1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
44 
45 #include <misc/cxl-base.h>
46 
47 #include "powernv.h"
48 #include "pci.h"
49 
50 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
51 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
52 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
53 
54 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
55 #define POWERNV_IOMMU_MAX_LEVELS	5
56 
57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59 
60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61 			    const char *fmt, ...)
62 {
63 	struct va_format vaf;
64 	va_list args;
65 	char pfix[32];
66 
67 	va_start(args, fmt);
68 
69 	vaf.fmt = fmt;
70 	vaf.va = &args;
71 
72 	if (pe->flags & PNV_IODA_PE_DEV)
73 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75 		sprintf(pfix, "%04x:%02x     ",
76 			pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78 	else if (pe->flags & PNV_IODA_PE_VF)
79 		sprintf(pfix, "%04x:%02x:%2x.%d",
80 			pci_domain_nr(pe->parent_dev->bus),
81 			(pe->rid & 0xff00) >> 8,
82 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84 
85 	printk("%spci %s: [PE# %.2x] %pV",
86 	       level, pfix, pe->pe_number, &vaf);
87 
88 	va_end(args);
89 }
90 
91 static bool pnv_iommu_bypass_disabled __read_mostly;
92 
93 static int __init iommu_setup(char *str)
94 {
95 	if (!str)
96 		return -EINVAL;
97 
98 	while (*str) {
99 		if (!strncmp(str, "nobypass", 8)) {
100 			pnv_iommu_bypass_disabled = true;
101 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
102 			break;
103 		}
104 		str += strcspn(str, ",");
105 		if (*str == ',')
106 			str++;
107 	}
108 
109 	return 0;
110 }
111 early_param("iommu", iommu_setup);
112 
113 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
114 {
115 	/*
116 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
117 	 * allocation code sometimes decides to put a 64-bit prefetchable
118 	 * BAR in the 32-bit window, so we have to compare the addresses.
119 	 *
120 	 * For simplicity we only test resource start.
121 	 */
122 	return (r->start >= phb->ioda.m64_base &&
123 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
124 }
125 
126 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
127 {
128 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
129 
130 	return (resource_flags & flags) == flags;
131 }
132 
133 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
134 {
135 	s64 rc;
136 
137 	phb->ioda.pe_array[pe_no].phb = phb;
138 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
139 
140 	/*
141 	 * Clear the PE frozen state as it might be put into frozen state
142 	 * in the last PCI remove path. It's not harmful to do so when the
143 	 * PE is already in unfrozen state.
144 	 */
145 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
146 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
147 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
148 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
149 			__func__, rc, phb->hose->global_number, pe_no);
150 
151 	return &phb->ioda.pe_array[pe_no];
152 }
153 
154 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
155 {
156 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
157 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
158 			__func__, pe_no, phb->hose->global_number);
159 		return;
160 	}
161 
162 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
163 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
164 			 __func__, pe_no, phb->hose->global_number);
165 
166 	pnv_ioda_init_pe(phb, pe_no);
167 }
168 
169 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
170 {
171 	long pe;
172 
173 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
174 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
175 			return pnv_ioda_init_pe(phb, pe);
176 	}
177 
178 	return NULL;
179 }
180 
181 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
182 {
183 	struct pnv_phb *phb = pe->phb;
184 	unsigned int pe_num = pe->pe_number;
185 
186 	WARN_ON(pe->pdev);
187 
188 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
189 	clear_bit(pe_num, phb->ioda.pe_alloc);
190 }
191 
192 /* The default M64 BAR is shared by all PEs */
193 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
194 {
195 	const char *desc;
196 	struct resource *r;
197 	s64 rc;
198 
199 	/* Configure the default M64 BAR */
200 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
201 					 OPAL_M64_WINDOW_TYPE,
202 					 phb->ioda.m64_bar_idx,
203 					 phb->ioda.m64_base,
204 					 0, /* unused */
205 					 phb->ioda.m64_size);
206 	if (rc != OPAL_SUCCESS) {
207 		desc = "configuring";
208 		goto fail;
209 	}
210 
211 	/* Enable the default M64 BAR */
212 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
213 				      OPAL_M64_WINDOW_TYPE,
214 				      phb->ioda.m64_bar_idx,
215 				      OPAL_ENABLE_M64_SPLIT);
216 	if (rc != OPAL_SUCCESS) {
217 		desc = "enabling";
218 		goto fail;
219 	}
220 
221 	/*
222 	 * Exclude the segments for reserved and root bus PE, which
223 	 * are first or last two PEs.
224 	 */
225 	r = &phb->hose->mem_resources[1];
226 	if (phb->ioda.reserved_pe_idx == 0)
227 		r->start += (2 * phb->ioda.m64_segsize);
228 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
229 		r->end -= (2 * phb->ioda.m64_segsize);
230 	else
231 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
232 			phb->ioda.reserved_pe_idx);
233 
234 	return 0;
235 
236 fail:
237 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
238 		rc, desc, phb->ioda.m64_bar_idx);
239 	opal_pci_phb_mmio_enable(phb->opal_id,
240 				 OPAL_M64_WINDOW_TYPE,
241 				 phb->ioda.m64_bar_idx,
242 				 OPAL_DISABLE_M64);
243 	return -EIO;
244 }
245 
246 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
247 					 unsigned long *pe_bitmap)
248 {
249 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
250 	struct pnv_phb *phb = hose->private_data;
251 	struct resource *r;
252 	resource_size_t base, sgsz, start, end;
253 	int segno, i;
254 
255 	base = phb->ioda.m64_base;
256 	sgsz = phb->ioda.m64_segsize;
257 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
258 		r = &pdev->resource[i];
259 		if (!r->parent || !pnv_pci_is_m64(phb, r))
260 			continue;
261 
262 		start = _ALIGN_DOWN(r->start - base, sgsz);
263 		end = _ALIGN_UP(r->end - base, sgsz);
264 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
265 			if (pe_bitmap)
266 				set_bit(segno, pe_bitmap);
267 			else
268 				pnv_ioda_reserve_pe(phb, segno);
269 		}
270 	}
271 }
272 
273 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
274 {
275 	struct resource *r;
276 	int index;
277 
278 	/*
279 	 * There are 16 M64 BARs, each of which has 8 segments. So
280 	 * there are as many M64 segments as the maximum number of
281 	 * PEs, which is 128.
282 	 */
283 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
284 		unsigned long base, segsz = phb->ioda.m64_segsize;
285 		int64_t rc;
286 
287 		base = phb->ioda.m64_base +
288 		       index * PNV_IODA1_M64_SEGS * segsz;
289 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
290 				OPAL_M64_WINDOW_TYPE, index, base, 0,
291 				PNV_IODA1_M64_SEGS * segsz);
292 		if (rc != OPAL_SUCCESS) {
293 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
294 				rc, phb->hose->global_number, index);
295 			goto fail;
296 		}
297 
298 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
299 				OPAL_M64_WINDOW_TYPE, index,
300 				OPAL_ENABLE_M64_SPLIT);
301 		if (rc != OPAL_SUCCESS) {
302 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
303 				rc, phb->hose->global_number, index);
304 			goto fail;
305 		}
306 	}
307 
308 	/*
309 	 * Exclude the segments for reserved and root bus PE, which
310 	 * are first or last two PEs.
311 	 */
312 	r = &phb->hose->mem_resources[1];
313 	if (phb->ioda.reserved_pe_idx == 0)
314 		r->start += (2 * phb->ioda.m64_segsize);
315 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
316 		r->end -= (2 * phb->ioda.m64_segsize);
317 	else
318 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
319 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
320 
321 	return 0;
322 
323 fail:
324 	for ( ; index >= 0; index--)
325 		opal_pci_phb_mmio_enable(phb->opal_id,
326 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
327 
328 	return -EIO;
329 }
330 
331 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
332 				    unsigned long *pe_bitmap,
333 				    bool all)
334 {
335 	struct pci_dev *pdev;
336 
337 	list_for_each_entry(pdev, &bus->devices, bus_list) {
338 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
339 
340 		if (all && pdev->subordinate)
341 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
342 						pe_bitmap, all);
343 	}
344 }
345 
346 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
347 {
348 	struct pci_controller *hose = pci_bus_to_host(bus);
349 	struct pnv_phb *phb = hose->private_data;
350 	struct pnv_ioda_pe *master_pe, *pe;
351 	unsigned long size, *pe_alloc;
352 	int i;
353 
354 	/* Root bus shouldn't use M64 */
355 	if (pci_is_root_bus(bus))
356 		return NULL;
357 
358 	/* Allocate bitmap */
359 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
360 	pe_alloc = kzalloc(size, GFP_KERNEL);
361 	if (!pe_alloc) {
362 		pr_warn("%s: Out of memory !\n",
363 			__func__);
364 		return NULL;
365 	}
366 
367 	/* Figure out reserved PE numbers by the PE */
368 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
369 
370 	/*
371 	 * the current bus might not own M64 window and that's all
372 	 * contributed by its child buses. For the case, we needn't
373 	 * pick M64 dependent PE#.
374 	 */
375 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
376 		kfree(pe_alloc);
377 		return NULL;
378 	}
379 
380 	/*
381 	 * Figure out the master PE and put all slave PEs to master
382 	 * PE's list to form compound PE.
383 	 */
384 	master_pe = NULL;
385 	i = -1;
386 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
387 		phb->ioda.total_pe_num) {
388 		pe = &phb->ioda.pe_array[i];
389 
390 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
391 		if (!master_pe) {
392 			pe->flags |= PNV_IODA_PE_MASTER;
393 			INIT_LIST_HEAD(&pe->slaves);
394 			master_pe = pe;
395 		} else {
396 			pe->flags |= PNV_IODA_PE_SLAVE;
397 			pe->master = master_pe;
398 			list_add_tail(&pe->list, &master_pe->slaves);
399 		}
400 
401 		/*
402 		 * P7IOC supports M64DT, which helps mapping M64 segment
403 		 * to one particular PE#. However, PHB3 has fixed mapping
404 		 * between M64 segment and PE#. In order to have same logic
405 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
406 		 * segment and PE# on P7IOC.
407 		 */
408 		if (phb->type == PNV_PHB_IODA1) {
409 			int64_t rc;
410 
411 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
412 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
413 					pe->pe_number / PNV_IODA1_M64_SEGS,
414 					pe->pe_number % PNV_IODA1_M64_SEGS);
415 			if (rc != OPAL_SUCCESS)
416 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
417 					__func__, rc, phb->hose->global_number,
418 					pe->pe_number);
419 		}
420 	}
421 
422 	kfree(pe_alloc);
423 	return master_pe;
424 }
425 
426 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
427 {
428 	struct pci_controller *hose = phb->hose;
429 	struct device_node *dn = hose->dn;
430 	struct resource *res;
431 	u32 m64_range[2], i;
432 	const __be32 *r;
433 	u64 pci_addr;
434 
435 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
436 		pr_info("  Not support M64 window\n");
437 		return;
438 	}
439 
440 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
441 		pr_info("  Firmware too old to support M64 window\n");
442 		return;
443 	}
444 
445 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
446 	if (!r) {
447 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
448 			dn);
449 		return;
450 	}
451 
452 	/*
453 	 * Find the available M64 BAR range and pickup the last one for
454 	 * covering the whole 64-bits space. We support only one range.
455 	 */
456 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
457 				       m64_range, 2)) {
458 		/* In absence of the property, assume 0..15 */
459 		m64_range[0] = 0;
460 		m64_range[1] = 16;
461 	}
462 	/* We only support 64 bits in our allocator */
463 	if (m64_range[1] > 63) {
464 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
465 			__func__, m64_range[1], phb->hose->global_number);
466 		m64_range[1] = 63;
467 	}
468 	/* Empty range, no m64 */
469 	if (m64_range[1] <= m64_range[0]) {
470 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
471 			__func__, phb->hose->global_number);
472 		return;
473 	}
474 
475 	/* Configure M64 informations */
476 	res = &hose->mem_resources[1];
477 	res->name = dn->full_name;
478 	res->start = of_translate_address(dn, r + 2);
479 	res->end = res->start + of_read_number(r + 4, 2) - 1;
480 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
481 	pci_addr = of_read_number(r, 2);
482 	hose->mem_offset[1] = res->start - pci_addr;
483 
484 	phb->ioda.m64_size = resource_size(res);
485 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
486 	phb->ioda.m64_base = pci_addr;
487 
488 	/* This lines up nicely with the display from processing OF ranges */
489 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
490 		res->start, res->end, pci_addr, m64_range[0],
491 		m64_range[0] + m64_range[1] - 1);
492 
493 	/* Mark all M64 used up by default */
494 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
495 
496 	/* Use last M64 BAR to cover M64 window */
497 	m64_range[1]--;
498 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
499 
500 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
501 
502 	/* Mark remaining ones free */
503 	for (i = m64_range[0]; i < m64_range[1]; i++)
504 		clear_bit(i, &phb->ioda.m64_bar_alloc);
505 
506 	/*
507 	 * Setup init functions for M64 based on IODA version, IODA3 uses
508 	 * the IODA2 code.
509 	 */
510 	if (phb->type == PNV_PHB_IODA1)
511 		phb->init_m64 = pnv_ioda1_init_m64;
512 	else
513 		phb->init_m64 = pnv_ioda2_init_m64;
514 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
515 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
516 }
517 
518 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
519 {
520 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
521 	struct pnv_ioda_pe *slave;
522 	s64 rc;
523 
524 	/* Fetch master PE */
525 	if (pe->flags & PNV_IODA_PE_SLAVE) {
526 		pe = pe->master;
527 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
528 			return;
529 
530 		pe_no = pe->pe_number;
531 	}
532 
533 	/* Freeze master PE */
534 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
535 				     pe_no,
536 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
537 	if (rc != OPAL_SUCCESS) {
538 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
539 			__func__, rc, phb->hose->global_number, pe_no);
540 		return;
541 	}
542 
543 	/* Freeze slave PEs */
544 	if (!(pe->flags & PNV_IODA_PE_MASTER))
545 		return;
546 
547 	list_for_each_entry(slave, &pe->slaves, list) {
548 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
549 					     slave->pe_number,
550 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
551 		if (rc != OPAL_SUCCESS)
552 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
553 				__func__, rc, phb->hose->global_number,
554 				slave->pe_number);
555 	}
556 }
557 
558 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
559 {
560 	struct pnv_ioda_pe *pe, *slave;
561 	s64 rc;
562 
563 	/* Find master PE */
564 	pe = &phb->ioda.pe_array[pe_no];
565 	if (pe->flags & PNV_IODA_PE_SLAVE) {
566 		pe = pe->master;
567 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
568 		pe_no = pe->pe_number;
569 	}
570 
571 	/* Clear frozen state for master PE */
572 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
573 	if (rc != OPAL_SUCCESS) {
574 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
575 			__func__, rc, opt, phb->hose->global_number, pe_no);
576 		return -EIO;
577 	}
578 
579 	if (!(pe->flags & PNV_IODA_PE_MASTER))
580 		return 0;
581 
582 	/* Clear frozen state for slave PEs */
583 	list_for_each_entry(slave, &pe->slaves, list) {
584 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
585 					     slave->pe_number,
586 					     opt);
587 		if (rc != OPAL_SUCCESS) {
588 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
589 				__func__, rc, opt, phb->hose->global_number,
590 				slave->pe_number);
591 			return -EIO;
592 		}
593 	}
594 
595 	return 0;
596 }
597 
598 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
599 {
600 	struct pnv_ioda_pe *slave, *pe;
601 	u8 fstate, state;
602 	__be16 pcierr;
603 	s64 rc;
604 
605 	/* Sanity check on PE number */
606 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
607 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
608 
609 	/*
610 	 * Fetch the master PE and the PE instance might be
611 	 * not initialized yet.
