1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7 
8 #undef DEBUG
9 
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/prom.h>
27 #include <asm/pci-bridge.h>
28 #include <asm/machdep.h>
29 #include <asm/msi_bitmap.h>
30 #include <asm/ppc-pci.h>
31 #include <asm/opal.h>
32 #include <asm/iommu.h>
33 #include <asm/tce.h>
34 #include <asm/xics.h>
35 #include <asm/debugfs.h>
36 #include <asm/firmware.h>
37 #include <asm/pnv-pci.h>
38 #include <asm/mmzone.h>
39 
40 #include <misc/cxl-base.h>
41 
42 #include "powernv.h"
43 #include "pci.h"
44 #include "../../../../drivers/pci/pci.h"
45 
46 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
47 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
48 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
49 
50 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
51 					      "NPU_OCAPI" };
52 
53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
54 
55 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
56 			    const char *fmt, ...)
57 {
58 	struct va_format vaf;
59 	va_list args;
60 	char pfix[32];
61 
62 	va_start(args, fmt);
63 
64 	vaf.fmt = fmt;
65 	vaf.va = &args;
66 
67 	if (pe->flags & PNV_IODA_PE_DEV)
68 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
69 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
70 		sprintf(pfix, "%04x:%02x     ",
71 			pci_domain_nr(pe->pbus), pe->pbus->number);
72 #ifdef CONFIG_PCI_IOV
73 	else if (pe->flags & PNV_IODA_PE_VF)
74 		sprintf(pfix, "%04x:%02x:%2x.%d",
75 			pci_domain_nr(pe->parent_dev->bus),
76 			(pe->rid & 0xff00) >> 8,
77 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
78 #endif /* CONFIG_PCI_IOV*/
79 
80 	printk("%spci %s: [PE# %.2x] %pV",
81 	       level, pfix, pe->pe_number, &vaf);
82 
83 	va_end(args);
84 }
85 
86 static bool pnv_iommu_bypass_disabled __read_mostly;
87 static bool pci_reset_phbs __read_mostly;
88 
89 static int __init iommu_setup(char *str)
90 {
91 	if (!str)
92 		return -EINVAL;
93 
94 	while (*str) {
95 		if (!strncmp(str, "nobypass", 8)) {
96 			pnv_iommu_bypass_disabled = true;
97 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
98 			break;
99 		}
100 		str += strcspn(str, ",");
101 		if (*str == ',')
102 			str++;
103 	}
104 
105 	return 0;
106 }
107 early_param("iommu", iommu_setup);
108 
109 static int __init pci_reset_phbs_setup(char *str)
110 {
111 	pci_reset_phbs = true;
112 	return 0;
113 }
114 
115 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
116 
117 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
118 {
119 	/*
120 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
121 	 * allocation code sometimes decides to put a 64-bit prefetchable
122 	 * BAR in the 32-bit window, so we have to compare the addresses.
123 	 *
124 	 * For simplicity we only test resource start.
125 	 */
126 	return (r->start >= phb->ioda.m64_base &&
127 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
128 }
129 
130 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
131 {
132 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
133 
134 	return (resource_flags & flags) == flags;
135 }
136 
137 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
138 {
139 	s64 rc;
140 
141 	phb->ioda.pe_array[pe_no].phb = phb;
142 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
143 
144 	/*
145 	 * Clear the PE frozen state as it might be put into frozen state
146 	 * in the last PCI remove path. It's not harmful to do so when the
147 	 * PE is already in unfrozen state.
148 	 */
149 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
150 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
151 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
152 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
153 			__func__, rc, phb->hose->global_number, pe_no);
154 
155 	return &phb->ioda.pe_array[pe_no];
156 }
157 
158 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
159 {
160 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
161 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
162 			__func__, pe_no, phb->hose->global_number);
163 		return;
164 	}
165 
166 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
167 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
168 			 __func__, pe_no, phb->hose->global_number);
169 
170 	pnv_ioda_init_pe(phb, pe_no);
171 }
172 
173 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
174 {
175 	long pe;
176 
177 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
178 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
179 			return pnv_ioda_init_pe(phb, pe);
180 	}
181 
182 	return NULL;
183 }
184 
185 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
186 {
187 	struct pnv_phb *phb = pe->phb;
188 	unsigned int pe_num = pe->pe_number;
189 
190 	WARN_ON(pe->pdev);
191 	WARN_ON(pe->npucomp); /* NPUs are not supposed to be freed */
192 	kfree(pe->npucomp);
193 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
194 	clear_bit(pe_num, phb->ioda.pe_alloc);
195 }
196 
197 /* The default M64 BAR is shared by all PEs */
198 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
199 {
200 	const char *desc;
201 	struct resource *r;
202 	s64 rc;
203 
204 	/* Configure the default M64 BAR */
205 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
206 					 OPAL_M64_WINDOW_TYPE,
207 					 phb->ioda.m64_bar_idx,
208 					 phb->ioda.m64_base,
209 					 0, /* unused */
210 					 phb->ioda.m64_size);
211 	if (rc != OPAL_SUCCESS) {
212 		desc = "configuring";
213 		goto fail;
214 	}
215 
216 	/* Enable the default M64 BAR */
217 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
218 				      OPAL_M64_WINDOW_TYPE,
219 				      phb->ioda.m64_bar_idx,
220 				      OPAL_ENABLE_M64_SPLIT);
221 	if (rc != OPAL_SUCCESS) {
222 		desc = "enabling";
223 		goto fail;
224 	}
225 
226 	/*
227 	 * Exclude the segments for reserved and root bus PE, which
228 	 * are first or last two PEs.
229 	 */
230 	r = &phb->hose->mem_resources[1];
231 	if (phb->ioda.reserved_pe_idx == 0)
232 		r->start += (2 * phb->ioda.m64_segsize);
233 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
234 		r->end -= (2 * phb->ioda.m64_segsize);
235 	else
236 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
237 			phb->ioda.reserved_pe_idx);
238 
239 	return 0;
240 
241 fail:
242 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
243 		rc, desc, phb->ioda.m64_bar_idx);
244 	opal_pci_phb_mmio_enable(phb->opal_id,
245 				 OPAL_M64_WINDOW_TYPE,
246 				 phb->ioda.m64_bar_idx,
247 				 OPAL_DISABLE_M64);
248 	return -EIO;
249 }
250 
251 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
252 					 unsigned long *pe_bitmap)
253 {
254 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
255 	struct pnv_phb *phb = hose->private_data;
256 	struct resource *r;
257 	resource_size_t base, sgsz, start, end;
258 	int segno, i;
259 
260 	base = phb->ioda.m64_base;
261 	sgsz = phb->ioda.m64_segsize;
262 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
263 		r = &pdev->resource[i];
264 		if (!r->parent || !pnv_pci_is_m64(phb, r))
265 			continue;
266 
267 		start = _ALIGN_DOWN(r->start - base, sgsz);
268 		end = _ALIGN_UP(r->end - base, sgsz);
269 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
270 			if (pe_bitmap)
271 				set_bit(segno, pe_bitmap);
272 			else
273 				pnv_ioda_reserve_pe(phb, segno);
274 		}
275 	}
276 }
277 
278 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
279 {
280 	struct resource *r;
281 	int index;
282 
283 	/*
284 	 * There are 16 M64 BARs, each of which has 8 segments. So
285 	 * there are as many M64 segments as the maximum number of
286 	 * PEs, which is 128.
287 	 */
288 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
289 		unsigned long base, segsz = phb->ioda.m64_segsize;
290 		int64_t rc;
291 
292 		base = phb->ioda.m64_base +
293 		       index * PNV_IODA1_M64_SEGS * segsz;
294 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
295 				OPAL_M64_WINDOW_TYPE, index, base, 0,
296 				PNV_IODA1_M64_SEGS * segsz);
297 		if (rc != OPAL_SUCCESS) {
298 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
299 				rc, phb->hose->global_number, index);
300 			goto fail;
301 		}
302 
303 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
304 				OPAL_M64_WINDOW_TYPE, index,
305 				OPAL_ENABLE_M64_SPLIT);
306 		if (rc != OPAL_SUCCESS) {
307 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
308 				rc, phb->hose->global_number, index);
309 			goto fail;
310 		}
311 	}
312 
313 	/*
314 	 * Exclude the segments for reserved and root bus PE, which
315 	 * are first or last two PEs.
316 	 */
317 	r = &phb->hose->mem_resources[1];
318 	if (phb->ioda.reserved_pe_idx == 0)
319 		r->start += (2 * phb->ioda.m64_segsize);
320 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
321 		r->end -= (2 * phb->ioda.m64_segsize);
322 	else
323 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
324 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
325 
326 	return 0;
327 
328 fail:
329 	for ( ; index >= 0; index--)
330 		opal_pci_phb_mmio_enable(phb->opal_id,
331 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
332 
333 	return -EIO;
334 }
335 
336 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
337 				    unsigned long *pe_bitmap,
338 				    bool all)
339 {
340 	struct pci_dev *pdev;
341 
342 	list_for_each_entry(pdev, &bus->devices, bus_list) {
343 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
344 
345 		if (all && pdev->subordinate)
346 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
347 						pe_bitmap, all);
348 	}
349 }
350 
351 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
352 {
353 	struct pci_controller *hose = pci_bus_to_host(bus);
354 	struct pnv_phb *phb = hose->private_data;
355 	struct pnv_ioda_pe *master_pe, *pe;
356 	unsigned long size, *pe_alloc;
357 	int i;
358 
359 	/* Root bus shouldn't use M64 */
360 	if (pci_is_root_bus(bus))
361 		return NULL;
362 
363 	/* Allocate bitmap */
364 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
365 	pe_alloc = kzalloc(size, GFP_KERNEL);
366 	if (!pe_alloc) {
367 		pr_warn("%s: Out of memory !\n",
368 			__func__);
369 		return NULL;
370 	}
371 
372 	/* Figure out reserved PE numbers by the PE */
373 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
374 
375 	/*
376 	 * the current bus might not own M64 window and that's all
377 	 * contributed by its child buses. For the case, we needn't
378 	 * pick M64 dependent PE#.
379 	 */
380 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
381 		kfree(pe_alloc);
382 		return NULL;
383 	}
384 
385 	/*
386 	 * Figure out the master PE and put all slave PEs to master
387 	 * PE's list to form compound PE.
388 	 */
389 	master_pe = NULL;
390 	i = -1;
391 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
392 		phb->ioda.total_pe_num) {
393 		pe = &phb->ioda.pe_array[i];
394 
395 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
396 		if (!master_pe) {
397 			pe->flags |= PNV_IODA_PE_MASTER;
398 			INIT_LIST_HEAD(&pe->slaves);
399 			master_pe = pe;
400 		} else {
401 			pe->flags |= PNV_IODA_PE_SLAVE;
402 			pe->master = master_pe;
403 			list_add_tail(&pe->list, &master_pe->slaves);
404 		}
405 
406 		/*
407 		 * P7IOC supports M64DT, which helps mapping M64 segment
408 		 * to one particular PE#. However, PHB3 has fixed mapping
409 		 * between M64 segment and PE#. In order to have same logic
410 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
411 		 * segment and PE# on P7IOC.
412 		 */
413 		if (phb->type == PNV_PHB_IODA1) {
414 			int64_t rc;
415 
416 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
417 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
418 					pe->pe_number / PNV_IODA1_M64_SEGS,
419 					pe->pe_number % PNV_IODA1_M64_SEGS);
420 			if (rc != OPAL_SUCCESS)
421 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
422 					__func__, rc, phb->hose->global_number,
423 					pe->pe_number);
424 		}
425 	}
426 
427 	kfree(pe_alloc);
428 	return master_pe;
429 }
430 
431 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
432 {
433 	struct pci_controller *hose = phb->hose;
434 	struct device_node *dn = hose->dn;
435 	struct resource *res;
436 	u32 m64_range[2], i;
437 	const __be32 *r;
438 	u64 pci_addr;
439 
440 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
441 		pr_info("  Not support M64 window\n");
442 		return;
443 	}
444 
445 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
446 		pr_info("  Firmware too old to support M64 window\n");
447 		return;
448 	}
449 
450 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
451 	if (!r) {
452 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
453 			dn);
454 		return;
455 	}
456 
457 	/*
458 	 * Find the available M64 BAR range and pickup the last one for
459 	 * covering the whole 64-bits space. We support only one range.
460 	 */
461 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
462 				       m64_range, 2)) {
463 		/* In absence of the property, assume 0..15 */
464 		m64_range[0] = 0;
465 		m64_range[1] = 16;
466 	}
467 	/* We only support 64 bits in our allocator */
468 	if (m64_range[1] > 63) {
469 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
470 			__func__, m64_range[1], phb->hose->global_number);
471 		m64_range[1] = 63;
472 	}
473 	/* Empty range, no m64 */
474 	if (m64_range[1] <= m64_range[0]) {
475 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
476 			__func__, phb->hose->global_number);
477 		return;
478 	}
479 
480 	/* Configure M64 informations */
481 	res = &hose->mem_resources[1];
482 	res->name = dn->full_name;
483 	res->start = of_translate_address(dn, r + 2);
484 	res->end = res->start + of_read_number(r + 4, 2) - 1;
485 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
486 	pci_addr = of_read_number(r, 2);
487 	hose->mem_offset[1] = res->start - pci_addr;
488 
489 	phb->ioda.m64_size = resource_size(res);
490 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
491 	phb->ioda.m64_base = pci_addr;
492 
493 	/* This lines up nicely with the display from processing OF ranges */
494 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
495 		res->start, res->end, pci_addr, m64_range[0],
496 		m64_range[0] + m64_range[1] - 1);
497 
498 	/* Mark all M64 used up by default */
499 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
500 
501 	/* Use last M64 BAR to cover M64 window */
502 	m64_range[1]--;
503 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
504 
505 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
506 
507 	/* Mark remaining ones free */
508 	for (i = m64_range[0]; i < m64_range[1]; i++)
509 		clear_bit(i, &phb->ioda.m64_bar_alloc);
510 
511 	/*
512 	 * Setup init functions for M64 based on IODA version, IODA3 uses
513 	 * the IODA2 code.
