1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/memblock.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/iommu.h>
25 #include <linux/rculist.h>
26 #include <linux/sizes.h>
27 
28 #include <asm/sections.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/pci-bridge.h>
32 #include <asm/machdep.h>
33 #include <asm/msi_bitmap.h>
34 #include <asm/ppc-pci.h>
35 #include <asm/opal.h>
36 #include <asm/iommu.h>
37 #include <asm/tce.h>
38 #include <asm/xics.h>
39 #include <asm/debugfs.h>
40 #include <asm/firmware.h>
41 #include <asm/pnv-pci.h>
42 #include <asm/mmzone.h>
43 
44 #include <misc/cxl-base.h>
45 
46 #include "powernv.h"
47 #include "pci.h"
48 #include "../../../../drivers/pci/pci.h"
49 
50 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
51 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
52 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
53 
54 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
55 					      "NPU_OCAPI" };
56 
57 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
58 			    const char *fmt, ...)
59 {
60 	struct va_format vaf;
61 	va_list args;
62 	char pfix[32];
63 
64 	va_start(args, fmt);
65 
66 	vaf.fmt = fmt;
67 	vaf.va = &args;
68 
69 	if (pe->flags & PNV_IODA_PE_DEV)
70 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
71 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
72 		sprintf(pfix, "%04x:%02x     ",
73 			pci_domain_nr(pe->pbus), pe->pbus->number);
74 #ifdef CONFIG_PCI_IOV
75 	else if (pe->flags & PNV_IODA_PE_VF)
76 		sprintf(pfix, "%04x:%02x:%2x.%d",
77 			pci_domain_nr(pe->parent_dev->bus),
78 			(pe->rid & 0xff00) >> 8,
79 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
80 #endif /* CONFIG_PCI_IOV*/
81 
82 	printk("%spci %s: [PE# %.2x] %pV",
83 	       level, pfix, pe->pe_number, &vaf);
84 
85 	va_end(args);
86 }
87 
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89 static bool pci_reset_phbs __read_mostly;
90 
91 static int __init iommu_setup(char *str)
92 {
93 	if (!str)
94 		return -EINVAL;
95 
96 	while (*str) {
97 		if (!strncmp(str, "nobypass", 8)) {
98 			pnv_iommu_bypass_disabled = true;
99 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
100 			break;
101 		}
102 		str += strcspn(str, ",");
103 		if (*str == ',')
104 			str++;
105 	}
106 
107 	return 0;
108 }
109 early_param("iommu", iommu_setup);
110 
111 static int __init pci_reset_phbs_setup(char *str)
112 {
113 	pci_reset_phbs = true;
114 	return 0;
115 }
116 
117 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
118 
119 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
120 {
121 	/*
122 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
123 	 * allocation code sometimes decides to put a 64-bit prefetchable
124 	 * BAR in the 32-bit window, so we have to compare the addresses.
125 	 *
126 	 * For simplicity we only test resource start.
127 	 */
128 	return (r->start >= phb->ioda.m64_base &&
129 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
130 }
131 
132 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
133 {
134 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
135 
136 	return (resource_flags & flags) == flags;
137 }
138 
139 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
140 {
141 	s64 rc;
142 
143 	phb->ioda.pe_array[pe_no].phb = phb;
144 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
145 
146 	/*
147 	 * Clear the PE frozen state as it might be put into frozen state
148 	 * in the last PCI remove path. It's not harmful to do so when the
149 	 * PE is already in unfrozen state.
150 	 */
151 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
152 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
153 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
154 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
155 			__func__, rc, phb->hose->global_number, pe_no);
156 
157 	return &phb->ioda.pe_array[pe_no];
158 }
159 
160 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
161 {
162 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
163 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
164 			__func__, pe_no, phb->hose->global_number);
165 		return;
166 	}
167 
168 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
169 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
170 			 __func__, pe_no, phb->hose->global_number);
171 
172 	pnv_ioda_init_pe(phb, pe_no);
173 }
174 
175 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
176 {
177 	long pe;
178 
179 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
180 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
181 			return pnv_ioda_init_pe(phb, pe);
182 	}
183 
184 	return NULL;
185 }
186 
187 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
188 {
189 	struct pnv_phb *phb = pe->phb;
190 	unsigned int pe_num = pe->pe_number;
191 
192 	WARN_ON(pe->pdev);
193 	WARN_ON(pe->npucomp); /* NPUs are not supposed to be freed */
194 	kfree(pe->npucomp);
195 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
196 	clear_bit(pe_num, phb->ioda.pe_alloc);
197 }
198 
199 /* The default M64 BAR is shared by all PEs */
200 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
201 {
202 	const char *desc;
203 	struct resource *r;
204 	s64 rc;
205 
206 	/* Configure the default M64 BAR */
207 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
208 					 OPAL_M64_WINDOW_TYPE,
209 					 phb->ioda.m64_bar_idx,
210 					 phb->ioda.m64_base,
211 					 0, /* unused */
212 					 phb->ioda.m64_size);
213 	if (rc != OPAL_SUCCESS) {
214 		desc = "configuring";
215 		goto fail;
216 	}
217 
218 	/* Enable the default M64 BAR */
219 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
220 				      OPAL_M64_WINDOW_TYPE,
221 				      phb->ioda.m64_bar_idx,
222 				      OPAL_ENABLE_M64_SPLIT);
223 	if (rc != OPAL_SUCCESS) {
224 		desc = "enabling";
225 		goto fail;
226 	}
227 
228 	/*
229 	 * Exclude the segments for reserved and root bus PE, which
230 	 * are first or last two PEs.
231 	 */
232 	r = &phb->hose->mem_resources[1];
233 	if (phb->ioda.reserved_pe_idx == 0)
234 		r->start += (2 * phb->ioda.m64_segsize);
235 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
236 		r->end -= (2 * phb->ioda.m64_segsize);
237 	else
238 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
239 			phb->ioda.reserved_pe_idx);
240 
241 	return 0;
242 
243 fail:
244 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
245 		rc, desc, phb->ioda.m64_bar_idx);
246 	opal_pci_phb_mmio_enable(phb->opal_id,
247 				 OPAL_M64_WINDOW_TYPE,
248 				 phb->ioda.m64_bar_idx,
249 				 OPAL_DISABLE_M64);
250 	return -EIO;
251 }
252 
253 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
254 					 unsigned long *pe_bitmap)
255 {
256 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
257 	struct pnv_phb *phb = hose->private_data;
258 	struct resource *r;
259 	resource_size_t base, sgsz, start, end;
260 	int segno, i;
261 
262 	base = phb->ioda.m64_base;
263 	sgsz = phb->ioda.m64_segsize;
264 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
265 		r = &pdev->resource[i];
266 		if (!r->parent || !pnv_pci_is_m64(phb, r))
267 			continue;
268 
269 		start = _ALIGN_DOWN(r->start - base, sgsz);
270 		end = _ALIGN_UP(r->end - base, sgsz);
271 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
272 			if (pe_bitmap)
273 				set_bit(segno, pe_bitmap);
274 			else
275 				pnv_ioda_reserve_pe(phb, segno);
276 		}
277 	}
278 }
279 
280 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
281 {
282 	struct resource *r;
283 	int index;
284 
285 	/*
286 	 * There are 16 M64 BARs, each of which has 8 segments. So
287 	 * there are as many M64 segments as the maximum number of
288 	 * PEs, which is 128.
289 	 */
290 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
291 		unsigned long base, segsz = phb->ioda.m64_segsize;
292 		int64_t rc;
293 
294 		base = phb->ioda.m64_base +
295 		       index * PNV_IODA1_M64_SEGS * segsz;
296 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
297 				OPAL_M64_WINDOW_TYPE, index, base, 0,
298 				PNV_IODA1_M64_SEGS * segsz);
299 		if (rc != OPAL_SUCCESS) {
300 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
301 				rc, phb->hose->global_number, index);
302 			goto fail;
303 		}
304 
305 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
306 				OPAL_M64_WINDOW_TYPE, index,
307 				OPAL_ENABLE_M64_SPLIT);
308 		if (rc != OPAL_SUCCESS) {
309 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
310 				rc, phb->hose->global_number, index);
311 			goto fail;
312 		}
313 	}
314 
315 	/*
316 	 * Exclude the segments for reserved and root bus PE, which
317 	 * are first or last two PEs.
318 	 */
319 	r = &phb->hose->mem_resources[1];
320 	if (phb->ioda.reserved_pe_idx == 0)
321 		r->start += (2 * phb->ioda.m64_segsize);
322 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
323 		r->end -= (2 * phb->ioda.m64_segsize);
324 	else
325 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
326 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
327 
328 	return 0;
329 
330 fail:
331 	for ( ; index >= 0; index--)
332 		opal_pci_phb_mmio_enable(phb->opal_id,
333 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
334 
335 	return -EIO;
336 }
337 
338 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
339 				    unsigned long *pe_bitmap,
340 				    bool all)
341 {
342 	struct pci_dev *pdev;
343 
344 	list_for_each_entry(pdev, &bus->devices, bus_list) {
345 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
346 
347 		if (all && pdev->subordinate)
348 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
349 						pe_bitmap, all);
350 	}
351 }
352 
353 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
354 {
355 	struct pci_controller *hose = pci_bus_to_host(bus);
356 	struct pnv_phb *phb = hose->private_data;
357 	struct pnv_ioda_pe *master_pe, *pe;
358 	unsigned long size, *pe_alloc;
359 	int i;
360 
361 	/* Root bus shouldn't use M64 */
362 	if (pci_is_root_bus(bus))
363 		return NULL;
364 
365 	/* Allocate bitmap */
366 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
367 	pe_alloc = kzalloc(size, GFP_KERNEL);
368 	if (!pe_alloc) {
369 		pr_warn("%s: Out of memory !\n",
370 			__func__);
371 		return NULL;
372 	}
373 
374 	/* Figure out reserved PE numbers by the PE */
375 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
376 
377 	/*
378 	 * the current bus might not own M64 window and that's all
379 	 * contributed by its child buses. For the case, we needn't
380 	 * pick M64 dependent PE#.
381 	 */
382 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
383 		kfree(pe_alloc);
384 		return NULL;
385 	}
386 
387 	/*
388 	 * Figure out the master PE and put all slave PEs to master
389 	 * PE's list to form compound PE.
390 	 */
391 	master_pe = NULL;
392 	i = -1;
393 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
394 		phb->ioda.total_pe_num) {
395 		pe = &phb->ioda.pe_array[i];
396 
397 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
398 		if (!master_pe) {
399 			pe->flags |= PNV_IODA_PE_MASTER;
400 			INIT_LIST_HEAD(&pe->slaves);
401 			master_pe = pe;
402 		} else {
403 			pe->flags |= PNV_IODA_PE_SLAVE;
404 			pe->master = master_pe;
405 			list_add_tail(&pe->list, &master_pe->slaves);
406 		}
407 
408 		/*
409 		 * P7IOC supports M64DT, which helps mapping M64 segment
410 		 * to one particular PE#. However, PHB3 has fixed mapping
411 		 * between M64 segment and PE#. In order to have same logic
412 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
413 		 * segment and PE# on P7IOC.
414 		 */
415 		if (phb->type == PNV_PHB_IODA1) {
416 			int64_t rc;
417 
418 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
419 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
420 					pe->pe_number / PNV_IODA1_M64_SEGS,
421 					pe->pe_number % PNV_IODA1_M64_SEGS);
422 			if (rc != OPAL_SUCCESS)
423 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
424 					__func__, rc, phb->hose->global_number,
425 					pe->pe_number);
426 		}
427 	}
428 
429 	kfree(pe_alloc);
430 	return master_pe;
431 }
432 
433 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
434 {
435 	struct pci_controller *hose = phb->hose;
436 	struct device_node *dn = hose->dn;
437 	struct resource *res;
438 	u32 m64_range[2], i;
439 	const __be32 *r;
440 	u64 pci_addr;
441 
442 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
443 		pr_info("  Not support M64 window\n");
444 		return;
445 	}
446 
447 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
448 		pr_info("  Firmware too old to support M64 window\n");
449 		return;
450 	}
451 
452 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
453 	if (!r) {
454 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
455 			dn);
456 		return;
457 	}
458 
459 	/*
460 	 * Find the available M64 BAR range and pickup the last one for
461 	 * covering the whole 64-bits space. We support only one range.
