1 /* 2 * Support PCI/PCIe on PowerNV platforms 3 * 4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/pci.h> 16 #include <linux/crash_dump.h> 17 #include <linux/delay.h> 18 #include <linux/string.h> 19 #include <linux/init.h> 20 #include <linux/bootmem.h> 21 #include <linux/irq.h> 22 #include <linux/io.h> 23 #include <linux/msi.h> 24 #include <linux/memblock.h> 25 #include <linux/iommu.h> 26 #include <linux/rculist.h> 27 #include <linux/sizes.h> 28 29 #include <asm/sections.h> 30 #include <asm/io.h> 31 #include <asm/prom.h> 32 #include <asm/pci-bridge.h> 33 #include <asm/machdep.h> 34 #include <asm/msi_bitmap.h> 35 #include <asm/ppc-pci.h> 36 #include <asm/opal.h> 37 #include <asm/iommu.h> 38 #include <asm/tce.h> 39 #include <asm/xics.h> 40 #include <asm/debugfs.h> 41 #include <asm/firmware.h> 42 #include <asm/pnv-pci.h> 43 #include <asm/mmzone.h> 44 45 #include <misc/cxl-base.h> 46 47 #include "powernv.h" 48 #include "pci.h" 49 50 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ 51 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ 52 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 53 54 #define POWERNV_IOMMU_DEFAULT_LEVELS 1 55 #define POWERNV_IOMMU_MAX_LEVELS 5 56 57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" }; 58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl); 59 60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, 61 const char *fmt, ...) 62 { 63 struct va_format vaf; 64 va_list args; 65 char pfix[32]; 66 67 va_start(args, fmt); 68 69 vaf.fmt = fmt; 70 vaf.va = &args; 71 72 if (pe->flags & PNV_IODA_PE_DEV) 73 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); 74 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 75 sprintf(pfix, "%04x:%02x ", 76 pci_domain_nr(pe->pbus), pe->pbus->number); 77 #ifdef CONFIG_PCI_IOV 78 else if (pe->flags & PNV_IODA_PE_VF) 79 sprintf(pfix, "%04x:%02x:%2x.%d", 80 pci_domain_nr(pe->parent_dev->bus), 81 (pe->rid & 0xff00) >> 8, 82 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); 83 #endif /* CONFIG_PCI_IOV*/ 84 85 printk("%spci %s: [PE# %.2x] %pV", 86 level, pfix, pe->pe_number, &vaf); 87 88 va_end(args); 89 } 90 91 static bool pnv_iommu_bypass_disabled __read_mostly; 92 93 static int __init iommu_setup(char *str) 94 { 95 if (!str) 96 return -EINVAL; 97 98 while (*str) { 99 if (!strncmp(str, "nobypass", 8)) { 100 pnv_iommu_bypass_disabled = true; 101 pr_info("PowerNV: IOMMU bypass window disabled.\n"); 102 break; 103 } 104 str += strcspn(str, ","); 105 if (*str == ',') 106 str++; 107 } 108 109 return 0; 110 } 111 early_param("iommu", iommu_setup); 112 113 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r) 114 { 115 /* 116 * WARNING: We cannot rely on the resource flags. The Linux PCI 117 * allocation code sometimes decides to put a 64-bit prefetchable 118 * BAR in the 32-bit window, so we have to compare the addresses. 119 * 120 * For simplicity we only test resource start. 121 */ 122 return (r->start >= phb->ioda.m64_base && 123 r->start < (phb->ioda.m64_base + phb->ioda.m64_size)); 124 } 125 126 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags) 127 { 128 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 129 130 return (resource_flags & flags) == flags; 131 } 132 133 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) 134 { 135 s64 rc; 136 137 phb->ioda.pe_array[pe_no].phb = phb; 138 phb->ioda.pe_array[pe_no].pe_number = pe_no; 139 140 /* 141 * Clear the PE frozen state as it might be put into frozen state 142 * in the last PCI remove path. It's not harmful to do so when the 143 * PE is already in unfrozen state. 144 */ 145 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, 146 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 147 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 148 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n", 149 __func__, rc, phb->hose->global_number, pe_no); 150 151 return &phb->ioda.pe_array[pe_no]; 152 } 153 154 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) 155 { 156 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { 157 pr_warn("%s: Invalid PE %x on PHB#%x\n", 158 __func__, pe_no, phb->hose->global_number); 159 return; 160 } 161 162 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) 163 pr_debug("%s: PE %x was reserved on PHB#%x\n", 164 __func__, pe_no, phb->hose->global_number); 165 166 pnv_ioda_init_pe(phb, pe_no); 167 } 168 169 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb) 170 { 171 long pe; 172 173 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { 174 if (!test_and_set_bit(pe, phb->ioda.pe_alloc)) 175 return pnv_ioda_init_pe(phb, pe); 176 } 177 178 return NULL; 179 } 180 181 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) 182 { 183 struct pnv_phb *phb = pe->phb; 184 unsigned int pe_num = pe->pe_number; 185 186 WARN_ON(pe->pdev); 187 188 memset(pe, 0, sizeof(struct pnv_ioda_pe)); 189 clear_bit(pe_num, phb->ioda.pe_alloc); 190 } 191 192 /* The default M64 BAR is shared by all PEs */ 193 static int pnv_ioda2_init_m64(struct pnv_phb *phb) 194 { 195 const char *desc; 196 struct resource *r; 197 s64 rc; 198 199 /* Configure the default M64 BAR */ 200 rc = opal_pci_set_phb_mem_window(phb->opal_id, 201 OPAL_M64_WINDOW_TYPE, 202 phb->ioda.m64_bar_idx, 203 phb->ioda.m64_base, 204 0, /* unused */ 205 phb->ioda.m64_size); 206 if (rc != OPAL_SUCCESS) { 207 desc = "configuring"; 208 goto fail; 209 } 210 211 /* Enable the default M64 BAR */ 212 rc = opal_pci_phb_mmio_enable(phb->opal_id, 213 OPAL_M64_WINDOW_TYPE, 214 phb->ioda.m64_bar_idx, 215 OPAL_ENABLE_M64_SPLIT); 216 if (rc != OPAL_SUCCESS) { 217 desc = "enabling"; 218 goto fail; 219 } 220 221 /* 222 * Exclude the segments for reserved and root bus PE, which 223 * are first or last two PEs. 224 */ 225 r = &phb->hose->mem_resources[1]; 226 if (phb->ioda.reserved_pe_idx == 0) 227 r->start += (2 * phb->ioda.m64_segsize); 228 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 229 r->end -= (2 * phb->ioda.m64_segsize); 230 else 231 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n", 232 phb->ioda.reserved_pe_idx); 233 234 return 0; 235 236 fail: 237 pr_warn(" Failure %lld %s M64 BAR#%d\n", 238 rc, desc, phb->ioda.m64_bar_idx); 239 opal_pci_phb_mmio_enable(phb->opal_id, 240 OPAL_M64_WINDOW_TYPE, 241 phb->ioda.m64_bar_idx, 242 OPAL_DISABLE_M64); 243 return -EIO; 244 } 245 246 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, 247 unsigned long *pe_bitmap) 248 { 249 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 250 struct pnv_phb *phb = hose->private_data; 251 struct resource *r; 252 resource_size_t base, sgsz, start, end; 253 int segno, i; 254 255 base = phb->ioda.m64_base; 256 sgsz = phb->ioda.m64_segsize; 257 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 258 r = &pdev->resource[i]; 259 if (!r->parent || !pnv_pci_is_m64(phb, r)) 260 continue; 261 262 start = _ALIGN_DOWN(r->start - base, sgsz); 263 end = _ALIGN_UP(r->end - base, sgsz); 264 for (segno = start / sgsz; segno < end / sgsz; segno++) { 265 if (pe_bitmap) 266 set_bit(segno, pe_bitmap); 267 else 268 pnv_ioda_reserve_pe(phb, segno); 269 } 270 } 271 } 272 273 static int pnv_ioda1_init_m64(struct pnv_phb *phb) 274 { 275 struct resource *r; 276 int index; 277 278 /* 279 * There are 16 M64 BARs, each of which has 8 segments. So 280 * there are as many M64 segments as the maximum number of 281 * PEs, which is 128. 282 */ 283 for (index = 0; index < PNV_IODA1_M64_NUM; index++) { 284 unsigned long base, segsz = phb->ioda.m64_segsize; 285 int64_t rc; 286 287 base = phb->ioda.m64_base + 288 index * PNV_IODA1_M64_SEGS * segsz; 289 rc = opal_pci_set_phb_mem_window(phb->opal_id, 290 OPAL_M64_WINDOW_TYPE, index, base, 0, 291 PNV_IODA1_M64_SEGS * segsz); 292 if (rc != OPAL_SUCCESS) { 293 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n", 294 rc, phb->hose->global_number, index); 295 goto fail; 296 } 297 298 rc = opal_pci_phb_mmio_enable(phb->opal_id, 299 OPAL_M64_WINDOW_TYPE, index, 300 OPAL_ENABLE_M64_SPLIT); 301 if (rc != OPAL_SUCCESS) { 302 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n", 303 rc, phb->hose->global_number, index); 304 goto fail; 305 } 306 } 307 308 /* 309 * Exclude the segments for reserved and root bus PE, which 310 * are first or last two PEs. 311 */ 312 r = &phb->hose->mem_resources[1]; 313 if (phb->ioda.reserved_pe_idx == 0) 314 r->start += (2 * phb->ioda.m64_segsize); 315 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 316 r->end -= (2 * phb->ioda.m64_segsize); 317 else 318 WARN(1, "Wrong reserved PE#%x on PHB#%x\n", 319 phb->ioda.reserved_pe_idx, phb->hose->global_number); 320 321 return 0; 322 323 fail: 324 for ( ; index >= 0; index--) 325 opal_pci_phb_mmio_enable(phb->opal_id, 326 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); 327 328 return -EIO; 329 } 330 331 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, 332 unsigned long *pe_bitmap, 333 bool all) 334 { 335 struct pci_dev *pdev; 336 337 list_for_each_entry(pdev, &bus->devices, bus_list) { 338 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); 339 340 if (all && pdev->subordinate) 341 pnv_ioda_reserve_m64_pe(pdev->subordinate, 342 pe_bitmap, all); 343 } 344 } 345 346 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) 347 { 348 struct pci_controller *hose = pci_bus_to_host(bus); 349 struct pnv_phb *phb = hose->private_data; 350 struct pnv_ioda_pe *master_pe, *pe; 351 unsigned long size, *pe_alloc; 352 int i; 353 354 /* Root bus shouldn't use M64 */ 355 if (pci_is_root_bus(bus)) 356 return NULL; 357 358 /* Allocate bitmap */ 359 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); 360 pe_alloc = kzalloc(size, GFP_KERNEL); 361 if (!pe_alloc) { 362 pr_warn("%s: Out of memory !\n", 363 __func__); 364 return NULL; 365 } 366 367 /* Figure out reserved PE numbers by the PE */ 368 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); 369 370 /* 371 * the current bus might not own M64 window and that's all 372 * contributed by its child buses. For the case, we needn't 373 * pick M64 dependent PE#. 374 */ 375 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { 376 kfree(pe_alloc); 377 return NULL; 378 } 379 380 /* 381 * Figure out the master PE and put all slave PEs to master 382 * PE's list to form compound PE. 383 */ 384 master_pe = NULL; 385 i = -1; 386 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < 387 phb->ioda.total_pe_num) { 388 pe = &phb->ioda.pe_array[i]; 389 390 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; 391 if (!master_pe) { 392 pe->flags |= PNV_IODA_PE_MASTER; 393 INIT_LIST_HEAD(&pe->slaves); 394 master_pe = pe; 395 } else { 396 pe->flags |= PNV_IODA_PE_SLAVE; 397 pe->master = master_pe; 398 list_add_tail(&pe->list, &master_pe->slaves); 399 } 400 401 /* 402 * P7IOC supports M64DT, which helps mapping M64 segment 403 * to one particular PE#. However, PHB3 has fixed mapping 404 * between M64 segment and PE#. In order to have same logic 405 * for P7IOC and PHB3, we enforce fixed mapping between M64 406 * segment and PE# on P7IOC. 407 */ 408 if (phb->type == PNV_PHB_IODA1) { 409 int64_t rc; 410 411 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 412 pe->pe_number, OPAL_M64_WINDOW_TYPE, 413 pe->pe_number / PNV_IODA1_M64_SEGS, 414 pe->pe_number % PNV_IODA1_M64_SEGS); 415 if (rc != OPAL_SUCCESS) 416 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n", 417 __func__, rc, phb->hose->global_number, 418 pe->pe_number); 419 } 420 } 421 422 kfree(pe_alloc); 423 return master_pe; 424 } 425 426 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) 427 { 428 struct pci_controller *hose = phb->hose; 429 struct device_node *dn = hose->dn; 430 struct resource *res; 431 u32 m64_range[2], i; 432 const __be32 *r; 433 u64 pci_addr; 434 435 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { 436 pr_info(" Not support M64 window\n"); 437 return; 438 } 439 440 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 441 pr_info(" Firmware too old to support M64 window\n"); 442 return; 443 } 444 445 r = of_get_property(dn, "ibm,opal-m64-window", NULL); 446 if (!r) { 447 pr_info(" No <ibm,opal-m64-window> on %pOF\n", 448 dn); 449 return; 450 } 451 452 /* 453 * Find the available M64 BAR range and pickup the last one for 454 * covering the whole 64-bits space. We support only one range. 455 */ 456 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", 457 m64_range, 2)) { 458 /* In absence of the property, assume 0..15 */ 459 m64_range[0] = 0; 460 m64_range[1] = 16; 461 } 462 /* We only support 64 bits in our allocator */ 463 if (m64_range[1] > 63) { 464 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", 465 __func__, m64_range[1], phb->hose->global_number); 466 m64_range[1] = 63; 467 } 468 /* Empty range, no m64 */ 469 if (m64_range[1] <= m64_range[0]) { 470 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", 471 __func__, phb->hose->global_number); 472 return; 473 } 474 475 /* Configure M64 informations */ 476 res = &hose->mem_resources[1]; 477 res->name = dn->full_name; 478 res->start = of_translate_address(dn, r + 2); 479 res->end = res->start + of_read_number(r + 4, 2) - 1; 480 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 481 pci_addr = of_read_number(r, 2); 482 hose->mem_offset[1] = res->start - pci_addr; 483 484 phb->ioda.m64_size = resource_size(res); 485 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; 486 phb->ioda.m64_base = pci_addr; 487 488 /* This lines up nicely with the display from processing OF ranges */ 489 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", 490 res->start, res->end, pci_addr, m64_range[0], 491 m64_range[0] + m64_range[1] - 1); 492 493 /* Mark all M64 used up by default */ 494 phb->ioda.m64_bar_alloc = (unsigned long)-1; 495 496 /* Use last M64 BAR to cover M64 window */ 497 m64_range[1]--; 498 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; 499 500 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); 501 502 /* Mark remaining ones free */ 503 for (i = m64_range[0]; i < m64_range[1]; i++) 504 clear_bit(i, &phb->ioda.m64_bar_alloc); 505 506 /* 507 * Setup init functions for M64 based on IODA version, IODA3 uses 508 * the IODA2 code. 509 */ 510 if (phb->type == PNV_PHB_IODA1) 511 phb->init_m64 = pnv_ioda1_init_m64; 512 else 513 phb->init_m64 = pnv_ioda2_init_m64; 514 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe; 515 phb->pick_m64_pe = pnv_ioda_pick_m64_pe; 516 } 517 518 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) 519 { 520 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; 521 struct pnv_ioda_pe *slave; 522 s64 rc; 523 524 /* Fetch master PE */ 525 if (pe->flags & PNV_IODA_PE_SLAVE) { 526 pe = pe->master; 527 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) 528 return; 529 530 pe_no = pe->pe_number; 531 } 532 533 /* Freeze master PE */ 534 rc = opal_pci_eeh_freeze_set(phb->opal_id, 535 pe_no, 536 OPAL_EEH_ACTION_SET_FREEZE_ALL); 537 if (rc != OPAL_SUCCESS) { 538 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 539 __func__, rc, phb->hose->global_number, pe_no); 540 return; 541 } 542 543 /* Freeze slave PEs */ 544 if (!