1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/debugfs.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 
25 #include <asm/sections.h>
26 #include <asm/io.h>
27 #include <asm/prom.h>
28 #include <asm/pci-bridge.h>
29 #include <asm/machdep.h>
30 #include <asm/msi_bitmap.h>
31 #include <asm/ppc-pci.h>
32 #include <asm/opal.h>
33 #include <asm/iommu.h>
34 #include <asm/tce.h>
35 #include <asm/xics.h>
36 #include <asm/debug.h>
37 
38 #include "powernv.h"
39 #include "pci.h"
40 
41 #define define_pe_printk_level(func, kern_level)		\
42 static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...)	\
43 {								\
44 	struct va_format vaf;					\
45 	va_list args;						\
46 	char pfix[32];						\
47 	int r;							\
48 								\
49 	va_start(args, fmt);					\
50 								\
51 	vaf.fmt = fmt;						\
52 	vaf.va = &args;						\
53 								\
54 	if (pe->pdev)						\
55 		strlcpy(pfix, dev_name(&pe->pdev->dev),		\
56 			sizeof(pfix));				\
57 	else							\
58 		sprintf(pfix, "%04x:%02x     ",			\
59 			pci_domain_nr(pe->pbus),		\
60 			pe->pbus->number);			\
61 	r = printk(kern_level "pci %s: [PE# %.3d] %pV",		\
62 		   pfix, pe->pe_number, &vaf);			\
63 								\
64 	va_end(args);						\
65 								\
66 	return r;						\
67 }								\
68 
69 define_pe_printk_level(pe_err, KERN_ERR);
70 define_pe_printk_level(pe_warn, KERN_WARNING);
71 define_pe_printk_level(pe_info, KERN_INFO);
72 
73 /*
74  * stdcix is only supposed to be used in hypervisor real mode as per
75  * the architecture spec
76  */
77 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
78 {
79 	__asm__ __volatile__("stdcix %0,0,%1"
80 		: : "r" (val), "r" (paddr) : "memory");
81 }
82 
83 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
84 {
85 	unsigned long pe;
86 
87 	do {
88 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
89 					phb->ioda.total_pe, 0);
90 		if (pe >= phb->ioda.total_pe)
91 			return IODA_INVALID_PE;
92 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
93 
94 	phb->ioda.pe_array[pe].phb = phb;
95 	phb->ioda.pe_array[pe].pe_number = pe;
96 	return pe;
97 }
98 
99 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
100 {
101 	WARN_ON(phb->ioda.pe_array[pe].pdev);
102 
103 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
104 	clear_bit(pe, phb->ioda.pe_alloc);
105 }
106 
107 /* Currently those 2 are only used when MSIs are enabled, this will change
108  * but in the meantime, we need to protect them to avoid warnings
109  */
110 #ifdef CONFIG_PCI_MSI
111 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
112 {
113 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
114 	struct pnv_phb *phb = hose->private_data;
115 	struct pci_dn *pdn = pci_get_pdn(dev);
116 
117 	if (!pdn)
118 		return NULL;
119 	if (pdn->pe_number == IODA_INVALID_PE)
120 		return NULL;
121 	return &phb->ioda.pe_array[pdn->pe_number];
122 }
123 #endif /* CONFIG_PCI_MSI */
124 
125 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
126 {
127 	struct pci_dev *parent;
128 	uint8_t bcomp, dcomp, fcomp;
129 	long rc, rid_end, rid;
130 
131 	/* Bus validation ? */
132 	if (pe->pbus) {
133 		int count;
134 
135 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
136 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
137 		parent = pe->pbus->self;
138 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
139 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
140 		else
141 			count = 1;
142 
143 		switch(count) {
144 		case  1: bcomp = OpalPciBusAll;		break;
145 		case  2: bcomp = OpalPciBus7Bits;	break;
146 		case  4: bcomp = OpalPciBus6Bits;	break;
147 		case  8: bcomp = OpalPciBus5Bits;	break;
148 		case 16: bcomp = OpalPciBus4Bits;	break;
149 		case 32: bcomp = OpalPciBus3Bits;	break;
150 		default:
151 			pr_err("%s: Number of subordinate busses %d"
152 			       " unsupported\n",
153 			       pci_name(pe->pbus->self), count);
154 			/* Do an exact match only */
155 			bcomp = OpalPciBusAll;
156 		}
157 		rid_end = pe->rid + (count << 8);
158 	} else {
159 		parent = pe->pdev->bus->self;
160 		bcomp = OpalPciBusAll;
161 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
162 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
163 		rid_end = pe->rid + 1;
164 	}
165 
166 	/*
167 	 * Associate PE in PELT. We need add the PE into the
168 	 * corresponding PELT-V as well. Otherwise, the error
169 	 * originated from the PE might contribute to other
170 	 * PEs.
