdev->subordinate)
374 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
375 						pe_bitmap, all);
376 	}
377 }
378 
379 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
380 {
381 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
382 	struct pnv_ioda_pe *master_pe, *pe;
383 	unsigned long size, *pe_alloc;
384 	int i;
385 
386 	/* Root bus shouldn't use M64 */
387 	if (pci_is_root_bus(bus))
388 		return NULL;
389 
390 	/* Allocate bitmap */
391 	size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
392 	pe_alloc = kzalloc(size, GFP_KERNEL);
393 	if (!pe_alloc) {
394 		pr_warn("%s: Out of memory !\n",
395 			__func__);
396 		return NULL;
397 	}
398 
399 	/* Figure out reserved PE numbers by the PE */
400 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
401 
402 	/*
403 	 * the current bus might not own M64 window and that's all
404 	 * contributed by its child buses. For the case, we needn't
405 	 * pick M64 dependent PE#.
406 	 */
407 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
408 		kfree(pe_alloc);
409 		return NULL;
410 	}
411 
412 	/*
413 	 * Figure out the master PE and put all slave PEs to master
414 	 * PE's list to form compound PE.
415 	 */
416 	master_pe = NULL;
417 	i = -1;
418 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
419 		phb->ioda.total_pe_num) {
420 		pe = &phb->ioda.pe_array[i];
421 
422 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
423 		if (!master_pe) {
424 			pe->flags |= PNV_IODA_PE_MASTER;
425 			INIT_LIST_HEAD(&pe->slaves);
426 			master_pe = pe;
427 		} else {
428 			pe->flags |= PNV_IODA_PE_SLAVE;
429 			pe->master = master_pe;
430 			list_add_tail(&pe->list, &master_pe->slaves);
431 		}
432 	}
433 
434 	kfree(pe_alloc);
435 	return master_pe;
436 }
437 
438 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
439 {
440 	struct pci_controller *hose = phb->hose;
441 	struct device_node *dn = hose->dn;
442 	struct resource *res;
443 	u32 m64_range[2], i;
444 	const __be32 *r;
445 	u64 pci_addr;
446 
447 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
448 		pr_info("  Not support M64 window\n");
449 		return;
450 	}
451 
452 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
453 		pr_info("  Firmware too old to support M64 window\n");
454 		return;
455 	}
456 
457 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
458 	if (!r) {
459 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
460 			dn);
461 		return;
462 	}
463 
464 	/*
465 	 * Find the available M64 BAR range and pickup the last one for
466 	 * covering the whole 64-bits space. We support only one range.
467 	 */
468 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
469 				       m64_range, 2)) {
470 		/* In absence of the property, assume 0..15 */
471 		m64_range[0] = 0;
472 		m64_range[1] = 16;
473 	}
474 	/* We only support 64 bits in our allocator */
475 	if (m64_range[1] > 63) {
476 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
477 			__func__, m64_range[1], phb->hose->global_number);
478 		m64_range[1] = 63;
479 	}
480 	/* Empty range, no m64 */
481 	if (m64_range[1] <= m64_range[0]) {
482 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
483 			__func__, phb->hose->global_number);
484 		return;
485 	}
486 
487 	/* Configure M64 informations */
488 	res = &hose->mem_resources[1];
489 	res->name = dn->full_name;
490 	res->start = of_translate_address(dn, r + 2);
491 	res->end = res->start + of_read_number(r + 4, 2) - 1;
492 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
493 	pci_addr = of_read_number(r, 2);
494 	hose->mem_offset[1] = res->start - pci_addr;
495 
496 	phb->ioda.m64_size = resource_size(res);
497 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
498 	phb->ioda.m64_base = pci_addr;
499 
500 	/* This lines up nicely with the display from processing OF ranges */
501 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
502 		res->start, res->end, pci_addr, m64_range[0],
503 		m64_range[0] + m64_range[1] - 1);
504 
505 	/* Mark all M64 used up by default */
506 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
507 
508 	/* Use last M64 BAR to cover M64 window */
509 	m64_range[1]--;
510 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
511 
512 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
513 
514 	/* Mark remaining ones free */
515 	for (i = m64_range[0]; i < m64_range[1]; i++)
516 		clear_bit(i, &phb->ioda.m64_bar_alloc);
517 
518 	/*
519 	 * Setup init functions for M64 based on IODA version, IODA3 uses
520 	 * the IODA2 code.
521 	 */
522 	if (phb->type == PNV_PHB_IODA1)
523 		phb->init_m64 = pnv_ioda1_init_m64;
524 	else
525 		phb->init_m64 = pnv_ioda2_init_m64;
526 }
527 
528 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
529 {
530 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
531 	struct pnv_ioda_pe *slave;
532 	s64 rc;
533 
534 	/* Fetch master PE */
535 	if (pe->flags & PNV_IODA_PE_SLAVE) {
536 		pe = pe->master;
537 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
538 			return;
539 
540 		pe_no = pe->pe_number;
541 	}
542 
543 	/* Freeze master PE */
544 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
545 				     pe_no,
546 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
547 	if (rc != OPAL_SUCCESS) {
548 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
549 			__func__, rc, phb->hose->global_number, pe_no);
550 		return;
551 	}
552 
553 	/* Freeze slave PEs */
554 	if (!(pe->flags & PNV_IODA_PE_MASTER))
555 		return;
556 
557 	list_for_each_entry(slave, &pe->slaves, list) {
558 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
559 					     slave->pe_number,
560 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
561 		if (rc != OPAL_SUCCESS)
562 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
563 				__func__, rc, phb->hose->global_number,
564 				slave->pe_number);
565 	}
566 }
567 
568 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
569 {
570 	struct pnv_ioda_pe *pe, *slave;
571 	s64 rc;
572 
573 	/* Find master PE */
574 	pe = &phb->ioda.pe_array[pe_no];
575 	if (pe->flags & PNV_IODA_PE_SLAVE) {
576 		pe = pe->master;
577 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
578 		pe_no = pe->pe_number;
579 	}
580 
581 	/* Clear frozen state for master PE */
582 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
583 	if (rc != OPAL_SUCCESS) {
584 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
585 			__func__, rc, opt, phb->hose->global_number, pe_no);
586 		return -EIO;
587 	}
588 
589 	if (!(pe->flags & PNV_IODA_PE_MASTER))
590 		return 0;
591 
592 	/* Clear frozen state for slave PEs */
593 	list_for_each_entry(slave, &pe->slaves, list) {
594 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
595 					     slave->pe_number,
596 					     opt);
597 		if (rc != OPAL_SUCCESS) {
598 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
599 				__func__, rc, opt, phb->hose->global_number,
600 				slave->pe_number);
601 			return -EIO;
602 		}
603 	}
604 
605 	return 0;
606 }
607 
608 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
609 {
610 	struct pnv_ioda_pe *slave, *pe;
611 	u8 fstate = 0, state;
612 	__be16 pcierr = 0;
613 	s64 rc;
614 
615 	/* Sanity check on PE number */
616 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
617 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
618 
619 	/*
620 	 * Fetch the master PE and the PE instance might be
621 	 * not initialized yet.
622 	 */
623 	pe = &phb->ioda.pe_array[pe_no];
624 	if (pe->flags & PNV_IODA_PE_SLAVE) {
625 		pe = pe->master;
626 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
627 		pe_no = pe->pe_number;
628 	}
629 
630 	/* Check the master PE */
631 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
632 					&state, &pcierr, NULL);
633 	if (rc != OPAL_SUCCESS) {
634 		pr_warn("%s: Failure %lld getting "
635 			"PHB#%x-PE#%x state\n",
636 			__func__, rc,
637 			phb->hose->global_number, pe_no);
638 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
639 	}
640 
641 	/* Check the slave PE */
642 	if (!(pe->flags & PNV_IODA_PE_MASTER))
643 		return state;
644 
645 	list_for_each_entry(slave, &pe->slaves, list) {
646 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
647 						slave->pe_number,
648 						&fstate,
649 						&pcierr,
650 						NULL);
651 		if (rc != OPAL_SUCCESS) {
652 			pr_warn("%s: Failure %lld getting "
653 				"PHB#%x-PE#%x state\n",
654 				__func__, rc,
655 				phb->hose->global_number, slave->pe_number);
656 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
657 		}
658 
659 		/*
660 		 * Override the result based on the ascending
661 		 * priority.
662 		 */
663 		if (fstate > state)
664 			state = fstate;
665 	}
666 
667 	return state;
668 }
669 
670 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
671 {
672 	int pe_number = phb->ioda.pe_rmap[bdfn];
673 
674 	if (pe_number == IODA_INVALID_PE)
675 		return NULL;
676 
677 	return &phb->ioda.pe_array[pe_number];
678 }
679 
680 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
681 {
682 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
683 	struct pci_dn *pdn = pci_get_pdn(dev);
684 
685 	if (!pdn)
686 		return NULL;
687 	if (pdn->pe_number == IODA_INVALID_PE)
688 		return NULL;
689 	return &phb->ioda.pe_array[pdn->pe_number];
690 }
691 
692 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
693 				  struct pnv_ioda_pe *parent,
694 				  struct pnv_ioda_pe *child,
695 				  bool is_add)
696 {
697 	const char *desc = is_add ? "adding" : "removing";
698 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
699 			      OPAL_REMOVE_PE_FROM_DOMAIN;
700 	struct pnv_ioda_pe *slave;
701 	long rc;
702 
703 	/* Parent PE affects child PE */
704 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
705 				child->pe_number, op);
706 	if (rc != OPAL_SUCCESS) {
707 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
708 			rc, desc);
709 		return -ENXIO;
710 	}
711 
712 	if (!(child->flags & PNV_IODA_PE_MASTER))
713 		return 0;
714 
715 	/* Compound case: parent PE affects slave PEs */
716 	list_for_each_entry(slave, &child->slaves, list) {
717 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
718 					slave->pe_number, op);
719 		if (rc != OPAL_SUCCESS) {
720 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
721 				rc, desc);
722 			return -ENXIO;
723 		}
724 	}
725 
726 	return 0;
727 }
728 
729 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
730 			      struct pnv_ioda_pe *pe,
731 			      bool is_add)
732 {
733 	struct pnv_ioda_pe *slave;
734 	struct pci_dev *pdev = NULL;
735 	int ret;
736 
737 	/*
738 	 * Clear PE frozen state. If it's master PE, we need
739 	 * clear slave PE frozen state as well.