612 	 */
613 	pe = &phb->ioda.pe_array[pe_no];
614 	if (pe->flags & PNV_IODA_PE_SLAVE) {
615 		pe = pe->master;
616 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
617 		pe_no = pe->pe_number;
618 	}
619 
620 	/* Check the master PE */
621 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
622 					&state, &pcierr, NULL);
623 	if (rc != OPAL_SUCCESS) {
624 		pr_warn("%s: Failure %lld getting "
625 			"PHB#%x-PE#%x state\n",
626 			__func__, rc,
627 			phb->hose->global_number, pe_no);
628 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
629 	}
630 
631 	/* Check the slave PE */
632 	if (!(pe->flags & PNV_IODA_PE_MASTER))
633 		return state;
634 
635 	list_for_each_entry(slave, &pe->slaves, list) {
636 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
637 						slave->pe_number,
638 						&fstate,
639 						&pcierr,
640 						NULL);
641 		if (rc != OPAL_SUCCESS) {
642 			pr_warn("%s: Failure %lld getting "
643 				"PHB#%x-PE#%x state\n",
644 				__func__, rc,
645 				phb->hose->global_number, slave->pe_number);
646 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
647 		}
648 
649 		/*
650 		 * Override the result based on the ascending
651 		 * priority.
652 		 */
653 		if (fstate > state)
654 			state = fstate;
655 	}
656 
657 	return state;
658 }
659 
660 /* Currently those 2 are only used when MSIs are enabled, this will change
661  * but in the meantime, we need to protect them to avoid warnings
662  */
663 #ifdef CONFIG_PCI_MSI
664 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
665 {
666 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
667 	struct pnv_phb *phb = hose->private_data;
668 	struct pci_dn *pdn = pci_get_pdn(dev);
669 
670 	if (!pdn)
671 		return NULL;
672 	if (pdn->pe_number == IODA_INVALID_PE)
673 		return NULL;
674 	return &phb->ioda.pe_array[pdn->pe_number];
675 }
676 #endif /* CONFIG_PCI_MSI */
677 
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679 				  struct pnv_ioda_pe *parent,
680 				  struct pnv_ioda_pe *child,
681 				  bool is_add)
682 {
683 	const char *desc = is_add ? "adding" : "removing";
684 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685 			      OPAL_REMOVE_PE_FROM_DOMAIN;
686 	struct pnv_ioda_pe *slave;
687 	long rc;
688 
689 	/* Parent PE affects child PE */
690 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691 				child->pe_number, op);
692 	if (rc != OPAL_SUCCESS) {
693 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694 			rc, desc);
695 		return -ENXIO;
696 	}
697 
698 	if (!(child->flags & PNV_IODA_PE_MASTER))
699 		return 0;
700 
701 	/* Compound case: parent PE affects slave PEs */
702 	list_for_each_entry(slave, &child->slaves, list) {
703 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704 					slave->pe_number, op);
705 		if (rc != OPAL_SUCCESS) {
706 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707 				rc, desc);
708 			return -ENXIO;
709 		}
710 	}
711 
712 	return 0;
713 }
714 
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716 			      struct pnv_ioda_pe *pe,
717 			      bool is_add)
718 {
719 	struct pnv_ioda_pe *slave;
720 	struct pci_dev *pdev = NULL;
721 	int ret;
722 
723 	/*
724 	 * Clear PE frozen state. If it's master PE, we need
725 	 * clear slave PE frozen state as well.
726 	 */
727 	if (is_add) {
728 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730 		if (pe->flags & PNV_IODA_PE_MASTER) {
731 			list_for_each_entry(slave, &pe->slaves, list)
732 				opal_pci_eeh_freeze_clear(phb->opal_id,
733 							  slave->pe_number,
734 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735 		}
736 	}
737 
738 	/*
739 	 * Associate PE in PELT. We need add the PE into the
740 	 * corresponding PELT-V as well. Otherwise, the error
741 	 * originated from the PE might contribute to other
742 	 * PEs.
743 	 */
744 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745 	if (ret)
746 		return ret;
747 
748 	/* For compound PEs, any one affects all of them */
749 	if (pe->flags & PNV_IODA_PE_MASTER) {
750 		list_for_each_entry(slave, &pe->slaves, list) {
751 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752 			if (ret)
753 				return ret;
754 		}
755 	}
756 
757 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758 		pdev = pe->pbus->self;
759 	else if (pe->flags & PNV_IODA_PE_DEV)
760 		pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762 	else if (pe->flags & PNV_IODA_PE_VF)
763 		pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765 	while (pdev) {
766 		struct pci_dn *pdn = pci_get_pdn(pdev);
767 		struct pnv_ioda_pe *parent;
768 
769 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 			parent = &phb->ioda.pe_array[pdn->pe_number];
771 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772 			if (ret)
773 				return ret;
774 		}
775 
776 		pdev = pdev->bus->self;
777 	}
778 
779 	return 0;
780 }
781 
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784 	struct pci_dev *parent;
785 	uint8_t bcomp, dcomp, fcomp;
786 	int64_t rc;
787 	long rid_end, rid;
788 
789 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790 	if (pe->pbus) {
791 		int count;
792 
793 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795 		parent = pe->pbus->self;
796 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
797 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798 		else
799 			count = 1;
800 
801 		switch(count) {
802 		case  1: bcomp = OpalPciBusAll;         break;
803 		case  2: bcomp = OpalPciBus7Bits;       break;
804 		case  4: bcomp = OpalPciBus6Bits;       break;
805 		case  8: bcomp = OpalPciBus5Bits;       break;
806 		case 16: bcomp = OpalPciBus4Bits;       break;
807 		case 32: bcomp = OpalPciBus3Bits;       break;
808 		default:
809 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810 			        count);
811 			/* Do an exact match only */
812 			bcomp = OpalPciBusAll;
813 		}
814 		rid_end = pe->rid + (count << 8);
815 	} else {
816 #ifdef CONFIG_PCI_IOV
817 		if (pe->flags & PNV_IODA_PE_VF)
818 			parent = pe->parent_dev;
819 		else
820 #endif
821 			parent = pe->pdev->bus->self;
822 		bcomp = OpalPciBusAll;
823 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825 		rid_end = pe->rid + 1;
826 	}
827 
828 	/* Clear the reverse map */
829 	for (rid = pe->rid; rid < rid_end; rid++)
830 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831 
832 	/* Release from all parents PELT-V */
833 	while (parent) {
834 		struct pci_dn *pdn = pci_get_pdn(parent);
835 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838 			/* XXX What to do in case of error ? */
839 		}
840 		parent = parent->bus->self;
841 	}
842 
843 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845 
846 	/* Disassociate PE in PELT */
847 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849 	if (rc)
850 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
851 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853 	if (rc)
854 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855 
856 	pe->pbus = NULL;
857 	pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859 	pe->parent_dev = NULL;
860 #endif
861 
862 	return 0;
863 }
864 
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867 	struct pci_dev *parent;
868 	uint8_t bcomp, dcomp, fcomp;
869 	long rc, rid_end, rid;
870 
871 	/* Bus validation ? */
872 	if (pe->pbus) {
873 		int count;
874 
875 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877 		parent = pe->pbus->self;
878 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
879 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880 		else
881 			count = 1;
882 
883 		switch(count) {
884 		case  1: bcomp = OpalPciBusAll;		break;
885 		case  2: bcomp = OpalPciBus7Bits;	break;
886 		case  4: bcomp = OpalPciBus6Bits;	break;
887 		case  8: bcomp = OpalPciBus5Bits;	break;
888 		case 16: bcomp = OpalPciBus4Bits;	break;
889 		case 32: bcomp = OpalPciBus3Bits;	break;
890 		default:
891 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892 			        count);
893 			/* Do an exact match only */
894 			bcomp = OpalPciBusAll;
895 		}
896 		rid_end = pe->rid + (count << 8);
897 	} else {
898 #ifdef CONFIG_PCI_IOV
899 		if (pe->flags & PNV_IODA_PE_VF)
900 			parent = pe->parent_dev;
901 		else
902 #endif /* CONFIG_PCI_IOV */
903 			parent = pe->pdev->bus->self;
904 		bcomp = OpalPciBusAll;
905 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907 		rid_end = pe->rid + 1;
908 	}
909 
910 	/*
911 	 * Associate PE in PELT. We need add the PE into the
912 	 * corresponding PELT-V as well. Otherwise, the error
913 	 * originated from the PE might contribute to other
914 	 * PEs.
915 	 */
916 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
918 	if (rc) {
919 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920 		return -ENXIO;
921 	}
922 
923 	/*
924 	 * Configure PELTV. NPUs don't have a PELTV table so skip
925 	 * configuration on them.
926 	 */
927 	if (phb->type != PNV_PHB_NPU)
928 		pnv_ioda_set_peltv(phb, pe, true);
929 
930 	/* Setup reverse map */
931 	for (rid = pe->rid; rid < rid_end; rid++)
932 		phb->ioda.pe_rmap[rid] = pe->pe_number;
933 
934 	/* Setup one MVTs on IODA1 */
935 	if (phb->type != PNV_PHB_IODA1) {
936 		pe->mve_number = 0;
937 		goto out;
938 	}
939 
940 	pe->mve_number = pe->pe_number;
941 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942 	if (rc != OPAL_SUCCESS) {
943 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944 		       rc, pe->mve_number);
945 		pe->mve_number = -1;
946 	} else {
947 		rc = opal_pci_set_mve_enable(phb->opal_id,
948 					     pe->mve_number, OPAL_ENABLE_MVE);
949 		if (rc) {
950 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951 			       rc, pe->mve_number);
952 			pe->mve_number = -1;
953 		}
954 	}
955 
956 out:
957 	return 0;
958 }
959 
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963 	struct pci_dn *pdn = pci_get_pdn(dev);
964 	int i;
965 	struct resource *res, res2;
966 	resource_size_t size;
967 	u16 num_vfs;
968 
969 	if (!dev->is_physfn)
970 		return -EINVAL;
971 
972 	/*
973 	 * "offset" is in VFs.  The M64 windows are sized so that when they
974 	 * are segmented, each segment is the same size as the IOV BAR.
975 	 * Each segment is in a separate PE, and the high order bits of the
976 	 * address are the PE number.  Therefore, each VF's BAR is in a
977 	 * separate PE, and changing the IOV BAR start address changes the
978 	 * range of PEs the VFs are in.
979 	 */
980 	num_vfs = pdn->num_vfs;
981 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982 		res = &dev->resource[i + PCI_IOV_RESOURCES];
983 		if (!res->flags || !res->parent)
984 			continue;
985 
986 		/*
987 		 * The actual IOV BAR range is determined by the start address
988 		 * and the actual size for num_vfs VFs BAR.  This check is to
989 		 * make sure that after shifting, the range will not overlap
990 		 * with another device.
991 		 */
992 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993 		res2.flags = res->flags;
994 		res2.start = res->start + (size * offset);
995 		res2.end = res2.start + (size * num_vfs) - 1;
996 
997 		if (res2.end > res->end) {
998 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999 				i, &res2, res, num_vfs, offset);
1000 			return -EBUSY;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * Since M64 BAR shares segments among all possible 256 PEs,
1006 	 * we have to shift the beginning of PF IOV BAR to make it start from
1007 	 * the segment which belongs to the PE number assigned to the first VF.
1008 	 * This creates a "hole" in the /proc/iomem which could be used for
1009 	 * allocating other resources so we reserve this area below and
1010 	 * release when IOV is released.
1011 	 */
1012 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1013 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1014 		if (!res->flags || !res->parent)
1015 			continue;
1016 
1017 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1018 		res2 = *res;
1019 		res->start += size * offset;
1020 
1021 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1022 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1023 			 num_vfs, offset);
1024 
1025 		if (offset < 0) {
1026 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1027 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1028 		}
1029 
1030 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1031 
1032 		if (offset > 0) {
1033 			pdn->holes[i].start = res2.start;
1034 			pdn->holes[i].end = res2.start + size * offset - 1;
1035 			pdn->holes[i].flags = IORESOURCE_BUS;
1036 			pdn->holes[i].name = "pnv_iov_reserved";
1037 			devm_request_resource(&dev->dev, res->parent,
1038 					&pdn->holes[i]);
1039 		}
1040 	}
1041 	return 0;
1042 }
1043 #endif /* CONFIG_PCI_IOV */
1044 
1045 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1046 {
1047 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1048 	struct pnv_phb *phb = hose->private_data;
1049 	struct pci_dn *pdn = pci_get_pdn(dev);
1050 	struct pnv_ioda_pe *pe;
1051 
1052 	if (!pdn) {
1053 		pr_err("%s: Device tree node not associated properly\n",
1054 			   pci_name(dev));
1055 		return NULL;
1056 	}
1057 	if (pdn->pe_number != IODA_INVALID_PE)
1058 		return NULL;
1059 
1060 	pe = pnv_ioda_alloc_pe(phb);
1061 	if (!pe) {
1062 		pr_warning("%s: Not enough PE# available, disabling device\n",
1063 			   pci_name(dev));
1064 		return NULL;
1065 	}
1066 
1067 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1068 	 * pointer in the PE data structure, both should be destroyed at the
1069 	 * same time. However, this needs to be looked at more closely again
1070 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1071 	 *
1072 	 * At some point we want to remove the PDN completely anyways
1073 	 */
1074 	pci_dev_get(dev);
1075 	pdn->pcidev = dev;
1076 	pdn->pe_number = pe->pe_number;
1077 	pe->flags = PNV_IODA_PE_DEV;
1078 	pe->pdev = dev;
1079 	pe->pbus = NULL;
1080 	pe->mve_number = -1;
1081 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1082 
1083 	pe_info(pe, "Associated device to PE\n");
1084 
1085 	if (pnv_ioda_configure_pe(phb, pe)) {
1086 		/* XXX What do we do here ? */
1087 		pnv_ioda_free_pe(pe);
1088 		pdn->pe_number = IODA_INVALID_PE;
1089 		pe->pdev = NULL;
1090 		pci_dev_put(dev);
1091 		return NULL;
1092 	}
1093 
1094 	/* Put PE to the list */
1095 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1096 
1097 	return pe;
1098 }
1099 
1100 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1101 {
1102 	struct pci_dev *dev;
1103 
1104 	list_for_each_entry(dev, &bus->devices, bus_list) {
1105 		struct pci_dn *pdn = pci_get_pdn(dev);
1106 
1107 		if (pdn == NULL) {
1108 			pr_warn("%s: No device node associated with device !\n",
1109 				pci_name(dev));
1110 			continue;
1111 		}
1112 
1113 		/*
1114 		 * In partial hotplug case, the PCI device might be still
1115 		 * associated with the PE and needn't attach it to the PE
1116 		 * again.
