1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
52 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
53 
54 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
55 #define POWERNV_IOMMU_MAX_LEVELS	5
56 
57 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
58 
59 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
60 			    const char *fmt, ...)
61 {
62 	struct va_format vaf;
63 	va_list args;
64 	char pfix[32];
65 
66 	va_start(args, fmt);
67 
68 	vaf.fmt = fmt;
69 	vaf.va = &args;
70 
71 	if (pe->flags & PNV_IODA_PE_DEV)
72 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
73 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
74 		sprintf(pfix, "%04x:%02x     ",
75 			pci_domain_nr(pe->pbus), pe->pbus->number);
76 #ifdef CONFIG_PCI_IOV
77 	else if (pe->flags & PNV_IODA_PE_VF)
78 		sprintf(pfix, "%04x:%02x:%2x.%d",
79 			pci_domain_nr(pe->parent_dev->bus),
80 			(pe->rid & 0xff00) >> 8,
81 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
82 #endif /* CONFIG_PCI_IOV*/
83 
84 	printk("%spci %s: [PE# %.3d] %pV",
85 	       level, pfix, pe->pe_number, &vaf);
86 
87 	va_end(args);
88 }
89 
90 #define pe_err(pe, fmt, ...)					\
91 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
92 #define pe_warn(pe, fmt, ...)					\
93 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
94 #define pe_info(pe, fmt, ...)					\
95 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
96 
97 static bool pnv_iommu_bypass_disabled __read_mostly;
98 
99 static int __init iommu_setup(char *str)
100 {
101 	if (!str)
102 		return -EINVAL;
103 
104 	while (*str) {
105 		if (!strncmp(str, "nobypass", 8)) {
106 			pnv_iommu_bypass_disabled = true;
107 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
108 			break;
109 		}
110 		str += strcspn(str, ",");
111 		if (*str == ',')
112 			str++;
113 	}
114 
115 	return 0;
116 }
117 early_param("iommu", iommu_setup);
118 
119 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
120 {
121 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
122 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
123 }
124 
125 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
126 {
127 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
128 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
129 			__func__, pe_no, phb->hose->global_number);
130 		return;
131 	}
132 
133 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
134 		pr_debug("%s: PE %d was reserved on PHB#%x\n",
135 			 __func__, pe_no, phb->hose->global_number);
136 
137 	phb->ioda.pe_array[pe_no].phb = phb;
138 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
139 }
140 
141 static unsigned int pnv_ioda_alloc_pe(struct pnv_phb *phb)
142 {
143 	unsigned long pe;
144 
145 	do {
146 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
147 					phb->ioda.total_pe_num, 0);
148 		if (pe >= phb->ioda.total_pe_num)
149 			return IODA_INVALID_PE;
150 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
151 
152 	phb->ioda.pe_array[pe].phb = phb;
153 	phb->ioda.pe_array[pe].pe_number = pe;
154 	return pe;
155 }
156 
157 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
158 {
159 	WARN_ON(phb->ioda.pe_array[pe].pdev);
160 
161 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
162 	clear_bit(pe, phb->ioda.pe_alloc);
163 }
164 
165 /* The default M64 BAR is shared by all PEs */
166 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
167 {
168 	const char *desc;
169 	struct resource *r;
170 	s64 rc;
171 
172 	/* Configure the default M64 BAR */
173 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
174 					 OPAL_M64_WINDOW_TYPE,
175 					 phb->ioda.m64_bar_idx,
176 					 phb->ioda.m64_base,
177 					 0, /* unused */
178 					 phb->ioda.m64_size);
179 	if (rc != OPAL_SUCCESS) {
180 		desc = "configuring";
181 		goto fail;
182 	}
183 
184 	/* Enable the default M64 BAR */
185 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
186 				      OPAL_M64_WINDOW_TYPE,
187 				      phb->ioda.m64_bar_idx,
188 				      OPAL_ENABLE_M64_SPLIT);
189 	if (rc != OPAL_SUCCESS) {
190 		desc = "enabling";
191 		goto fail;
192 	}
193 
194 	/* Mark the M64 BAR assigned */
195 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
196 
197 	/*
198 	 * Strip off the segment used by the reserved PE, which is
199 	 * expected to be 0 or last one of PE capabicity.
200 	 */
201 	r = &phb->hose->mem_resources[1];
202 	if (phb->ioda.reserved_pe_idx == 0)
203 		r->start += phb->ioda.m64_segsize;
204 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
205 		r->end -= phb->ioda.m64_segsize;
206 	else
207 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
208 			phb->ioda.reserved_pe_idx);
209 
210 	return 0;
211 
212 fail:
213 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
214 		rc, desc, phb->ioda.m64_bar_idx);
215 	opal_pci_phb_mmio_enable(phb->opal_id,
216 				 OPAL_M64_WINDOW_TYPE,
217 				 phb->ioda.m64_bar_idx,
218 				 OPAL_DISABLE_M64);
219 	return -EIO;
220 }
221 
222 static void pnv_ioda2_reserve_dev_m64_pe(struct pci_dev *pdev,
223 					 unsigned long *pe_bitmap)
224 {
225 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
226 	struct pnv_phb *phb = hose->private_data;
227 	struct resource *r;
228 	resource_size_t base, sgsz, start, end;
229 	int segno, i;
230 
231 	base = phb->ioda.m64_base;
232 	sgsz = phb->ioda.m64_segsize;
233 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
234 		r = &pdev->resource[i];
235 		if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
236 			continue;
237 
238 		start = _ALIGN_DOWN(r->start - base, sgsz);
239 		end = _ALIGN_UP(r->end - base, sgsz);
240 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
241 			if (pe_bitmap)
242 				set_bit(segno, pe_bitmap);
243 			else
244 				pnv_ioda_reserve_pe(phb, segno);
245 		}
246 	}
247 }
248 
249 static void pnv_ioda2_reserve_m64_pe(struct pci_bus *bus,
250 				     unsigned long *pe_bitmap,
251 				     bool all)
252 {
253 	struct pci_dev *pdev;
254 
255 	list_for_each_entry(pdev, &bus->devices, bus_list) {
256 		pnv_ioda2_reserve_dev_m64_pe(pdev, pe_bitmap);
257 
258 		if (all && pdev->subordinate)
259 			pnv_ioda2_reserve_m64_pe(pdev->subordinate,
260 						 pe_bitmap, all);
261 	}
262 }
263 
264 static unsigned int pnv_ioda2_pick_m64_pe(struct pci_bus *bus, bool all)
265 {
266 	struct pci_controller *hose = pci_bus_to_host(bus);
267 	struct pnv_phb *phb = hose->private_data;
268 	struct pnv_ioda_pe *master_pe, *pe;
269 	unsigned long size, *pe_alloc;
270 	int i;
271 
272 	/* Root bus shouldn't use M64 */
273 	if (pci_is_root_bus(bus))
274 		return IODA_INVALID_PE;
275 
276 	/* Allocate bitmap */
277 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
278 	pe_alloc = kzalloc(size, GFP_KERNEL);
279 	if (!pe_alloc) {
280 		pr_warn("%s: Out of memory !\n",
281 			__func__);
282 		return IODA_INVALID_PE;
283 	}
284 
285 	/* Figure out reserved PE numbers by the PE */
286 	pnv_ioda2_reserve_m64_pe(bus, pe_alloc, all);
287 
288 	/*
289 	 * the current bus might not own M64 window and that's all
290 	 * contributed by its child buses. For the case, we needn't
291 	 * pick M64 dependent PE#.
292 	 */
293 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
294 		kfree(pe_alloc);
295 		return IODA_INVALID_PE;
296 	}
297 
298 	/*
299 	 * Figure out the master PE and put all slave PEs to master
300 	 * PE's list to form compound PE.
301 	 */
302 	master_pe = NULL;
303 	i = -1;
304 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
305 		phb->ioda.total_pe_num) {
306 		pe = &phb->ioda.pe_array[i];
307 
308 		if (!master_pe) {
309 			pe->flags |= PNV_IODA_PE_MASTER;
310 			INIT_LIST_HEAD(&pe->slaves);
311 			master_pe = pe;
312 		} else {
313 			pe->flags |= PNV_IODA_PE_SLAVE;
314 			pe->master = master_pe;
315 			list_add_tail(&pe->list, &master_pe->slaves);
316 		}
317 	}
318 
319 	kfree(pe_alloc);
320 	return master_pe->pe_number;
321 }
322 
323 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
324 {
325 	struct pci_controller *hose = phb->hose;
326 	struct device_node *dn = hose->dn;
327 	struct resource *res;
328 	const u32 *r;
329 	u64 pci_addr;
330 
331 	/* FIXME: Support M64 for P7IOC */
332 	if (phb->type != PNV_PHB_IODA2) {
333 		pr_info("  Not support M64 window\n");
334 		return;
335 	}
336 
337 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
338 		pr_info("  Firmware too old to support M64 window\n");
339 		return;
340 	}
341 
342 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
343 	if (!r) {
344 		pr_info("  No <ibm,opal-m64-window> on %s\n",
345 			dn->full_name);
346 		return;
347 	}
348 
349 	res = &hose->mem_resources[1];
350 	res->name = dn->full_name;
351 	res->start = of_translate_address(dn, r + 2);
352 	res->end = res->start + of_read_number(r + 4, 2) - 1;
353 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
354 	pci_addr = of_read_number(r, 2);
355 	hose->mem_offset[1] = res->start - pci_addr;
356 
357 	phb->ioda.m64_size = resource_size(res);
358 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
359 	phb->ioda.m64_base = pci_addr;
360 
361 	pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
362 			res->start, res->end, pci_addr);
363 
364 	/* Use last M64 BAR to cover M64 window */
365 	phb->ioda.m64_bar_idx = 15;
366 	phb->init_m64 = pnv_ioda2_init_m64;
367 	phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
368 	phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
369 }
370 
371 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
372 {
373 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
374 	struct pnv_ioda_pe *slave;
375 	s64 rc;
376 
377 	/* Fetch master PE */
378 	if (pe->flags & PNV_IODA_PE_SLAVE) {
379 		pe = pe->master;
380 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
381 			return;
382 
383 		pe_no = pe->pe_number;
384 	}
385 
386 	/* Freeze master PE */
387 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
388 				     pe_no,
389 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
390 	if (rc != OPAL_SUCCESS) {
391 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
392 			__func__, rc, phb->hose->global_number, pe_no);
393 		return;
394 	}
395 
396 	/* Freeze slave PEs */
397 	if (!(pe->flags & PNV_IODA_PE_MASTER))
398 		return;
399 
400 	list_for_each_entry(slave, &pe->slaves, list) {
401 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
402 					     slave->pe_number,
403 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
404 		if (rc != OPAL_SUCCESS)
405 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
406 				__func__, rc, phb->hose->global_number,
407 				slave->pe_number);
408 	}
409 }
410 
411 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
412 {
413 	struct pnv_ioda_pe *pe, *slave;
414 	s64 rc;
415 
416 	/* Find master PE */
417 	pe = &phb->ioda.pe_array[pe_no];
418 	if (pe->flags & PNV_IODA_PE_SLAVE) {
419 		pe = pe->master;
420 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
421 		pe_no = pe->pe_number;
422 	}
423 
424 	/* Clear frozen state for master PE */
425 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
426 	if (rc != OPAL_SUCCESS) {
427 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
428 			__func__, rc, opt, phb->hose->global_number, pe_no);
429 		return -EIO;
430 	}
431 
432 	if (!(pe->flags & PNV_IODA_PE_MASTER))
433 		return 0;
434 
435 	/* Clear frozen state for slave PEs */
436 	list_for_each_entry(slave, &pe->slaves, list) {
437 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
438 					     slave->pe_number,
439 					     opt);
440 		if (rc != OPAL_SUCCESS) {
441 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
442 				__func__, rc, opt, phb->hose->global_number,
443 				slave->pe_number);
444 			return -EIO;
445 		}
446 	}
447 
448 	return 0;
449 }
450 
451 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
452 {
453 	struct pnv_ioda_pe *slave, *pe;
454 	u8 fstate, state;
455 	__be16 pcierr;
456 	s64 rc;
457 
458 	/* Sanity check on PE number */
459 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
460 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
461 
462 	/*
463 	 * Fetch the master PE and the PE instance might be
464 	 * not initialized yet.