171 	 */
172 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
173 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
174 	if (rc) {
175 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
176 		return -ENXIO;
177 	}
178 
179 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
180 				pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
181 	if (rc)
182 		pe_warn(pe, "OPAL error %d adding self to PELTV\n", rc);
183 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
184 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
185 
186 	/* Add to all parents PELT-V */
187 	while (parent) {
188 		struct pci_dn *pdn = pci_get_pdn(parent);
189 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
190 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
191 						pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
192 			/* XXX What to do in case of error ? */
193 		}
194 		parent = parent->bus->self;
195 	}
196 	/* Setup reverse map */
197 	for (rid = pe->rid; rid < rid_end; rid++)
198 		phb->ioda.pe_rmap[rid] = pe->pe_number;
199 
200 	/* Setup one MVTs on IODA1 */
201 	if (phb->type == PNV_PHB_IODA1) {
202 		pe->mve_number = pe->pe_number;
203 		rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
204 				      pe->pe_number);
205 		if (rc) {
206 			pe_err(pe, "OPAL error %ld setting up MVE %d\n",
207 			       rc, pe->mve_number);
208 			pe->mve_number = -1;
209 		} else {
210 			rc = opal_pci_set_mve_enable(phb->opal_id,
211 						     pe->mve_number, OPAL_ENABLE_MVE);
212 			if (rc) {
213 				pe_err(pe, "OPAL error %ld enabling MVE %d\n",
214 				       rc, pe->mve_number);
215 				pe->mve_number = -1;
216 			}
217 		}
218 	} else if (phb->type == PNV_PHB_IODA2)
219 		pe->mve_number = 0;
220 
221 	return 0;
222 }
223 
224 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
225 				       struct pnv_ioda_pe *pe)
226 {
227 	struct pnv_ioda_pe *lpe;
228 
229 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
230 		if (lpe->dma_weight < pe->dma_weight) {
231 			list_add_tail(&pe->dma_link, &lpe->dma_link);
232 			return;
233 		}
234 	}
235 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
236 }
237 
238 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
239 {
240 	/* This is quite simplistic. The "base" weight of a device
241 	 * is 10. 0 means no DMA is to be accounted for it.
242 	 */
243 
244 	/* If it's a bridge, no DMA */
245 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
246 		return 0;
247 
248 	/* Reduce the weight of slow USB controllers */
249 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
250 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
251 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
252 		return 3;
253 
254 	/* Increase the weight of RAID (includes Obsidian) */
255 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
256 		return 15;
257 
258 	/* Default */
259 	return 10;
260 }
261 
262 #if 0
263 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
264 {
265 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
266 	struct pnv_phb *phb = hose->private_data;
267 	struct pci_dn *pdn = pci_get_pdn(dev);
268 	struct pnv_ioda_pe *pe;
269 	int pe_num;
270 
271 	if (!pdn) {
272 		pr_err("%s: Device tree node not associated properly\n",
273 			   pci_name(dev));
274 		return NULL;
275 	}
276 	if (pdn->pe_number != IODA_INVALID_PE)
277 		return NULL;
278 
279 	/* PE#0 has been pre-set */
280 	if (dev->bus->number == 0)
281 		pe_num = 0;
282 	else
283 		pe_num = pnv_ioda_alloc_pe(phb);
284 	if (pe_num == IODA_INVALID_PE) {
285 		pr_warning("%s: Not enough PE# available, disabling device\n",
286 			   pci_name(dev));
287 		return NULL;
288 	}
289 
290 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
291 	 * pointer in the PE data structure, both should be destroyed at the
292 	 * same time. However, this needs to be looked at more closely again
293 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
294 	 *
295 	 * At some point we want to remove the PDN completely anyways
296 	 */
297 	pe = &phb->ioda.pe_array[pe_num];
298 	pci_dev_get(dev);
299 	pdn->pcidev = dev;
300 	pdn->pe_number = pe_num;
301 	pe->pdev = dev;
302 	pe->pbus = NULL;
303 	pe->tce32_seg = -1;
304 	pe->mve_number = -1;
305 	pe->rid = dev->bus->number << 8 | pdn->devfn;
306 
307 	pe_info(pe, "Associated device to PE\n");
308 
309 	if (pnv_ioda_configure_pe(phb, pe)) {
310 		/* XXX What do we do here ? */
311 		if (pe_num)
312 			pnv_ioda_free_pe(phb, pe_num);
313 		pdn->pe_number = IODA_INVALID_PE;
314 		pe->pdev = NULL;
315 		pci_dev_put(dev);
316 		return NULL;
317 	}
318 
319 	/* Assign a DMA weight to the device */
320 	pe->dma_weight = pnv_ioda_dma_weight(dev);
321 	if (pe->dma_weight != 0) {
322 		phb->ioda.dma_weight += pe->dma_weight;
323 		phb->ioda.dma_pe_count++;
324 	}
325 
326 	/* Link the PE */
327 	pnv_ioda_link_pe_by_weight(phb, pe);
328 
329 	return pe;
330 }
331 #endif /* Useful for SRIOV case */
332 
333 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
334 {
335 	struct pci_dev *dev;
336 
337 	list_for_each_entry(dev, &bus->devices, bus_list) {
338 		struct pci_dn *pdn = pci_get_pdn(dev);
339 
340 		if (pdn == NULL) {
341 			pr_warn("%s: No device node associated with device !\n",
342 				pci_name(dev));
343 			continue;
344 		}
345 		pci_dev_get(dev);
346 		pdn->pcidev = dev;
347 		pdn->pe_number = pe->pe_number;
348 		pe->dma_weight += pnv_ioda_dma_weight(dev);