1117 		 */
1118 		if (pdn->pe_number != IODA_INVALID_PE)
1119 			continue;
1120 
1121 		pe->device_count++;
1122 		pdn->pcidev = dev;
1123 		pdn->pe_number = pe->pe_number;
1124 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1125 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1126 	}
1127 }
1128 
1129 /*
1130  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1131  * single PCI bus. Another one that contains the primary PCI bus and its
1132  * subordinate PCI devices and buses. The second type of PE is normally
1133  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1134  */
1135 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1136 {
1137 	struct pci_controller *hose = pci_bus_to_host(bus);
1138 	struct pnv_phb *phb = hose->private_data;
1139 	struct pnv_ioda_pe *pe = NULL;
1140 	unsigned int pe_num;
1141 
1142 	/*
1143 	 * In partial hotplug case, the PE instance might be still alive.
1144 	 * We should reuse it instead of allocating a new one.
1145 	 */
1146 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1147 	if (pe_num != IODA_INVALID_PE) {
1148 		pe = &phb->ioda.pe_array[pe_num];
1149 		pnv_ioda_setup_same_PE(bus, pe);
1150 		return NULL;
1151 	}
1152 
1153 	/* PE number for root bus should have been reserved */
1154 	if (pci_is_root_bus(bus) &&
1155 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1156 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1157 
1158 	/* Check if PE is determined by M64 */
1159 	if (!pe && phb->pick_m64_pe)
1160 		pe = phb->pick_m64_pe(bus, all);
1161 
1162 	/* The PE number isn't pinned by M64 */
1163 	if (!pe)
1164 		pe = pnv_ioda_alloc_pe(phb);
1165 
1166 	if (!pe) {
1167 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1168 			__func__, pci_domain_nr(bus), bus->number);
1169 		return NULL;
1170 	}
1171 
1172 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1173 	pe->pbus = bus;
1174 	pe->pdev = NULL;
1175 	pe->mve_number = -1;
1176 	pe->rid = bus->busn_res.start << 8;
1177 
1178 	if (all)
1179 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1180 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1181 	else
1182 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1183 			bus->busn_res.start, pe->pe_number);
1184 
1185 	if (pnv_ioda_configure_pe(phb, pe)) {
1186 		/* XXX What do we do here ? */
1187 		pnv_ioda_free_pe(pe);
1188 		pe->pbus = NULL;
1189 		return NULL;
1190 	}
1191 
1192 	/* Associate it with all child devices */
1193 	pnv_ioda_setup_same_PE(bus, pe);
1194 
1195 	/* Put PE to the list */
1196 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1197 
1198 	return pe;
1199 }
1200 
1201 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1202 {
1203 	int pe_num, found_pe = false, rc;
1204 	long rid;
1205 	struct pnv_ioda_pe *pe;
1206 	struct pci_dev *gpu_pdev;
1207 	struct pci_dn *npu_pdn;
1208 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1209 	struct pnv_phb *phb = hose->private_data;
1210 
1211 	/*
1212 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1213 	 * error handling. This means we only have three PEs remaining
1214 	 * which need to be assigned to four links, implying some
1215 	 * links must share PEs.
1216 	 *
1217 	 * To achieve this we assign PEs such that NPUs linking the
1218 	 * same GPU get assigned the same PE.
1219 	 */
1220 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1221 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1222 		pe = &phb->ioda.pe_array[pe_num];
1223 		if (!pe->pdev)
1224 			continue;
1225 
1226 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1227 			/*
1228 			 * This device has the same peer GPU so should
1229 			 * be assigned the same PE as the existing
1230 			 * peer NPU.
1231 			 */
1232 			dev_info(&npu_pdev->dev,
1233 				"Associating to existing PE %x\n", pe_num);
1234 			pci_dev_get(npu_pdev);
1235 			npu_pdn = pci_get_pdn(npu_pdev);
1236 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1237 			npu_pdn->pcidev = npu_pdev;
1238 			npu_pdn->pe_number = pe_num;
1239 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1240 
1241 			/* Map the PE to this link */
1242 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1243 					OpalPciBusAll,
1244 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1245 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1246 					OPAL_MAP_PE);
1247 			WARN_ON(rc != OPAL_SUCCESS);
1248 			found_pe = true;
1249 			break;
1250 		}
1251 	}
1252 
1253 	if (!found_pe)
1254 		/*
1255 		 * Could not find an existing PE so allocate a new
1256 		 * one.
1257 		 */
1258 		return pnv_ioda_setup_dev_PE(npu_pdev);
1259 	else
1260 		return pe;
1261 }
1262 
1263 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1264 {
1265 	struct pci_dev *pdev;
1266 
1267 	list_for_each_entry(pdev, &bus->devices, bus_list)
1268 		pnv_ioda_setup_npu_PE(pdev);
1269 }
1270 
1271 static void pnv_pci_ioda_setup_PEs(void)
1272 {
1273 	struct pci_controller *hose, *tmp;
1274 	struct pnv_phb *phb;
1275 
1276 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1277 		phb = hose->private_data;
1278 		if (phb->type == PNV_PHB_NPU) {
1279 			/* PE#0 is needed for error reporting */
1280 			pnv_ioda_reserve_pe(phb, 0);
1281 			pnv_ioda_setup_npu_PEs(hose->bus);
1282 			if (phb->model == PNV_PHB_MODEL_NPU2)
1283 				pnv_npu2_init(phb);
1284 		}
1285 	}
1286 }
1287 
1288 #ifdef CONFIG_PCI_IOV
1289 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1290 {
1291 	struct pci_bus        *bus;
1292 	struct pci_controller *hose;
1293 	struct pnv_phb        *phb;
1294 	struct pci_dn         *pdn;
1295 	int                    i, j;
1296 	int                    m64_bars;
1297 
1298 	bus = pdev->bus;
1299 	hose = pci_bus_to_host(bus);
1300 	phb = hose->private_data;
1301 	pdn = pci_get_pdn(pdev);
1302 
1303 	if (pdn->m64_single_mode)
1304 		m64_bars = num_vfs;
1305 	else
1306 		m64_bars = 1;
1307 
1308 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1309 		for (j = 0; j < m64_bars; j++) {
1310 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1311 				continue;
1312 			opal_pci_phb_mmio_enable(phb->opal_id,
1313 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1314 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1315 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1316 		}
1317 
1318 	kfree(pdn->m64_map);
1319 	return 0;
1320 }
1321 
1322 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1323 {
1324 	struct pci_bus        *bus;
1325 	struct pci_controller *hose;
1326 	struct pnv_phb        *phb;
1327 	struct pci_dn         *pdn;
1328 	unsigned int           win;
1329 	struct resource       *res;
1330 	int                    i, j;
1331 	int64_t                rc;
1332 	int                    total_vfs;
1333 	resource_size_t        size, start;
1334 	int                    pe_num;
1335 	int                    m64_bars;
1336 
1337 	bus = pdev->bus;
1338 	hose = pci_bus_to_host(bus);
1339 	phb = hose->private_data;
1340 	pdn = pci_get_pdn(pdev);
1341 	total_vfs = pci_sriov_get_totalvfs(pdev);
1342 
1343 	if (pdn->m64_single_mode)
1344 		m64_bars = num_vfs;
1345 	else
1346 		m64_bars = 1;
1347 
1348 	pdn->m64_map = kmalloc_array(m64_bars,
1349 				     sizeof(*pdn->m64_map),
1350 				     GFP_KERNEL);
1351 	if (!pdn->m64_map)
1352 		return -ENOMEM;
1353 	/* Initialize the m64_map to IODA_INVALID_M64 */
1354 	for (i = 0; i < m64_bars ; i++)
1355 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1356 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1357 
1358 
1359 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1360 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1361 		if (!res->flags || !res->parent)
1362 			continue;
1363 
1364 		for (j = 0; j < m64_bars; j++) {
1365 			do {
1366 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1367 						phb->ioda.m64_bar_idx + 1, 0);
1368 
1369 				if (win >= phb->ioda.m64_bar_idx + 1)
1370 					goto m64_failed;
1371 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1372 
1373 			pdn->m64_map[j][i] = win;
1374 
1375 			if (pdn->m64_single_mode) {
1376 				size = pci_iov_resource_size(pdev,
1377 							PCI_IOV_RESOURCES + i);
1378 				start = res->start + size * j;
1379 			} else {
1380 				size = resource_size(res);
1381 				start = res->start;
1382 			}
1383 
1384 			/* Map the M64 here */
1385 			if (pdn->m64_single_mode) {
1386 				pe_num = pdn->pe_num_map[j];
1387 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1388 						pe_num, OPAL_M64_WINDOW_TYPE,
1389 						pdn->m64_map[j][i], 0);
1390 			}
1391 
1392 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1393 						 OPAL_M64_WINDOW_TYPE,
1394 						 pdn->m64_map[j][i],
1395 						 start,
1396 						 0, /* unused */
1397 						 size);
1398 
1399 
1400 			if (rc != OPAL_SUCCESS) {
1401 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1402 					win, rc);
1403 				goto m64_failed;
1404 			}
1405 
1406 			if (pdn->m64_single_mode)
1407 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1408 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1409 			else
1410 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1411 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1412 
1413 			if (rc != OPAL_SUCCESS) {
1414 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1415 					win, rc);
1416 				goto m64_failed;
1417 			}
1418 		}
1419 	}
1420 	return 0;
1421 
1422 m64_failed:
1423 	pnv_pci_vf_release_m64(pdev, num_vfs);
1424 	return -EBUSY;
1425 }
1426 
1427 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1428 		int num);
1429 
1430 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1431 {
1432 	struct iommu_table    *tbl;
1433 	int64_t               rc;
1434 
1435 	tbl = pe->table_group.tables[0];
1436 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1437 	if (rc)
1438 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1439 
1440 	pnv_pci_ioda2_set_bypass(pe, false);
1441 	if (pe->table_group.group) {
1442 		iommu_group_put(pe->table_group.group);
1443 		BUG_ON(pe->table_group.group);
1444 	}
1445 	iommu_tce_table_put(tbl);
1446 }
1447 
1448 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1449 {
1450 	struct pci_bus        *bus;
1451 	struct pci_controller *hose;
1452 	struct pnv_phb        *phb;
1453 	struct pnv_ioda_pe    *pe, *pe_n;
1454 	struct pci_dn         *pdn;
1455 
1456 	bus = pdev->bus;
1457 	hose = pci_bus_to_host(bus);
1458 	phb = hose->private_data;
1459 	pdn = pci_get_pdn(pdev);
1460 
1461 	if (!pdev->is_physfn)
1462 		return;
1463 
1464 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1465 		if (pe->parent_dev != pdev)
1466 			continue;
1467 
1468 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1469 
1470 		/* Remove from list */
1471 		mutex_lock(&phb->ioda.pe_list_mutex);
1472 		list_del(&pe->list);
1473 		mutex_unlock(&phb->ioda.pe_list_mutex);
1474 
1475 		pnv_ioda_deconfigure_pe(phb, pe);
1476 
1477 		pnv_ioda_free_pe(pe);
1478 	}
1479 }
1480 
1481 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1482 {
1483 	struct pci_bus        *bus;
1484 	struct pci_controller *hose;
1485 	struct pnv_phb        *phb;
1486 	struct pnv_ioda_pe    *pe;
1487 	struct pci_dn         *pdn;
1488 	u16                    num_vfs, i;
1489 
1490 	bus = pdev->bus;
1491 	hose = pci_bus_to_host(bus);
1492 	phb = hose->private_data;
1493 	pdn = pci_get_pdn(pdev);
1494 	num_vfs = pdn->num_vfs;
1495 
1496 	/* Release VF PEs */
1497 	pnv_ioda_release_vf_PE(pdev);
1498 
1499 	if (phb->type == PNV_PHB_IODA2) {
1500 		if (!pdn->m64_single_mode)
1501 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1502 
1503 		/* Release M64 windows */
1504 		pnv_pci_vf_release_m64(pdev, num_vfs);
1505 
1506 		/* Release PE numbers */
1507 		if (pdn->m64_single_mode) {
1508 			for (i = 0; i < num_vfs; i++) {
1509 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1510 					continue;
1511 
1512 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1513 				pnv_ioda_free_pe(pe);
1514 			}
1515 		} else
1516 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1517 		/* Releasing pe_num_map */
1518 		kfree(pdn->pe_num_map);
1519 	}
1520 }
1521 
1522 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1523 				       struct pnv_ioda_pe *pe);
1524 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1525 {
1526 	struct pci_bus        *bus;
1527 	struct pci_controller *hose;
1528 	struct pnv_phb        *phb;
1529 	struct pnv_ioda_pe    *pe;
1530 	int                    pe_num;
1531 	u16                    vf_index;
1532 	struct pci_dn         *pdn;
1533 
1534 	bus = pdev->bus;
1535 	hose = pci_bus_to_host(bus);
1536 	phb = hose->private_data;
1537 	pdn = pci_get_pdn(pdev);
1538 
1539 	if (!pdev->is_physfn)
1540 		return;
1541 
1542 	/* Reserve PE for each VF */
1543 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1544 		if (pdn->m64_single_mode)
1545 			pe_num = pdn->pe_num_map[vf_index];
1546 		else
1547 			pe_num = *pdn->pe_num_map + vf_index;
1548 
1549 		pe = &phb->ioda.pe_array[pe_num];
1550 		pe->pe_number = pe_num;
1551 		pe->phb = phb;
1552 		pe->flags = PNV_IODA_PE_VF;
1553 		pe->pbus = NULL;
1554 		pe->parent_dev = pdev;
1555 		pe->mve_number = -1;
1556 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1557 			   pci_iov_virtfn_devfn(pdev, vf_index);
1558 
1559 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1560 			hose->global_number, pdev->bus->number,
1561 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1562 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1563 
1564 		if (pnv_ioda_configure_pe(phb, pe)) {
1565 			/* XXX What do we do here ? */
1566 			pnv_ioda_free_pe(pe);
1567 			pe->pdev = NULL;
1568 			continue;
1569 		}
1570 
1571 		/* Put PE to the list */
1572 		mutex_lock(&phb->ioda.pe_list_mutex);
1573 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1574 		mutex_unlock(&phb->ioda.pe_list_mutex);
1575 
1576 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1577 	}
1578 }
1579 
1580 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1581 {
1582 	struct pci_bus        *bus;
1583 	struct pci_controller *hose;
1584 	struct pnv_phb        *phb;
1585 	struct pnv_ioda_pe    *pe;
1586 	struct pci_dn         *pdn;
1587 	int                    ret;
1588 	u16                    i;
1589 
1590 	bus = pdev->bus;
1591 	hose = pci_bus_to_host(bus);
1592 	phb = hose->private_data;
1593 	pdn = pci_get_pdn(pdev);
1594 
1595 	if (phb->type == PNV_PHB_IODA2) {
1596 		if (!pdn->vfs_expanded) {
1597 			dev_info(&pdev->dev, "don't support this SRIOV device"
1598 				" with non 64bit-prefetchable IOV BAR\n");
1599 			return -ENOSPC;
1600 		}
1601 
1602 		/*
1603 		 * When M64 BARs functions in Single PE mode, the number of VFs
1604 		 * could be enabled must be less than the number of M64 BARs.