740 	 */
741 	if (is_add) {
742 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
743 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
744 		if (pe->flags & PNV_IODA_PE_MASTER) {
745 			list_for_each_entry(slave, &pe->slaves, list)
746 				opal_pci_eeh_freeze_clear(phb->opal_id,
747 							  slave->pe_number,
748 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
749 		}
750 	}
751 
752 	/*
753 	 * Associate PE in PELT. We need add the PE into the
754 	 * corresponding PELT-V as well. Otherwise, the error
755 	 * originated from the PE might contribute to other
756 	 * PEs.
757 	 */
758 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
759 	if (ret)
760 		return ret;
761 
762 	/* For compound PEs, any one affects all of them */
763 	if (pe->flags & PNV_IODA_PE_MASTER) {
764 		list_for_each_entry(slave, &pe->slaves, list) {
765 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
766 			if (ret)
767 				return ret;
768 		}
769 	}
770 
771 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
772 		pdev = pe->pbus->self;
773 	else if (pe->flags & PNV_IODA_PE_DEV)
774 		pdev = pe->pdev->bus->self;
775 #ifdef CONFIG_PCI_IOV
776 	else if (pe->flags & PNV_IODA_PE_VF)
777 		pdev = pe->parent_dev;
778 #endif /* CONFIG_PCI_IOV */
779 	while (pdev) {
780 		struct pci_dn *pdn = pci_get_pdn(pdev);
781 		struct pnv_ioda_pe *parent;
782 
783 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
784 			parent = &phb->ioda.pe_array[pdn->pe_number];
785 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
786 			if (ret)
787 				return ret;
788 		}
789 
790 		pdev = pdev->bus->self;
791 	}
792 
793 	return 0;
794 }
795 
796 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
797 				 struct pnv_ioda_pe *pe,
798 				 struct pci_dev *parent)
799 {
800 	int64_t rc;
801 
802 	while (parent) {
803 		struct pci_dn *pdn = pci_get_pdn(parent);
804 
805 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
806 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
807 						pe->pe_number,
808 						OPAL_REMOVE_PE_FROM_DOMAIN);
809 			/* XXX What to do in case of error ? */
810 		}
811 		parent = parent->bus->self;
812 	}
813 
814 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
815 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
816 
817 	/* Disassociate PE in PELT */
818 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
819 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
820 	if (rc)
821 		pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
822 }
823 
824 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
825 {
826 	struct pci_dev *parent;
827 	uint8_t bcomp, dcomp, fcomp;
828 	int64_t rc;
829 	long rid_end, rid;
830 
831 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
832 	if (pe->pbus) {
833 		int count;
834 
835 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
836 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
837 		parent = pe->pbus->self;
838 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
839 			count = resource_size(&pe->pbus->busn_res);
840 		else
841 			count = 1;
842 
843 		switch(count) {
844 		case  1: bcomp = OpalPciBusAll;         break;
845 		case  2: bcomp = OpalPciBus7Bits;       break;
846 		case  4: bcomp = OpalPciBus6Bits;       break;
847 		case  8: bcomp = OpalPciBus5Bits;       break;
848 		case 16: bcomp = OpalPciBus4Bits;       break;
849 		case 32: bcomp = OpalPciBus3Bits;       break;
850 		default:
851 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
852 			        count);
853 			/* Do an exact match only */
854 			bcomp = OpalPciBusAll;
855 		}
856 		rid_end = pe->rid + (count << 8);
857 	} else {
858 #ifdef CONFIG_PCI_IOV
859 		if (pe->flags & PNV_IODA_PE_VF)
860 			parent = pe->parent_dev;
861 		else
862 #endif
863 			parent = pe->pdev->bus->self;
864 		bcomp = OpalPciBusAll;
865 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
866 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
867 		rid_end = pe->rid + 1;
868 	}
869 
870 	/* Clear the reverse map */
871 	for (rid = pe->rid; rid < rid_end; rid++)
872 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
873 
874 	/*
875 	 * Release from all parents PELT-V. NPUs don't have a PELTV
876 	 * table
877 	 */
878 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
879 		pnv_ioda_unset_peltv(phb, pe, parent);
880 
881 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
882 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
883 	if (rc)
884 		pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
885 
886 	pe->pbus = NULL;
887 	pe->pdev = NULL;
888 #ifdef CONFIG_PCI_IOV
889 	pe->parent_dev = NULL;
890 #endif
891 
892 	return 0;
893 }
894 
895 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
896 {
897 	uint8_t bcomp, dcomp, fcomp;
898 	long rc, rid_end, rid;
899 
900 	/* Bus validation ? */
901 	if (pe->pbus) {
902 		int count;
903 
904 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
905 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
906 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
907 			count = resource_size(&pe->pbus->busn_res);
908 		else
909 			count = 1;
910 
911 		switch(count) {
912 		case  1: bcomp = OpalPciBusAll;		break;
913 		case  2: bcomp = OpalPciBus7Bits;	break;
914 		case  4: bcomp = OpalPciBus6Bits;	break;
915 		case  8: bcomp = OpalPciBus5Bits;	break;
916 		case 16: bcomp = OpalPciBus4Bits;	break;
917 		case 32: bcomp = OpalPciBus3Bits;	break;
918 		default:
919 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
920 			        count);
921 			/* Do an exact match only */
922 			bcomp = OpalPciBusAll;
923 		}
924 		rid_end = pe->rid + (count << 8);
925 	} else {
926 		bcomp = OpalPciBusAll;
927 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
928 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
929 		rid_end = pe->rid + 1;
930 	}
931 
932 	/*
933 	 * Associate PE in PELT. We need add the PE into the
934 	 * corresponding PELT-V as well. Otherwise, the error
935 	 * originated from the PE might contribute to other
936 	 * PEs.
937 	 */
938 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
939 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
940 	if (rc) {
941 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
942 		return -ENXIO;
943 	}
944 
945 	/*
946 	 * Configure PELTV. NPUs don't have a PELTV table so skip
947 	 * configuration on them.
948 	 */
949 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
950 		pnv_ioda_set_peltv(phb, pe, true);
951 
952 	/* Setup reverse map */
953 	for (rid = pe->rid; rid < rid_end; rid++)
954 		phb->ioda.pe_rmap[rid] = pe->pe_number;
955 
956 	/* Setup one MVTs on IODA1 */
957 	if (phb->type != PNV_PHB_IODA1) {
958 		pe->mve_number = 0;
959 		goto out;
960 	}
961 
962 	pe->mve_number = pe->pe_number;
963 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
964 	if (rc != OPAL_SUCCESS) {
965 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
966 		       rc, pe->mve_number);
967 		pe->mve_number = -1;
968 	} else {
969 		rc = opal_pci_set_mve_enable(phb->opal_id,
970 					     pe->mve_number, OPAL_ENABLE_MVE);
971 		if (rc) {
972 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
973 			       rc, pe->mve_number);
974 			pe->mve_number = -1;
975 		}
976 	}
977 
978 out:
979 	return 0;
980 }
981 
982 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
983 {
984 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
985 	struct pci_dn *pdn = pci_get_pdn(dev);
986 	struct pnv_ioda_pe *pe;
987 
988 	if (!pdn) {
989 		pr_err("%s: Device tree node not associated properly\n",
990 			   pci_name(dev));
991 		return NULL;
992 	}
993 	if (pdn->pe_number != IODA_INVALID_PE)
994 		return NULL;
995 
996 	pe = pnv_ioda_alloc_pe(phb, 1);
997 	if (!pe) {
998 		pr_warn("%s: Not enough PE# available, disabling device\n",
999 			pci_name(dev));
1000 		return NULL;
1001 	}
1002 
1003 	/* NOTE: We don't get a reference for the pointer in the PE
1004 	 * data structure, both the device and PE structures should be
1005 	 * destroyed at the same time. However, removing nvlink
1006 	 * devices will need some work.
1007 	 *
1008 	 * At some point we want to remove the PDN completely anyways
1009 	 */
1010 	pdn->pe_number = pe->pe_number;
1011 	pe->flags = PNV_IODA_PE_DEV;
1012 	pe->pdev = dev;
1013 	pe->pbus = NULL;
1014 	pe->mve_number = -1;
1015 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1016 	pe->device_count++;
1017 
1018 	pe_info(pe, "Associated device to PE\n");
1019 
1020 	if (pnv_ioda_configure_pe(phb, pe)) {
1021 		/* XXX What do we do here ? */
1022 		pnv_ioda_free_pe(pe);
1023 		pdn->pe_number = IODA_INVALID_PE;
1024 		pe->pdev = NULL;
1025 		return NULL;
1026 	}
1027 
1028 	/* Put PE to the list */
1029 	mutex_lock(&phb->ioda.pe_list_mutex);
1030 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1031 	mutex_unlock(&phb->ioda.pe_list_mutex);
1032 	return pe;
1033 }
1034 
1035 /*
1036  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1037  * single PCI bus. Another one that contains the primary PCI bus and its
1038  * subordinate PCI devices and buses. The second type of PE is normally
1039  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1040  */
1041 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1042 {
1043 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
1044 	struct pnv_ioda_pe *pe = NULL;
1045 	unsigned int pe_num;
1046 
1047 	/*
1048 	 * In partial hotplug case, the PE instance might be still alive.
1049 	 * We should reuse it instead of allocating a new one.
1050 	 */
1051 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1052 	if (WARN_ON(pe_num != IODA_INVALID_PE)) {
1053 		pe = &phb->ioda.pe_array[pe_num];
1054 		return NULL;
1055 	}
1056 
1057 	/* PE number for root bus should have been reserved */
1058 	if (pci_is_root_bus(bus))
1059 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1060 
1061 	/* Check if PE is determined by M64 */
1062 	if (!pe)
1063 		pe = pnv_ioda_pick_m64_pe(bus, all);
1064 
1065 	/* The PE number isn't pinned by M64 */
1066 	if (!pe)
1067 		pe = pnv_ioda_alloc_pe(phb, 1);
1068 
1069 	if (!pe) {
1070 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1071 			__func__, pci_domain_nr(bus), bus->number);
1072 		return NULL;
1073 	}
1074 
1075 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1076 	pe->pbus = bus;
1077 	pe->pdev = NULL;
1078 	pe->mve_number = -1;
1079 	pe->rid = bus->busn_res.start << 8;
1080 
1081 	if (all)
1082 		pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1083 			&bus->busn_res.start, &bus->busn_res.end,
1084 			pe->pe_number);
1085 	else
1086 		pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1087 			&bus->busn_res.start, pe->pe_number);
1088 
1089 	if (pnv_ioda_configure_pe(phb, pe)) {
1090 		/* XXX What do we do here ? */
1091 		pnv_ioda_free_pe(pe);
1092 		pe->pbus = NULL;
1093 		return NULL;
1094 	}
1095 
1096 	/* Put PE to the list */
1097 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1098 
1099 	return pe;
1100 }
1101 
1102 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1103 {
1104 	int pe_num, found_pe = false, rc;
1105 	long rid;
1106 	struct pnv_ioda_pe *pe;
1107 	struct pci_dev *gpu_pdev;
1108 	struct pci_dn *npu_pdn;
1109 	struct pnv_phb *phb = pci_bus_to_pnvhb(npu_pdev->bus);
1110 
1111 	/*
1112 	 * Intentionally leak a reference on the npu device (for
1113 	 * nvlink only; this is not an opencapi path) to make sure it
1114 	 * never goes away, as it's been the case all along and some
1115 	 * work is needed otherwise.