462 	 */
463 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
464 				       m64_range, 2)) {
465 		/* In absence of the property, assume 0..15 */
466 		m64_range[0] = 0;
467 		m64_range[1] = 16;
468 	}
469 	/* We only support 64 bits in our allocator */
470 	if (m64_range[1] > 63) {
471 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
472 			__func__, m64_range[1], phb->hose->global_number);
473 		m64_range[1] = 63;
474 	}
475 	/* Empty range, no m64 */
476 	if (m64_range[1] <= m64_range[0]) {
477 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
478 			__func__, phb->hose->global_number);
479 		return;
480 	}
481 
482 	/* Configure M64 informations */
483 	res = &hose->mem_resources[1];
484 	res->name = dn->full_name;
485 	res->start = of_translate_address(dn, r + 2);
486 	res->end = res->start + of_read_number(r + 4, 2) - 1;
487 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
488 	pci_addr = of_read_number(r, 2);
489 	hose->mem_offset[1] = res->start - pci_addr;
490 
491 	phb->ioda.m64_size = resource_size(res);
492 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
493 	phb->ioda.m64_base = pci_addr;
494 
495 	/* This lines up nicely with the display from processing OF ranges */
496 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
497 		res->start, res->end, pci_addr, m64_range[0],
498 		m64_range[0] + m64_range[1] - 1);
499 
500 	/* Mark all M64 used up by default */
501 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
502 
503 	/* Use last M64 BAR to cover M64 window */
504 	m64_range[1]--;
505 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
506 
507 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
508 
509 	/* Mark remaining ones free */
510 	for (i = m64_range[0]; i < m64_range[1]; i++)
511 		clear_bit(i, &phb->ioda.m64_bar_alloc);
512 
513 	/*
514 	 * Setup init functions for M64 based on IODA version, IODA3 uses
515 	 * the IODA2 code.
516 	 */
517 	if (phb->type == PNV_PHB_IODA1)
518 		phb->init_m64 = pnv_ioda1_init_m64;
519 	else
520 		phb->init_m64 = pnv_ioda2_init_m64;
521 }
522 
523 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
524 {
525 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
526 	struct pnv_ioda_pe *slave;
527 	s64 rc;
528 
529 	/* Fetch master PE */
530 	if (pe->flags & PNV_IODA_PE_SLAVE) {
531 		pe = pe->master;
532 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
533 			return;
534 
535 		pe_no = pe->pe_number;
536 	}
537 
538 	/* Freeze master PE */
539 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
540 				     pe_no,
541 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
542 	if (rc != OPAL_SUCCESS) {
543 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
544 			__func__, rc, phb->hose->global_number, pe_no);
545 		return;
546 	}
547 
548 	/* Freeze slave PEs */
549 	if (!(pe->flags & PNV_IODA_PE_MASTER))
550 		return;
551 
552 	list_for_each_entry(slave, &pe->slaves, list) {
553 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
554 					     slave->pe_number,
555 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
556 		if (rc != OPAL_SUCCESS)
557 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
558 				__func__, rc, phb->hose->global_number,
559 				slave->pe_number);
560 	}
561 }
562 
563 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
564 {
565 	struct pnv_ioda_pe *pe, *slave;
566 	s64 rc;
567 
568 	/* Find master PE */
569 	pe = &phb->ioda.pe_array[pe_no];
570 	if (pe->flags & PNV_IODA_PE_SLAVE) {
571 		pe = pe->master;
572 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
573 		pe_no = pe->pe_number;
574 	}
575 
576 	/* Clear frozen state for master PE */
577 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
578 	if (rc != OPAL_SUCCESS) {
579 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
580 			__func__, rc, opt, phb->hose->global_number, pe_no);
581 		return -EIO;
582 	}
583 
584 	if (!(pe->flags & PNV_IODA_PE_MASTER))
585 		return 0;
586 
587 	/* Clear frozen state for slave PEs */
588 	list_for_each_entry(slave, &pe->slaves, list) {
589 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
590 					     slave->pe_number,
591 					     opt);
592 		if (rc != OPAL_SUCCESS) {
593 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
594 				__func__, rc, opt, phb->hose->global_number,
595 				slave->pe_number);
596 			return -EIO;
597 		}
598 	}
599 
600 	return 0;
601 }
602 
603 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
604 {
605 	struct pnv_ioda_pe *slave, *pe;
606 	u8 fstate = 0, state;
607 	__be16 pcierr = 0;
608 	s64 rc;
609 
610 	/* Sanity check on PE number */
611 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
612 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
613 
614 	/*
615 	 * Fetch the master PE and the PE instance might be
616 	 * not initialized yet.
617 	 */
618 	pe = &phb->ioda.pe_array[pe_no];
619 	if (pe->flags & PNV_IODA_PE_SLAVE) {
620 		pe = pe->master;
621 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
622 		pe_no = pe->pe_number;
623 	}
624 
625 	/* Check the master PE */
626 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
627 					&state, &pcierr, NULL);
628 	if (rc != OPAL_SUCCESS) {
629 		pr_warn("%s: Failure %lld getting "
630 			"PHB#%x-PE#%x state\n",
631 			__func__, rc,
632 			phb->hose->global_number, pe_no);
633 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
634 	}
635 
636 	/* Check the slave PE */
637 	if (!(pe->flags & PNV_IODA_PE_MASTER))
638 		return state;
639 
640 	list_for_each_entry(slave, &pe->slaves, list) {
641 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
642 						slave->pe_number,
643 						&fstate,
644 						&pcierr,
645 						NULL);
646 		if (rc != OPAL_SUCCESS) {
647 			pr_warn("%s: Failure %lld getting "
648 				"PHB#%x-PE#%x state\n",
649 				__func__, rc,
650 				phb->hose->global_number, slave->pe_number);
651 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
652 		}
653 
654 		/*
655 		 * Override the result based on the ascending
656 		 * priority.
657 		 */
658 		if (fstate > state)
659 			state = fstate;
660 	}
661 
662 	return state;
663 }
664 
665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 {
667 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
668 	struct pnv_phb *phb = hose->private_data;
669 	struct pci_dn *pdn = pci_get_pdn(dev);
670 
671 	if (!pdn)
672 		return NULL;
673 	if (pdn->pe_number == IODA_INVALID_PE)
674 		return NULL;
675 	return &phb->ioda.pe_array[pdn->pe_number];
676 }
677 
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679 				  struct pnv_ioda_pe *parent,
680 				  struct pnv_ioda_pe *child,
681 				  bool is_add)
682 {
683 	const char *desc = is_add ? "adding" : "removing";
684 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685 			      OPAL_REMOVE_PE_FROM_DOMAIN;
686 	struct pnv_ioda_pe *slave;
687 	long rc;
688 
689 	/* Parent PE affects child PE */
690 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691 				child->pe_number, op);
692 	if (rc != OPAL_SUCCESS) {
693 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694 			rc, desc);
695 		return -ENXIO;
696 	}
697 
698 	if (!(child->flags & PNV_IODA_PE_MASTER))
699 		return 0;
700 
701 	/* Compound case: parent PE affects slave PEs */
702 	list_for_each_entry(slave, &child->slaves, list) {
703 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704 					slave->pe_number, op);
705 		if (rc != OPAL_SUCCESS) {
706 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707 				rc, desc);
708 			return -ENXIO;
709 		}
710 	}
711 
712 	return 0;
713 }
714 
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716 			      struct pnv_ioda_pe *pe,
717 			      bool is_add)
718 {
719 	struct pnv_ioda_pe *slave;
720 	struct pci_dev *pdev = NULL;
721 	int ret;
722 
723 	/*
724 	 * Clear PE frozen state. If it's master PE, we need
725 	 * clear slave PE frozen state as well.
726 	 */
727 	if (is_add) {
728 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730 		if (pe->flags & PNV_IODA_PE_MASTER) {
731 			list_for_each_entry(slave, &pe->slaves, list)
732 				opal_pci_eeh_freeze_clear(phb->opal_id,
733 							  slave->pe_number,
734 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735 		}
736 	}
737 
738 	/*
739 	 * Associate PE in PELT. We need add the PE into the
740 	 * corresponding PELT-V as well. Otherwise, the error
741 	 * originated from the PE might contribute to other
742 	 * PEs.
743 	 */
744 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745 	if (ret)
746 		return ret;
747 
748 	/* For compound PEs, any one affects all of them */
749 	if (pe->flags & PNV_IODA_PE_MASTER) {
750 		list_for_each_entry(slave, &pe->slaves, list) {
751 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752 			if (ret)
753 				return ret;
754 		}
755 	}
756 
757 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758 		pdev = pe->pbus->self;
759 	else if (pe->flags & PNV_IODA_PE_DEV)
760 		pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762 	else if (pe->flags & PNV_IODA_PE_VF)
763 		pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765 	while (pdev) {
766 		struct pci_dn *pdn = pci_get_pdn(pdev);
767 		struct pnv_ioda_pe *parent;
768 
769 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 			parent = &phb->ioda.pe_array[pdn->pe_number];
771 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772 			if (ret)
773 				return ret;
774 		}
775 
776 		pdev = pdev->bus->self;
777 	}
778 
779 	return 0;
780 }
781 
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784 	struct pci_dev *parent;
785 	uint8_t bcomp, dcomp, fcomp;
786 	int64_t rc;
787 	long rid_end, rid;
788 
789 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790 	if (pe->pbus) {
791 		int count;
792 
793 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795 		parent = pe->pbus->self;
796 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
797 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798 		else
799 			count = 1;
800 
801 		switch(count) {
802 		case  1: bcomp = OpalPciBusAll;         break;
803 		case  2: bcomp = OpalPciBus7Bits;       break;
804 		case  4: bcomp = OpalPciBus6Bits;       break;
805 		case  8: bcomp = OpalPciBus5Bits;       break;
806 		case 16: bcomp = OpalPciBus4Bits;       break;
807 		case 32: bcomp = OpalPciBus3Bits;       break;
808 		default:
809 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810 			        count);
811 			/* Do an exact match only */
812 			bcomp = OpalPciBusAll;
813 		}
814 		rid_end = pe->rid + (count << 8);
815 	} else {
816 #ifdef CONFIG_PCI_IOV
817 		if (pe->flags & PNV_IODA_PE_VF)
818 			parent = pe->parent_dev;
819 		else
820 #endif
821 			parent = pe->pdev->bus->self;
822 		bcomp = OpalPciBusAll;
823 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825 		rid_end = pe->rid + 1;
826 	}
827 
828 	/* Clear the reverse map */
829 	for (rid = pe->rid; rid < rid_end; rid++)
830 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831 
832 	/* Release from all parents PELT-V */
833 	while (parent) {
834 		struct pci_dn *pdn = pci_get_pdn(parent);
835 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838 			/* XXX What to do in case of error ? */
839 		}
840 		parent = parent->bus->self;
841 	}
842 
843 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845 
846 	/* Disassociate PE in PELT */
847 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849 	if (rc)
850 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
851 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853 	if (rc)
854 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855 
856 	pe->pbus = NULL;
857 	pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859 	pe->parent_dev = NULL;
860 #endif
861 
862 	return 0;
863 }
864 
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867 	struct pci_dev *parent;
868 	uint8_t bcomp, dcomp, fcomp;
869 	long rc, rid_end, rid;
870 
871 	/* Bus validation ? */
872 	if (pe->pbus) {
873 		int count;
874 
875 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877 		parent = pe->pbus->self;
878 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
879 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880 		else
881 			count = 1;
882 
883 		switch(count) {
884 		case  1: bcomp = OpalPciBusAll;		break;
885 		case  2: bcomp = OpalPciBus7Bits;	break;
886 		case  4: bcomp = OpalPciBus6Bits;	break;
887 		case  8: bcomp = OpalPciBus5Bits;	break;
888 		case 16: bcomp = OpalPciBus4Bits;	break;
889 		case 32: bcomp = OpalPciBus3Bits;	break;
890 		default:
891 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892 			        count);
893 			/* Do an exact match only */
894 			bcomp = OpalPciBusAll;
895 		}
896 		rid_end = pe->rid + (count << 8);
897 	} else {
898 #ifdef CONFIG_PCI_IOV
899 		if (pe->flags & PNV_IODA_PE_VF)
900 			parent = pe->parent_dev;
901 		else
902 #endif /* CONFIG_PCI_IOV */
903 			parent = pe->pdev->bus->self;
904 		bcomp = OpalPciBusAll;
905 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907 		rid_end = pe->rid + 1;
908 	}
909 
910 	/*
911 	 * Associate PE in PELT. We need add the PE into the
912 	 * corresponding PELT-V as well. Otherwise, the error
913 	 * originated from the PE might contribute to other
914 	 * PEs.
915 	 */
916 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
918 	if (rc) {
919 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920 		return -ENXIO;
921 	}
922 
923 	/*
924 	 * Configure PELTV. NPUs don't have a PELTV table so skip
925 	 * configuration on them.