(pe->flags & PNV_IODA_PE_MASTER)) 545 return; 546 547 list_for_each_entry(slave, &pe->slaves, list) { 548 rc = opal_pci_eeh_freeze_set(phb->opal_id, 549 slave->pe_number, 550 OPAL_EEH_ACTION_SET_FREEZE_ALL); 551 if (rc != OPAL_SUCCESS) 552 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 553 __func__, rc, phb->hose->global_number, 554 slave->pe_number); 555 } 556 } 557 558 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) 559 { 560 struct pnv_ioda_pe *pe, *slave; 561 s64 rc; 562 563 /* Find master PE */ 564 pe = &phb->ioda.pe_array[pe_no]; 565 if (pe->flags & PNV_IODA_PE_SLAVE) { 566 pe = pe->master; 567 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 568 pe_no = pe->pe_number; 569 } 570 571 /* Clear frozen state for master PE */ 572 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); 573 if (rc != OPAL_SUCCESS) { 574 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 575 __func__, rc, opt, phb->hose->global_number, pe_no); 576 return -EIO; 577 } 578 579 if (!(pe->flags & PNV_IODA_PE_MASTER)) 580 return 0; 581 582 /* Clear frozen state for slave PEs */ 583 list_for_each_entry(slave, &pe->slaves, list) { 584 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 585 slave->pe_number, 586 opt); 587 if (rc != OPAL_SUCCESS) { 588 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 589 __func__, rc, opt, phb->hose->global_number, 590 slave->pe_number); 591 return -EIO; 592 } 593 } 594 595 return 0; 596 } 597 598 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) 599 { 600 struct pnv_ioda_pe *slave, *pe; 601 u8 fstate, state; 602 __be16 pcierr; 603 s64 rc; 604 605 /* Sanity check on PE number */ 606 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) 607 return OPAL_EEH_STOPPED_PERM_UNAVAIL; 608 609 /* 610 * Fetch the master PE and the PE instance might be 611 * not initialized yet. 612 */ 613 pe = &phb->ioda.pe_array[pe_no]; 614 if (pe->flags & PNV_IODA_PE_SLAVE) { 615 pe = pe->master; 616 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 617 pe_no = pe->pe_number; 618 } 619 620 /* Check the master PE */ 621 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, 622 &state, &pcierr, NULL); 623 if (rc != OPAL_SUCCESS) { 624 pr_warn("%s: Failure %lld getting " 625 "PHB#%x-PE#%x state\n", 626 __func__, rc, 627 phb->hose->global_number, pe_no); 628 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 629 } 630 631 /* Check the slave PE */ 632 if (!(pe->flags & PNV_IODA_PE_MASTER)) 633 return state; 634 635 list_for_each_entry(slave, &pe->slaves, list) { 636 rc = opal_pci_eeh_freeze_status(phb->opal_id, 637 slave->pe_number, 638 &fstate, 639 &pcierr, 640 NULL); 641 if (rc != OPAL_SUCCESS) { 642 pr_warn("%s: Failure %lld getting " 643 "PHB#%x-PE#%x state\n", 644 __func__, rc, 645 phb->hose->global_number, slave->pe_number); 646 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 647 } 648 649 /* 650 * Override the result based on the ascending 651 * priority. 652 */ 653 if (fstate > state) 654 state = fstate; 655 } 656 657 return state; 658 } 659 660 /* Currently those 2 are only used when MSIs are enabled, this will change 661 * but in the meantime, we need to protect them to avoid warnings 662 */ 663 #ifdef CONFIG_PCI_MSI 664 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) 665 { 666 struct pci_controller *hose = pci_bus_to_host(dev->bus); 667 struct pnv_phb *phb = hose->private_data; 668 struct pci_dn *pdn = pci_get_pdn(dev); 669 670 if (!pdn) 671 return NULL; 672 if (pdn->pe_number == IODA_INVALID_PE) 673 return NULL; 674 return &phb->ioda.pe_array[pdn->pe_number]; 675 } 676 #endif /* CONFIG_PCI_MSI */ 677 678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, 679 struct pnv_ioda_pe *parent, 680 struct pnv_ioda_pe *child, 681 bool is_add) 682 { 683 const char *desc = is_add ? "adding" : "removing"; 684 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : 685 OPAL_REMOVE_PE_FROM_DOMAIN; 686 struct pnv_ioda_pe *slave; 687 long rc; 688 689 /* Parent PE affects child PE */ 690 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 691 child->pe_number, op); 692 if (rc != OPAL_SUCCESS) { 693 pe_warn(child, "OPAL error %ld %s to parent PELTV\n", 694 rc, desc); 695 return -ENXIO; 696 } 697 698 if (!(child->flags & PNV_IODA_PE_MASTER)) 699 return 0; 700 701 /* Compound case: parent PE affects slave PEs */ 702 list_for_each_entry(slave, &child->slaves, list) { 703 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 704 slave->pe_number, op); 705 if (rc != OPAL_SUCCESS) { 706 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", 707 rc, desc); 708 return -ENXIO; 709 } 710 } 711 712 return 0; 713 } 714 715 static int pnv_ioda_set_peltv(struct pnv_phb *phb, 716 struct pnv_ioda_pe *pe, 717 bool is_add) 718 { 719 struct pnv_ioda_pe *slave; 720 struct pci_dev *pdev = NULL; 721 int ret; 722 723 /* 724 * Clear PE frozen state. If it's master PE, we need 725 * clear slave PE frozen state as well. 726 */ 727 if (is_add) { 728 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 729 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 730 if (pe->flags & PNV_IODA_PE_MASTER) { 731 list_for_each_entry(slave, &pe->slaves, list) 732 opal_pci_eeh_freeze_clear(phb->opal_id, 733 slave->pe_number, 734 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 735 } 736 } 737 738 /* 739 * Associate PE in PELT. We need add the PE into the 740 * corresponding PELT-V as well. Otherwise, the error 741 * originated from the PE might contribute to other 742 * PEs. 743 */ 744 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); 745 if (ret) 746 return ret; 747 748 /* For compound PEs, any one affects all of them */ 749 if (pe->flags & PNV_IODA_PE_MASTER) { 750 list_for_each_entry(slave, &pe->slaves, list) { 751 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); 752 if (ret) 753 return ret; 754 } 755 } 756 757 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) 758 pdev = pe->pbus->self; 759 else if (pe->flags & PNV_IODA_PE_DEV) 760 pdev = pe->pdev->bus->self; 761 #ifdef CONFIG_PCI_IOV 762 else if (pe->flags & PNV_IODA_PE_VF) 763 pdev = pe->parent_dev; 764 #endif /* CONFIG_PCI_IOV */ 765 while (pdev) { 766 struct pci_dn *pdn = pci_get_pdn(pdev); 767 struct pnv_ioda_pe *parent; 768 769 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 770 parent = &phb->ioda.pe_array[pdn->pe_number]; 771 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); 772 if (ret) 773 return ret; 774 } 775 776 pdev = pdev->bus->self; 777 } 778 779 return 0; 780 } 781 782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 783 { 784 struct pci_dev *parent; 785 uint8_t bcomp, dcomp, fcomp; 786 int64_t rc; 787 long rid_end, rid; 788 789 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ 790 if (pe->pbus) { 791 int count; 792 793 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 794 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 795 parent = pe->pbus->self; 796 if (pe->flags & PNV_IODA_PE_BUS_ALL) 797 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 798 else 799 count = 1; 800 801 switch(count) { 802 case 1: bcomp = OpalPciBusAll; break; 803 case 2: bcomp = OpalPciBus7Bits; break; 804 case 4: bcomp = OpalPciBus6Bits; break; 805 case 8: bcomp = OpalPciBus5Bits; break; 806 case 16: bcomp = OpalPciBus4Bits; break; 807 case 32: bcomp = OpalPciBus3Bits; break; 808 default: 809 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 810 count); 811 /* Do an exact match only */ 812 bcomp = OpalPciBusAll; 813 } 814 rid_end = pe->rid + (count << 8); 815 } else { 816 #ifdef CONFIG_PCI_IOV 817 if (pe->flags & PNV_IODA_PE_VF) 818 parent = pe->parent_dev; 819 else 820 #endif 821 parent = pe->pdev->bus->self; 822 bcomp = OpalPciBusAll; 823 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 824 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 825 rid_end = pe->rid + 1; 826 } 827 828 /* Clear the reverse map */ 829 for (rid = pe->rid; rid < rid_end; rid++) 830 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; 831 832 /* Release from all parents PELT-V */ 833 while (parent) { 834 struct pci_dn *pdn = pci_get_pdn(parent); 835 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 836 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, 837 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 838 /* XXX What to do in case of error ? */ 839 } 840 parent = parent->bus->self; 841 } 842 843 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 844 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 845 846 /* Disassociate PE in PELT */ 847 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, 848 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 849 if (rc) 850 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc); 851 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 852 bcomp, dcomp, fcomp, OPAL_UNMAP_PE); 853 if (rc) 854 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 855 856 pe->pbus = NULL; 857 pe->pdev = NULL; 858 #ifdef CONFIG_PCI_IOV 859 pe->parent_dev = NULL; 860 #endif 861 862 return 0; 863 } 864 865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 866 { 867 struct pci_dev *parent; 868 uint8_t bcomp, dcomp, fcomp; 869 long rc, rid_end, rid; 870 871 /* Bus validation ? */ 872 if (pe->pbus) { 873 int count; 874 875 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 876 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 877 parent = pe->pbus->self; 878 if (pe->flags & PNV_IODA_PE_BUS_ALL) 879 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 880 else 881 count = 1; 882 883 switch(count) { 884 case 1: bcomp = OpalPciBusAll; break; 885 case 2: bcomp = OpalPciBus7Bits; break; 886 case 4: bcomp = OpalPciBus6Bits; break; 887 case 8: bcomp = OpalPciBus5Bits; break; 888 case 16: bcomp = OpalPciBus4Bits; break; 889 case 32: bcomp = OpalPciBus3Bits; break; 890 default: 891 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 892 count); 893 /* Do an exact match only */ 894 bcomp = OpalPciBusAll; 895 } 896 rid_end = pe->rid + (count << 8); 897 } else { 898 #ifdef CONFIG_PCI_IOV 899 if (pe->flags & PNV_IODA_PE_VF) 900 parent = pe->parent_dev; 901 else 902 #endif /* CONFIG_PCI_IOV */ 903 parent = pe->pdev->bus->self; 904 bcomp = OpalPciBusAll; 905 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 906 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 907 rid_end = pe->rid + 1; 908 } 909 910 /* 911 * Associate PE in PELT. We need add the PE into the 912 * corresponding PELT-V as well. Otherwise, the error 913 * originated from the PE might contribute to other 914 * PEs. 915 */ 916 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 917 bcomp, dcomp, fcomp, OPAL_MAP_PE); 918 if (rc) { 919 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 920 return -ENXIO; 921 } 922 923 /* 924 * Configure PELTV. NPUs don't have a PELTV table so skip 925 * configuration on them. 926 */ 927 if (phb->type != PNV_PHB_NPU) 928 pnv_ioda_set_peltv(phb, pe, true); 929 930 /* Setup reverse map */ 931 for (rid = pe->rid; rid < rid_end; rid++) 932 phb->ioda.pe_rmap[rid] = pe->pe_number; 933 934 /* Setup one MVTs on IODA1 */ 935 if (phb->type != PNV_PHB_IODA1) { 936 pe->mve_number = 0; 937 goto out; 938 } 939 940 pe->mve_number = pe->pe_number; 941 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); 942 if (rc != OPAL_SUCCESS) { 943 pe_err(pe, "OPAL error %ld setting up MVE %x\n", 944 rc, pe->mve_number); 945 pe->mve_number = -1; 946 } else { 947 rc = opal_pci_set_mve_enable(phb->opal_id, 948 pe->mve_number, OPAL_ENABLE_MVE); 949 if (rc) { 950 pe_err(pe, "OPAL error %ld enabling MVE %x\n", 951 rc, pe->mve_number); 952 pe->mve_number = -1; 953 } 954 } 955 956 out: 957 return 0; 958 } 959 960 #ifdef CONFIG_PCI_IOV 961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) 962 { 963 struct pci_dn *pdn = pci_get_pdn(dev); 964 int i; 965 struct resource *res, res2; 966 resource_size_t size; 967 u16 num_vfs; 968 969 if (!dev->is_physfn) 970 return -EINVAL; 971 972 /* 973 * "offset" is in VFs. The M64 windows are sized so that when they 974 * are segmented, each segment is the same size as the IOV BAR. 975 * Each segment is in a separate PE, and the high order bits of the 976 * address are the PE number. Therefore, each VF's BAR is in a 977 * separate PE, and changing the IOV BAR start address changes the 978 * range of PEs the VFs are in. 979 */ 980 num_vfs = pdn->num_vfs; 981 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 982 res = &dev->resource[i + PCI_IOV_RESOURCES]; 983 if (!res->flags || !res->parent) 984 continue; 985 986 /* 987 * The actual IOV BAR range is determined by the start address 988 * and the actual size for num_vfs VFs BAR. This check is to 989 * make sure that after shifting, the range will not overlap 990 * with another device. 991 */ 992 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 993 res2.flags = res->flags; 994 res2.start = res->start + (size * offset); 995 res2.end = res2.start + (size * num_vfs) - 1; 996 997 if (res2.end > res->end) { 998 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", 999 i, &res2, res, num_vfs, offset); 1000 return -EBUSY; 1001 } 1002 } 1003 1004 /* 1005 * Since M64 BAR shares segments among all possible 256 PEs, 1006 * we have to shift the beginning of PF IOV BAR to make it start from 1007 * the segment which belongs to the PE number assigned to the first VF. 1008 * This creates a "hole" in the /proc/iomem which could be used for 1009 * allocating other resources so we reserve this area below and 1010 * release when IOV is released. 1011 */ 1012 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1013 res = &dev->resource[i + PCI_IOV_RESOURCES]; 1014 if (!res->flags || !res->parent) 1015 continue; 1016 1017 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 1018 res2 = *res; 1019 res->start += size * offset; 1020 1021 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", 1022 i, &res2, res, (offset > 0) ? "En" : "Dis", 1023 num_vfs, offset); 1024 1025 if (offset < 0) { 1026 devm_release_resource(&dev->dev, &pdn->holes[i]); 1027 memset(&pdn->holes[i], 0, sizeof(pdn->holes[i])); 1028 } 1029 1030 pci_update_resource(dev, i + PCI_IOV_RESOURCES); 1031 1032 if (offset > 0) { 1033 pdn->holes[i].start = res2.start; 1034 pdn->holes[i].end = res2.start + size * offset - 1; 1035 pdn->holes[i].flags = IORESOURCE_BUS; 1036 pdn->holes[i].name = "pnv_iov_reserved"; 1037 devm_request_resource(&dev->dev, res->parent, 1038 &pdn->holes[i]); 1039 } 1040 } 1041 return 0; 1042 } 1043 #endif /* CONFIG_PCI_IOV */ 1044 1045 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) 1046 { 1047 struct pci_controller *hose = pci_bus_to_host(dev->bus); 1048 struct pnv_phb *phb = hose->private_data; 1049 struct pci_dn *pdn = pci_get_pdn(dev); 1050 struct pnv_ioda_pe *pe; 1051 1052 if (!pdn) { 1053 pr_err("%s: Device tree node not associated properly\n", 1054 pci_name(dev)); 1055 return NULL; 1056 } 1057 if (pdn->pe_number != IODA_INVALID_PE) 1058 return NULL; 1059 1060 pe = pnv_ioda_alloc_pe(phb); 1061 if (!pe) { 1062 pr_warning("%s: Not enough PE# available, disabling device\n", 1063 pci_name(dev)); 1064 return NULL; 1065 } 1066 1067 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the 1068 * pointer in the PE data structure, both should be destroyed at the 1069 * same time. However, this needs to be looked at more closely again 1070 * once we actually start removing things (Hotplug, SR-IOV, ...) 