1116 	 */
1117 	pci_dev_get(npu_pdev);
1118 
1119 	/*
1120 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1121 	 * error handling. This means we only have three PEs remaining
1122 	 * which need to be assigned to four links, implying some
1123 	 * links must share PEs.
1124 	 *
1125 	 * To achieve this we assign PEs such that NPUs linking the
1126 	 * same GPU get assigned the same PE.
1127 	 */
1128 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1129 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1130 		pe = &phb->ioda.pe_array[pe_num];
1131 		if (!pe->pdev)
1132 			continue;
1133 
1134 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1135 			/*
1136 			 * This device has the same peer GPU so should
1137 			 * be assigned the same PE as the existing
1138 			 * peer NPU.
1139 			 */
1140 			dev_info(&npu_pdev->dev,
1141 				"Associating to existing PE %x\n", pe_num);
1142 			npu_pdn = pci_get_pdn(npu_pdev);
1143 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1144 			npu_pdn->pe_number = pe_num;
1145 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1146 			pe->device_count++;
1147 
1148 			/* Map the PE to this link */
1149 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1150 					OpalPciBusAll,
1151 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1152 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1153 					OPAL_MAP_PE);
1154 			WARN_ON(rc != OPAL_SUCCESS);
1155 			found_pe = true;
1156 			break;
1157 		}
1158 	}
1159 
1160 	if (!found_pe)
1161 		/*
1162 		 * Could not find an existing PE so allocate a new
1163 		 * one.
1164 		 */
1165 		return pnv_ioda_setup_dev_PE(npu_pdev);
1166 	else
1167 		return pe;
1168 }
1169 
1170 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1171 {
1172 	struct pci_dev *pdev;
1173 
1174 	list_for_each_entry(pdev, &bus->devices, bus_list)
1175 		pnv_ioda_setup_npu_PE(pdev);
1176 }
1177 
1178 static void pnv_pci_ioda_setup_nvlink(void)
1179 {
1180 	struct pci_controller *hose;
1181 	struct pnv_phb *phb;
1182 	struct pnv_ioda_pe *pe;
1183 
1184 	list_for_each_entry(hose, &hose_list, list_node) {
1185 		phb = hose->private_data;
1186 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1187 			/* PE#0 is needed for error reporting */
1188 			pnv_ioda_reserve_pe(phb, 0);
1189 			pnv_ioda_setup_npu_PEs(hose->bus);
1190 			if (phb->model == PNV_PHB_MODEL_NPU2)
1191 				WARN_ON_ONCE(pnv_npu2_init(hose));
1192 		}
1193 	}
1194 	list_for_each_entry(hose, &hose_list, list_node) {
1195 		phb = hose->private_data;
1196 		if (phb->type != PNV_PHB_IODA2)
1197 			continue;
1198 
1199 		list_for_each_entry(pe, &phb->ioda.pe_list, list)
1200 			pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1201 	}
1202 
1203 #ifdef CONFIG_IOMMU_API
1204 	/* setup iommu groups so we can do nvlink pass-thru */
1205 	pnv_pci_npu_setup_iommu_groups();
1206 #endif
1207 }
1208 
1209 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1210 				       struct pnv_ioda_pe *pe);
1211 
1212 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1213 {
1214 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1215 	struct pci_dn *pdn = pci_get_pdn(pdev);
1216 	struct pnv_ioda_pe *pe;
1217 
1218 	/* Check if the BDFN for this device is associated with a PE yet */
1219 	pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1220 	if (!pe) {
1221 		/* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1222 		if (WARN_ON(pdev->is_virtfn))
1223 			return;
1224 
1225 		pnv_pci_configure_bus(pdev->bus);
1226 		pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1227 		pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1228 
1229 
1230 		/*
1231 		 * If we can't setup the IODA PE something has gone horribly
1232 		 * wrong and we can't enable DMA for the device.
1233 		 */
1234 		if (WARN_ON(!pe))
1235 			return;
1236 	} else {
1237 		pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1238 	}
1239 
1240 	/*
1241 	 * We assume that bridges *probably* don't need to do any DMA so we can
1242 	 * skip allocating a TCE table, etc unless we get a non-bridge device.
1243 	 */
1244 	if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1245 		switch (phb->type) {
1246 		case PNV_PHB_IODA1:
1247 			pnv_pci_ioda1_setup_dma_pe(phb, pe);
1248 			break;
1249 		case PNV_PHB_IODA2:
1250 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
1251 			break;
1252 		default:
1253 			pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1254 				__func__, phb->hose->global_number, phb->type);
1255 		}
1256 	}
1257 
1258 	if (pdn)
1259 		pdn->pe_number = pe->pe_number;
1260 	pe->device_count++;
1261 
1262 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1263 	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1264 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1265 
1266 	/* PEs with a DMA weight of zero won't have a group */
1267 	if (pe->table_group.group)
1268 		iommu_add_device(&pe->table_group, &pdev->dev);
1269 }
1270 
1271 /*
1272  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1273  *
1274  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1275  * Devices can only access more than that if bit 59 of the PCI address is set
1276  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1277  * Many PCI devices are not capable of addressing that many bits, and as a
1278  * result are limited to the 4GB of virtual memory made available to 32-bit
1279  * devices in TVE#0.
1280  *
1281  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1282  * devices by configuring the virtual memory past the first 4GB inaccessible
1283  * by 64-bit DMAs.  This should only be used by devices that want more than
1284  * 4GB, and only on PEs that have no 32-bit devices.
1285  *
1286  * Currently this will only work on PHB3 (POWER8).
1287  */
1288 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1289 {
1290 	u64 window_size, table_size, tce_count, addr;
1291 	struct page *table_pages;
1292 	u64 tce_order = 28; /* 256MB TCEs */
1293 	__be64 *tces;
1294 	s64 rc;
1295 
1296 	/*
1297 	 * Window size needs to be a power of two, but needs to account for
1298 	 * shifting memory by the 4GB offset required to skip 32bit space.
1299 	 */
1300 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1301 	tce_count = window_size >> tce_order;
1302 	table_size = tce_count << 3;
1303 
1304 	if (table_size < PAGE_SIZE)
1305 		table_size = PAGE_SIZE;
1306 
1307 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1308 				       get_order(table_size));
1309 	if (!table_pages)
1310 		goto err;
1311 
1312 	tces = page_address(table_pages);
1313 	if (!tces)
1314 		goto err;
1315 
1316 	memset(tces, 0, table_size);
1317 
1318 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1319 		tces[(addr + (1ULL << 32)) >> tce_order] =
1320 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1321 	}
1322 
1323 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1324 					pe->pe_number,
1325 					/* reconfigure window 0 */
1326 					(pe->pe_number << 1) + 0,
1327 					1,
1328 					__pa(tces),
1329 					table_size,
1330 					1 << tce_order);
1331 	if (rc == OPAL_SUCCESS) {
1332 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1333 		return 0;
1334 	}
1335 err:
1336 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1337 	return -EIO;
1338 }
1339 
1340 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1341 		u64 dma_mask)
1342 {
1343 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1344 	struct pci_dn *pdn = pci_get_pdn(pdev);
1345 	struct pnv_ioda_pe *pe;
1346 
1347 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1348 		return false;
1349 
1350 	pe = &phb->ioda.pe_array[pdn->pe_number];
1351 	if (pe->tce_bypass_enabled) {
1352 		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1353 		if (dma_mask >= top)
1354 			return true;
1355 	}
1356 
1357 	/*
1358 	 * If the device can't set the TCE bypass bit but still wants
1359 	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1360 	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1361 	 * The device needs to be able to address all of this space.