926 	 */
927 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
928 		pnv_ioda_set_peltv(phb, pe, true);
929 
930 	/* Setup reverse map */
931 	for (rid = pe->rid; rid < rid_end; rid++)
932 		phb->ioda.pe_rmap[rid] = pe->pe_number;
933 
934 	/* Setup one MVTs on IODA1 */
935 	if (phb->type != PNV_PHB_IODA1) {
936 		pe->mve_number = 0;
937 		goto out;
938 	}
939 
940 	pe->mve_number = pe->pe_number;
941 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942 	if (rc != OPAL_SUCCESS) {
943 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944 		       rc, pe->mve_number);
945 		pe->mve_number = -1;
946 	} else {
947 		rc = opal_pci_set_mve_enable(phb->opal_id,
948 					     pe->mve_number, OPAL_ENABLE_MVE);
949 		if (rc) {
950 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951 			       rc, pe->mve_number);
952 			pe->mve_number = -1;
953 		}
954 	}
955 
956 out:
957 	return 0;
958 }
959 
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963 	struct pci_dn *pdn = pci_get_pdn(dev);
964 	int i;
965 	struct resource *res, res2;
966 	resource_size_t size;
967 	u16 num_vfs;
968 
969 	if (!dev->is_physfn)
970 		return -EINVAL;
971 
972 	/*
973 	 * "offset" is in VFs.  The M64 windows are sized so that when they
974 	 * are segmented, each segment is the same size as the IOV BAR.
975 	 * Each segment is in a separate PE, and the high order bits of the
976 	 * address are the PE number.  Therefore, each VF's BAR is in a
977 	 * separate PE, and changing the IOV BAR start address changes the
978 	 * range of PEs the VFs are in.
979 	 */
980 	num_vfs = pdn->num_vfs;
981 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982 		res = &dev->resource[i + PCI_IOV_RESOURCES];
983 		if (!res->flags || !res->parent)
984 			continue;
985 
986 		/*
987 		 * The actual IOV BAR range is determined by the start address
988 		 * and the actual size for num_vfs VFs BAR.  This check is to
989 		 * make sure that after shifting, the range will not overlap
990 		 * with another device.
991 		 */
992 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993 		res2.flags = res->flags;
994 		res2.start = res->start + (size * offset);
995 		res2.end = res2.start + (size * num_vfs) - 1;
996 
997 		if (res2.end > res->end) {
998 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999 				i, &res2, res, num_vfs, offset);
1000 			return -EBUSY;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * Since M64 BAR shares segments among all possible 256 PEs,
1006 	 * we have to shift the beginning of PF IOV BAR to make it start from
1007 	 * the segment which belongs to the PE number assigned to the first VF.
1008 	 * This creates a "hole" in the /proc/iomem which could be used for
1009 	 * allocating other resources so we reserve this area below and
1010 	 * release when IOV is released.
1011 	 */
1012 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1013 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1014 		if (!res->flags || !res->parent)
1015 			continue;
1016 
1017 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1018 		res2 = *res;
1019 		res->start += size * offset;
1020 
1021 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1022 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1023 			 num_vfs, offset);
1024 
1025 		if (offset < 0) {
1026 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1027 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1028 		}
1029 
1030 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1031 
1032 		if (offset > 0) {
1033 			pdn->holes[i].start = res2.start;
1034 			pdn->holes[i].end = res2.start + size * offset - 1;
1035 			pdn->holes[i].flags = IORESOURCE_BUS;
1036 			pdn->holes[i].name = "pnv_iov_reserved";
1037 			devm_request_resource(&dev->dev, res->parent,
1038 					&pdn->holes[i]);
1039 		}
1040 	}
1041 	return 0;
1042 }
1043 #endif /* CONFIG_PCI_IOV */
1044 
1045 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1046 {
1047 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1048 	struct pnv_phb *phb = hose->private_data;
1049 	struct pci_dn *pdn = pci_get_pdn(dev);
1050 	struct pnv_ioda_pe *pe;
1051 
1052 	if (!pdn) {
1053 		pr_err("%s: Device tree node not associated properly\n",
1054 			   pci_name(dev));
1055 		return NULL;
1056 	}
1057 	if (pdn->pe_number != IODA_INVALID_PE)
1058 		return NULL;
1059 
1060 	pe = pnv_ioda_alloc_pe(phb);
1061 	if (!pe) {
1062 		pr_warn("%s: Not enough PE# available, disabling device\n",
1063 			pci_name(dev));
1064 		return NULL;
1065 	}
1066 
1067 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1068 	 * pointer in the PE data structure, both should be destroyed at the
1069 	 * same time. However, this needs to be looked at more closely again
1070 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1071 	 *
1072 	 * At some point we want to remove the PDN completely anyways
1073 	 */
1074 	pci_dev_get(dev);
1075 	pdn->pe_number = pe->pe_number;
1076 	pe->flags = PNV_IODA_PE_DEV;
1077 	pe->pdev = dev;
1078 	pe->pbus = NULL;
1079 	pe->mve_number = -1;
1080 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1081 
1082 	pe_info(pe, "Associated device to PE\n");
1083 
1084 	if (pnv_ioda_configure_pe(phb, pe)) {
1085 		/* XXX What do we do here ? */
1086 		pnv_ioda_free_pe(pe);
1087 		pdn->pe_number = IODA_INVALID_PE;
1088 		pe->pdev = NULL;
1089 		pci_dev_put(dev);
1090 		return NULL;
1091 	}
1092 
1093 	/* Put PE to the list */
1094 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1095 
1096 	return pe;
1097 }
1098 
1099 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1100 {
1101 	struct pci_dev *dev;
1102 
1103 	list_for_each_entry(dev, &bus->devices, bus_list) {
1104 		struct pci_dn *pdn = pci_get_pdn(dev);
1105 
1106 		if (pdn == NULL) {
1107 			pr_warn("%s: No device node associated with device !\n",
1108 				pci_name(dev));
1109 			continue;
1110 		}
1111 
1112 		/*
1113 		 * In partial hotplug case, the PCI device might be still
1114 		 * associated with the PE and needn't attach it to the PE
1115 		 * again.
1116 		 */
1117 		if (pdn->pe_number != IODA_INVALID_PE)
1118 			continue;
1119 
1120 		pe->device_count++;
1121 		pdn->pe_number = pe->pe_number;
1122 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1123 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1124 	}
1125 }
1126 
1127 /*
1128  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1129  * single PCI bus. Another one that contains the primary PCI bus and its
1130  * subordinate PCI devices and buses. The second type of PE is normally
1131  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1132  */
1133 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1134 {
1135 	struct pci_controller *hose = pci_bus_to_host(bus);
1136 	struct pnv_phb *phb = hose->private_data;
1137 	struct pnv_ioda_pe *pe = NULL;
1138 	unsigned int pe_num;
1139 
1140 	/*
1141 	 * In partial hotplug case, the PE instance might be still alive.
1142 	 * We should reuse it instead of allocating a new one.
1143 	 */
1144 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1145 	if (pe_num != IODA_INVALID_PE) {
1146 		pe = &phb->ioda.pe_array[pe_num];
1147 		pnv_ioda_setup_same_PE(bus, pe);
1148 		return NULL;
1149 	}
1150 
1151 	/* PE number for root bus should have been reserved */
1152 	if (pci_is_root_bus(bus) &&
1153 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1154 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1155 
1156 	/* Check if PE is determined by M64 */
1157 	if (!pe)
1158 		pe = pnv_ioda_pick_m64_pe(bus, all);
1159 
1160 	/* The PE number isn't pinned by M64 */
1161 	if (!pe)
1162 		pe = pnv_ioda_alloc_pe(phb);
1163 
1164 	if (!pe) {
1165 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1166 			__func__, pci_domain_nr(bus), bus->number);
1167 		return NULL;
1168 	}
1169 
1170 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1171 	pe->pbus = bus;
1172 	pe->pdev = NULL;
1173 	pe->mve_number = -1;
1174 	pe->rid = bus->busn_res.start << 8;
1175 
1176 	if (all)
1177 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1178 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1179 	else
1180 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1181 			bus->busn_res.start, pe->pe_number);
1182 
1183 	if (pnv_ioda_configure_pe(phb, pe)) {
1184 		/* XXX What do we do here ? */
1185 		pnv_ioda_free_pe(pe);
1186 		pe->pbus = NULL;
1187 		return NULL;
1188 	}
1189 
1190 	/* Associate it with all child devices */
1191 	pnv_ioda_setup_same_PE(bus, pe);
1192 
1193 	/* Put PE to the list */
1194 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1195 
1196 	return pe;
1197 }
1198 
1199 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1200 {
1201 	int pe_num, found_pe = false, rc;
1202 	long rid;
1203 	struct pnv_ioda_pe *pe;
1204 	struct pci_dev *gpu_pdev;
1205 	struct pci_dn *npu_pdn;
1206 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1207 	struct pnv_phb *phb = hose->private_data;
1208 
1209 	/*
1210 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1211 	 * error handling. This means we only have three PEs remaining
1212 	 * which need to be assigned to four links, implying some
1213 	 * links must share PEs.
1214 	 *
1215 	 * To achieve this we assign PEs such that NPUs linking the
1216 	 * same GPU get assigned the same PE.
1217 	 */
1218 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1219 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1220 		pe = &phb->ioda.pe_array[pe_num];
1221 		if (!pe->pdev)
1222 			continue;
1223 
1224 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1225 			/*
1226 			 * This device has the same peer GPU so should
1227 			 * be assigned the same PE as the existing
1228 			 * peer NPU.
1229 			 */
1230 			dev_info(&npu_pdev->dev,
1231 				"Associating to existing PE %x\n", pe_num);
1232 			pci_dev_get(npu_pdev);
1233 			npu_pdn = pci_get_pdn(npu_pdev);
1234 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1235 			npu_pdn->pe_number = pe_num;
1236 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1237 
1238 			/* Map the PE to this link */
1239 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1240 					OpalPciBusAll,
1241 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1242 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1243 					OPAL_MAP_PE);
1244 			WARN_ON(rc != OPAL_SUCCESS);
1245 			found_pe = true;
1246 			break;
1247 		}
1248 	}
1249 
1250 	if (!found_pe)
1251 		/*
1252 		 * Could not find an existing PE so allocate a new
1253 		 * one.