1071 * 1072 * At some point we want to remove the PDN completely anyways 1073 */ 1074 pci_dev_get(dev); 1075 pdn->pcidev = dev; 1076 pdn->pe_number = pe->pe_number; 1077 pe->flags = PNV_IODA_PE_DEV; 1078 pe->pdev = dev; 1079 pe->pbus = NULL; 1080 pe->mve_number = -1; 1081 pe->rid = dev->bus->number << 8 | pdn->devfn; 1082 1083 pe_info(pe, "Associated device to PE\n"); 1084 1085 if (pnv_ioda_configure_pe(phb, pe)) { 1086 /* XXX What do we do here ? */ 1087 pnv_ioda_free_pe(pe); 1088 pdn->pe_number = IODA_INVALID_PE; 1089 pe->pdev = NULL; 1090 pci_dev_put(dev); 1091 return NULL; 1092 } 1093 1094 /* Put PE to the list */ 1095 list_add_tail(&pe->list, &phb->ioda.pe_list); 1096 1097 return pe; 1098 } 1099 1100 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe) 1101 { 1102 struct pci_dev *dev; 1103 1104 list_for_each_entry(dev, &bus->devices, bus_list) { 1105 struct pci_dn *pdn = pci_get_pdn(dev); 1106 1107 if (pdn == NULL) { 1108 pr_warn("%s: No device node associated with device !\n", 1109 pci_name(dev)); 1110 continue; 1111 } 1112 1113 /* 1114 * In partial hotplug case, the PCI device might be still 1115 * associated with the PE and needn't attach it to the PE 1116 * again. 1117 */ 1118 if (pdn->pe_number != IODA_INVALID_PE) 1119 continue; 1120 1121 pe->device_count++; 1122 pdn->pcidev = dev; 1123 pdn->pe_number = pe->pe_number; 1124 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1125 pnv_ioda_setup_same_PE(dev->subordinate, pe); 1126 } 1127 } 1128 1129 /* 1130 * There're 2 types of PCI bus sensitive PEs: One that is compromised of 1131 * single PCI bus. Another one that contains the primary PCI bus and its 1132 * subordinate PCI devices and buses. The second type of PE is normally 1133 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. 1134 */ 1135 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) 1136 { 1137 struct pci_controller *hose = pci_bus_to_host(bus); 1138 struct pnv_phb *phb = hose->private_data; 1139 struct pnv_ioda_pe *pe = NULL; 1140 unsigned int pe_num; 1141 1142 /* 1143 * In partial hotplug case, the PE instance might be still alive. 1144 * We should reuse it instead of allocating a new one. 1145 */ 1146 pe_num = phb->ioda.pe_rmap[bus->number << 8]; 1147 if (pe_num != IODA_INVALID_PE) { 1148 pe = &phb->ioda.pe_array[pe_num]; 1149 pnv_ioda_setup_same_PE(bus, pe); 1150 return NULL; 1151 } 1152 1153 /* PE number for root bus should have been reserved */ 1154 if (pci_is_root_bus(bus) && 1155 phb->ioda.root_pe_idx != IODA_INVALID_PE) 1156 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; 1157 1158 /* Check if PE is determined by M64 */ 1159 if (!pe && phb->pick_m64_pe) 1160 pe = phb->pick_m64_pe(bus, all); 1161 1162 /* The PE number isn't pinned by M64 */ 1163 if (!pe) 1164 pe = pnv_ioda_alloc_pe(phb); 1165 1166 if (!pe) { 1167 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n", 1168 __func__, pci_domain_nr(bus), bus->number); 1169 return NULL; 1170 } 1171 1172 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); 1173 pe->pbus = bus; 1174 pe->pdev = NULL; 1175 pe->mve_number = -1; 1176 pe->rid = bus->busn_res.start << 8; 1177 1178 if (all) 1179 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n", 1180 bus->busn_res.start, bus->busn_res.end, pe->pe_number); 1181 else 1182 pe_info(pe, "Secondary bus %d associated with PE#%x\n", 1183 bus->busn_res.start, pe->pe_number); 1184 1185 if (pnv_ioda_configure_pe(phb, pe)) { 1186 /* XXX What do we do here ? */ 1187 pnv_ioda_free_pe(pe); 1188 pe->pbus = NULL; 1189 return NULL; 1190 } 1191 1192 /* Associate it with all child devices */ 1193 pnv_ioda_setup_same_PE(bus, pe); 1194 1195 /* Put PE to the list */ 1196 list_add_tail(&pe->list, &phb->ioda.pe_list); 1197 1198 return pe; 1199 } 1200 1201 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev) 1202 { 1203 int pe_num, found_pe = false, rc; 1204 long rid; 1205 struct pnv_ioda_pe *pe; 1206 struct pci_dev *gpu_pdev; 1207 struct pci_dn *npu_pdn; 1208 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus); 1209 struct pnv_phb *phb = hose->private_data; 1210 1211 /* 1212 * Due to a hardware errata PE#0 on the NPU is reserved for 1213 * error handling. This means we only have three PEs remaining 1214 * which need to be assigned to four links, implying some 1215 * links must share PEs. 1216 * 1217 * To achieve this we assign PEs such that NPUs linking the 1218 * same GPU get assigned the same PE. 1219 */ 1220 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev); 1221 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 1222 pe = &phb->ioda.pe_array[pe_num]; 1223 if (!pe->pdev) 1224 continue; 1225 1226 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) { 1227 /* 1228 * This device has the same peer GPU so should 1229 * be assigned the same PE as the existing 1230 * peer NPU. 1231 */ 1232 dev_info(&npu_pdev->dev, 1233 "Associating to existing PE %x\n", pe_num); 1234 pci_dev_get(npu_pdev); 1235 npu_pdn = pci_get_pdn(npu_pdev); 1236 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn; 1237 npu_pdn->pcidev = npu_pdev; 1238 npu_pdn->pe_number = pe_num; 1239 phb->ioda.pe_rmap[rid] = pe->pe_number; 1240 1241 /* Map the PE to this link */ 1242 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid, 1243 OpalPciBusAll, 1244 OPAL_COMPARE_RID_DEVICE_NUMBER, 1245 OPAL_COMPARE_RID_FUNCTION_NUMBER, 1246 OPAL_MAP_PE); 1247 WARN_ON(rc != OPAL_SUCCESS); 1248 found_pe = true; 1249 break; 1250 } 1251 } 1252 1253 if (!found_pe) 1254 /* 1255 * Could not find an existing PE so allocate a new 1256 * one. 1257 */ 1258 return pnv_ioda_setup_dev_PE(npu_pdev); 1259 else 1260 return pe; 1261 } 1262 1263 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus) 1264 { 1265 struct pci_dev *pdev; 1266 1267 list_for_each_entry(pdev, &bus->devices, bus_list) 1268 pnv_ioda_setup_npu_PE(pdev); 1269 } 1270 1271 static void pnv_pci_ioda_setup_PEs(void) 1272 { 1273 struct pci_controller *hose, *tmp; 1274 struct pnv_phb *phb; 1275 1276 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 1277 phb = hose->private_data; 1278 if (phb->type == PNV_PHB_NPU) { 1279 /* PE#0 is needed for error reporting */ 1280 pnv_ioda_reserve_pe(phb, 0); 1281 pnv_ioda_setup_npu_PEs(hose->bus); 1282 if (phb->model == PNV_PHB_MODEL_NPU2) 1283 pnv_npu2_init(phb); 1284 } 1285 } 1286 } 1287 1288 #ifdef CONFIG_PCI_IOV 1289 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) 1290 { 1291 struct pci_bus *bus; 1292 struct pci_controller *hose; 1293 struct pnv_phb *phb; 1294 struct pci_dn *pdn; 1295 int i, j; 1296 int m64_bars; 1297 1298 bus = pdev->bus; 1299 hose = pci_bus_to_host(bus); 1300 phb = hose->private_data; 1301 pdn = pci_get_pdn(pdev); 1302 1303 if (pdn->m64_single_mode) 1304 m64_bars = num_vfs; 1305 else 1306 m64_bars = 1; 1307 1308 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) 1309 for (j = 0; j < m64_bars; j++) { 1310 if (pdn->m64_map[j][i] == IODA_INVALID_M64) 1311 continue; 1312 opal_pci_phb_mmio_enable(phb->opal_id, 1313 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0); 1314 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc); 1315 pdn->m64_map[j][i] = IODA_INVALID_M64; 1316 } 1317 1318 kfree(pdn->m64_map); 1319 return 0; 1320 } 1321 1322 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) 1323 { 1324 struct pci_bus *bus; 1325 struct pci_controller *hose; 1326 struct pnv_phb *phb; 1327 struct pci_dn *pdn; 1328 unsigned int win; 1329 struct resource *res; 1330 int i, j; 1331 int64_t rc; 1332 int total_vfs; 1333 resource_size_t size, start; 1334 int pe_num; 1335 int m64_bars; 1336 1337 bus = pdev->bus; 1338 hose = pci_bus_to_host(bus); 1339 phb = hose->private_data; 1340 pdn = pci_get_pdn(pdev); 1341 total_vfs = pci_sriov_get_totalvfs(pdev); 1342 1343 if (pdn->m64_single_mode) 1344 m64_bars = num_vfs; 1345 else 1346 m64_bars = 1; 1347 1348 pdn->m64_map = kmalloc_array(m64_bars, 1349 sizeof(*pdn->m64_map), 1350 GFP_KERNEL); 1351 if (!pdn->m64_map) 1352 return -ENOMEM; 1353 /* Initialize the m64_map to IODA_INVALID_M64 */ 1354 for (i = 0; i < m64_bars ; i++) 1355 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++) 1356 pdn->m64_map[i][j] = IODA_INVALID_M64; 1357 1358 1359 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1360 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 1361 if (!res->flags || !res->parent) 1362 continue; 1363 1364 for (j = 0; j < m64_bars; j++) { 1365 do { 1366 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, 1367 phb->ioda.m64_bar_idx + 1, 0); 1368 1369 if (win >= phb->ioda.m64_bar_idx + 1) 1370 goto m64_failed; 1371 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); 1372 1373 pdn->m64_map[j][i] = win; 1374 1375 if (pdn->m64_single_mode) { 1376 size = pci_iov_resource_size(pdev, 1377 PCI_IOV_RESOURCES + i); 1378 start = res->start + size * j; 1379 } else { 1380 size = resource_size(res); 1381 start = res->start; 1382 } 1383 1384 /* Map the M64 here */ 1385 if (pdn->m64_single_mode) { 1386 pe_num = pdn->pe_num_map[j]; 1387 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 1388 pe_num, OPAL_M64_WINDOW_TYPE, 1389 pdn->m64_map[j][i], 0); 1390 } 1391 1392 rc = opal_pci_set_phb_mem_window(phb->opal_id, 1393 OPAL_M64_WINDOW_TYPE, 1394 pdn->m64_map[j][i], 1395 start, 1396 0, /* unused */ 1397 size); 1398 1399 1400 if (rc != OPAL_SUCCESS) { 1401 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n", 1402 win, rc); 1403 goto m64_failed; 1404 } 1405 1406 if (pdn->m64_single_mode) 1407 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1408 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2); 1409 else 1410 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1411 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1); 1412 1413 if (rc != OPAL_SUCCESS) { 1414 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n", 1415 win, rc); 1416 goto m64_failed; 1417 } 1418 } 1419 } 1420 return 0; 1421 1422 m64_failed: 1423 pnv_pci_vf_release_m64(pdev, num_vfs); 1424 return -EBUSY; 1425 } 1426 1427 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 1428 int num); 1429 1430 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe) 1431 { 1432 struct iommu_table *tbl; 1433 int64_t rc; 1434 1435 tbl = pe->table_group.tables[0]; 1436 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 1437 if (rc) 1438 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 1439 1440 pnv_pci_ioda2_set_bypass(pe, false); 1441 if (pe->table_group.group) { 1442 iommu_group_put(pe->table_group.group); 1443 BUG_ON(pe->table_group.group); 1444 } 1445 iommu_tce_table_put(tbl); 1446 } 1447 1448 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev) 1449 { 1450 struct pci_bus *bus; 1451 struct pci_controller *hose; 1452 struct pnv_phb *phb; 1453 struct pnv_ioda_pe *pe, *pe_n; 1454 struct pci_dn *pdn; 1455 1456 bus = pdev->bus; 1457 hose = pci_bus_to_host(bus); 1458 phb = hose->private_data; 1459 pdn = pci_get_pdn(pdev); 1460 1461 if (!pdev->is_physfn) 1462 return; 1463 1464 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { 1465 if (pe->parent_dev != pdev) 1466 continue; 1467 1468 pnv_pci_ioda2_release_dma_pe(pdev, pe); 1469 1470 /* Remove from list */ 1471 mutex_lock(&phb->ioda.pe_list_mutex); 1472 list_del(&pe->list); 1473 mutex_unlock(&phb->ioda.pe_list_mutex); 1474 1475 pnv_ioda_deconfigure_pe(phb, pe); 1476 1477 pnv_ioda_free_pe(pe); 1478 } 1479 } 1480 1481 void pnv_pci_sriov_disable(struct pci_dev *pdev) 1482 { 1483 struct pci_bus *bus; 1484 struct pci_controller *hose; 1485 struct pnv_phb *phb; 1486 struct pnv_ioda_pe *pe; 1487 struct pci_dn *pdn; 1488 u16 num_vfs, i; 1489 1490 bus = pdev->bus; 1491 hose = pci_bus_to_host(bus); 1492 phb = hose->private_data; 1493 pdn = pci_get_pdn(pdev); 1494 num_vfs = pdn->num_vfs; 1495 1496 /* Release VF PEs */ 1497 pnv_ioda_release_vf_PE(pdev); 1498 1499 if (phb->type == PNV_PHB_IODA2) { 1500 if (!pdn->m64_single_mode) 1501 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map); 1502 1503 /* Release M64 windows */ 1504 pnv_pci_vf_release_m64(pdev, num_vfs); 1505 1506 /* Release PE numbers */ 1507 if (pdn->m64_single_mode) { 1508 for (i = 0; i < num_vfs; i++) { 1509 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1510 continue; 1511 1512 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1513 pnv_ioda_free_pe(pe); 1514 } 1515 } else 1516 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1517 /* Releasing pe_num_map */ 1518 kfree(pdn->pe_num_map); 1519 } 1520 } 1521 1522 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 1523 struct pnv_ioda_pe *pe); 1524 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) 1525 { 1526 struct pci_bus *bus; 1527 struct pci_controller *hose; 1528 struct pnv_phb *phb; 1529 struct pnv_ioda_pe *pe; 1530 int pe_num; 1531 u16 vf_index; 1532 struct pci_dn *pdn; 1533 1534 bus = pdev->bus; 1535 hose = pci_bus_to_host(bus); 1536 phb = hose->private_data; 1537 pdn = pci_get_pdn(pdev); 1538 1539 if (!pdev->is_physfn) 1540 return; 1541 1542 /* Reserve PE for each VF */ 1543 for (vf_index = 0; vf_index < num_vfs; vf_index++) { 1544 if (pdn->m64_single_mode) 1545 pe_num = pdn->pe_num_map[vf_index]; 1546 else 1547 pe_num = *pdn->pe_num_map + vf_index; 1548 1549 pe = &phb->ioda.pe_array[pe_num]; 1550 pe->pe_number = pe_num; 1551 pe->phb = phb; 1552 pe->flags = PNV_IODA_PE_VF; 1553 pe->pbus = NULL; 1554 pe->parent_dev = pdev; 1555 pe->mve_number = -1; 1556 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) | 1557 pci_iov_virtfn_devfn(pdev, vf_index); 1558 1559 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n", 1560 hose->global_number, pdev->bus->number, 1561 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)), 1562 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num); 1563 1564 if (pnv_ioda_configure_pe(phb, pe)) { 1565 /* XXX What do we do here ? */ 1566 pnv_ioda_free_pe(pe); 1567 pe->pdev = NULL; 1568 continue; 1569 } 1570 1571 /* Put PE to the list */ 1572 mutex_lock(&phb->ioda.pe_list_mutex); 1573 list_add_tail(&pe->list, &phb->ioda.pe_list); 1574 mutex_unlock(&phb->ioda.pe_list_mutex); 1575 1576 pnv_pci_ioda2_setup_dma_pe(phb, pe); 1577 } 1578 } 1579 1580 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1581 { 1582 struct pci_bus *bus; 1583 struct pci_controller *hose; 1584 struct pnv_phb *phb; 1585 struct pnv_ioda_pe *pe; 1586 struct pci_dn *pdn; 1587 int ret; 1588 u16 i; 1589 1590 bus = pdev->bus; 1591 hose = pci_bus_to_host(bus); 1592 phb = hose->private_data; 1593 pdn = pci_get_pdn(pdev); 1594 1595 if (phb->type == PNV_PHB_IODA2) { 1596 if (!pdn->vfs_expanded) { 1597 dev_info(&pdev->dev, "don't support this SRIOV device" 1598 " with non 64bit-prefetchable IOV BAR\n"); 1599 return -ENOSPC; 1600 } 1601 1602 /* 1603 * When M64 BARs functions in Single PE mode, the number of VFs 1604 * could be enabled must be less than the number of M64 BARs. 1605 */ 1606 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) { 1607 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n"); 1608 return -EBUSY; 1609 } 1610 1611 /* Allocating pe_num_map */ 1612 if (pdn->m64_single_mode) 1613 pdn->pe_num_map = kmalloc_array(num_vfs, 1614 sizeof(*pdn->pe_num_map), 1615 GFP_KERNEL); 1616 else 1617 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL); 1618 1619 if (!pdn->pe_num_map) 1620 return -ENOMEM; 1621 1622 if (pdn->m64_single_mode) 1623 for (i = 0; i < num_vfs; i++) 1624 pdn->pe_num_map[i] = IODA_INVALID_PE; 1625 1626 /* Calculate available PE for required VFs */ 1627 if (pdn->m64_single_mode) { 1628 for (i = 0; i < num_vfs; i++) { 1629 pe = pnv_ioda_alloc_pe(phb); 1630 if (!pe) { 1631 ret = -EBUSY; 1632 goto m64_failed; 1633 } 1634 1635 pdn->pe_num_map[i] = pe->pe_number; 1636 } 1637 } else { 1638 mutex_lock(&phb->ioda.pe_alloc_mutex); 1639 *pdn->pe_num_map = bitmap_find_next_zero_area( 1640 phb->ioda.pe_alloc, phb->ioda.total_pe_num, 1641 0, num_vfs, 0); 1642 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) { 1643 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1644 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs); 1645 kfree(pdn->pe_num_map); 1646 return -EBUSY; 1647 } 1648 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1649 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1650 } 1651 pdn->num_vfs = num_vfs; 1652 1653 /* Assign M64 window accordingly */ 1654 ret = pnv_pci_vf_assign_m64(pdev, num_vfs); 1655 if (ret) { 1656 dev_info(&pdev->dev, "Not enough M64 window resources\n"); 1657 goto m64_failed; 1658 } 1659 1660 /* 1661 * When using one M64 BAR to map one IOV BAR, we need to shift 1662 * the IOV BAR according to the PE# allocated to the VFs. 1663 * Otherwise, the PE# for the VF will conflict with others. 