1362 	 */
1363 	if (dma_mask >> 32 &&
1364 	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1365 	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1366 	    (pe->device_count == 1 || !pe->pbus) &&
1367 	    phb->model == PNV_PHB_MODEL_PHB3) {
1368 		/* Configure the bypass mode */
1369 		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1370 		if (rc)
1371 			return false;
1372 		/* 4GB offset bypasses 32-bit space */
1373 		pdev->dev.archdata.dma_offset = (1ULL << 32);
1374 		return true;
1375 	}
1376 
1377 	return false;
1378 }
1379 
1380 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1381 						     bool real_mode)
1382 {
1383 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1384 		(phb->regs + 0x210);
1385 }
1386 
1387 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1388 		unsigned long index, unsigned long npages, bool rm)
1389 {
1390 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1391 			&tbl->it_group_list, struct iommu_table_group_link,
1392 			next);
1393 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1394 			struct pnv_ioda_pe, table_group);
1395 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1396 	unsigned long start, end, inc;
1397 
1398 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1399 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1400 			npages - 1);
1401 
1402 	/* p7ioc-style invalidation, 2 TCEs per write */
1403 	start |= (1ull << 63);
1404 	end |= (1ull << 63);
1405 	inc = 16;
1406         end |= inc - 1;	/* round up end to be different than start */
1407 
1408         mb(); /* Ensure above stores are visible */
1409         while (start <= end) {
1410 		if (rm)
1411 			__raw_rm_writeq_be(start, invalidate);
1412 		else
1413 			__raw_writeq_be(start, invalidate);
1414 
1415                 start += inc;
1416         }
1417 
1418 	/*
1419 	 * The iommu layer will do another mb() for us on build()
1420 	 * and we don't care on free()
1421 	 */
1422 }
1423 
1424 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1425 		long npages, unsigned long uaddr,
1426 		enum dma_data_direction direction,
1427 		unsigned long attrs)
1428 {
1429 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1430 			attrs);
1431 
1432 	if (!ret)
1433 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1434 
1435 	return ret;
1436 }
1437 
1438 #ifdef CONFIG_IOMMU_API
1439 /* Common for IODA1 and IODA2 */
1440 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1441 		unsigned long *hpa, enum dma_data_direction *direction,
1442 		bool realmode)
1443 {
1444 	return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
1445 }
1446 #endif
1447 
1448 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1449 		long npages)
1450 {
1451 	pnv_tce_free(tbl, index, npages);
1452 
1453 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1454 }
1455 
1456 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1457 	.set = pnv_ioda1_tce_build,
1458 #ifdef CONFIG_IOMMU_API
1459 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1460 	.tce_kill = pnv_pci_p7ioc_tce_invalidate,
1461 	.useraddrptr = pnv_tce_useraddrptr,
1462 #endif
1463 	.clear = pnv_ioda1_tce_free,
1464 	.get = pnv_tce_get,
1465 };
1466 
1467 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1468 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1469 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1470 
1471 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1472 {
1473 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1474 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1475 
1476 	mb(); /* Ensure previous TCE table stores are visible */
1477 	if (rm)
1478 		__raw_rm_writeq_be(val, invalidate);
1479 	else
1480 		__raw_writeq_be(val, invalidate);
1481 }
1482 
1483 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1484 {
1485 	/* 01xb - invalidate TCEs that match the specified PE# */
1486 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1487 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1488 
1489 	mb(); /* Ensure above stores are visible */
1490 	__raw_writeq_be(val, invalidate);
1491 }
1492 
1493 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1494 					unsigned shift, unsigned long index,
1495 					unsigned long npages)
1496 {
1497 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1498 	unsigned long start, end, inc;
1499 
1500 	/* We'll invalidate DMA address in PE scope */
1501 	start = PHB3_TCE_KILL_INVAL_ONE;
1502 	start |= (pe->pe_number & 0xFF);
1503 	end = start;
1504 
1505 	/* Figure out the start, end and step */
1506 	start |= (index << shift);
1507 	end |= ((index + npages - 1) << shift);
1508 	inc = (0x1ull << shift);
1509 	mb();
1510 
1511 	while (start <= end) {
1512 		if (rm)
1513 			__raw_rm_writeq_be(start, invalidate);
1514 		else
1515 			__raw_writeq_be(start, invalidate);
1516 		start += inc;
1517 	}
1518 }
1519 
1520 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1521 {
1522 	struct pnv_phb *phb = pe->phb;
1523 
1524 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1525 		pnv_pci_phb3_tce_invalidate_pe(pe);
1526 	else
1527 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1528 				  pe->pe_number, 0, 0, 0);
1529 }
1530 
1531 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1532 		unsigned long index, unsigned long npages, bool rm)
1533 {
1534 	struct iommu_table_group_link *tgl;
1535 
1536 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1537 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1538 				struct pnv_ioda_pe, table_group);
1539 		struct pnv_phb *phb = pe->phb;
1540 		unsigned int shift = tbl->it_page_shift;
1541 
1542 		/*
1543 		 * NVLink1 can use the TCE kill register directly as
1544 		 * it's the same as PHB3. NVLink2 is different and
1545 		 * should go via the OPAL call.
1546 		 */
1547 		if (phb->model == PNV_PHB_MODEL_NPU) {
1548 			/*
1549 			 * The NVLink hardware does not support TCE kill
1550 			 * per TCE entry so we have to invalidate
1551 			 * the entire cache for it.
1552 			 */
1553 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1554 			continue;
1555 		}
1556 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1557 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1558 						    index, npages);
1559 		else
1560 			opal_pci_tce_kill(phb->opal_id,
1561 					  OPAL_PCI_TCE_KILL_PAGES,
1562 					  pe->pe_number, 1u << shift,
1563 					  index << shift, npages);
1564 	}
1565 }
1566 
1567 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1568 {
1569 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
1570 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1571 	else
1572 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
1573 }
1574 
1575 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1576 		long npages, unsigned long uaddr,
1577 		enum dma_data_direction direction,
1578 		unsigned long attrs)
1579 {
1580 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1581 			attrs);
1582 
1583 	if (!ret)
1584 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1585 
1586 	return ret;
1587 }
1588 
1589 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1590 		long npages)
1591 {
1592 	pnv_tce_free(tbl, index, npages);
1593 
1594 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1595 }
1596 
1597 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1598 	.set = pnv_ioda2_tce_build,
1599 #ifdef CONFIG_IOMMU_API
1600 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1601 	.tce_kill = pnv_pci_ioda2_tce_invalidate,
1602 	.useraddrptr = pnv_tce_useraddrptr,
1603 #endif
1604 	.clear = pnv_ioda2_tce_free,
1605 	.get = pnv_tce_get,
1606 	.free = pnv_pci_ioda2_table_free_pages,
1607 };
1608 
1609 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1610 {
1611 	unsigned int *weight = (unsigned int *)data;
1612 
1613 	/* This is quite simplistic. The "base" weight of a device
1614 	 * is 10. 0 means no DMA is to be accounted for it.
1615 	 */
1616 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1617 		return 0;
1618 
1619 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1620 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1621 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1622 		*weight += 3;
1623 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1624 		*weight += 15;
1625 	else
1626 		*weight += 10;
1627 
1628 	return 0;
1629 }
1630 
1631 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1632 {
1633 	unsigned int weight = 0;
1634 
1635 	/* SRIOV VF has same DMA32 weight as its PF */
1636 #ifdef CONFIG_PCI_IOV
1637 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1638 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1639 		return weight;
1640 	}
1641 #endif
1642 
1643 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1644 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1645 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1646 		struct pci_dev *pdev;
1647 
1648 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1649 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1650 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
1651 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
1652 	}
1653 
1654 	return weight;
1655 }
1656 
1657 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1658 				       struct pnv_ioda_pe *pe)
1659 {
1660 
1661 	struct page *tce_mem = NULL;
1662 	struct iommu_table *tbl;
1663 	unsigned int weight, total_weight = 0;
1664 	unsigned int tce32_segsz, base, segs, avail, i;
1665 	int64_t rc;
1666 	void *addr;
1667 
1668 	/* XXX FIXME: Handle 64-bit only DMA devices */
1669 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1670 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1671 	weight = pnv_pci_ioda_pe_dma_weight(pe);
1672 	if (!weight)
1673 		return;
1674 
1675 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
1676 		     &total_weight);
1677 	segs = (weight * phb->ioda.dma32_count) / total_weight;
1678 	if (!segs)
1679 		segs = 1;
1680 
1681 	/*
1682 	 * Allocate contiguous DMA32 segments. We begin with the expected
1683 	 * number of segments. With one more attempt, the number of DMA32
1684 	 * segments to be allocated is decreased by one until one segment
1685 	 * is allocated successfully.
1686 	 */
1687 	do {
1688 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
1689 			for (avail = 0, i = base; i < base + segs; i++) {
1690 				if (phb->ioda.dma32_segmap[i] ==
1691 				    IODA_INVALID_PE)
1692 					avail++;
1693 			}
1694 
1695 			if (avail == segs)
1696 				goto found;
1697 		}
1698 	} while (--segs);
1699 
1700 	if (!segs) {
1701 		pe_warn(pe, "No available DMA32 segments\n");
1702 		return;
1703 	}
1704 
1705 found:
1706 	tbl = pnv_pci_table_alloc(phb->hose->node);
1707 	if (WARN_ON(!tbl))
1708 		return;
1709 
1710 	iommu_register_group(&pe->table_group, phb->hose->global_number,
1711 			pe->pe_number);
1712 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1713 
1714 	/* Grab a 32-bit TCE table */
1715 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
1716 		weight, total_weight, base, segs);
1717 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1718 		base * PNV_IODA1_DMA32_SEGSIZE,
1719 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
1720 
1721 	/* XXX Currently, we allocate one big contiguous table for the
1722 	 * TCEs. We only really need one chunk per 256M of TCE space
1723 	 * (ie per segment) but that's an optimization for later, it
1724 	 * requires some added smarts with our get/put_tce implementation
1725 	 *
1726 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
1727 	 * bytes
1728 	 */
1729 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
1730 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1731 				   get_order(tce32_segsz * segs));
1732 	if (!tce_mem) {
1733 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1734 		goto fail;
1735 	}
1736 	addr = page_address(tce_mem);
1737 	memset(addr, 0, tce32_segsz * segs);
1738 
1739 	/* Configure HW */
1740 	for (i = 0; i < segs; i++) {
1741 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1742 					      pe->pe_number,
1743 					      base + i, 1,
1744 					      __pa(addr) + tce32_segsz * i,
1745 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
1746 		if (rc) {
1747 			pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
1748 			       rc);
1749 			goto fail;
1750 		}
1751 	}
1752 
1753 	/* Setup DMA32 segment mapping */
1754 	for (i = base; i < base + segs; i++)
1755 		phb->ioda.dma32_segmap[i] = pe->pe_number;
1756 
1757 	/* Setup linux iommu table */
1758 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
1759 				  base * PNV_IODA1_DMA32_SEGSIZE,
1760 				  IOMMU_PAGE_SHIFT_4K);
1761 
1762 	tbl->it_ops = &pnv_ioda1_iommu_ops;
1763 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1764 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1765 	iommu_init_table(tbl, phb->hose->node, 0, 0);
1766 
1767 	pe->dma_setup_done = true;
1768 	return;
1769  fail:
1770 	/* XXX Failure: Try to fallback to 64-bit only ? */
1771 	if (tce_mem)
1772 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
1773 	if (tbl) {
1774 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1775 		iommu_tce_table_put(tbl);
1776 	}
1777 }
1778 
1779 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1780 		int num, struct iommu_table *tbl)
1781 {
1782 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1783 			table_group);
1784 	struct pnv_phb *phb = pe->phb;
1785 	int64_t rc;
1786 	const unsigned long size = tbl->it_indirect_levels ?
1787 			tbl->it_level_size : tbl->it_size;
1788 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1789 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1790 
1791 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1792 		num, start_addr, start_addr + win_size - 1,
1793 		IOMMU_PAGE_SIZE(tbl));
1794 
1795 	/*
1796 	 * Map TCE table through TVT. The TVE index is the PE number
1797 	 * shifted by 1 bit for 32-bits DMA space.