465 	 */
466 	pe = &phb->ioda.pe_array[pe_no];
467 	if (pe->flags & PNV_IODA_PE_SLAVE) {
468 		pe = pe->master;
469 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
470 		pe_no = pe->pe_number;
471 	}
472 
473 	/* Check the master PE */
474 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
475 					&state, &pcierr, NULL);
476 	if (rc != OPAL_SUCCESS) {
477 		pr_warn("%s: Failure %lld getting "
478 			"PHB#%x-PE#%x state\n",
479 			__func__, rc,
480 			phb->hose->global_number, pe_no);
481 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
482 	}
483 
484 	/* Check the slave PE */
485 	if (!(pe->flags & PNV_IODA_PE_MASTER))
486 		return state;
487 
488 	list_for_each_entry(slave, &pe->slaves, list) {
489 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
490 						slave->pe_number,
491 						&fstate,
492 						&pcierr,
493 						NULL);
494 		if (rc != OPAL_SUCCESS) {
495 			pr_warn("%s: Failure %lld getting "
496 				"PHB#%x-PE#%x state\n",
497 				__func__, rc,
498 				phb->hose->global_number, slave->pe_number);
499 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
500 		}
501 
502 		/*
503 		 * Override the result based on the ascending
504 		 * priority.
505 		 */
506 		if (fstate > state)
507 			state = fstate;
508 	}
509 
510 	return state;
511 }
512 
513 /* Currently those 2 are only used when MSIs are enabled, this will change
514  * but in the meantime, we need to protect them to avoid warnings
515  */
516 #ifdef CONFIG_PCI_MSI
517 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
518 {
519 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
520 	struct pnv_phb *phb = hose->private_data;
521 	struct pci_dn *pdn = pci_get_pdn(dev);
522 
523 	if (!pdn)
524 		return NULL;
525 	if (pdn->pe_number == IODA_INVALID_PE)
526 		return NULL;
527 	return &phb->ioda.pe_array[pdn->pe_number];
528 }
529 #endif /* CONFIG_PCI_MSI */
530 
531 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
532 				  struct pnv_ioda_pe *parent,
533 				  struct pnv_ioda_pe *child,
534 				  bool is_add)
535 {
536 	const char *desc = is_add ? "adding" : "removing";
537 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
538 			      OPAL_REMOVE_PE_FROM_DOMAIN;
539 	struct pnv_ioda_pe *slave;
540 	long rc;
541 
542 	/* Parent PE affects child PE */
543 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
544 				child->pe_number, op);
545 	if (rc != OPAL_SUCCESS) {
546 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
547 			rc, desc);
548 		return -ENXIO;
549 	}
550 
551 	if (!(child->flags & PNV_IODA_PE_MASTER))
552 		return 0;
553 
554 	/* Compound case: parent PE affects slave PEs */
555 	list_for_each_entry(slave, &child->slaves, list) {
556 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
557 					slave->pe_number, op);
558 		if (rc != OPAL_SUCCESS) {
559 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
560 				rc, desc);
561 			return -ENXIO;
562 		}
563 	}
564 
565 	return 0;
566 }
567 
568 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
569 			      struct pnv_ioda_pe *pe,
570 			      bool is_add)
571 {
572 	struct pnv_ioda_pe *slave;
573 	struct pci_dev *pdev = NULL;
574 	int ret;
575 
576 	/*
577 	 * Clear PE frozen state. If it's master PE, we need
578 	 * clear slave PE frozen state as well.
579 	 */
580 	if (is_add) {
581 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
582 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
583 		if (pe->flags & PNV_IODA_PE_MASTER) {
584 			list_for_each_entry(slave, &pe->slaves, list)
585 				opal_pci_eeh_freeze_clear(phb->opal_id,
586 							  slave->pe_number,
587 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
588 		}
589 	}
590 
591 	/*
592 	 * Associate PE in PELT. We need add the PE into the
593 	 * corresponding PELT-V as well. Otherwise, the error
594 	 * originated from the PE might contribute to other
595 	 * PEs.
596 	 */
597 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
598 	if (ret)
599 		return ret;
600 
601 	/* For compound PEs, any one affects all of them */
602 	if (pe->flags & PNV_IODA_PE_MASTER) {
603 		list_for_each_entry(slave, &pe->slaves, list) {
604 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
605 			if (ret)
606 				return ret;
607 		}
608 	}
609 
610 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
611 		pdev = pe->pbus->self;
612 	else if (pe->flags & PNV_IODA_PE_DEV)
613 		pdev = pe->pdev->bus->self;
614 #ifdef CONFIG_PCI_IOV
615 	else if (pe->flags & PNV_IODA_PE_VF)
616 		pdev = pe->parent_dev;
617 #endif /* CONFIG_PCI_IOV */
618 	while (pdev) {
619 		struct pci_dn *pdn = pci_get_pdn(pdev);
620 		struct pnv_ioda_pe *parent;
621 
622 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
623 			parent = &phb->ioda.pe_array[pdn->pe_number];
624 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
625 			if (ret)
626 				return ret;
627 		}
628 
629 		pdev = pdev->bus->self;
630 	}
631 
632 	return 0;
633 }
634 
635 #ifdef CONFIG_PCI_IOV
636 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
637 {
638 	struct pci_dev *parent;
639 	uint8_t bcomp, dcomp, fcomp;
640 	int64_t rc;
641 	long rid_end, rid;
642 
643 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
644 	if (pe->pbus) {
645 		int count;
646 
647 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
648 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
649 		parent = pe->pbus->self;
650 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
651 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
652 		else
653 			count = 1;
654 
655 		switch(count) {
656 		case  1: bcomp = OpalPciBusAll;         break;
657 		case  2: bcomp = OpalPciBus7Bits;       break;
658 		case  4: bcomp = OpalPciBus6Bits;       break;
659 		case  8: bcomp = OpalPciBus5Bits;       break;
660 		case 16: bcomp = OpalPciBus4Bits;       break;
661 		case 32: bcomp = OpalPciBus3Bits;       break;
662 		default:
663 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
664 			        count);
665 			/* Do an exact match only */
666 			bcomp = OpalPciBusAll;
667 		}
668 		rid_end = pe->rid + (count << 8);
669 	} else {
670 		if (pe->flags & PNV_IODA_PE_VF)
671 			parent = pe->parent_dev;
672 		else
673 			parent = pe->pdev->bus->self;
674 		bcomp = OpalPciBusAll;
675 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
676 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
677 		rid_end = pe->rid + 1;
678 	}
679 
680 	/* Clear the reverse map */
681 	for (rid = pe->rid; rid < rid_end; rid++)
682 		phb->ioda.pe_rmap[rid] = 0;
683 
684 	/* Release from all parents PELT-V */
685 	while (parent) {
686 		struct pci_dn *pdn = pci_get_pdn(parent);
687 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
688 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
689 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
690 			/* XXX What to do in case of error ? */
691 		}
692 		parent = parent->bus->self;
693 	}
694 
695 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
696 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
697 
698 	/* Disassociate PE in PELT */
699 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
700 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
701 	if (rc)
702 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
703 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
704 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
705 	if (rc)
706 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
707 
708 	pe->pbus = NULL;
709 	pe->pdev = NULL;
710 	pe->parent_dev = NULL;
711 
712 	return 0;
713 }
714 #endif /* CONFIG_PCI_IOV */
715 
716 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
717 {
718 	struct pci_dev *parent;
719 	uint8_t bcomp, dcomp, fcomp;
720 	long rc, rid_end, rid;
721 
722 	/* Bus validation ? */
723 	if (pe->pbus) {
724 		int count;
725 
726 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
727 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
728 		parent = pe->pbus->self;
729 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
730 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
731 		else
732 			count = 1;
733 
734 		switch(count) {
735 		case  1: bcomp = OpalPciBusAll;		break;
736 		case  2: bcomp = OpalPciBus7Bits;	break;
737 		case  4: bcomp = OpalPciBus6Bits;	break;
738 		case  8: bcomp = OpalPciBus5Bits;	break;
739 		case 16: bcomp = OpalPciBus4Bits;	break;
740 		case 32: bcomp = OpalPciBus3Bits;	break;
741 		default:
742 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
743 			        count);
744 			/* Do an exact match only */
745 			bcomp = OpalPciBusAll;
746 		}
747 		rid_end = pe->rid + (count << 8);
748 	} else {
749 #ifdef CONFIG_PCI_IOV
750 		if (pe->flags & PNV_IODA_PE_VF)
751 			parent = pe->parent_dev;
752 		else
753 #endif /* CONFIG_PCI_IOV */
754 			parent = pe->pdev->bus->self;
755 		bcomp = OpalPciBusAll;
756 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
757 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
758 		rid_end = pe->rid + 1;
759 	}
760 
761 	/*
762 	 * Associate PE in PELT. We need add the PE into the
763 	 * corresponding PELT-V as well. Otherwise, the error
764 	 * originated from the PE might contribute to other
765 	 * PEs.
766 	 */
767 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
768 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
769 	if (rc) {
770 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
771 		return -ENXIO;
772 	}
773 
774 	/*
775 	 * Configure PELTV. NPUs don't have a PELTV table so skip
776 	 * configuration on them.
777 	 */
778 	if (phb->type != PNV_PHB_NPU)
779 		pnv_ioda_set_peltv(phb, pe, true);
780 
781 	/* Setup reverse map */
782 	for (rid = pe->rid; rid < rid_end; rid++)
783 		phb->ioda.pe_rmap[rid] = pe->pe_number;
784 
785 	/* Setup one MVTs on IODA1 */
786 	if (phb->type != PNV_PHB_IODA1) {
787 		pe->mve_number = 0;
788 		goto out;
789 	}
790 
791 	pe->mve_number = pe->pe_number;
792 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
793 	if (rc != OPAL_SUCCESS) {
794 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
795 		       rc, pe->mve_number);
796 		pe->mve_number = -1;
797 	} else {
798 		rc = opal_pci_set_mve_enable(phb->opal_id,
799 					     pe->mve_number, OPAL_ENABLE_MVE);
800 		if (rc) {
801 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
802 			       rc, pe->mve_number);
803 			pe->mve_number = -1;
804 		}
805 	}
806 
807 out:
808 	return 0;
809 }
810 
811 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
812 				       struct pnv_ioda_pe *pe)
813 {
814 	struct pnv_ioda_pe *lpe;
815 
816 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
817 		if (lpe->dma_weight < pe->dma_weight) {
818 			list_add_tail(&pe->dma_link, &lpe->dma_link);
819 			return;
820 		}
821 	}
822 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
823 }
824 
825 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
826 {
827 	/* This is quite simplistic. The "base" weight of a device
828 	 * is 10. 0 means no DMA is to be accounted for it.
829 	 */
830 
831 	/* If it's a bridge, no DMA */
832 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
833 		return 0;
834 
835 	/* Reduce the weight of slow USB controllers */
836 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
837 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
838 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
839 		return 3;
840 
841 	/* Increase the weight of RAID (includes Obsidian) */
842 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
843 		return 15;
844 
845 	/* Default */
846 	return 10;
847 }
848 
849 #ifdef CONFIG_PCI_IOV
850 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
851 {
852 	struct pci_dn *pdn = pci_get_pdn(dev);
853 	int i;
854 	struct resource *res, res2;
855 	resource_size_t size;
856 	u16 num_vfs;
857 
858 	if (!dev->is_physfn)
859 		return -EINVAL;
860 
861 	/*
862 	 * "offset" is in VFs.  The M64 windows are sized so that when they
863 	 * are segmented, each segment is the same size as the IOV BAR.
864 	 * Each segment is in a separate PE, and the high order bits of the
865 	 * address are the PE number.  Therefore, each VF's BAR is in a
866 	 * separate PE, and changing the IOV BAR start address changes the
867 	 * range of PEs the VFs are in.
868 	 */
869 	num_vfs = pdn->num_vfs;
870 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
871 		res = &dev->resource[i + PCI_IOV_RESOURCES];
872 		if (!res->flags || !res->parent)
873 			continue;
874 
875 		/*
876 		 * The actual IOV BAR range is determined by the start address
877 		 * and the actual size for num_vfs VFs BAR.  This check is to
878 		 * make sure that after shifting, the range will not overlap
879 		 * with another device.
880 		 */
881 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
882 		res2.flags = res->flags;
883 		res2.start = res->start + (size * offset);
884 		res2.end = res2.start + (size * num_vfs) - 1;
885 
886 		if (res2.end > res->end) {
887 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
888 				i, &res2, res, num_vfs, offset);
889 			return -EBUSY;
890 		}
891 	}
892 
893 	/*
894 	 * After doing so, there would be a "hole" in the /proc/iomem when
895 	 * offset is a positive value. It looks like the device return some
896 	 * mmio back to the system, which actually no one could use it.