349 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
350 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
351 	}
352 }
353 
354 /*
355  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
356  * single PCI bus. Another one that contains the primary PCI bus and its
357  * subordinate PCI devices and buses. The second type of PE is normally
358  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
359  */
360 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
361 {
362 	struct pci_controller *hose = pci_bus_to_host(bus);
363 	struct pnv_phb *phb = hose->private_data;
364 	struct pnv_ioda_pe *pe;
365 	int pe_num;
366 
367 	pe_num = pnv_ioda_alloc_pe(phb);
368 	if (pe_num == IODA_INVALID_PE) {
369 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
370 			__func__, pci_domain_nr(bus), bus->number);
371 		return;
372 	}
373 
374 	pe = &phb->ioda.pe_array[pe_num];
375 	pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
376 	pe->pbus = bus;
377 	pe->pdev = NULL;
378 	pe->tce32_seg = -1;
379 	pe->mve_number = -1;
380 	pe->rid = bus->busn_res.start << 8;
381 	pe->dma_weight = 0;
382 
383 	if (all)
384 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
385 			bus->busn_res.start, bus->busn_res.end, pe_num);
386 	else
387 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
388 			bus->busn_res.start, pe_num);
389 
390 	if (pnv_ioda_configure_pe(phb, pe)) {
391 		/* XXX What do we do here ? */
392 		if (pe_num)
393 			pnv_ioda_free_pe(phb, pe_num);
394 		pe->pbus = NULL;
395 		return;
396 	}
397 
398 	/* Associate it with all child devices */
399 	pnv_ioda_setup_same_PE(bus, pe);
400 
401 	/* Put PE to the list */
402 	list_add_tail(&pe->list, &phb->ioda.pe_list);
403 
404 	/* Account for one DMA PE if at least one DMA capable device exist
405 	 * below the bridge
406 	 */
407 	if (pe->dma_weight != 0) {
408 		phb->ioda.dma_weight += pe->dma_weight;
409 		phb->ioda.dma_pe_count++;
410 	}
411 
412 	/* Link the PE */
413 	pnv_ioda_link_pe_by_weight(phb, pe);
414 }
415 
416 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
417 {
418 	struct pci_dev *dev;
419 
420 	pnv_ioda_setup_bus_PE(bus, 0);
421 
422 	list_for_each_entry(dev, &bus->devices, bus_list) {
423 		if (dev->subordinate) {
424 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
425 				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
426 			else
427 				pnv_ioda_setup_PEs(dev->subordinate);
428 		}
429 	}
430 }
431 
432 /*
433  * Configure PEs so that the downstream PCI buses and devices
434  * could have their associated PE#. Unfortunately, we didn't
435  * figure out the way to identify the PLX bridge yet. So we
436  * simply put the PCI bus and the subordinate behind the root
437  * port to PE# here. The game rule here is expected to be changed
438  * as soon as we can detected PLX bridge correctly.
439  */
440 static void pnv_pci_ioda_setup_PEs(void)
441 {
442 	struct pci_controller *hose, *tmp;
443 
444 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
445 		pnv_ioda_setup_PEs(hose->bus);
446 	}
447 }
448 
449 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
450 {
451 	struct pci_dn *pdn = pci_get_pdn(pdev);
452 	struct pnv_ioda_pe *pe;
453 
454 	/*
455 	 * The function can be called while the PE#
456 	 * hasn't been assigned. Do nothing for the
457 	 * case.
458 	 */
459 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
460 		return;
461 
462 	pe = &phb->ioda.pe_array[pdn->pe_number];
463 	set_iommu_table_base(&pdev->dev, &pe->tce32_table);
464 }
465 
466 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
467 {
468 	struct pci_dev *dev;
469 
470 	list_for_each_entry(dev, &bus->devices, bus_list) {
471 		set_iommu_table_base(&dev->dev, &pe->tce32_table);
472 		if (dev->subordinate)
473 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
474 	}
475 }
476 
477 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
478 					 struct iommu_table *tbl,
479 					 __be64 *startp, __be64 *endp, bool rm)
480 {
481 	__be64 __iomem *invalidate = rm ?
482 		(__be64 __iomem *)pe->tce_inval_reg_phys :
483 		(__be64 __iomem *)tbl->it_index;
484 	unsigned long start, end, inc;
485 
486 	start = __pa(startp);
487 	end = __pa(endp);
488 
489 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
490 	if (tbl->it_busno) {
491 		start <<= 12;
492 		end <<= 12;
493 		inc = 128 << 12;
494 		start |= tbl->it_busno;
495 		end |= tbl->it_busno;
496 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
497 		/* p7ioc-style invalidation, 2 TCEs per write */
498 		start |= (1ull << 63);
499 		end |= (1ull << 63);
500 		inc = 16;
501         } else {
502 		/* Default (older HW) */
503                 inc = 128;
504 	}
505 
506         end |= inc - 1;	/* round up end to be different than start */
507 
508         mb(); /* Ensure above stores are visible */
509         while (start <= end) {
510 		if (rm)
511 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
512 		else
513 			__raw_writeq(cpu_to_be64(start), invalidate);
514                 start += inc;
515         }
516 
517 	/*
518 	 * The iommu layer will do another mb() for us on build()
519 	 * and we don't care on free()
520 	 */
521 }
522 
523 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
524 					 struct iommu_table *tbl,
525 					 __be64 *startp, __be64 *endp, bool rm)
526 {
527 	unsigned long start, end, inc;
528 	__be64 __iomem *invalidate = rm ?