1798 	 */
1799 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
1800 			pe->pe_number,
1801 			(pe->pe_number << 1) + num,
1802 			tbl->it_indirect_levels + 1,
1803 			__pa(tbl->it_base),
1804 			size << 3,
1805 			IOMMU_PAGE_SIZE(tbl));
1806 	if (rc) {
1807 		pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1808 		return rc;
1809 	}
1810 
1811 	pnv_pci_link_table_and_group(phb->hose->node, num,
1812 			tbl, &pe->table_group);
1813 	pnv_pci_ioda2_tce_invalidate_pe(pe);
1814 
1815 	return 0;
1816 }
1817 
1818 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1819 {
1820 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
1821 	int64_t rc;
1822 
1823 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1824 	if (enable) {
1825 		phys_addr_t top = memblock_end_of_DRAM();
1826 
1827 		top = roundup_pow_of_two(top);
1828 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1829 						     pe->pe_number,
1830 						     window_id,
1831 						     pe->tce_bypass_base,
1832 						     top);
1833 	} else {
1834 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1835 						     pe->pe_number,
1836 						     window_id,
1837 						     pe->tce_bypass_base,
1838 						     0);
1839 	}
1840 	if (rc)
1841 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1842 	else
1843 		pe->tce_bypass_enabled = enable;
1844 }
1845 
1846 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1847 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
1848 		bool alloc_userspace_copy, struct iommu_table **ptbl)
1849 {
1850 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1851 			table_group);
1852 	int nid = pe->phb->hose->node;
1853 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1854 	long ret;
1855 	struct iommu_table *tbl;
1856 
1857 	tbl = pnv_pci_table_alloc(nid);
1858 	if (!tbl)
1859 		return -ENOMEM;
1860 
1861 	tbl->it_ops = &pnv_ioda2_iommu_ops;
1862 
1863 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
1864 			bus_offset, page_shift, window_size,
1865 			levels, alloc_userspace_copy, tbl);
1866 	if (ret) {
1867 		iommu_tce_table_put(tbl);
1868 		return ret;
1869 	}
1870 
1871 	*ptbl = tbl;
1872 
1873 	return 0;
1874 }
1875 
1876 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1877 {
1878 	struct iommu_table *tbl = NULL;
1879 	long rc;
1880 	unsigned long res_start, res_end;
1881 
1882 	/*
1883 	 * crashkernel= specifies the kdump kernel's maximum memory at
1884 	 * some offset and there is no guaranteed the result is a power
1885 	 * of 2, which will cause errors later.
1886 	 */
1887 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1888 
1889 	/*
1890 	 * In memory constrained environments, e.g. kdump kernel, the
1891 	 * DMA window can be larger than available memory, which will
1892 	 * cause errors later.
1893 	 */
1894 	const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
1895 
1896 	/*
1897 	 * We create the default window as big as we can. The constraint is
1898 	 * the max order of allocation possible. The TCE table is likely to
1899 	 * end up being multilevel and with on-demand allocation in place,
1900 	 * the initial use is not going to be huge as the default window aims
1901 	 * to support crippled devices (i.e. not fully 64bit DMAble) only.
1902 	 */
1903 	/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1904 	const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1905 	/* Each TCE level cannot exceed maxblock so go multilevel if needed */
1906 	unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1907 	unsigned long tcelevel_order = ilog2(maxblock >> 3);
1908 	unsigned int levels = tces_order / tcelevel_order;
1909 
1910 	if (tces_order % tcelevel_order)
1911 		levels += 1;
1912 	/*
1913 	 * We try to stick to default levels (which is >1 at the moment) in
1914 	 * order to save memory by relying on on-demain TCE level allocation.
1915 	 */
1916 	levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1917 
1918 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1919 			window_size, levels, false, &tbl);
1920 	if (rc) {
1921 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1922 				rc);
1923 		return rc;
1924 	}
1925 
1926 	/* We use top part of 32bit space for MMIO so exclude it from DMA */
1927 	res_start = 0;
1928 	res_end = 0;
1929 	if (window_size > pe->phb->ioda.m32_pci_base) {
1930 		res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1931 		res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1932 	}
1933 	iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end);
1934 
1935 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1936 	if (rc) {
1937 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
1938 				rc);
1939 		iommu_tce_table_put(tbl);
1940 		return rc;
1941 	}
1942 
1943 	if (!pnv_iommu_bypass_disabled)
1944 		pnv_pci_ioda2_set_bypass(pe, true);
1945 
1946 	/*
1947 	 * Set table base for the case of IOMMU DMA use. Usually this is done
1948 	 * from dma_dev_setup() which is not called when a device is returned
1949 	 * from VFIO so do it here.
1950 	 */
1951 	if (pe->pdev)
1952 		set_iommu_table_base(&pe->pdev->dev, tbl);
1953 
1954 	return 0;
1955 }
1956 
1957 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1958 		int num)
1959 {
1960 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1961 			table_group);
1962 	struct pnv_phb *phb = pe->phb;
1963 	long ret;
1964 
1965 	pe_info(pe, "Removing DMA window #%d\n", num);
1966 
1967 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1968 			(pe->pe_number << 1) + num,
1969 			0/* levels */, 0/* table address */,
1970 			0/* table size */, 0/* page size */);
1971 	if (ret)
1972 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1973 	else
1974 		pnv_pci_ioda2_tce_invalidate_pe(pe);
1975 
1976 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1977 
1978 	return ret;
1979 }
1980 
1981 #ifdef CONFIG_IOMMU_API
1982 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1983 		__u64 window_size, __u32 levels)
1984 {
1985 	unsigned long bytes = 0;
1986 	const unsigned window_shift = ilog2(window_size);
1987 	unsigned entries_shift = window_shift - page_shift;
1988 	unsigned table_shift = entries_shift + 3;
1989 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1990 	unsigned long direct_table_size;
1991 
1992 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1993 			!is_power_of_2(window_size))
1994 		return 0;
1995 
1996 	/* Calculate a direct table size from window_size and levels */
1997 	entries_shift = (entries_shift + levels - 1) / levels;
1998 	table_shift = entries_shift + 3;
1999 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2000 	direct_table_size =  1UL << table_shift;
2001 
2002 	for ( ; levels; --levels) {
2003 		bytes += ALIGN(tce_table_size, direct_table_size);
2004 
2005 		tce_table_size /= direct_table_size;
2006 		tce_table_size <<= 3;
2007 		tce_table_size = max_t(unsigned long,
2008 				tce_table_size, direct_table_size);
2009 	}
2010 
2011 	return bytes + bytes; /* one for HW table, one for userspace copy */
2012 }
2013 
2014 static long pnv_pci_ioda2_create_table_userspace(
2015 		struct iommu_table_group *table_group,
2016 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2017 		struct iommu_table **ptbl)
2018 {
2019 	long ret = pnv_pci_ioda2_create_table(table_group,
2020 			num, page_shift, window_size, levels, true, ptbl);
2021 
2022 	if (!ret)
2023 		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2024 				page_shift, window_size, levels);
2025 	return ret;
2026 }
2027 
2028 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
2029 {
2030 	struct pci_dev *dev;
2031 
2032 	list_for_each_entry(dev, &bus->devices, bus_list) {
2033 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
2034 		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
2035 
2036 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2037 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
2038 	}
2039 }
2040 
2041 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2042 {
2043 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2044 						table_group);
2045 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2046 	struct iommu_table *tbl = pe->table_group.tables[0];
2047 
2048 	pnv_pci_ioda2_set_bypass(pe, false);
2049 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2050 	if (pe->pbus)
2051 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2052 	else if (pe->pdev)
2053 		set_iommu_table_base(&pe->pdev->dev, NULL);
2054 	iommu_tce_table_put(tbl);
2055 }
2056 
2057 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2058 {
2059 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2060 						table_group);
2061 
2062 	pnv_pci_ioda2_setup_default_config(pe);
2063 	if (pe->pbus)
2064 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2065 }
2066 
2067 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2068 	.get_table_size = pnv_pci_ioda2_get_table_size,
2069 	.create_table = pnv_pci_ioda2_create_table_userspace,
2070 	.set_window = pnv_pci_ioda2_set_window,
2071 	.unset_window = pnv_pci_ioda2_unset_window,
2072 	.take_ownership = pnv_ioda2_take_ownership,
2073 	.release_ownership = pnv_ioda2_release_ownership,
2074 };
2075 #endif
2076 
2077 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2078 				struct pnv_ioda_pe *pe)
2079 {
2080 	int64_t rc;
2081 
2082 	/* TVE #1 is selected by PCI address bit 59 */
2083 	pe->tce_bypass_base = 1ull << 59;
2084 
2085 	/* The PE will reserve all possible 32-bits space */
2086 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2087 		phb->ioda.m32_pci_base);
2088 
2089 	/* Setup linux iommu table */
2090 	pe->table_group.tce32_start = 0;
2091 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2092 	pe->table_group.max_dynamic_windows_supported =
2093 			IOMMU_TABLE_GROUP_MAX_TABLES;
2094 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2095 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2096 
2097 	rc = pnv_pci_ioda2_setup_default_config(pe);
2098 	if (rc)
2099 		return;
2100 
2101 #ifdef CONFIG_IOMMU_API
2102 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2103 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2104 			     pe->pe_number);
2105 #endif
2106 	pe->dma_setup_done = true;
2107 }
2108 
2109 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2110 {
2111 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2112 					   ioda.irq_chip);
2113 
2114 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2115 }
2116 
2117 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2118 {
2119 	int64_t rc;
2120 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2121 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2122 
2123 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2124 	WARN_ON_ONCE(rc);
2125 
2126 	icp_native_eoi(d);
2127 }
2128 
2129 
2130 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2131 {
2132 	struct irq_data *idata;
2133 	struct irq_chip *ichip;
2134 
2135 	/* The MSI EOI OPAL call is only needed on PHB3 */
2136 	if (phb->model != PNV_PHB_MODEL_PHB3)
2137 		return;
2138 
2139 	if (!phb->ioda.irq_chip_init) {
2140 		/*
2141 		 * First time we setup an MSI IRQ, we need to setup the
2142 		 * corresponding IRQ chip to route correctly.
2143 		 */
2144 		idata = irq_get_irq_data(virq);
2145 		ichip = irq_data_get_irq_chip(idata);
2146 		phb->ioda.irq_chip_init = 1;
2147 		phb->ioda.irq_chip = *ichip;
2148 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2149 	}
2150 	irq_set_chip(virq, &phb->ioda.irq_chip);
2151 }
2152 
2153 /*
2154  * Returns true iff chip is something that we could call
2155  * pnv_opal_pci_msi_eoi for.