897 	 */
898 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
899 		res = &dev->resource[i + PCI_IOV_RESOURCES];
900 		if (!res->flags || !res->parent)
901 			continue;
902 
903 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
904 		res2 = *res;
905 		res->start += size * offset;
906 
907 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
908 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
909 			 num_vfs, offset);
910 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
911 	}
912 	return 0;
913 }
914 #endif /* CONFIG_PCI_IOV */
915 
916 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
917 {
918 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
919 	struct pnv_phb *phb = hose->private_data;
920 	struct pci_dn *pdn = pci_get_pdn(dev);
921 	struct pnv_ioda_pe *pe;
922 	unsigned int pe_num;
923 
924 	if (!pdn) {
925 		pr_err("%s: Device tree node not associated properly\n",
926 			   pci_name(dev));
927 		return NULL;
928 	}
929 	if (pdn->pe_number != IODA_INVALID_PE)
930 		return NULL;
931 
932 	pe_num = pnv_ioda_alloc_pe(phb);
933 	if (pe_num == IODA_INVALID_PE) {
934 		pr_warning("%s: Not enough PE# available, disabling device\n",
935 			   pci_name(dev));
936 		return NULL;
937 	}
938 
939 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
940 	 * pointer in the PE data structure, both should be destroyed at the
941 	 * same time. However, this needs to be looked at more closely again
942 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
943 	 *
944 	 * At some point we want to remove the PDN completely anyways
945 	 */
946 	pe = &phb->ioda.pe_array[pe_num];
947 	pci_dev_get(dev);
948 	pdn->pcidev = dev;
949 	pdn->pe_number = pe_num;
950 	pe->flags = PNV_IODA_PE_DEV;
951 	pe->pdev = dev;
952 	pe->pbus = NULL;
953 	pe->tce32_seg = -1;
954 	pe->mve_number = -1;
955 	pe->rid = dev->bus->number << 8 | pdn->devfn;
956 
957 	pe_info(pe, "Associated device to PE\n");
958 
959 	if (pnv_ioda_configure_pe(phb, pe)) {
960 		/* XXX What do we do here ? */
961 		if (pe_num)
962 			pnv_ioda_free_pe(phb, pe_num);
963 		pdn->pe_number = IODA_INVALID_PE;
964 		pe->pdev = NULL;
965 		pci_dev_put(dev);
966 		return NULL;
967 	}
968 
969 	/* Assign a DMA weight to the device */
970 	pe->dma_weight = pnv_ioda_dma_weight(dev);
971 	if (pe->dma_weight != 0) {
972 		phb->ioda.dma_weight += pe->dma_weight;
973 		phb->ioda.dma_pe_count++;
974 	}
975 
976 	/* Link the PE */
977 	pnv_ioda_link_pe_by_weight(phb, pe);
978 
979 	return pe;
980 }
981 
982 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
983 {
984 	struct pci_dev *dev;
985 
986 	list_for_each_entry(dev, &bus->devices, bus_list) {
987 		struct pci_dn *pdn = pci_get_pdn(dev);
988 
989 		if (pdn == NULL) {
990 			pr_warn("%s: No device node associated with device !\n",
991 				pci_name(dev));
992 			continue;
993 		}
994 		pdn->pcidev = dev;
995 		pdn->pe_number = pe->pe_number;
996 		pe->dma_weight += pnv_ioda_dma_weight(dev);
997 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
998 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
999 	}
1000 }
1001 
1002 /*
1003  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1004  * single PCI bus. Another one that contains the primary PCI bus and its
1005  * subordinate PCI devices and buses. The second type of PE is normally
1006  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1007  */
1008 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1009 {
1010 	struct pci_controller *hose = pci_bus_to_host(bus);
1011 	struct pnv_phb *phb = hose->private_data;
1012 	struct pnv_ioda_pe *pe;
1013 	unsigned int pe_num = IODA_INVALID_PE;
1014 
1015 	/* Check if PE is determined by M64 */
1016 	if (phb->pick_m64_pe)
1017 		pe_num = phb->pick_m64_pe(bus, all);
1018 
1019 	/* The PE number isn't pinned by M64 */
1020 	if (pe_num == IODA_INVALID_PE)
1021 		pe_num = pnv_ioda_alloc_pe(phb);
1022 
1023 	if (pe_num == IODA_INVALID_PE) {
1024 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1025 			__func__, pci_domain_nr(bus), bus->number);
1026 		return;
1027 	}
1028 
1029 	pe = &phb->ioda.pe_array[pe_num];
1030 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1031 	pe->pbus = bus;
1032 	pe->pdev = NULL;
1033 	pe->tce32_seg = -1;
1034 	pe->mve_number = -1;
1035 	pe->rid = bus->busn_res.start << 8;
1036 	pe->dma_weight = 0;
1037 
1038 	if (all)
1039 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1040 			bus->busn_res.start, bus->busn_res.end, pe_num);
1041 	else
1042 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1043 			bus->busn_res.start, pe_num);
1044 
1045 	if (pnv_ioda_configure_pe(phb, pe)) {
1046 		/* XXX What do we do here ? */
1047 		if (pe_num)
1048 			pnv_ioda_free_pe(phb, pe_num);
1049 		pe->pbus = NULL;
1050 		return;
1051 	}
1052 
1053 	/* Associate it with all child devices */
1054 	pnv_ioda_setup_same_PE(bus, pe);
1055 
1056 	/* Put PE to the list */
1057 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1058 
1059 	/* Account for one DMA PE if at least one DMA capable device exist
1060 	 * below the bridge
1061 	 */
1062 	if (pe->dma_weight != 0) {
1063 		phb->ioda.dma_weight += pe->dma_weight;
1064 		phb->ioda.dma_pe_count++;
1065 	}
1066 
1067 	/* Link the PE */
1068 	pnv_ioda_link_pe_by_weight(phb, pe);
1069 }
1070 
1071 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1072 {
1073 	int pe_num, found_pe = false, rc;
1074 	long rid;
1075 	struct pnv_ioda_pe *pe;
1076 	struct pci_dev *gpu_pdev;
1077 	struct pci_dn *npu_pdn;
1078 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1079 	struct pnv_phb *phb = hose->private_data;
1080 
1081 	/*
1082 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1083 	 * error handling. This means we only have three PEs remaining
1084 	 * which need to be assigned to four links, implying some
1085 	 * links must share PEs.
1086 	 *
1087 	 * To achieve this we assign PEs such that NPUs linking the
1088 	 * same GPU get assigned the same PE.
1089 	 */
1090 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1091 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1092 		pe = &phb->ioda.pe_array[pe_num];
1093 		if (!pe->pdev)
1094 			continue;
1095 
1096 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1097 			/*
1098 			 * This device has the same peer GPU so should
1099 			 * be assigned the same PE as the existing
1100 			 * peer NPU.
1101 			 */
1102 			dev_info(&npu_pdev->dev,
1103 				"Associating to existing PE %d\n", pe_num);
1104 			pci_dev_get(npu_pdev);
1105 			npu_pdn = pci_get_pdn(npu_pdev);
1106 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1107 			npu_pdn->pcidev = npu_pdev;
1108 			npu_pdn->pe_number = pe_num;
1109 			pe->dma_weight += pnv_ioda_dma_weight(npu_pdev);
1110 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1111 
1112 			/* Map the PE to this link */
1113 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1114 					OpalPciBusAll,
1115 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1116 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1117 					OPAL_MAP_PE);
1118 			WARN_ON(rc != OPAL_SUCCESS);
1119 			found_pe = true;
1120 			break;
1121 		}
1122 	}
1123 
1124 	if (!found_pe)
1125 		/*
1126 		 * Could not find an existing PE so allocate a new
1127 		 * one.
1128 		 */
1129 		return pnv_ioda_setup_dev_PE(npu_pdev);
1130 	else
1131 		return pe;
1132 }
1133 
1134 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1135 {
1136 	struct pci_dev *pdev;
1137 
1138 	list_for_each_entry(pdev, &bus->devices, bus_list)
1139 		pnv_ioda_setup_npu_PE(pdev);
1140 }
1141 
1142 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1143 {
1144 	struct pci_dev *dev;
1145 
1146 	pnv_ioda_setup_bus_PE(bus, false);
1147 
1148 	list_for_each_entry(dev, &bus->devices, bus_list) {
1149 		if (dev->subordinate) {
1150 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1151 				pnv_ioda_setup_bus_PE(dev->subordinate, true);
1152 			else
1153 				pnv_ioda_setup_PEs(dev->subordinate);
1154 		}
1155 	}
1156 }
1157 
1158 /*
1159  * Configure PEs so that the downstream PCI buses and devices
1160  * could have their associated PE#. Unfortunately, we didn't
1161  * figure out the way to identify the PLX bridge yet. So we
1162  * simply put the PCI bus and the subordinate behind the root
1163  * port to PE# here. The game rule here is expected to be changed
1164  * as soon as we can detected PLX bridge correctly.
1165  */
1166 static void pnv_pci_ioda_setup_PEs(void)
1167 {
1168 	struct pci_controller *hose, *tmp;
1169 	struct pnv_phb *phb;
1170 
1171 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1172 		phb = hose->private_data;
1173 
1174 		/* M64 layout might affect PE allocation */
1175 		if (phb->reserve_m64_pe)
1176 			phb->reserve_m64_pe(hose->bus, NULL, true);
1177 
1178 		/*
1179 		 * On NPU PHB, we expect separate PEs for individual PCI
1180 		 * functions. PCI bus dependent PEs are required for the
1181 		 * remaining types of PHBs.