1605 		 */
1606 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1607 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1608 			return -EBUSY;
1609 		}
1610 
1611 		/* Allocating pe_num_map */
1612 		if (pdn->m64_single_mode)
1613 			pdn->pe_num_map = kmalloc_array(num_vfs,
1614 							sizeof(*pdn->pe_num_map),
1615 							GFP_KERNEL);
1616 		else
1617 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1618 
1619 		if (!pdn->pe_num_map)
1620 			return -ENOMEM;
1621 
1622 		if (pdn->m64_single_mode)
1623 			for (i = 0; i < num_vfs; i++)
1624 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1625 
1626 		/* Calculate available PE for required VFs */
1627 		if (pdn->m64_single_mode) {
1628 			for (i = 0; i < num_vfs; i++) {
1629 				pe = pnv_ioda_alloc_pe(phb);
1630 				if (!pe) {
1631 					ret = -EBUSY;
1632 					goto m64_failed;
1633 				}
1634 
1635 				pdn->pe_num_map[i] = pe->pe_number;
1636 			}
1637 		} else {
1638 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1639 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1640 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1641 				0, num_vfs, 0);
1642 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1643 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1644 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1645 				kfree(pdn->pe_num_map);
1646 				return -EBUSY;
1647 			}
1648 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1649 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1650 		}
1651 		pdn->num_vfs = num_vfs;
1652 
1653 		/* Assign M64 window accordingly */
1654 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1655 		if (ret) {
1656 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1657 			goto m64_failed;
1658 		}
1659 
1660 		/*
1661 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1662 		 * the IOV BAR according to the PE# allocated to the VFs.
1663 		 * Otherwise, the PE# for the VF will conflict with others.
1664 		 */
1665 		if (!pdn->m64_single_mode) {
1666 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1667 			if (ret)
1668 				goto m64_failed;
1669 		}
1670 	}
1671 
1672 	/* Setup VF PEs */
1673 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1674 
1675 	return 0;
1676 
1677 m64_failed:
1678 	if (pdn->m64_single_mode) {
1679 		for (i = 0; i < num_vfs; i++) {
1680 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1681 				continue;
1682 
1683 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1684 			pnv_ioda_free_pe(pe);
1685 		}
1686 	} else
1687 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1688 
1689 	/* Releasing pe_num_map */
1690 	kfree(pdn->pe_num_map);
1691 
1692 	return ret;
1693 }
1694 
1695 int pcibios_sriov_disable(struct pci_dev *pdev)
1696 {
1697 	pnv_pci_sriov_disable(pdev);
1698 
1699 	/* Release PCI data */
1700 	remove_dev_pci_data(pdev);
1701 	return 0;
1702 }
1703 
1704 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1705 {
1706 	/* Allocate PCI data */
1707 	add_dev_pci_data(pdev);
1708 
1709 	return pnv_pci_sriov_enable(pdev, num_vfs);
1710 }
1711 #endif /* CONFIG_PCI_IOV */
1712 
1713 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1714 {
1715 	struct pci_dn *pdn = pci_get_pdn(pdev);
1716 	struct pnv_ioda_pe *pe;
1717 
1718 	/*
1719 	 * The function can be called while the PE#
1720 	 * hasn't been assigned. Do nothing for the
1721 	 * case.
1722 	 */
1723 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1724 		return;
1725 
1726 	pe = &phb->ioda.pe_array[pdn->pe_number];
1727 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1728 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1729 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1730 	/*
1731 	 * Note: iommu_add_device() will fail here as
1732 	 * for physical PE: the device is already added by now;
1733 	 * for virtual PE: sysfs entries are not ready yet and
1734 	 * tce_iommu_bus_notifier will add the device to a group later.
1735 	 */
1736 }
1737 
1738 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1739 {
1740 	unsigned short vendor = 0;
1741 	struct pci_dev *pdev;
1742 
1743 	if (pe->device_count == 1)
1744 		return true;
1745 
1746 	/* pe->pdev should be set if it's a single device, pe->pbus if not */
1747 	if (!pe->pbus)
1748 		return true;
1749 
1750 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1751 		if (!vendor) {
1752 			vendor = pdev->vendor;
1753 			continue;
1754 		}
1755 
1756 		if (pdev->vendor != vendor)
1757 			return false;
1758 	}
1759 
1760 	return true;
1761 }
1762 
1763 /*
1764  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1765  *
1766  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1767  * Devices can only access more than that if bit 59 of the PCI address is set
1768  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1769  * Many PCI devices are not capable of addressing that many bits, and as a
1770  * result are limited to the 4GB of virtual memory made available to 32-bit
1771  * devices in TVE#0.
1772  *
1773  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1774  * devices by configuring the virtual memory past the first 4GB inaccessible
1775  * by 64-bit DMAs.  This should only be used by devices that want more than
1776  * 4GB, and only on PEs that have no 32-bit devices.
1777  *
1778  * Currently this will only work on PHB3 (POWER8).
1779  */
1780 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1781 {
1782 	u64 window_size, table_size, tce_count, addr;
1783 	struct page *table_pages;
1784 	u64 tce_order = 28; /* 256MB TCEs */
1785 	__be64 *tces;
1786 	s64 rc;
1787 
1788 	/*
1789 	 * Window size needs to be a power of two, but needs to account for
1790 	 * shifting memory by the 4GB offset required to skip 32bit space.
1791 	 */
1792 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1793 	tce_count = window_size >> tce_order;
1794 	table_size = tce_count << 3;
1795 
1796 	if (table_size < PAGE_SIZE)
1797 		table_size = PAGE_SIZE;
1798 
1799 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1800 				       get_order(table_size));
1801 	if (!table_pages)
1802 		goto err;
1803 
1804 	tces = page_address(table_pages);
1805 	if (!tces)
1806 		goto err;
1807 
1808 	memset(tces, 0, table_size);
1809 
1810 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1811 		tces[(addr + (1ULL << 32)) >> tce_order] =
1812 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1813 	}
1814 
1815 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1816 					pe->pe_number,
1817 					/* reconfigure window 0 */
1818 					(pe->pe_number << 1) + 0,
1819 					1,
1820 					__pa(tces),
1821 					table_size,
1822 					1 << tce_order);
1823 	if (rc == OPAL_SUCCESS) {
1824 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1825 		return 0;
1826 	}
1827 err:
1828 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1829 	return -EIO;
1830 }
1831 
1832 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1833 {
1834 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1835 	struct pnv_phb *phb = hose->private_data;
1836 	struct pci_dn *pdn = pci_get_pdn(pdev);
1837 	struct pnv_ioda_pe *pe;
1838 	uint64_t top;
1839 	bool bypass = false;
1840 	s64 rc;
1841 
1842 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1843 		return -ENODEV;;
1844 
1845 	pe = &phb->ioda.pe_array[pdn->pe_number];
1846 	if (pe->tce_bypass_enabled) {
1847 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1848 		bypass = (dma_mask >= top);
1849 	}
1850 
1851 	if (bypass) {
1852 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1853 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1854 	} else {
1855 		/*
1856 		 * If the device can't set the TCE bypass bit but still wants
1857 		 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1858 		 * bypass the 32-bit region and be usable for 64-bit DMAs.
1859 		 * The device needs to be able to address all of this space.
1860 		 */
1861 		if (dma_mask >> 32 &&
1862 		    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1863 		    pnv_pci_ioda_pe_single_vendor(pe) &&
1864 		    phb->model == PNV_PHB_MODEL_PHB3) {
1865 			/* Configure the bypass mode */
1866 			rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1867 			if (rc)
1868 				return rc;
1869 			/* 4GB offset bypasses 32-bit space */
1870 			set_dma_offset(&pdev->dev, (1ULL << 32));
1871 			set_dma_ops(&pdev->dev, &dma_direct_ops);
1872 		} else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1873 			/*
1874 			 * Fail the request if a DMA mask between 32 and 64 bits
1875 			 * was requested but couldn't be fulfilled. Ideally we
1876 			 * would do this for 64-bits but historically we have
1877 			 * always fallen back to 32-bits.
1878 			 */
1879 			return -ENOMEM;
1880 		} else {
1881 			dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1882 			set_dma_ops(&pdev->dev, &dma_iommu_ops);
1883 		}
1884 	}
1885 	*pdev->dev.dma_mask = dma_mask;
1886 
1887 	/* Update peer npu devices */
1888 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1889 
1890 	return 0;
1891 }
1892 
1893 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1894 {
1895 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1896 	struct pnv_phb *phb = hose->private_data;
1897 	struct pci_dn *pdn = pci_get_pdn(pdev);
1898 	struct pnv_ioda_pe *pe;
1899 	u64 end, mask;
1900 
1901 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1902 		return 0;
1903 
1904 	pe = &phb->ioda.pe_array[pdn->pe_number];
1905 	if (!pe->tce_bypass_enabled)
1906 		return __dma_get_required_mask(&pdev->dev);
1907 
1908 
1909 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1910 	mask = 1ULL << (fls64(end) - 1);
1911 	mask += mask - 1;
1912 
1913 	return mask;
1914 }
1915 
1916 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1917 				   struct pci_bus *bus,
1918 				   bool add_to_group)
1919 {
1920 	struct pci_dev *dev;
1921 
1922 	list_for_each_entry(dev, &bus->devices, bus_list) {
1923 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1924 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1925 		if (add_to_group)
1926 			iommu_add_device(&dev->dev);
1927 
1928 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1929 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1930 					add_to_group);
1931 	}
1932 }
1933 
1934 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1935 						     bool real_mode)
1936 {
1937 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1938 		(phb->regs + 0x210);
1939 }
1940 
1941 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1942 		unsigned long index, unsigned long npages, bool rm)
1943 {
1944 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1945 			&tbl->it_group_list, struct iommu_table_group_link,
1946 			next);
1947 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1948 			struct pnv_ioda_pe, table_group);
1949 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1950 	unsigned long start, end, inc;
1951 
1952 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1953 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1954 			npages - 1);
1955 
1956 	/* p7ioc-style invalidation, 2 TCEs per write */
1957 	start |= (1ull << 63);
1958 	end |= (1ull << 63);
1959 	inc = 16;
1960         end |= inc - 1;	/* round up end to be different than start */
1961 
1962         mb(); /* Ensure above stores are visible */
1963         while (start <= end) {
1964 		if (rm)
1965 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1966 		else
1967 			__raw_writeq(cpu_to_be64(start), invalidate);
1968                 start += inc;
1969         }
1970 
1971 	/*
1972 	 * The iommu layer will do another mb() for us on build()
1973 	 * and we don't care on free()
1974 	 */
1975 }
1976 
1977 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1978 		long npages, unsigned long uaddr,
1979 		enum dma_data_direction direction,
1980 		unsigned long attrs)
1981 {
1982 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1983 			attrs);
1984 
1985 	if (!ret)
1986 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1987 
1988 	return ret;
1989 }
1990 
1991 #ifdef CONFIG_IOMMU_API
1992 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1993 		unsigned long *hpa, enum dma_data_direction *direction)
1994 {
1995 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1996 
1997 	if (!ret)
1998 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1999 
2000 	return ret;
2001 }
2002 
2003 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2004 		unsigned long *hpa, enum dma_data_direction *direction)
2005 {
2006 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2007 
2008 	if (!ret)
2009 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2010 
2011 	return ret;
2012 }
2013 #endif
2014 
2015 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2016 		long npages)
2017 {
2018 	pnv_tce_free(tbl, index, npages);
2019 
2020 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2021 }
2022 
2023 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2024 	.set = pnv_ioda1_tce_build,
2025 #ifdef CONFIG_IOMMU_API
2026 	.exchange = pnv_ioda1_tce_xchg,
2027 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
2028 #endif
2029 	.clear = pnv_ioda1_tce_free,
2030 	.get = pnv_tce_get,
2031 };
2032 
2033 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
2034 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
2035 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
2036 
2037 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2038 {
2039 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2040 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2041 
2042 	mb(); /* Ensure previous TCE table stores are visible */
2043 	if (rm)
2044 		__raw_rm_writeq(cpu_to_be64(val), invalidate);
2045 	else
2046 		__raw_writeq(cpu_to_be64(val), invalidate);
2047 }
2048 
2049 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2050 {
2051 	/* 01xb - invalidate TCEs that match the specified PE# */
2052 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2053 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2054 
2055 	mb(); /* Ensure above stores are visible */
2056 	__raw_writeq(cpu_to_be64(val), invalidate);
2057 }
2058 
2059 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2060 					unsigned shift, unsigned long index,
2061 					unsigned long npages)
2062 {
2063 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2064 	unsigned long start, end, inc;
2065 
2066 	/* We'll invalidate DMA address in PE scope */
2067 	start = PHB3_TCE_KILL_INVAL_ONE;
2068 	start |= (pe->pe_number & 0xFF);
2069 	end = start;
2070 
2071 	/* Figure out the start, end and step */
2072 	start |= (index << shift);
2073 	end |= ((index + npages - 1) << shift);
2074 	inc = (0x1ull << shift);
2075 	mb();
2076 
2077 	while (start <= end) {
2078 		if (rm)
2079 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
2080 		else
2081 			__raw_writeq(cpu_to_be64(start), invalidate);
2082 		start += inc;
2083 	}
2084 }
2085 
2086 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2087 {
2088 	struct pnv_phb *phb = pe->phb;
2089 
2090 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2091 		pnv_pci_phb3_tce_invalidate_pe(pe);
2092 	else
2093 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2094 				  pe->pe_number, 0, 0, 0);
2095 }
2096 
2097 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2098 		unsigned long index, unsigned long npages, bool rm)
2099 {
2100 	struct iommu_table_group_link *tgl;
2101 
2102 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2103 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2104 				struct pnv_ioda_pe, table_group);
2105 		struct pnv_phb *phb = pe->phb;
2106 		unsigned int shift = tbl->it_page_shift;
2107 
2108 		/*
2109 		 * NVLink1 can use the TCE kill register directly as
2110 		 * it's the same as PHB3. NVLink2 is different and
2111 		 * should go via the OPAL call.