2156  */
2157 bool is_pnv_opal_msi(struct irq_chip *chip)
2158 {
2159 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2160 }
2161 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2162 
2163 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2164 				  unsigned int hwirq, unsigned int virq,
2165 				  unsigned int is_64, struct msi_msg *msg)
2166 {
2167 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2168 	unsigned int xive_num = hwirq - phb->msi_base;
2169 	__be32 data;
2170 	int rc;
2171 
2172 	/* No PE assigned ? bail out ... no MSI for you ! */
2173 	if (pe == NULL)
2174 		return -ENXIO;
2175 
2176 	/* Check if we have an MVE */
2177 	if (pe->mve_number < 0)
2178 		return -ENXIO;
2179 
2180 	/* Force 32-bit MSI on some broken devices */
2181 	if (dev->no_64bit_msi)
2182 		is_64 = 0;
2183 
2184 	/* Assign XIVE to PE */
2185 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2186 	if (rc) {
2187 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2188 			pci_name(dev), rc, xive_num);
2189 		return -EIO;
2190 	}
2191 
2192 	if (is_64) {
2193 		__be64 addr64;
2194 
2195 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2196 				     &addr64, &data);
2197 		if (rc) {
2198 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2199 				pci_name(dev), rc);
2200 			return -EIO;
2201 		}
2202 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2203 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2204 	} else {
2205 		__be32 addr32;
2206 
2207 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2208 				     &addr32, &data);
2209 		if (rc) {
2210 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2211 				pci_name(dev), rc);
2212 			return -EIO;
2213 		}
2214 		msg->address_hi = 0;
2215 		msg->address_lo = be32_to_cpu(addr32);
2216 	}
2217 	msg->data = be32_to_cpu(data);
2218 
2219 	pnv_set_msi_irq_chip(phb, virq);
2220 
2221 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2222 		 " address=%x_%08x data=%x PE# %x\n",
2223 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2224 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2225 
2226 	return 0;
2227 }
2228 
2229 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2230 {
2231 	unsigned int count;
2232 	const __be32 *prop = of_get_property(phb->hose->dn,
2233 					     "ibm,opal-msi-ranges", NULL);
2234 	if (!prop) {
2235 		/* BML Fallback */
2236 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2237 	}
2238 	if (!prop)
2239 		return;
2240 
2241 	phb->msi_base = be32_to_cpup(prop);
2242 	count = be32_to_cpup(prop + 1);
2243 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2244 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2245 		       phb->hose->global_number);
2246 		return;
2247 	}
2248 
2249 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2250 	phb->msi32_support = 1;
2251 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2252 		count, phb->msi_base);
2253 }
2254 
2255 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2256 				  struct resource *res)
2257 {
2258 	struct pnv_phb *phb = pe->phb;
2259 	struct pci_bus_region region;
2260 	int index;
2261 	int64_t rc;
2262 
2263 	if (!res || !res->flags || res->start > res->end)
2264 		return;
2265 
2266 	if (res->flags & IORESOURCE_IO) {
2267 		region.start = res->start - phb->ioda.io_pci_base;
2268 		region.end   = res->end - phb->ioda.io_pci_base;
2269 		index = region.start / phb->ioda.io_segsize;
2270 
2271 		while (index < phb->ioda.total_pe_num &&
2272 		       region.start <= region.end) {
2273 			phb->ioda.io_segmap[index] = pe->pe_number;
2274 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2275 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2276 			if (rc != OPAL_SUCCESS) {
2277 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2278 				       __func__, rc, index, pe->pe_number);
2279 				break;
2280 			}
2281 
2282 			region.start += phb->ioda.io_segsize;
2283 			index++;
2284 		}
2285 	} else if ((res->flags & IORESOURCE_MEM) &&
2286 		   !pnv_pci_is_m64(phb, res)) {
2287 		region.start = res->start -
2288 			       phb->hose->mem_offset[0] -
2289 			       phb->ioda.m32_pci_base;
2290 		region.end   = res->end -
2291 			       phb->hose->mem_offset[0] -
2292 			       phb->ioda.m32_pci_base;
2293 		index = region.start / phb->ioda.m32_segsize;
2294 
2295 		while (index < phb->ioda.total_pe_num &&
2296 		       region.start <= region.end) {
2297 			phb->ioda.m32_segmap[index] = pe->pe_number;
2298 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2299 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2300 			if (rc != OPAL_SUCCESS) {
2301 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2302 				       __func__, rc, index, pe->pe_number);
2303 				break;
2304 			}
2305 
2306 			region.start += phb->ioda.m32_segsize;
2307 			index++;
2308 		}
2309 	}
2310 }
2311 
2312 /*
2313  * This function is supposed to be called on basis of PE from top
2314  * to bottom style. So the the I/O or MMIO segment assigned to
2315  * parent PE could be overridden by its child PEs if necessary.
2316  */
2317 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2318 {
2319 	struct pci_dev *pdev;
2320 	int i;
2321 
2322 	/*
2323 	 * NOTE: We only care PCI bus based PE for now. For PCI
2324 	 * device based PE, for example SRIOV sensitive VF should
2325 	 * be figured out later.
2326 	 */
2327 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2328 
2329 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2330 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2331 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2332 
2333 		/*
2334 		 * If the PE contains all subordinate PCI buses, the
2335 		 * windows of the child bridges should be mapped to
2336 		 * the PE as well.
2337 		 */
2338 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2339 			continue;
2340 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2341 			pnv_ioda_setup_pe_res(pe,
2342 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2343 	}
2344 }
2345 
2346 #ifdef CONFIG_DEBUG_FS
2347 static int pnv_pci_diag_data_set(void *data, u64 val)
2348 {
2349 	struct pnv_phb *phb = data;
2350 	s64 ret;
2351 
2352 	/* Retrieve the diag data from firmware */
2353 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2354 					  phb->diag_data_size);
2355 	if (ret != OPAL_SUCCESS)
2356 		return -EIO;
2357 
2358 	/* Print the diag data to the kernel log */
2359 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2360 	return 0;
2361 }
2362 
2363 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2364 			 "%llu\n");
2365 
2366 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2367 {
2368 	struct pnv_phb *phb = data;
2369 	int pe_num;
2370 
2371 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2372 		struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2373 
2374 		if (!test_bit(pe_num, phb->ioda.pe_alloc))
2375 			continue;
2376 
2377 		pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2378 			pe->rid, pe->device_count,
2379 			(pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2380 			(pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2381 			(pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2382 			(pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2383 			(pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2384 			(pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2391 			 pnv_pci_ioda_pe_dump, "%llu\n");
2392 
2393 #endif /* CONFIG_DEBUG_FS */
2394 
2395 static void pnv_pci_ioda_create_dbgfs(void)
2396 {
2397 #ifdef CONFIG_DEBUG_FS
2398 	struct pci_controller *hose, *tmp;
2399 	struct pnv_phb *phb;
2400 	char name[16];
2401 
2402 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2403 		phb = hose->private_data;
2404 
2405 		/* Notify initialization of PHB done */
2406 		phb->initialized = 1;
2407 
2408 		sprintf(name, "PCI%04x", hose->global_number);
2409 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2410 
2411 		debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2412 					   phb, &pnv_pci_diag_data_fops);
2413 		debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2414 					   phb, &pnv_pci_ioda_pe_dump_fops);
2415 	}
2416 #endif /* CONFIG_DEBUG_FS */
2417 }
2418 
2419 static void pnv_pci_enable_bridge(struct pci_bus *bus)
2420 {
2421 	struct pci_dev *dev = bus->self;
2422 	struct pci_bus *child;
2423 
2424 	/* Empty bus ? bail */
2425 	if (list_empty(&bus->devices))
2426 		return;
2427 
2428 	/*
2429 	 * If there's a bridge associated with that bus enable it. This works
2430 	 * around races in the generic code if the enabling is done during
2431 	 * parallel probing. This can be removed once those races have been
2432 	 * fixed.
2433 	 */
2434 	if (dev) {
2435 		int rc = pci_enable_device(dev);
2436 		if (rc)
2437 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
2438 		pci_set_master(dev);
2439 	}
2440 
2441 	/* Perform the same to child busses */
2442 	list_for_each_entry(child, &bus->children, node)
2443 		pnv_pci_enable_bridge(child);
2444 }
2445 
2446 static void pnv_pci_enable_bridges(void)
2447 {
2448 	struct pci_controller *hose;
2449 
2450 	list_for_each_entry(hose, &hose_list, list_node)
2451 		pnv_pci_enable_bridge(hose->bus);
2452 }
2453 
2454 static void pnv_pci_ioda_fixup(void)
2455 {
2456 	pnv_pci_ioda_setup_nvlink();
2457 	pnv_pci_ioda_create_dbgfs();
2458 
2459 	pnv_pci_enable_bridges();
2460 
2461 #ifdef CONFIG_EEH
2462 	pnv_eeh_post_init();
2463 #endif
2464 }
2465 
2466 /*
2467  * Returns the alignment for I/O or memory windows for P2P
2468  * bridges. That actually depends on how PEs are segmented.
2469  * For now, we return I/O or M32 segment size for PE sensitive
2470  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2471  * 1MiB for memory) will be returned.
2472  *
2473  * The current PCI bus might be put into one PE, which was
2474  * create against the parent PCI bridge. For that case, we
2475  * needn't enlarge the alignment so that we can save some
2476  * resources.
2477  */
2478 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2479 						unsigned long type)
2480 {
2481 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2482 	int num_pci_bridges = 0;
2483 	struct pci_dev *bridge;
2484 
2485 	bridge = bus->self;
2486 	while (bridge) {
2487 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2488 			num_pci_bridges++;
2489 			if (num_pci_bridges >= 2)
2490 				return 1;
2491 		}
2492 
2493 		bridge = bridge->bus->self;
2494 	}
2495 
2496 	/*
2497 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
2498 	 * alignment for any 64-bit resource, PCIe doesn't care and
2499 	 * bridges only do 64-bit prefetchable anyway.
2500 	 */
2501 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2502 		return phb->ioda.m64_segsize;
2503 	if (type & IORESOURCE_MEM)
2504 		return phb->ioda.m32_segsize;
2505 
2506 	return phb->ioda.io_segsize;
2507 }
2508 
2509 /*
2510  * We are updating root port or the upstream port of the
2511  * bridge behind the root port with PHB's windows in order
2512  * to accommodate the changes on required resources during
2513  * PCI (slot) hotplug, which is connected to either root
2514  * port or the downstream ports of PCIe switch behind the
2515  * root port.
2516  */
2517 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2518 					   unsigned long type)
2519 {
2520 	struct pci_controller *hose = pci_bus_to_host(bus);
2521 	struct pnv_phb *phb = hose->private_data;
2522 	struct pci_dev *bridge = bus->self;
2523 	struct resource *r, *w;
2524 	bool msi_region = false;
2525 	int i;
2526 
2527 	/* Check if we need apply fixup to the bridge's windows */
2528 	if (!pci_is_root_bus(bridge->bus) &&
2529 	    !pci_is_root_bus(bridge->bus->self->bus))
2530 		return;
2531 
2532 	/* Fixup the resources */
2533 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2534 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2535 		if (!r->flags || !r->parent)
2536 			continue;
2537 
2538 		w = NULL;
2539 		if (r->flags & type & IORESOURCE_IO)
2540 			w = &hose->io_resource;
2541 		else if (pnv_pci_is_m64(phb, r) &&
2542 			 (type & IORESOURCE_PREFETCH) &&
2543 			 phb->ioda.m64_segsize)
2544 			w = &hose->mem_resources[1];
2545 		else if (r->flags & type & IORESOURCE_MEM) {
2546 			w = &hose->mem_resources[0];
2547 			msi_region = true;
2548 		}
2549 
2550 		r->start = w->start;
2551 		r->end = w->end;
2552 
2553 		/* The 64KB 32-bits MSI region shouldn't be included in
2554 		 * the 32-bits bridge window. Otherwise, we can see strange
2555 		 * issues. One of them is EEH error observed on Garrison.