1182 		 */
1183 		if (phb->type == PNV_PHB_NPU) {
1184 			/* PE#0 is needed for error reporting */
1185 			pnv_ioda_reserve_pe(phb, 0);
1186 			pnv_ioda_setup_npu_PEs(hose->bus);
1187 		} else
1188 			pnv_ioda_setup_PEs(hose->bus);
1189 	}
1190 }
1191 
1192 #ifdef CONFIG_PCI_IOV
1193 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1194 {
1195 	struct pci_bus        *bus;
1196 	struct pci_controller *hose;
1197 	struct pnv_phb        *phb;
1198 	struct pci_dn         *pdn;
1199 	int                    i, j;
1200 	int                    m64_bars;
1201 
1202 	bus = pdev->bus;
1203 	hose = pci_bus_to_host(bus);
1204 	phb = hose->private_data;
1205 	pdn = pci_get_pdn(pdev);
1206 
1207 	if (pdn->m64_single_mode)
1208 		m64_bars = num_vfs;
1209 	else
1210 		m64_bars = 1;
1211 
1212 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1213 		for (j = 0; j < m64_bars; j++) {
1214 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1215 				continue;
1216 			opal_pci_phb_mmio_enable(phb->opal_id,
1217 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1218 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1219 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1220 		}
1221 
1222 	kfree(pdn->m64_map);
1223 	return 0;
1224 }
1225 
1226 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1227 {
1228 	struct pci_bus        *bus;
1229 	struct pci_controller *hose;
1230 	struct pnv_phb        *phb;
1231 	struct pci_dn         *pdn;
1232 	unsigned int           win;
1233 	struct resource       *res;
1234 	int                    i, j;
1235 	int64_t                rc;
1236 	int                    total_vfs;
1237 	resource_size_t        size, start;
1238 	int                    pe_num;
1239 	int                    m64_bars;
1240 
1241 	bus = pdev->bus;
1242 	hose = pci_bus_to_host(bus);
1243 	phb = hose->private_data;
1244 	pdn = pci_get_pdn(pdev);
1245 	total_vfs = pci_sriov_get_totalvfs(pdev);
1246 
1247 	if (pdn->m64_single_mode)
1248 		m64_bars = num_vfs;
1249 	else
1250 		m64_bars = 1;
1251 
1252 	pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1253 	if (!pdn->m64_map)
1254 		return -ENOMEM;
1255 	/* Initialize the m64_map to IODA_INVALID_M64 */
1256 	for (i = 0; i < m64_bars ; i++)
1257 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1258 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1259 
1260 
1261 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1262 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1263 		if (!res->flags || !res->parent)
1264 			continue;
1265 
1266 		for (j = 0; j < m64_bars; j++) {
1267 			do {
1268 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1269 						phb->ioda.m64_bar_idx + 1, 0);
1270 
1271 				if (win >= phb->ioda.m64_bar_idx + 1)
1272 					goto m64_failed;
1273 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1274 
1275 			pdn->m64_map[j][i] = win;
1276 
1277 			if (pdn->m64_single_mode) {
1278 				size = pci_iov_resource_size(pdev,
1279 							PCI_IOV_RESOURCES + i);
1280 				start = res->start + size * j;
1281 			} else {
1282 				size = resource_size(res);
1283 				start = res->start;
1284 			}
1285 
1286 			/* Map the M64 here */
1287 			if (pdn->m64_single_mode) {
1288 				pe_num = pdn->pe_num_map[j];
1289 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1290 						pe_num, OPAL_M64_WINDOW_TYPE,
1291 						pdn->m64_map[j][i], 0);
1292 			}
1293 
1294 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1295 						 OPAL_M64_WINDOW_TYPE,
1296 						 pdn->m64_map[j][i],
1297 						 start,
1298 						 0, /* unused */
1299 						 size);
1300 
1301 
1302 			if (rc != OPAL_SUCCESS) {
1303 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1304 					win, rc);
1305 				goto m64_failed;
1306 			}
1307 
1308 			if (pdn->m64_single_mode)
1309 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1310 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1311 			else
1312 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1313 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1314 
1315 			if (rc != OPAL_SUCCESS) {
1316 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1317 					win, rc);
1318 				goto m64_failed;
1319 			}
1320 		}
1321 	}
1322 	return 0;
1323 
1324 m64_failed:
1325 	pnv_pci_vf_release_m64(pdev, num_vfs);
1326 	return -EBUSY;
1327 }
1328 
1329 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1330 		int num);
1331 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1332 
1333 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1334 {
1335 	struct iommu_table    *tbl;
1336 	int64_t               rc;
1337 
1338 	tbl = pe->table_group.tables[0];
1339 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1340 	if (rc)
1341 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1342 
1343 	pnv_pci_ioda2_set_bypass(pe, false);
1344 	if (pe->table_group.group) {
1345 		iommu_group_put(pe->table_group.group);
1346 		BUG_ON(pe->table_group.group);
1347 	}
1348 	pnv_pci_ioda2_table_free_pages(tbl);
1349 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1350 }
1351 
1352 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1353 {
1354 	struct pci_bus        *bus;
1355 	struct pci_controller *hose;
1356 	struct pnv_phb        *phb;
1357 	struct pnv_ioda_pe    *pe, *pe_n;
1358 	struct pci_dn         *pdn;
1359 
1360 	bus = pdev->bus;
1361 	hose = pci_bus_to_host(bus);
1362 	phb = hose->private_data;
1363 	pdn = pci_get_pdn(pdev);
1364 
1365 	if (!pdev->is_physfn)
1366 		return;
1367 
1368 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1369 		if (pe->parent_dev != pdev)
1370 			continue;
1371 
1372 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1373 
1374 		/* Remove from list */
1375 		mutex_lock(&phb->ioda.pe_list_mutex);
1376 		list_del(&pe->list);
1377 		mutex_unlock(&phb->ioda.pe_list_mutex);
1378 
1379 		pnv_ioda_deconfigure_pe(phb, pe);
1380 
1381 		pnv_ioda_free_pe(phb, pe->pe_number);
1382 	}
1383 }
1384 
1385 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1386 {
1387 	struct pci_bus        *bus;
1388 	struct pci_controller *hose;
1389 	struct pnv_phb        *phb;
1390 	struct pci_dn         *pdn;
1391 	struct pci_sriov      *iov;
1392 	u16                    num_vfs, i;
1393 
1394 	bus = pdev->bus;
1395 	hose = pci_bus_to_host(bus);
1396 	phb = hose->private_data;
1397 	pdn = pci_get_pdn(pdev);
1398 	iov = pdev->sriov;
1399 	num_vfs = pdn->num_vfs;
1400 
1401 	/* Release VF PEs */
1402 	pnv_ioda_release_vf_PE(pdev);
1403 
1404 	if (phb->type == PNV_PHB_IODA2) {
1405 		if (!pdn->m64_single_mode)
1406 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1407 
1408 		/* Release M64 windows */
1409 		pnv_pci_vf_release_m64(pdev, num_vfs);
1410 
1411 		/* Release PE numbers */
1412 		if (pdn->m64_single_mode) {
1413 			for (i = 0; i < num_vfs; i++) {
1414 				if (pdn->pe_num_map[i] != IODA_INVALID_PE)
1415 					pnv_ioda_free_pe(phb, pdn->pe_num_map[i]);
1416 			}
1417 		} else
1418 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1419 		/* Releasing pe_num_map */
1420 		kfree(pdn->pe_num_map);
1421 	}
1422 }
1423 
1424 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1425 				       struct pnv_ioda_pe *pe);
1426 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1427 {
1428 	struct pci_bus        *bus;
1429 	struct pci_controller *hose;
1430 	struct pnv_phb        *phb;
1431 	struct pnv_ioda_pe    *pe;
1432 	int                    pe_num;
1433 	u16                    vf_index;
1434 	struct pci_dn         *pdn;
1435 
1436 	bus = pdev->bus;
1437 	hose = pci_bus_to_host(bus);
1438 	phb = hose->private_data;
1439 	pdn = pci_get_pdn(pdev);
1440 
1441 	if (!pdev->is_physfn)
1442 		return;
1443 
1444 	/* Reserve PE for each VF */
1445 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1446 		if (pdn->m64_single_mode)
1447 			pe_num = pdn->pe_num_map[vf_index];
1448 		else
1449 			pe_num = *pdn->pe_num_map + vf_index;
1450 
1451 		pe = &phb->ioda.pe_array[pe_num];
1452 		pe->pe_number = pe_num;
1453 		pe->phb = phb;
1454 		pe->flags = PNV_IODA_PE_VF;
1455 		pe->pbus = NULL;
1456 		pe->parent_dev = pdev;
1457 		pe->tce32_seg = -1;
1458 		pe->mve_number = -1;
1459 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1460 			   pci_iov_virtfn_devfn(pdev, vf_index);
1461 
1462 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1463 			hose->global_number, pdev->bus->number,
1464 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1465 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1466 
1467 		if (pnv_ioda_configure_pe(phb, pe)) {
1468 			/* XXX What do we do here ? */
1469 			if (pe_num)
1470 				pnv_ioda_free_pe(phb, pe_num);
1471 			pe->pdev = NULL;
1472 			continue;
1473 		}
1474 
1475 		/* Put PE to the list */
1476 		mutex_lock(&phb->ioda.pe_list_mutex);
1477 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1478 		mutex_unlock(&phb->ioda.pe_list_mutex);
1479 
1480 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1481 	}
1482 }
1483 
1484 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1485 {
1486 	struct pci_bus        *bus;
1487 	struct pci_controller *hose;
1488 	struct pnv_phb        *phb;
1489 	struct pci_dn         *pdn;
1490 	int                    ret;
1491 	u16                    i;
1492 
1493 	bus = pdev->bus;
1494 	hose = pci_bus_to_host(bus);
1495 	phb = hose->private_data;
1496 	pdn = pci_get_pdn(pdev);
1497 
1498 	if (phb->type == PNV_PHB_IODA2) {
1499 		if (!pdn->vfs_expanded) {
1500 			dev_info(&pdev->dev, "don't support this SRIOV device"
1501 				" with non 64bit-prefetchable IOV BAR\n");
1502 			return -ENOSPC;
1503 		}
1504 
1505 		/*
1506 		 * When M64 BARs functions in Single PE mode, the number of VFs
1507 		 * could be enabled must be less than the number of M64 BARs.
1508 		 */
1509 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1510 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1511 			return -EBUSY;
1512 		}
1513 
1514 		/* Allocating pe_num_map */
1515 		if (pdn->m64_single_mode)
1516 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1517 					GFP_KERNEL);
1518 		else
1519 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1520 
1521 		if (!pdn->pe_num_map)
1522 			return -ENOMEM;
1523 
1524 		if (pdn->m64_single_mode)
1525 			for (i = 0; i < num_vfs; i++)
1526 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1527 
1528 		/* Calculate available PE for required VFs */
1529 		if (pdn->m64_single_mode) {
1530 			for (i = 0; i < num_vfs; i++) {
1531 				pdn->pe_num_map[i] = pnv_ioda_alloc_pe(phb);
1532 				if (pdn->pe_num_map[i] == IODA_INVALID_PE) {
1533 					ret = -EBUSY;
1534 					goto m64_failed;
1535 				}
1536 			}
1537 		} else {
1538 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1539 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1540 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1541 				0, num_vfs, 0);
1542 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1543 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1544 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1545 				kfree(pdn->pe_num_map);
1546 				return -EBUSY;
1547 			}
1548 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1549 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1550 		}
1551 		pdn->num_vfs = num_vfs;
1552 
1553 		/* Assign M64 window accordingly */
1554 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1555 		if (ret) {
1556 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1557 			goto m64_failed;
1558 		}
1559 
1560 		/*
1561 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1562 		 * the IOV BAR according to the PE# allocated to the VFs.
1563 		 * Otherwise, the PE# for the VF will conflict with others.
1564 		 */
1565 		if (!pdn->m64_single_mode) {
1566 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1567 			if (ret)
1568 				goto m64_failed;
1569 		}
1570 	}
1571 
1572 	/* Setup VF PEs */
1573 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1574 
1575 	return 0;
1576 
1577 m64_failed:
1578 	if (pdn->m64_single_mode) {
1579 		for (i = 0; i < num_vfs; i++) {
1580 			if (pdn->pe_num_map[i] != IODA_INVALID_PE)
1581 				pnv_ioda_free_pe(phb, pdn->pe_num_map[i]);
1582 		}
1583 	} else
1584 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1585 
1586 	/* Releasing pe_num_map */
1587 	kfree(pdn->pe_num_map);
1588 
1589 	return ret;
1590 }
1591 
1592 int pcibios_sriov_disable(struct pci_dev *pdev)
1593 {
1594 	pnv_pci_sriov_disable(pdev);
1595 
1596 	/* Release PCI data */
1597 	remove_dev_pci_data(pdev);
1598 	return 0;
1599 }
1600 
1601 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1602 {
1603 	/* Allocate PCI data */
1604 	add_dev_pci_data(pdev);
1605 
1606 	return pnv_pci_sriov_enable(pdev, num_vfs);
1607 }
1608 #endif /* CONFIG_PCI_IOV */
1609 
1610 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1611 {
1612 	struct pci_dn *pdn = pci_get_pdn(pdev);
1613 	struct pnv_ioda_pe *pe;
1614 
1615 	/*
1616 	 * The function can be called while the PE#
1617 	 * hasn't been assigned. Do nothing for the
1618 	 * case.
1619 	 */
1620 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1621 		return;
1622 
1623 	pe = &phb->ioda.pe_array[pdn->pe_number];
1624 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1625 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1626 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1627 	/*
1628 	 * Note: iommu_add_device() will fail here as
1629 	 * for physical PE: the device is already added by now;
1630 	 * for virtual PE: sysfs entries are not ready yet and
1631 	 * tce_iommu_bus_notifier will add the device to a group later.
1632 	 */
1633 }
1634 
1635 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1636 {
1637 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1638 	struct pnv_phb *phb = hose->private_data;
1639 	struct pci_dn *pdn = pci_get_pdn(pdev);
1640 	struct pnv_ioda_pe *pe;
1641 	uint64_t top;
1642 	bool bypass = false;
1643 	struct pci_dev *linked_npu_dev;
1644 	int i;
1645 
1646 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1647 		return -ENODEV;;
1648 
1649 	pe = &phb->ioda.pe_array[pdn->pe_number];
1650 	if (pe->tce_bypass_enabled) {
1651 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1652 		bypass = (dma_mask >= top);
1653 	}
1654 
1655 	if (bypass) {
1656 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1657 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1658 	} else {
1659 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1660 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1661 	}
1662 	*pdev->dev.dma_mask = dma_mask;
1663 
1664 	/* Update peer npu devices */
1665 	if (pe->flags & PNV_IODA_PE_PEER)
1666 		for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1667 			if (!pe->peers[i])
1668 				continue;
1669 
1670 			linked_npu_dev = pe->peers[i]->pdev;
1671 			if (dma_get_mask(&linked_npu_dev->dev) != dma_mask)
1672 				dma_set_mask(&linked_npu_dev->dev, dma_mask);
1673 		}
1674 
1675 	return 0;
1676 }
1677 
1678 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1679 {
1680 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1681 	struct pnv_phb *phb = hose->private_data;
1682 	struct pci_dn *pdn = pci_get_pdn(pdev);
1683 	struct pnv_ioda_pe *pe;
1684 	u64 end, mask;
1685 
1686 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1687 		return 0;
1688 
1689 	pe = &phb->ioda.pe_array[pdn->pe_number];
1690 	if (!pe->tce_bypass_enabled)
1691 		return __dma_get_required_mask(&pdev->dev);
1692 
1693 
1694 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1695 	mask = 1ULL << (fls64(end) - 1);
1696 	mask += mask - 1;
1697 
1698 	return mask;
1699 }
1700 
1701 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1702 				   struct pci_bus *bus)
1703 {
1704 	struct pci_dev *dev;
1705 
1706 	list_for_each_entry(dev, &bus->devices, bus_list) {
1707 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1708 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1709 		iommu_add_device(&dev->dev);
1710 
1711 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1712 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1713 	}
1714 }
1715 
1716 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1717 		unsigned long index, unsigned long npages, bool rm)
1718 {
1719 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1720 			&tbl->it_group_list, struct iommu_table_group_link,
1721 			next);
1722 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1723 			struct pnv_ioda_pe, table_group);
1724 	__be64 __iomem *invalidate = rm ?