529 		(__be64 __iomem *)pe->tce_inval_reg_phys :
530 		(__be64 __iomem *)tbl->it_index;
531 
532 	/* We'll invalidate DMA address in PE scope */
533 	start = 0x2ul << 60;
534 	start |= (pe->pe_number & 0xFF);
535 	end = start;
536 
537 	/* Figure out the start, end and step */
538 	inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
539 	start |= (inc << 12);
540 	inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
541 	end |= (inc << 12);
542 	inc = (0x1ul << 12);
543 	mb();
544 
545 	while (start <= end) {
546 		if (rm)
547 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
548 		else
549 			__raw_writeq(cpu_to_be64(start), invalidate);
550 		start += inc;
551 	}
552 }
553 
554 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
555 				 __be64 *startp, __be64 *endp, bool rm)
556 {
557 	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
558 					      tce32_table);
559 	struct pnv_phb *phb = pe->phb;
560 
561 	if (phb->type == PNV_PHB_IODA1)
562 		pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
563 	else
564 		pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
565 }
566 
567 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
568 				      struct pnv_ioda_pe *pe, unsigned int base,
569 				      unsigned int segs)
570 {
571 
572 	struct page *tce_mem = NULL;
573 	const __be64 *swinvp;
574 	struct iommu_table *tbl;
575 	unsigned int i;
576 	int64_t rc;
577 	void *addr;
578 
579 	/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
580 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
581 
582 	/* XXX FIXME: Handle 64-bit only DMA devices */
583 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
584 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
585 
586 	/* We shouldn't already have a 32-bit DMA associated */
587 	if (WARN_ON(pe->tce32_seg >= 0))
588 		return;
589 
590 	/* Grab a 32-bit TCE table */
591 	pe->tce32_seg = base;
592 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
593 		(base << 28), ((base + segs) << 28) - 1);
594 
595 	/* XXX Currently, we allocate one big contiguous table for the
596 	 * TCEs. We only really need one chunk per 256M of TCE space
597 	 * (ie per segment) but that's an optimization for later, it
598 	 * requires some added smarts with our get/put_tce implementation
599 	 */
600 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
601 				   get_order(TCE32_TABLE_SIZE * segs));
602 	if (!tce_mem) {
603 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
604 		goto fail;
605 	}
606 	addr = page_address(tce_mem);
607 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
608 
609 	/* Configure HW */
610 	for (i = 0; i < segs; i++) {
611 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
612 					      pe->pe_number,
613 					      base + i, 1,
614 					      __pa(addr) + TCE32_TABLE_SIZE * i,
615 					      TCE32_TABLE_SIZE, 0x1000);
616 		if (rc) {
617 			pe_err(pe, " Failed to configure 32-bit TCE table,"
618 			       " err %ld\n", rc);
619 			goto fail;
620 		}
621 	}
622 
623 	/* Setup linux iommu table */
624 	tbl = &pe->tce32_table;
625 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
626 				  base << 28);
627 
628 	/* OPAL variant of P7IOC SW invalidated TCEs */
629 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
630 	if (swinvp) {
631 		/* We need a couple more fields -- an address and a data
632 		 * to or.  Since the bus is only printed out on table free
633 		 * errors, and on the first pass the data will be a relative
634 		 * bus number, print that out instead.
635 		 */
636 		tbl->it_busno = 0;
637 		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
638 		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
639 				8);
640 		tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE |
641 			       TCE_PCI_SWINV_PAIR;
642 	}
643 	iommu_init_table(tbl, phb->hose->node);
644 	iommu_register_group(tbl, pci_domain_nr(pe->pbus), pe->pe_number);
645 
646 	if (pe->pdev)
647 		set_iommu_table_base(&pe->pdev->dev, tbl);
648 	else
649 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
650 
651 	return;
652  fail:
653 	/* XXX Failure: Try to fallback to 64-bit only ? */
654 	if (pe->tce32_seg >= 0)
655 		pe->tce32_seg = -1;
656 	if (tce_mem)
657 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
658 }
659 
660 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
661 				       struct pnv_ioda_pe *pe)
662 {
663 	struct page *tce_mem = NULL;
664 	void *addr;
665 	const __be64 *swinvp;
666 	struct iommu_table *tbl;
667 	unsigned int tce_table_size, end;
668 	int64_t rc;
669 
670 	/* We shouldn't already have a 32-bit DMA associated */
671 	if (WARN_ON(pe->tce32_seg >= 0))
672 		return;
673 
674 	/* The PE will reserve all possible 32-bits space */
675 	pe->tce32_seg = 0;
676 	end = (1 << ilog2(phb->ioda.m32_pci_base));
677 	tce_table_size = (end / 0x1000) * 8;
678 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
679 		end);
680 
681 	/* Allocate TCE table */
682 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
683 				   get_order(tce_table_size));
684 	if (!tce_mem) {
685 		pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
686 		goto fail;
687 	}
688 	addr = page_address(tce_mem);
689 	memset(addr, 0, tce_table_size);
690 
691 	/*
692 	 * Map TCE table through TVT. The TVE index is the PE number
693 	 * shifted by 1 bit for 32-bits DMA space.