2112 		 */
2113 		if (phb->model == PNV_PHB_MODEL_NPU) {
2114 			/*
2115 			 * The NVLink hardware does not support TCE kill
2116 			 * per TCE entry so we have to invalidate
2117 			 * the entire cache for it.
2118 			 */
2119 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2120 			continue;
2121 		}
2122 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2123 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2124 						    index, npages);
2125 		else
2126 			opal_pci_tce_kill(phb->opal_id,
2127 					  OPAL_PCI_TCE_KILL_PAGES,
2128 					  pe->pe_number, 1u << shift,
2129 					  index << shift, npages);
2130 	}
2131 }
2132 
2133 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2134 {
2135 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2136 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2137 	else
2138 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2139 }
2140 
2141 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2142 		long npages, unsigned long uaddr,
2143 		enum dma_data_direction direction,
2144 		unsigned long attrs)
2145 {
2146 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2147 			attrs);
2148 
2149 	if (!ret)
2150 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2151 
2152 	return ret;
2153 }
2154 
2155 #ifdef CONFIG_IOMMU_API
2156 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2157 		unsigned long *hpa, enum dma_data_direction *direction)
2158 {
2159 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2160 
2161 	if (!ret)
2162 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2163 
2164 	return ret;
2165 }
2166 
2167 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2168 		unsigned long *hpa, enum dma_data_direction *direction)
2169 {
2170 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2171 
2172 	if (!ret)
2173 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2174 
2175 	return ret;
2176 }
2177 #endif
2178 
2179 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2180 		long npages)
2181 {
2182 	pnv_tce_free(tbl, index, npages);
2183 
2184 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2185 }
2186 
2187 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2188 {
2189 	pnv_pci_ioda2_table_free_pages(tbl);
2190 }
2191 
2192 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2193 	.set = pnv_ioda2_tce_build,
2194 #ifdef CONFIG_IOMMU_API
2195 	.exchange = pnv_ioda2_tce_xchg,
2196 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2197 #endif
2198 	.clear = pnv_ioda2_tce_free,
2199 	.get = pnv_tce_get,
2200 	.free = pnv_ioda2_table_free,
2201 };
2202 
2203 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2204 {
2205 	unsigned int *weight = (unsigned int *)data;
2206 
2207 	/* This is quite simplistic. The "base" weight of a device
2208 	 * is 10. 0 means no DMA is to be accounted for it.
2209 	 */
2210 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2211 		return 0;
2212 
2213 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2214 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2215 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2216 		*weight += 3;
2217 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2218 		*weight += 15;
2219 	else
2220 		*weight += 10;
2221 
2222 	return 0;
2223 }
2224 
2225 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2226 {
2227 	unsigned int weight = 0;
2228 
2229 	/* SRIOV VF has same DMA32 weight as its PF */
2230 #ifdef CONFIG_PCI_IOV
2231 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2232 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2233 		return weight;
2234 	}
2235 #endif
2236 
2237 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2238 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2239 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2240 		struct pci_dev *pdev;
2241 
2242 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2243 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2244 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2245 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2246 	}
2247 
2248 	return weight;
2249 }
2250 
2251 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2252 				       struct pnv_ioda_pe *pe)
2253 {
2254 
2255 	struct page *tce_mem = NULL;
2256 	struct iommu_table *tbl;
2257 	unsigned int weight, total_weight = 0;
2258 	unsigned int tce32_segsz, base, segs, avail, i;
2259 	int64_t rc;
2260 	void *addr;
2261 
2262 	/* XXX FIXME: Handle 64-bit only DMA devices */
2263 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2264 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2265 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2266 	if (!weight)
2267 		return;
2268 
2269 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2270 		     &total_weight);
2271 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2272 	if (!segs)
2273 		segs = 1;
2274 
2275 	/*
2276 	 * Allocate contiguous DMA32 segments. We begin with the expected
2277 	 * number of segments. With one more attempt, the number of DMA32
2278 	 * segments to be allocated is decreased by one until one segment
2279 	 * is allocated successfully.
2280 	 */
2281 	do {
2282 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2283 			for (avail = 0, i = base; i < base + segs; i++) {
2284 				if (phb->ioda.dma32_segmap[i] ==
2285 				    IODA_INVALID_PE)
2286 					avail++;
2287 			}
2288 
2289 			if (avail == segs)
2290 				goto found;
2291 		}
2292 	} while (--segs);
2293 
2294 	if (!segs) {
2295 		pe_warn(pe, "No available DMA32 segments\n");
2296 		return;
2297 	}
2298 
2299 found:
2300 	tbl = pnv_pci_table_alloc(phb->hose->node);
2301 	if (WARN_ON(!tbl))
2302 		return;
2303 
2304 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2305 			pe->pe_number);
2306 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2307 
2308 	/* Grab a 32-bit TCE table */
2309 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2310 		weight, total_weight, base, segs);
2311 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2312 		base * PNV_IODA1_DMA32_SEGSIZE,
2313 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2314 
2315 	/* XXX Currently, we allocate one big contiguous table for the
2316 	 * TCEs. We only really need one chunk per 256M of TCE space
2317 	 * (ie per segment) but that's an optimization for later, it
2318 	 * requires some added smarts with our get/put_tce implementation
2319 	 *
2320 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2321 	 * bytes
2322 	 */
2323 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2324 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2325 				   get_order(tce32_segsz * segs));
2326 	if (!tce_mem) {
2327 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2328 		goto fail;
2329 	}
2330 	addr = page_address(tce_mem);
2331 	memset(addr, 0, tce32_segsz * segs);
2332 
2333 	/* Configure HW */
2334 	for (i = 0; i < segs; i++) {
2335 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2336 					      pe->pe_number,
2337 					      base + i, 1,
2338 					      __pa(addr) + tce32_segsz * i,
2339 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2340 		if (rc) {
2341 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2342 			       " err %ld\n", rc);
2343 			goto fail;
2344 		}
2345 	}
2346 
2347 	/* Setup DMA32 segment mapping */
2348 	for (i = base; i < base + segs; i++)
2349 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2350 
2351 	/* Setup linux iommu table */
2352 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2353 				  base * PNV_IODA1_DMA32_SEGSIZE,
2354 				  IOMMU_PAGE_SHIFT_4K);
2355 
2356 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2357 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2358 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2359 	iommu_init_table(tbl, phb->hose->node);
2360 
2361 	if (pe->flags & PNV_IODA_PE_DEV) {
2362 		/*
2363 		 * Setting table base here only for carrying iommu_group
2364 		 * further down to let iommu_add_device() do the job.
2365 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2366 		 */
2367 		set_iommu_table_base(&pe->pdev->dev, tbl);
2368 		iommu_add_device(&pe->pdev->dev);
2369 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2370 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2371 
2372 	return;
2373  fail:
2374 	/* XXX Failure: Try to fallback to 64-bit only ? */
2375 	if (tce_mem)
2376 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2377 	if (tbl) {
2378 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2379 		iommu_tce_table_put(tbl);
2380 	}
2381 }
2382 
2383 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2384 		int num, struct iommu_table *tbl)
2385 {
2386 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2387 			table_group);
2388 	struct pnv_phb *phb = pe->phb;
2389 	int64_t rc;
2390 	const unsigned long size = tbl->it_indirect_levels ?
2391 			tbl->it_level_size : tbl->it_size;
2392 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2393 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2394 
2395 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2396 			start_addr, start_addr + win_size - 1,
2397 			IOMMU_PAGE_SIZE(tbl));
2398 
2399 	/*
2400 	 * Map TCE table through TVT. The TVE index is the PE number
2401 	 * shifted by 1 bit for 32-bits DMA space.
2402 	 */
2403 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2404 			pe->pe_number,
2405 			(pe->pe_number << 1) + num,
2406 			tbl->it_indirect_levels + 1,
2407 			__pa(tbl->it_base),
2408 			size << 3,
2409 			IOMMU_PAGE_SIZE(tbl));
2410 	if (rc) {
2411 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2412 		return rc;
2413 	}
2414 
2415 	pnv_pci_link_table_and_group(phb->hose->node, num,
2416 			tbl, &pe->table_group);
2417 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2418 
2419 	return 0;
2420 }
2421 
2422 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2423 {
2424 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2425 	int64_t rc;
2426 
2427 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2428 	if (enable) {
2429 		phys_addr_t top = memblock_end_of_DRAM();
2430 
2431 		top = roundup_pow_of_two(top);
2432 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2433 						     pe->pe_number,
2434 						     window_id,
2435 						     pe->tce_bypass_base,
2436 						     top);
2437 	} else {
2438 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2439 						     pe->pe_number,
2440 						     window_id,
2441 						     pe->tce_bypass_base,
2442 						     0);
2443 	}
2444 	if (rc)
2445 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2446 	else
2447 		pe->tce_bypass_enabled = enable;
2448 }
2449 
2450 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2451 		__u32 page_shift, __u64 window_size, __u32 levels,
2452 		struct iommu_table *tbl);
2453 
2454 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2455 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2456 		struct iommu_table **ptbl)
2457 {
2458 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2459 			table_group);
2460 	int nid = pe->phb->hose->node;
2461 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2462 	long ret;
2463 	struct iommu_table *tbl;
2464 
2465 	tbl = pnv_pci_table_alloc(nid);
2466 	if (!tbl)
2467 		return -ENOMEM;
2468 
2469 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2470 
2471 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2472 			bus_offset, page_shift, window_size,
2473 			levels, tbl);
2474 	if (ret) {
2475 		iommu_tce_table_put(tbl);
2476 		return ret;
2477 	}
2478 
2479 	*ptbl = tbl;
2480 
2481 	return 0;
2482 }
2483 
2484 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2485 {
2486 	struct iommu_table *tbl = NULL;
2487 	long rc;
2488 
2489 	/*
2490 	 * crashkernel= specifies the kdump kernel's maximum memory at
2491 	 * some offset and there is no guaranteed the result is a power
2492 	 * of 2, which will cause errors later.
2493 	 */
2494 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2495 
2496 	/*
2497 	 * In memory constrained environments, e.g. kdump kernel, the
2498 	 * DMA window can be larger than available memory, which will
2499 	 * cause errors later.
2500 	 */
2501 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2502 
2503 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2504 			IOMMU_PAGE_SHIFT_4K,
2505 			window_size,
2506 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2507 	if (rc) {
2508 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2509 				rc);
2510 		return rc;
2511 	}
2512 
2513 	iommu_init_table(tbl, pe->phb->hose->node);
2514 
2515 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2516 	if (rc) {
2517 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2518 				rc);
2519 		iommu_tce_table_put(tbl);
2520 		return rc;
2521 	}
2522 
2523 	if (!pnv_iommu_bypass_disabled)
2524 		pnv_pci_ioda2_set_bypass(pe, true);
2525 
2526 	/*
2527 	 * Setting table base here only for carrying iommu_group
2528 	 * further down to let iommu_add_device() do the job.
2529 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2530 	 */
2531 	if (pe->flags & PNV_IODA_PE_DEV)
2532 		set_iommu_table_base(&pe->pdev->dev, tbl);
2533 
2534 	return 0;
2535 }
2536 
2537 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2538 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2539 		int num)
2540 {
2541 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2542 			table_group);
2543 	struct pnv_phb *phb = pe->phb;
2544 	long ret;
2545 
2546 	pe_info(pe, "Removing DMA window #%d\n", num);
2547 
2548 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2549 			(pe->pe_number << 1) + num,
2550 			0/* levels */, 0/* table address */,
2551 			0/* table size */, 0/* page size */);
2552 	if (ret)
2553 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2554 	else
2555 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2556 
2557 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2558 
2559 	return ret;
2560 }
2561 #endif
2562 
2563 #ifdef CONFIG_IOMMU_API
2564 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2565 		__u64 window_size, __u32 levels)
2566 {
2567 	unsigned long bytes = 0;
2568 	const unsigned window_shift = ilog2(window_size);
2569 	unsigned entries_shift = window_shift - page_shift;
2570 	unsigned table_shift = entries_shift + 3;
2571 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2572 	unsigned long direct_table_size;
2573 
2574 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2575 			(window_size > memory_hotplug_max()) ||
2576 			!is_power_of_2(window_size))
2577 		return 0;
2578 
2579 	/* Calculate a direct table size from window_size and levels */
2580 	entries_shift = (entries_shift + levels - 1) / levels;
2581 	table_shift = entries_shift + 3;
2582 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2583 	direct_table_size =  1UL << table_shift;
2584 
2585 	for ( ; levels; --levels) {
2586 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2587 
2588 		tce_table_size /= direct_table_size;
2589 		tce_table_size <<= 3;
2590 		tce_table_size = max_t(unsigned long,
2591 				tce_table_size, direct_table_size);
2592 	}
2593 
2594 	return bytes;
2595 }
2596 
2597 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2598 {
2599 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2600 						table_group);
2601 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2602 	struct iommu_table *tbl = pe->table_group.tables[0];
2603 
2604 	pnv_pci_ioda2_set_bypass(pe, false);
2605 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2606 	if (pe->pbus)
2607 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2608 	iommu_tce_table_put(tbl);
2609 }
2610 
2611 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2612 {
2613 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2614 						table_group);
2615 
2616 	pnv_pci_ioda2_setup_default_config(pe);
2617 	if (pe->pbus)
2618 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2619 }
2620 
2621 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2622 	.get_table_size = pnv_pci_ioda2_get_table_size,
2623 	.create_table = pnv_pci_ioda2_create_table,
2624 	.set_window = pnv_pci_ioda2_set_window,
2625 	.unset_window = pnv_pci_ioda2_unset_window,
2626 	.take_ownership = pnv_ioda2_take_ownership,
2627 	.release_ownership = pnv_ioda2_release_ownership,
2628 };
2629 
2630 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2631 {
2632 	struct pci_controller *hose;
2633 	struct pnv_phb *phb;
2634 	struct pnv_ioda_pe **ptmppe = opaque;
2635 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2636 	struct pci_dn *pdn = pci_get_pdn(pdev);
2637 
2638 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2639 		return 0;
2640 
2641 	hose = pci_bus_to_host(pdev->bus);
2642 	phb = hose->private_data;
2643 	if (phb->type != PNV_PHB_NPU)
2644 		return 0;
2645 
2646 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2647 
2648 	return 1;
2649 }
2650 
2651 /*
2652  * This returns PE of associated NPU.