514 	 */
515 	if (phb->type == PNV_PHB_IODA1)
516 		phb->init_m64 = pnv_ioda1_init_m64;
517 	else
518 		phb->init_m64 = pnv_ioda2_init_m64;
519 }
520 
521 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
522 {
523 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
524 	struct pnv_ioda_pe *slave;
525 	s64 rc;
526 
527 	/* Fetch master PE */
528 	if (pe->flags & PNV_IODA_PE_SLAVE) {
529 		pe = pe->master;
530 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
531 			return;
532 
533 		pe_no = pe->pe_number;
534 	}
535 
536 	/* Freeze master PE */
537 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
538 				     pe_no,
539 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
540 	if (rc != OPAL_SUCCESS) {
541 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
542 			__func__, rc, phb->hose->global_number, pe_no);
543 		return;
544 	}
545 
546 	/* Freeze slave PEs */
547 	if (!(pe->flags & PNV_IODA_PE_MASTER))
548 		return;
549 
550 	list_for_each_entry(slave, &pe->slaves, list) {
551 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
552 					     slave->pe_number,
553 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
554 		if (rc != OPAL_SUCCESS)
555 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
556 				__func__, rc, phb->hose->global_number,
557 				slave->pe_number);
558 	}
559 }
560 
561 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
562 {
563 	struct pnv_ioda_pe *pe, *slave;
564 	s64 rc;
565 
566 	/* Find master PE */
567 	pe = &phb->ioda.pe_array[pe_no];
568 	if (pe->flags & PNV_IODA_PE_SLAVE) {
569 		pe = pe->master;
570 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
571 		pe_no = pe->pe_number;
572 	}
573 
574 	/* Clear frozen state for master PE */
575 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
576 	if (rc != OPAL_SUCCESS) {
577 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
578 			__func__, rc, opt, phb->hose->global_number, pe_no);
579 		return -EIO;
580 	}
581 
582 	if (!(pe->flags & PNV_IODA_PE_MASTER))
583 		return 0;
584 
585 	/* Clear frozen state for slave PEs */
586 	list_for_each_entry(slave, &pe->slaves, list) {
587 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
588 					     slave->pe_number,
589 					     opt);
590 		if (rc != OPAL_SUCCESS) {
591 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
592 				__func__, rc, opt, phb->hose->global_number,
593 				slave->pe_number);
594 			return -EIO;
595 		}
596 	}
597 
598 	return 0;
599 }
600 
601 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
602 {
603 	struct pnv_ioda_pe *slave, *pe;
604 	u8 fstate = 0, state;
605 	__be16 pcierr = 0;
606 	s64 rc;
607 
608 	/* Sanity check on PE number */
609 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
610 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
611 
612 	/*
613 	 * Fetch the master PE and the PE instance might be
614 	 * not initialized yet.
615 	 */
616 	pe = &phb->ioda.pe_array[pe_no];
617 	if (pe->flags & PNV_IODA_PE_SLAVE) {
618 		pe = pe->master;
619 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
620 		pe_no = pe->pe_number;
621 	}
622 
623 	/* Check the master PE */
624 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
625 					&state, &pcierr, NULL);
626 	if (rc != OPAL_SUCCESS) {
627 		pr_warn("%s: Failure %lld getting "
628 			"PHB#%x-PE#%x state\n",
629 			__func__, rc,
630 			phb->hose->global_number, pe_no);
631 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
632 	}
633 
634 	/* Check the slave PE */
635 	if (!(pe->flags & PNV_IODA_PE_MASTER))
636 		return state;
637 
638 	list_for_each_entry(slave, &pe->slaves, list) {
639 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
640 						slave->pe_number,
641 						&fstate,
642 						&pcierr,
643 						NULL);
644 		if (rc != OPAL_SUCCESS) {
645 			pr_warn("%s: Failure %lld getting "
646 				"PHB#%x-PE#%x state\n",
647 				__func__, rc,
648 				phb->hose->global_number, slave->pe_number);
649 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
650 		}
651 
652 		/*
653 		 * Override the result based on the ascending
654 		 * priority.
655 		 */
656 		if (fstate > state)
657 			state = fstate;
658 	}
659 
660 	return state;
661 }
662 
663 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
664 {
665 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
666 	struct pnv_phb *phb = hose->private_data;
667 	struct pci_dn *pdn = pci_get_pdn(dev);
668 
669 	if (!pdn)
670 		return NULL;
671 	if (pdn->pe_number == IODA_INVALID_PE)
672 		return NULL;
673 	return &phb->ioda.pe_array[pdn->pe_number];
674 }
675 
676 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
677 				  struct pnv_ioda_pe *parent,
678 				  struct pnv_ioda_pe *child,
679 				  bool is_add)
680 {
681 	const char *desc = is_add ? "adding" : "removing";
682 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
683 			      OPAL_REMOVE_PE_FROM_DOMAIN;
684 	struct pnv_ioda_pe *slave;
685 	long rc;
686 
687 	/* Parent PE affects child PE */
688 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
689 				child->pe_number, op);
690 	if (rc != OPAL_SUCCESS) {
691 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
692 			rc, desc);
693 		return -ENXIO;
694 	}
695 
696 	if (!(child->flags & PNV_IODA_PE_MASTER))
697 		return 0;
698 
699 	/* Compound case: parent PE affects slave PEs */
700 	list_for_each_entry(slave, &child->slaves, list) {
701 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
702 					slave->pe_number, op);
703 		if (rc != OPAL_SUCCESS) {
704 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
705 				rc, desc);
706 			return -ENXIO;
707 		}
708 	}
709 
710 	return 0;
711 }
712 
713 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
714 			      struct pnv_ioda_pe *pe,
715 			      bool is_add)
716 {
717 	struct pnv_ioda_pe *slave;
718 	struct pci_dev *pdev = NULL;
719 	int ret;
720 
721 	/*
722 	 * Clear PE frozen state. If it's master PE, we need
723 	 * clear slave PE frozen state as well.
724 	 */
725 	if (is_add) {
726 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
727 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
728 		if (pe->flags & PNV_IODA_PE_MASTER) {
729 			list_for_each_entry(slave, &pe->slaves, list)
730 				opal_pci_eeh_freeze_clear(phb->opal_id,
731 							  slave->pe_number,
732 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
733 		}
734 	}
735 
736 	/*
737 	 * Associate PE in PELT. We need add the PE into the
738 	 * corresponding PELT-V as well. Otherwise, the error
739 	 * originated from the PE might contribute to other
740 	 * PEs.
741 	 */
742 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
743 	if (ret)
744 		return ret;
745 
746 	/* For compound PEs, any one affects all of them */
747 	if (pe->flags & PNV_IODA_PE_MASTER) {
748 		list_for_each_entry(slave, &pe->slaves, list) {
749 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
750 			if (ret)
751 				return ret;
752 		}
753 	}
754 
755 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
756 		pdev = pe->pbus->self;
757 	else if (pe->flags & PNV_IODA_PE_DEV)
758 		pdev = pe->pdev->bus->self;
759 #ifdef CONFIG_PCI_IOV
760 	else if (pe->flags & PNV_IODA_PE_VF)
761 		pdev = pe->parent_dev;
762 #endif /* CONFIG_PCI_IOV */
763 	while (pdev) {
764 		struct pci_dn *pdn = pci_get_pdn(pdev);
765 		struct pnv_ioda_pe *parent;
766 
767 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
768 			parent = &phb->ioda.pe_array[pdn->pe_number];
769 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
770 			if (ret)
771 				return ret;
772 		}
773 
774 		pdev = pdev->bus->self;
775 	}
776 
777 	return 0;
778 }
779 
780 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
781 {
782 	struct pci_dev *parent;
783 	uint8_t bcomp, dcomp, fcomp;
784 	int64_t rc;
785 	long rid_end, rid;
786 
787 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
788 	if (pe->pbus) {
789 		int count;
790 
791 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
792 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
793 		parent = pe->pbus->self;
794 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
795 			count = resource_size(&pe->pbus->busn_res);
796 		else
797 			count = 1;
798 
799 		switch(count) {
800 		case  1: bcomp = OpalPciBusAll;         break;
801 		case  2: bcomp = OpalPciBus7Bits;       break;
802 		case  4: bcomp = OpalPciBus6Bits;       break;
803 		case  8: bcomp = OpalPciBus5Bits;       break;
804 		case 16: bcomp = OpalPciBus4Bits;       break;
805 		case 32: bcomp = OpalPciBus3Bits;       break;
806 		default:
807 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
808 			        count);
809 			/* Do an exact match only */
810 			bcomp = OpalPciBusAll;
811 		}
812 		rid_end = pe->rid + (count << 8);
813 	} else {
814 #ifdef CONFIG_PCI_IOV
815 		if (pe->flags & PNV_IODA_PE_VF)
816 			parent = pe->parent_dev;
817 		else
818 #endif
819 			parent = pe->pdev->bus->self;
820 		bcomp = OpalPciBusAll;
821 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
822 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
823 		rid_end = pe->rid + 1;
824 	}
825 
826 	/* Clear the reverse map */
827 	for (rid = pe->rid; rid < rid_end; rid++)
828 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
829 
830 	/* Release from all parents PELT-V */
831 	while (parent) {
832 		struct pci_dn *pdn = pci_get_pdn(parent);
833 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
834 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
835 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
836 			/* XXX What to do in case of error ? */
837 		}
838 		parent = parent->bus->self;
839 	}
840 
841 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
842 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
843 
844 	/* Disassociate PE in PELT */
845 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
846 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
847 	if (rc)
848 		pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
849 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
850 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
851 	if (rc)
852 		pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
853 
854 	pe->pbus = NULL;
855 	pe->pdev = NULL;
856 #ifdef CONFIG_PCI_IOV
857 	pe->parent_dev = NULL;
858 #endif
859 
860 	return 0;
861 }
862 
863 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
864 {
865 	struct pci_dev *parent;
866 	uint8_t bcomp, dcomp, fcomp;
867 	long rc, rid_end, rid;
868 
869 	/* Bus validation ? */
870 	if (pe->pbus) {
871 		int count;
872 
873 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
874 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
875 		parent = pe->pbus->self;
876 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
877 			count = resource_size(&pe->pbus->busn_res);
878 		else
879 			count = 1;
880 
881 		switch(count) {
882 		case  1: bcomp = OpalPciBusAll;		break;
883 		case  2: bcomp = OpalPciBus7Bits;	break;
884 		case  4: bcomp = OpalPciBus6Bits;	break;
885 		case  8: bcomp = OpalPciBus5Bits;	break;
886 		case 16: bcomp = OpalPciBus4Bits;	break;
887 		case 32: bcomp = OpalPciBus3Bits;	break;
888 		default:
889 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
890 			        count);
891 			/* Do an exact match only */
892 			bcomp = OpalPciBusAll;
893 		}
894 		rid_end = pe->rid + (count << 8);
895 	} else {
896 #ifdef CONFIG_PCI_IOV
897 		if (pe->flags & PNV_IODA_PE_VF)
898 			parent = pe->parent_dev;
899 		else
900 #endif /* CONFIG_PCI_IOV */
901 			parent = pe->pdev->bus->self;
902 		bcomp = OpalPciBusAll;
903 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
904 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
905 		rid_end = pe->rid + 1;
906 	}
907 
908 	/*
909 	 * Associate PE in PELT. We need add the PE into the
910 	 * corresponding PELT-V as well. Otherwise, the error
911 	 * originated from the PE might contribute to other
912 	 * PEs.
913 	 */
914 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
915 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
916 	if (rc) {
917 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
918 		return -ENXIO;
919 	}
920 
921 	/*
922 	 * Configure PELTV. NPUs don't have a PELTV table so skip
923 	 * configuration on them.
924 	 */
925 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
926 		pnv_ioda_set_peltv(phb, pe, true);
927 
928 	/* Setup reverse map */
929 	for (rid = pe->rid; rid < rid_end; rid++)
930 		phb->ioda.pe_rmap[rid] = pe->pe_number;
931 
932 	/* Setup one MVTs on IODA1 */
933 	if (phb->type != PNV_PHB_IODA1) {
934 		pe->mve_number = 0;
935 		goto out;
936 	}
937 
938 	pe->mve_number = pe->pe_number;
939 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
940 	if (rc != OPAL_SUCCESS) {
941 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
942 		       rc, pe->mve_number);
943 		pe->mve_number = -1;
944 	} else {
945 		rc = opal_pci_set_mve_enable(phb->opal_id,
946 					     pe->mve_number, OPAL_ENABLE_MVE);
947 		if (rc) {
948 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
949 			       rc, pe->mve_number);
950 			pe->mve_number = -1;
951 		}
952 	}
953 
954 out:
955 	return 0;
956 }
957 
958 #ifdef CONFIG_PCI_IOV
959 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
960 {
961 	struct pci_dn *pdn = pci_get_pdn(dev);
962 	int i;
963 	struct resource *res, res2;
964 	resource_size_t size;
965 	u16 num_vfs;
966 
967 	if (!dev->is_physfn)
968 		return -EINVAL;
969 
970 	/*
971 	 * "offset" is in VFs.  The M64 windows are sized so that when they
972 	 * are segmented, each segment is the same size as the IOV BAR.
973 	 * Each segment is in a separate PE, and the high order bits of the
974 	 * address are the PE number.  Therefore, each VF's BAR is in a
975 	 * separate PE, and changing the IOV BAR start address changes the
976 	 * range of PEs the VFs are in.
977 	 */
978 	num_vfs = pdn->num_vfs;
979 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
980 		res = &dev->resource[i + PCI_IOV_RESOURCES];
981 		if (!res->flags || !res->parent)
982 			continue;
983 
984 		/*
985 		 * The actual IOV BAR range is determined by the start address
986 		 * and the actual size for num_vfs VFs BAR.  This check is to
987 		 * make sure that after shifting, the range will not overlap
988 		 * with another device.
989 		 */
990 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
991 		res2.flags = res->flags;
992 		res2.start = res->start + (size * offset);
993 		res2.end = res2.start + (size * num_vfs) - 1;
994 
995 		if (res2.end > res->end) {
996 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
997 				i, &res2, res, num_vfs, offset);
998 			return -EBUSY;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * Since M64 BAR shares segments among all possible 256 PEs,
1004 	 * we have to shift the beginning of PF IOV BAR to make it start from
1005 	 * the segment which belongs to the PE number assigned to the first VF.
1006 	 * This creates a "hole" in the /proc/iomem which could be used for
1007 	 * allocating other resources so we reserve this area below and
1008 	 * release when IOV is released.