694 	 */
695 	rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
696 					pe->pe_number << 1, 1, __pa(addr),
697 					tce_table_size, 0x1000);
698 	if (rc) {
699 		pe_err(pe, "Failed to configure 32-bit TCE table,"
700 		       " err %ld\n", rc);
701 		goto fail;
702 	}
703 
704 	/* Setup linux iommu table */
705 	tbl = &pe->tce32_table;
706 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0);
707 
708 	/* OPAL variant of PHB3 invalidated TCEs */
709 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
710 	if (swinvp) {
711 		/* We need a couple more fields -- an address and a data
712 		 * to or.  Since the bus is only printed out on table free
713 		 * errors, and on the first pass the data will be a relative
714 		 * bus number, print that out instead.
715 		 */
716 		tbl->it_busno = 0;
717 		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
718 		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
719 				8);
720 		tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE;
721 	}
722 	iommu_init_table(tbl, phb->hose->node);
723 
724 	if (pe->pdev)
725 		set_iommu_table_base(&pe->pdev->dev, tbl);
726 	else
727 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
728 
729 	return;
730 fail:
731 	if (pe->tce32_seg >= 0)
732 		pe->tce32_seg = -1;
733 	if (tce_mem)
734 		__free_pages(tce_mem, get_order(tce_table_size));
735 }
736 
737 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
738 {
739 	struct pci_controller *hose = phb->hose;
740 	unsigned int residual, remaining, segs, tw, base;
741 	struct pnv_ioda_pe *pe;
742 
743 	/* If we have more PE# than segments available, hand out one
744 	 * per PE until we run out and let the rest fail. If not,
745 	 * then we assign at least one segment per PE, plus more based
746 	 * on the amount of devices under that PE
747 	 */
748 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
749 		residual = 0;
750 	else
751 		residual = phb->ioda.tce32_count -
752 			phb->ioda.dma_pe_count;
753 
754 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
755 		hose->global_number, phb->ioda.tce32_count);
756 	pr_info("PCI: %d PE# for a total weight of %d\n",
757 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
758 
759 	/* Walk our PE list and configure their DMA segments, hand them
760 	 * out one base segment plus any residual segments based on
761 	 * weight
762 	 */
763 	remaining = phb->ioda.tce32_count;
764 	tw = phb->ioda.dma_weight;
765 	base = 0;
766 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
767 		if (!pe->dma_weight)
768 			continue;
769 		if (!remaining) {
770 			pe_warn(pe, "No DMA32 resources available\n");
771 			continue;
772 		}
773 		segs = 1;
774 		if (residual) {
775 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
776 			if (segs > remaining)
777 				segs = remaining;
778 		}
779 
780 		/*
781 		 * For IODA2 compliant PHB3, we needn't care about the weight.
782 		 * The all available 32-bits DMA space will be assigned to
783 		 * the specific PE.
784 		 */
785 		if (phb->type == PNV_PHB_IODA1) {
786 			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
787 				pe->dma_weight, segs);
788 			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
789 		} else {
790 			pe_info(pe, "Assign DMA32 space\n");
791 			segs = 0;
792 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
793 		}
794 
795 		remaining -= segs;
796 		base += segs;
797 	}
798 }
799 
800 #ifdef CONFIG_PCI_MSI
801 static void pnv_ioda2_msi_eoi(struct irq_data *d)
802 {
803 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
804 	struct irq_chip *chip = irq_data_get_irq_chip(d);
805 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
806 					   ioda.irq_chip);
807 	int64_t rc;
808 
809 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
810 	WARN_ON_ONCE(rc);
811 
812 	icp_native_eoi(d);
813 }
814 
815 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
816 				  unsigned int hwirq, unsigned int virq,
817 				  unsigned int is_64, struct msi_msg *msg)
818 {
819 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
820 	struct pci_dn *pdn = pci_get_pdn(dev);
821 	struct irq_data *idata;
822 	struct irq_chip *ichip;
823 	unsigned int xive_num = hwirq - phb->msi_base;
824 	__be32 data;
825 	int rc;
826 
827 	/* No PE assigned ? bail out ... no MSI for you ! */
828 	if (pe == NULL)
829 		return -ENXIO;
830 
831 	/* Check if we have an MVE */
832 	if (pe->mve_number < 0)
833 		return -ENXIO;
834 
835 	/* Force 32-bit MSI on some broken devices */
836 	if (pdn && pdn->force_32bit_msi)
837 		is_64 = 0;
838 
839 	/* Assign XIVE to PE */
840 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
841 	if (rc) {
842 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
843 			pci_name(dev), rc, xive_num);
844 		return -EIO;
845 	}
846 
847 	if (is_64) {
848 		__be64 addr64;
849 
850 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
851 				     &addr64, &data);
852 		if (rc) {
853 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
854 				pci_name(dev), rc);
855 			return -EIO;
856 		}
857 		msg->address_hi = be64_to_cpu(addr64) >> 32;
858 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
859 	} else {
860 		__be32 addr32;
861 
862 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
863 				     &addr32, &data);
864 		if (rc) {
865 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
866 				pci_name(dev), rc);
867 			return -EIO;
868 		}
869 		msg->address_hi = 0;
870 		msg->address_lo = be32_to_cpu(addr32);
871 	}
872 	msg->data = be32_to_cpu(data);
873 
874 	/*
875 	 * Change the IRQ chip for the MSI interrupts on PHB3.