1725 		(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1726 		pe->phb->ioda.tce_inval_reg;
1727 	unsigned long start, end, inc;
1728 	const unsigned shift = tbl->it_page_shift;
1729 
1730 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1731 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1732 			npages - 1);
1733 
1734 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1735 	if (tbl->it_busno) {
1736 		start <<= shift;
1737 		end <<= shift;
1738 		inc = 128ull << shift;
1739 		start |= tbl->it_busno;
1740 		end |= tbl->it_busno;
1741 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1742 		/* p7ioc-style invalidation, 2 TCEs per write */
1743 		start |= (1ull << 63);
1744 		end |= (1ull << 63);
1745 		inc = 16;
1746         } else {
1747 		/* Default (older HW) */
1748                 inc = 128;
1749 	}
1750 
1751         end |= inc - 1;	/* round up end to be different than start */
1752 
1753         mb(); /* Ensure above stores are visible */
1754         while (start <= end) {
1755 		if (rm)
1756 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1757 		else
1758 			__raw_writeq(cpu_to_be64(start), invalidate);
1759                 start += inc;
1760         }
1761 
1762 	/*
1763 	 * The iommu layer will do another mb() for us on build()
1764 	 * and we don't care on free()
1765 	 */
1766 }
1767 
1768 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1769 		long npages, unsigned long uaddr,
1770 		enum dma_data_direction direction,
1771 		struct dma_attrs *attrs)
1772 {
1773 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1774 			attrs);
1775 
1776 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1777 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1778 
1779 	return ret;
1780 }
1781 
1782 #ifdef CONFIG_IOMMU_API
1783 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1784 		unsigned long *hpa, enum dma_data_direction *direction)
1785 {
1786 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1787 
1788 	if (!ret && (tbl->it_type &
1789 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1790 		pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1791 
1792 	return ret;
1793 }
1794 #endif
1795 
1796 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1797 		long npages)
1798 {
1799 	pnv_tce_free(tbl, index, npages);
1800 
1801 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1802 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1803 }
1804 
1805 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1806 	.set = pnv_ioda1_tce_build,
1807 #ifdef CONFIG_IOMMU_API
1808 	.exchange = pnv_ioda1_tce_xchg,
1809 #endif
1810 	.clear = pnv_ioda1_tce_free,
1811 	.get = pnv_tce_get,
1812 };
1813 
1814 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1815 {
1816 	/* 01xb - invalidate TCEs that match the specified PE# */
1817 	unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1818 	struct pnv_phb *phb = pe->phb;
1819 	struct pnv_ioda_pe *npe;
1820 	int i;
1821 
1822 	if (!phb->ioda.tce_inval_reg)
1823 		return;
1824 
1825 	mb(); /* Ensure above stores are visible */
1826 	__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1827 
1828 	if (pe->flags & PNV_IODA_PE_PEER)
1829 		for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1830 			npe = pe->peers[i];
1831 			if (!npe || npe->phb->type != PNV_PHB_NPU)
1832 				continue;
1833 
1834 			pnv_npu_tce_invalidate_entire(npe);
1835 		}
1836 }
1837 
1838 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1839 		__be64 __iomem *invalidate, unsigned shift,
1840 		unsigned long index, unsigned long npages)
1841 {
1842 	unsigned long start, end, inc;
1843 
1844 	/* We'll invalidate DMA address in PE scope */
1845 	start = 0x2ull << 60;
1846 	start |= (pe_number & 0xFF);
1847 	end = start;
1848 
1849 	/* Figure out the start, end and step */
1850 	start |= (index << shift);
1851 	end |= ((index + npages - 1) << shift);
1852 	inc = (0x1ull << shift);
1853 	mb();
1854 
1855 	while (start <= end) {
1856 		if (rm)
1857 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1858 		else
1859 			__raw_writeq(cpu_to_be64(start), invalidate);
1860 		start += inc;
1861 	}
1862 }
1863 
1864 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1865 		unsigned long index, unsigned long npages, bool rm)
1866 {
1867 	struct iommu_table_group_link *tgl;
1868 
1869 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1870 		struct pnv_ioda_pe *npe;
1871 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1872 				struct pnv_ioda_pe, table_group);
1873 		__be64 __iomem *invalidate = rm ?
1874 			(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1875 			pe->phb->ioda.tce_inval_reg;
1876 		int i;
1877 
1878 		pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1879 			invalidate, tbl->it_page_shift,
1880 			index, npages);
1881 
1882 		if (pe->flags & PNV_IODA_PE_PEER)
1883 			/* Invalidate PEs using the same TCE table */
1884 			for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1885 				npe = pe->peers[i];
1886 				if (!npe || npe->phb->type != PNV_PHB_NPU)
1887 					continue;
1888 
1889 				pnv_npu_tce_invalidate(npe, tbl, index,
1890 							npages, rm);
1891 			}
1892 	}
1893 }
1894 
1895 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1896 		long npages, unsigned long uaddr,
1897 		enum dma_data_direction direction,
1898 		struct dma_attrs *attrs)
1899 {
1900 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1901 			attrs);
1902 
1903 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1904 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1905 
1906 	return ret;
1907 }
1908 
1909 #ifdef CONFIG_IOMMU_API
1910 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1911 		unsigned long *hpa, enum dma_data_direction *direction)
1912 {
1913 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1914 
1915 	if (!ret && (tbl->it_type &
1916 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1917 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1918 
1919 	return ret;
1920 }
1921 #endif
1922 
1923 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1924 		long npages)
1925 {
1926 	pnv_tce_free(tbl, index, npages);
1927 
1928 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1929 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1930 }
1931 
1932 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1933 {
1934 	pnv_pci_ioda2_table_free_pages(tbl);
1935 	iommu_free_table(tbl, "pnv");
1936 }
1937 
1938 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1939 	.set = pnv_ioda2_tce_build,
1940 #ifdef CONFIG_IOMMU_API
1941 	.exchange = pnv_ioda2_tce_xchg,
1942 #endif
1943 	.clear = pnv_ioda2_tce_free,
1944 	.get = pnv_tce_get,
1945 	.free = pnv_ioda2_table_free,
1946 };
1947 
1948 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1949 				      struct pnv_ioda_pe *pe, unsigned int base,
1950 				      unsigned int segs)
1951 {
1952 
1953 	struct page *tce_mem = NULL;
1954 	struct iommu_table *tbl;
1955 	unsigned int i;
1956 	int64_t rc;
1957 	void *addr;
1958 
1959 	/* XXX FIXME: Handle 64-bit only DMA devices */
1960 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1961 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1962 
1963 	/* We shouldn't already have a 32-bit DMA associated */
1964 	if (WARN_ON(pe->tce32_seg >= 0))
1965 		return;
1966 
1967 	tbl = pnv_pci_table_alloc(phb->hose->node);
1968 	iommu_register_group(&pe->table_group, phb->hose->global_number,
1969 			pe->pe_number);
1970 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1971 
1972 	/* Grab a 32-bit TCE table */
1973 	pe->tce32_seg = base;
1974 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1975 		(base << 28), ((base + segs) << 28) - 1);
1976 
1977 	/* XXX Currently, we allocate one big contiguous table for the
1978 	 * TCEs. We only really need one chunk per 256M of TCE space
1979 	 * (ie per segment) but that's an optimization for later, it
1980 	 * requires some added smarts with our get/put_tce implementation
1981 	 */
1982 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1983 				   get_order(TCE32_TABLE_SIZE * segs));
1984 	if (!tce_mem) {
1985 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1986 		goto fail;
1987 	}
1988 	addr = page_address(tce_mem);
1989 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
1990 
1991 	/* Configure HW */
1992 	for (i = 0; i < segs; i++) {
1993 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1994 					      pe->pe_number,
1995 					      base + i, 1,
1996 					      __pa(addr) + TCE32_TABLE_SIZE * i,
1997 					      TCE32_TABLE_SIZE, 0x1000);
1998 		if (rc) {
1999 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2000 			       " err %ld\n", rc);
2001 			goto fail;
2002 		}
2003 	}
2004 
2005 	/* Setup linux iommu table */
2006 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
2007 				  base << 28, IOMMU_PAGE_SHIFT_4K);
2008 
2009 	/* OPAL variant of P7IOC SW invalidated TCEs */
2010 	if (phb->ioda.tce_inval_reg)
2011 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2012 				 TCE_PCI_SWINV_FREE   |
2013 				 TCE_PCI_SWINV_PAIR);
2014 
2015 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2016 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2017 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2018 	iommu_init_table(tbl, phb->hose->node);
2019 
2020 	if (pe->flags & PNV_IODA_PE_DEV) {
2021 		/*
2022 		 * Setting table base here only for carrying iommu_group
2023 		 * further down to let iommu_add_device() do the job.
2024 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2025 		 */
2026 		set_iommu_table_base(&pe->pdev->dev, tbl);
2027 		iommu_add_device(&pe->pdev->dev);
2028 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2029 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2030 
2031 	return;
2032  fail:
2033 	/* XXX Failure: Try to fallback to 64-bit only ? */
2034 	if (pe->tce32_seg >= 0)
2035 		pe->tce32_seg = -1;
2036 	if (tce_mem)
2037 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
2038 	if (tbl) {
2039 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2040 		iommu_free_table(tbl, "pnv");
2041 	}
2042 }
2043 
2044 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2045 		int num, struct iommu_table *tbl)
2046 {
2047 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2048 			table_group);
2049 	struct pnv_phb *phb = pe->phb;
2050 	int64_t rc;
2051 	const unsigned long size = tbl->it_indirect_levels ?
2052 			tbl->it_level_size : tbl->it_size;
2053 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2054 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2055 
2056 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2057 			start_addr, start_addr + win_size - 1,
2058 			IOMMU_PAGE_SIZE(tbl));
2059 
2060 	/*
2061 	 * Map TCE table through TVT. The TVE index is the PE number
2062 	 * shifted by 1 bit for 32-bits DMA space.
2063 	 */
2064 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2065 			pe->pe_number,
2066 			(pe->pe_number << 1) + num,
2067 			tbl->it_indirect_levels + 1,
2068 			__pa(tbl->it_base),
2069 			size << 3,
2070 			IOMMU_PAGE_SIZE(tbl));
2071 	if (rc) {
2072 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2073 		return rc;
2074 	}
2075 
2076 	pnv_pci_link_table_and_group(phb->hose->node, num,
2077 			tbl, &pe->table_group);
2078 	pnv_pci_ioda2_tce_invalidate_entire(pe);
2079 
2080 	return 0;
2081 }
2082 
2083 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2084 {
2085 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2086 	int64_t rc;
2087 
2088 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2089 	if (enable) {
2090 		phys_addr_t top = memblock_end_of_DRAM();
2091 
2092 		top = roundup_pow_of_two(top);
2093 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2094 						     pe->pe_number,
2095 						     window_id,
2096 						     pe->tce_bypass_base,
2097 						     top);
2098 	} else {
2099 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2100 						     pe->pe_number,
2101 						     window_id,
2102 						     pe->tce_bypass_base,
2103 						     0);
2104 	}
2105 	if (rc)
2106 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2107 	else
2108 		pe->tce_bypass_enabled = enable;
2109 }
2110 
2111 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2112 		__u32 page_shift, __u64 window_size, __u32 levels,
2113 		struct iommu_table *tbl);
2114 
2115 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2116 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2117 		struct iommu_table **ptbl)
2118 {
2119 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2120 			table_group);
2121 	int nid = pe->phb->hose->node;
2122 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2123 	long ret;
2124 	struct iommu_table *tbl;
2125 
2126 	tbl = pnv_pci_table_alloc(nid);
2127 	if (!tbl)
2128 		return -ENOMEM;
2129 
2130 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2131 			bus_offset, page_shift, window_size,
2132 			levels, tbl);
2133 	if (ret) {
2134 		iommu_free_table(tbl, "pnv");
2135 		return ret;
2136 	}
2137 
2138 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2139 	if (pe->phb->ioda.tce_inval_reg)
2140 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2141 
2142 	*ptbl = tbl;
2143 
2144 	return 0;
2145 }
2146 
2147 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2148 {
2149 	struct iommu_table *tbl = NULL;
2150 	long rc;
2151 
2152 	/*
2153 	 * crashkernel= specifies the kdump kernel's maximum memory at
2154 	 * some offset and there is no guaranteed the result is a power
2155 	 * of 2, which will cause errors later.
2156 	 */
2157 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2158 
2159 	/*
2160 	 * In memory constrained environments, e.g. kdump kernel, the
2161 	 * DMA window can be larger than available memory, which will
2162 	 * cause errors later.