1009 	 */
1010 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1011 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1012 		if (!res->flags || !res->parent)
1013 			continue;
1014 
1015 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1016 		res2 = *res;
1017 		res->start += size * offset;
1018 
1019 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1020 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1021 			 num_vfs, offset);
1022 
1023 		if (offset < 0) {
1024 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1025 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1026 		}
1027 
1028 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1029 
1030 		if (offset > 0) {
1031 			pdn->holes[i].start = res2.start;
1032 			pdn->holes[i].end = res2.start + size * offset - 1;
1033 			pdn->holes[i].flags = IORESOURCE_BUS;
1034 			pdn->holes[i].name = "pnv_iov_reserved";
1035 			devm_request_resource(&dev->dev, res->parent,
1036 					&pdn->holes[i]);
1037 		}
1038 	}
1039 	return 0;
1040 }
1041 #endif /* CONFIG_PCI_IOV */
1042 
1043 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1044 {
1045 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1046 	struct pnv_phb *phb = hose->private_data;
1047 	struct pci_dn *pdn = pci_get_pdn(dev);
1048 	struct pnv_ioda_pe *pe;
1049 
1050 	if (!pdn) {
1051 		pr_err("%s: Device tree node not associated properly\n",
1052 			   pci_name(dev));
1053 		return NULL;
1054 	}
1055 	if (pdn->pe_number != IODA_INVALID_PE)
1056 		return NULL;
1057 
1058 	pe = pnv_ioda_alloc_pe(phb);
1059 	if (!pe) {
1060 		pr_warn("%s: Not enough PE# available, disabling device\n",
1061 			pci_name(dev));
1062 		return NULL;
1063 	}
1064 
1065 	/* NOTE: We don't get a reference for the pointer in the PE
1066 	 * data structure, both the device and PE structures should be
1067 	 * destroyed at the same time. However, removing nvlink
1068 	 * devices will need some work.
1069 	 *
1070 	 * At some point we want to remove the PDN completely anyways
1071 	 */
1072 	pdn->pe_number = pe->pe_number;
1073 	pe->flags = PNV_IODA_PE_DEV;
1074 	pe->pdev = dev;
1075 	pe->pbus = NULL;
1076 	pe->mve_number = -1;
1077 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1078 
1079 	pe_info(pe, "Associated device to PE\n");
1080 
1081 	if (pnv_ioda_configure_pe(phb, pe)) {
1082 		/* XXX What do we do here ? */
1083 		pnv_ioda_free_pe(pe);
1084 		pdn->pe_number = IODA_INVALID_PE;
1085 		pe->pdev = NULL;
1086 		return NULL;
1087 	}
1088 
1089 	/* Put PE to the list */
1090 	mutex_lock(&phb->ioda.pe_list_mutex);
1091 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1092 	mutex_unlock(&phb->ioda.pe_list_mutex);
1093 	return pe;
1094 }
1095 
1096 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1097 {
1098 	struct pci_dev *dev;
1099 
1100 	list_for_each_entry(dev, &bus->devices, bus_list) {
1101 		struct pci_dn *pdn = pci_get_pdn(dev);
1102 
1103 		if (pdn == NULL) {
1104 			pr_warn("%s: No device node associated with device !\n",
1105 				pci_name(dev));
1106 			continue;
1107 		}
1108 
1109 		/*
1110 		 * In partial hotplug case, the PCI device might be still
1111 		 * associated with the PE and needn't attach it to the PE
1112 		 * again.
1113 		 */
1114 		if (pdn->pe_number != IODA_INVALID_PE)
1115 			continue;
1116 
1117 		pe->device_count++;
1118 		pdn->pe_number = pe->pe_number;
1119 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1120 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1121 	}
1122 }
1123 
1124 /*
1125  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1126  * single PCI bus. Another one that contains the primary PCI bus and its
1127  * subordinate PCI devices and buses. The second type of PE is normally
1128  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1129  */
1130 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1131 {
1132 	struct pci_controller *hose = pci_bus_to_host(bus);
1133 	struct pnv_phb *phb = hose->private_data;
1134 	struct pnv_ioda_pe *pe = NULL;
1135 	unsigned int pe_num;
1136 
1137 	/*
1138 	 * In partial hotplug case, the PE instance might be still alive.
1139 	 * We should reuse it instead of allocating a new one.
1140 	 */
1141 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1142 	if (pe_num != IODA_INVALID_PE) {
1143 		pe = &phb->ioda.pe_array[pe_num];
1144 		pnv_ioda_setup_same_PE(bus, pe);
1145 		return NULL;
1146 	}
1147 
1148 	/* PE number for root bus should have been reserved */
1149 	if (pci_is_root_bus(bus) &&
1150 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1151 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1152 
1153 	/* Check if PE is determined by M64 */
1154 	if (!pe)
1155 		pe = pnv_ioda_pick_m64_pe(bus, all);
1156 
1157 	/* The PE number isn't pinned by M64 */
1158 	if (!pe)
1159 		pe = pnv_ioda_alloc_pe(phb);
1160 
1161 	if (!pe) {
1162 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1163 			__func__, pci_domain_nr(bus), bus->number);
1164 		return NULL;
1165 	}
1166 
1167 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1168 	pe->pbus = bus;
1169 	pe->pdev = NULL;
1170 	pe->mve_number = -1;
1171 	pe->rid = bus->busn_res.start << 8;
1172 
1173 	if (all)
1174 		pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1175 			&bus->busn_res.start, &bus->busn_res.end,
1176 			pe->pe_number);
1177 	else
1178 		pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1179 			&bus->busn_res.start, pe->pe_number);
1180 
1181 	if (pnv_ioda_configure_pe(phb, pe)) {
1182 		/* XXX What do we do here ? */
1183 		pnv_ioda_free_pe(pe);
1184 		pe->pbus = NULL;
1185 		return NULL;
1186 	}
1187 
1188 	/* Associate it with all child devices */
1189 	pnv_ioda_setup_same_PE(bus, pe);
1190 
1191 	/* Put PE to the list */
1192 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1193 
1194 	return pe;
1195 }
1196 
1197 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1198 {
1199 	int pe_num, found_pe = false, rc;
1200 	long rid;
1201 	struct pnv_ioda_pe *pe;
1202 	struct pci_dev *gpu_pdev;
1203 	struct pci_dn *npu_pdn;
1204 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1205 	struct pnv_phb *phb = hose->private_data;
1206 
1207 	/*
1208 	 * Intentionally leak a reference on the npu device (for
1209 	 * nvlink only; this is not an opencapi path) to make sure it
1210 	 * never goes away, as it's been the case all along and some
1211 	 * work is needed otherwise.
1212 	 */
1213 	pci_dev_get(npu_pdev);
1214 
1215 	/*
1216 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1217 	 * error handling. This means we only have three PEs remaining
1218 	 * which need to be assigned to four links, implying some
1219 	 * links must share PEs.
1220 	 *
1221 	 * To achieve this we assign PEs such that NPUs linking the
1222 	 * same GPU get assigned the same PE.
1223 	 */
1224 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1225 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1226 		pe = &phb->ioda.pe_array[pe_num];
1227 		if (!pe->pdev)
1228 			continue;
1229 
1230 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1231 			/*
1232 			 * This device has the same peer GPU so should
1233 			 * be assigned the same PE as the existing
1234 			 * peer NPU.
1235 			 */
1236 			dev_info(&npu_pdev->dev,
1237 				"Associating to existing PE %x\n", pe_num);
1238 			npu_pdn = pci_get_pdn(npu_pdev);
1239 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1240 			npu_pdn->pe_number = pe_num;
1241 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1242 
1243 			/* Map the PE to this link */
1244 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1245 					OpalPciBusAll,
1246 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1247 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1248 					OPAL_MAP_PE);
1249 			WARN_ON(rc != OPAL_SUCCESS);
1250 			found_pe = true;
1251 			break;
1252 		}
1253 	}
1254 
1255 	if (!found_pe)
1256 		/*
1257 		 * Could not find an existing PE so allocate a new
1258 		 * one.
1259 		 */
1260 		return pnv_ioda_setup_dev_PE(npu_pdev);
1261 	else
1262 		return pe;
1263 }
1264 
1265 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1266 {
1267 	struct pci_dev *pdev;
1268 
1269 	list_for_each_entry(pdev, &bus->devices, bus_list)
1270 		pnv_ioda_setup_npu_PE(pdev);
1271 }
1272 
1273 static void pnv_pci_ioda_setup_PEs(void)
1274 {
1275 	struct pci_controller *hose;
1276 	struct pnv_phb *phb;
1277 	struct pci_bus *bus;
1278 	struct pci_dev *pdev;
1279 	struct pnv_ioda_pe *pe;
1280 
1281 	list_for_each_entry(hose, &hose_list, list_node) {
1282 		phb = hose->private_data;
1283 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1284 			/* PE#0 is needed for error reporting */
1285 			pnv_ioda_reserve_pe(phb, 0);
1286 			pnv_ioda_setup_npu_PEs(hose->bus);
1287 			if (phb->model == PNV_PHB_MODEL_NPU2)
1288 				WARN_ON_ONCE(pnv_npu2_init(hose));
1289 		}
1290 		if (phb->type == PNV_PHB_NPU_OCAPI) {
1291 			bus = hose->bus;
1292 			list_for_each_entry(pdev, &bus->devices, bus_list)
1293 				pnv_ioda_setup_dev_PE(pdev);
1294 		}
1295 	}
1296 	list_for_each_entry(hose, &hose_list, list_node) {
1297 		phb = hose->private_data;
1298 		if (phb->type != PNV_PHB_IODA2)
1299 			continue;
1300 
1301 		list_for_each_entry(pe, &phb->ioda.pe_list, list)
1302 			pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1303 	}
1304 }
1305 
1306 #ifdef CONFIG_PCI_IOV
1307 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1308 {
1309 	struct pci_bus        *bus;
1310 	struct pci_controller *hose;
1311 	struct pnv_phb        *phb;
1312 	struct pci_dn         *pdn;
1313 	int                    i, j;
1314 	int                    m64_bars;
1315 
1316 	bus = pdev->bus;
1317 	hose = pci_bus_to_host(bus);
1318 	phb = hose->private_data;
1319 	pdn = pci_get_pdn(pdev);
1320 
1321 	if (pdn->m64_single_mode)
1322 		m64_bars = num_vfs;
1323 	else
1324 		m64_bars = 1;
1325 
1326 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1327 		for (j = 0; j < m64_bars; j++) {
1328 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1329 				continue;
1330 			opal_pci_phb_mmio_enable(phb->opal_id,
1331 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1332 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1333 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1334 		}
1335 
1336 	kfree(pdn->m64_map);
1337 	return 0;
1338 }
1339 
1340 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1341 {
1342 	struct pci_bus        *bus;
1343 	struct pci_controller *hose;
1344 	struct pnv_phb        *phb;
1345 	struct pci_dn         *pdn;
1346 	unsigned int           win;
1347 	struct resource       *res;
1348 	int                    i, j;
1349 	int64_t                rc;
1350 	int                    total_vfs;
1351 	resource_size_t        size, start;
1352 	int                    pe_num;
1353 	int                    m64_bars;
1354 
1355 	bus = pdev->bus;
1356 	hose = pci_bus_to_host(bus);
1357 	phb = hose->private_data;
1358 	pdn = pci_get_pdn(pdev);
1359 	total_vfs = pci_sriov_get_totalvfs(pdev);
1360 
1361 	if (pdn->m64_single_mode)
1362 		m64_bars = num_vfs;
1363 	else
1364 		m64_bars = 1;
1365 
1366 	pdn->m64_map = kmalloc_array(m64_bars,
1367 				     sizeof(*pdn->m64_map),
1368 				     GFP_KERNEL);
1369 	if (!pdn->m64_map)
1370 		return -ENOMEM;
1371 	/* Initialize the m64_map to IODA_INVALID_M64 */
1372 	for (i = 0; i < m64_bars ; i++)
1373 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1374 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1375 
1376 
1377 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1378 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1379 		if (!res->flags || !res->parent)
1380 			continue;
1381 
1382 		for (j = 0; j < m64_bars; j++) {
1383 			do {
1384 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1385 						phb->ioda.m64_bar_idx + 1, 0);
1386 
1387 				if (win >= phb->ioda.m64_bar_idx + 1)
1388 					goto m64_failed;
1389 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1390 
1391 			pdn->m64_map[j][i] = win;
1392 
1393 			if (pdn->m64_single_mode) {
1394 				size = pci_iov_resource_size(pdev,
1395 							PCI_IOV_RESOURCES + i);
1396 				start = res->start + size * j;
1397 			} else {
1398 				size = resource_size(res);
1399 				start = res->start;
1400 			}
1401 
1402 			/* Map the M64 here */
1403 			if (pdn->m64_single_mode) {
1404 				pe_num = pdn->pe_num_map[j];
1405 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1406 						pe_num, OPAL_M64_WINDOW_TYPE,
1407 						pdn->m64_map[j][i], 0);
1408 			}
1409 
1410 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1411 						 OPAL_M64_WINDOW_TYPE,
1412 						 pdn->m64_map[j][i],
1413 						 start,
1414 						 0, /* unused */
1415 						 size);
1416 
1417 
1418 			if (rc != OPAL_SUCCESS) {
1419 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1420 					win, rc);
1421 				goto m64_failed;
1422 			}
1423 
1424 			if (pdn->m64_single_mode)
1425 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1426 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1427 			else
1428 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1429 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1430 
1431 			if (rc != OPAL_SUCCESS) {
1432 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1433 					win, rc);
1434 				goto m64_failed;
1435 			}
1436 		}
1437 	}
1438 	return 0;
1439 
1440 m64_failed:
1441 	pnv_pci_vf_release_m64(pdev, num_vfs);
1442 	return -EBUSY;
1443 }
1444 
1445 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1446 		int num);
1447 
1448 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1449 {
1450 	struct iommu_table    *tbl;
1451 	int64_t               rc;
1452 
1453 	tbl = pe->table_group.tables[0];
1454 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1455 	if (rc)
1456 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
1457 
1458 	pnv_pci_ioda2_set_bypass(pe, false);
1459 	if (pe->table_group.group) {
1460 		iommu_group_put(pe->table_group.group);
1461 		BUG_ON(pe->table_group.group);
1462 	}
1463 	iommu_tce_table_put(tbl);
1464 }
1465 
1466 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1467 {
1468 	struct pci_bus        *bus;
1469 	struct pci_controller *hose;
1470 	struct pnv_phb        *phb;
1471 	struct pnv_ioda_pe    *pe, *pe_n;
1472 	struct pci_dn         *pdn;
1473 
1474 	bus = pdev->bus;
1475 	hose = pci_bus_to_host(bus);
1476 	phb = hose->private_data;
1477 	pdn = pci_get_pdn(pdev);
1478 
1479 	if (!pdev->is_physfn)
1480 		return;
1481 
1482 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1483 		if (pe->parent_dev != pdev)
1484 			continue;
1485 
1486 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1487 
1488 		/* Remove from list */
1489 		mutex_lock(&phb->ioda.pe_list_mutex);
1490 		list_del(&pe->list);
1491 		mutex_unlock(&phb->ioda.pe_list_mutex);
1492 
1493 		pnv_ioda_deconfigure_pe(phb, pe);
1494 
1495 		pnv_ioda_free_pe(pe);
1496 	}
1497 }
1498 
1499 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1500 {
1501 	struct pci_bus        *bus;
1502 	struct pci_controller *hose;
1503 	struct pnv_phb        *phb;
1504 	struct pnv_ioda_pe    *pe;
1505 	struct pci_dn         *pdn;
1506 	u16                    num_vfs, i;
1507 
1508 	bus = pdev->bus;
1509 	hose = pci_bus_to_host(bus);
1510 	phb = hose->private_data;
1511 	pdn = pci_get_pdn(pdev);
1512 	num_vfs = pdn->num_vfs;
1513 
1514 	/* Release VF PEs */
1515 	pnv_ioda_release_vf_PE(pdev);
1516 
1517 	if (phb->type == PNV_PHB_IODA2) {
1518 		if (!pdn->m64_single_mode)
1519 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1520 
1521 		/* Release M64 windows */
1522 		pnv_pci_vf_release_m64(pdev, num_vfs);
1523 
1524 		/* Release PE numbers */
1525 		if (pdn->m64_single_mode) {
1526 			for (i = 0; i < num_vfs; i++) {
1527 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1528 					continue;
1529 
1530 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1531 				pnv_ioda_free_pe(pe);
1532 			}
1533 		} else
1534 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1535 		/* Releasing pe_num_map */
1536 		kfree(pdn->pe_num_map);
1537 	}
1538 }
1539 
1540 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1541 				       struct pnv_ioda_pe *pe);
1542 #ifdef CONFIG_IOMMU_API
1543 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
1544 		struct iommu_table_group *table_group, struct pci_bus *bus);
1545 
1546 #endif