876 	 * The corresponding IRQ chip should be populated for
877 	 * the first time.
878 	 */
879 	if (phb->type == PNV_PHB_IODA2) {
880 		if (!phb->ioda.irq_chip_init) {
881 			idata = irq_get_irq_data(virq);
882 			ichip = irq_data_get_irq_chip(idata);
883 			phb->ioda.irq_chip_init = 1;
884 			phb->ioda.irq_chip = *ichip;
885 			phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
886 		}
887 
888 		irq_set_chip(virq, &phb->ioda.irq_chip);
889 	}
890 
891 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
892 		 " address=%x_%08x data=%x PE# %d\n",
893 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
894 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
895 
896 	return 0;
897 }
898 
899 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
900 {
901 	unsigned int count;
902 	const __be32 *prop = of_get_property(phb->hose->dn,
903 					     "ibm,opal-msi-ranges", NULL);
904 	if (!prop) {
905 		/* BML Fallback */
906 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
907 	}
908 	if (!prop)
909 		return;
910 
911 	phb->msi_base = be32_to_cpup(prop);
912 	count = be32_to_cpup(prop + 1);
913 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
914 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
915 		       phb->hose->global_number);
916 		return;
917 	}
918 
919 	phb->msi_setup = pnv_pci_ioda_msi_setup;
920 	phb->msi32_support = 1;
921 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
922 		count, phb->msi_base);
923 }
924 #else
925 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
926 #endif /* CONFIG_PCI_MSI */
927 
928 /*
929  * This function is supposed to be called on basis of PE from top
930  * to bottom style. So the the I/O or MMIO segment assigned to
931  * parent PE could be overrided by its child PEs if necessary.
932  */
933 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
934 				  struct pnv_ioda_pe *pe)
935 {
936 	struct pnv_phb *phb = hose->private_data;
937 	struct pci_bus_region region;
938 	struct resource *res;
939 	int i, index;
940 	int rc;
941 
942 	/*
943 	 * NOTE: We only care PCI bus based PE for now. For PCI
944 	 * device based PE, for example SRIOV sensitive VF should
945 	 * be figured out later.
946 	 */
947 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
948 
949 	pci_bus_for_each_resource(pe->pbus, res, i) {
950 		if (!res || !res->flags ||
951 		    res->start > res->end)
952 			continue;
953 
954 		if (res->flags & IORESOURCE_IO) {
955 			region.start = res->start - phb->ioda.io_pci_base;
956 			region.end   = res->end - phb->ioda.io_pci_base;
957 			index = region.start / phb->ioda.io_segsize;
958 
959 			while (index < phb->ioda.total_pe &&
960 			       region.start <= region.end) {
961 				phb->ioda.io_segmap[index] = pe->pe_number;
962 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
963 					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
964 				if (rc != OPAL_SUCCESS) {
965 					pr_err("%s: OPAL error %d when mapping IO "
966 					       "segment #%d to PE#%d\n",
967 					       __func__, rc, index, pe->pe_number);
968 					break;
969 				}
970 
971 				region.start += phb->ioda.io_segsize;
972 				index++;
973 			}
974 		} else if (res->flags & IORESOURCE_MEM) {
975 			/* WARNING: Assumes M32 is mem region 0 in PHB. We need to
976 			 * harden that algorithm when we start supporting M64
977 			 */
978 			region.start = res->start -
979 				       hose->mem_offset[0] -
980 				       phb->ioda.m32_pci_base;
981 			region.end   = res->end -
982 				       hose->mem_offset[0] -
983 				       phb->ioda.m32_pci_base;
984 			index = region.start / phb->ioda.m32_segsize;
985 
986 			while (index < phb->ioda.total_pe &&
987 			       region.start <= region.end) {
988 				phb->ioda.m32_segmap[index] = pe->pe_number;
989 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
990 					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
991 				if (rc != OPAL_SUCCESS) {
992 					pr_err("%s: OPAL error %d when mapping M32 "
993 					       "segment#%d to PE#%d",
994 					       __func__, rc, index, pe->pe_number);
995 					break;
996 				}
997 
998 				region.start += phb->ioda.m32_segsize;
999 				index++;
1000 			}
1001 		}
1002 	}
1003 }
1004 
1005 static void pnv_pci_ioda_setup_seg(void)
1006 {
1007 	struct pci_controller *tmp, *hose;
1008 	struct pnv_phb *phb;
1009 	struct pnv_ioda_pe *pe;
1010 
1011 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1012 		phb = hose->private_data;
1013 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1014 			pnv_ioda_setup_pe_seg(hose, pe);
1015 		}
1016 	}
1017 }
1018 
1019 static void pnv_pci_ioda_setup_DMA(void)
1020 {
1021 	struct pci_controller *hose, *tmp;
1022 	struct pnv_phb *phb;
1023 
1024 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1025 		pnv_ioda_setup_dma(hose->private_data);
1026 
1027 		/* Mark the PHB initialization done */
1028 		phb = hose->private_data;
1029 		phb->initialized = 1;
1030 	}
1031 }
1032 
1033 static void pnv_pci_ioda_create_dbgfs(void)
1034 {
1035 #ifdef CONFIG_DEBUG_FS
1036 	struct pci_controller *hose, *tmp;
1037 	struct pnv_phb *phb;
1038 	char name[16];
1039 
1040 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1041 		phb = hose->private_data;
1042 
1043 		sprintf(name, "PCI%04x", hose->global_number);
1044 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1045 		if (!phb->dbgfs)
1046 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1047 				__func__, hose->global_number);
1048 	}
1049 #endif /* CONFIG_DEBUG_FS */
1050 }
1051 
1052 static void pnv_pci_ioda_fixup(void)
1053 {
1054 	pnv_pci_ioda_setup_PEs();
1055 	pnv_pci_ioda_setup_seg();
1056 	pnv_pci_ioda_setup_DMA();
1057 
1058 	pnv_pci_ioda_create_dbgfs();
1059 
1060 #ifdef CONFIG_EEH
1061 	eeh_probe_mode_set(EEH_PROBE_MODE_DEV);
1062 	eeh_addr_cache_build();
1063 	eeh_init();
1064 #endif
1065 }
1066 
1067 /*
1068  * Returns the alignment for I/O or memory windows for P2P
1069  * bridges. That actually depends on how PEs are segmented.