1664 */ 1665 if (!pdn->m64_single_mode) { 1666 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map); 1667 if (ret) 1668 goto m64_failed; 1669 } 1670 } 1671 1672 /* Setup VF PEs */ 1673 pnv_ioda_setup_vf_PE(pdev, num_vfs); 1674 1675 return 0; 1676 1677 m64_failed: 1678 if (pdn->m64_single_mode) { 1679 for (i = 0; i < num_vfs; i++) { 1680 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1681 continue; 1682 1683 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1684 pnv_ioda_free_pe(pe); 1685 } 1686 } else 1687 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1688 1689 /* Releasing pe_num_map */ 1690 kfree(pdn->pe_num_map); 1691 1692 return ret; 1693 } 1694 1695 int pcibios_sriov_disable(struct pci_dev *pdev) 1696 { 1697 pnv_pci_sriov_disable(pdev); 1698 1699 /* Release PCI data */ 1700 remove_dev_pci_data(pdev); 1701 return 0; 1702 } 1703 1704 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1705 { 1706 /* Allocate PCI data */ 1707 add_dev_pci_data(pdev); 1708 1709 return pnv_pci_sriov_enable(pdev, num_vfs); 1710 } 1711 #endif /* CONFIG_PCI_IOV */ 1712 1713 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev) 1714 { 1715 struct pci_dn *pdn = pci_get_pdn(pdev); 1716 struct pnv_ioda_pe *pe; 1717 1718 /* 1719 * The function can be called while the PE# 1720 * hasn't been assigned. Do nothing for the 1721 * case. 1722 */ 1723 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 1724 return; 1725 1726 pe = &phb->ioda.pe_array[pdn->pe_number]; 1727 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); 1728 set_dma_offset(&pdev->dev, pe->tce_bypass_base); 1729 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); 1730 /* 1731 * Note: iommu_add_device() will fail here as 1732 * for physical PE: the device is already added by now; 1733 * for virtual PE: sysfs entries are not ready yet and 1734 * tce_iommu_bus_notifier will add the device to a group later. 1735 */ 1736 } 1737 1738 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe) 1739 { 1740 unsigned short vendor = 0; 1741 struct pci_dev *pdev; 1742 1743 if (pe->device_count == 1) 1744 return true; 1745 1746 /* pe->pdev should be set if it's a single device, pe->pbus if not */ 1747 if (!pe->pbus) 1748 return true; 1749 1750 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 1751 if (!vendor) { 1752 vendor = pdev->vendor; 1753 continue; 1754 } 1755 1756 if (pdev->vendor != vendor) 1757 return false; 1758 } 1759 1760 return true; 1761 } 1762 1763 /* 1764 * Reconfigure TVE#0 to be usable as 64-bit DMA space. 1765 * 1766 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses. 1767 * Devices can only access more than that if bit 59 of the PCI address is set 1768 * by hardware, which indicates TVE#1 should be used instead of TVE#0. 1769 * Many PCI devices are not capable of addressing that many bits, and as a 1770 * result are limited to the 4GB of virtual memory made available to 32-bit 1771 * devices in TVE#0. 1772 * 1773 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit 1774 * devices by configuring the virtual memory past the first 4GB inaccessible 1775 * by 64-bit DMAs. This should only be used by devices that want more than 1776 * 4GB, and only on PEs that have no 32-bit devices. 1777 * 1778 * Currently this will only work on PHB3 (POWER8). 1779 */ 1780 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe) 1781 { 1782 u64 window_size, table_size, tce_count, addr; 1783 struct page *table_pages; 1784 u64 tce_order = 28; /* 256MB TCEs */ 1785 __be64 *tces; 1786 s64 rc; 1787 1788 /* 1789 * Window size needs to be a power of two, but needs to account for 1790 * shifting memory by the 4GB offset required to skip 32bit space. 1791 */ 1792 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32)); 1793 tce_count = window_size >> tce_order; 1794 table_size = tce_count << 3; 1795 1796 if (table_size < PAGE_SIZE) 1797 table_size = PAGE_SIZE; 1798 1799 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL, 1800 get_order(table_size)); 1801 if (!table_pages) 1802 goto err; 1803 1804 tces = page_address(table_pages); 1805 if (!tces) 1806 goto err; 1807 1808 memset(tces, 0, table_size); 1809 1810 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) { 1811 tces[(addr + (1ULL << 32)) >> tce_order] = 1812 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE); 1813 } 1814 1815 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id, 1816 pe->pe_number, 1817 /* reconfigure window 0 */ 1818 (pe->pe_number << 1) + 0, 1819 1, 1820 __pa(tces), 1821 table_size, 1822 1 << tce_order); 1823 if (rc == OPAL_SUCCESS) { 1824 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n"); 1825 return 0; 1826 } 1827 err: 1828 pe_err(pe, "Error configuring 64-bit DMA bypass\n"); 1829 return -EIO; 1830 } 1831 1832 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask) 1833 { 1834 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1835 struct pnv_phb *phb = hose->private_data; 1836 struct pci_dn *pdn = pci_get_pdn(pdev); 1837 struct pnv_ioda_pe *pe; 1838 uint64_t top; 1839 bool bypass = false; 1840 s64 rc; 1841 1842 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1843 return -ENODEV;; 1844 1845 pe = &phb->ioda.pe_array[pdn->pe_number]; 1846 if (pe->tce_bypass_enabled) { 1847 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; 1848 bypass = (dma_mask >= top); 1849 } 1850 1851 if (bypass) { 1852 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n"); 1853 set_dma_ops(&pdev->dev, &dma_direct_ops); 1854 } else { 1855 /* 1856 * If the device can't set the TCE bypass bit but still wants 1857 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to 1858 * bypass the 32-bit region and be usable for 64-bit DMAs. 1859 * The device needs to be able to address all of this space. 1860 */ 1861 if (dma_mask >> 32 && 1862 dma_mask > (memory_hotplug_max() + (1ULL << 32)) && 1863 pnv_pci_ioda_pe_single_vendor(pe) && 1864 phb->model == PNV_PHB_MODEL_PHB3) { 1865 /* Configure the bypass mode */ 1866 rc = pnv_pci_ioda_dma_64bit_bypass(pe); 1867 if (rc) 1868 return rc; 1869 /* 4GB offset bypasses 32-bit space */ 1870 set_dma_offset(&pdev->dev, (1ULL << 32)); 1871 set_dma_ops(&pdev->dev, &dma_direct_ops); 1872 } else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) { 1873 /* 1874 * Fail the request if a DMA mask between 32 and 64 bits 1875 * was requested but couldn't be fulfilled. Ideally we 1876 * would do this for 64-bits but historically we have 1877 * always fallen back to 32-bits. 1878 */ 1879 return -ENOMEM; 1880 } else { 1881 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n"); 1882 set_dma_ops(&pdev->dev, &dma_iommu_ops); 1883 } 1884 } 1885 *pdev->dev.dma_mask = dma_mask; 1886 1887 /* Update peer npu devices */ 1888 pnv_npu_try_dma_set_bypass(pdev, bypass); 1889 1890 return 0; 1891 } 1892 1893 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev) 1894 { 1895 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1896 struct pnv_phb *phb = hose->private_data; 1897 struct pci_dn *pdn = pci_get_pdn(pdev); 1898 struct pnv_ioda_pe *pe; 1899 u64 end, mask; 1900 1901 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1902 return 0; 1903 1904 pe = &phb->ioda.pe_array[pdn->pe_number]; 1905 if (!pe->tce_bypass_enabled) 1906 return __dma_get_required_mask(&pdev->dev); 1907 1908 1909 end = pe->tce_bypass_base + memblock_end_of_DRAM(); 1910 mask = 1ULL << (fls64(end) - 1); 1911 mask += mask - 1; 1912 1913 return mask; 1914 } 1915 1916 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, 1917 struct pci_bus *bus, 1918 bool add_to_group) 1919 { 1920 struct pci_dev *dev; 1921 1922 list_for_each_entry(dev, &bus->devices, bus_list) { 1923 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); 1924 set_dma_offset(&dev->dev, pe->tce_bypass_base); 1925 if (add_to_group) 1926 iommu_add_device(&dev->dev); 1927 1928 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1929 pnv_ioda_setup_bus_dma(pe, dev->subordinate, 1930 add_to_group); 1931 } 1932 } 1933 1934 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, 1935 bool real_mode) 1936 { 1937 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : 1938 (phb->regs + 0x210); 1939 } 1940 1941 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, 1942 unsigned long index, unsigned long npages, bool rm) 1943 { 1944 struct iommu_table_group_link *tgl = list_first_entry_or_null( 1945 &tbl->it_group_list, struct iommu_table_group_link, 1946 next); 1947 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1948 struct pnv_ioda_pe, table_group); 1949 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1950 unsigned long start, end, inc; 1951 1952 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); 1953 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + 1954 npages - 1); 1955 1956 /* p7ioc-style invalidation, 2 TCEs per write */ 1957 start |= (1ull << 63); 1958 end |= (1ull << 63); 1959 inc = 16; 1960 end |= inc - 1; /* round up end to be different than start */ 1961 1962 mb(); /* Ensure above stores are visible */ 1963 while (start <= end) { 1964 if (rm) 1965 __raw_rm_writeq(cpu_to_be64(start), invalidate); 1966 else 1967 __raw_writeq(cpu_to_be64(start), invalidate); 1968 start += inc; 1969 } 1970 1971 /* 1972 * The iommu layer will do another mb() for us on build() 1973 * and we don't care on free() 1974 */ 1975 } 1976 1977 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, 1978 long npages, unsigned long uaddr, 1979 enum dma_data_direction direction, 1980 unsigned long attrs) 1981 { 1982 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1983 attrs); 1984 1985 if (!ret) 1986 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1987 1988 return ret; 1989 } 1990 1991 #ifdef CONFIG_IOMMU_API 1992 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index, 1993 unsigned long *hpa, enum dma_data_direction *direction) 1994 { 1995 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 1996 1997 if (!ret) 1998 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false); 1999 2000 return ret; 2001 } 2002 2003 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index, 2004 unsigned long *hpa, enum dma_data_direction *direction) 2005 { 2006 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 2007 2008 if (!ret) 2009 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true); 2010 2011 return ret; 2012 } 2013 #endif 2014 2015 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, 2016 long npages) 2017 { 2018 pnv_tce_free(tbl, index, npages); 2019 2020 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 2021 } 2022 2023 static struct iommu_table_ops pnv_ioda1_iommu_ops = { 2024 .set = pnv_ioda1_tce_build, 2025 #ifdef CONFIG_IOMMU_API 2026 .exchange = pnv_ioda1_tce_xchg, 2027 .exchange_rm = pnv_ioda1_tce_xchg_rm, 2028 #endif 2029 .clear = pnv_ioda1_tce_free, 2030 .get = pnv_tce_get, 2031 }; 2032 2033 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) 2034 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) 2035 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) 2036 2037 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 2038 { 2039 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm); 2040 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL; 2041 2042 mb(); /* Ensure previous TCE table stores are visible */ 2043 if (rm) 2044 __raw_rm_writeq(cpu_to_be64(val), invalidate); 2045 else 2046 __raw_writeq(cpu_to_be64(val), invalidate); 2047 } 2048 2049 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) 2050 { 2051 /* 01xb - invalidate TCEs that match the specified PE# */ 2052 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); 2053 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); 2054 2055 mb(); /* Ensure above stores are visible */ 2056 __raw_writeq(cpu_to_be64(val), invalidate); 2057 } 2058 2059 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, 2060 unsigned shift, unsigned long index, 2061 unsigned long npages) 2062 { 2063 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 2064 unsigned long start, end, inc; 2065 2066 /* We'll invalidate DMA address in PE scope */ 2067 start = PHB3_TCE_KILL_INVAL_ONE; 2068 start |= (pe->pe_number & 0xFF); 2069 end = start; 2070 2071 /* Figure out the start, end and step */ 2072 start |= (index << shift); 2073 end |= ((index + npages - 1) << shift); 2074 inc = (0x1ull << shift); 2075 mb(); 2076 2077 while (start <= end) { 2078 if (rm) 2079 __raw_rm_writeq(cpu_to_be64(start), invalidate); 2080 else 2081 __raw_writeq(cpu_to_be64(start), invalidate); 2082 start += inc; 2083 } 2084 } 2085 2086 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) 2087 { 2088 struct pnv_phb *phb = pe->phb; 2089 2090 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 2091 pnv_pci_phb3_tce_invalidate_pe(pe); 2092 else 2093 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, 2094 pe->pe_number, 0, 0, 0); 2095 } 2096 2097 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, 2098 unsigned long index, unsigned long npages, bool rm) 2099 { 2100 struct iommu_table_group_link *tgl; 2101 2102 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) { 2103 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 2104 struct pnv_ioda_pe, table_group); 2105 struct pnv_phb *phb = pe->phb; 2106 unsigned int shift = tbl->it_page_shift; 2107 2108 /* 2109 * NVLink1 can use the TCE kill register directly as 2110 * it's the same as PHB3. NVLink2 is different and 2111 * should go via the OPAL call. 2112 */ 2113 if (phb->model == PNV_PHB_MODEL_NPU) { 2114 /* 2115 * The NVLink hardware does not support TCE kill 2116 * per TCE entry so we have to invalidate 2117 * the entire cache for it. 2118 */ 2119 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 2120 continue; 2121 } 2122 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 2123 