2163 	 */
2164 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2165 
2166 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2167 			IOMMU_PAGE_SHIFT_4K,
2168 			window_size,
2169 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2170 	if (rc) {
2171 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2172 				rc);
2173 		return rc;
2174 	}
2175 
2176 	iommu_init_table(tbl, pe->phb->hose->node);
2177 
2178 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2179 	if (rc) {
2180 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2181 				rc);
2182 		pnv_ioda2_table_free(tbl);
2183 		return rc;
2184 	}
2185 
2186 	if (!pnv_iommu_bypass_disabled)
2187 		pnv_pci_ioda2_set_bypass(pe, true);
2188 
2189 	/* OPAL variant of PHB3 invalidated TCEs */
2190 	if (pe->phb->ioda.tce_inval_reg)
2191 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2192 
2193 	/*
2194 	 * Setting table base here only for carrying iommu_group
2195 	 * further down to let iommu_add_device() do the job.
2196 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2197 	 */
2198 	if (pe->flags & PNV_IODA_PE_DEV)
2199 		set_iommu_table_base(&pe->pdev->dev, tbl);
2200 
2201 	return 0;
2202 }
2203 
2204 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2205 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2206 		int num)
2207 {
2208 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2209 			table_group);
2210 	struct pnv_phb *phb = pe->phb;
2211 	long ret;
2212 
2213 	pe_info(pe, "Removing DMA window #%d\n", num);
2214 
2215 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2216 			(pe->pe_number << 1) + num,
2217 			0/* levels */, 0/* table address */,
2218 			0/* table size */, 0/* page size */);
2219 	if (ret)
2220 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2221 	else
2222 		pnv_pci_ioda2_tce_invalidate_entire(pe);
2223 
2224 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2225 
2226 	return ret;
2227 }
2228 #endif
2229 
2230 #ifdef CONFIG_IOMMU_API
2231 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2232 		__u64 window_size, __u32 levels)
2233 {
2234 	unsigned long bytes = 0;
2235 	const unsigned window_shift = ilog2(window_size);
2236 	unsigned entries_shift = window_shift - page_shift;
2237 	unsigned table_shift = entries_shift + 3;
2238 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2239 	unsigned long direct_table_size;
2240 
2241 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2242 			(window_size > memory_hotplug_max()) ||
2243 			!is_power_of_2(window_size))
2244 		return 0;
2245 
2246 	/* Calculate a direct table size from window_size and levels */
2247 	entries_shift = (entries_shift + levels - 1) / levels;
2248 	table_shift = entries_shift + 3;
2249 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2250 	direct_table_size =  1UL << table_shift;
2251 
2252 	for ( ; levels; --levels) {
2253 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2254 
2255 		tce_table_size /= direct_table_size;
2256 		tce_table_size <<= 3;
2257 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2258 	}
2259 
2260 	return bytes;
2261 }
2262 
2263 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2264 {
2265 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2266 						table_group);
2267 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2268 	struct iommu_table *tbl = pe->table_group.tables[0];
2269 
2270 	pnv_pci_ioda2_set_bypass(pe, false);
2271 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2272 	pnv_ioda2_table_free(tbl);
2273 }
2274 
2275 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2276 {
2277 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2278 						table_group);
2279 
2280 	pnv_pci_ioda2_setup_default_config(pe);
2281 }
2282 
2283 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2284 	.get_table_size = pnv_pci_ioda2_get_table_size,
2285 	.create_table = pnv_pci_ioda2_create_table,
2286 	.set_window = pnv_pci_ioda2_set_window,
2287 	.unset_window = pnv_pci_ioda2_unset_window,
2288 	.take_ownership = pnv_ioda2_take_ownership,
2289 	.release_ownership = pnv_ioda2_release_ownership,
2290 };
2291 #endif
2292 
2293 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2294 {
2295 	const __be64 *swinvp;
2296 
2297 	/* OPAL variant of PHB3 invalidated TCEs */
2298 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2299 	if (!swinvp)
2300 		return;
2301 
2302 	phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2303 	phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2304 }
2305 
2306 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2307 		unsigned levels, unsigned long limit,
2308 		unsigned long *current_offset, unsigned long *total_allocated)
2309 {
2310 	struct page *tce_mem = NULL;
2311 	__be64 *addr, *tmp;
2312 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2313 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2314 	unsigned entries = 1UL << (shift - 3);
2315 	long i;
2316 
2317 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2318 	if (!tce_mem) {
2319 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2320 		return NULL;
2321 	}
2322 	addr = page_address(tce_mem);
2323 	memset(addr, 0, allocated);
2324 	*total_allocated += allocated;
2325 
2326 	--levels;
2327 	if (!levels) {
2328 		*current_offset += allocated;
2329 		return addr;
2330 	}
2331 
2332 	for (i = 0; i < entries; ++i) {
2333 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2334 				levels, limit, current_offset, total_allocated);
2335 		if (!tmp)
2336 			break;
2337 
2338 		addr[i] = cpu_to_be64(__pa(tmp) |
2339 				TCE_PCI_READ | TCE_PCI_WRITE);
2340 
2341 		if (*current_offset >= limit)
2342 			break;
2343 	}
2344 
2345 	return addr;
2346 }
2347 
2348 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2349 		unsigned long size, unsigned level);
2350 
2351 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2352 		__u32 page_shift, __u64 window_size, __u32 levels,
2353 		struct iommu_table *tbl)
2354 {
2355 	void *addr;
2356 	unsigned long offset = 0, level_shift, total_allocated = 0;
2357 	const unsigned window_shift = ilog2(window_size);
2358 	unsigned entries_shift = window_shift - page_shift;
2359 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2360 	const unsigned long tce_table_size = 1UL << table_shift;
2361 
2362 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2363 		return -EINVAL;
2364 
2365 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2366 		return -EINVAL;
2367 
2368 	/* Adjust direct table size from window_size and levels */
2369 	entries_shift = (entries_shift + levels - 1) / levels;
2370 	level_shift = entries_shift + 3;
2371 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2372 
2373 	/* Allocate TCE table */
2374 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2375 			levels, tce_table_size, &offset, &total_allocated);
2376 
2377 	/* addr==NULL means that the first level allocation failed */
2378 	if (!addr)
2379 		return -ENOMEM;
2380 
2381 	/*
2382 	 * First level was allocated but some lower level failed as
2383 	 * we did not allocate as much as we wanted,
2384 	 * release partially allocated table.
2385 	 */
2386 	if (offset < tce_table_size) {
2387 		pnv_pci_ioda2_table_do_free_pages(addr,
2388 				1ULL << (level_shift - 3), levels - 1);
2389 		return -ENOMEM;
2390 	}
2391 
2392 	/* Setup linux iommu table */
2393 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2394 			page_shift);
2395 	tbl->it_level_size = 1ULL << (level_shift - 3);
2396 	tbl->it_indirect_levels = levels - 1;
2397 	tbl->it_allocated_size = total_allocated;
2398 
2399 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2400 			window_size, tce_table_size, bus_offset);
2401 
2402 	return 0;
2403 }
2404 
2405 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2406 		unsigned long size, unsigned level)
2407 {
2408 	const unsigned long addr_ul = (unsigned long) addr &
2409 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2410 
2411 	if (level) {
2412 		long i;
2413 		u64 *tmp = (u64 *) addr_ul;
2414 
2415 		for (i = 0; i < size; ++i) {
2416 			unsigned long hpa = be64_to_cpu(tmp[i]);
2417 
2418 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2419 				continue;
2420 
2421 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2422 					level - 1);
2423 		}
2424 	}
2425 
2426 	free_pages(addr_ul, get_order(size << 3));
2427 }
2428 
2429 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2430 {
2431 	const unsigned long size = tbl->it_indirect_levels ?
2432 			tbl->it_level_size : tbl->it_size;
2433 
2434 	if (!tbl->it_size)
2435 		return;
2436 
2437 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2438 			tbl->it_indirect_levels);
2439 }
2440 
2441 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2442 				       struct pnv_ioda_pe *pe)
2443 {
2444 	int64_t rc;
2445 
2446 	/* We shouldn't already have a 32-bit DMA associated */
2447 	if (WARN_ON(pe->tce32_seg >= 0))
2448 		return;
2449 
2450 	/* TVE #1 is selected by PCI address bit 59 */
2451 	pe->tce_bypass_base = 1ull << 59;
2452 
2453 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2454 			pe->pe_number);
2455 
2456 	/* The PE will reserve all possible 32-bits space */
2457 	pe->tce32_seg = 0;
2458 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2459 		phb->ioda.m32_pci_base);
2460 
2461 	/* Setup linux iommu table */
2462 	pe->table_group.tce32_start = 0;
2463 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2464 	pe->table_group.max_dynamic_windows_supported =
2465 			IOMMU_TABLE_GROUP_MAX_TABLES;
2466 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2467 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2468 #ifdef CONFIG_IOMMU_API
2469 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2470 #endif
2471 
2472 	rc = pnv_pci_ioda2_setup_default_config(pe);
2473 	if (rc) {
2474 		if (pe->tce32_seg >= 0)
2475 			pe->tce32_seg = -1;
2476 		return;
2477 	}
2478 
2479 	if (pe->flags & PNV_IODA_PE_DEV)
2480 		iommu_add_device(&pe->pdev->dev);
2481 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2482 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2483 }
2484 
2485 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2486 {
2487 	struct pci_controller *hose = phb->hose;
2488 	unsigned int residual, remaining, segs, tw, base;
2489 	struct pnv_ioda_pe *pe;
2490 
2491 	/* If we have more PE# than segments available, hand out one
2492 	 * per PE until we run out and let the rest fail. If not,
2493 	 * then we assign at least one segment per PE, plus more based
2494 	 * on the amount of devices under that PE
2495 	 */
2496 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2497 		residual = 0;
2498 	else
2499 		residual = phb->ioda.tce32_count -
2500 			phb->ioda.dma_pe_count;
2501 
2502 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2503 		hose->global_number, phb->ioda.tce32_count);
2504 	pr_info("PCI: %d PE# for a total weight of %d\n",
2505 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2506 
2507 	pnv_pci_ioda_setup_opal_tce_kill(phb);
2508 
2509 	/* Walk our PE list and configure their DMA segments, hand them
2510 	 * out one base segment plus any residual segments based on
2511 	 * weight
2512 	 */
2513 	remaining = phb->ioda.tce32_count;
2514 	tw = phb->ioda.dma_weight;
2515 	base = 0;
2516 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2517 		if (!pe->dma_weight)
2518 			continue;
2519 		if (!remaining) {
2520 			pe_warn(pe, "No DMA32 resources available\n");
2521 			continue;
2522 		}
2523 		segs = 1;
2524 		if (residual) {
2525 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2526 			if (segs > remaining)
2527 				segs = remaining;
2528 		}
2529 
2530 		/*
2531 		 * For IODA2 compliant PHB3, we needn't care about the weight.
2532 		 * The all available 32-bits DMA space will be assigned to
2533 		 * the specific PE.
2534 		 */
2535 		if (phb->type == PNV_PHB_IODA1) {
2536 			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2537 				pe->dma_weight, segs);
2538 			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2539 		} else if (phb->type == PNV_PHB_IODA2) {
2540 			pe_info(pe, "Assign DMA32 space\n");
2541 			segs = 0;
2542 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
2543 		} else if (phb->type == PNV_PHB_NPU) {
2544 			/*
2545 			 * We initialise the DMA space for an NPU PHB
2546 			 * after setup of the PHB is complete as we
2547 			 * point the NPU TVT to the the same location
2548 			 * as the PHB3 TVT.
2549 			 */
2550 		}
2551 
2552 		remaining -= segs;
2553 		base += segs;
2554 	}
2555 }
2556 
2557 #ifdef CONFIG_PCI_MSI
2558 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2559 {
2560 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2561 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2562 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2563 					   ioda.irq_chip);
2564 	int64_t rc;
2565 
2566 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2567 	WARN_ON_ONCE(rc);
2568 
2569 	icp_native_eoi(d);
2570 }
2571 
2572 
2573 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2574 {
2575 	struct irq_data *idata;
2576 	struct irq_chip *ichip;
2577 
2578 	if (phb->type != PNV_PHB_IODA2)
2579 		return;
2580 
2581 	if (!phb->ioda.irq_chip_init) {
2582 		/*
2583 		 * First time we setup an MSI IRQ, we need to setup the
2584 		 * corresponding IRQ chip to route correctly.