1070  * For now, we return I/O or M32 segment size for PE sensitive
1071  * P2P bridges. Otherwise, the default values (4KiB for I/O,
1072  * 1MiB for memory) will be returned.
1073  *
1074  * The current PCI bus might be put into one PE, which was
1075  * create against the parent PCI bridge. For that case, we
1076  * needn't enlarge the alignment so that we can save some
1077  * resources.
1078  */
1079 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1080 						unsigned long type)
1081 {
1082 	struct pci_dev *bridge;
1083 	struct pci_controller *hose = pci_bus_to_host(bus);
1084 	struct pnv_phb *phb = hose->private_data;
1085 	int num_pci_bridges = 0;
1086 
1087 	bridge = bus->self;
1088 	while (bridge) {
1089 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1090 			num_pci_bridges++;
1091 			if (num_pci_bridges >= 2)
1092 				return 1;
1093 		}
1094 
1095 		bridge = bridge->bus->self;
1096 	}
1097 
1098 	/* We need support prefetchable memory window later */
1099 	if (type & IORESOURCE_MEM)
1100 		return phb->ioda.m32_segsize;
1101 
1102 	return phb->ioda.io_segsize;
1103 }
1104 
1105 /* Prevent enabling devices for which we couldn't properly
1106  * assign a PE
1107  */
1108 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1109 {
1110 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1111 	struct pnv_phb *phb = hose->private_data;
1112 	struct pci_dn *pdn;
1113 
1114 	/* The function is probably called while the PEs have
1115 	 * not be created yet. For example, resource reassignment
1116 	 * during PCI probe period. We just skip the check if
1117 	 * PEs isn't ready.
1118 	 */
1119 	if (!phb->initialized)
1120 		return 0;
1121 
1122 	pdn = pci_get_pdn(dev);
1123 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1124 		return -EINVAL;
1125 
1126 	return 0;
1127 }
1128 
1129 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1130 			       u32 devfn)
1131 {
1132 	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1133 }
1134 
1135 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1136 {
1137 	opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
1138 		       OPAL_ASSERT_RESET);
1139 }
1140 
1141 void __init pnv_pci_init_ioda_phb(struct device_node *np,
1142 				  u64 hub_id, int ioda_type)
1143 {
1144 	struct pci_controller *hose;
1145 	struct pnv_phb *phb;
1146 	unsigned long size, m32map_off, iomap_off, pemap_off;
1147 	const __be64 *prop64;
1148 	const __be32 *prop32;
1149 	int len;
1150 	u64 phb_id;
1151 	void *aux;
1152 	long rc;
1153 
1154 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1155 
1156 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1157 	if (!prop64) {
1158 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
1159 		return;
1160 	}
1161 	phb_id = be64_to_cpup(prop64);
1162 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
1163 
1164 	phb = alloc_bootmem(sizeof(struct pnv_phb));
1165 	if (!phb) {
1166 		pr_err("  Out of memory !\n");
1167 		return;
1168 	}
1169 
1170 	/* Allocate PCI controller */
1171 	memset(phb, 0, sizeof(struct pnv_phb));
1172 	phb->hose = hose = pcibios_alloc_controller(np);
1173 	if (!phb->hose) {
1174 		pr_err("  Can't allocate PCI controller for %s\n",
1175 		       np->full_name);
1176 		free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
1177 		return;
1178 	}
1179 
1180 	spin_lock_init(&phb->lock);
1181 	prop32 = of_get_property(np, "bus-range", &len);
1182 	if (prop32 && len == 8) {
1183 		hose->first_busno = be32_to_cpu(prop32[0]);
1184 		hose->last_busno = be32_to_cpu(prop32[1]);
1185 	} else {
1186 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
1187 		hose->first_busno = 0;
1188 		hose->last_busno = 0xff;
1189 	}
1190 	hose->private_data = phb;
1191 	phb->hub_id = hub_id;
1192 	phb->opal_id = phb_id;
1193 	phb->type = ioda_type;
1194 
1195 	/* Detect specific models for error handling */
1196 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1197 		phb->model = PNV_PHB_MODEL_P7IOC;
1198 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1199 		phb->model = PNV_PHB_MODEL_PHB3;
1200 	else
1201 		phb->model = PNV_PHB_MODEL_UNKNOWN;
1202 
1203 	/* Parse 32-bit and IO ranges (if any) */
1204 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
1205 
1206 	/* Get registers */
1207 	phb->regs = of_iomap(np, 0);
1208 	if (phb->regs == NULL)
1209 		pr_err("  Failed to map registers !\n");
1210 
1211 	/* Initialize more IODA stuff */
1212 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1213 	if (!prop32)
1214 		phb->ioda.total_pe = 1;
1215 	else
1216 		phb->ioda.total_pe = be32_to_cpup(prop32);