1547 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1548 {
1549 	struct pci_bus        *bus;
1550 	struct pci_controller *hose;
1551 	struct pnv_phb        *phb;
1552 	struct pnv_ioda_pe    *pe;
1553 	int                    pe_num;
1554 	u16                    vf_index;
1555 	struct pci_dn         *pdn;
1556 
1557 	bus = pdev->bus;
1558 	hose = pci_bus_to_host(bus);
1559 	phb = hose->private_data;
1560 	pdn = pci_get_pdn(pdev);
1561 
1562 	if (!pdev->is_physfn)
1563 		return;
1564 
1565 	/* Reserve PE for each VF */
1566 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1567 		int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
1568 		int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
1569 		struct pci_dn *vf_pdn;
1570 
1571 		if (pdn->m64_single_mode)
1572 			pe_num = pdn->pe_num_map[vf_index];
1573 		else
1574 			pe_num = *pdn->pe_num_map + vf_index;
1575 
1576 		pe = &phb->ioda.pe_array[pe_num];
1577 		pe->pe_number = pe_num;
1578 		pe->phb = phb;
1579 		pe->flags = PNV_IODA_PE_VF;
1580 		pe->pbus = NULL;
1581 		pe->parent_dev = pdev;
1582 		pe->mve_number = -1;
1583 		pe->rid = (vf_bus << 8) | vf_devfn;
1584 
1585 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1586 			hose->global_number, pdev->bus->number,
1587 			PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
1588 
1589 		if (pnv_ioda_configure_pe(phb, pe)) {
1590 			/* XXX What do we do here ? */
1591 			pnv_ioda_free_pe(pe);
1592 			pe->pdev = NULL;
1593 			continue;
1594 		}
1595 
1596 		/* Put PE to the list */
1597 		mutex_lock(&phb->ioda.pe_list_mutex);
1598 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1599 		mutex_unlock(&phb->ioda.pe_list_mutex);
1600 
1601 		/* associate this pe to it's pdn */
1602 		list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
1603 			if (vf_pdn->busno == vf_bus &&
1604 			    vf_pdn->devfn == vf_devfn) {
1605 				vf_pdn->pe_number = pe_num;
1606 				break;
1607 			}
1608 		}
1609 
1610 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1611 #ifdef CONFIG_IOMMU_API
1612 		iommu_register_group(&pe->table_group,
1613 				pe->phb->hose->global_number, pe->pe_number);
1614 		pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL);
1615 #endif
1616 	}
1617 }
1618 
1619 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1620 {
1621 	struct pci_bus        *bus;
1622 	struct pci_controller *hose;
1623 	struct pnv_phb        *phb;
1624 	struct pnv_ioda_pe    *pe;
1625 	struct pci_dn         *pdn;
1626 	int                    ret;
1627 	u16                    i;
1628 
1629 	bus = pdev->bus;
1630 	hose = pci_bus_to_host(bus);
1631 	phb = hose->private_data;
1632 	pdn = pci_get_pdn(pdev);
1633 
1634 	if (phb->type == PNV_PHB_IODA2) {
1635 		if (!pdn->vfs_expanded) {
1636 			dev_info(&pdev->dev, "don't support this SRIOV device"
1637 				" with non 64bit-prefetchable IOV BAR\n");
1638 			return -ENOSPC;
1639 		}
1640 
1641 		/*
1642 		 * When M64 BARs functions in Single PE mode, the number of VFs
1643 		 * could be enabled must be less than the number of M64 BARs.
1644 		 */
1645 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1646 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1647 			return -EBUSY;
1648 		}
1649 
1650 		/* Allocating pe_num_map */
1651 		if (pdn->m64_single_mode)
1652 			pdn->pe_num_map = kmalloc_array(num_vfs,
1653 							sizeof(*pdn->pe_num_map),
1654 							GFP_KERNEL);
1655 		else
1656 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1657 
1658 		if (!pdn->pe_num_map)
1659 			return -ENOMEM;
1660 
1661 		if (pdn->m64_single_mode)
1662 			for (i = 0; i < num_vfs; i++)
1663 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1664 
1665 		/* Calculate available PE for required VFs */
1666 		if (pdn->m64_single_mode) {
1667 			for (i = 0; i < num_vfs; i++) {
1668 				pe = pnv_ioda_alloc_pe(phb);
1669 				if (!pe) {
1670 					ret = -EBUSY;
1671 					goto m64_failed;
1672 				}
1673 
1674 				pdn->pe_num_map[i] = pe->pe_number;
1675 			}
1676 		} else {
1677 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1678 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1679 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1680 				0, num_vfs, 0);
1681 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1682 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1683 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1684 				kfree(pdn->pe_num_map);
1685 				return -EBUSY;
1686 			}
1687 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1688 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1689 		}
1690 		pdn->num_vfs = num_vfs;
1691 
1692 		/* Assign M64 window accordingly */
1693 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1694 		if (ret) {
1695 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1696 			goto m64_failed;
1697 		}
1698 
1699 		/*
1700 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1701 		 * the IOV BAR according to the PE# allocated to the VFs.
1702 		 * Otherwise, the PE# for the VF will conflict with others.
1703 		 */
1704 		if (!pdn->m64_single_mode) {
1705 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1706 			if (ret)
1707 				goto m64_failed;
1708 		}
1709 	}
1710 
1711 	/* Setup VF PEs */
1712 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1713 
1714 	return 0;
1715 
1716 m64_failed:
1717 	if (pdn->m64_single_mode) {
1718 		for (i = 0; i < num_vfs; i++) {
1719 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1720 				continue;
1721 
1722 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1723 			pnv_ioda_free_pe(pe);
1724 		}
1725 	} else
1726 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1727 
1728 	/* Releasing pe_num_map */
1729 	kfree(pdn->pe_num_map);
1730 
1731 	return ret;
1732 }
1733 
1734 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1735 {
1736 	pnv_pci_sriov_disable(pdev);
1737 
1738 	/* Release PCI data */
1739 	remove_dev_pci_data(pdev);
1740 	return 0;
1741 }
1742 
1743 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1744 {
1745 	/* Allocate PCI data */
1746 	add_dev_pci_data(pdev);
1747 
1748 	return pnv_pci_sriov_enable(pdev, num_vfs);
1749 }
1750 #endif /* CONFIG_PCI_IOV */
1751 
1752 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1753 {
1754 	struct pci_dn *pdn = pci_get_pdn(pdev);
1755 	struct pnv_ioda_pe *pe;
1756 
1757 	/*
1758 	 * The function can be called while the PE#
1759 	 * hasn't been assigned. Do nothing for the
1760 	 * case.
1761 	 */
1762 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1763 		return;
1764 
1765 	pe = &phb->ioda.pe_array[pdn->pe_number];
1766 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1767 	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1768 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1769 	/*
1770 	 * Note: iommu_add_device() will fail here as
1771 	 * for physical PE: the device is already added by now;
1772 	 * for virtual PE: sysfs entries are not ready yet and
1773 	 * tce_iommu_bus_notifier will add the device to a group later.
1774 	 */
1775 }
1776 
1777 /*
1778  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1779  *
1780  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1781  * Devices can only access more than that if bit 59 of the PCI address is set
1782  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1783  * Many PCI devices are not capable of addressing that many bits, and as a
1784  * result are limited to the 4GB of virtual memory made available to 32-bit
1785  * devices in TVE#0.
1786  *
1787  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1788  * devices by configuring the virtual memory past the first 4GB inaccessible
1789  * by 64-bit DMAs.  This should only be used by devices that want more than
1790  * 4GB, and only on PEs that have no 32-bit devices.
1791  *
1792  * Currently this will only work on PHB3 (POWER8).
1793  */
1794 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1795 {
1796 	u64 window_size, table_size, tce_count, addr;
1797 	struct page *table_pages;
1798 	u64 tce_order = 28; /* 256MB TCEs */
1799 	__be64 *tces;
1800 	s64 rc;
1801 
1802 	/*
1803 	 * Window size needs to be a power of two, but needs to account for
1804 	 * shifting memory by the 4GB offset required to skip 32bit space.
1805 	 */
1806 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1807 	tce_count = window_size >> tce_order;
1808 	table_size = tce_count << 3;
1809 
1810 	if (table_size < PAGE_SIZE)
1811 		table_size = PAGE_SIZE;
1812 
1813 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1814 				       get_order(table_size));
1815 	if (!table_pages)
1816 		goto err;
1817 
1818 	tces = page_address(table_pages);
1819 	if (!tces)
1820 		goto err;
1821 
1822 	memset(tces, 0, table_size);
1823 
1824 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1825 		tces[(addr + (1ULL << 32)) >> tce_order] =
1826 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1827 	}
1828 
1829 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1830 					pe->pe_number,
1831 					/* reconfigure window 0 */
1832 					(pe->pe_number << 1) + 0,
1833 					1,
1834 					__pa(tces),
1835 					table_size,
1836 					1 << tce_order);
1837 	if (rc == OPAL_SUCCESS) {
1838 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1839 		return 0;
1840 	}
1841 err:
1842 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1843 	return -EIO;
1844 }
1845 
1846 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1847 		u64 dma_mask)
1848 {
1849 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1850 	struct pnv_phb *phb = hose->private_data;
1851 	struct pci_dn *pdn = pci_get_pdn(pdev);
1852 	struct pnv_ioda_pe *pe;
1853 
1854 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1855 		return false;
1856 
1857 	pe = &phb->ioda.pe_array[pdn->pe_number];
1858 	if (pe->tce_bypass_enabled) {
1859 		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1860 		if (dma_mask >= top)
1861 			return true;
1862 	}
1863 
1864 	/*
1865 	 * If the device can't set the TCE bypass bit but still wants
1866 	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1867 	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1868 	 * The device needs to be able to address all of this space.
1869 	 */
1870 	if (dma_mask >> 32 &&
1871 	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1872 	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1873 	    (pe->device_count == 1 || !pe->pbus) &&
1874 	    phb->model == PNV_PHB_MODEL_PHB3) {
1875 		/* Configure the bypass mode */
1876 		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1877 		if (rc)
1878 			return false;
1879 		/* 4GB offset bypasses 32-bit space */
1880 		pdev->dev.archdata.dma_offset = (1ULL << 32);
1881 		return true;
1882 	}
1883 
1884 	return false;
1885 }
1886 
1887 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1888 {
1889 	struct pci_dev *dev;
1890 
1891 	list_for_each_entry(dev, &bus->devices, bus_list) {
1892 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1893 		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1894 
1895 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1896 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1897 	}
1898 }
1899 
1900 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1901 						     bool real_mode)
1902 {
1903 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1904 		(phb->regs + 0x210);
1905 }
1906 
1907 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1908 		unsigned long index, unsigned long npages, bool rm)
1909 {
1910 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1911 			&tbl->it_group_list, struct iommu_table_group_link,
1912 			next);
1913 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1914 			struct pnv_ioda_pe, table_group);
1915 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1916 	unsigned long start, end, inc;
1917 
1918 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1919 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1920 			npages - 1);
1921 
1922 	/* p7ioc-style invalidation, 2 TCEs per write */
1923 	start |= (1ull << 63);
1924 	end |= (1ull << 63);
1925 	inc = 16;
1926         end |= inc - 1;	/* round up end to be different than start */
1927 
1928         mb(); /* Ensure above stores are visible */
1929         while (start <= end) {
1930 		if (rm)
1931 			__raw_rm_writeq_be(start, invalidate);
1932 		else
1933 			__raw_writeq_be(start, invalidate);
1934 
1935                 start += inc;
1936         }
1937 
1938 	/*
1939 	 * The iommu layer will do another mb() for us on build()
1940 	 * and we don't care on free()
1941 	 */
1942 }
1943 
1944 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1945 		long npages, unsigned long uaddr,
1946 		enum dma_data_direction direction,
1947 		unsigned long attrs)
1948 {
1949 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1950 			attrs);
1951 
1952 	if (!ret)
1953 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1954 
1955 	return ret;
1956 }
1957 
1958 #ifdef CONFIG_IOMMU_API
1959 /* Common for IODA1 and IODA2 */
1960 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1961 		unsigned long *hpa, enum dma_data_direction *direction,
1962 		bool realmode)
1963 {
1964 	return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
1965 }
1966 #endif
1967 
1968 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1969 		long npages)
1970 {
1971 	pnv_tce_free(tbl, index, npages);
1972 
1973 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1974 }
1975 
1976 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1977 	.set = pnv_ioda1_tce_build,
1978 #ifdef CONFIG_IOMMU_API
1979 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1980 	.tce_kill = pnv_pci_p7ioc_tce_invalidate,
1981 	.useraddrptr = pnv_tce_useraddrptr,
1982 #endif
1983 	.clear = pnv_ioda1_tce_free,
1984 	.get = pnv_tce_get,
1985 };
1986 
1987 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1988 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1989 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1990 
1991 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1992 {
1993 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1994 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1995 
1996 	mb(); /* Ensure previous TCE table stores are visible */
1997 	if (rm)
1998 		__raw_rm_writeq_be(val, invalidate);
1999 	else
2000 		__raw_writeq_be(val, invalidate);
2001 }
2002 
2003 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2004 {
2005 	/* 01xb - invalidate TCEs that match the specified PE# */
2006 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2007 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2008 
2009 	mb(); /* Ensure above stores are visible */
2010 	__raw_writeq_be(val, invalidate);
2011 }
2012 
2013 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2014 					unsigned shift, unsigned long index,
2015 					unsigned long npages)
2016 {
2017 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2018 	unsigned long start, end, inc;
2019 
2020 	/* We'll invalidate DMA address in PE scope */
2021 	start = PHB3_TCE_KILL_INVAL_ONE;
2022 	start |= (pe->pe_number & 0xFF);
2023 	end = start;
2024 
2025 	/* Figure out the start, end and step */
2026 	start |= (index << shift);
2027 	end |= ((index + npages - 1) << shift);
2028 	inc = (0x1ull << shift);
2029 	mb();
2030 
2031 	while (start <= end) {
2032 		if (rm)
2033 			__raw_rm_writeq_be(start, invalidate);
2034 		else
2035 			__raw_writeq_be(start, invalidate);
2036 		start += inc;
2037 	}
2038 }
2039 
2040 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2041 {
2042 	struct pnv_phb *phb = pe->phb;
2043 
2044 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2045 		pnv_pci_phb3_tce_invalidate_pe(pe);
2046 	else
2047 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2048 				  pe->pe_number, 0, 0, 0);
2049 }
2050 
2051 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2052 		unsigned long index, unsigned long npages, bool rm)
2053 {
2054 	struct iommu_table_group_link *tgl;
2055 
2056 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2057 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2058 				struct pnv_ioda_pe, table_group);
2059 		struct pnv_phb *phb = pe->phb;
2060 		unsigned int shift = tbl->it_page_shift;
2061 
2062 		/*
2063 		 * NVLink1 can use the TCE kill register directly as
2064 		 * it's the same as PHB3. NVLink2 is different and
2065 		 * should go via the OPAL call.