2556 		 *
2557 		 * Exclude top 1MB region which is the minimal alignment of
2558 		 * 32-bits bridge window.
2559 		 */
2560 		if (msi_region) {
2561 			r->end += 0x10000;
2562 			r->end -= 0x100000;
2563 		}
2564 	}
2565 }
2566 
2567 static void pnv_pci_configure_bus(struct pci_bus *bus)
2568 {
2569 	struct pci_dev *bridge = bus->self;
2570 	struct pnv_ioda_pe *pe;
2571 	bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2572 
2573 	dev_info(&bus->dev, "Configuring PE for bus\n");
2574 
2575 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2576 	if (WARN_ON(list_empty(&bus->devices)))
2577 		return;
2578 
2579 	/* Reserve PEs according to used M64 resources */
2580 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
2581 
2582 	/*
2583 	 * Assign PE. We might run here because of partial hotplug.
2584 	 * For the case, we just pick up the existing PE and should
2585 	 * not allocate resources again.
2586 	 */
2587 	pe = pnv_ioda_setup_bus_PE(bus, all);
2588 	if (!pe)
2589 		return;
2590 
2591 	pnv_ioda_setup_pe_seg(pe);
2592 }
2593 
2594 static resource_size_t pnv_pci_default_alignment(void)
2595 {
2596 	return PAGE_SIZE;
2597 }
2598 
2599 /* Prevent enabling devices for which we couldn't properly
2600  * assign a PE
2601  */
2602 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2603 {
2604 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
2605 	struct pci_dn *pdn;
2606 
2607 	/* The function is probably called while the PEs have
2608 	 * not be created yet. For example, resource reassignment
2609 	 * during PCI probe period. We just skip the check if
2610 	 * PEs isn't ready.
2611 	 */
2612 	if (!phb->initialized)
2613 		return true;
2614 
2615 	pdn = pci_get_pdn(dev);
2616 	if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
2617 		pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
2618 		return false;
2619 	}
2620 
2621 	return true;
2622 }
2623 
2624 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2625 {
2626 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2627 	struct pnv_phb *phb = hose->private_data;
2628 	struct pci_dn *pdn;
2629 	struct pnv_ioda_pe *pe;
2630 
2631 	if (!phb->initialized)
2632 		return true;
2633 
2634 	pdn = pci_get_pdn(dev);
2635 	if (!pdn)
2636 		return false;
2637 
2638 	if (pdn->pe_number == IODA_INVALID_PE) {
2639 		pe = pnv_ioda_setup_dev_PE(dev);
2640 		if (!pe)
2641 			return false;
2642 	}
2643 	return true;
2644 }
2645 
2646 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
2647 				       int num)
2648 {
2649 	struct pnv_ioda_pe *pe = container_of(table_group,
2650 					      struct pnv_ioda_pe, table_group);
2651 	struct pnv_phb *phb = pe->phb;
2652 	unsigned int idx;
2653 	long rc;
2654 
2655 	pe_info(pe, "Removing DMA window #%d\n", num);
2656 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
2657 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
2658 			continue;
2659 
2660 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2661 						idx, 0, 0ul, 0ul, 0ul);
2662 		if (rc != OPAL_SUCCESS) {
2663 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
2664 				rc, idx);
2665 			return rc;
2666 		}
2667 
2668 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
2669 	}
2670 
2671 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2672 	return OPAL_SUCCESS;
2673 }
2674 
2675 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
2676 {
2677 	struct iommu_table *tbl = pe->table_group.tables[0];
2678 	int64_t rc;
2679 
2680 	if (!pe->dma_setup_done)
2681 		return;
2682 
2683 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
2684 	if (rc != OPAL_SUCCESS)
2685 		return;
2686 
2687 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
2688 	if (pe->table_group.group) {
2689 		iommu_group_put(pe->table_group.group);
2690 		WARN_ON(pe->table_group.group);
2691 	}
2692 
2693 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
2694 	iommu_tce_table_put(tbl);
2695 }
2696 
2697 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2698 {
2699 	struct iommu_table *tbl = pe->table_group.tables[0];
2700 	int64_t rc;
2701 
2702 	if (!pe->dma_setup_done)
2703 		return;
2704 
2705 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2706 	if (rc)
2707 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2708 
2709 	pnv_pci_ioda2_set_bypass(pe, false);
2710 	if (pe->table_group.group) {
2711 		iommu_group_put(pe->table_group.group);
2712 		WARN_ON(pe->table_group.group);
2713 	}
2714 
2715 	iommu_tce_table_put(tbl);
2716 }
2717 
2718 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2719 				 unsigned short win,
2720 				 unsigned int *map)
2721 {
2722 	struct pnv_phb *phb = pe->phb;
2723 	int idx;
2724 	int64_t rc;
2725 
2726 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2727 		if (map[idx] != pe->pe_number)
2728 			continue;
2729 
2730 		rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2731 				phb->ioda.reserved_pe_idx, win, 0, idx);
2732 
2733 		if (rc != OPAL_SUCCESS)
2734 			pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2735 				rc, win, idx);
2736 
2737 		map[idx] = IODA_INVALID_PE;
2738 	}
2739 }
2740 
2741 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2742 {
2743 	struct pnv_phb *phb = pe->phb;
2744 
2745 	if (phb->type == PNV_PHB_IODA1) {
2746 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
2747 				     phb->ioda.io_segmap);
2748 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2749 				     phb->ioda.m32_segmap);
2750 		/* M64 is pre-configured by pnv_ioda1_init_m64() */
2751 	} else if (phb->type == PNV_PHB_IODA2) {
2752 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2753 				     phb->ioda.m32_segmap);
2754 	}
2755 }
2756 
2757 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2758 {
2759 	struct pnv_phb *phb = pe->phb;
2760 	struct pnv_ioda_pe *slave, *tmp;
2761 
2762 	pe_info(pe, "Releasing PE\n");
2763 
2764 	mutex_lock(&phb->ioda.pe_list_mutex);
2765 	list_del(&pe->list);
2766 	mutex_unlock(&phb->ioda.pe_list_mutex);
2767 
2768 	switch (phb->type) {
2769 	case PNV_PHB_IODA1:
2770 		pnv_pci_ioda1_release_pe_dma(pe);
2771 		break;
2772 	case PNV_PHB_IODA2:
2773 		pnv_pci_ioda2_release_pe_dma(pe);
2774 		break;
2775 	case PNV_PHB_NPU_OCAPI:
2776 		break;
2777 	default:
2778 		WARN_ON(1);
2779 	}
2780 
2781 	pnv_ioda_release_pe_seg(pe);
2782 	pnv_ioda_deconfigure_pe(pe->phb, pe);
2783 
2784 	/* Release slave PEs in the compound PE */
2785 	if (pe->flags & PNV_IODA_PE_MASTER) {
2786 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2787 			list_del(&slave->list);
2788 			pnv_ioda_free_pe(slave);
2789 		}
2790 	}
2791 
2792 	/*
2793 	 * The PE for root bus can be removed because of hotplug in EEH
2794 	 * recovery for fenced PHB error. We need to mark the PE dead so
2795 	 * that it can be populated again in PCI hot add path. The PE
2796 	 * shouldn't be destroyed as it's the global reserved resource.
2797 	 */
2798 	if (phb->ioda.root_pe_idx == pe->pe_number)
2799 		return;
2800 
2801 	pnv_ioda_free_pe(pe);
2802 }
2803 
2804 static void pnv_pci_release_device(struct pci_dev *pdev)
2805 {
2806 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2807 	struct pci_dn *pdn = pci_get_pdn(pdev);
2808 	struct pnv_ioda_pe *pe;
2809 
2810 	/* The VF PE state is torn down when sriov_disable() is called */
2811 	if (pdev->is_virtfn)
2812 		return;
2813 
2814 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2815 		return;
2816 
2817 #ifdef CONFIG_PCI_IOV
2818 	/*
2819 	 * FIXME: Try move this to sriov_disable(). It's here since we allocate
2820 	 * the iov state at probe time since we need to fiddle with the IOV
2821 	 * resources.
2822 	 */
2823 	if (pdev->is_physfn)
2824 		kfree(pdev->dev.archdata.iov_data);
2825 #endif
2826 
2827 	/*
2828 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
2829 	 * isn't removed and added afterwards in this scenario. We should
2830 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2831 	 * device count is decreased on removing devices while failing to
2832 	 * be increased on adding devices. It leads to unbalanced PE's device
2833 	 * count and eventually make normal PCI hotplug path broken.