pnv_pci_phb3_tce_invalidate(pe, rm, shift, 2124 index, npages); 2125 else 2126 opal_pci_tce_kill(phb->opal_id, 2127 OPAL_PCI_TCE_KILL_PAGES, 2128 pe->pe_number, 1u << shift, 2129 index << shift, npages); 2130 } 2131 } 2132 2133 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 2134 { 2135 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3) 2136 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 2137 else 2138 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0); 2139 } 2140 2141 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, 2142 long npages, unsigned long uaddr, 2143 enum dma_data_direction direction, 2144 unsigned long attrs) 2145 { 2146 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 2147 attrs); 2148 2149 if (!ret) 2150 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2151 2152 return ret; 2153 } 2154 2155 #ifdef CONFIG_IOMMU_API 2156 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index, 2157 unsigned long *hpa, enum dma_data_direction *direction) 2158 { 2159 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 2160 2161 if (!ret) 2162 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false); 2163 2164 return ret; 2165 } 2166 2167 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index, 2168 unsigned long *hpa, enum dma_data_direction *direction) 2169 { 2170 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 2171 2172 if (!ret) 2173 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true); 2174 2175 return ret; 2176 } 2177 #endif 2178 2179 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, 2180 long npages) 2181 { 2182 pnv_tce_free(tbl, index, npages); 2183 2184 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2185 } 2186 2187 static void pnv_ioda2_table_free(struct iommu_table *tbl) 2188 { 2189 pnv_pci_ioda2_table_free_pages(tbl); 2190 } 2191 2192 static struct iommu_table_ops pnv_ioda2_iommu_ops = { 2193 .set = pnv_ioda2_tce_build, 2194 #ifdef CONFIG_IOMMU_API 2195 .exchange = pnv_ioda2_tce_xchg, 2196 .exchange_rm = pnv_ioda2_tce_xchg_rm, 2197 #endif 2198 .clear = pnv_ioda2_tce_free, 2199 .get = pnv_tce_get, 2200 .free = pnv_ioda2_table_free, 2201 }; 2202 2203 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) 2204 { 2205 unsigned int *weight = (unsigned int *)data; 2206 2207 /* This is quite simplistic. The "base" weight of a device 2208 * is 10. 0 means no DMA is to be accounted for it. 2209 */ 2210 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2211 return 0; 2212 2213 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || 2214 dev->class == PCI_CLASS_SERIAL_USB_OHCI || 2215 dev->class == PCI_CLASS_SERIAL_USB_EHCI) 2216 *weight += 3; 2217 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) 2218 *weight += 15; 2219 else 2220 *weight += 10; 2221 2222 return 0; 2223 } 2224 2225 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) 2226 { 2227 unsigned int weight = 0; 2228 2229 /* SRIOV VF has same DMA32 weight as its PF */ 2230 #ifdef CONFIG_PCI_IOV 2231 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { 2232 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); 2233 return weight; 2234 } 2235 #endif 2236 2237 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { 2238 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); 2239 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { 2240 struct pci_dev *pdev; 2241 2242 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) 2243 pnv_pci_ioda_dev_dma_weight(pdev, &weight); 2244 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { 2245 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); 2246 } 2247 2248 return weight; 2249 } 2250 2251 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, 2252 struct pnv_ioda_pe *pe) 2253 { 2254 2255 struct page *tce_mem = NULL; 2256 struct iommu_table *tbl; 2257 unsigned int weight, total_weight = 0; 2258 unsigned int tce32_segsz, base, segs, avail, i; 2259 int64_t rc; 2260 void *addr; 2261 2262 /* XXX FIXME: Handle 64-bit only DMA devices */ 2263 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ 2264 /* XXX FIXME: Allocate multi-level tables on PHB3 */ 2265 weight = pnv_pci_ioda_pe_dma_weight(pe); 2266 if (!weight) 2267 return; 2268 2269 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, 2270 &total_weight); 2271 segs = (weight * phb->ioda.dma32_count) / total_weight; 2272 if (!segs) 2273 segs = 1; 2274 2275 /* 2276 * Allocate contiguous DMA32 segments. We begin with the expected 2277 * number of segments. With one more attempt, the number of DMA32 2278 * segments to be allocated is decreased by one until one segment 2279 * is allocated successfully. 2280 */ 2281 do { 2282 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { 2283 for (avail = 0, i = base; i < base + segs; i++) { 2284 if (phb->ioda.dma32_segmap[i] == 2285 IODA_INVALID_PE) 2286 avail++; 2287 } 2288 2289 if (avail == segs) 2290 goto found; 2291 } 2292 } while (--segs); 2293 2294 if (!segs) { 2295 pe_warn(pe, "No available DMA32 segments\n"); 2296 return; 2297 } 2298 2299 found: 2300 tbl = pnv_pci_table_alloc(phb->hose->node); 2301 if (WARN_ON(!tbl)) 2302 return; 2303 2304 iommu_register_group(&pe->table_group, phb->hose->global_number, 2305 pe->pe_number); 2306 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); 2307 2308 /* Grab a 32-bit TCE table */ 2309 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", 2310 weight, total_weight, base, segs); 2311 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", 2312 base * PNV_IODA1_DMA32_SEGSIZE, 2313 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); 2314 2315 /* XXX Currently, we allocate one big contiguous table for the 2316 * TCEs. We only really need one chunk per 256M of TCE space 2317 * (ie per segment) but that's an optimization for later, it 2318 * requires some added smarts with our get/put_tce implementation 2319 * 2320 * Each TCE page is 4KB in size and each TCE entry occupies 8 2321 * bytes 2322 */ 2323 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); 2324 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, 2325 get_order(tce32_segsz * segs)); 2326 if (!tce_mem) { 2327 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); 2328 goto fail; 2329 } 2330 addr = page_address(tce_mem); 2331 memset(addr, 0, tce32_segsz * segs); 2332 2333 /* Configure HW */ 2334 for (i = 0; i < segs; i++) { 2335 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2336 pe->pe_number, 2337 base + i, 1, 2338 __pa(addr) + tce32_segsz * i, 2339 tce32_segsz, IOMMU_PAGE_SIZE_4K); 2340 if (rc) { 2341 pe_err(pe, " Failed to configure 32-bit TCE table," 2342 " err %ld\n", rc); 2343 goto fail; 2344 } 2345 } 2346 2347 /* Setup DMA32 segment mapping */ 2348 for (i = base; i < base + segs; i++) 2349 phb->ioda.dma32_segmap[i] = pe->pe_number; 2350 2351 /* Setup linux iommu table */ 2352 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, 2353 base * PNV_IODA1_DMA32_SEGSIZE, 2354 IOMMU_PAGE_SHIFT_4K); 2355 2356 tbl->it_ops = &pnv_ioda1_iommu_ops; 2357 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; 2358 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; 2359 iommu_init_table(tbl, phb->hose->node); 2360 2361 if (pe->flags & PNV_IODA_PE_DEV) { 2362 /* 2363 * Setting table base here only for carrying iommu_group 2364 * further down to let iommu_add_device() do the job. 2365 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2366 */ 2367 set_iommu_table_base(&pe->pdev->dev, tbl); 2368 iommu_add_device(&pe->pdev->dev); 2369 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2370 pnv_ioda_setup_bus_dma(pe, pe->pbus, true); 2371 2372 return; 2373 fail: 2374 /* XXX Failure: Try to fallback to 64-bit only ? */ 2375 if (tce_mem) 2376 __free_pages(tce_mem, get_order(tce32_segsz * segs)); 2377 if (tbl) { 2378 pnv_pci_unlink_table_and_group(tbl, &pe->table_group); 2379 iommu_tce_table_put(tbl); 2380 } 2381 } 2382 2383 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, 2384 int num, struct iommu_table *tbl) 2385 { 2386 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2387 table_group); 2388 struct pnv_phb *phb = pe->phb; 2389 int64_t rc; 2390 const unsigned long size = tbl->it_indirect_levels ? 2391 tbl->it_level_size : tbl->it_size; 2392 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; 2393 const __u64 win_size = tbl->it_size << tbl->it_page_shift; 2394 2395 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num, 2396 start_addr, start_addr + win_size - 1, 2397 IOMMU_PAGE_SIZE(tbl)); 2398 2399 /* 2400 * Map TCE table through TVT. The TVE index is the PE number 2401 * shifted by 1 bit for 32-bits DMA space. 2402 */ 2403 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2404 pe->pe_number, 2405 (pe->pe_number << 1) + num, 2406 tbl->it_indirect_levels + 1, 2407 __pa(tbl->it_base), 2408 size << 3, 2409 IOMMU_PAGE_SIZE(tbl)); 2410 if (rc) { 2411 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc); 2412 return rc; 2413 } 2414 2415 pnv_pci_link_table_and_group(phb->hose->node, num, 2416 tbl, &pe->table_group); 2417 pnv_pci_ioda2_tce_invalidate_pe(pe); 2418 2419 return 0; 2420 } 2421 2422 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) 2423 { 2424 uint16_t window_id = (pe->pe_number << 1 ) + 1; 2425 int64_t rc; 2426 2427 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); 2428 if (enable) { 2429 phys_addr_t top = memblock_end_of_DRAM(); 2430 2431 top = roundup_pow_of_two(top); 2432 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2433 pe->pe_number, 2434 window_id, 2435 pe->tce_bypass_base, 2436 top); 2437 } else { 2438 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2439 pe->pe_number, 2440 window_id, 2441 pe->tce_bypass_base, 2442 0); 2443 } 2444 if (rc) 2445 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); 2446 else 2447 pe->tce_bypass_enabled = enable; 2448 } 2449 2450 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2451 __u32 page_shift, __u64 window_size, __u32 levels, 2452 struct iommu_table *tbl); 2453 2454 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, 2455 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2456 struct iommu_table **ptbl) 2457 { 2458 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2459 table_group); 2460 int nid = pe->phb->hose->node; 2461 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; 2462 long ret; 2463 struct iommu_table *tbl; 2464 2465 tbl = pnv_pci_table_alloc(nid); 2466 if (!tbl) 2467 return -ENOMEM; 2468 2469 tbl->it_ops = &pnv_ioda2_iommu_ops; 2470 2471 ret = pnv_pci_ioda2_table_alloc_pages(nid, 2472 bus_offset, page_shift, window_size, 2473 levels, tbl); 2474 if (ret) { 2475 iommu_tce_table_put(tbl); 2476 return ret; 2477 } 2478 2479 *ptbl = tbl; 2480 2481 return 0; 2482 } 2483 2484 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) 2485 { 2486 struct iommu_table *tbl = NULL; 2487 long rc; 2488 2489 /* 2490 * crashkernel= specifies the kdump kernel's maximum memory at 2491 * some offset and there is no guaranteed the result is a power 2492 * of 2, which will cause errors later. 2493 */ 2494 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); 2495 2496 /* 2497 * In memory constrained environments, e.g. kdump kernel, the 2498 * DMA window can be larger than available memory, which will 2499 * cause errors later. 2500 */ 2501 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory); 2502 2503 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, 2504 IOMMU_PAGE_SHIFT_4K, 2505 window_size, 2506 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl); 2507 if (rc) { 2508 pe_err(pe, "Failed to create 32-bit TCE table, err %ld", 2509 rc); 2510 return rc; 2511 } 2512 2513 iommu_init_table(tbl, pe->phb->hose->node); 2514 2515 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); 2516 if (rc) { 2517 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", 2518 rc); 2519 iommu_tce_table_put(tbl); 2520 return rc; 2521 } 2522 2523 if (!pnv_iommu_bypass_disabled) 2524 pnv_pci_ioda2_set_bypass(pe, true); 2525 2526 /* 2527 * Setting table base here only for carrying iommu_group 2528 * further down to let iommu_add_device() do the job. 2529 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2530 */ 2531 if (pe->flags & PNV_IODA_PE_DEV) 2532 set_iommu_table_base(&pe->pdev->dev, tbl); 2533 2534 return 0; 2535 } 2536 2537 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV) 2538 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 2539 int num) 2540 { 2541 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2542 table_group); 2543 struct pnv_phb *phb = pe->phb; 2544 long ret; 2545 2546 pe_info(pe, "Removing DMA window #%d\n", num); 2547 2548 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 2549 (pe->pe_number << 1) + num, 2550 0/* levels */, 0/* table address */, 2551 0/* table size */, 0/* page size */); 2552 if (ret) 2553 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); 2554 else 2555 pnv_pci_ioda2_tce_invalidate_pe(pe); 2556 2557 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 2558 2559 return ret; 2560 } 2561 #endif 2562 2563 #ifdef CONFIG_IOMMU_API 2564 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, 2565 __u64 window_size, __u32 levels) 2566 { 2567 unsigned long bytes = 0; 2568 const unsigned window_shift = ilog2(window_size); 2569 unsigned entries_shift = window_shift - page_shift; 2570 unsigned table_shift = entries_shift + 3; 2571 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); 2572 unsigned long direct_table_size; 2573 2574 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || 2575 (window_size > memory_hotplug_max()) || 2576 !is_power_of_2(window_size)) 2577 return 0; 2578 2579 /* Calculate a direct table size from window_size and levels */ 2580 entries_shift = (entries_shift + levels - 1) / levels; 2581 table_shift = entries_shift + 3; 2582 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); 2583 direct_table_size = 1UL << table_shift; 2584 2585 for ( ; levels; --levels) { 2586 bytes += _ALIGN_UP(tce_table_size, direct_table_size); 2587 2588 tce_table_size /= direct_table_size; 2589 tce_table_size <<= 3; 2590 tce_table_size = max_t(unsigned long, 2591 tce_table_size, direct_table_size); 2592 } 2593 2594 return bytes; 2595 } 2596 2597 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) 2598 { 2599 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2600 table_group); 2601 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ 2602 struct iommu_table *tbl = pe->table_group.tables[0]; 2603 2604 pnv_pci_ioda2_set_bypass(pe, false); 2605 pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2606 if (pe->pbus) 2607 pnv_ioda_setup_bus_dma(pe, pe->pbus, false); 2608 iommu_tce_table_put(tbl); 2609 } 2610 2611 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) 2612 { 2613 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2614 table_group); 2615 2616 pnv_pci_ioda2_setup_default_config(pe); 2617 if (pe->pbus) 2618 pnv_ioda_setup_bus_dma(pe, pe->pbus, false); 2619 } 2620 2621 static struct iommu_table_group_ops pnv_pci_ioda2_ops = { 2622 .get_table_size = pnv_pci_ioda2_get_table_size, 2623 .create_table = pnv_pci_ioda2_create_table, 2624 .set_window = pnv_pci_ioda2_set_window, 2625 .unset_window = pnv_pci_ioda2_unset_window, 2626 .take_ownership = pnv_ioda2_take_ownership, 2627 .release_ownership = pnv_ioda2_release_ownership, 2628 }; 2629 2630 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque) 2631 { 2632 struct pci_controller *hose; 2633 struct pnv_phb *phb; 2634 struct pnv_ioda_pe **ptmppe = opaque; 2635 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev); 2636 struct pci_dn *pdn = pci_get_pdn(pdev); 2637 2638 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 2639 return 0; 2640 2641 hose = pci_bus_to_host(pdev->bus); 2642 phb = hose->private_data; 2643 if (phb->type != PNV_PHB_NPU) 2644 return 0; 2645 2646 *ptmppe = &phb->ioda.pe_array[pdn->pe_number]; 2647 2648 return 1; 2649 } 2650 2651 /* 2652 * This returns PE of associated NPU. 2653 * This assumes that NPU is in the same IOMMU group with GPU and there is 2654 * no other PEs. 2655 */ 2656 static struct pnv_ioda_pe *gpe_table_group_to_npe( 2657 struct iommu_table_group *table_group) 2658 { 2659 struct pnv_ioda_pe *npe = NULL; 2660 int ret = iommu_group_for_each_dev(table_group->group, &npe, 2661 gpe_table_group_to_npe_cb); 2662 2663 BUG_ON(!ret || !npe); 2664 2665 return npe; 2666 } 2667 2668 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group, 2669 int num, struct iommu_table *tbl) 2670 { 2671 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl); 2672 2673 if (ret) 2674 return ret; 2675 2676 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl); 2677 if (ret) 2678 pnv_pci_ioda2_unset_window(table_group, num); 2679 2680 return ret; 2681 } 2682 2683 static long pnv_pci_ioda2_npu_unset_window( 2684 struct iommu_table_group *table_group, 2685 int num) 2686 { 2687 long ret = pnv_pci_ioda2_unset_window(table_group, num); 2688 2689 if (ret) 2690 return ret; 2691 2692 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num); 2693 } 2694 2695 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group) 2696 { 2697 /* 2698 * Detach NPU first as pnv_ioda2_take_ownership() will destroy 2699 * the iommu_table if 32bit DMA is enabled. 