2066 		 */
2067 		if (phb->model == PNV_PHB_MODEL_NPU) {
2068 			/*
2069 			 * The NVLink hardware does not support TCE kill
2070 			 * per TCE entry so we have to invalidate
2071 			 * the entire cache for it.
2072 			 */
2073 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2074 			continue;
2075 		}
2076 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2077 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2078 						    index, npages);
2079 		else
2080 			opal_pci_tce_kill(phb->opal_id,
2081 					  OPAL_PCI_TCE_KILL_PAGES,
2082 					  pe->pe_number, 1u << shift,
2083 					  index << shift, npages);
2084 	}
2085 }
2086 
2087 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2088 {
2089 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2090 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2091 	else
2092 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2093 }
2094 
2095 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2096 		long npages, unsigned long uaddr,
2097 		enum dma_data_direction direction,
2098 		unsigned long attrs)
2099 {
2100 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2101 			attrs);
2102 
2103 	if (!ret)
2104 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2105 
2106 	return ret;
2107 }
2108 
2109 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2110 		long npages)
2111 {
2112 	pnv_tce_free(tbl, index, npages);
2113 
2114 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2115 }
2116 
2117 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2118 	.set = pnv_ioda2_tce_build,
2119 #ifdef CONFIG_IOMMU_API
2120 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
2121 	.tce_kill = pnv_pci_ioda2_tce_invalidate,
2122 	.useraddrptr = pnv_tce_useraddrptr,
2123 #endif
2124 	.clear = pnv_ioda2_tce_free,
2125 	.get = pnv_tce_get,
2126 	.free = pnv_pci_ioda2_table_free_pages,
2127 };
2128 
2129 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2130 {
2131 	unsigned int *weight = (unsigned int *)data;
2132 
2133 	/* This is quite simplistic. The "base" weight of a device
2134 	 * is 10. 0 means no DMA is to be accounted for it.
2135 	 */
2136 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2137 		return 0;
2138 
2139 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2140 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2141 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2142 		*weight += 3;
2143 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2144 		*weight += 15;
2145 	else
2146 		*weight += 10;
2147 
2148 	return 0;
2149 }
2150 
2151 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2152 {
2153 	unsigned int weight = 0;
2154 
2155 	/* SRIOV VF has same DMA32 weight as its PF */
2156 #ifdef CONFIG_PCI_IOV
2157 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2158 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2159 		return weight;
2160 	}
2161 #endif
2162 
2163 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2164 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2165 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2166 		struct pci_dev *pdev;
2167 
2168 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2169 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2170 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2171 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2172 	}
2173 
2174 	return weight;
2175 }
2176 
2177 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2178 				       struct pnv_ioda_pe *pe)
2179 {
2180 
2181 	struct page *tce_mem = NULL;
2182 	struct iommu_table *tbl;
2183 	unsigned int weight, total_weight = 0;
2184 	unsigned int tce32_segsz, base, segs, avail, i;
2185 	int64_t rc;
2186 	void *addr;
2187 
2188 	/* XXX FIXME: Handle 64-bit only DMA devices */
2189 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2190 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2191 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2192 	if (!weight)
2193 		return;
2194 
2195 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2196 		     &total_weight);
2197 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2198 	if (!segs)
2199 		segs = 1;
2200 
2201 	/*
2202 	 * Allocate contiguous DMA32 segments. We begin with the expected
2203 	 * number of segments. With one more attempt, the number of DMA32
2204 	 * segments to be allocated is decreased by one until one segment
2205 	 * is allocated successfully.
2206 	 */
2207 	do {
2208 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2209 			for (avail = 0, i = base; i < base + segs; i++) {
2210 				if (phb->ioda.dma32_segmap[i] ==
2211 				    IODA_INVALID_PE)
2212 					avail++;
2213 			}
2214 
2215 			if (avail == segs)
2216 				goto found;
2217 		}
2218 	} while (--segs);
2219 
2220 	if (!segs) {
2221 		pe_warn(pe, "No available DMA32 segments\n");
2222 		return;
2223 	}
2224 
2225 found:
2226 	tbl = pnv_pci_table_alloc(phb->hose->node);
2227 	if (WARN_ON(!tbl))
2228 		return;
2229 
2230 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2231 			pe->pe_number);
2232 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2233 
2234 	/* Grab a 32-bit TCE table */
2235 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2236 		weight, total_weight, base, segs);
2237 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2238 		base * PNV_IODA1_DMA32_SEGSIZE,
2239 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2240 
2241 	/* XXX Currently, we allocate one big contiguous table for the
2242 	 * TCEs. We only really need one chunk per 256M of TCE space
2243 	 * (ie per segment) but that's an optimization for later, it
2244 	 * requires some added smarts with our get/put_tce implementation
2245 	 *
2246 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2247 	 * bytes
2248 	 */
2249 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2250 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2251 				   get_order(tce32_segsz * segs));
2252 	if (!tce_mem) {
2253 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2254 		goto fail;
2255 	}
2256 	addr = page_address(tce_mem);
2257 	memset(addr, 0, tce32_segsz * segs);
2258 
2259 	/* Configure HW */
2260 	for (i = 0; i < segs; i++) {
2261 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2262 					      pe->pe_number,
2263 					      base + i, 1,
2264 					      __pa(addr) + tce32_segsz * i,
2265 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2266 		if (rc) {
2267 			pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
2268 			       rc);
2269 			goto fail;
2270 		}
2271 	}
2272 
2273 	/* Setup DMA32 segment mapping */
2274 	for (i = base; i < base + segs; i++)
2275 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2276 
2277 	/* Setup linux iommu table */
2278 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2279 				  base * PNV_IODA1_DMA32_SEGSIZE,
2280 				  IOMMU_PAGE_SHIFT_4K);
2281 
2282 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2283 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2284 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2285 	iommu_init_table(tbl, phb->hose->node, 0, 0);
2286 
2287 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2288 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2289 
2290 	return;
2291  fail:
2292 	/* XXX Failure: Try to fallback to 64-bit only ? */
2293 	if (tce_mem)
2294 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2295 	if (tbl) {
2296 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2297 		iommu_tce_table_put(tbl);
2298 	}
2299 }
2300 
2301 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2302 		int num, struct iommu_table *tbl)
2303 {
2304 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2305 			table_group);
2306 	struct pnv_phb *phb = pe->phb;
2307 	int64_t rc;
2308 	const unsigned long size = tbl->it_indirect_levels ?
2309 			tbl->it_level_size : tbl->it_size;
2310 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2311 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2312 
2313 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
2314 		num, start_addr, start_addr + win_size - 1,
2315 		IOMMU_PAGE_SIZE(tbl));
2316 
2317 	/*
2318 	 * Map TCE table through TVT. The TVE index is the PE number
2319 	 * shifted by 1 bit for 32-bits DMA space.
2320 	 */
2321 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2322 			pe->pe_number,
2323 			(pe->pe_number << 1) + num,
2324 			tbl->it_indirect_levels + 1,
2325 			__pa(tbl->it_base),
2326 			size << 3,
2327 			IOMMU_PAGE_SIZE(tbl));
2328 	if (rc) {
2329 		pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
2330 		return rc;
2331 	}
2332 
2333 	pnv_pci_link_table_and_group(phb->hose->node, num,
2334 			tbl, &pe->table_group);
2335 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2336 
2337 	return 0;
2338 }
2339 
2340 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2341 {
2342 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2343 	int64_t rc;
2344 
2345 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2346 	if (enable) {
2347 		phys_addr_t top = memblock_end_of_DRAM();
2348 
2349 		top = roundup_pow_of_two(top);
2350 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2351 						     pe->pe_number,
2352 						     window_id,
2353 						     pe->tce_bypass_base,
2354 						     top);
2355 	} else {
2356 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2357 						     pe->pe_number,
2358 						     window_id,
2359 						     pe->tce_bypass_base,
2360 						     0);
2361 	}
2362 	if (rc)
2363 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2364 	else
2365 		pe->tce_bypass_enabled = enable;
2366 }
2367 
2368 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2369 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2370 		bool alloc_userspace_copy, struct iommu_table **ptbl)
2371 {
2372 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2373 			table_group);
2374 	int nid = pe->phb->hose->node;
2375 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2376 	long ret;
2377 	struct iommu_table *tbl;
2378 
2379 	tbl = pnv_pci_table_alloc(nid);
2380 	if (!tbl)
2381 		return -ENOMEM;
2382 
2383 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2384 
2385 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2386 			bus_offset, page_shift, window_size,
2387 			levels, alloc_userspace_copy, tbl);
2388 	if (ret) {
2389 		iommu_tce_table_put(tbl);
2390 		return ret;
2391 	}
2392 
2393 	*ptbl = tbl;
2394 
2395 	return 0;
2396 }
2397 
2398 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2399 {
2400 	struct iommu_table *tbl = NULL;
2401 	long rc;
2402 	unsigned long res_start, res_end;
2403 
2404 	/*
2405 	 * crashkernel= specifies the kdump kernel's maximum memory at
2406 	 * some offset and there is no guaranteed the result is a power
2407 	 * of 2, which will cause errors later.
2408 	 */
2409 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2410 
2411 	/*
2412 	 * In memory constrained environments, e.g. kdump kernel, the
2413 	 * DMA window can be larger than available memory, which will
2414 	 * cause errors later.
2415 	 */
2416 	const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
2417 
2418 	/*
2419 	 * We create the default window as big as we can. The constraint is
2420 	 * the max order of allocation possible. The TCE table is likely to
2421 	 * end up being multilevel and with on-demand allocation in place,
2422 	 * the initial use is not going to be huge as the default window aims
2423 	 * to support crippled devices (i.e. not fully 64bit DMAble) only.
2424 	 */
2425 	/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
2426 	const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
2427 	/* Each TCE level cannot exceed maxblock so go multilevel if needed */
2428 	unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
2429 	unsigned long tcelevel_order = ilog2(maxblock >> 3);
2430 	unsigned int levels = tces_order / tcelevel_order;
2431 
2432 	if (tces_order % tcelevel_order)
2433 		levels += 1;
2434 	/*
2435 	 * We try to stick to default levels (which is >1 at the moment) in
2436 	 * order to save memory by relying on on-demain TCE level allocation.
2437 	 */
2438 	levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
2439 
2440 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
2441 			window_size, levels, false, &tbl);
2442 	if (rc) {
2443 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2444 				rc);
2445 		return rc;
2446 	}
2447 
2448 	/* We use top part of 32bit space for MMIO so exclude it from DMA */
2449 	res_start = 0;
2450 	res_end = 0;
2451 	if (window_size > pe->phb->ioda.m32_pci_base) {
2452 		res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
2453 		res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
2454 	}
2455 	iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end);
2456 
2457 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2458 	if (rc) {
2459 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2460 				rc);
2461 		iommu_tce_table_put(tbl);
2462 		return rc;
2463 	}
2464 
2465 	if (!pnv_iommu_bypass_disabled)
2466 		pnv_pci_ioda2_set_bypass(pe, true);
2467 
2468 	/*
2469 	 * Set table base for the case of IOMMU DMA use. Usually this is done
2470 	 * from dma_dev_setup() which is not called when a device is returned
2471 	 * from VFIO so do it here.