2585 		 */
2586 		idata = irq_get_irq_data(virq);
2587 		ichip = irq_data_get_irq_chip(idata);
2588 		phb->ioda.irq_chip_init = 1;
2589 		phb->ioda.irq_chip = *ichip;
2590 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2591 	}
2592 	irq_set_chip(virq, &phb->ioda.irq_chip);
2593 }
2594 
2595 #ifdef CONFIG_CXL_BASE
2596 
2597 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2598 {
2599 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2600 
2601 	return of_node_get(hose->dn);
2602 }
2603 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2604 
2605 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2606 {
2607 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2608 	struct pnv_phb *phb = hose->private_data;
2609 	struct pnv_ioda_pe *pe;
2610 	int rc;
2611 
2612 	pe = pnv_ioda_get_pe(dev);
2613 	if (!pe)
2614 		return -ENODEV;
2615 
2616 	pe_info(pe, "Switching PHB to CXL\n");
2617 
2618 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2619 	if (rc)
2620 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2621 
2622 	return rc;
2623 }
2624 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2625 
2626 /* Find PHB for cxl dev and allocate MSI hwirqs?
2627  * Returns the absolute hardware IRQ number
2628  */
2629 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2630 {
2631 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2632 	struct pnv_phb *phb = hose->private_data;
2633 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2634 
2635 	if (hwirq < 0) {
2636 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
2637 		return -ENOSPC;
2638 	}
2639 
2640 	return phb->msi_base + hwirq;
2641 }
2642 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2643 
2644 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2645 {
2646 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2647 	struct pnv_phb *phb = hose->private_data;
2648 
2649 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2650 }
2651 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2652 
2653 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2654 				  struct pci_dev *dev)
2655 {
2656 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2657 	struct pnv_phb *phb = hose->private_data;
2658 	int i, hwirq;
2659 
2660 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
2661 		if (!irqs->range[i])
2662 			continue;
2663 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2664 			 i, irqs->offset[i],
2665 			 irqs->range[i]);
2666 		hwirq = irqs->offset[i] - phb->msi_base;
2667 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2668 				       irqs->range[i]);
2669 	}
2670 }
2671 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2672 
2673 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2674 			       struct pci_dev *dev, int num)
2675 {
2676 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2677 	struct pnv_phb *phb = hose->private_data;
2678 	int i, hwirq, try;
2679 
2680 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2681 
2682 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
2683 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2684 		try = num;
2685 		while (try) {
2686 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2687 			if (hwirq >= 0)
2688 				break;
2689 			try /= 2;
2690 		}
2691 		if (!try)
2692 			goto fail;
2693 
2694 		irqs->offset[i] = phb->msi_base + hwirq;
2695 		irqs->range[i] = try;
2696 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2697 			 i, irqs->offset[i], irqs->range[i]);
2698 		num -= try;
2699 	}
2700 	if (num)
2701 		goto fail;
2702 
2703 	return 0;
2704 fail:
2705 	pnv_cxl_release_hwirq_ranges(irqs, dev);
2706 	return -ENOSPC;
2707 }
2708 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2709 
2710 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2711 {
2712 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2713 	struct pnv_phb *phb = hose->private_data;
2714 
2715 	return phb->msi_bmp.irq_count;
2716 }
2717 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2718 
2719 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2720 			   unsigned int virq)
2721 {
2722 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2723 	struct pnv_phb *phb = hose->private_data;
2724 	unsigned int xive_num = hwirq - phb->msi_base;
2725 	struct pnv_ioda_pe *pe;
2726 	int rc;
2727 
2728 	if (!(pe = pnv_ioda_get_pe(dev)))
2729 		return -ENODEV;
2730 
2731 	/* Assign XIVE to PE */
2732 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2733 	if (rc) {
2734 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2735 			"hwirq 0x%x XIVE 0x%x PE\n",
2736 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2737 		return -EIO;
2738 	}
2739 	set_msi_irq_chip(phb, virq);
2740 
2741 	return 0;
2742 }
2743 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2744 #endif
2745 
2746 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2747 				  unsigned int hwirq, unsigned int virq,
2748 				  unsigned int is_64, struct msi_msg *msg)
2749 {
2750 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2751 	unsigned int xive_num = hwirq - phb->msi_base;
2752 	__be32 data;
2753 	int rc;
2754 
2755 	/* No PE assigned ? bail out ... no MSI for you ! */
2756 	if (pe == NULL)
2757 		return -ENXIO;
2758 
2759 	/* Check if we have an MVE */
2760 	if (pe->mve_number < 0)
2761 		return -ENXIO;
2762 
2763 	/* Force 32-bit MSI on some broken devices */
2764 	if (dev->no_64bit_msi)
2765 		is_64 = 0;
2766 
2767 	/* Assign XIVE to PE */
2768 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2769 	if (rc) {
2770 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2771 			pci_name(dev), rc, xive_num);
2772 		return -EIO;
2773 	}
2774 
2775 	if (is_64) {
2776 		__be64 addr64;
2777 
2778 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2779 				     &addr64, &data);
2780 		if (rc) {
2781 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2782 				pci_name(dev), rc);
2783 			return -EIO;
2784 		}
2785 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2786 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2787 	} else {
2788 		__be32 addr32;
2789 
2790 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2791 				     &addr32, &data);
2792 		if (rc) {
2793 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2794 				pci_name(dev), rc);
2795 			return -EIO;
2796 		}
2797 		msg->address_hi = 0;
2798 		msg->address_lo = be32_to_cpu(addr32);
2799 	}
2800 	msg->data = be32_to_cpu(data);
2801 
2802 	set_msi_irq_chip(phb, virq);
2803 
2804 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2805 		 " address=%x_%08x data=%x PE# %d\n",
2806 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2807 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2808 
2809 	return 0;
2810 }
2811 
2812 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2813 {
2814 	unsigned int count;
2815 	const __be32 *prop = of_get_property(phb->hose->dn,
2816 					     "ibm,opal-msi-ranges", NULL);
2817 	if (!prop) {
2818 		/* BML Fallback */
2819 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2820 	}
2821 	if (!prop)
2822 		return;
2823 
2824 	phb->msi_base = be32_to_cpup(prop);
2825 	count = be32_to_cpup(prop + 1);
2826 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2827 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2828 		       phb->hose->global_number);
2829 		return;
2830 	}
2831 
2832 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2833 	phb->msi32_support = 1;
2834 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2835 		count, phb->msi_base);
2836 }
2837 #else
2838 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2839 #endif /* CONFIG_PCI_MSI */
2840 
2841 #ifdef CONFIG_PCI_IOV
2842 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2843 {
2844 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2845 	struct pnv_phb *phb = hose->private_data;
2846 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2847 	struct resource *res;
2848 	int i;
2849 	resource_size_t size, total_vf_bar_sz;
2850 	struct pci_dn *pdn;
2851 	int mul, total_vfs;
2852 
2853 	if (!pdev->is_physfn || pdev->is_added)
2854 		return;
2855 
2856 	pdn = pci_get_pdn(pdev);
2857 	pdn->vfs_expanded = 0;
2858 	pdn->m64_single_mode = false;
2859 
2860 	total_vfs = pci_sriov_get_totalvfs(pdev);
2861 	mul = phb->ioda.total_pe_num;
2862 	total_vf_bar_sz = 0;
2863 
2864 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2865 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2866 		if (!res->flags || res->parent)
2867 			continue;
2868 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2869 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2870 					" non M64 VF BAR%d: %pR. \n",
2871 				 i, res);
2872 			goto truncate_iov;
2873 		}
2874 
2875 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2876 				i + PCI_IOV_RESOURCES);
2877 
2878 		/*
2879 		 * If bigger than quarter of M64 segment size, just round up
2880 		 * power of two.
2881 		 *
2882 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2883 		 * with other devices, IOV BAR size is expanded to be
2884 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2885 		 * segment size , the expanded size would equal to half of the
2886 		 * whole M64 space size, which will exhaust the M64 Space and
2887 		 * limit the system flexibility.  This is a design decision to
2888 		 * set the boundary to quarter of the M64 segment size.
2889 		 */
2890 		if (total_vf_bar_sz > gate) {
2891 			mul = roundup_pow_of_two(total_vfs);
2892 			dev_info(&pdev->dev,
2893 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2894 				total_vf_bar_sz, gate, mul);
2895 			pdn->m64_single_mode = true;
2896 			break;
2897 		}
2898 	}
2899 
2900 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2901 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2902 		if (!res->flags || res->parent)
2903 			continue;
2904 
2905 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2906 		/*
2907 		 * On PHB3, the minimum size alignment of M64 BAR in single
2908 		 * mode is 32MB.
2909 		 */
2910 		if (pdn->m64_single_mode && (size < SZ_32M))
2911 			goto truncate_iov;
2912 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2913 		res->end = res->start + size * mul - 1;
2914 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2915 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2916 			 i, res, mul);
2917 	}
2918 	pdn->vfs_expanded = mul;
2919 
2920 	return;
2921 
2922 truncate_iov:
2923 	/* To save MMIO space, IOV BAR is truncated. */
2924 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2925 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2926 		res->flags = 0;
2927 		res->end = res->start - 1;
2928 	}
2929 }
2930 #endif /* CONFIG_PCI_IOV */
2931 
2932 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2933 				  struct resource *res)
2934 {
2935 	struct pnv_phb *phb = pe->phb;
2936 	struct pci_bus_region region;
2937 	int index;
2938 	int64_t rc;
2939 
2940 	if (!res || !res->flags || res->start > res->end)
2941 		return;
2942 
2943 	if (res->flags & IORESOURCE_IO) {
2944 		region.start = res->start - phb->ioda.io_pci_base;
2945 		region.end   = res->end - phb->ioda.io_pci_base;
2946 		index = region.start / phb->ioda.io_segsize;
2947 
2948 		while (index < phb->ioda.total_pe_num &&
2949 		       region.start <= region.end) {
2950 			phb->ioda.io_segmap[index] = pe->pe_number;
2951 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2952 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2953 			if (rc != OPAL_SUCCESS) {
2954 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
2955 				       __func__, rc, index, pe->pe_number);
2956 				break;
2957 			}
2958 
2959 			region.start += phb->ioda.io_segsize;
2960 			index++;
2961 		}
2962 	} else if ((res->flags & IORESOURCE_MEM) &&
2963 		   !pnv_pci_is_mem_pref_64(res->flags)) {
2964 		region.start = res->start -
2965 			       phb->hose->mem_offset[0] -
2966 			       phb->ioda.m32_pci_base;
2967 		region.end   = res->end -
2968 			       phb->hose->mem_offset[0] -
2969 			       phb->ioda.m32_pci_base;
2970 		index = region.start / phb->ioda.m32_segsize;
2971 
2972 		while (index < phb->ioda.total_pe_num &&
2973 		       region.start <= region.end) {
2974 			phb->ioda.m32_segmap[index] = pe->pe_number;
2975 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2976 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2977 			if (rc != OPAL_SUCCESS) {
2978 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
2979 				       __func__, rc, index, pe->pe_number);
2980 				break;
2981 			}
2982 
2983 			region.start += phb->ioda.m32_segsize;
2984 			index++;
2985 		}
2986 	}
2987 }
2988 
2989 /*
2990  * This function is supposed to be called on basis of PE from top
2991  * to bottom style. So the the I/O or MMIO segment assigned to
2992  * parent PE could be overrided by its child PEs if necessary.
2993  */
2994 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2995 {
2996 	struct pci_dev *pdev;
2997 	int i;
2998 
2999 	/*
3000 	 * NOTE: We only care PCI bus based PE for now. For PCI
3001 	 * device based PE, for example SRIOV sensitive VF should
3002 	 * be figured out later.
3003 	 */
3004 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3005 
3006 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3007 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3008 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3009 
3010 		/*
3011 		 * If the PE contains all subordinate PCI buses, the
3012 		 * windows of the child bridges should be mapped to
3013 		 * the PE as well.