2653  * This assumes that NPU is in the same IOMMU group with GPU and there is
2654  * no other PEs.
2655  */
2656 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2657 		struct iommu_table_group *table_group)
2658 {
2659 	struct pnv_ioda_pe *npe = NULL;
2660 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2661 			gpe_table_group_to_npe_cb);
2662 
2663 	BUG_ON(!ret || !npe);
2664 
2665 	return npe;
2666 }
2667 
2668 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2669 		int num, struct iommu_table *tbl)
2670 {
2671 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2672 
2673 	if (ret)
2674 		return ret;
2675 
2676 	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2677 	if (ret)
2678 		pnv_pci_ioda2_unset_window(table_group, num);
2679 
2680 	return ret;
2681 }
2682 
2683 static long pnv_pci_ioda2_npu_unset_window(
2684 		struct iommu_table_group *table_group,
2685 		int num)
2686 {
2687 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2688 
2689 	if (ret)
2690 		return ret;
2691 
2692 	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2693 }
2694 
2695 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2696 {
2697 	/*
2698 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2699 	 * the iommu_table if 32bit DMA is enabled.
2700 	 */
2701 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2702 	pnv_ioda2_take_ownership(table_group);
2703 }
2704 
2705 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2706 	.get_table_size = pnv_pci_ioda2_get_table_size,
2707 	.create_table = pnv_pci_ioda2_create_table,
2708 	.set_window = pnv_pci_ioda2_npu_set_window,
2709 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2710 	.take_ownership = pnv_ioda2_npu_take_ownership,
2711 	.release_ownership = pnv_ioda2_release_ownership,
2712 };
2713 
2714 static void pnv_pci_ioda_setup_iommu_api(void)
2715 {
2716 	struct pci_controller *hose, *tmp;
2717 	struct pnv_phb *phb;
2718 	struct pnv_ioda_pe *pe, *gpe;
2719 
2720 	/*
2721 	 * Now we have all PHBs discovered, time to add NPU devices to
2722 	 * the corresponding IOMMU groups.
2723 	 */
2724 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2725 		phb = hose->private_data;
2726 
2727 		if (phb->type != PNV_PHB_NPU)
2728 			continue;
2729 
2730 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2731 			gpe = pnv_pci_npu_setup_iommu(pe);
2732 			if (gpe)
2733 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2734 		}
2735 	}
2736 }
2737 #else /* !CONFIG_IOMMU_API */
2738 static void pnv_pci_ioda_setup_iommu_api(void) { };
2739 #endif
2740 
2741 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2742 		unsigned levels, unsigned long limit,
2743 		unsigned long *current_offset, unsigned long *total_allocated)
2744 {
2745 	struct page *tce_mem = NULL;
2746 	__be64 *addr, *tmp;
2747 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2748 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2749 	unsigned entries = 1UL << (shift - 3);
2750 	long i;
2751 
2752 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2753 	if (!tce_mem) {
2754 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2755 		return NULL;
2756 	}
2757 	addr = page_address(tce_mem);
2758 	memset(addr, 0, allocated);
2759 	*total_allocated += allocated;
2760 
2761 	--levels;
2762 	if (!levels) {
2763 		*current_offset += allocated;
2764 		return addr;
2765 	}
2766 
2767 	for (i = 0; i < entries; ++i) {
2768 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2769 				levels, limit, current_offset, total_allocated);
2770 		if (!tmp)
2771 			break;
2772 
2773 		addr[i] = cpu_to_be64(__pa(tmp) |
2774 				TCE_PCI_READ | TCE_PCI_WRITE);
2775 
2776 		if (*current_offset >= limit)
2777 			break;
2778 	}
2779 
2780 	return addr;
2781 }
2782 
2783 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2784 		unsigned long size, unsigned level);
2785 
2786 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2787 		__u32 page_shift, __u64 window_size, __u32 levels,
2788 		struct iommu_table *tbl)
2789 {
2790 	void *addr;
2791 	unsigned long offset = 0, level_shift, total_allocated = 0;
2792 	const unsigned window_shift = ilog2(window_size);
2793 	unsigned entries_shift = window_shift - page_shift;
2794 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2795 	const unsigned long tce_table_size = 1UL << table_shift;
2796 
2797 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2798 		return -EINVAL;
2799 
2800 	if (!is_power_of_2(window_size))
2801 		return -EINVAL;
2802 
2803 	/* Adjust direct table size from window_size and levels */
2804 	entries_shift = (entries_shift + levels - 1) / levels;
2805 	level_shift = entries_shift + 3;
2806 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2807 
2808 	if ((level_shift - 3) * levels + page_shift >= 60)
2809 		return -EINVAL;
2810 
2811 	/* Allocate TCE table */
2812 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2813 			levels, tce_table_size, &offset, &total_allocated);
2814 
2815 	/* addr==NULL means that the first level allocation failed */
2816 	if (!addr)
2817 		return -ENOMEM;
2818 
2819 	/*
2820 	 * First level was allocated but some lower level failed as
2821 	 * we did not allocate as much as we wanted,
2822 	 * release partially allocated table.
2823 	 */
2824 	if (offset < tce_table_size) {
2825 		pnv_pci_ioda2_table_do_free_pages(addr,
2826 				1ULL << (level_shift - 3), levels - 1);
2827 		return -ENOMEM;
2828 	}
2829 
2830 	/* Setup linux iommu table */
2831 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2832 			page_shift);
2833 	tbl->it_level_size = 1ULL << (level_shift - 3);
2834 	tbl->it_indirect_levels = levels - 1;
2835 	tbl->it_allocated_size = total_allocated;
2836 
2837 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2838 			window_size, tce_table_size, bus_offset);
2839 
2840 	return 0;
2841 }
2842 
2843 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2844 		unsigned long size, unsigned level)
2845 {
2846 	const unsigned long addr_ul = (unsigned long) addr &
2847 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2848 
2849 	if (level) {
2850 		long i;
2851 		u64 *tmp = (u64 *) addr_ul;
2852 
2853 		for (i = 0; i < size; ++i) {
2854 			unsigned long hpa = be64_to_cpu(tmp[i]);
2855 
2856 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2857 				continue;
2858 
2859 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2860 					level - 1);
2861 		}
2862 	}
2863 
2864 	free_pages(addr_ul, get_order(size << 3));
2865 }
2866 
2867 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2868 {
2869 	const unsigned long size = tbl->it_indirect_levels ?
2870 			tbl->it_level_size : tbl->it_size;
2871 
2872 	if (!tbl->it_size)
2873 		return;
2874 
2875 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2876 			tbl->it_indirect_levels);
2877 }
2878 
2879 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2880 				       struct pnv_ioda_pe *pe)
2881 {
2882 	int64_t rc;
2883 
2884 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2885 		return;
2886 
2887 	/* TVE #1 is selected by PCI address bit 59 */
2888 	pe->tce_bypass_base = 1ull << 59;
2889 
2890 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2891 			pe->pe_number);
2892 
2893 	/* The PE will reserve all possible 32-bits space */
2894 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2895 		phb->ioda.m32_pci_base);
2896 
2897 	/* Setup linux iommu table */
2898 	pe->table_group.tce32_start = 0;
2899 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2900 	pe->table_group.max_dynamic_windows_supported =
2901 			IOMMU_TABLE_GROUP_MAX_TABLES;
2902 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2903 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2904 #ifdef CONFIG_IOMMU_API
2905 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2906 #endif
2907 
2908 	rc = pnv_pci_ioda2_setup_default_config(pe);
2909 	if (rc)
2910 		return;
2911 
2912 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2913 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2914 }
2915 
2916 #ifdef CONFIG_PCI_MSI
2917 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2918 {
2919 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2920 					   ioda.irq_chip);
2921 
2922 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2923 }
2924 
2925 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2926 {
2927 	int64_t rc;
2928 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2929 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2930 
2931 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2932 	WARN_ON_ONCE(rc);
2933 
2934 	icp_native_eoi(d);
2935 }
2936 
2937 
2938 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2939 {
2940 	struct irq_data *idata;
2941 	struct irq_chip *ichip;
2942 
2943 	/* The MSI EOI OPAL call is only needed on PHB3 */
2944 	if (phb->model != PNV_PHB_MODEL_PHB3)
2945 		return;
2946 
2947 	if (!phb->ioda.irq_chip_init) {
2948 		/*
2949 		 * First time we setup an MSI IRQ, we need to setup the
2950 		 * corresponding IRQ chip to route correctly.
2951 		 */
2952 		idata = irq_get_irq_data(virq);
2953 		ichip = irq_data_get_irq_chip(idata);
2954 		phb->ioda.irq_chip_init = 1;
2955 		phb->ioda.irq_chip = *ichip;
2956 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2957 	}
2958 	irq_set_chip(virq, &phb->ioda.irq_chip);
2959 }
2960 
2961 /*
2962  * Returns true iff chip is something that we could call
2963  * pnv_opal_pci_msi_eoi for.
2964  */
2965 bool is_pnv_opal_msi(struct irq_chip *chip)
2966 {
2967 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2968 }
2969 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2970 
2971 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2972 				  unsigned int hwirq, unsigned int virq,
2973 				  unsigned int is_64, struct msi_msg *msg)
2974 {
2975 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2976 	unsigned int xive_num = hwirq - phb->msi_base;
2977 	__be32 data;
2978 	int rc;
2979 
2980 	/* No PE assigned ? bail out ... no MSI for you ! */
2981 	if (pe == NULL)
2982 		return -ENXIO;
2983 
2984 	/* Check if we have an MVE */
2985 	if (pe->mve_number < 0)
2986 		return -ENXIO;
2987 
2988 	/* Force 32-bit MSI on some broken devices */
2989 	if (dev->no_64bit_msi)
2990 		is_64 = 0;
2991 
2992 	/* Assign XIVE to PE */
2993 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2994 	if (rc) {
2995 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2996 			pci_name(dev), rc, xive_num);
2997 		return -EIO;
2998 	}
2999 
3000 	if (is_64) {
3001 		__be64 addr64;
3002 
3003 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
3004 				     &addr64, &data);
3005 		if (rc) {
3006 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
3007 				pci_name(dev), rc);
3008 			return -EIO;
3009 		}
3010 		msg->address_hi = be64_to_cpu(addr64) >> 32;
3011 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
3012 	} else {
3013 		__be32 addr32;
3014 
3015 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
3016 				     &addr32, &data);
3017 		if (rc) {
3018 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
3019 				pci_name(dev), rc);
3020 			return -EIO;
3021 		}
3022 		msg->address_hi = 0;
3023 		msg->address_lo = be32_to_cpu(addr32);
3024 	}
3025 	msg->data = be32_to_cpu(data);
3026 
3027 	pnv_set_msi_irq_chip(phb, virq);
3028 
3029 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
3030 		 " address=%x_%08x data=%x PE# %x\n",
3031 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
3032 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
3033 
3034 	return 0;
3035 }
3036 
3037 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
3038 {
3039 	unsigned int count;
3040 	const __be32 *prop = of_get_property(phb->hose->dn,
3041 					     "ibm,opal-msi-ranges", NULL);
3042 	if (!prop) {
3043 		/* BML Fallback */
3044 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
3045 	}
3046 	if (!prop)
3047 		return;
3048 
3049 	phb->msi_base = be32_to_cpup(prop);
3050 	count = be32_to_cpup(prop + 1);
3051 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
3052 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3053 		       phb->hose->global_number);
3054 		return;
3055 	}
3056 
3057 	phb->msi_setup = pnv_pci_ioda_msi_setup;
3058 	phb->msi32_support = 1;
3059 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3060 		count, phb->msi_base);
3061 }
3062 #else
3063 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3064 #endif /* CONFIG_PCI_MSI */
3065 
3066 #ifdef CONFIG_PCI_IOV
3067 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3068 {
3069 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3070 	struct pnv_phb *phb = hose->private_data;
3071 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3072 	struct resource *res;
3073 	int i;
3074 	resource_size_t size, total_vf_bar_sz;
3075 	struct pci_dn *pdn;
3076 	int mul, total_vfs;
3077 
3078 	if (!pdev->is_physfn || pdev->is_added)
3079 		return;
3080 
3081 	pdn = pci_get_pdn(pdev);
3082 	pdn->vfs_expanded = 0;
3083 	pdn->m64_single_mode = false;
3084 
3085 	total_vfs = pci_sriov_get_totalvfs(pdev);
3086 	mul = phb->ioda.total_pe_num;
3087 	total_vf_bar_sz = 0;
3088 
3089 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3090 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3091 		if (!res->flags || res->parent)
3092 			continue;
3093 		if (!pnv_pci_is_m64_flags(res->flags)) {
3094 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
3095 					" non M64 VF BAR%d: %pR. \n",
3096 				 i, res);
3097 			goto truncate_iov;
3098 		}
3099 
3100 		total_vf_bar_sz += pci_iov_resource_size(pdev,
3101 				i + PCI_IOV_RESOURCES);
3102 
3103 		/*
3104 		 * If bigger than quarter of M64 segment size, just round up
3105 		 * power of two.
3106 		 *
3107 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3108 		 * with other devices, IOV BAR size is expanded to be
3109 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3110 		 * segment size , the expanded size would equal to half of the
3111 		 * whole M64 space size, which will exhaust the M64 Space and
3112 		 * limit the system flexibility.  This is a design decision to
3113 		 * set the boundary to quarter of the M64 segment size.
3114 		 */
3115 		if (total_vf_bar_sz > gate) {
3116 			mul = roundup_pow_of_two(total_vfs);
3117 			dev_info(&pdev->dev,
3118 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3119 				total_vf_bar_sz, gate, mul);
3120 			pdn->m64_single_mode = true;
3121 			break;
3122 		}
3123 	}
3124 
3125 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3126 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3127 		if (!res->flags || res->parent)
3128 			continue;
3129 
3130 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3131 		/*
3132 		 * On PHB3, the minimum size alignment of M64 BAR in single
3133 		 * mode is 32MB.