2472 	 */
2473 	if (pe->pdev)
2474 		set_iommu_table_base(&pe->pdev->dev, tbl);
2475 
2476 	return 0;
2477 }
2478 
2479 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2480 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2481 		int num)
2482 {
2483 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2484 			table_group);
2485 	struct pnv_phb *phb = pe->phb;
2486 	long ret;
2487 
2488 	pe_info(pe, "Removing DMA window #%d\n", num);
2489 
2490 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2491 			(pe->pe_number << 1) + num,
2492 			0/* levels */, 0/* table address */,
2493 			0/* table size */, 0/* page size */);
2494 	if (ret)
2495 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2496 	else
2497 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2498 
2499 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2500 
2501 	return ret;
2502 }
2503 #endif
2504 
2505 #ifdef CONFIG_IOMMU_API
2506 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2507 		__u64 window_size, __u32 levels)
2508 {
2509 	unsigned long bytes = 0;
2510 	const unsigned window_shift = ilog2(window_size);
2511 	unsigned entries_shift = window_shift - page_shift;
2512 	unsigned table_shift = entries_shift + 3;
2513 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2514 	unsigned long direct_table_size;
2515 
2516 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2517 			!is_power_of_2(window_size))
2518 		return 0;
2519 
2520 	/* Calculate a direct table size from window_size and levels */
2521 	entries_shift = (entries_shift + levels - 1) / levels;
2522 	table_shift = entries_shift + 3;
2523 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2524 	direct_table_size =  1UL << table_shift;
2525 
2526 	for ( ; levels; --levels) {
2527 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2528 
2529 		tce_table_size /= direct_table_size;
2530 		tce_table_size <<= 3;
2531 		tce_table_size = max_t(unsigned long,
2532 				tce_table_size, direct_table_size);
2533 	}
2534 
2535 	return bytes + bytes; /* one for HW table, one for userspace copy */
2536 }
2537 
2538 static long pnv_pci_ioda2_create_table_userspace(
2539 		struct iommu_table_group *table_group,
2540 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2541 		struct iommu_table **ptbl)
2542 {
2543 	long ret = pnv_pci_ioda2_create_table(table_group,
2544 			num, page_shift, window_size, levels, true, ptbl);
2545 
2546 	if (!ret)
2547 		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2548 				page_shift, window_size, levels);
2549 	return ret;
2550 }
2551 
2552 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2553 {
2554 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2555 						table_group);
2556 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2557 	struct iommu_table *tbl = pe->table_group.tables[0];
2558 
2559 	pnv_pci_ioda2_set_bypass(pe, false);
2560 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2561 	if (pe->pbus)
2562 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2563 	else if (pe->pdev)
2564 		set_iommu_table_base(&pe->pdev->dev, NULL);
2565 	iommu_tce_table_put(tbl);
2566 }
2567 
2568 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2569 {
2570 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2571 						table_group);
2572 
2573 	pnv_pci_ioda2_setup_default_config(pe);
2574 	if (pe->pbus)
2575 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2576 }
2577 
2578 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2579 	.get_table_size = pnv_pci_ioda2_get_table_size,
2580 	.create_table = pnv_pci_ioda2_create_table_userspace,
2581 	.set_window = pnv_pci_ioda2_set_window,
2582 	.unset_window = pnv_pci_ioda2_unset_window,
2583 	.take_ownership = pnv_ioda2_take_ownership,
2584 	.release_ownership = pnv_ioda2_release_ownership,
2585 };
2586 
2587 static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe,
2588 		struct iommu_table_group *table_group,
2589 		struct pci_bus *bus)
2590 {
2591 	struct pci_dev *dev;
2592 
2593 	list_for_each_entry(dev, &bus->devices, bus_list) {
2594 		iommu_add_device(table_group, &dev->dev);
2595 
2596 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2597 			pnv_ioda_setup_bus_iommu_group_add_devices(pe,
2598 					table_group, dev->subordinate);
2599 	}
2600 }
2601 
2602 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
2603 		struct iommu_table_group *table_group, struct pci_bus *bus)
2604 {
2605 
2606 	if (pe->flags & PNV_IODA_PE_DEV)
2607 		iommu_add_device(table_group, &pe->pdev->dev);
2608 
2609 	if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus)
2610 		pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group,
2611 				bus);
2612 }
2613 
2614 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
2615 
2616 static void pnv_pci_ioda_setup_iommu_api(void)
2617 {
2618 	struct pci_controller *hose;
2619 	struct pnv_phb *phb;
2620 	struct pnv_ioda_pe *pe;
2621 
2622 	/*
2623 	 * There are 4 types of PEs:
2624 	 * - PNV_IODA_PE_BUS: a downstream port with an adapter,
2625 	 *   created from pnv_pci_setup_bridge();
2626 	 * - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it,
2627 	 *   created from pnv_pci_setup_bridge();
2628 	 * - PNV_IODA_PE_VF: a SRIOV virtual function,
2629 	 *   created from pnv_pcibios_sriov_enable();
2630 	 * - PNV_IODA_PE_DEV: an NPU or OCAPI device,
2631 	 *   created from pnv_pci_ioda_fixup().
2632 	 *
2633 	 * Normally a PE is represented by an IOMMU group, however for
2634 	 * devices with side channels the groups need to be more strict.
2635 	 */
2636 	list_for_each_entry(hose, &hose_list, list_node) {
2637 		phb = hose->private_data;
2638 
2639 		if (phb->type == PNV_PHB_NPU_NVLINK ||
2640 		    phb->type == PNV_PHB_NPU_OCAPI)
2641 			continue;
2642 
2643 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2644 			struct iommu_table_group *table_group;
2645 
2646 			table_group = pnv_try_setup_npu_table_group(pe);
2647 			if (!table_group) {
2648 				if (!pnv_pci_ioda_pe_dma_weight(pe))
2649 					continue;
2650 
2651 				table_group = &pe->table_group;
2652 				iommu_register_group(&pe->table_group,
2653 						pe->phb->hose->global_number,
2654 						pe->pe_number);
2655 			}
2656 			pnv_ioda_setup_bus_iommu_group(pe, table_group,
2657 					pe->pbus);
2658 		}
2659 	}
2660 
2661 	/*
2662 	 * Now we have all PHBs discovered, time to add NPU devices to
2663 	 * the corresponding IOMMU groups.
2664 	 */
2665 	list_for_each_entry(hose, &hose_list, list_node) {
2666 		unsigned long  pgsizes;
2667 
2668 		phb = hose->private_data;
2669 
2670 		if (phb->type != PNV_PHB_NPU_NVLINK)
2671 			continue;
2672 
2673 		pgsizes = pnv_ioda_parse_tce_sizes(phb);
2674 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2675 			/*
2676 			 * IODA2 bridges get this set up from
2677 			 * pci_controller_ops::setup_bridge but NPU bridges
2678 			 * do not have this hook defined so we do it here.
2679 			 */
2680 			pe->table_group.pgsizes = pgsizes;
2681 			pnv_npu_compound_attach(pe);
2682 		}
2683 	}
2684 }
2685 #else /* !CONFIG_IOMMU_API */
2686 static void pnv_pci_ioda_setup_iommu_api(void) { };
2687 #endif
2688 
2689 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2690 {
2691 	struct pci_controller *hose = phb->hose;
2692 	struct device_node *dn = hose->dn;
2693 	unsigned long mask = 0;
2694 	int i, rc, count;
2695 	u32 val;
2696 
2697 	count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2698 	if (count <= 0) {
2699 		mask = SZ_4K | SZ_64K;
2700 		/* Add 16M for POWER8 by default */
2701 		if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2702 				!cpu_has_feature(CPU_FTR_ARCH_300))
2703 			mask |= SZ_16M | SZ_256M;
2704 		return mask;
2705 	}
2706 
2707 	for (i = 0; i < count; i++) {
2708 		rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2709 						i, &val);
2710 		if (rc == 0)
2711 			mask |= 1ULL << val;
2712 	}
2713 
2714 	return mask;
2715 }
2716 
2717 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2718 				       struct pnv_ioda_pe *pe)
2719 {
2720 	int64_t rc;
2721 
2722 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2723 		return;
2724 
2725 	/* TVE #1 is selected by PCI address bit 59 */
2726 	pe->tce_bypass_base = 1ull << 59;
2727 
2728 	/* The PE will reserve all possible 32-bits space */
2729 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2730 		phb->ioda.m32_pci_base);
2731 
2732 	/* Setup linux iommu table */
2733 	pe->table_group.tce32_start = 0;
2734 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2735 	pe->table_group.max_dynamic_windows_supported =
2736 			IOMMU_TABLE_GROUP_MAX_TABLES;
2737 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2738 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2739 #ifdef CONFIG_IOMMU_API
2740 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2741 #endif
2742 
2743 	rc = pnv_pci_ioda2_setup_default_config(pe);
2744 	if (rc)
2745 		return;
2746 
2747 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2748 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2749 }
2750 
2751 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2752 {
2753 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2754 					   ioda.irq_chip);
2755 
2756 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2757 }
2758 
2759 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2760 {
2761 	int64_t rc;
2762 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2763 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2764 
2765 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2766 	WARN_ON_ONCE(rc);
2767 
2768 	icp_native_eoi(d);
2769 }
2770 
2771 
2772 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2773 {
2774 	struct irq_data *idata;
2775 	struct irq_chip *ichip;
2776 
2777 	/* The MSI EOI OPAL call is only needed on PHB3 */
2778 	if (phb->model != PNV_PHB_MODEL_PHB3)
2779 		return;
2780 
2781 	if (!phb->ioda.irq_chip_init) {
2782 		/*
2783 		 * First time we setup an MSI IRQ, we need to setup the
2784 		 * corresponding IRQ chip to route correctly.
2785 		 */
2786 		idata = irq_get_irq_data(virq);
2787 		ichip = irq_data_get_irq_chip(idata);
2788 		phb->ioda.irq_chip_init = 1;
2789 		phb->ioda.irq_chip = *ichip;
2790 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2791 	}
2792 	irq_set_chip(virq, &phb->ioda.irq_chip);
2793 }
2794 
2795 /*
2796  * Returns true iff chip is something that we could call
2797  * pnv_opal_pci_msi_eoi for.
2798  */
2799 bool is_pnv_opal_msi(struct irq_chip *chip)
2800 {
2801 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2802 }
2803 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2804 
2805 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2806 				  unsigned int hwirq, unsigned int virq,
2807 				  unsigned int is_64, struct msi_msg *msg)
2808 {
2809 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2810 	unsigned int xive_num = hwirq - phb->msi_base;
2811 	__be32 data;
2812 	int rc;
2813 
2814 	/* No PE assigned ? bail out ... no MSI for you ! */
2815 	if (pe == NULL)
2816 		return -ENXIO;
2817 
2818 	/* Check if we have an MVE */
2819 	if (pe->mve_number < 0)
2820 		return -ENXIO;
2821 
2822 	/* Force 32-bit MSI on some broken devices */
2823 	if (dev->no_64bit_msi)
2824 		is_64 = 0;
2825 
2826 	/* Assign XIVE to PE */
2827 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2828 	if (rc) {
2829 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2830 			pci_name(dev), rc, xive_num);
2831 		return -EIO;
2832 	}
2833 
2834 	if (is_64) {
2835 		__be64 addr64;
2836 
2837 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2838 				     &addr64, &data);
2839 		if (rc) {
2840 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2841 				pci_name(dev), rc);
2842 			return -EIO;
2843 		}
2844 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2845 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2846 	} else {
2847 		__be32 addr32;
2848 
2849 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2850 				     &addr32, &data);
2851 		if (rc) {
2852 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2853 				pci_name(dev), rc);
2854 			return -EIO;
2855 		}
2856 		msg->address_hi = 0;
2857 		msg->address_lo = be32_to_cpu(addr32);
2858 	}
2859 	msg->data = be32_to_cpu(data);
2860 
2861 	pnv_set_msi_irq_chip(phb, virq);
2862 
2863 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2864 		 " address=%x_%08x data=%x PE# %x\n",
2865 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2866 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2867 
2868 	return 0;
2869 }
2870 
2871 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2872 {
2873 	unsigned int count;
2874 	const __be32 *prop = of_get_property(phb->hose->dn,
2875 					     "ibm,opal-msi-ranges", NULL);
2876 	if (!prop) {
2877 		/* BML Fallback */
2878 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2879 	}
2880 	if (!prop)
2881 		return;
2882 
2883 	phb->msi_base = be32_to_cpup(prop);
2884 	count = be32_to_cpup(prop + 1);
2885 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2886 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2887 		       phb->hose->global_number);
2888 		return;
2889 	}
2890 
2891 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2892 	phb->msi32_support = 1;
2893 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2894 		count, phb->msi_base);
2895 }
2896 
2897 #ifdef CONFIG_PCI_IOV
2898 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2899 {
2900 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2901 	struct pnv_phb *phb = hose->private_data;
2902 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2903 	struct resource *res;
2904 	int i;
2905 	resource_size_t size, total_vf_bar_sz;
2906 	struct pci_dn *pdn;
2907 	int mul, total_vfs;
2908 
2909 	if (!pdev->is_physfn || pci_dev_is_added(pdev))
2910 		return;
2911 
2912 	pdn = pci_get_pdn(pdev);
2913 	pdn->vfs_expanded = 0;
2914 	pdn->m64_single_mode = false;
2915 
2916 	total_vfs = pci_sriov_get_totalvfs(pdev);
2917 	mul = phb->ioda.total_pe_num;
2918 	total_vf_bar_sz = 0;
2919 
2920 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2921 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2922 		if (!res->flags || res->parent)
2923 			continue;
2924 		if (!pnv_pci_is_m64_flags(res->flags)) {
2925 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2926 					" non M64 VF BAR%d: %pR. \n",
2927 				 i, res);
2928 			goto truncate_iov;
2929 		}
2930 
2931 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2932 				i + PCI_IOV_RESOURCES);
2933 
2934 		/*
2935 		 * If bigger than quarter of M64 segment size, just round up
2936 		 * power of two.
2937 		 *
2938 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2939 		 * with other devices, IOV BAR size is expanded to be
2940 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2941 		 * segment size , the expanded size would equal to half of the
2942 		 * whole M64 space size, which will exhaust the M64 Space and
2943 		 * limit the system flexibility.  This is a design decision to
2944 		 * set the boundary to quarter of the M64 segment size.
2945 		 */
2946 		if (total_vf_bar_sz > gate) {
2947 			mul = roundup_pow_of_two(total_vfs);
2948 			dev_info(&pdev->dev,
2949 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2950 				total_vf_bar_sz, gate, mul);
2951 			pdn->m64_single_mode = true;
2952 			break;
2953 		}
2954 	}
2955 
2956 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2957 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2958 		if (!res->flags || res->parent)
2959 			continue;
2960 
2961 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2962 		/*
2963 		 * On PHB3, the minimum size alignment of M64 BAR in single
2964 		 * mode is 32MB.