2700 */ 2701 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group)); 2702 pnv_ioda2_take_ownership(table_group); 2703 } 2704 2705 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = { 2706 .get_table_size = pnv_pci_ioda2_get_table_size, 2707 .create_table = pnv_pci_ioda2_create_table, 2708 .set_window = pnv_pci_ioda2_npu_set_window, 2709 .unset_window = pnv_pci_ioda2_npu_unset_window, 2710 .take_ownership = pnv_ioda2_npu_take_ownership, 2711 .release_ownership = pnv_ioda2_release_ownership, 2712 }; 2713 2714 static void pnv_pci_ioda_setup_iommu_api(void) 2715 { 2716 struct pci_controller *hose, *tmp; 2717 struct pnv_phb *phb; 2718 struct pnv_ioda_pe *pe, *gpe; 2719 2720 /* 2721 * Now we have all PHBs discovered, time to add NPU devices to 2722 * the corresponding IOMMU groups. 2723 */ 2724 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 2725 phb = hose->private_data; 2726 2727 if (phb->type != PNV_PHB_NPU) 2728 continue; 2729 2730 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2731 gpe = pnv_pci_npu_setup_iommu(pe); 2732 if (gpe) 2733 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops; 2734 } 2735 } 2736 } 2737 #else /* !CONFIG_IOMMU_API */ 2738 static void pnv_pci_ioda_setup_iommu_api(void) { }; 2739 #endif 2740 2741 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift, 2742 unsigned levels, unsigned long limit, 2743 unsigned long *current_offset, unsigned long *total_allocated) 2744 { 2745 struct page *tce_mem = NULL; 2746 __be64 *addr, *tmp; 2747 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT; 2748 unsigned long allocated = 1UL << (order + PAGE_SHIFT); 2749 unsigned entries = 1UL << (shift - 3); 2750 long i; 2751 2752 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order); 2753 if (!tce_mem) { 2754 pr_err("Failed to allocate a TCE memory, order=%d\n", order); 2755 return NULL; 2756 } 2757 addr = page_address(tce_mem); 2758 memset(addr, 0, allocated); 2759 *total_allocated += allocated; 2760 2761 --levels; 2762 if (!levels) { 2763 *current_offset += allocated; 2764 return addr; 2765 } 2766 2767 for (i = 0; i < entries; ++i) { 2768 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift, 2769 levels, limit, current_offset, total_allocated); 2770 if (!tmp) 2771 break; 2772 2773 addr[i] = cpu_to_be64(__pa(tmp) | 2774 TCE_PCI_READ | TCE_PCI_WRITE); 2775 2776 if (*current_offset >= limit) 2777 break; 2778 } 2779 2780 return addr; 2781 } 2782 2783 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2784 unsigned long size, unsigned level); 2785 2786 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2787 __u32 page_shift, __u64 window_size, __u32 levels, 2788 struct iommu_table *tbl) 2789 { 2790 void *addr; 2791 unsigned long offset = 0, level_shift, total_allocated = 0; 2792 const unsigned window_shift = ilog2(window_size); 2793 unsigned entries_shift = window_shift - page_shift; 2794 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT); 2795 const unsigned long tce_table_size = 1UL << table_shift; 2796 2797 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS)) 2798 return -EINVAL; 2799 2800 if (!is_power_of_2(window_size)) 2801 return -EINVAL; 2802 2803 /* Adjust direct table size from window_size and levels */ 2804 entries_shift = (entries_shift + levels - 1) / levels; 2805 level_shift = entries_shift + 3; 2806 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT); 2807 2808 if ((level_shift - 3) * levels + page_shift >= 60) 2809 return -EINVAL; 2810 2811 /* Allocate TCE table */ 2812 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift, 2813 levels, tce_table_size, &offset, &total_allocated); 2814 2815 /* addr==NULL means that the first level allocation failed */ 2816 if (!addr) 2817 return -ENOMEM; 2818 2819 /* 2820 * First level was allocated but some lower level failed as 2821 * we did not allocate as much as we wanted, 2822 * release partially allocated table. 2823 */ 2824 if (offset < tce_table_size) { 2825 pnv_pci_ioda2_table_do_free_pages(addr, 2826 1ULL << (level_shift - 3), levels - 1); 2827 return -ENOMEM; 2828 } 2829 2830 /* Setup linux iommu table */ 2831 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset, 2832 page_shift); 2833 tbl->it_level_size = 1ULL << (level_shift - 3); 2834 tbl->it_indirect_levels = levels - 1; 2835 tbl->it_allocated_size = total_allocated; 2836 2837 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n", 2838 window_size, tce_table_size, bus_offset); 2839 2840 return 0; 2841 } 2842 2843 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2844 unsigned long size, unsigned level) 2845 { 2846 const unsigned long addr_ul = (unsigned long) addr & 2847 ~(TCE_PCI_READ | TCE_PCI_WRITE); 2848 2849 if (level) { 2850 long i; 2851 u64 *tmp = (u64 *) addr_ul; 2852 2853 for (i = 0; i < size; ++i) { 2854 unsigned long hpa = be64_to_cpu(tmp[i]); 2855 2856 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE))) 2857 continue; 2858 2859 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size, 2860 level - 1); 2861 } 2862 } 2863 2864 free_pages(addr_ul, get_order(size << 3)); 2865 } 2866 2867 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl) 2868 { 2869 const unsigned long size = tbl->it_indirect_levels ? 2870 tbl->it_level_size : tbl->it_size; 2871 2872 if (!tbl->it_size) 2873 return; 2874 2875 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size, 2876 tbl->it_indirect_levels); 2877 } 2878 2879 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 2880 struct pnv_ioda_pe *pe) 2881 { 2882 int64_t rc; 2883 2884 if (!pnv_pci_ioda_pe_dma_weight(pe)) 2885 return; 2886 2887 /* TVE #1 is selected by PCI address bit 59 */ 2888 pe->tce_bypass_base = 1ull << 59; 2889 2890 iommu_register_group(&pe->table_group, phb->hose->global_number, 2891 pe->pe_number); 2892 2893 /* The PE will reserve all possible 32-bits space */ 2894 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", 2895 phb->ioda.m32_pci_base); 2896 2897 /* Setup linux iommu table */ 2898 pe->table_group.tce32_start = 0; 2899 pe->table_group.tce32_size = phb->ioda.m32_pci_base; 2900 pe->table_group.max_dynamic_windows_supported = 2901 IOMMU_TABLE_GROUP_MAX_TABLES; 2902 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; 2903 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M; 2904 #ifdef CONFIG_IOMMU_API 2905 pe->table_group.ops = &pnv_pci_ioda2_ops; 2906 #endif 2907 2908 rc = pnv_pci_ioda2_setup_default_config(pe); 2909 if (rc) 2910 return; 2911 2912 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2913 pnv_ioda_setup_bus_dma(pe, pe->pbus, true); 2914 } 2915 2916 #ifdef CONFIG_PCI_MSI 2917 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq) 2918 { 2919 struct pnv_phb *phb = container_of(chip, struct pnv_phb, 2920 ioda.irq_chip); 2921 2922 return opal_pci_msi_eoi(phb->opal_id, hw_irq); 2923 } 2924 2925 static void pnv_ioda2_msi_eoi(struct irq_data *d) 2926 { 2927 int64_t rc; 2928 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 2929 struct irq_chip *chip = irq_data_get_irq_chip(d); 2930 2931 rc = pnv_opal_pci_msi_eoi(chip, hw_irq); 2932 WARN_ON_ONCE(rc); 2933 2934 icp_native_eoi(d); 2935 } 2936 2937 2938 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) 2939 { 2940 struct irq_data *idata; 2941 struct irq_chip *ichip; 2942 2943 /* The MSI EOI OPAL call is only needed on PHB3 */ 2944 if (phb->model != PNV_PHB_MODEL_PHB3) 2945 return; 2946 2947 if (!phb->ioda.irq_chip_init) { 2948 /* 2949 * First time we setup an MSI IRQ, we need to setup the 2950 * corresponding IRQ chip to route correctly. 2951 */ 2952 idata = irq_get_irq_data(virq); 2953 ichip = irq_data_get_irq_chip(idata); 2954 phb->ioda.irq_chip_init = 1; 2955 phb->ioda.irq_chip = *ichip; 2956 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; 2957 } 2958 irq_set_chip(virq, &phb->ioda.irq_chip); 2959 } 2960 2961 /* 2962 * Returns true iff chip is something that we could call 2963 * pnv_opal_pci_msi_eoi for. 2964 */ 2965 bool is_pnv_opal_msi(struct irq_chip *chip) 2966 { 2967 return chip->irq_eoi == pnv_ioda2_msi_eoi; 2968 } 2969 EXPORT_SYMBOL_GPL(is_pnv_opal_msi); 2970 2971 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, 2972 unsigned int hwirq, unsigned int virq, 2973 unsigned int is_64, struct msi_msg *msg) 2974 { 2975 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); 2976 unsigned int xive_num = hwirq - phb->msi_base; 2977 __be32 data; 2978 int rc; 2979 2980 /* No PE assigned ? bail out ... no MSI for you ! */ 2981 if (pe == NULL) 2982 return -ENXIO; 2983 2984 /* Check if we have an MVE */ 2985 if (pe->mve_number < 0) 2986 return -ENXIO; 2987 2988 /* Force 32-bit MSI on some broken devices */ 2989 if (dev->no_64bit_msi) 2990 is_64 = 0; 2991 2992 /* Assign XIVE to PE */ 2993 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); 2994 if (rc) { 2995 pr_warn("%s: OPAL error %d setting XIVE %d PE\n", 2996 pci_name(dev), rc, xive_num); 2997 return -EIO; 2998 } 2999 3000 if (is_64) { 3001 __be64 addr64; 3002 3003 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, 3004 &addr64, &data); 3005 if (rc) { 3006 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", 3007 pci_name(dev), rc); 3008 return -EIO; 3009 } 3010 msg->address_hi = be64_to_cpu(addr64) >> 32; 3011 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; 3012 } else { 3013 __be32 addr32; 3014 3015 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, 3016 &addr32, &data); 3017 if (rc) { 3018 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", 3019 pci_name(dev), rc); 3020 return -EIO; 3021 } 3022 msg->address_hi = 0; 3023 msg->address_lo = be32_to_cpu(addr32); 3024 } 3025 msg->data = be32_to_cpu(data); 3026 3027 pnv_set_msi_irq_chip(phb, virq); 3028 3029 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," 3030 " address=%x_%08x data=%x PE# %x\n", 3031 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, 3032 msg->address_hi, msg->address_lo, data, pe->pe_number); 3033 3034 return 0; 3035 } 3036 3037 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) 3038 { 3039 unsigned int count; 3040 const __be32 *prop = of_get_property(phb->hose->dn, 3041 "ibm,opal-msi-ranges", NULL); 3042 if (!prop) { 3043 /* BML Fallback */ 3044 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); 3045 } 3046 if (!prop) 3047 return; 3048 3049 phb->msi_base = be32_to_cpup(prop); 3050 count = be32_to_cpup(prop + 1); 3051 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { 3052 pr_err("PCI %d: Failed to allocate MSI bitmap !\n", 3053 phb->hose->global_number); 3054 return; 3055 } 3056 3057 phb->msi_setup = pnv_pci_ioda_msi_setup; 3058 phb->msi32_support = 1; 3059 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", 3060 count, phb->msi_base); 3061 } 3062 #else 3063 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { } 3064 #endif /* CONFIG_PCI_MSI */ 3065 3066 #ifdef CONFIG_PCI_IOV 3067 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) 3068 { 3069 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3070 struct pnv_phb *phb = hose->private_data; 3071 const resource_size_t gate = phb->ioda.m64_segsize >> 2; 3072 struct resource *res; 3073 int i; 3074 resource_size_t size, total_vf_bar_sz; 3075 struct pci_dn *pdn; 3076 int mul, total_vfs; 3077 3078 if (!pdev->is_physfn || pdev->is_added) 3079 return; 3080 3081 pdn = pci_get_pdn(pdev); 3082 pdn->vfs_expanded = 0; 3083 pdn->m64_single_mode = false; 3084 3085 total_vfs = pci_sriov_get_totalvfs(pdev); 3086 mul = phb->ioda.total_pe_num; 3087 total_vf_bar_sz = 0; 3088 3089 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 3090 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 3091 if (!res->flags || res->parent) 3092 continue; 3093 if (!pnv_pci_is_m64_flags(res->flags)) { 3094 dev_warn(&pdev->dev, "Don't support SR-IOV with" 3095 " non M64 VF BAR%d: %pR. \n", 3096 i, res); 3097 goto truncate_iov; 3098 } 3099 3100 total_vf_bar_sz += pci_iov_resource_size(pdev, 3101 i + PCI_IOV_RESOURCES); 3102 3103 /* 3104 * If bigger than quarter of M64 segment size, just round up 3105 * power of two. 3106 * 3107 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict 3108 * with other devices, IOV BAR size is expanded to be 3109 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64 3110 * segment size , the expanded size would equal to half of the 3111 * whole M64 space size, which will exhaust the M64 Space and 3112 * limit the system flexibility. This is a design decision to 3113 * set the boundary to quarter of the M64 segment size. 3114 */ 3115 if (total_vf_bar_sz > gate) { 3116 mul = roundup_pow_of_two(total_vfs); 3117 dev_info(&pdev->dev, 3118 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n", 3119 total_vf_bar_sz, gate, mul); 3120 pdn->m64_single_mode = true; 3121 break; 3122 } 3123 } 3124 3125 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 3126 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 3127 if (!res->flags || res->parent) 3128 continue; 3129 3130 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); 3131 /* 3132 * On PHB3, the minimum size alignment of M64 BAR in single 3133 * mode is 32MB. 3134 */ 3135 if (pdn->m64_single_mode && (size < SZ_32M)) 3136 goto truncate_iov; 3137 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res); 3138 