3134 		 */
3135 		if (pdn->m64_single_mode && (size < SZ_32M))
3136 			goto truncate_iov;
3137 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3138 		res->end = res->start + size * mul - 1;
3139 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3140 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3141 			 i, res, mul);
3142 	}
3143 	pdn->vfs_expanded = mul;
3144 
3145 	return;
3146 
3147 truncate_iov:
3148 	/* To save MMIO space, IOV BAR is truncated. */
3149 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3150 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3151 		res->flags = 0;
3152 		res->end = res->start - 1;
3153 	}
3154 }
3155 #endif /* CONFIG_PCI_IOV */
3156 
3157 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3158 				  struct resource *res)
3159 {
3160 	struct pnv_phb *phb = pe->phb;
3161 	struct pci_bus_region region;
3162 	int index;
3163 	int64_t rc;
3164 
3165 	if (!res || !res->flags || res->start > res->end)
3166 		return;
3167 
3168 	if (res->flags & IORESOURCE_IO) {
3169 		region.start = res->start - phb->ioda.io_pci_base;
3170 		region.end   = res->end - phb->ioda.io_pci_base;
3171 		index = region.start / phb->ioda.io_segsize;
3172 
3173 		while (index < phb->ioda.total_pe_num &&
3174 		       region.start <= region.end) {
3175 			phb->ioda.io_segmap[index] = pe->pe_number;
3176 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3177 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3178 			if (rc != OPAL_SUCCESS) {
3179 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3180 				       __func__, rc, index, pe->pe_number);
3181 				break;
3182 			}
3183 
3184 			region.start += phb->ioda.io_segsize;
3185 			index++;
3186 		}
3187 	} else if ((res->flags & IORESOURCE_MEM) &&
3188 		   !pnv_pci_is_m64(phb, res)) {
3189 		region.start = res->start -
3190 			       phb->hose->mem_offset[0] -
3191 			       phb->ioda.m32_pci_base;
3192 		region.end   = res->end -
3193 			       phb->hose->mem_offset[0] -
3194 			       phb->ioda.m32_pci_base;
3195 		index = region.start / phb->ioda.m32_segsize;
3196 
3197 		while (index < phb->ioda.total_pe_num &&
3198 		       region.start <= region.end) {
3199 			phb->ioda.m32_segmap[index] = pe->pe_number;
3200 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3201 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3202 			if (rc != OPAL_SUCCESS) {
3203 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3204 				       __func__, rc, index, pe->pe_number);
3205 				break;
3206 			}
3207 
3208 			region.start += phb->ioda.m32_segsize;
3209 			index++;
3210 		}
3211 	}
3212 }
3213 
3214 /*
3215  * This function is supposed to be called on basis of PE from top
3216  * to bottom style. So the the I/O or MMIO segment assigned to
3217  * parent PE could be overridden by its child PEs if necessary.
3218  */
3219 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3220 {
3221 	struct pci_dev *pdev;
3222 	int i;
3223 
3224 	/*
3225 	 * NOTE: We only care PCI bus based PE for now. For PCI
3226 	 * device based PE, for example SRIOV sensitive VF should
3227 	 * be figured out later.
3228 	 */
3229 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3230 
3231 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3232 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3233 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3234 
3235 		/*
3236 		 * If the PE contains all subordinate PCI buses, the
3237 		 * windows of the child bridges should be mapped to
3238 		 * the PE as well.
3239 		 */
3240 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3241 			continue;
3242 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3243 			pnv_ioda_setup_pe_res(pe,
3244 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3245 	}
3246 }
3247 
3248 #ifdef CONFIG_DEBUG_FS
3249 static int pnv_pci_diag_data_set(void *data, u64 val)
3250 {
3251 	struct pci_controller *hose;
3252 	struct pnv_phb *phb;
3253 	s64 ret;
3254 
3255 	if (val != 1ULL)
3256 		return -EINVAL;
3257 
3258 	hose = (struct pci_controller *)data;
3259 	if (!hose || !hose->private_data)
3260 		return -ENODEV;
3261 
3262 	phb = hose->private_data;
3263 
3264 	/* Retrieve the diag data from firmware */
3265 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3266 					  phb->diag_data_size);
3267 	if (ret != OPAL_SUCCESS)
3268 		return -EIO;
3269 
3270 	/* Print the diag data to the kernel log */
3271 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3272 	return 0;
3273 }
3274 
3275 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3276 			pnv_pci_diag_data_set, "%llu\n");
3277 
3278 #endif /* CONFIG_DEBUG_FS */
3279 
3280 static void pnv_pci_ioda_create_dbgfs(void)
3281 {
3282 #ifdef CONFIG_DEBUG_FS
3283 	struct pci_controller *hose, *tmp;
3284 	struct pnv_phb *phb;
3285 	char name[16];
3286 
3287 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3288 		phb = hose->private_data;
3289 
3290 		/* Notify initialization of PHB done */
3291 		phb->initialized = 1;
3292 
3293 		sprintf(name, "PCI%04x", hose->global_number);
3294 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3295 		if (!phb->dbgfs) {
3296 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3297 				__func__, hose->global_number);
3298 			continue;
3299 		}
3300 
3301 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3302 				    &pnv_pci_diag_data_fops);
3303 	}
3304 #endif /* CONFIG_DEBUG_FS */
3305 }
3306 
3307 static void pnv_pci_ioda_fixup(void)
3308 {
3309 	pnv_pci_ioda_setup_PEs();
3310 	pnv_pci_ioda_setup_iommu_api();
3311 	pnv_pci_ioda_create_dbgfs();
3312 
3313 #ifdef CONFIG_EEH
3314 	pnv_eeh_post_init();
3315 #endif
3316 }
3317 
3318 /*
3319  * Returns the alignment for I/O or memory windows for P2P
3320  * bridges. That actually depends on how PEs are segmented.
3321  * For now, we return I/O or M32 segment size for PE sensitive
3322  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3323  * 1MiB for memory) will be returned.
3324  *
3325  * The current PCI bus might be put into one PE, which was
3326  * create against the parent PCI bridge. For that case, we
3327  * needn't enlarge the alignment so that we can save some
3328  * resources.
3329  */
3330 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3331 						unsigned long type)
3332 {
3333 	struct pci_dev *bridge;
3334 	struct pci_controller *hose = pci_bus_to_host(bus);
3335 	struct pnv_phb *phb = hose->private_data;
3336 	int num_pci_bridges = 0;
3337 
3338 	bridge = bus->self;
3339 	while (bridge) {
3340 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3341 			num_pci_bridges++;
3342 			if (num_pci_bridges >= 2)
3343 				return 1;
3344 		}
3345 
3346 		bridge = bridge->bus->self;
3347 	}
3348 
3349 	/*
3350 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3351 	 * alignment for any 64-bit resource, PCIe doesn't care and
3352 	 * bridges only do 64-bit prefetchable anyway.
3353 	 */
3354 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3355 		return phb->ioda.m64_segsize;
3356 	if (type & IORESOURCE_MEM)
3357 		return phb->ioda.m32_segsize;
3358 
3359 	return phb->ioda.io_segsize;
3360 }
3361 
3362 /*
3363  * We are updating root port or the upstream port of the
3364  * bridge behind the root port with PHB's windows in order
3365  * to accommodate the changes on required resources during
3366  * PCI (slot) hotplug, which is connected to either root
3367  * port or the downstream ports of PCIe switch behind the
3368  * root port.
3369  */
3370 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3371 					   unsigned long type)
3372 {
3373 	struct pci_controller *hose = pci_bus_to_host(bus);
3374 	struct pnv_phb *phb = hose->private_data;
3375 	struct pci_dev *bridge = bus->self;
3376 	struct resource *r, *w;
3377 	bool msi_region = false;
3378 	int i;
3379 
3380 	/* Check if we need apply fixup to the bridge's windows */
3381 	if (!pci_is_root_bus(bridge->bus) &&
3382 	    !pci_is_root_bus(bridge->bus->self->bus))
3383 		return;
3384 
3385 	/* Fixup the resources */
3386 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3387 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3388 		if (!r->flags || !r->parent)
3389 			continue;
3390 
3391 		w = NULL;
3392 		if (r->flags & type & IORESOURCE_IO)
3393 			w = &hose->io_resource;
3394 		else if (pnv_pci_is_m64(phb, r) &&
3395 			 (type & IORESOURCE_PREFETCH) &&
3396 			 phb->ioda.m64_segsize)
3397 			w = &hose->mem_resources[1];
3398 		else if (r->flags & type & IORESOURCE_MEM) {
3399 			w = &hose->mem_resources[0];
3400 			msi_region = true;
3401 		}
3402 
3403 		r->start = w->start;
3404 		r->end = w->end;
3405 
3406 		/* The 64KB 32-bits MSI region shouldn't be included in
3407 		 * the 32-bits bridge window. Otherwise, we can see strange
3408 		 * issues. One of them is EEH error observed on Garrison.
3409 		 *
3410 		 * Exclude top 1MB region which is the minimal alignment of
3411 		 * 32-bits bridge window.
3412 		 */
3413 		if (msi_region) {
3414 			r->end += 0x10000;
3415 			r->end -= 0x100000;
3416 		}
3417 	}
3418 }
3419 
3420 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3421 {
3422 	struct pci_controller *hose = pci_bus_to_host(bus);
3423 	struct pnv_phb *phb = hose->private_data;
3424 	struct pci_dev *bridge = bus->self;
3425 	struct pnv_ioda_pe *pe;
3426 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3427 
3428 	/* Extend bridge's windows if necessary */
3429 	pnv_pci_fixup_bridge_resources(bus, type);
3430 
3431 	/* The PE for root bus should be realized before any one else */
3432 	if (!phb->ioda.root_pe_populated) {
3433 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3434 		if (pe) {
3435 			phb->ioda.root_pe_idx = pe->pe_number;
3436 			phb->ioda.root_pe_populated = true;
3437 		}
3438 	}
3439 
3440 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3441 	if (list_empty(&bus->devices))
3442 		return;
3443 
3444 	/* Reserve PEs according to used M64 resources */
3445 	if (phb->reserve_m64_pe)
3446 		phb->reserve_m64_pe(bus, NULL, all);
3447 
3448 	/*
3449 	 * Assign PE. We might run here because of partial hotplug.
3450 	 * For the case, we just pick up the existing PE and should
3451 	 * not allocate resources again.
3452 	 */
3453 	pe = pnv_ioda_setup_bus_PE(bus, all);
3454 	if (!pe)
3455 		return;
3456 
3457 	pnv_ioda_setup_pe_seg(pe);
3458 	switch (phb->type) {
3459 	case PNV_PHB_IODA1:
3460 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3461 		break;
3462 	case PNV_PHB_IODA2:
3463 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3464 		break;
3465 	default:
3466 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3467 			__func__, phb->hose->global_number, phb->type);
3468 	}
3469 }
3470 
3471 static resource_size_t pnv_pci_default_alignment(void)
3472 {
3473 	return PAGE_SIZE;
3474 }
3475 
3476 #ifdef CONFIG_PCI_IOV
3477 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3478 						      int resno)
3479 {
3480 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3481 	struct pnv_phb *phb = hose->private_data;
3482 	struct pci_dn *pdn = pci_get_pdn(pdev);
3483 	resource_size_t align;
3484 
3485 	/*
3486 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3487 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3488 	 * BAR should be size aligned.
3489 	 *
3490 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3491 	 * powernv-specific hardware restriction is gone. But if just use the
3492 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3493 	 * in one segment of M64 #15, which introduces the PE conflict between
3494 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3495 	 * m64_segsize.
3496 	 *
3497 	 * This function returns the total IOV BAR size if M64 BAR is in
3498 	 * Shared PE mode or just VF BAR size if not.
3499 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3500 	 * M64 segment size if IOV BAR size is less.
3501 	 */
3502 	align = pci_iov_resource_size(pdev, resno);
3503 	if (!pdn->vfs_expanded)
3504 		return align;
3505 	if (pdn->m64_single_mode)
3506 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3507 
3508 	return pdn->vfs_expanded * align;
3509 }
3510 #endif /* CONFIG_PCI_IOV */
3511 
3512 /* Prevent enabling devices for which we couldn't properly
3513  * assign a PE
3514  */
3515 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3516 {
3517 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3518 	struct pnv_phb *phb = hose->private_data;
3519 	struct pci_dn *pdn;
3520 
3521 	/* The function is probably called while the PEs have
3522 	 * not be created yet. For example, resource reassignment
3523 	 * during PCI probe period. We just skip the check if
3524 	 * PEs isn't ready.