1254 		 */
1255 		return pnv_ioda_setup_dev_PE(npu_pdev);
1256 	else
1257 		return pe;
1258 }
1259 
1260 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1261 {
1262 	struct pci_dev *pdev;
1263 
1264 	list_for_each_entry(pdev, &bus->devices, bus_list)
1265 		pnv_ioda_setup_npu_PE(pdev);
1266 }
1267 
1268 static void pnv_pci_ioda_setup_PEs(void)
1269 {
1270 	struct pci_controller *hose;
1271 	struct pnv_phb *phb;
1272 	struct pci_bus *bus;
1273 	struct pci_dev *pdev;
1274 	struct pnv_ioda_pe *pe;
1275 
1276 	list_for_each_entry(hose, &hose_list, list_node) {
1277 		phb = hose->private_data;
1278 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1279 			/* PE#0 is needed for error reporting */
1280 			pnv_ioda_reserve_pe(phb, 0);
1281 			pnv_ioda_setup_npu_PEs(hose->bus);
1282 			if (phb->model == PNV_PHB_MODEL_NPU2)
1283 				WARN_ON_ONCE(pnv_npu2_init(hose));
1284 		}
1285 		if (phb->type == PNV_PHB_NPU_OCAPI) {
1286 			bus = hose->bus;
1287 			list_for_each_entry(pdev, &bus->devices, bus_list)
1288 				pnv_ioda_setup_dev_PE(pdev);
1289 		}
1290 	}
1291 	list_for_each_entry(hose, &hose_list, list_node) {
1292 		phb = hose->private_data;
1293 		if (phb->type != PNV_PHB_IODA2)
1294 			continue;
1295 
1296 		list_for_each_entry(pe, &phb->ioda.pe_list, list)
1297 			pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1298 	}
1299 }
1300 
1301 #ifdef CONFIG_PCI_IOV
1302 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1303 {
1304 	struct pci_bus        *bus;
1305 	struct pci_controller *hose;
1306 	struct pnv_phb        *phb;
1307 	struct pci_dn         *pdn;
1308 	int                    i, j;
1309 	int                    m64_bars;
1310 
1311 	bus = pdev->bus;
1312 	hose = pci_bus_to_host(bus);
1313 	phb = hose->private_data;
1314 	pdn = pci_get_pdn(pdev);
1315 
1316 	if (pdn->m64_single_mode)
1317 		m64_bars = num_vfs;
1318 	else
1319 		m64_bars = 1;
1320 
1321 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1322 		for (j = 0; j < m64_bars; j++) {
1323 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1324 				continue;
1325 			opal_pci_phb_mmio_enable(phb->opal_id,
1326 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1327 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1328 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1329 		}
1330 
1331 	kfree(pdn->m64_map);
1332 	return 0;
1333 }
1334 
1335 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1336 {
1337 	struct pci_bus        *bus;
1338 	struct pci_controller *hose;
1339 	struct pnv_phb        *phb;
1340 	struct pci_dn         *pdn;
1341 	unsigned int           win;
1342 	struct resource       *res;
1343 	int                    i, j;
1344 	int64_t                rc;
1345 	int                    total_vfs;
1346 	resource_size_t        size, start;
1347 	int                    pe_num;
1348 	int                    m64_bars;
1349 
1350 	bus = pdev->bus;
1351 	hose = pci_bus_to_host(bus);
1352 	phb = hose->private_data;
1353 	pdn = pci_get_pdn(pdev);
1354 	total_vfs = pci_sriov_get_totalvfs(pdev);
1355 
1356 	if (pdn->m64_single_mode)
1357 		m64_bars = num_vfs;
1358 	else
1359 		m64_bars = 1;
1360 
1361 	pdn->m64_map = kmalloc_array(m64_bars,
1362 				     sizeof(*pdn->m64_map),
1363 				     GFP_KERNEL);
1364 	if (!pdn->m64_map)
1365 		return -ENOMEM;
1366 	/* Initialize the m64_map to IODA_INVALID_M64 */
1367 	for (i = 0; i < m64_bars ; i++)
1368 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1369 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1370 
1371 
1372 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1373 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1374 		if (!res->flags || !res->parent)
1375 			continue;
1376 
1377 		for (j = 0; j < m64_bars; j++) {
1378 			do {
1379 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1380 						phb->ioda.m64_bar_idx + 1, 0);
1381 
1382 				if (win >= phb->ioda.m64_bar_idx + 1)
1383 					goto m64_failed;
1384 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1385 
1386 			pdn->m64_map[j][i] = win;
1387 
1388 			if (pdn->m64_single_mode) {
1389 				size = pci_iov_resource_size(pdev,
1390 							PCI_IOV_RESOURCES + i);
1391 				start = res->start + size * j;
1392 			} else {
1393 				size = resource_size(res);
1394 				start = res->start;
1395 			}
1396 
1397 			/* Map the M64 here */
1398 			if (pdn->m64_single_mode) {
1399 				pe_num = pdn->pe_num_map[j];
1400 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1401 						pe_num, OPAL_M64_WINDOW_TYPE,
1402 						pdn->m64_map[j][i], 0);
1403 			}
1404 
1405 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1406 						 OPAL_M64_WINDOW_TYPE,
1407 						 pdn->m64_map[j][i],
1408 						 start,
1409 						 0, /* unused */
1410 						 size);
1411 
1412 
1413 			if (rc != OPAL_SUCCESS) {
1414 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1415 					win, rc);
1416 				goto m64_failed;
1417 			}
1418 
1419 			if (pdn->m64_single_mode)
1420 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1421 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1422 			else
1423 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1424 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1425 
1426 			if (rc != OPAL_SUCCESS) {
1427 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1428 					win, rc);
1429 				goto m64_failed;
1430 			}
1431 		}
1432 	}
1433 	return 0;
1434 
1435 m64_failed:
1436 	pnv_pci_vf_release_m64(pdev, num_vfs);
1437 	return -EBUSY;
1438 }
1439 
1440 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1441 		int num);
1442 
1443 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1444 {
1445 	struct iommu_table    *tbl;
1446 	int64_t               rc;
1447 
1448 	tbl = pe->table_group.tables[0];
1449 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1450 	if (rc)
1451 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1452 
1453 	pnv_pci_ioda2_set_bypass(pe, false);
1454 	if (pe->table_group.group) {
1455 		iommu_group_put(pe->table_group.group);
1456 		BUG_ON(pe->table_group.group);
1457 	}
1458 	iommu_tce_table_put(tbl);
1459 }
1460 
1461 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1462 {
1463 	struct pci_bus        *bus;
1464 	struct pci_controller *hose;
1465 	struct pnv_phb        *phb;
1466 	struct pnv_ioda_pe    *pe, *pe_n;
1467 	struct pci_dn         *pdn;
1468 
1469 	bus = pdev->bus;
1470 	hose = pci_bus_to_host(bus);
1471 	phb = hose->private_data;
1472 	pdn = pci_get_pdn(pdev);
1473 
1474 	if (!pdev->is_physfn)
1475 		return;
1476 
1477 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1478 		if (pe->parent_dev != pdev)
1479 			continue;
1480 
1481 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1482 
1483 		/* Remove from list */
1484 		mutex_lock(&phb->ioda.pe_list_mutex);
1485 		list_del(&pe->list);
1486 		mutex_unlock(&phb->ioda.pe_list_mutex);
1487 
1488 		pnv_ioda_deconfigure_pe(phb, pe);
1489 
1490 		pnv_ioda_free_pe(pe);
1491 	}
1492 }
1493 
1494 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1495 {
1496 	struct pci_bus        *bus;
1497 	struct pci_controller *hose;
1498 	struct pnv_phb        *phb;
1499 	struct pnv_ioda_pe    *pe;
1500 	struct pci_dn         *pdn;
1501 	u16                    num_vfs, i;
1502 
1503 	bus = pdev->bus;
1504 	hose = pci_bus_to_host(bus);
1505 	phb = hose->private_data;
1506 	pdn = pci_get_pdn(pdev);
1507 	num_vfs = pdn->num_vfs;
1508 
1509 	/* Release VF PEs */
1510 	pnv_ioda_release_vf_PE(pdev);
1511 
1512 	if (phb->type == PNV_PHB_IODA2) {
1513 		if (!pdn->m64_single_mode)
1514 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1515 
1516 		/* Release M64 windows */
1517 		pnv_pci_vf_release_m64(pdev, num_vfs);
1518 
1519 		/* Release PE numbers */
1520 		if (pdn->m64_single_mode) {
1521 			for (i = 0; i < num_vfs; i++) {
1522 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1523 					continue;
1524 
1525 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1526 				pnv_ioda_free_pe(pe);
1527 			}
1528 		} else
1529 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1530 		/* Releasing pe_num_map */
1531 		kfree(pdn->pe_num_map);
1532 	}
1533 }
1534 
1535 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1536 				       struct pnv_ioda_pe *pe);
1537 #ifdef CONFIG_IOMMU_API
1538 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
1539 		struct iommu_table_group *table_group, struct pci_bus *bus);
1540 
1541 #endif
1542 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1543 {
1544 	struct pci_bus        *bus;
1545 	struct pci_controller *hose;
1546 	struct pnv_phb        *phb;
1547 	struct pnv_ioda_pe    *pe;
1548 	int                    pe_num;
1549 	u16                    vf_index;
1550 	struct pci_dn         *pdn;
1551 
1552 	bus = pdev->bus;
1553 	hose = pci_bus_to_host(bus);
1554 	phb = hose->private_data;
1555 	pdn = pci_get_pdn(pdev);
1556 
1557 	if (!pdev->is_physfn)
1558 		return;
1559 
1560 	/* Reserve PE for each VF */
1561 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1562 		if (pdn->m64_single_mode)
1563 			pe_num = pdn->pe_num_map[vf_index];
1564 		else
1565 			pe_num = *pdn->pe_num_map + vf_index;
1566 
1567 		pe = &phb->ioda.pe_array[pe_num];
1568 		pe->pe_number = pe_num;
1569 		pe->phb = phb;
1570 		pe->flags = PNV_IODA_PE_VF;
1571 		pe->pbus = NULL;
1572 		pe->parent_dev = pdev;
1573 		pe->mve_number = -1;
1574 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1575 			   pci_iov_virtfn_devfn(pdev, vf_index);
1576 
1577 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1578 			hose->global_number, pdev->bus->number,
1579 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1580 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1581 
1582 		if (pnv_ioda_configure_pe(phb, pe)) {
1583 			/* XXX What do we do here ? */
1584 			pnv_ioda_free_pe(pe);
1585 			pe->pdev = NULL;
1586 			continue;
1587 		}
1588 
1589 		/* Put PE to the list */
1590 		mutex_lock(&phb->ioda.pe_list_mutex);
1591 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1592 		mutex_unlock(&phb->ioda.pe_list_mutex);
1593 
1594 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1595 #ifdef CONFIG_IOMMU_API
1596 		iommu_register_group(&pe->table_group,
1597 				pe->phb->hose->global_number, pe->pe_number);
1598 		pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL);
1599 #endif
1600 	}
1601 }
1602 
1603 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1604 {
1605 	struct pci_bus        *bus;
1606 	struct pci_controller *hose;
1607 	struct pnv_phb        *phb;
1608 	struct pnv_ioda_pe    *pe;
1609 	struct pci_dn         *pdn;
1610 	int                    ret;
1611 	u16                    i;
1612 
1613 	bus = pdev->bus;
1614 	hose = pci_bus_to_host(bus);
1615 	phb = hose->private_data;
1616 	pdn = pci_get_pdn(pdev);
1617 
1618 	if (phb->type == PNV_PHB_IODA2) {
1619 		if (!pdn->vfs_expanded) {
1620 			dev_info(&pdev->dev, "don't support this SRIOV device"
1621 				" with non 64bit-prefetchable IOV BAR\n");
1622 			return -ENOSPC;
1623 		}
1624 
1625 		/*
1626 		 * When M64 BARs functions in Single PE mode, the number of VFs
1627 		 * could be enabled must be less than the number of M64 BARs.
1628 		 */
1629 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1630 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1631 			return -EBUSY;
1632 		}
1633 
1634 		/* Allocating pe_num_map */
1635 		if (pdn->m64_single_mode)
1636 			pdn->pe_num_map = kmalloc_array(num_vfs,
1637 							sizeof(*pdn->pe_num_map),
1638 							GFP_KERNEL);
1639 		else
1640 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1641 
1642 		if (!pdn->pe_num_map)
1643 			return -ENOMEM;
1644 
1645 		if (pdn->m64_single_mode)
1646 			for (i = 0; i < num_vfs; i++)
1647 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1648 
1649 		/* Calculate available PE for required VFs */
1650 		if (pdn->m64_single_mode) {
1651 			for (i = 0; i < num_vfs; i++) {
1652 				pe = pnv_ioda_alloc_pe(phb);
1653 				if (!pe) {
1654 					ret = -EBUSY;
1655 					goto m64_failed;
1656 				}
1657 
1658 				pdn->pe_num_map[i] = pe->pe_number;
1659 			}
1660 		} else {
1661 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1662 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1663 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1664 				0, num_vfs, 0);
1665 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1666 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1667 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1668 				kfree(pdn->pe_num_map);
1669 				return -EBUSY;
1670 			}
1671 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1672 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1673 		}
1674 		pdn->num_vfs = num_vfs;
1675 
1676 		/* Assign M64 window accordingly */
1677 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1678 		if (ret) {
1679 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1680 			goto m64_failed;
1681 		}
1682 
1683 		/*
1684 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1685 		 * the IOV BAR according to the PE# allocated to the VFs.
1686 		 * Otherwise, the PE# for the VF will conflict with others.
1687 		 */
1688 		if (!pdn->m64_single_mode) {
1689 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1690 			if (ret)
1691 				goto m64_failed;
1692 		}
1693 	}
1694 
1695 	/* Setup VF PEs */
1696 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1697 
1698 	return 0;
1699 
1700 m64_failed:
1701 	if (pdn->m64_single_mode) {
1702 		for (i = 0; i < num_vfs; i++) {
1703 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1704 				continue;
1705 
1706 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1707 			pnv_ioda_free_pe(pe);
1708 		}
1709 	} else
1710 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1711 
1712 	/* Releasing pe_num_map */
1713 	kfree(pdn->pe_num_map);
1714 
1715 	return ret;
1716 }
1717 
1718 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1719 {
1720 	pnv_pci_sriov_disable(pdev);
1721 
1722 	/* Release PCI data */
1723 	remove_dev_pci_data(pdev);
1724 	return 0;
1725 }
1726 
1727 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1728 {
1729 	/* Allocate PCI data */
1730 	add_dev_pci_data(pdev);
1731 
1732 	return pnv_pci_sriov_enable(pdev, num_vfs);
1733 }
1734 #endif /* CONFIG_PCI_IOV */
1735 
1736 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1737 {
1738 	struct pci_dn *pdn = pci_get_pdn(pdev);
1739 	struct pnv_ioda_pe *pe;
1740 
1741 	/*
1742 	 * The function can be called while the PE#
1743 	 * hasn't been assigned. Do nothing for the
1744 	 * case.