res->end = res->start + size * mul - 1; 3139 dev_dbg(&pdev->dev, " %pR\n", res); 3140 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", 3141 i, res, mul); 3142 } 3143 pdn->vfs_expanded = mul; 3144 3145 return; 3146 3147 truncate_iov: 3148 /* To save MMIO space, IOV BAR is truncated. */ 3149 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 3150 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 3151 res->flags = 0; 3152 res->end = res->start - 1; 3153 } 3154 } 3155 #endif /* CONFIG_PCI_IOV */ 3156 3157 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, 3158 struct resource *res) 3159 { 3160 struct pnv_phb *phb = pe->phb; 3161 struct pci_bus_region region; 3162 int index; 3163 int64_t rc; 3164 3165 if (!res || !res->flags || res->start > res->end) 3166 return; 3167 3168 if (res->flags & IORESOURCE_IO) { 3169 region.start = res->start - phb->ioda.io_pci_base; 3170 region.end = res->end - phb->ioda.io_pci_base; 3171 index = region.start / phb->ioda.io_segsize; 3172 3173 while (index < phb->ioda.total_pe_num && 3174 region.start <= region.end) { 3175 phb->ioda.io_segmap[index] = pe->pe_number; 3176 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3177 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); 3178 if (rc != OPAL_SUCCESS) { 3179 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n", 3180 __func__, rc, index, pe->pe_number); 3181 break; 3182 } 3183 3184 region.start += phb->ioda.io_segsize; 3185 index++; 3186 } 3187 } else if ((res->flags & IORESOURCE_MEM) && 3188 !pnv_pci_is_m64(phb, res)) { 3189 region.start = res->start - 3190 phb->hose->mem_offset[0] - 3191 phb->ioda.m32_pci_base; 3192 region.end = res->end - 3193 phb->hose->mem_offset[0] - 3194 phb->ioda.m32_pci_base; 3195 index = region.start / phb->ioda.m32_segsize; 3196 3197 while (index < phb->ioda.total_pe_num && 3198 region.start <= region.end) { 3199 phb->ioda.m32_segmap[index] = pe->pe_number; 3200 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3201 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); 3202 if (rc != OPAL_SUCCESS) { 3203 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x", 3204 __func__, rc, index, pe->pe_number); 3205 break; 3206 } 3207 3208 region.start += phb->ioda.m32_segsize; 3209 index++; 3210 } 3211 } 3212 } 3213 3214 /* 3215 * This function is supposed to be called on basis of PE from top 3216 * to bottom style. So the the I/O or MMIO segment assigned to 3217 * parent PE could be overridden by its child PEs if necessary. 3218 */ 3219 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) 3220 { 3221 struct pci_dev *pdev; 3222 int i; 3223 3224 /* 3225 * NOTE: We only care PCI bus based PE for now. For PCI 3226 * device based PE, for example SRIOV sensitive VF should 3227 * be figured out later. 3228 */ 3229 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); 3230 3231 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 3232 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 3233 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); 3234 3235 /* 3236 * If the PE contains all subordinate PCI buses, the 3237 * windows of the child bridges should be mapped to 3238 * the PE as well. 3239 */ 3240 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) 3241 continue; 3242 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) 3243 pnv_ioda_setup_pe_res(pe, 3244 &pdev->resource[PCI_BRIDGE_RESOURCES + i]); 3245 } 3246 } 3247 3248 #ifdef CONFIG_DEBUG_FS 3249 static int pnv_pci_diag_data_set(void *data, u64 val) 3250 { 3251 struct pci_controller *hose; 3252 struct pnv_phb *phb; 3253 s64 ret; 3254 3255 if (val != 1ULL) 3256 return -EINVAL; 3257 3258 hose = (struct pci_controller *)data; 3259 if (!hose || !hose->private_data) 3260 return -ENODEV; 3261 3262 phb = hose->private_data; 3263 3264 /* Retrieve the diag data from firmware */ 3265 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data, 3266 phb->diag_data_size); 3267 if (ret != OPAL_SUCCESS) 3268 return -EIO; 3269 3270 /* Print the diag data to the kernel log */ 3271 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data); 3272 return 0; 3273 } 3274 3275 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, 3276 pnv_pci_diag_data_set, "%llu\n"); 3277 3278 #endif /* CONFIG_DEBUG_FS */ 3279 3280 static void pnv_pci_ioda_create_dbgfs(void) 3281 { 3282 #ifdef CONFIG_DEBUG_FS 3283 struct pci_controller *hose, *tmp; 3284 struct pnv_phb *phb; 3285 char name[16]; 3286 3287 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 3288 phb = hose->private_data; 3289 3290 /* Notify initialization of PHB done */ 3291 phb->initialized = 1; 3292 3293 sprintf(name, "PCI%04x", hose->global_number); 3294 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); 3295 if (!phb->dbgfs) { 3296 pr_warning("%s: Error on creating debugfs on PHB#%x\n", 3297 __func__, hose->global_number); 3298 continue; 3299 } 3300 3301 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose, 3302 &pnv_pci_diag_data_fops); 3303 } 3304 #endif /* CONFIG_DEBUG_FS */ 3305 } 3306 3307 static void pnv_pci_ioda_fixup(void) 3308 { 3309 pnv_pci_ioda_setup_PEs(); 3310 pnv_pci_ioda_setup_iommu_api(); 3311 pnv_pci_ioda_create_dbgfs(); 3312 3313 #ifdef CONFIG_EEH 3314 pnv_eeh_post_init(); 3315 #endif 3316 } 3317 3318 /* 3319 * Returns the alignment for I/O or memory windows for P2P 3320 * bridges. That actually depends on how PEs are segmented. 3321 * For now, we return I/O or M32 segment size for PE sensitive 3322 * P2P bridges. Otherwise, the default values (4KiB for I/O, 3323 * 1MiB for memory) will be returned. 3324 * 3325 * The current PCI bus might be put into one PE, which was 3326 * create against the parent PCI bridge. For that case, we 3327 * needn't enlarge the alignment so that we can save some 3328 * resources. 3329 */ 3330 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, 3331 unsigned long type) 3332 { 3333 struct pci_dev *bridge; 3334 struct pci_controller *hose = pci_bus_to_host(bus); 3335 struct pnv_phb *phb = hose->private_data; 3336 int num_pci_bridges = 0; 3337 3338 bridge = bus->self; 3339 while (bridge) { 3340 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { 3341 num_pci_bridges++; 3342 if (num_pci_bridges >= 2) 3343 return 1; 3344 } 3345 3346 bridge = bridge->bus->self; 3347 } 3348 3349 /* 3350 * We fall back to M32 if M64 isn't supported. We enforce the M64 3351 * alignment for any 64-bit resource, PCIe doesn't care and 3352 * bridges only do 64-bit prefetchable anyway. 3353 */ 3354 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type)) 3355 return phb->ioda.m64_segsize; 3356 if (type & IORESOURCE_MEM) 3357 return phb->ioda.m32_segsize; 3358 3359 return phb->ioda.io_segsize; 3360 } 3361 3362 /* 3363 * We are updating root port or the upstream port of the 3364 * bridge behind the root port with PHB's windows in order 3365 * to accommodate the changes on required resources during 3366 * PCI (slot) hotplug, which is connected to either root 3367 * port or the downstream ports of PCIe switch behind the 3368 * root port. 3369 */ 3370 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, 3371 unsigned long type) 3372 { 3373 struct pci_controller *hose = pci_bus_to_host(bus); 3374 struct pnv_phb *phb = hose->private_data; 3375 struct pci_dev *bridge = bus->self; 3376 struct resource *r, *w; 3377 bool msi_region = false; 3378 int i; 3379 3380 /* Check if we need apply fixup to the bridge's windows */ 3381 if (!pci_is_root_bus(bridge->bus) && 3382 !pci_is_root_bus(bridge->bus->self->bus)) 3383 return; 3384 3385 /* Fixup the resources */ 3386 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { 3387 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; 3388 if (!r->flags || !r->parent) 3389 continue; 3390 3391 w = NULL; 3392 if (r->flags & type & IORESOURCE_IO) 3393 w = &hose->io_resource; 3394 else if (pnv_pci_is_m64(phb, r) && 3395 (type & IORESOURCE_PREFETCH) && 3396 phb->ioda.m64_segsize) 3397 w = &hose->mem_resources[1]; 3398 else if (r->flags & type & IORESOURCE_MEM) { 3399 w = &hose->mem_resources[0]; 3400 msi_region = true; 3401 } 3402 3403 r->start = w->start; 3404 r->end = w->end; 3405 3406 /* The 64KB 32-bits MSI region shouldn't be included in 3407 * the 32-bits bridge window. Otherwise, we can see strange 3408 * issues. One of them is EEH error observed on Garrison. 3409 * 3410 * Exclude top 1MB region which is the minimal alignment of 3411 * 32-bits bridge window. 3412 */ 3413 if (msi_region) { 3414 r->end += 0x10000; 3415 r->end -= 0x100000; 3416 } 3417 } 3418 } 3419 3420 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type) 3421 { 3422 struct pci_controller *hose = pci_bus_to_host(bus); 3423 struct pnv_phb *phb = hose->private_data; 3424 struct pci_dev *bridge = bus->self; 3425 struct pnv_ioda_pe *pe; 3426 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); 3427 3428 /* Extend bridge's windows if necessary */ 3429 pnv_pci_fixup_bridge_resources(bus, type); 3430 3431 /* The PE for root bus should be realized before any one else */ 3432 if (!phb->ioda.root_pe_populated) { 3433 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false); 3434 if (pe) { 3435 phb->ioda.root_pe_idx = pe->pe_number; 3436 phb->ioda.root_pe_populated = true; 3437 } 3438 } 3439 3440 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ 3441 if (list_empty(&bus->devices)) 3442 return; 3443 3444 /* Reserve PEs according to used M64 resources */ 3445 if (phb->reserve_m64_pe) 3446 phb->reserve_m64_pe(bus, NULL, all); 3447 3448 /* 3449 * Assign PE. We might run here because of partial hotplug. 3450 * For the case, we just pick up the existing PE and should 3451 * not allocate resources again. 3452 */ 3453 pe = pnv_ioda_setup_bus_PE(bus, all); 3454 if (!pe) 3455 return; 3456 3457 pnv_ioda_setup_pe_seg(pe); 3458 switch (phb->type) { 3459 case PNV_PHB_IODA1: 3460 pnv_pci_ioda1_setup_dma_pe(phb, pe); 3461 break; 3462 case PNV_PHB_IODA2: 3463 pnv_pci_ioda2_setup_dma_pe(phb, pe); 3464 break; 3465 default: 3466 pr_warn("%s: No DMA for PHB#%x (type %d)\n", 3467 __func__, phb->hose->global_number, phb->type); 3468 } 3469 } 3470 3471 static resource_size_t pnv_pci_default_alignment(void) 3472 { 3473 return PAGE_SIZE; 3474 } 3475 3476 #ifdef CONFIG_PCI_IOV 3477 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, 3478 int resno) 3479 { 3480 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3481 struct pnv_phb *phb = hose->private_data; 3482 struct pci_dn *pdn = pci_get_pdn(pdev); 3483 resource_size_t align; 3484 3485 /* 3486 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the 3487 * SR-IOV. While from hardware perspective, the range mapped by M64 3488 * BAR should be size aligned. 3489 * 3490 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra 3491 * powernv-specific hardware restriction is gone. But if just use the 3492 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with 3493 * in one segment of M64 #15, which introduces the PE conflict between 3494 * PF and VF. Based on this, the minimum alignment of an IOV BAR is 3495 * m64_segsize. 3496 * 3497 * This function returns the total IOV BAR size if M64 BAR is in 3498 * Shared PE mode or just VF BAR size if not. 3499 * If the M64 BAR is in Single PE mode, return the VF BAR size or 3500 * M64 segment size if IOV BAR size is less. 3501 */ 3502 align = pci_iov_resource_size(pdev, resno); 3503 if (!pdn->vfs_expanded) 3504 return align; 3505 if (pdn->m64_single_mode) 3506 return max(align, (resource_size_t)phb->ioda.m64_segsize); 3507 3508 return pdn->vfs_expanded * align; 3509 } 3510 #endif /* CONFIG_PCI_IOV */ 3511 3512 /* Prevent enabling devices for which we couldn't properly 3513 * assign a PE 3514 */ 3515 bool pnv_pci_enable_device_hook(struct pci_dev *dev) 3516 { 3517 struct pci_controller *hose = pci_bus_to_host(dev->bus); 3518 struct pnv_phb *phb = hose->private_data; 3519 struct pci_dn *pdn; 3520 3521 /* The function is probably called while the PEs have 3522 * not be created yet. For example, resource reassignment 3523 * during PCI probe period. We just skip the check if 3524 * PEs isn't ready. 3525 */ 3526 if (!phb->initialized) 3527 return true; 3528 3529 pdn = pci_get_pdn(dev); 3530 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3531 return false; 3532 3533 return true; 3534 } 3535 3536 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, 3537 int num) 3538 { 3539 struct pnv_ioda_pe *pe = container_of(table_group, 3540 struct pnv_ioda_pe, table_group); 3541 struct pnv_phb *phb = pe->phb; 3542 unsigned int idx; 3543 long rc; 3544 3545 pe_info(pe, "Removing DMA window #%d\n", num); 3546 for (idx = 0; idx < phb->ioda.dma32_count; idx++) { 3547 if (phb->ioda.dma32_segmap[idx] != pe->pe_number) 3548 continue; 3549 3550 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 3551 idx, 0, 0ul, 0ul, 0ul); 3552 if (rc != OPAL_SUCCESS) { 3553 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", 3554 rc, idx); 3555 return rc; 3556 } 3557 3558 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; 3559 } 3560 3561 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 3562 return OPAL_SUCCESS; 3563 } 3564 3565 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) 3566 { 3567 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3568 struct iommu_table *tbl = pe->table_group.tables[0]; 3569 int64_t rc; 3570 3571 if (!weight) 3572 return; 3573 3574 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); 3575 if (rc != OPAL_SUCCESS) 3576 return; 3577 3578 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); 3579 if (pe->table_group.group) { 3580 iommu_group_put(pe->table_group.group); 3581 WARN_ON(pe->table_group.group); 3582 } 3583 3584 free_pages(tbl->it_base, get_order(tbl->it_size << 3)); 3585 iommu_tce_table_put(tbl); 3586 } 3587 3588 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) 3589 { 3590 struct iommu_table *tbl = pe->table_group.tables[0]; 3591 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3592 #ifdef CONFIG_IOMMU_API 3593 int64_t rc; 3594 #endif 3595 3596 if (!weight) 3597 return; 3598 3599 #ifdef CONFIG_IOMMU_API 3600 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 3601 if (rc) 3602 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 3603 #endif 3604 3605 pnv_pci_ioda2_set_bypass(pe, false); 3606 if (pe->table_group.group) { 3607 iommu_group_put(pe->table_group.group); 3608 WARN_ON(pe->table_group.group); 3609 } 3610 3611 pnv_pci_ioda2_table_free_pages(tbl); 3612 iommu_tce_table_put(tbl); 3613 } 3614 3615 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, 3616 unsigned short win, 3617 unsigned int *map) 3618 { 3619 struct pnv_phb *phb = pe->phb; 3620 int idx; 3621 int64_t rc; 3622 3623 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { 3624 if (map[idx] != pe->pe_number) 3625 continue; 3626 3627 if (win == OPAL_M64_WINDOW_TYPE) 3628 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3629 phb->ioda.reserved_pe_idx, win, 3630 idx / PNV_IODA1_M64_SEGS, 3631 idx % PNV_IODA1_M64_SEGS); 3632 else 3633 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3634 phb->ioda.reserved_pe_idx, win, 0, idx); 3635 3636 if (rc != OPAL_SUCCESS) 3637 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n", 3638 rc, win, idx); 3639 3640 map[idx] = IODA_INVALID_PE; 3641 } 3642 } 3643 3644 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) 3645 { 3646 struct pnv_phb *phb = pe->phb; 3647 3648 if (phb->type == PNV_PHB_IODA1) { 3649 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, 3650 phb->ioda.io_segmap); 3651 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3652 phb->ioda.m32_segmap); 3653 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE, 3654 phb->ioda.m64_segmap); 3655 } else if (phb->type == PNV_PHB_IODA2) { 3656 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3657 phb->ioda.m32_segmap); 3658 } 3659 } 3660 3661 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) 3662 { 3663 struct pnv_phb *phb = pe->phb; 3664 struct pnv_ioda_pe *slave, *tmp; 3665 3666 list_del(&pe->list); 3667 switch (phb->type) { 3668 case PNV_PHB_IODA1: 3669 pnv_pci_ioda1_release_pe_dma(pe); 3670 break; 3671 case PNV_PHB_IODA2: 3672 pnv_pci_ioda2_release_pe_dma(pe); 3673 break; 3674 default: 3675 WARN_ON(1); 3676 } 3677 3678 pnv_ioda_release_pe_seg(pe); 3679 pnv_ioda_deconfigure_pe(pe->phb, pe); 3680 3681 /* Release slave PEs in the compound PE */ 3682 if (pe->flags & PNV_IODA_PE_MASTER) { 3683 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { 3684 list_del(&slave->list); 3685 pnv_ioda_free_pe(slave); 3686 } 3687 } 3688 3689 /* 3690 * The PE for root bus can be removed because of hotplug in EEH 3691 * recovery for fenced PHB error. We need to mark the PE dead so 3692 * that it can be populated again in PCI hot add path. The PE 3693 * shouldn't be destroyed as it's the global reserved resource. 