3525 	 */
3526 	if (!phb->initialized)
3527 		return true;
3528 
3529 	pdn = pci_get_pdn(dev);
3530 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3531 		return false;
3532 
3533 	return true;
3534 }
3535 
3536 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3537 				       int num)
3538 {
3539 	struct pnv_ioda_pe *pe = container_of(table_group,
3540 					      struct pnv_ioda_pe, table_group);
3541 	struct pnv_phb *phb = pe->phb;
3542 	unsigned int idx;
3543 	long rc;
3544 
3545 	pe_info(pe, "Removing DMA window #%d\n", num);
3546 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3547 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3548 			continue;
3549 
3550 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3551 						idx, 0, 0ul, 0ul, 0ul);
3552 		if (rc != OPAL_SUCCESS) {
3553 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3554 				rc, idx);
3555 			return rc;
3556 		}
3557 
3558 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3559 	}
3560 
3561 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3562 	return OPAL_SUCCESS;
3563 }
3564 
3565 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3566 {
3567 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3568 	struct iommu_table *tbl = pe->table_group.tables[0];
3569 	int64_t rc;
3570 
3571 	if (!weight)
3572 		return;
3573 
3574 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3575 	if (rc != OPAL_SUCCESS)
3576 		return;
3577 
3578 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3579 	if (pe->table_group.group) {
3580 		iommu_group_put(pe->table_group.group);
3581 		WARN_ON(pe->table_group.group);
3582 	}
3583 
3584 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3585 	iommu_tce_table_put(tbl);
3586 }
3587 
3588 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3589 {
3590 	struct iommu_table *tbl = pe->table_group.tables[0];
3591 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3592 #ifdef CONFIG_IOMMU_API
3593 	int64_t rc;
3594 #endif
3595 
3596 	if (!weight)
3597 		return;
3598 
3599 #ifdef CONFIG_IOMMU_API
3600 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3601 	if (rc)
3602 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3603 #endif
3604 
3605 	pnv_pci_ioda2_set_bypass(pe, false);
3606 	if (pe->table_group.group) {
3607 		iommu_group_put(pe->table_group.group);
3608 		WARN_ON(pe->table_group.group);
3609 	}
3610 
3611 	pnv_pci_ioda2_table_free_pages(tbl);
3612 	iommu_tce_table_put(tbl);
3613 }
3614 
3615 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3616 				 unsigned short win,
3617 				 unsigned int *map)
3618 {
3619 	struct pnv_phb *phb = pe->phb;
3620 	int idx;
3621 	int64_t rc;
3622 
3623 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3624 		if (map[idx] != pe->pe_number)
3625 			continue;
3626 
3627 		if (win == OPAL_M64_WINDOW_TYPE)
3628 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3629 					phb->ioda.reserved_pe_idx, win,
3630 					idx / PNV_IODA1_M64_SEGS,
3631 					idx % PNV_IODA1_M64_SEGS);
3632 		else
3633 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3634 					phb->ioda.reserved_pe_idx, win, 0, idx);
3635 
3636 		if (rc != OPAL_SUCCESS)
3637 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3638 				rc, win, idx);
3639 
3640 		map[idx] = IODA_INVALID_PE;
3641 	}
3642 }
3643 
3644 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3645 {
3646 	struct pnv_phb *phb = pe->phb;
3647 
3648 	if (phb->type == PNV_PHB_IODA1) {
3649 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3650 				     phb->ioda.io_segmap);
3651 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3652 				     phb->ioda.m32_segmap);
3653 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3654 				     phb->ioda.m64_segmap);
3655 	} else if (phb->type == PNV_PHB_IODA2) {
3656 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3657 				     phb->ioda.m32_segmap);
3658 	}
3659 }
3660 
3661 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3662 {
3663 	struct pnv_phb *phb = pe->phb;
3664 	struct pnv_ioda_pe *slave, *tmp;
3665 
3666 	list_del(&pe->list);
3667 	switch (phb->type) {
3668 	case PNV_PHB_IODA1:
3669 		pnv_pci_ioda1_release_pe_dma(pe);
3670 		break;
3671 	case PNV_PHB_IODA2:
3672 		pnv_pci_ioda2_release_pe_dma(pe);
3673 		break;
3674 	default:
3675 		WARN_ON(1);
3676 	}
3677 
3678 	pnv_ioda_release_pe_seg(pe);
3679 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3680 
3681 	/* Release slave PEs in the compound PE */
3682 	if (pe->flags & PNV_IODA_PE_MASTER) {
3683 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3684 			list_del(&slave->list);
3685 			pnv_ioda_free_pe(slave);
3686 		}
3687 	}
3688 
3689 	/*
3690 	 * The PE for root bus can be removed because of hotplug in EEH
3691 	 * recovery for fenced PHB error. We need to mark the PE dead so
3692 	 * that it can be populated again in PCI hot add path. The PE
3693 	 * shouldn't be destroyed as it's the global reserved resource.
3694 	 */
3695 	if (phb->ioda.root_pe_populated &&
3696 	    phb->ioda.root_pe_idx == pe->pe_number)
3697 		phb->ioda.root_pe_populated = false;
3698 	else
3699 		pnv_ioda_free_pe(pe);
3700 }
3701 
3702 static void pnv_pci_release_device(struct pci_dev *pdev)
3703 {
3704 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3705 	struct pnv_phb *phb = hose->private_data;
3706 	struct pci_dn *pdn = pci_get_pdn(pdev);
3707 	struct pnv_ioda_pe *pe;
3708 
3709 	if (pdev->is_virtfn)
3710 		return;
3711 
3712 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3713 		return;
3714 
3715 	/*
3716 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3717 	 * isn't removed and added afterwards in this scenario. We should
3718 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3719 	 * device count is decreased on removing devices while failing to
3720 	 * be increased on adding devices. It leads to unbalanced PE's device
3721 	 * count and eventually make normal PCI hotplug path broken.
3722 	 */
3723 	pe = &phb->ioda.pe_array[pdn->pe_number];
3724 	pdn->pe_number = IODA_INVALID_PE;
3725 
3726 	WARN_ON(--pe->device_count < 0);
3727 	if (pe->device_count == 0)
3728 		pnv_ioda_release_pe(pe);
3729 }
3730 
3731 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3732 {
3733 	struct pnv_phb *phb = hose->private_data;
3734 
3735 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3736 		       OPAL_ASSERT_RESET);
3737 }
3738 
3739 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3740 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3741 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3742 #ifdef CONFIG_PCI_MSI
3743 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3744 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3745 #endif
3746 	.enable_device_hook	= pnv_pci_enable_device_hook,
3747 	.release_device		= pnv_pci_release_device,
3748 	.window_alignment	= pnv_pci_window_alignment,
3749 	.setup_bridge		= pnv_pci_setup_bridge,
3750 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3751 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3752 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3753 	.shutdown		= pnv_pci_ioda_shutdown,
3754 };
3755 
3756 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3757 {
3758 	dev_err_once(&npdev->dev,
3759 			"%s operation unsupported for NVLink devices\n",
3760 			__func__);
3761 	return -EPERM;
3762 }
3763 
3764 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3765 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3766 #ifdef CONFIG_PCI_MSI
3767 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3768 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3769 #endif
3770 	.enable_device_hook	= pnv_pci_enable_device_hook,
3771 	.window_alignment	= pnv_pci_window_alignment,
3772 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3773 	.dma_set_mask		= pnv_npu_dma_set_mask,
3774 	.shutdown		= pnv_pci_ioda_shutdown,
3775 };
3776 
3777 #ifdef CONFIG_CXL_BASE
3778 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3779 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3780 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3781 #ifdef CONFIG_PCI_MSI
3782 	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
3783 	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
3784 #endif
3785 	.enable_device_hook	= pnv_cxl_enable_device_hook,
3786 	.disable_device		= pnv_cxl_disable_device,
3787 	.release_device		= pnv_pci_release_device,
3788 	.window_alignment	= pnv_pci_window_alignment,
3789 	.setup_bridge		= pnv_pci_setup_bridge,
3790 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3791 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3792 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3793 	.shutdown		= pnv_pci_ioda_shutdown,
3794 };
3795 #endif
3796 
3797 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3798 					 u64 hub_id, int ioda_type)
3799 {
3800 	struct pci_controller *hose;
3801 	struct pnv_phb *phb;
3802 	unsigned long size, m64map_off, m32map_off, pemap_off;
3803 	unsigned long iomap_off = 0, dma32map_off = 0;
3804 	struct resource r;
3805 	const __be64 *prop64;
3806 	const __be32 *prop32;
3807 	int len;
3808 	unsigned int segno;
3809 	u64 phb_id;
3810 	void *aux;
3811 	long rc;
3812 
3813 	if (!of_device_is_available(np))
3814 		return;
3815 
3816 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3817 
3818 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3819 	if (!prop64) {
3820 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3821 		return;
3822 	}
3823 	phb_id = be64_to_cpup(prop64);
3824 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3825 
3826 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3827 
3828 	/* Allocate PCI controller */
3829 	phb->hose = hose = pcibios_alloc_controller(np);
3830 	if (!phb->hose) {
3831 		pr_err("  Can't allocate PCI controller for %pOF\n",
3832 		       np);
3833 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3834 		return;
3835 	}
3836 
3837 	spin_lock_init(&phb->lock);
3838 	prop32 = of_get_property(np, "bus-range", &len);
3839 	if (prop32 && len == 8) {
3840 		hose->first_busno = be32_to_cpu(prop32[0]);
3841 		hose->last_busno = be32_to_cpu(prop32[1]);
3842 	} else {
3843 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3844 		hose->first_busno = 0;
3845 		hose->last_busno = 0xff;
3846 	}
3847 	hose->private_data = phb;
3848 	phb->hub_id = hub_id;
3849 	phb->opal_id = phb_id;
3850 	phb->type = ioda_type;
3851 	mutex_init(&phb->ioda.pe_alloc_mutex);
3852 
3853 	/* Detect specific models for error handling */
3854 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3855 		phb->model = PNV_PHB_MODEL_P7IOC;
3856 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3857 		phb->model = PNV_PHB_MODEL_PHB3;
3858 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3859 		phb->model = PNV_PHB_MODEL_NPU;
3860 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3861 		phb->model = PNV_PHB_MODEL_NPU2;
3862 	else
3863 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3864 
3865 	/* Initialize diagnostic data buffer */
3866 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3867 	if (prop32)
3868 		phb->diag_data_size = be32_to_cpup(prop32);
3869 	else
3870 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3871 
3872 	phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3873 
3874 	/* Parse 32-bit and IO ranges (if any) */
3875 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3876 
3877 	/* Get registers */
3878 	if (!of_address_to_resource(np, 0, &r)) {
3879 		phb->regs_phys = r.start;
3880 		phb->regs = ioremap(r.start, resource_size(&r));
3881 		if (phb->regs == NULL)
3882 			pr_err("  Failed to map registers !\n");
3883 	}
3884 
3885 	/* Initialize more IODA stuff */
3886 	phb->ioda.total_pe_num = 1;
3887 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3888 	if (prop32)
3889 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3890 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3891 	if (prop32)
3892 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3893 
3894 	/* Invalidate RID to PE# mapping */
3895 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3896 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3897 
3898 	/* Parse 64-bit MMIO range */
3899 	pnv_ioda_parse_m64_window(phb);
3900 
3901 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3902 	/* FW Has already off top 64k of M32 space (MSI space) */
3903 	phb->ioda.m32_size += 0x10000;
3904 
3905 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3906 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3907 	phb->ioda.io_size = hose->pci_io_size;
3908 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3909 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3910 
3911 	/* Calculate how many 32-bit TCE segments we have */
3912 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3913 				PNV_IODA1_DMA32_SEGSIZE;
3914 
3915 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3916 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3917 			sizeof(unsigned long));
3918 	m64map_off = size;
3919 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3920 	m32map_off = size;
3921 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3922 	if (phb->type == PNV_PHB_IODA1) {
3923 		iomap_off = size;
3924 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3925 		dma32map_off = size;
3926 		size += phb->ioda.dma32_count *
3927 			sizeof(phb->ioda.dma32_segmap[0]);
3928 	}
3929 	pemap_off = size;
3930 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3931 	aux = memblock_virt_alloc(size, 0);
3932 	phb->ioda.pe_alloc = aux;
3933 	phb->ioda.m64_segmap = aux + m64map_off;
3934 	phb->ioda.m32_segmap = aux + m32map_off;
3935 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3936 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3937 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3938 	}
3939 	if (phb->type == PNV_PHB_IODA1) {
3940 		phb->ioda.io_segmap = aux + iomap_off;
3941 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3942 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3943 
3944 		phb->ioda.dma32_segmap = aux + dma32map_off;
3945 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3946 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3947 	}
3948 	phb->ioda.pe_array = aux + pemap_off;
3949 
3950 	/*
3951 	 * Choose PE number for root bus, which shouldn't have
3952 	 * M64 resources consumed by its child devices. To pick
3953 	 * the PE number adjacent to the reserved one if possible.
3954 	 */
3955 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3956 	if (phb->ioda.reserved_pe_idx == 0) {
3957 		phb->ioda.root_pe_idx = 1;
3958 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3959 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3960 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3961 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3962 	} else {
3963 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3964 	}
3965 
3966 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3967 	mutex_init(&phb->ioda.pe_list_mutex);
3968 
3969 	/* Calculate how many 32-bit TCE segments we have */
3970 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3971 				PNV_IODA1_DMA32_SEGSIZE;
3972 
3973 #if 0 /* We should really do that ... */
3974 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3975 					 window_type,
3976 					 window_num,
3977 					 starting_real_address,
3978 					 starting_pci_address,
3979 					 segment_size);
3980 #endif
3981 
3982 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3983 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3984 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3985 	if (phb->ioda.m64_size)
3986 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3987 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3988 	if (phb->ioda.io_size)
3989 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3990 			phb->ioda.io_size, phb->ioda.io_segsize);
3991 
3992 
3993 	phb->hose->ops = &pnv_pci_ops;
3994 	phb->get_pe_state = pnv_ioda_get_pe_state;
3995 	phb->freeze_pe = pnv_ioda_freeze_pe;
3996 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3997 
3998 	/* Setup MSI support */
3999 	pnv_pci_init_ioda_msis(phb);
4000 
4001 	/*
4002 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
4003 	 * to let the PCI core do resource assignment. It's supposed
4004 	 * that the PCI core will do correct I/O and MMIO alignment
4005 	 * for the P2P bridge bars so that each PCI bus (excluding
4006 	 * the child P2P bridges) can form individual PE.
4007 	 */
4008 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
4009 
4010 	if (phb->type == PNV_PHB_NPU) {
4011 		hose->controller_ops = pnv_npu_ioda_controller_ops;
4012 	} else {
4013 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
4014 		hose->controller_ops = pnv_pci_ioda_controller_ops;
4015 	}
4016 
4017 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
4018 
4019 #ifdef CONFIG_PCI_IOV
4020 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
4021 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
4022 #endif
4023 
4024 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
4025 
4026 	/* Reset IODA tables to a clean state */
4027 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
4028 	if (rc)
4029 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
4030 
4031 	/*
4032 	 * If we're running in kdump kernel, the previous kernel never
4033 	 * shutdown PCI devices correctly. We already got IODA table
4034 	 * cleaned out. So we have to issue PHB reset to stop all PCI
4035 	 * transactions from previous kernel.
4036 	 */
4037 	if (is_kdump_kernel()) {
4038 		pr_info("  Issue PHB reset ...\n");
4039 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
4040 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
4041 	}
4042 
4043 	/* Remove M64 resource if we can't configure it successfully */
4044 	if (!phb->init_m64 || phb->init_m64(phb))
4045 		hose->mem_resources[1].flags = 0;
4046 }
4047 
4048 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4049 {
4050 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4051 }
4052 
4053 void __init pnv_pci_init_npu_phb(struct device_node *np)
4054 {
4055 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
4056 }
4057 
4058 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4059 {
4060 	struct device_node *phbn;
4061 	const __be64 *prop64;
4062 	u64 hub_id;
4063 
4064 	pr_info("Probing IODA IO-Hub %pOF\n", np);
4065 
4066 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4067 	if (!prop64) {
4068 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4069 		return;
4070 	}
4071 	hub_id = be64_to_cpup(prop64);
4072 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4073 
4074 	/* Count child PHBs */
4075 	for_each_child_of_node(np, phbn) {
4076 		/* Look for IODA1 PHBs */
4077 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4078 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4079 	}
4080 }
4081