1217 
1218 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1219 	/* FW Has already off top 64k of M32 space (MSI space) */
1220 	phb->ioda.m32_size += 0x10000;
1221 
1222 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1223 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
1224 	phb->ioda.io_size = hose->pci_io_size;
1225 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
1226 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
1227 
1228 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
1229 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
1230 	m32map_off = size;
1231 	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
1232 	iomap_off = size;
1233 	if (phb->type == PNV_PHB_IODA1) {
1234 		iomap_off = size;
1235 		size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
1236 	}
1237 	pemap_off = size;
1238 	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
1239 	aux = alloc_bootmem(size);
1240 	memset(aux, 0, size);
1241 	phb->ioda.pe_alloc = aux;
1242 	phb->ioda.m32_segmap = aux + m32map_off;
1243 	if (phb->type == PNV_PHB_IODA1)
1244 		phb->ioda.io_segmap = aux + iomap_off;
1245 	phb->ioda.pe_array = aux + pemap_off;
1246 	set_bit(0, phb->ioda.pe_alloc);
1247 
1248 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1249 	INIT_LIST_HEAD(&phb->ioda.pe_list);
1250 
1251 	/* Calculate how many 32-bit TCE segments we have */
1252 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
1253 
1254 	/* Clear unusable m64 */
1255 	hose->mem_resources[1].flags = 0;
1256 	hose->mem_resources[1].start = 0;
1257 	hose->mem_resources[1].end = 0;
1258 	hose->mem_resources[2].flags = 0;
1259 	hose->mem_resources[2].start = 0;
1260 	hose->mem_resources[2].end = 0;
1261 
1262 #if 0 /* We should really do that ... */
1263 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
1264 					 window_type,
1265 					 window_num,
1266 					 starting_real_address,
1267 					 starting_pci_address,
1268 					 segment_size);
1269 #endif
1270 
1271 	pr_info("  %d PE's M32: 0x%x [segment=0x%x] IO: 0x%x [segment=0x%x]\n",
1272 		phb->ioda.total_pe,
1273 		phb->ioda.m32_size, phb->ioda.m32_segsize,
1274 		phb->ioda.io_size, phb->ioda.io_segsize);
1275 
1276 	phb->hose->ops = &pnv_pci_ops;
1277 #ifdef CONFIG_EEH
1278 	phb->eeh_ops = &ioda_eeh_ops;
1279 #endif
1280 
1281 	/* Setup RID -> PE mapping function */
1282 	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
1283 
1284 	/* Setup TCEs */
1285 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1286 
1287 	/* Setup shutdown function for kexec */
1288 	phb->shutdown = pnv_pci_ioda_shutdown;
1289 
1290 	/* Setup MSI support */
1291 	pnv_pci_init_ioda_msis(phb);
1292 
1293 	/*
1294 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
1295 	 * to let the PCI core do resource assignment. It's supposed
1296 	 * that the PCI core will do correct I/O and MMIO alignment
1297 	 * for the P2P bridge bars so that each PCI bus (excluding
1298 	 * the child P2P bridges) can form individual PE.
1299 	 */
1300 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1301 	ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1302 	ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1303 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
1304 
1305 	/* Reset IODA tables to a clean state */
1306 	rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1307 	if (rc)
1308 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
1309 
1310 	/*
1311 	 * On IODA1 map everything to PE#0, on IODA2 we assume the IODA reset
1312 	 * has cleared the RTT which has the same effect
1313 	 */
1314 	if (ioda_type == PNV_PHB_IODA1)
1315 		opal_pci_set_pe(phb_id, 0, 0, 7, 1, 1 , OPAL_MAP_PE);
1316 }
1317 
1318 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
1319 {
1320 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
1321 }
1322 
1323 void __init pnv_pci_init_ioda_hub(struct device_node *np)
1324 {
1325 	struct device_node *phbn;
1326 	const __be64 *prop64;
1327 	u64 hub_id;
1328 
1329 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
1330 
1331 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
1332 	if (!prop64) {
1333 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
1334 		return;
1335 	}
1336 	hub_id = be64_to_cpup(prop64);
1337 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
1338 
1339 	/* Count child PHBs */
1340 	for_each_child_of_node(np, phbn) {
1341 		/* Look for IODA1 PHBs */
1342 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1343 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
1344 	}
1345 }
1346