2965 		 */
2966 		if (pdn->m64_single_mode && (size < SZ_32M))
2967 			goto truncate_iov;
2968 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2969 		res->end = res->start + size * mul - 1;
2970 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2971 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2972 			 i, res, mul);
2973 	}
2974 	pdn->vfs_expanded = mul;
2975 
2976 	return;
2977 
2978 truncate_iov:
2979 	/* To save MMIO space, IOV BAR is truncated. */
2980 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2981 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2982 		res->flags = 0;
2983 		res->end = res->start - 1;
2984 	}
2985 }
2986 #endif /* CONFIG_PCI_IOV */
2987 
2988 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2989 				  struct resource *res)
2990 {
2991 	struct pnv_phb *phb = pe->phb;
2992 	struct pci_bus_region region;
2993 	int index;
2994 	int64_t rc;
2995 
2996 	if (!res || !res->flags || res->start > res->end)
2997 		return;
2998 
2999 	if (res->flags & IORESOURCE_IO) {
3000 		region.start = res->start - phb->ioda.io_pci_base;
3001 		region.end   = res->end - phb->ioda.io_pci_base;
3002 		index = region.start / phb->ioda.io_segsize;
3003 
3004 		while (index < phb->ioda.total_pe_num &&
3005 		       region.start <= region.end) {
3006 			phb->ioda.io_segmap[index] = pe->pe_number;
3007 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3008 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3009 			if (rc != OPAL_SUCCESS) {
3010 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3011 				       __func__, rc, index, pe->pe_number);
3012 				break;
3013 			}
3014 
3015 			region.start += phb->ioda.io_segsize;
3016 			index++;
3017 		}
3018 	} else if ((res->flags & IORESOURCE_MEM) &&
3019 		   !pnv_pci_is_m64(phb, res)) {
3020 		region.start = res->start -
3021 			       phb->hose->mem_offset[0] -
3022 			       phb->ioda.m32_pci_base;
3023 		region.end   = res->end -
3024 			       phb->hose->mem_offset[0] -
3025 			       phb->ioda.m32_pci_base;
3026 		index = region.start / phb->ioda.m32_segsize;
3027 
3028 		while (index < phb->ioda.total_pe_num &&
3029 		       region.start <= region.end) {
3030 			phb->ioda.m32_segmap[index] = pe->pe_number;
3031 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3032 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3033 			if (rc != OPAL_SUCCESS) {
3034 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3035 				       __func__, rc, index, pe->pe_number);
3036 				break;
3037 			}
3038 
3039 			region.start += phb->ioda.m32_segsize;
3040 			index++;
3041 		}
3042 	}
3043 }
3044 
3045 /*
3046  * This function is supposed to be called on basis of PE from top
3047  * to bottom style. So the the I/O or MMIO segment assigned to
3048  * parent PE could be overridden by its child PEs if necessary.
3049  */
3050 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3051 {
3052 	struct pci_dev *pdev;
3053 	int i;
3054 
3055 	/*
3056 	 * NOTE: We only care PCI bus based PE for now. For PCI
3057 	 * device based PE, for example SRIOV sensitive VF should
3058 	 * be figured out later.
3059 	 */
3060 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3061 
3062 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3063 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3064 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3065 
3066 		/*
3067 		 * If the PE contains all subordinate PCI buses, the
3068 		 * windows of the child bridges should be mapped to
3069 		 * the PE as well.
3070 		 */
3071 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3072 			continue;
3073 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3074 			pnv_ioda_setup_pe_res(pe,
3075 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3076 	}
3077 }
3078 
3079 #ifdef CONFIG_DEBUG_FS
3080 static int pnv_pci_diag_data_set(void *data, u64 val)
3081 {
3082 	struct pci_controller *hose;
3083 	struct pnv_phb *phb;
3084 	s64 ret;
3085 
3086 	if (val != 1ULL)
3087 		return -EINVAL;
3088 
3089 	hose = (struct pci_controller *)data;
3090 	if (!hose || !hose->private_data)
3091 		return -ENODEV;
3092 
3093 	phb = hose->private_data;
3094 
3095 	/* Retrieve the diag data from firmware */
3096 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3097 					  phb->diag_data_size);
3098 	if (ret != OPAL_SUCCESS)
3099 		return -EIO;
3100 
3101 	/* Print the diag data to the kernel log */
3102 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3103 	return 0;
3104 }
3105 
3106 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
3107 			 "%llu\n");
3108 
3109 #endif /* CONFIG_DEBUG_FS */
3110 
3111 static void pnv_pci_ioda_create_dbgfs(void)
3112 {
3113 #ifdef CONFIG_DEBUG_FS
3114 	struct pci_controller *hose, *tmp;
3115 	struct pnv_phb *phb;
3116 	char name[16];
3117 
3118 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3119 		phb = hose->private_data;
3120 
3121 		/* Notify initialization of PHB done */
3122 		phb->initialized = 1;
3123 
3124 		sprintf(name, "PCI%04x", hose->global_number);
3125 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3126 		if (!phb->dbgfs) {
3127 			pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3128 				__func__, hose->global_number);
3129 			continue;
3130 		}
3131 
3132 		debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
3133 					   hose, &pnv_pci_diag_data_fops);
3134 	}
3135 #endif /* CONFIG_DEBUG_FS */
3136 }
3137 
3138 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3139 {
3140 	struct pci_dev *dev = bus->self;
3141 	struct pci_bus *child;
3142 
3143 	/* Empty bus ? bail */
3144 	if (list_empty(&bus->devices))
3145 		return;
3146 
3147 	/*
3148 	 * If there's a bridge associated with that bus enable it. This works
3149 	 * around races in the generic code if the enabling is done during
3150 	 * parallel probing. This can be removed once those races have been
3151 	 * fixed.
3152 	 */
3153 	if (dev) {
3154 		int rc = pci_enable_device(dev);
3155 		if (rc)
3156 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
3157 		pci_set_master(dev);
3158 	}
3159 
3160 	/* Perform the same to child busses */
3161 	list_for_each_entry(child, &bus->children, node)
3162 		pnv_pci_enable_bridge(child);
3163 }
3164 
3165 static void pnv_pci_enable_bridges(void)
3166 {
3167 	struct pci_controller *hose;
3168 
3169 	list_for_each_entry(hose, &hose_list, list_node)
3170 		pnv_pci_enable_bridge(hose->bus);
3171 }
3172 
3173 static void pnv_pci_ioda_fixup(void)
3174 {
3175 	pnv_pci_ioda_setup_PEs();
3176 	pnv_pci_ioda_setup_iommu_api();
3177 	pnv_pci_ioda_create_dbgfs();
3178 
3179 	pnv_pci_enable_bridges();
3180 
3181 #ifdef CONFIG_EEH
3182 	pnv_eeh_post_init();
3183 #endif
3184 }
3185 
3186 /*
3187  * Returns the alignment for I/O or memory windows for P2P
3188  * bridges. That actually depends on how PEs are segmented.
3189  * For now, we return I/O or M32 segment size for PE sensitive
3190  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3191  * 1MiB for memory) will be returned.
3192  *
3193  * The current PCI bus might be put into one PE, which was
3194  * create against the parent PCI bridge. For that case, we
3195  * needn't enlarge the alignment so that we can save some
3196  * resources.
3197  */
3198 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3199 						unsigned long type)
3200 {
3201 	struct pci_dev *bridge;
3202 	struct pci_controller *hose = pci_bus_to_host(bus);
3203 	struct pnv_phb *phb = hose->private_data;
3204 	int num_pci_bridges = 0;
3205 
3206 	bridge = bus->self;
3207 	while (bridge) {
3208 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3209 			num_pci_bridges++;
3210 			if (num_pci_bridges >= 2)
3211 				return 1;
3212 		}
3213 
3214 		bridge = bridge->bus->self;
3215 	}
3216 
3217 	/*
3218 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3219 	 * alignment for any 64-bit resource, PCIe doesn't care and
3220 	 * bridges only do 64-bit prefetchable anyway.
3221 	 */
3222 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3223 		return phb->ioda.m64_segsize;
3224 	if (type & IORESOURCE_MEM)
3225 		return phb->ioda.m32_segsize;
3226 
3227 	return phb->ioda.io_segsize;
3228 }
3229 
3230 /*
3231  * We are updating root port or the upstream port of the
3232  * bridge behind the root port with PHB's windows in order
3233  * to accommodate the changes on required resources during
3234  * PCI (slot) hotplug, which is connected to either root
3235  * port or the downstream ports of PCIe switch behind the
3236  * root port.
3237  */
3238 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3239 					   unsigned long type)
3240 {
3241 	struct pci_controller *hose = pci_bus_to_host(bus);
3242 	struct pnv_phb *phb = hose->private_data;
3243 	struct pci_dev *bridge = bus->self;
3244 	struct resource *r, *w;
3245 	bool msi_region = false;
3246 	int i;
3247 
3248 	/* Check if we need apply fixup to the bridge's windows */
3249 	if (!pci_is_root_bus(bridge->bus) &&
3250 	    !pci_is_root_bus(bridge->bus->self->bus))
3251 		return;
3252 
3253 	/* Fixup the resources */
3254 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3255 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3256 		if (!r->flags || !r->parent)
3257 			continue;
3258 
3259 		w = NULL;
3260 		if (r->flags & type & IORESOURCE_IO)
3261 			w = &hose->io_resource;
3262 		else if (pnv_pci_is_m64(phb, r) &&
3263 			 (type & IORESOURCE_PREFETCH) &&
3264 			 phb->ioda.m64_segsize)
3265 			w = &hose->mem_resources[1];
3266 		else if (r->flags & type & IORESOURCE_MEM) {
3267 			w = &hose->mem_resources[0];
3268 			msi_region = true;
3269 		}
3270 
3271 		r->start = w->start;
3272 		r->end = w->end;
3273 
3274 		/* The 64KB 32-bits MSI region shouldn't be included in
3275 		 * the 32-bits bridge window. Otherwise, we can see strange
3276 		 * issues. One of them is EEH error observed on Garrison.
3277 		 *
3278 		 * Exclude top 1MB region which is the minimal alignment of
3279 		 * 32-bits bridge window.
3280 		 */
3281 		if (msi_region) {
3282 			r->end += 0x10000;
3283 			r->end -= 0x100000;
3284 		}
3285 	}
3286 }
3287 
3288 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3289 {
3290 	struct pci_controller *hose = pci_bus_to_host(bus);
3291 	struct pnv_phb *phb = hose->private_data;
3292 	struct pci_dev *bridge = bus->self;
3293 	struct pnv_ioda_pe *pe;
3294 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3295 
3296 	/* Extend bridge's windows if necessary */
3297 	pnv_pci_fixup_bridge_resources(bus, type);
3298 
3299 	/* The PE for root bus should be realized before any one else */
3300 	if (!phb->ioda.root_pe_populated) {
3301 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3302 		if (pe) {
3303 			phb->ioda.root_pe_idx = pe->pe_number;
3304 			phb->ioda.root_pe_populated = true;
3305 		}
3306 	}
3307 
3308 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3309 	if (list_empty(&bus->devices))
3310 		return;
3311 
3312 	/* Reserve PEs according to used M64 resources */
3313 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
3314 
3315 	/*
3316 	 * Assign PE. We might run here because of partial hotplug.
3317 	 * For the case, we just pick up the existing PE and should
3318 	 * not allocate resources again.
3319 	 */
3320 	pe = pnv_ioda_setup_bus_PE(bus, all);
3321 	if (!pe)
3322 		return;
3323 
3324 	pnv_ioda_setup_pe_seg(pe);
3325 	switch (phb->type) {
3326 	case PNV_PHB_IODA1:
3327 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3328 		break;
3329 	case PNV_PHB_IODA2:
3330 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3331 		break;
3332 	default:
3333 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3334 			__func__, phb->hose->global_number, phb->type);
3335 	}
3336 }
3337 
3338 static resource_size_t pnv_pci_default_alignment(void)
3339 {
3340 	return PAGE_SIZE;
3341 }
3342 
3343 #ifdef CONFIG_PCI_IOV
3344 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3345 						      int resno)
3346 {
3347 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3348 	struct pnv_phb *phb = hose->private_data;
3349 	struct pci_dn *pdn = pci_get_pdn(pdev);
3350 	resource_size_t align;
3351 
3352 	/*
3353 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3354 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3355 	 * BAR should be size aligned.
3356 	 *
3357 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3358 	 * powernv-specific hardware restriction is gone. But if just use the
3359 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3360 	 * in one segment of M64 #15, which introduces the PE conflict between
3361 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3362 	 * m64_segsize.
3363 	 *
3364 	 * This function returns the total IOV BAR size if M64 BAR is in
3365 	 * Shared PE mode or just VF BAR size if not.
3366 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3367 	 * M64 segment size if IOV BAR size is less.
3368 	 */
3369 	align = pci_iov_resource_size(pdev, resno);
3370 	if (!pdn->vfs_expanded)
3371 		return align;
3372 	if (pdn->m64_single_mode)
3373 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3374 
3375 	return pdn->vfs_expanded * align;
3376 }
3377 #endif /* CONFIG_PCI_IOV */
3378 
3379 /* Prevent enabling devices for which we couldn't properly
3380  * assign a PE
3381  */
3382 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3383 {
3384 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3385 	struct pnv_phb *phb = hose->private_data;
3386 	struct pci_dn *pdn;
3387 
3388 	/* The function is probably called while the PEs have
3389 	 * not be created yet. For example, resource reassignment
3390 	 * during PCI probe period. We just skip the check if
3391 	 * PEs isn't ready.