3014 		 */
3015 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3016 			continue;
3017 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3018 			pnv_ioda_setup_pe_res(pe,
3019 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3020 	}
3021 }
3022 
3023 static void pnv_pci_ioda_setup_seg(void)
3024 {
3025 	struct pci_controller *tmp, *hose;
3026 	struct pnv_phb *phb;
3027 	struct pnv_ioda_pe *pe;
3028 
3029 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3030 		phb = hose->private_data;
3031 
3032 		/* NPU PHB does not support IO or MMIO segmentation */
3033 		if (phb->type == PNV_PHB_NPU)
3034 			continue;
3035 
3036 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3037 			pnv_ioda_setup_pe_seg(pe);
3038 		}
3039 	}
3040 }
3041 
3042 static void pnv_pci_ioda_setup_DMA(void)
3043 {
3044 	struct pci_controller *hose, *tmp;
3045 	struct pnv_phb *phb;
3046 
3047 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3048 		pnv_ioda_setup_dma(hose->private_data);
3049 
3050 		/* Mark the PHB initialization done */
3051 		phb = hose->private_data;
3052 		phb->initialized = 1;
3053 	}
3054 }
3055 
3056 static void pnv_pci_ioda_create_dbgfs(void)
3057 {
3058 #ifdef CONFIG_DEBUG_FS
3059 	struct pci_controller *hose, *tmp;
3060 	struct pnv_phb *phb;
3061 	char name[16];
3062 
3063 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3064 		phb = hose->private_data;
3065 
3066 		sprintf(name, "PCI%04x", hose->global_number);
3067 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3068 		if (!phb->dbgfs)
3069 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3070 				__func__, hose->global_number);
3071 	}
3072 #endif /* CONFIG_DEBUG_FS */
3073 }
3074 
3075 static void pnv_npu_ioda_fixup(void)
3076 {
3077 	bool enable_bypass;
3078 	struct pci_controller *hose, *tmp;
3079 	struct pnv_phb *phb;
3080 	struct pnv_ioda_pe *pe;
3081 
3082 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3083 		phb = hose->private_data;
3084 		if (phb->type != PNV_PHB_NPU)
3085 			continue;
3086 
3087 		list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
3088 			enable_bypass = dma_get_mask(&pe->pdev->dev) ==
3089 				DMA_BIT_MASK(64);
3090 			pnv_npu_init_dma_pe(pe);
3091 			pnv_npu_dma_set_bypass(pe, enable_bypass);
3092 		}
3093 	}
3094 }
3095 
3096 static void pnv_pci_ioda_fixup(void)
3097 {
3098 	pnv_pci_ioda_setup_PEs();
3099 	pnv_pci_ioda_setup_seg();
3100 	pnv_pci_ioda_setup_DMA();
3101 
3102 	pnv_pci_ioda_create_dbgfs();
3103 
3104 #ifdef CONFIG_EEH
3105 	eeh_init();
3106 	eeh_addr_cache_build();
3107 #endif
3108 
3109 	/* Link NPU IODA tables to their PCI devices. */
3110 	pnv_npu_ioda_fixup();
3111 }
3112 
3113 /*
3114  * Returns the alignment for I/O or memory windows for P2P
3115  * bridges. That actually depends on how PEs are segmented.
3116  * For now, we return I/O or M32 segment size for PE sensitive
3117  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3118  * 1MiB for memory) will be returned.
3119  *
3120  * The current PCI bus might be put into one PE, which was
3121  * create against the parent PCI bridge. For that case, we
3122  * needn't enlarge the alignment so that we can save some
3123  * resources.
3124  */
3125 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3126 						unsigned long type)
3127 {
3128 	struct pci_dev *bridge;
3129 	struct pci_controller *hose = pci_bus_to_host(bus);
3130 	struct pnv_phb *phb = hose->private_data;
3131 	int num_pci_bridges = 0;
3132 
3133 	bridge = bus->self;
3134 	while (bridge) {
3135 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3136 			num_pci_bridges++;
3137 			if (num_pci_bridges >= 2)
3138 				return 1;
3139 		}
3140 
3141 		bridge = bridge->bus->self;
3142 	}
3143 
3144 	/* We fail back to M32 if M64 isn't supported */
3145 	if (phb->ioda.m64_segsize &&
3146 	    pnv_pci_is_mem_pref_64(type))
3147 		return phb->ioda.m64_segsize;
3148 	if (type & IORESOURCE_MEM)
3149 		return phb->ioda.m32_segsize;
3150 
3151 	return phb->ioda.io_segsize;
3152 }
3153 
3154 #ifdef CONFIG_PCI_IOV
3155 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3156 						      int resno)
3157 {
3158 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3159 	struct pnv_phb *phb = hose->private_data;
3160 	struct pci_dn *pdn = pci_get_pdn(pdev);
3161 	resource_size_t align;
3162 
3163 	/*
3164 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3165 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3166 	 * BAR should be size aligned.
3167 	 *
3168 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3169 	 * powernv-specific hardware restriction is gone. But if just use the
3170 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3171 	 * in one segment of M64 #15, which introduces the PE conflict between
3172 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3173 	 * m64_segsize.
3174 	 *
3175 	 * This function returns the total IOV BAR size if M64 BAR is in
3176 	 * Shared PE mode or just VF BAR size if not.
3177 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3178 	 * M64 segment size if IOV BAR size is less.
3179 	 */
3180 	align = pci_iov_resource_size(pdev, resno);
3181 	if (!pdn->vfs_expanded)
3182 		return align;
3183 	if (pdn->m64_single_mode)
3184 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3185 
3186 	return pdn->vfs_expanded * align;
3187 }
3188 #endif /* CONFIG_PCI_IOV */
3189 
3190 /* Prevent enabling devices for which we couldn't properly
3191  * assign a PE
3192  */
3193 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3194 {
3195 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3196 	struct pnv_phb *phb = hose->private_data;
3197 	struct pci_dn *pdn;
3198 
3199 	/* The function is probably called while the PEs have
3200 	 * not be created yet. For example, resource reassignment
3201 	 * during PCI probe period. We just skip the check if
3202 	 * PEs isn't ready.
3203 	 */
3204 	if (!phb->initialized)
3205 		return true;
3206 
3207 	pdn = pci_get_pdn(dev);
3208 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3209 		return false;
3210 
3211 	return true;
3212 }
3213 
3214 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3215 {
3216 	struct pnv_phb *phb = hose->private_data;
3217 
3218 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3219 		       OPAL_ASSERT_RESET);
3220 }
3221 
3222 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3223 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3224 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3225 #ifdef CONFIG_PCI_MSI
3226 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3227 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3228 #endif
3229 	.enable_device_hook	= pnv_pci_enable_device_hook,
3230 	.window_alignment	= pnv_pci_window_alignment,
3231 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3232 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3233 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3234 	.shutdown		= pnv_pci_ioda_shutdown,
3235 };
3236 
3237 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3238 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3239 #ifdef CONFIG_PCI_MSI
3240 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3241 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3242 #endif
3243 	.enable_device_hook	= pnv_pci_enable_device_hook,
3244 	.window_alignment	= pnv_pci_window_alignment,
3245 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3246 	.dma_set_mask		= pnv_npu_dma_set_mask,
3247 	.shutdown		= pnv_pci_ioda_shutdown,
3248 };
3249 
3250 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3251 					 u64 hub_id, int ioda_type)
3252 {
3253 	struct pci_controller *hose;
3254 	struct pnv_phb *phb;
3255 	unsigned long size, m32map_off, pemap_off, iomap_off = 0;
3256 	const __be64 *prop64;
3257 	const __be32 *prop32;
3258 	int len;
3259 	unsigned int segno;
3260 	u64 phb_id;
3261 	void *aux;
3262 	long rc;
3263 
3264 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3265 
3266 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3267 	if (!prop64) {
3268 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3269 		return;
3270 	}
3271 	phb_id = be64_to_cpup(prop64);
3272 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3273 
3274 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3275 
3276 	/* Allocate PCI controller */
3277 	phb->hose = hose = pcibios_alloc_controller(np);
3278 	if (!phb->hose) {
3279 		pr_err("  Can't allocate PCI controller for %s\n",
3280 		       np->full_name);
3281 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3282 		return;
3283 	}
3284 
3285 	spin_lock_init(&phb->lock);
3286 	prop32 = of_get_property(np, "bus-range", &len);
3287 	if (prop32 && len == 8) {
3288 		hose->first_busno = be32_to_cpu(prop32[0]);
3289 		hose->last_busno = be32_to_cpu(prop32[1]);
3290 	} else {
3291 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3292 		hose->first_busno = 0;
3293 		hose->last_busno = 0xff;
3294 	}
3295 	hose->private_data = phb;
3296 	phb->hub_id = hub_id;
3297 	phb->opal_id = phb_id;
3298 	phb->type = ioda_type;
3299 	mutex_init(&phb->ioda.pe_alloc_mutex);
3300 
3301 	/* Detect specific models for error handling */
3302 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3303 		phb->model = PNV_PHB_MODEL_P7IOC;
3304 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3305 		phb->model = PNV_PHB_MODEL_PHB3;
3306 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3307 		phb->model = PNV_PHB_MODEL_NPU;
3308 	else
3309 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3310 
3311 	/* Parse 32-bit and IO ranges (if any) */
3312 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3313 
3314 	/* Get registers */
3315 	phb->regs = of_iomap(np, 0);
3316 	if (phb->regs == NULL)
3317 		pr_err("  Failed to map registers !\n");
3318 
3319 	/* Initialize more IODA stuff */
3320 	phb->ioda.total_pe_num = 1;
3321 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3322 	if (prop32)
3323 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3324 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3325 	if (prop32)
3326 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3327 
3328 	/* Parse 64-bit MMIO range */
3329 	pnv_ioda_parse_m64_window(phb);
3330 
3331 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3332 	/* FW Has already off top 64k of M32 space (MSI space) */
3333 	phb->ioda.m32_size += 0x10000;
3334 
3335 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3336 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3337 	phb->ioda.io_size = hose->pci_io_size;
3338 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3339 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3340 
3341 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3342 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
3343 	m32map_off = size;
3344 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3345 	if (phb->type == PNV_PHB_IODA1) {
3346 		iomap_off = size;
3347 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3348 	}
3349 	pemap_off = size;
3350 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3351 	aux = memblock_virt_alloc(size, 0);
3352 	phb->ioda.pe_alloc = aux;
3353 	phb->ioda.m32_segmap = aux + m32map_off;
3354 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3355 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3356 	if (phb->type == PNV_PHB_IODA1) {
3357 		phb->ioda.io_segmap = aux + iomap_off;
3358 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3359 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3360 	}
3361 	phb->ioda.pe_array = aux + pemap_off;
3362 	set_bit(phb->ioda.reserved_pe_idx, phb->ioda.pe_alloc);
3363 
3364 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
3365 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3366 	mutex_init(&phb->ioda.pe_list_mutex);
3367 
3368 	/* Calculate how many 32-bit TCE segments we have */
3369 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
3370 
3371 #if 0 /* We should really do that ... */
3372 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3373 					 window_type,
3374 					 window_num,
3375 					 starting_real_address,
3376 					 starting_pci_address,
3377 					 segment_size);
3378 #endif
3379 
3380 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3381 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3382 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3383 	if (phb->ioda.m64_size)
3384 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3385 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3386 	if (phb->ioda.io_size)
3387 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3388 			phb->ioda.io_size, phb->ioda.io_segsize);
3389 
3390 
3391 	phb->hose->ops = &pnv_pci_ops;
3392 	phb->get_pe_state = pnv_ioda_get_pe_state;
3393 	phb->freeze_pe = pnv_ioda_freeze_pe;
3394 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3395 
3396 	/* Setup TCEs */
3397 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3398 
3399 	/* Setup MSI support */
3400 	pnv_pci_init_ioda_msis(phb);
3401 
3402 	/*
3403 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3404 	 * to let the PCI core do resource assignment. It's supposed
3405 	 * that the PCI core will do correct I/O and MMIO alignment
3406 	 * for the P2P bridge bars so that each PCI bus (excluding
3407 	 * the child P2P bridges) can form individual PE.
3408 	 */
3409 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3410 
3411 	if (phb->type == PNV_PHB_NPU)
3412 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3413 	else
3414 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3415 
3416 #ifdef CONFIG_PCI_IOV
3417 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3418 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3419 #endif
3420 
3421 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3422 
3423 	/* Reset IODA tables to a clean state */
3424 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3425 	if (rc)
3426 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3427 
3428 	/* If we're running in kdump kerenl, the previous kerenl never
3429 	 * shutdown PCI devices correctly. We already got IODA table
3430 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3431 	 * transactions from previous kerenl.
3432 	 */
3433 	if (is_kdump_kernel()) {
3434 		pr_info("  Issue PHB reset ...\n");
3435 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3436 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3437 	}
3438 
3439 	/* Remove M64 resource if we can't configure it successfully */
3440 	if (!phb->init_m64 || phb->init_m64(phb))
3441 		hose->mem_resources[1].flags = 0;
3442 }
3443 
3444 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3445 {
3446 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3447 }
3448 
3449 void __init pnv_pci_init_npu_phb(struct device_node *np)
3450 {
3451 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3452 }
3453 
3454 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3455 {
3456 	struct device_node *phbn;
3457 	const __be64 *prop64;
3458 	u64 hub_id;
3459 
3460 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3461 
3462 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3463 	if (!prop64) {
3464 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3465 		return;
3466 	}
3467 	hub_id = be64_to_cpup(prop64);
3468 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3469 
3470 	/* Count child PHBs */
3471 	for_each_child_of_node(np, phbn) {
3472 		/* Look for IODA1 PHBs */
3473 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3474 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3475 	}
3476 }
3477