1745 	 */
1746 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1747 		return;
1748 
1749 	pe = &phb->ioda.pe_array[pdn->pe_number];
1750 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1751 	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1752 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1753 	/*
1754 	 * Note: iommu_add_device() will fail here as
1755 	 * for physical PE: the device is already added by now;
1756 	 * for virtual PE: sysfs entries are not ready yet and
1757 	 * tce_iommu_bus_notifier will add the device to a group later.
1758 	 */
1759 }
1760 
1761 /*
1762  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1763  *
1764  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1765  * Devices can only access more than that if bit 59 of the PCI address is set
1766  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1767  * Many PCI devices are not capable of addressing that many bits, and as a
1768  * result are limited to the 4GB of virtual memory made available to 32-bit
1769  * devices in TVE#0.
1770  *
1771  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1772  * devices by configuring the virtual memory past the first 4GB inaccessible
1773  * by 64-bit DMAs.  This should only be used by devices that want more than
1774  * 4GB, and only on PEs that have no 32-bit devices.
1775  *
1776  * Currently this will only work on PHB3 (POWER8).
1777  */
1778 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1779 {
1780 	u64 window_size, table_size, tce_count, addr;
1781 	struct page *table_pages;
1782 	u64 tce_order = 28; /* 256MB TCEs */
1783 	__be64 *tces;
1784 	s64 rc;
1785 
1786 	/*
1787 	 * Window size needs to be a power of two, but needs to account for
1788 	 * shifting memory by the 4GB offset required to skip 32bit space.
1789 	 */
1790 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1791 	tce_count = window_size >> tce_order;
1792 	table_size = tce_count << 3;
1793 
1794 	if (table_size < PAGE_SIZE)
1795 		table_size = PAGE_SIZE;
1796 
1797 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1798 				       get_order(table_size));
1799 	if (!table_pages)
1800 		goto err;
1801 
1802 	tces = page_address(table_pages);
1803 	if (!tces)
1804 		goto err;
1805 
1806 	memset(tces, 0, table_size);
1807 
1808 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1809 		tces[(addr + (1ULL << 32)) >> tce_order] =
1810 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1811 	}
1812 
1813 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1814 					pe->pe_number,
1815 					/* reconfigure window 0 */
1816 					(pe->pe_number << 1) + 0,
1817 					1,
1818 					__pa(tces),
1819 					table_size,
1820 					1 << tce_order);
1821 	if (rc == OPAL_SUCCESS) {
1822 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1823 		return 0;
1824 	}
1825 err:
1826 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1827 	return -EIO;
1828 }
1829 
1830 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1831 		u64 dma_mask)
1832 {
1833 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1834 	struct pnv_phb *phb = hose->private_data;
1835 	struct pci_dn *pdn = pci_get_pdn(pdev);
1836 	struct pnv_ioda_pe *pe;
1837 
1838 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1839 		return -ENODEV;
1840 
1841 	pe = &phb->ioda.pe_array[pdn->pe_number];
1842 	if (pe->tce_bypass_enabled) {
1843 		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1844 		if (dma_mask >= top)
1845 			return true;
1846 	}
1847 
1848 	/*
1849 	 * If the device can't set the TCE bypass bit but still wants
1850 	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1851 	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1852 	 * The device needs to be able to address all of this space.
1853 	 */
1854 	if (dma_mask >> 32 &&
1855 	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1856 	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1857 	    (pe->device_count == 1 || !pe->pbus) &&
1858 	    phb->model == PNV_PHB_MODEL_PHB3) {
1859 		/* Configure the bypass mode */
1860 		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1861 		if (rc)
1862 			return rc;
1863 		/* 4GB offset bypasses 32-bit space */
1864 		pdev->dev.archdata.dma_offset = (1ULL << 32);
1865 		return true;
1866 	}
1867 
1868 	return false;
1869 }
1870 
1871 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1872 {
1873 	struct pci_dev *dev;
1874 
1875 	list_for_each_entry(dev, &bus->devices, bus_list) {
1876 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1877 		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1878 
1879 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1880 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1881 	}
1882 }
1883 
1884 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1885 						     bool real_mode)
1886 {
1887 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1888 		(phb->regs + 0x210);
1889 }
1890 
1891 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1892 		unsigned long index, unsigned long npages, bool rm)
1893 {
1894 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1895 			&tbl->it_group_list, struct iommu_table_group_link,
1896 			next);
1897 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1898 			struct pnv_ioda_pe, table_group);
1899 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1900 	unsigned long start, end, inc;
1901 
1902 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1903 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1904 			npages - 1);
1905 
1906 	/* p7ioc-style invalidation, 2 TCEs per write */
1907 	start |= (1ull << 63);
1908 	end |= (1ull << 63);
1909 	inc = 16;
1910         end |= inc - 1;	/* round up end to be different than start */
1911 
1912         mb(); /* Ensure above stores are visible */
1913         while (start <= end) {
1914 		if (rm)
1915 			__raw_rm_writeq_be(start, invalidate);
1916 		else
1917 			__raw_writeq_be(start, invalidate);
1918 
1919                 start += inc;
1920         }
1921 
1922 	/*
1923 	 * The iommu layer will do another mb() for us on build()
1924 	 * and we don't care on free()
1925 	 */
1926 }
1927 
1928 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1929 		long npages, unsigned long uaddr,
1930 		enum dma_data_direction direction,
1931 		unsigned long attrs)
1932 {
1933 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1934 			attrs);
1935 
1936 	if (!ret)
1937 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1938 
1939 	return ret;
1940 }
1941 
1942 #ifdef CONFIG_IOMMU_API
1943 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1944 		unsigned long *hpa, enum dma_data_direction *direction)
1945 {
1946 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
1947 
1948 	if (!ret)
1949 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1950 
1951 	return ret;
1952 }
1953 
1954 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
1955 		unsigned long *hpa, enum dma_data_direction *direction)
1956 {
1957 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
1958 
1959 	if (!ret)
1960 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
1961 
1962 	return ret;
1963 }
1964 #endif
1965 
1966 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1967 		long npages)
1968 {
1969 	pnv_tce_free(tbl, index, npages);
1970 
1971 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1972 }
1973 
1974 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1975 	.set = pnv_ioda1_tce_build,
1976 #ifdef CONFIG_IOMMU_API
1977 	.exchange = pnv_ioda1_tce_xchg,
1978 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
1979 	.useraddrptr = pnv_tce_useraddrptr,
1980 #endif
1981 	.clear = pnv_ioda1_tce_free,
1982 	.get = pnv_tce_get,
1983 };
1984 
1985 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1986 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1987 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1988 
1989 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1990 {
1991 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1992 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1993 
1994 	mb(); /* Ensure previous TCE table stores are visible */
1995 	if (rm)
1996 		__raw_rm_writeq_be(val, invalidate);
1997 	else
1998 		__raw_writeq_be(val, invalidate);
1999 }
2000 
2001 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2002 {
2003 	/* 01xb - invalidate TCEs that match the specified PE# */
2004 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2005 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2006 
2007 	mb(); /* Ensure above stores are visible */
2008 	__raw_writeq_be(val, invalidate);
2009 }
2010 
2011 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2012 					unsigned shift, unsigned long index,
2013 					unsigned long npages)
2014 {
2015 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2016 	unsigned long start, end, inc;
2017 
2018 	/* We'll invalidate DMA address in PE scope */
2019 	start = PHB3_TCE_KILL_INVAL_ONE;
2020 	start |= (pe->pe_number & 0xFF);
2021 	end = start;
2022 
2023 	/* Figure out the start, end and step */
2024 	start |= (index << shift);
2025 	end |= ((index + npages - 1) << shift);
2026 	inc = (0x1ull << shift);
2027 	mb();
2028 
2029 	while (start <= end) {
2030 		if (rm)
2031 			__raw_rm_writeq_be(start, invalidate);
2032 		else
2033 			__raw_writeq_be(start, invalidate);
2034 		start += inc;
2035 	}
2036 }
2037 
2038 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2039 {
2040 	struct pnv_phb *phb = pe->phb;
2041 
2042 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2043 		pnv_pci_phb3_tce_invalidate_pe(pe);
2044 	else
2045 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2046 				  pe->pe_number, 0, 0, 0);
2047 }
2048 
2049 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2050 		unsigned long index, unsigned long npages, bool rm)
2051 {
2052 	struct iommu_table_group_link *tgl;
2053 
2054 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2055 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2056 				struct pnv_ioda_pe, table_group);
2057 		struct pnv_phb *phb = pe->phb;
2058 		unsigned int shift = tbl->it_page_shift;
2059 
2060 		/*
2061 		 * NVLink1 can use the TCE kill register directly as
2062 		 * it's the same as PHB3. NVLink2 is different and
2063 		 * should go via the OPAL call.
2064 		 */
2065 		if (phb->model == PNV_PHB_MODEL_NPU) {
2066 			/*
2067 			 * The NVLink hardware does not support TCE kill
2068 			 * per TCE entry so we have to invalidate
2069 			 * the entire cache for it.
2070 			 */
2071 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2072 			continue;
2073 		}
2074 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2075 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2076 						    index, npages);
2077 		else
2078 			opal_pci_tce_kill(phb->opal_id,
2079 					  OPAL_PCI_TCE_KILL_PAGES,
2080 					  pe->pe_number, 1u << shift,
2081 					  index << shift, npages);
2082 	}
2083 }
2084 
2085 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2086 {
2087 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2088 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2089 	else
2090 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2091 }
2092 
2093 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2094 		long npages, unsigned long uaddr,
2095 		enum dma_data_direction direction,
2096 		unsigned long attrs)
2097 {
2098 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2099 			attrs);
2100 
2101 	if (!ret)
2102 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2103 
2104 	return ret;
2105 }
2106 
2107 #ifdef CONFIG_IOMMU_API
2108 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2109 		unsigned long *hpa, enum dma_data_direction *direction)
2110 {
2111 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2112 
2113 	if (!ret)
2114 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2115 
2116 	return ret;
2117 }
2118 
2119 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2120 		unsigned long *hpa, enum dma_data_direction *direction)
2121 {
2122 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2123 
2124 	if (!ret)
2125 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2126 
2127 	return ret;
2128 }
2129 #endif
2130 
2131 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2132 		long npages)
2133 {
2134 	pnv_tce_free(tbl, index, npages);
2135 
2136 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2137 }
2138 
2139 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2140 	.set = pnv_ioda2_tce_build,
2141 #ifdef CONFIG_IOMMU_API
2142 	.exchange = pnv_ioda2_tce_xchg,
2143 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2144 	.useraddrptr = pnv_tce_useraddrptr,
2145 #endif
2146 	.clear = pnv_ioda2_tce_free,
2147 	.get = pnv_tce_get,
2148 	.free = pnv_pci_ioda2_table_free_pages,
2149 };
2150 
2151 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2152 {
2153 	unsigned int *weight = (unsigned int *)data;
2154 
2155 	/* This is quite simplistic. The "base" weight of a device
2156 	 * is 10. 0 means no DMA is to be accounted for it.
2157 	 */
2158 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2159 		return 0;
2160 
2161 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2162 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2163 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2164 		*weight += 3;
2165 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2166 		*weight += 15;
2167 	else
2168 		*weight += 10;
2169 
2170 	return 0;
2171 }
2172 
2173 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2174 {
2175 	unsigned int weight = 0;
2176 
2177 	/* SRIOV VF has same DMA32 weight as its PF */
2178 #ifdef CONFIG_PCI_IOV
2179 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2180 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2181 		return weight;
2182 	}
2183 #endif
2184 
2185 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2186 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2187 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2188 		struct pci_dev *pdev;
2189 
2190 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2191 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2192 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2193 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2194 	}
2195 
2196 	return weight;
2197 }
2198 
2199 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2200 				       struct pnv_ioda_pe *pe)
2201 {
2202 
2203 	struct page *tce_mem = NULL;
2204 	struct iommu_table *tbl;
2205 	unsigned int weight, total_weight = 0;
2206 	unsigned int tce32_segsz, base, segs, avail, i;
2207 	int64_t rc;
2208 	void *addr;
2209 
2210 	/* XXX FIXME: Handle 64-bit only DMA devices */
2211 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2212 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2213 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2214 	if (!weight)
2215 		return;
2216 
2217 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2218 		     &total_weight);
2219 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2220 	if (!segs)
2221 		segs = 1;
2222 
2223 	/*
2224 	 * Allocate contiguous DMA32 segments. We begin with the expected
2225 	 * number of segments. With one more attempt, the number of DMA32
2226 	 * segments to be allocated is decreased by one until one segment
2227 	 * is allocated successfully.