3392 	 */
3393 	if (!phb->initialized)
3394 		return true;
3395 
3396 	pdn = pci_get_pdn(dev);
3397 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3398 		return false;
3399 
3400 	return true;
3401 }
3402 
3403 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3404 				       int num)
3405 {
3406 	struct pnv_ioda_pe *pe = container_of(table_group,
3407 					      struct pnv_ioda_pe, table_group);
3408 	struct pnv_phb *phb = pe->phb;
3409 	unsigned int idx;
3410 	long rc;
3411 
3412 	pe_info(pe, "Removing DMA window #%d\n", num);
3413 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3414 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3415 			continue;
3416 
3417 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3418 						idx, 0, 0ul, 0ul, 0ul);
3419 		if (rc != OPAL_SUCCESS) {
3420 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3421 				rc, idx);
3422 			return rc;
3423 		}
3424 
3425 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3426 	}
3427 
3428 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3429 	return OPAL_SUCCESS;
3430 }
3431 
3432 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3433 {
3434 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3435 	struct iommu_table *tbl = pe->table_group.tables[0];
3436 	int64_t rc;
3437 
3438 	if (!weight)
3439 		return;
3440 
3441 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3442 	if (rc != OPAL_SUCCESS)
3443 		return;
3444 
3445 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3446 	if (pe->table_group.group) {
3447 		iommu_group_put(pe->table_group.group);
3448 		WARN_ON(pe->table_group.group);
3449 	}
3450 
3451 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3452 	iommu_tce_table_put(tbl);
3453 }
3454 
3455 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3456 {
3457 	struct iommu_table *tbl = pe->table_group.tables[0];
3458 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3459 #ifdef CONFIG_IOMMU_API
3460 	int64_t rc;
3461 #endif
3462 
3463 	if (!weight)
3464 		return;
3465 
3466 #ifdef CONFIG_IOMMU_API
3467 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3468 	if (rc)
3469 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
3470 #endif
3471 
3472 	pnv_pci_ioda2_set_bypass(pe, false);
3473 	if (pe->table_group.group) {
3474 		iommu_group_put(pe->table_group.group);
3475 		WARN_ON(pe->table_group.group);
3476 	}
3477 
3478 	iommu_tce_table_put(tbl);
3479 }
3480 
3481 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3482 				 unsigned short win,
3483 				 unsigned int *map)
3484 {
3485 	struct pnv_phb *phb = pe->phb;
3486 	int idx;
3487 	int64_t rc;
3488 
3489 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3490 		if (map[idx] != pe->pe_number)
3491 			continue;
3492 
3493 		if (win == OPAL_M64_WINDOW_TYPE)
3494 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3495 					phb->ioda.reserved_pe_idx, win,
3496 					idx / PNV_IODA1_M64_SEGS,
3497 					idx % PNV_IODA1_M64_SEGS);
3498 		else
3499 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3500 					phb->ioda.reserved_pe_idx, win, 0, idx);
3501 
3502 		if (rc != OPAL_SUCCESS)
3503 			pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
3504 				rc, win, idx);
3505 
3506 		map[idx] = IODA_INVALID_PE;
3507 	}
3508 }
3509 
3510 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3511 {
3512 	struct pnv_phb *phb = pe->phb;
3513 
3514 	if (phb->type == PNV_PHB_IODA1) {
3515 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3516 				     phb->ioda.io_segmap);
3517 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3518 				     phb->ioda.m32_segmap);
3519 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3520 				     phb->ioda.m64_segmap);
3521 	} else if (phb->type == PNV_PHB_IODA2) {
3522 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3523 				     phb->ioda.m32_segmap);
3524 	}
3525 }
3526 
3527 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3528 {
3529 	struct pnv_phb *phb = pe->phb;
3530 	struct pnv_ioda_pe *slave, *tmp;
3531 
3532 	mutex_lock(&phb->ioda.pe_list_mutex);
3533 	list_del(&pe->list);
3534 	mutex_unlock(&phb->ioda.pe_list_mutex);
3535 
3536 	switch (phb->type) {
3537 	case PNV_PHB_IODA1:
3538 		pnv_pci_ioda1_release_pe_dma(pe);
3539 		break;
3540 	case PNV_PHB_IODA2:
3541 		pnv_pci_ioda2_release_pe_dma(pe);
3542 		break;
3543 	default:
3544 		WARN_ON(1);
3545 	}
3546 
3547 	pnv_ioda_release_pe_seg(pe);
3548 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3549 
3550 	/* Release slave PEs in the compound PE */
3551 	if (pe->flags & PNV_IODA_PE_MASTER) {
3552 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3553 			list_del(&slave->list);
3554 			pnv_ioda_free_pe(slave);
3555 		}
3556 	}
3557 
3558 	/*
3559 	 * The PE for root bus can be removed because of hotplug in EEH
3560 	 * recovery for fenced PHB error. We need to mark the PE dead so
3561 	 * that it can be populated again in PCI hot add path. The PE
3562 	 * shouldn't be destroyed as it's the global reserved resource.
3563 	 */
3564 	if (phb->ioda.root_pe_populated &&
3565 	    phb->ioda.root_pe_idx == pe->pe_number)
3566 		phb->ioda.root_pe_populated = false;
3567 	else
3568 		pnv_ioda_free_pe(pe);
3569 }
3570 
3571 static void pnv_pci_release_device(struct pci_dev *pdev)
3572 {
3573 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3574 	struct pnv_phb *phb = hose->private_data;
3575 	struct pci_dn *pdn = pci_get_pdn(pdev);
3576 	struct pnv_ioda_pe *pe;
3577 
3578 	if (pdev->is_virtfn)
3579 		return;
3580 
3581 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3582 		return;
3583 
3584 	/*
3585 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3586 	 * isn't removed and added afterwards in this scenario. We should
3587 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3588 	 * device count is decreased on removing devices while failing to
3589 	 * be increased on adding devices. It leads to unbalanced PE's device
3590 	 * count and eventually make normal PCI hotplug path broken.
3591 	 */
3592 	pe = &phb->ioda.pe_array[pdn->pe_number];
3593 	pdn->pe_number = IODA_INVALID_PE;
3594 
3595 	WARN_ON(--pe->device_count < 0);
3596 	if (pe->device_count == 0)
3597 		pnv_ioda_release_pe(pe);
3598 }
3599 
3600 static void pnv_npu_disable_device(struct pci_dev *pdev)
3601 {
3602 	struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
3603 	struct eeh_pe *eehpe = edev ? edev->pe : NULL;
3604 
3605 	if (eehpe && eeh_ops && eeh_ops->reset)
3606 		eeh_ops->reset(eehpe, EEH_RESET_HOT);
3607 }
3608 
3609 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3610 {
3611 	struct pnv_phb *phb = hose->private_data;
3612 
3613 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3614 		       OPAL_ASSERT_RESET);
3615 }
3616 
3617 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3618 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3619 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3620 	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
3621 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3622 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3623 	.enable_device_hook	= pnv_pci_enable_device_hook,
3624 	.release_device		= pnv_pci_release_device,
3625 	.window_alignment	= pnv_pci_window_alignment,
3626 	.setup_bridge		= pnv_pci_setup_bridge,
3627 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3628 	.shutdown		= pnv_pci_ioda_shutdown,
3629 };
3630 
3631 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3632 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3633 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3634 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3635 	.enable_device_hook	= pnv_pci_enable_device_hook,
3636 	.window_alignment	= pnv_pci_window_alignment,
3637 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3638 	.shutdown		= pnv_pci_ioda_shutdown,
3639 	.disable_device		= pnv_npu_disable_device,
3640 };
3641 
3642 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3643 	.enable_device_hook	= pnv_pci_enable_device_hook,
3644 	.window_alignment	= pnv_pci_window_alignment,
3645 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3646 	.shutdown		= pnv_pci_ioda_shutdown,
3647 };
3648 
3649 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3650 					 u64 hub_id, int ioda_type)
3651 {
3652 	struct pci_controller *hose;
3653 	struct pnv_phb *phb;
3654 	unsigned long size, m64map_off, m32map_off, pemap_off;
3655 	unsigned long iomap_off = 0, dma32map_off = 0;
3656 	struct resource r;
3657 	const __be64 *prop64;
3658 	const __be32 *prop32;
3659 	int len;
3660 	unsigned int segno;
3661 	u64 phb_id;
3662 	void *aux;
3663 	long rc;
3664 
3665 	if (!of_device_is_available(np))
3666 		return;
3667 
3668 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3669 
3670 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3671 	if (!prop64) {
3672 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3673 		return;
3674 	}
3675 	phb_id = be64_to_cpup(prop64);
3676 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3677 
3678 	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3679 	if (!phb)
3680 		panic("%s: Failed to allocate %zu bytes\n", __func__,
3681 		      sizeof(*phb));
3682 
3683 	/* Allocate PCI controller */
3684 	phb->hose = hose = pcibios_alloc_controller(np);
3685 	if (!phb->hose) {
3686 		pr_err("  Can't allocate PCI controller for %pOF\n",
3687 		       np);
3688 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3689 		return;
3690 	}
3691 
3692 	spin_lock_init(&phb->lock);
3693 	prop32 = of_get_property(np, "bus-range", &len);
3694 	if (prop32 && len == 8) {
3695 		hose->first_busno = be32_to_cpu(prop32[0]);
3696 		hose->last_busno = be32_to_cpu(prop32[1]);
3697 	} else {
3698 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3699 		hose->first_busno = 0;
3700 		hose->last_busno = 0xff;
3701 	}
3702 	hose->private_data = phb;
3703 	phb->hub_id = hub_id;
3704 	phb->opal_id = phb_id;
3705 	phb->type = ioda_type;
3706 	mutex_init(&phb->ioda.pe_alloc_mutex);
3707 
3708 	/* Detect specific models for error handling */
3709 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3710 		phb->model = PNV_PHB_MODEL_P7IOC;
3711 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3712 		phb->model = PNV_PHB_MODEL_PHB3;
3713 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3714 		phb->model = PNV_PHB_MODEL_NPU;
3715 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3716 		phb->model = PNV_PHB_MODEL_NPU2;
3717 	else
3718 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3719 
3720 	/* Initialize diagnostic data buffer */
3721 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3722 	if (prop32)
3723 		phb->diag_data_size = be32_to_cpup(prop32);
3724 	else
3725 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3726 
3727 	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3728 	if (!phb->diag_data)
3729 		panic("%s: Failed to allocate %u bytes\n", __func__,
3730 		      phb->diag_data_size);
3731 
3732 	/* Parse 32-bit and IO ranges (if any) */
3733 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3734 
3735 	/* Get registers */
3736 	if (!of_address_to_resource(np, 0, &r)) {
3737 		phb->regs_phys = r.start;
3738 		phb->regs = ioremap(r.start, resource_size(&r));
3739 		if (phb->regs == NULL)
3740 			pr_err("  Failed to map registers !\n");
3741 	}
3742 
3743 	/* Initialize more IODA stuff */
3744 	phb->ioda.total_pe_num = 1;
3745 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3746 	if (prop32)
3747 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3748 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3749 	if (prop32)
3750 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3751 
3752 	/* Invalidate RID to PE# mapping */
3753 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3754 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3755 
3756 	/* Parse 64-bit MMIO range */
3757 	pnv_ioda_parse_m64_window(phb);
3758 
3759 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3760 	/* FW Has already off top 64k of M32 space (MSI space) */
3761 	phb->ioda.m32_size += 0x10000;
3762 
3763 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3764 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3765 	phb->ioda.io_size = hose->pci_io_size;
3766 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3767 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3768 
3769 	/* Calculate how many 32-bit TCE segments we have */
3770 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3771 				PNV_IODA1_DMA32_SEGSIZE;
3772 
3773 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3774 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3775 			sizeof(unsigned long));
3776 	m64map_off = size;
3777 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3778 	m32map_off = size;
3779 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3780 	if (phb->type == PNV_PHB_IODA1) {
3781 		iomap_off = size;
3782 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3783 		dma32map_off = size;
3784 		size += phb->ioda.dma32_count *
3785 			sizeof(phb->ioda.dma32_segmap[0]);
3786 	}
3787 	pemap_off = size;
3788 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3789 	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3790 	if (!aux)
3791 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3792 	phb->ioda.pe_alloc = aux;
3793 	phb->ioda.m64_segmap = aux + m64map_off;
3794 	phb->ioda.m32_segmap = aux + m32map_off;
3795 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3796 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3797 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3798 	}
3799 	if (phb->type == PNV_PHB_IODA1) {
3800 		phb->ioda.io_segmap = aux + iomap_off;
3801 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3802 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3803 
3804 		phb->ioda.dma32_segmap = aux + dma32map_off;
3805 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3806 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3807 	}
3808 	phb->ioda.pe_array = aux + pemap_off;
3809 
3810 	/*
3811 	 * Choose PE number for root bus, which shouldn't have
3812 	 * M64 resources consumed by its child devices. To pick
3813 	 * the PE number adjacent to the reserved one if possible.
3814 	 */
3815 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3816 	if (phb->ioda.reserved_pe_idx == 0) {
3817 		phb->ioda.root_pe_idx = 1;
3818 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3819 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3820 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3821 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3822 	} else {
3823 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3824 	}
3825 
3826 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3827 	mutex_init(&phb->ioda.pe_list_mutex);
3828 
3829 	/* Calculate how many 32-bit TCE segments we have */
3830 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3831 				PNV_IODA1_DMA32_SEGSIZE;
3832 
3833 #if 0 /* We should really do that ... */
3834 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3835 					 window_type,
3836 					 window_num,
3837 					 starting_real_address,
3838 					 starting_pci_address,
3839 					 segment_size);
3840 #endif
3841 
3842 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3843 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3844 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3845 	if (phb->ioda.m64_size)
3846 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3847 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3848 	if (phb->ioda.io_size)
3849 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3850 			phb->ioda.io_size, phb->ioda.io_segsize);
3851 
3852 
3853 	phb->hose->ops = &pnv_pci_ops;
3854 	phb->get_pe_state = pnv_ioda_get_pe_state;
3855 	phb->freeze_pe = pnv_ioda_freeze_pe;
3856 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3857 
3858 	/* Setup MSI support */
3859 	pnv_pci_init_ioda_msis(phb);
3860 
3861 	/*
3862 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3863 	 * to let the PCI core do resource assignment. It's supposed
3864 	 * that the PCI core will do correct I/O and MMIO alignment
3865 	 * for the P2P bridge bars so that each PCI bus (excluding
3866 	 * the child P2P bridges) can form individual PE.
3867 	 */
3868 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3869 
3870 	switch (phb->type) {
3871 	case PNV_PHB_NPU_NVLINK:
3872 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3873 		break;
3874 	case PNV_PHB_NPU_OCAPI:
3875 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3876 		break;
3877 	default:
3878 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3879 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3880 	}
3881 
3882 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3883 
3884 #ifdef CONFIG_PCI_IOV
3885 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3886 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3887 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3888 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3889 #endif
3890 
3891 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3892 
3893 	/* Reset IODA tables to a clean state */
3894 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3895 	if (rc)
3896 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3897 
3898 	/*
3899 	 * If we're running in kdump kernel, the previous kernel never
3900 	 * shutdown PCI devices correctly. We already got IODA table
3901 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3902 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3903 	 * kernel parameter will force this reset too. Additionally,
3904 	 * if the IODA reset above failed then use a bigger hammer.
3905 	 * This can happen if we get a PHB fatal error in very early
3906 	 * boot.
3907 	 */
3908 	if (is_kdump_kernel() || pci_reset_phbs || rc) {
3909 		pr_info("  Issue PHB reset ...\n");
3910 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3911 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3912 	}
3913 
3914 	/* Remove M64 resource if we can't configure it successfully */
3915 	if (!phb->init_m64 || phb->init_m64(phb))
3916 		hose->mem_resources[1].flags = 0;
3917 }
3918 
3919 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3920 {
3921 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3922 }
3923 
3924 void __init pnv_pci_init_npu_phb(struct device_node *np)
3925 {
3926 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3927 }
3928 
3929 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3930 {
3931 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3932 }
3933 
3934 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3935 {
3936 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3937 	struct pnv_phb *phb = hose->private_data;
3938 
3939 	if (!machine_is(powernv))
3940 		return;
3941 
3942 	if (phb->type == PNV_PHB_NPU_OCAPI)
3943 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3944 }
3945 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3946 
3947 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3948 {
3949 	struct device_node *phbn;
3950 	const __be64 *prop64;
3951 	u64 hub_id;
3952 
3953 	pr_info("Probing IODA IO-Hub %pOF\n", np);
3954 
3955 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3956 	if (!prop64) {
3957 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3958 		return;
3959 	}
3960 	hub_id = be64_to_cpup(prop64);
3961 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3962 
3963 	/* Count child PHBs */
3964 	for_each_child_of_node(np, phbn) {
3965 		/* Look for IODA1 PHBs */
3966 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3967 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3968 	}
3969 }
3970