2834 	 */
2835 	pe = &phb->ioda.pe_array[pdn->pe_number];
2836 	pdn->pe_number = IODA_INVALID_PE;
2837 
2838 	WARN_ON(--pe->device_count < 0);
2839 	if (pe->device_count == 0)
2840 		pnv_ioda_release_pe(pe);
2841 }
2842 
2843 static void pnv_npu_disable_device(struct pci_dev *pdev)
2844 {
2845 	struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
2846 	struct eeh_pe *eehpe = edev ? edev->pe : NULL;
2847 
2848 	if (eehpe && eeh_ops && eeh_ops->reset)
2849 		eeh_ops->reset(eehpe, EEH_RESET_HOT);
2850 }
2851 
2852 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2853 {
2854 	struct pnv_phb *phb = hose->private_data;
2855 
2856 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2857 		       OPAL_ASSERT_RESET);
2858 }
2859 
2860 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2861 {
2862 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2863 	struct pnv_ioda_pe *pe;
2864 
2865 	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2866 		if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2867 			continue;
2868 
2869 		if (!pe->pbus)
2870 			continue;
2871 
2872 		if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2873 			pe->pbus = bus;
2874 			break;
2875 		}
2876 	}
2877 }
2878 
2879 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2880 	.dma_dev_setup		= pnv_pci_ioda_dma_dev_setup,
2881 	.dma_bus_setup		= pnv_pci_ioda_dma_bus_setup,
2882 	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
2883 	.setup_msi_irqs		= pnv_setup_msi_irqs,
2884 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
2885 	.enable_device_hook	= pnv_pci_enable_device_hook,
2886 	.release_device		= pnv_pci_release_device,
2887 	.window_alignment	= pnv_pci_window_alignment,
2888 	.setup_bridge		= pnv_pci_fixup_bridge_resources,
2889 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2890 	.shutdown		= pnv_pci_ioda_shutdown,
2891 };
2892 
2893 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
2894 	.setup_msi_irqs		= pnv_setup_msi_irqs,
2895 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
2896 	.enable_device_hook	= pnv_pci_enable_device_hook,
2897 	.window_alignment	= pnv_pci_window_alignment,
2898 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2899 	.shutdown		= pnv_pci_ioda_shutdown,
2900 	.disable_device		= pnv_npu_disable_device,
2901 };
2902 
2903 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2904 	.enable_device_hook	= pnv_ocapi_enable_device_hook,
2905 	.release_device		= pnv_pci_release_device,
2906 	.window_alignment	= pnv_pci_window_alignment,
2907 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2908 	.shutdown		= pnv_pci_ioda_shutdown,
2909 };
2910 
2911 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2912 					 u64 hub_id, int ioda_type)
2913 {
2914 	struct pci_controller *hose;
2915 	struct pnv_phb *phb;
2916 	unsigned long size, m64map_off, m32map_off, pemap_off;
2917 	unsigned long iomap_off = 0, dma32map_off = 0;
2918 	struct pnv_ioda_pe *root_pe;
2919 	struct resource r;
2920 	const __be64 *prop64;
2921 	const __be32 *prop32;
2922 	int len;
2923 	unsigned int segno;
2924 	u64 phb_id;
2925 	void *aux;
2926 	long rc;
2927 
2928 	if (!of_device_is_available(np))
2929 		return;
2930 
2931 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
2932 
2933 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2934 	if (!prop64) {
2935 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2936 		return;
2937 	}
2938 	phb_id = be64_to_cpup(prop64);
2939 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2940 
2941 	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
2942 	if (!phb)
2943 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2944 		      sizeof(*phb));
2945 
2946 	/* Allocate PCI controller */
2947 	phb->hose = hose = pcibios_alloc_controller(np);
2948 	if (!phb->hose) {
2949 		pr_err("  Can't allocate PCI controller for %pOF\n",
2950 		       np);
2951 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
2952 		return;
2953 	}
2954 
2955 	spin_lock_init(&phb->lock);
2956 	prop32 = of_get_property(np, "bus-range", &len);
2957 	if (prop32 && len == 8) {
2958 		hose->first_busno = be32_to_cpu(prop32[0]);
2959 		hose->last_busno = be32_to_cpu(prop32[1]);
2960 	} else {
2961 		pr_warn("  Broken <bus-range> on %pOF\n", np);
2962 		hose->first_busno = 0;
2963 		hose->last_busno = 0xff;
2964 	}
2965 	hose->private_data = phb;
2966 	phb->hub_id = hub_id;
2967 	phb->opal_id = phb_id;
2968 	phb->type = ioda_type;
2969 	mutex_init(&phb->ioda.pe_alloc_mutex);
2970 
2971 	/* Detect specific models for error handling */
2972 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2973 		phb->model = PNV_PHB_MODEL_P7IOC;
2974 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2975 		phb->model = PNV_PHB_MODEL_PHB3;
2976 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
2977 		phb->model = PNV_PHB_MODEL_NPU;
2978 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
2979 		phb->model = PNV_PHB_MODEL_NPU2;
2980 	else
2981 		phb->model = PNV_PHB_MODEL_UNKNOWN;
2982 
2983 	/* Initialize diagnostic data buffer */
2984 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
2985 	if (prop32)
2986 		phb->diag_data_size = be32_to_cpup(prop32);
2987 	else
2988 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
2989 
2990 	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
2991 	if (!phb->diag_data)
2992 		panic("%s: Failed to allocate %u bytes\n", __func__,
2993 		      phb->diag_data_size);
2994 
2995 	/* Parse 32-bit and IO ranges (if any) */
2996 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2997 
2998 	/* Get registers */
2999 	if (!of_address_to_resource(np, 0, &r)) {
3000 		phb->regs_phys = r.start;
3001 		phb->regs = ioremap(r.start, resource_size(&r));
3002 		if (phb->regs == NULL)
3003 			pr_err("  Failed to map registers !\n");
3004 	}
3005 
3006 	/* Initialize more IODA stuff */
3007 	phb->ioda.total_pe_num = 1;
3008 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3009 	if (prop32)
3010 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3011 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3012 	if (prop32)
3013 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3014 
3015 	/* Invalidate RID to PE# mapping */
3016 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3017 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3018 
3019 	/* Parse 64-bit MMIO range */
3020 	pnv_ioda_parse_m64_window(phb);
3021 
3022 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3023 	/* FW Has already off top 64k of M32 space (MSI space) */
3024 	phb->ioda.m32_size += 0x10000;
3025 
3026 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3027 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3028 	phb->ioda.io_size = hose->pci_io_size;
3029 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3030 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3031 
3032 	/* Calculate how many 32-bit TCE segments we have */
3033 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3034 				PNV_IODA1_DMA32_SEGSIZE;
3035 
3036 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3037 	size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3038 			sizeof(unsigned long));
3039 	m64map_off = size;
3040 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3041 	m32map_off = size;
3042 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3043 	if (phb->type == PNV_PHB_IODA1) {
3044 		iomap_off = size;
3045 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3046 		dma32map_off = size;
3047 		size += phb->ioda.dma32_count *
3048 			sizeof(phb->ioda.dma32_segmap[0]);
3049 	}
3050 	pemap_off = size;
3051 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3052 	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3053 	if (!aux)
3054 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3055 	phb->ioda.pe_alloc = aux;
3056 	phb->ioda.m64_segmap = aux + m64map_off;
3057 	phb->ioda.m32_segmap = aux + m32map_off;
3058 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3059 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3060 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3061 	}
3062 	if (phb->type == PNV_PHB_IODA1) {
3063 		phb->ioda.io_segmap = aux + iomap_off;
3064 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3065 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3066 
3067 		phb->ioda.dma32_segmap = aux + dma32map_off;
3068 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3069 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3070 	}
3071 	phb->ioda.pe_array = aux + pemap_off;
3072 
3073 	/*
3074 	 * Choose PE number for root bus, which shouldn't have
3075 	 * M64 resources consumed by its child devices. To pick
3076 	 * the PE number adjacent to the reserved one if possible.
3077 	 */
3078 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3079 	if (phb->ioda.reserved_pe_idx == 0) {
3080 		phb->ioda.root_pe_idx = 1;
3081 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3082 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3083 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3084 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3085 	} else {
3086 		/* otherwise just allocate one */
3087 		root_pe = pnv_ioda_alloc_pe(phb, 1);
3088 		phb->ioda.root_pe_idx = root_pe->pe_number;
3089 	}
3090 
3091 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3092 	mutex_init(&phb->ioda.pe_list_mutex);
3093 
3094 	/* Calculate how many 32-bit TCE segments we have */
3095 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3096 				PNV_IODA1_DMA32_SEGSIZE;
3097 
3098 #if 0 /* We should really do that ... */
3099 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3100 					 window_type,
3101 					 window_num,
3102 					 starting_real_address,
3103 					 starting_pci_address,
3104 					 segment_size);
3105 #endif
3106 
3107 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3108 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3109 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3110 	if (phb->ioda.m64_size)
3111 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3112 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3113 	if (phb->ioda.io_size)
3114 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3115 			phb->ioda.io_size, phb->ioda.io_segsize);
3116 
3117 
3118 	phb->hose->ops = &pnv_pci_ops;
3119 	phb->get_pe_state = pnv_ioda_get_pe_state;
3120 	phb->freeze_pe = pnv_ioda_freeze_pe;
3121 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3122 
3123 	/* Setup MSI support */
3124 	pnv_pci_init_ioda_msis(phb);
3125 
3126 	/*
3127 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3128 	 * to let the PCI core do resource assignment. It's supposed
3129 	 * that the PCI core will do correct I/O and MMIO alignment
3130 	 * for the P2P bridge bars so that each PCI bus (excluding
3131 	 * the child P2P bridges) can form individual PE.
3132 	 */
3133 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3134 
3135 	switch (phb->type) {
3136 	case PNV_PHB_NPU_NVLINK:
3137 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3138 		break;
3139 	case PNV_PHB_NPU_OCAPI:
3140 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3141 		break;
3142 	default:
3143 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3144 	}
3145 
3146 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3147 
3148 #ifdef CONFIG_PCI_IOV
3149 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
3150 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3151 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3152 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3153 #endif
3154 
3155 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3156 
3157 	/* Reset IODA tables to a clean state */
3158 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3159 	if (rc)
3160 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3161 
3162 	/*
3163 	 * If we're running in kdump kernel, the previous kernel never
3164 	 * shutdown PCI devices correctly. We already got IODA table
3165 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3166 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3167 	 * kernel parameter will force this reset too. Additionally,
3168 	 * if the IODA reset above failed then use a bigger hammer.
3169 	 * This can happen if we get a PHB fatal error in very early
3170 	 * boot.
3171 	 */
3172 	if (is_kdump_kernel() || pci_reset_phbs || rc) {
3173 		pr_info("  Issue PHB reset ...\n");
3174 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3175 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3176 	}
3177 
3178 	/* Remove M64 resource if we can't configure it successfully */
3179 	if (!phb->init_m64 || phb->init_m64(phb))
3180 		hose->mem_resources[1].flags = 0;
3181 }
3182 
3183 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3184 {
3185 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3186 }
3187 
3188 void __init pnv_pci_init_npu_phb(struct device_node *np)
3189 {
3190 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3191 }
3192 
3193 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3194 {
3195 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3196 }
3197 
3198 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3199 {
3200 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
3201 
3202 	if (!machine_is(powernv))
3203 		return;
3204 
3205 	if (phb->type == PNV_PHB_NPU_OCAPI)
3206 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3207 }
3208 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3209 
3210 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3211 {
3212 	struct device_node *phbn;
3213 	const __be64 *prop64;
3214 	u64 hub_id;
3215 
3216 	pr_info("Probing IODA IO-Hub %pOF\n", np);
3217 
3218 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3219 	if (!prop64) {
3220 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3221 		return;
3222 	}
3223 	hub_id = be64_to_cpup(prop64);
3224 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3225 
3226 	/* Count child PHBs */
3227 	for_each_child_of_node(np, phbn) {
3228 		/* Look for IODA1 PHBs */
3229 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3230 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3231 	}
3232 }
3233