2228 	 */
2229 	do {
2230 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2231 			for (avail = 0, i = base; i < base + segs; i++) {
2232 				if (phb->ioda.dma32_segmap[i] ==
2233 				    IODA_INVALID_PE)
2234 					avail++;
2235 			}
2236 
2237 			if (avail == segs)
2238 				goto found;
2239 		}
2240 	} while (--segs);
2241 
2242 	if (!segs) {
2243 		pe_warn(pe, "No available DMA32 segments\n");
2244 		return;
2245 	}
2246 
2247 found:
2248 	tbl = pnv_pci_table_alloc(phb->hose->node);
2249 	if (WARN_ON(!tbl))
2250 		return;
2251 
2252 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2253 			pe->pe_number);
2254 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2255 
2256 	/* Grab a 32-bit TCE table */
2257 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2258 		weight, total_weight, base, segs);
2259 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2260 		base * PNV_IODA1_DMA32_SEGSIZE,
2261 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2262 
2263 	/* XXX Currently, we allocate one big contiguous table for the
2264 	 * TCEs. We only really need one chunk per 256M of TCE space
2265 	 * (ie per segment) but that's an optimization for later, it
2266 	 * requires some added smarts with our get/put_tce implementation
2267 	 *
2268 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2269 	 * bytes
2270 	 */
2271 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2272 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2273 				   get_order(tce32_segsz * segs));
2274 	if (!tce_mem) {
2275 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2276 		goto fail;
2277 	}
2278 	addr = page_address(tce_mem);
2279 	memset(addr, 0, tce32_segsz * segs);
2280 
2281 	/* Configure HW */
2282 	for (i = 0; i < segs; i++) {
2283 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2284 					      pe->pe_number,
2285 					      base + i, 1,
2286 					      __pa(addr) + tce32_segsz * i,
2287 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2288 		if (rc) {
2289 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2290 			       " err %ld\n", rc);
2291 			goto fail;
2292 		}
2293 	}
2294 
2295 	/* Setup DMA32 segment mapping */
2296 	for (i = base; i < base + segs; i++)
2297 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2298 
2299 	/* Setup linux iommu table */
2300 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2301 				  base * PNV_IODA1_DMA32_SEGSIZE,
2302 				  IOMMU_PAGE_SHIFT_4K);
2303 
2304 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2305 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2306 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2307 	iommu_init_table(tbl, phb->hose->node);
2308 
2309 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2310 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2311 
2312 	return;
2313  fail:
2314 	/* XXX Failure: Try to fallback to 64-bit only ? */
2315 	if (tce_mem)
2316 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2317 	if (tbl) {
2318 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2319 		iommu_tce_table_put(tbl);
2320 	}
2321 }
2322 
2323 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2324 		int num, struct iommu_table *tbl)
2325 {
2326 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2327 			table_group);
2328 	struct pnv_phb *phb = pe->phb;
2329 	int64_t rc;
2330 	const unsigned long size = tbl->it_indirect_levels ?
2331 			tbl->it_level_size : tbl->it_size;
2332 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2333 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2334 
2335 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2336 			start_addr, start_addr + win_size - 1,
2337 			IOMMU_PAGE_SIZE(tbl));
2338 
2339 	/*
2340 	 * Map TCE table through TVT. The TVE index is the PE number
2341 	 * shifted by 1 bit for 32-bits DMA space.
2342 	 */
2343 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2344 			pe->pe_number,
2345 			(pe->pe_number << 1) + num,
2346 			tbl->it_indirect_levels + 1,
2347 			__pa(tbl->it_base),
2348 			size << 3,
2349 			IOMMU_PAGE_SIZE(tbl));
2350 	if (rc) {
2351 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2352 		return rc;
2353 	}
2354 
2355 	pnv_pci_link_table_and_group(phb->hose->node, num,
2356 			tbl, &pe->table_group);
2357 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2358 
2359 	return 0;
2360 }
2361 
2362 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2363 {
2364 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2365 	int64_t rc;
2366 
2367 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2368 	if (enable) {
2369 		phys_addr_t top = memblock_end_of_DRAM();
2370 
2371 		top = roundup_pow_of_two(top);
2372 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2373 						     pe->pe_number,
2374 						     window_id,
2375 						     pe->tce_bypass_base,
2376 						     top);
2377 	} else {
2378 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2379 						     pe->pe_number,
2380 						     window_id,
2381 						     pe->tce_bypass_base,
2382 						     0);
2383 	}
2384 	if (rc)
2385 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2386 	else
2387 		pe->tce_bypass_enabled = enable;
2388 }
2389 
2390 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2391 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2392 		bool alloc_userspace_copy, struct iommu_table **ptbl)
2393 {
2394 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2395 			table_group);
2396 	int nid = pe->phb->hose->node;
2397 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2398 	long ret;
2399 	struct iommu_table *tbl;
2400 
2401 	tbl = pnv_pci_table_alloc(nid);
2402 	if (!tbl)
2403 		return -ENOMEM;
2404 
2405 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2406 
2407 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2408 			bus_offset, page_shift, window_size,
2409 			levels, alloc_userspace_copy, tbl);
2410 	if (ret) {
2411 		iommu_tce_table_put(tbl);
2412 		return ret;
2413 	}
2414 
2415 	*ptbl = tbl;
2416 
2417 	return 0;
2418 }
2419 
2420 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2421 {
2422 	struct iommu_table *tbl = NULL;
2423 	long rc;
2424 
2425 	/*
2426 	 * crashkernel= specifies the kdump kernel's maximum memory at
2427 	 * some offset and there is no guaranteed the result is a power
2428 	 * of 2, which will cause errors later.
2429 	 */
2430 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2431 
2432 	/*
2433 	 * In memory constrained environments, e.g. kdump kernel, the
2434 	 * DMA window can be larger than available memory, which will
2435 	 * cause errors later.
2436 	 */
2437 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2438 
2439 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2440 			IOMMU_PAGE_SHIFT_4K,
2441 			window_size,
2442 			POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl);
2443 	if (rc) {
2444 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2445 				rc);
2446 		return rc;
2447 	}
2448 
2449 	iommu_init_table(tbl, pe->phb->hose->node);
2450 
2451 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2452 	if (rc) {
2453 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2454 				rc);
2455 		iommu_tce_table_put(tbl);
2456 		return rc;
2457 	}
2458 
2459 	if (!pnv_iommu_bypass_disabled)
2460 		pnv_pci_ioda2_set_bypass(pe, true);
2461 
2462 	return 0;
2463 }
2464 
2465 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2466 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2467 		int num)
2468 {
2469 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2470 			table_group);
2471 	struct pnv_phb *phb = pe->phb;
2472 	long ret;
2473 
2474 	pe_info(pe, "Removing DMA window #%d\n", num);
2475 
2476 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2477 			(pe->pe_number << 1) + num,
2478 			0/* levels */, 0/* table address */,
2479 			0/* table size */, 0/* page size */);
2480 	if (ret)
2481 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2482 	else
2483 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2484 
2485 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2486 
2487 	return ret;
2488 }
2489 #endif
2490 
2491 #ifdef CONFIG_IOMMU_API
2492 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2493 		__u64 window_size, __u32 levels)
2494 {
2495 	unsigned long bytes = 0;
2496 	const unsigned window_shift = ilog2(window_size);
2497 	unsigned entries_shift = window_shift - page_shift;
2498 	unsigned table_shift = entries_shift + 3;
2499 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2500 	unsigned long direct_table_size;
2501 
2502 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2503 			!is_power_of_2(window_size))
2504 		return 0;
2505 
2506 	/* Calculate a direct table size from window_size and levels */
2507 	entries_shift = (entries_shift + levels - 1) / levels;
2508 	table_shift = entries_shift + 3;
2509 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2510 	direct_table_size =  1UL << table_shift;
2511 
2512 	for ( ; levels; --levels) {
2513 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2514 
2515 		tce_table_size /= direct_table_size;
2516 		tce_table_size <<= 3;
2517 		tce_table_size = max_t(unsigned long,
2518 				tce_table_size, direct_table_size);
2519 	}
2520 
2521 	return bytes + bytes; /* one for HW table, one for userspace copy */
2522 }
2523 
2524 static long pnv_pci_ioda2_create_table_userspace(
2525 		struct iommu_table_group *table_group,
2526 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2527 		struct iommu_table **ptbl)
2528 {
2529 	long ret = pnv_pci_ioda2_create_table(table_group,
2530 			num, page_shift, window_size, levels, true, ptbl);
2531 
2532 	if (!ret)
2533 		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2534 				page_shift, window_size, levels);
2535 	return ret;
2536 }
2537 
2538 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2539 {
2540 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2541 						table_group);
2542 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2543 	struct iommu_table *tbl = pe->table_group.tables[0];
2544 
2545 	pnv_pci_ioda2_set_bypass(pe, false);
2546 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2547 	if (pe->pbus)
2548 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2549 	iommu_tce_table_put(tbl);
2550 }
2551 
2552 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2553 {
2554 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2555 						table_group);
2556 
2557 	pnv_pci_ioda2_setup_default_config(pe);
2558 	if (pe->pbus)
2559 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2560 }
2561 
2562 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2563 	.get_table_size = pnv_pci_ioda2_get_table_size,
2564 	.create_table = pnv_pci_ioda2_create_table_userspace,
2565 	.set_window = pnv_pci_ioda2_set_window,
2566 	.unset_window = pnv_pci_ioda2_unset_window,
2567 	.take_ownership = pnv_ioda2_take_ownership,
2568 	.release_ownership = pnv_ioda2_release_ownership,
2569 };
2570 
2571 static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe,
2572 		struct iommu_table_group *table_group,
2573 		struct pci_bus *bus)
2574 {
2575 	struct pci_dev *dev;
2576 
2577 	list_for_each_entry(dev, &bus->devices, bus_list) {
2578 		iommu_add_device(table_group, &dev->dev);
2579 
2580 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2581 			pnv_ioda_setup_bus_iommu_group_add_devices(pe,
2582 					table_group, dev->subordinate);
2583 	}
2584 }
2585 
2586 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
2587 		struct iommu_table_group *table_group, struct pci_bus *bus)
2588 {
2589 
2590 	if (pe->flags & PNV_IODA_PE_DEV)
2591 		iommu_add_device(table_group, &pe->pdev->dev);
2592 
2593 	if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus)
2594 		pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group,
2595 				bus);
2596 }
2597 
2598 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
2599 
2600 static void pnv_pci_ioda_setup_iommu_api(void)
2601 {
2602 	struct pci_controller *hose;
2603 	struct pnv_phb *phb;
2604 	struct pnv_ioda_pe *pe;
2605 
2606 	/*
2607 	 * There are 4 types of PEs:
2608 	 * - PNV_IODA_PE_BUS: a downstream port with an adapter,
2609 	 *   created from pnv_pci_setup_bridge();
2610 	 * - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it,
2611 	 *   created from pnv_pci_setup_bridge();
2612 	 * - PNV_IODA_PE_VF: a SRIOV virtual function,
2613 	 *   created from pnv_pcibios_sriov_enable();
2614 	 * - PNV_IODA_PE_DEV: an NPU or OCAPI device,
2615 	 *   created from pnv_pci_ioda_fixup().
2616 	 *
2617 	 * Normally a PE is represented by an IOMMU group, however for
2618 	 * devices with side channels the groups need to be more strict.
2619 	 */
2620 	list_for_each_entry(hose, &hose_list, list_node) {
2621 		phb = hose->private_data;
2622 
2623 		if (phb->type == PNV_PHB_NPU_NVLINK ||
2624 		    phb->type == PNV_PHB_NPU_OCAPI)
2625 			continue;
2626 
2627 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2628 			struct iommu_table_group *table_group;
2629 
2630 			table_group = pnv_try_setup_npu_table_group(pe);
2631 			if (!table_group) {
2632 				if (!pnv_pci_ioda_pe_dma_weight(pe))
2633 					continue;
2634 
2635 				table_group = &pe->table_group;
2636 				iommu_register_group(&pe->table_group,
2637 						pe->phb->hose->global_number,
2638 						pe->pe_number);
2639 			}
2640 			pnv_ioda_setup_bus_iommu_group(pe, table_group,
2641 					pe->pbus);
2642 		}
2643 	}
2644 
2645 	/*
2646 	 * Now we have all PHBs discovered, time to add NPU devices to
2647 	 * the corresponding IOMMU groups.