3694 */ 3695 if (phb->ioda.root_pe_populated && 3696 phb->ioda.root_pe_idx == pe->pe_number) 3697 phb->ioda.root_pe_populated = false; 3698 else 3699 pnv_ioda_free_pe(pe); 3700 } 3701 3702 static void pnv_pci_release_device(struct pci_dev *pdev) 3703 { 3704 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3705 struct pnv_phb *phb = hose->private_data; 3706 struct pci_dn *pdn = pci_get_pdn(pdev); 3707 struct pnv_ioda_pe *pe; 3708 3709 if (pdev->is_virtfn) 3710 return; 3711 3712 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3713 return; 3714 3715 /* 3716 * PCI hotplug can happen as part of EEH error recovery. The @pdn 3717 * isn't removed and added afterwards in this scenario. We should 3718 * set the PE number in @pdn to an invalid one. Otherwise, the PE's 3719 * device count is decreased on removing devices while failing to 3720 * be increased on adding devices. It leads to unbalanced PE's device 3721 * count and eventually make normal PCI hotplug path broken. 3722 */ 3723 pe = &phb->ioda.pe_array[pdn->pe_number]; 3724 pdn->pe_number = IODA_INVALID_PE; 3725 3726 WARN_ON(--pe->device_count < 0); 3727 if (pe->device_count == 0) 3728 pnv_ioda_release_pe(pe); 3729 } 3730 3731 static void pnv_pci_ioda_shutdown(struct pci_controller *hose) 3732 { 3733 struct pnv_phb *phb = hose->private_data; 3734 3735 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, 3736 OPAL_ASSERT_RESET); 3737 } 3738 3739 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { 3740 .dma_dev_setup = pnv_pci_dma_dev_setup, 3741 .dma_bus_setup = pnv_pci_dma_bus_setup, 3742 #ifdef CONFIG_PCI_MSI 3743 .setup_msi_irqs = pnv_setup_msi_irqs, 3744 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3745 #endif 3746 .enable_device_hook = pnv_pci_enable_device_hook, 3747 .release_device = pnv_pci_release_device, 3748 .window_alignment = pnv_pci_window_alignment, 3749 .setup_bridge = pnv_pci_setup_bridge, 3750 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3751 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3752 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3753 .shutdown = pnv_pci_ioda_shutdown, 3754 }; 3755 3756 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask) 3757 { 3758 dev_err_once(&npdev->dev, 3759 "%s operation unsupported for NVLink devices\n", 3760 __func__); 3761 return -EPERM; 3762 } 3763 3764 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = { 3765 .dma_dev_setup = pnv_pci_dma_dev_setup, 3766 #ifdef CONFIG_PCI_MSI 3767 .setup_msi_irqs = pnv_setup_msi_irqs, 3768 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3769 #endif 3770 .enable_device_hook = pnv_pci_enable_device_hook, 3771 .window_alignment = pnv_pci_window_alignment, 3772 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3773 .dma_set_mask = pnv_npu_dma_set_mask, 3774 .shutdown = pnv_pci_ioda_shutdown, 3775 }; 3776 3777 #ifdef CONFIG_CXL_BASE 3778 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = { 3779 .dma_dev_setup = pnv_pci_dma_dev_setup, 3780 .dma_bus_setup = pnv_pci_dma_bus_setup, 3781 #ifdef CONFIG_PCI_MSI 3782 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs, 3783 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs, 3784 #endif 3785 .enable_device_hook = pnv_cxl_enable_device_hook, 3786 .disable_device = pnv_cxl_disable_device, 3787 .release_device = pnv_pci_release_device, 3788 .window_alignment = pnv_pci_window_alignment, 3789 .setup_bridge = pnv_pci_setup_bridge, 3790 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3791 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3792 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3793 .shutdown = pnv_pci_ioda_shutdown, 3794 }; 3795 #endif 3796 3797 static void __init pnv_pci_init_ioda_phb(struct device_node *np, 3798 u64 hub_id, int ioda_type) 3799 { 3800 struct pci_controller *hose; 3801 struct pnv_phb *phb; 3802 unsigned long size, m64map_off, m32map_off, pemap_off; 3803 unsigned long iomap_off = 0, dma32map_off = 0; 3804 struct resource r; 3805 const __be64 *prop64; 3806 const __be32 *prop32; 3807 int len; 3808 unsigned int segno; 3809 u64 phb_id; 3810 void *aux; 3811 long rc; 3812 3813 if (!of_device_is_available(np)) 3814 return; 3815 3816 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np); 3817 3818 prop64 = of_get_property(np, "ibm,opal-phbid", NULL); 3819 if (!prop64) { 3820 pr_err(" Missing \"ibm,opal-phbid\" property !\n"); 3821 return; 3822 } 3823 phb_id = be64_to_cpup(prop64); 3824 pr_debug(" PHB-ID : 0x%016llx\n", phb_id); 3825 3826 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0); 3827 3828 /* Allocate PCI controller */ 3829 phb->hose = hose = pcibios_alloc_controller(np); 3830 if (!phb->hose) { 3831 pr_err(" Can't allocate PCI controller for %pOF\n", 3832 np); 3833 memblock_free(__pa(phb), sizeof(struct pnv_phb)); 3834 return; 3835 } 3836 3837 spin_lock_init(&phb->lock); 3838 prop32 = of_get_property(np, "bus-range", &len); 3839 if (prop32 && len == 8) { 3840 hose->first_busno = be32_to_cpu(prop32[0]); 3841 hose->last_busno = be32_to_cpu(prop32[1]); 3842 } else { 3843 pr_warn(" Broken <bus-range> on %pOF\n", np); 3844 hose->first_busno = 0; 3845 hose->last_busno = 0xff; 3846 } 3847 hose->private_data = phb; 3848 phb->hub_id = hub_id; 3849 phb->opal_id = phb_id; 3850 phb->type = ioda_type; 3851 mutex_init(&phb->ioda.pe_alloc_mutex); 3852 3853 /* Detect specific models for error handling */ 3854 if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) 3855 phb->model = PNV_PHB_MODEL_P7IOC; 3856 else if (of_device_is_compatible(np, "ibm,power8-pciex")) 3857 phb->model = PNV_PHB_MODEL_PHB3; 3858 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex")) 3859 phb->model = PNV_PHB_MODEL_NPU; 3860 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex")) 3861 phb->model = PNV_PHB_MODEL_NPU2; 3862 else 3863 phb->model = PNV_PHB_MODEL_UNKNOWN; 3864 3865 /* Initialize diagnostic data buffer */ 3866 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL); 3867 if (prop32) 3868 phb->diag_data_size = be32_to_cpup(prop32); 3869 else 3870 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE; 3871 3872 phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0); 3873 3874 /* Parse 32-bit and IO ranges (if any) */ 3875 pci_process_bridge_OF_ranges(hose, np, !hose->global_number); 3876 3877 /* Get registers */ 3878 if (!of_address_to_resource(np, 0, &r)) { 3879 phb->regs_phys = r.start; 3880 phb->regs = ioremap(r.start, resource_size(&r)); 3881 if (phb->regs == NULL) 3882 pr_err(" Failed to map registers !\n"); 3883 } 3884 3885 /* Initialize more IODA stuff */ 3886 phb->ioda.total_pe_num = 1; 3887 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); 3888 if (prop32) 3889 phb->ioda.total_pe_num = be32_to_cpup(prop32); 3890 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); 3891 if (prop32) 3892 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); 3893 3894 /* Invalidate RID to PE# mapping */ 3895 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) 3896 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; 3897 3898 /* Parse 64-bit MMIO range */ 3899 pnv_ioda_parse_m64_window(phb); 3900 3901 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); 3902 /* FW Has already off top 64k of M32 space (MSI space) */ 3903 phb->ioda.m32_size += 0x10000; 3904 3905 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; 3906 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; 3907 phb->ioda.io_size = hose->pci_io_size; 3908 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; 3909 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ 3910 3911 /* Calculate how many 32-bit TCE segments we have */ 3912 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3913 PNV_IODA1_DMA32_SEGSIZE; 3914 3915 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ 3916 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, 3917 sizeof(unsigned long)); 3918 m64map_off = size; 3919 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); 3920 m32map_off = size; 3921 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); 3922 if (phb->type == PNV_PHB_IODA1) { 3923 iomap_off = size; 3924 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); 3925 dma32map_off = size; 3926 size += phb->ioda.dma32_count * 3927 sizeof(phb->ioda.dma32_segmap[0]); 3928 } 3929 pemap_off = size; 3930 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); 3931 aux = memblock_virt_alloc(size, 0); 3932 phb->ioda.pe_alloc = aux; 3933 phb->ioda.m64_segmap = aux + m64map_off; 3934 phb->ioda.m32_segmap = aux + m32map_off; 3935 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { 3936 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; 3937 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; 3938 } 3939 if (phb->type == PNV_PHB_IODA1) { 3940 phb->ioda.io_segmap = aux + iomap_off; 3941 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) 3942 phb->ioda.io_segmap[segno] = IODA_INVALID_PE; 3943 3944 phb->ioda.dma32_segmap = aux + dma32map_off; 3945 for (segno = 0; segno < phb->ioda.dma32_count; segno++) 3946 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; 3947 } 3948 phb->ioda.pe_array = aux + pemap_off; 3949 3950 /* 3951 * Choose PE number for root bus, which shouldn't have 3952 * M64 resources consumed by its child devices. To pick 3953 * the PE number adjacent to the reserved one if possible. 3954 */ 3955 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); 3956 if (phb->ioda.reserved_pe_idx == 0) { 3957 phb->ioda.root_pe_idx = 1; 3958 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3959 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { 3960 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; 3961 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3962 } else { 3963 phb->ioda.root_pe_idx = IODA_INVALID_PE; 3964 } 3965 3966 INIT_LIST_HEAD(&phb->ioda.pe_list); 3967 mutex_init(&phb->ioda.pe_list_mutex); 3968 3969 /* Calculate how many 32-bit TCE segments we have */ 3970 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3971 PNV_IODA1_DMA32_SEGSIZE; 3972 3973 #if 0 /* We should really do that ... */ 3974 rc = opal_pci_set_phb_mem_window(opal->phb_id, 3975 window_type, 3976 window_num, 3977 starting_real_address, 3978 starting_pci_address, 3979 segment_size); 3980 #endif 3981 3982 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", 3983 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, 3984 phb->ioda.m32_size, phb->ioda.m32_segsize); 3985 if (phb->ioda.m64_size) 3986 pr_info(" M64: 0x%lx [segment=0x%lx]\n", 3987 phb->ioda.m64_size, phb->ioda.m64_segsize); 3988 if (phb->ioda.io_size) 3989 pr_info(" IO: 0x%x [segment=0x%x]\n", 3990 phb->ioda.io_size, phb->ioda.io_segsize); 3991 3992 3993 phb->hose->ops = &pnv_pci_ops; 3994 phb->get_pe_state = pnv_ioda_get_pe_state; 3995 phb->freeze_pe = pnv_ioda_freeze_pe; 3996 phb->unfreeze_pe = pnv_ioda_unfreeze_pe; 3997 3998 /* Setup MSI support */ 3999 pnv_pci_init_ioda_msis(phb); 4000 4001 /* 4002 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here 4003 * to let the PCI core do resource assignment. It's supposed 4004 * that the PCI core will do correct I/O and MMIO alignment 4005 * for the P2P bridge bars so that each PCI bus (excluding 4006 * the child P2P bridges) can form individual PE. 4007 */ 4008 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; 4009 4010 if (phb->type == PNV_PHB_NPU) { 4011 hose->controller_ops = pnv_npu_ioda_controller_ops; 4012 } else { 4013 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup; 4014 hose->controller_ops = pnv_pci_ioda_controller_ops; 4015 } 4016 4017 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment; 4018 4019 #ifdef CONFIG_PCI_IOV 4020 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources; 4021 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; 4022 #endif 4023 4024 pci_add_flags(PCI_REASSIGN_ALL_RSRC); 4025 4026 /* Reset IODA tables to a clean state */ 4027 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); 4028 if (rc) 4029 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc); 4030 4031 /* 4032 * If we're running in kdump kernel, the previous kernel never 4033 * shutdown PCI devices correctly. We already got IODA table 4034 * cleaned out. So we have to issue PHB reset to stop all PCI 4035 * transactions from previous kernel. 4036 */ 4037 if (is_kdump_kernel()) { 4038 pr_info(" Issue PHB reset ...\n"); 4039 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); 4040 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); 4041 } 4042 4043 /* Remove M64 resource if we can't configure it successfully */ 4044 if (!phb->init_m64 || phb->init_m64(phb)) 4045 hose->mem_resources[1].flags = 0; 4046 } 4047 4048 void __init pnv_pci_init_ioda2_phb(struct device_node *np) 4049 { 4050 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); 4051 } 4052 4053 void __init pnv_pci_init_npu_phb(struct device_node *np) 4054 { 4055 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU); 4056 } 4057 4058 void __init pnv_pci_init_ioda_hub(struct device_node *np) 4059 { 4060 struct device_node *phbn; 4061 const __be64 *prop64; 4062 u64 hub_id; 4063 4064 pr_info("Probing IODA IO-Hub %pOF\n", np); 4065 4066 prop64 = of_get_property(np, "ibm,opal-hubid", NULL); 4067 if (!prop64) { 4068 pr_err(" Missing \"ibm,opal-hubid\" property !\n"); 4069 return; 4070 } 4071 hub_id = be64_to_cpup(prop64); 4072 pr_devel(" HUB-ID : 0x%016llx\n", hub_id); 4073 4074 /* Count child PHBs */ 4075 for_each_child_of_node(np, phbn) { 4076 /* Look for IODA1 PHBs */ 4077 if (of_device_is_compatible(phbn, "ibm,ioda-phb")) 4078 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); 4079 } 4080 } 4081