2648 	 */
2649 	list_for_each_entry(hose, &hose_list, list_node) {
2650 		unsigned long  pgsizes;
2651 
2652 		phb = hose->private_data;
2653 
2654 		if (phb->type != PNV_PHB_NPU_NVLINK)
2655 			continue;
2656 
2657 		pgsizes = pnv_ioda_parse_tce_sizes(phb);
2658 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2659 			/*
2660 			 * IODA2 bridges get this set up from
2661 			 * pci_controller_ops::setup_bridge but NPU bridges
2662 			 * do not have this hook defined so we do it here.
2663 			 */
2664 			pe->table_group.pgsizes = pgsizes;
2665 			pnv_npu_compound_attach(pe);
2666 		}
2667 	}
2668 }
2669 #else /* !CONFIG_IOMMU_API */
2670 static void pnv_pci_ioda_setup_iommu_api(void) { };
2671 #endif
2672 
2673 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2674 {
2675 	struct pci_controller *hose = phb->hose;
2676 	struct device_node *dn = hose->dn;
2677 	unsigned long mask = 0;
2678 	int i, rc, count;
2679 	u32 val;
2680 
2681 	count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2682 	if (count <= 0) {
2683 		mask = SZ_4K | SZ_64K;
2684 		/* Add 16M for POWER8 by default */
2685 		if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2686 				!cpu_has_feature(CPU_FTR_ARCH_300))
2687 			mask |= SZ_16M | SZ_256M;
2688 		return mask;
2689 	}
2690 
2691 	for (i = 0; i < count; i++) {
2692 		rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2693 						i, &val);
2694 		if (rc == 0)
2695 			mask |= 1ULL << val;
2696 	}
2697 
2698 	return mask;
2699 }
2700 
2701 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2702 				       struct pnv_ioda_pe *pe)
2703 {
2704 	int64_t rc;
2705 
2706 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2707 		return;
2708 
2709 	/* TVE #1 is selected by PCI address bit 59 */
2710 	pe->tce_bypass_base = 1ull << 59;
2711 
2712 	/* The PE will reserve all possible 32-bits space */
2713 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2714 		phb->ioda.m32_pci_base);
2715 
2716 	/* Setup linux iommu table */
2717 	pe->table_group.tce32_start = 0;
2718 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2719 	pe->table_group.max_dynamic_windows_supported =
2720 			IOMMU_TABLE_GROUP_MAX_TABLES;
2721 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2722 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2723 #ifdef CONFIG_IOMMU_API
2724 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2725 #endif
2726 
2727 	rc = pnv_pci_ioda2_setup_default_config(pe);
2728 	if (rc)
2729 		return;
2730 
2731 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2732 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2733 }
2734 
2735 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2736 {
2737 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2738 					   ioda.irq_chip);
2739 
2740 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2741 }
2742 
2743 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2744 {
2745 	int64_t rc;
2746 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2747 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2748 
2749 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2750 	WARN_ON_ONCE(rc);
2751 
2752 	icp_native_eoi(d);
2753 }
2754 
2755 
2756 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2757 {
2758 	struct irq_data *idata;
2759 	struct irq_chip *ichip;
2760 
2761 	/* The MSI EOI OPAL call is only needed on PHB3 */
2762 	if (phb->model != PNV_PHB_MODEL_PHB3)
2763 		return;
2764 
2765 	if (!phb->ioda.irq_chip_init) {
2766 		/*
2767 		 * First time we setup an MSI IRQ, we need to setup the
2768 		 * corresponding IRQ chip to route correctly.
2769 		 */
2770 		idata = irq_get_irq_data(virq);
2771 		ichip = irq_data_get_irq_chip(idata);
2772 		phb->ioda.irq_chip_init = 1;
2773 		phb->ioda.irq_chip = *ichip;
2774 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2775 	}
2776 	irq_set_chip(virq, &phb->ioda.irq_chip);
2777 }
2778 
2779 /*
2780  * Returns true iff chip is something that we could call
2781  * pnv_opal_pci_msi_eoi for.
2782  */
2783 bool is_pnv_opal_msi(struct irq_chip *chip)
2784 {
2785 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2786 }
2787 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2788 
2789 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2790 				  unsigned int hwirq, unsigned int virq,
2791 				  unsigned int is_64, struct msi_msg *msg)
2792 {
2793 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2794 	unsigned int xive_num = hwirq - phb->msi_base;
2795 	__be32 data;
2796 	int rc;
2797 
2798 	/* No PE assigned ? bail out ... no MSI for you ! */
2799 	if (pe == NULL)
2800 		return -ENXIO;
2801 
2802 	/* Check if we have an MVE */
2803 	if (pe->mve_number < 0)
2804 		return -ENXIO;
2805 
2806 	/* Force 32-bit MSI on some broken devices */
2807 	if (dev->no_64bit_msi)
2808 		is_64 = 0;
2809 
2810 	/* Assign XIVE to PE */
2811 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2812 	if (rc) {
2813 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2814 			pci_name(dev), rc, xive_num);
2815 		return -EIO;
2816 	}
2817 
2818 	if (is_64) {
2819 		__be64 addr64;
2820 
2821 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2822 				     &addr64, &data);
2823 		if (rc) {
2824 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2825 				pci_name(dev), rc);
2826 			return -EIO;
2827 		}
2828 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2829 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2830 	} else {
2831 		__be32 addr32;
2832 
2833 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2834 				     &addr32, &data);
2835 		if (rc) {
2836 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2837 				pci_name(dev), rc);
2838 			return -EIO;
2839 		}
2840 		msg->address_hi = 0;
2841 		msg->address_lo = be32_to_cpu(addr32);
2842 	}
2843 	msg->data = be32_to_cpu(data);
2844 
2845 	pnv_set_msi_irq_chip(phb, virq);
2846 
2847 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2848 		 " address=%x_%08x data=%x PE# %x\n",
2849 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2850 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2851 
2852 	return 0;
2853 }
2854 
2855 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2856 {
2857 	unsigned int count;
2858 	const __be32 *prop = of_get_property(phb->hose->dn,
2859 					     "ibm,opal-msi-ranges", NULL);
2860 	if (!prop) {
2861 		/* BML Fallback */
2862 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2863 	}
2864 	if (!prop)
2865 		return;
2866 
2867 	phb->msi_base = be32_to_cpup(prop);
2868 	count = be32_to_cpup(prop + 1);
2869 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2870 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2871 		       phb->hose->global_number);
2872 		return;
2873 	}
2874 
2875 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2876 	phb->msi32_support = 1;
2877 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2878 		count, phb->msi_base);
2879 }
2880 
2881 #ifdef CONFIG_PCI_IOV
2882 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2883 {
2884 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2885 	struct pnv_phb *phb = hose->private_data;
2886 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2887 	struct resource *res;
2888 	int i;
2889 	resource_size_t size, total_vf_bar_sz;
2890 	struct pci_dn *pdn;
2891 	int mul, total_vfs;
2892 
2893 	if (!pdev->is_physfn || pci_dev_is_added(pdev))
2894 		return;
2895 
2896 	pdn = pci_get_pdn(pdev);
2897 	pdn->vfs_expanded = 0;
2898 	pdn->m64_single_mode = false;
2899 
2900 	total_vfs = pci_sriov_get_totalvfs(pdev);
2901 	mul = phb->ioda.total_pe_num;
2902 	total_vf_bar_sz = 0;
2903 
2904 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2905 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2906 		if (!res->flags || res->parent)
2907 			continue;
2908 		if (!pnv_pci_is_m64_flags(res->flags)) {
2909 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2910 					" non M64 VF BAR%d: %pR. \n",
2911 				 i, res);
2912 			goto truncate_iov;
2913 		}
2914 
2915 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2916 				i + PCI_IOV_RESOURCES);
2917 
2918 		/*
2919 		 * If bigger than quarter of M64 segment size, just round up
2920 		 * power of two.
2921 		 *
2922 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2923 		 * with other devices, IOV BAR size is expanded to be
2924 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2925 		 * segment size , the expanded size would equal to half of the
2926 		 * whole M64 space size, which will exhaust the M64 Space and
2927 		 * limit the system flexibility.  This is a design decision to
2928 		 * set the boundary to quarter of the M64 segment size.
2929 		 */
2930 		if (total_vf_bar_sz > gate) {
2931 			mul = roundup_pow_of_two(total_vfs);
2932 			dev_info(&pdev->dev,
2933 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2934 				total_vf_bar_sz, gate, mul);
2935 			pdn->m64_single_mode = true;
2936 			break;
2937 		}
2938 	}
2939 
2940 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2941 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2942 		if (!res->flags || res->parent)
2943 			continue;
2944 
2945 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2946 		/*
2947 		 * On PHB3, the minimum size alignment of M64 BAR in single
2948 		 * mode is 32MB.
2949 		 */
2950 		if (pdn->m64_single_mode && (size < SZ_32M))
2951 			goto truncate_iov;
2952 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2953 		res->end = res->start + size * mul - 1;
2954 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2955 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2956 			 i, res, mul);
2957 	}
2958 	pdn->vfs_expanded = mul;
2959 
2960 	return;
2961 
2962 truncate_iov:
2963 	/* To save MMIO space, IOV BAR is truncated. */
2964 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2965 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2966 		res->flags = 0;
2967 		res->end = res->start - 1;
2968 	}
2969 }
2970 #endif /* CONFIG_PCI_IOV */
2971 
2972 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2973 				  struct resource *res)
2974 {
2975 	struct pnv_phb *phb = pe->phb;
2976 	struct pci_bus_region region;
2977 	int index;
2978 	int64_t rc;
2979 
2980 	if (!res || !res->flags || res->start > res->end)
2981 		return;
2982 
2983 	if (res->flags & IORESOURCE_IO) {
2984 		region.start = res->start - phb->ioda.io_pci_base;
2985 		region.end   = res->end - phb->ioda.io_pci_base;
2986 		index = region.start / phb->ioda.io_segsize;
2987 
2988 		while (index < phb->ioda.total_pe_num &&
2989 		       region.start <= region.end) {
2990 			phb->ioda.io_segmap[index] = pe->pe_number;
2991 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2992 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2993 			if (rc != OPAL_SUCCESS) {
2994 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2995 				       __func__, rc, index, pe->pe_number);
2996 				break;
2997 			}
2998 
2999 			region.start += phb->ioda.io_segsize;
3000 			index++;
3001 		}
3002 	} else if ((res->flags & IORESOURCE_MEM) &&
3003 		   !pnv_pci_is_m64(phb, res)) {
3004 		region.start = res->start -
3005 			       phb->hose->mem_offset[0] -
3006 			       phb->ioda.m32_pci_base;
3007 		region.end   = res->end -
3008 			       phb->hose->mem_offset[0] -
3009 			       phb->ioda.m32_pci_base;
3010 		index = region.start / phb->ioda.m32_segsize;
3011 
3012 		while (index < phb->ioda.total_pe_num &&
3013 		       region.start <= region.end) {
3014 			phb->ioda.m32_segmap[index] = pe->pe_number;
3015 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3016 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3017 			if (rc != OPAL_SUCCESS) {
3018 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3019 				       __func__, rc, index, pe->pe_number);
3020 				break;
3021 			}
3022 
3023 			region.start += phb->ioda.m32_segsize;
3024 			index++;
3025 		}
3026 	}
3027 }
3028 
3029 /*
3030  * This function is supposed to be called on basis of PE from top
3031  * to bottom style. So the the I/O or MMIO segment assigned to
3032  * parent PE could be overridden by its child PEs if necessary.
3033  */
3034 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3035 {
3036 	struct pci_dev *pdev;
3037 	int i;
3038 
3039 	/*
3040 	 * NOTE: We only care PCI bus based PE for now. For PCI
3041 	 * device based PE, for example SRIOV sensitive VF should
3042 	 * be figured out later.
3043 	 */
3044 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3045 
3046 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3047 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3048 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3049 
3050 		/*
3051 		 * If the PE contains all subordinate PCI buses, the
3052 		 * windows of the child bridges should be mapped to
3053 		 * the PE as well.
3054 		 */
3055 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3056 			continue;
3057 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3058 			pnv_ioda_setup_pe_res(pe,
3059 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3060 	}
3061 }
3062 
3063 #ifdef CONFIG_DEBUG_FS
3064 static int pnv_pci_diag_data_set(void *data, u64 val)
3065 {
3066 	struct pci_controller *hose;
3067 	struct pnv_phb *phb;
3068 	s64 ret;
3069 
3070 	if (val != 1ULL)
3071 		return -EINVAL;
3072 
3073 	hose = (struct pci_controller *)data;
3074 	if (!hose || !hose->private_data)
3075 		return -ENODEV;
3076 
3077 	phb = hose->private_data;
3078 
3079 	/* Retrieve the diag data from firmware */
3080 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3081 					  phb->diag_data_size);
3082 	if (ret != OPAL_SUCCESS)
3083 		return -EIO;
3084 
3085 	/* Print the diag data to the kernel log */
3086 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3087 	return 0;
3088 }
3089 
3090 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3091 			pnv_pci_diag_data_set, "%llu\n");
3092 
3093 #endif /* CONFIG_DEBUG_FS */
3094 
3095 static void pnv_pci_ioda_create_dbgfs(void)
3096 {
3097 #ifdef CONFIG_DEBUG_FS
3098 	struct pci_controller *hose, *tmp;
3099 	struct pnv_phb *phb;
3100 	char name[16];
3101 
3102 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3103 		phb = hose->private_data;
3104 
3105 		/* Notify initialization of PHB done */
3106 		phb->initialized = 1;
3107 
3108 		sprintf(name, "PCI%04x", hose->global_number);
3109 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3110 		if (!phb->dbgfs) {
3111 			pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3112 				__func__, hose->global_number);
3113 			continue;
3114 		}
3115 
3116 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3117 				    &pnv_pci_diag_data_fops);
3118 	}
3119 #endif /* CONFIG_DEBUG_FS */
3120 }
3121 
3122 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3123 {
3124 	struct pci_dev *dev = bus->self;
3125 	struct pci_bus *child;
3126 
3127 	/* Empty bus ? bail */
3128 	if (list_empty(&bus->devices))
3129 		return;
3130 
3131 	/*
3132 	 * If there's a bridge associated with that bus enable it. This works
3133 	 * around races in the generic code if the enabling is done during
3134 	 * parallel probing. This can be removed once those races have been
3135 	 * fixed.
3136 	 */
3137 	if (dev) {
3138 		int rc = pci_enable_device(dev);
3139 		if (rc)
3140 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
3141 		pci_set_master(dev);
3142 	}
3143 
3144 	/* Perform the same to child busses */
3145 	list_for_each_entry(child, &bus->children, node)
3146 		pnv_pci_enable_bridge(child);
3147 }
3148 
3149 static void pnv_pci_enable_bridges(void)
3150 {
3151 	struct pci_controller *hose;
3152 
3153 	list_for_each_entry(hose, &hose_list, list_node)
3154 		pnv_pci_enable_bridge(hose->bus);
3155 }
3156 
3157 static void pnv_pci_ioda_fixup(void)
3158 {
3159 	pnv_pci_ioda_setup_PEs();
3160 	pnv_pci_ioda_setup_iommu_api();
3161 	pnv_pci_ioda_create_dbgfs();
3162 
3163 	pnv_pci_enable_bridges();
3164 
3165 #ifdef CONFIG_EEH
3166 	pnv_eeh_post_init();
3167 #endif
3168 }
3169 
3170 /*
3171  * Returns the alignment for I/O or memory windows for P2P
3172  * bridges. That actually depends on how PEs are segmented.
3173  * For now, we return I/O or M32 segment size for PE sensitive
3174  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3175  * 1MiB for memory) will be returned.
3176  *
3177  * The current PCI bus might be put into one PE, which was
3178  * create against the parent PCI bridge. For that case, we
3179  * needn't enlarge the alignment so that we can save some
3180  * resources.
3181  */
3182 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3183 						unsigned long type)
3184 {
3185 	struct pci_dev *bridge;
3186 	struct pci_controller *hose = pci_bus_to_host(bus);
3187 	struct pnv_phb *phb = hose->private_data;
3188 	int num_pci_bridges = 0;
3189 
3190 	bridge = bus->self;
3191 	while (bridge) {
3192 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3193 			num_pci_bridges++;
3194 			if (num_pci_bridges >= 2)
3195 				return 1;
3196 		}
3197 
3198 		bridge = bridge->bus->self;
3199 	}
3200 
3201 	/*
3202 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3203 	 * alignment for any 64-bit resource, PCIe doesn't care and
3204 	 * bridges only do 64-bit prefetchable anyway.
3205 	 */
3206 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3207 		return phb->ioda.m64_segsize;
3208 	if (type & IORESOURCE_MEM)
3209 		return phb->ioda.m32_segsize;
3210 
3211 	return phb->ioda.io_segsize;
3212 }
3213 
3214 /*
3215  * We are updating root port or the upstream port of the
3216  * bridge behind the root port with PHB's windows in order
3217  * to accommodate the changes on required resources during
3218  * PCI (slot) hotplug, which is connected to either root
3219  * port or the downstream ports of PCIe switch behind the
3220  * root port.
3221  */
3222 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3223 					   unsigned long type)
3224 {
3225 	struct pci_controller *hose = pci_bus_to_host(bus);
3226 	struct pnv_phb *phb = hose->private_data;
3227 	struct pci_dev *bridge = bus->self;
3228 	struct resource *r, *w;
3229 	bool msi_region = false;
3230 	int i;
3231 
3232 	/* Check if we need apply fixup to the bridge's windows */
3233 	if (!pci_is_root_bus(bridge->bus) &&
3234 	    !pci_is_root_bus(bridge->bus->self->bus))
3235 		return;
3236 
3237 	/* Fixup the resources */
3238 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3239 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3240 		if (!r->flags || !r->parent)
3241 			continue;
3242 
3243 		w = NULL;
3244 		if (r->flags & type & IORESOURCE_IO)
3245 			w = &hose->io_resource;
3246 		else if (pnv_pci_is_m64(phb, r) &&
3247 			 (type & IORESOURCE_PREFETCH) &&
3248 			 phb->ioda.m64_segsize)
3249 			w = &hose->mem_resources[1];
3250 		else if (r->flags & type & IORESOURCE_MEM) {
3251 			w = &hose->mem_resources[0];
3252 			msi_region = true;
3253 		}
3254 
3255 		r->start = w->start;
3256 		r->end = w->end;
3257 
3258 		/* The 64KB 32-bits MSI region shouldn't be included in
3259 		 * the 32-bits bridge window. Otherwise, we can see strange
3260 		 * issues. One of them is EEH error observed on Garrison.
3261 		 *
3262 		 * Exclude top 1MB region which is the minimal alignment of
3263 		 * 32-bits bridge window.
3264 		 */
3265 		if (msi_region) {
3266 			r->end += 0x10000;
3267 			r->end -= 0x100000;
3268 		}
3269 	}
3270 }
3271 
3272 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3273 {
3274 	struct pci_controller *hose = pci_bus_to_host(bus);
3275 	struct pnv_phb *phb = hose->private_data;
3276 	struct pci_dev *bridge = bus->self;
3277 	struct pnv_ioda_pe *pe;
3278 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3279 
3280 	/* Extend bridge's windows if necessary */
3281 	pnv_pci_fixup_bridge_resources(bus, type);
3282 
3283 	/* The PE for root bus should be realized before any one else */
3284 	if (!phb->ioda.root_pe_populated) {
3285 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3286 		if (pe) {
3287 			phb->ioda.root_pe_idx = pe->pe_number;
3288 			phb->ioda.root_pe_populated = true;
3289 		}
3290 	}
3291 
3292 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3293 	if (list_empty(&bus->devices))
3294 		return;
3295 
3296 	/* Reserve PEs according to used M64 resources */
3297 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
3298 
3299 	/*
3300 	 * Assign PE. We might run here because of partial hotplug.
3301 	 * For the case, we just pick up the existing PE and should
3302 	 * not allocate resources again.
3303 	 */
3304 	pe = pnv_ioda_setup_bus_PE(bus, all);
3305 	if (!pe)
3306 		return;
3307 
3308 	pnv_ioda_setup_pe_seg(pe);
3309 	switch (phb->type) {
3310 	case PNV_PHB_IODA1:
3311 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3312 		break;
3313 	case PNV_PHB_IODA2:
3314 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3315 		break;
3316 	default:
3317 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3318 			__func__, phb->hose->global_number, phb->type);
3319 	}
3320 }
3321 
3322 static resource_size_t pnv_pci_default_alignment(void)
3323 {
3324 	return PAGE_SIZE;
3325 }
3326 
3327 #ifdef CONFIG_PCI_IOV
3328 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3329 						      int resno)
3330 {
3331 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3332 	struct pnv_phb *phb = hose->private_data;
3333 	struct pci_dn *pdn = pci_get_pdn(pdev);
3334 	resource_size_t align;
3335 
3336 	/*
3337 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3338 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3339 	 * BAR should be size aligned.
3340 	 *
3341 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3342 	 * powernv-specific hardware restriction is gone. But if just use the
3343 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3344 	 * in one segment of M64 #15, which introduces the PE conflict between
3345 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3346 	 * m64_segsize.
3347 	 *
3348 	 * This function returns the total IOV BAR size if M64 BAR is in
3349 	 * Shared PE mode or just VF BAR size if not.
3350 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3351 	 * M64 segment size if IOV BAR size is less.
3352 	 */
3353 	align = pci_iov_resource_size(pdev, resno);
3354 	if (!pdn->vfs_expanded)
3355 		return align;
3356 	if (pdn->m64_single_mode)
3357 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3358 
3359 	return pdn->vfs_expanded * align;
3360 }
3361 #endif /* CONFIG_PCI_IOV */
3362 
3363 /* Prevent enabling devices for which we couldn't properly
3364  * assign a PE
3365  */
3366 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3367 {
3368 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3369 	struct pnv_phb *phb = hose->private_data;
3370 	struct pci_dn *pdn;
3371 
3372 	/* The function is probably called while the PEs have
3373 	 * not be created yet. For example, resource reassignment
3374 	 * during PCI probe period. We just skip the check if
3375 	 * PEs isn't ready.
3376 	 */
3377 	if (!phb->initialized)
3378 		return true;
3379 
3380 	pdn = pci_get_pdn(dev);
3381 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3382 		return false;
3383 
3384 	return true;
3385 }
3386 
3387 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3388 				       int num)
3389 {
3390 	struct pnv_ioda_pe *pe = container_of(table_group,
3391 					      struct pnv_ioda_pe, table_group);
3392 	struct pnv_phb *phb = pe->phb;
3393 	unsigned int idx;
3394 	long rc;
3395 
3396 	pe_info(pe, "Removing DMA window #%d\n", num);
3397 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3398 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3399 			continue;
3400 
3401 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3402 						idx, 0, 0ul, 0ul, 0ul);
3403 		if (rc != OPAL_SUCCESS) {
3404 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3405 				rc, idx);
3406 			return rc;
3407 		}
3408 
3409 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3410 	}
3411 
3412 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3413 	return OPAL_SUCCESS;
3414 }
3415 
3416 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3417 {
3418 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3419 	struct iommu_table *tbl = pe->table_group.tables[0];
3420 	int64_t rc;
3421 
3422 	if (!weight)
3423 		return;
3424 
3425 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3426 	if (rc != OPAL_SUCCESS)
3427 		return;
3428 
3429 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3430 	if (pe->table_group.group) {
3431 		iommu_group_put(pe->table_group.group);
3432 		WARN_ON(pe->table_group.group);
3433 	}
3434 
3435 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3436 	iommu_tce_table_put(tbl);
3437 }
3438 
3439 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3440 {
3441 	struct iommu_table *tbl = pe->table_group.tables[0];
3442 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3443 #ifdef CONFIG_IOMMU_API
3444 	int64_t rc;
3445 #endif
3446 
3447 	if (!weight)
3448 		return;
3449 
3450 #ifdef CONFIG_IOMMU_API
3451 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3452 	if (rc)
3453 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3454 #endif
3455 
3456 	pnv_pci_ioda2_set_bypass(pe, false);
3457 	if (pe->table_group.group) {
3458 		iommu_group_put(pe->table_group.group);
3459 		WARN_ON(pe->table_group.group);
3460 	}
3461 
3462 	iommu_tce_table_put(tbl);
3463 }
3464 
3465 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3466 				 unsigned short win,
3467 				 unsigned int *map)
3468 {
3469 	struct pnv_phb *phb = pe->phb;
3470 	int idx;
3471 	int64_t rc;
3472 
3473 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3474 		if (map[idx] != pe->pe_number)
3475 			continue;
3476 
3477 		if (win == OPAL_M64_WINDOW_TYPE)
3478 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3479 					phb->ioda.reserved_pe_idx, win,
3480 					idx / PNV_IODA1_M64_SEGS,
3481 					idx % PNV_IODA1_M64_SEGS);
3482 		else
3483 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3484 					phb->ioda.reserved_pe_idx, win, 0, idx);
3485 
3486 		if (rc != OPAL_SUCCESS)
3487 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3488 				rc, win, idx);
3489 
3490 		map[idx] = IODA_INVALID_PE;
3491 	}
3492 }
3493 
3494 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3495 {
3496 	struct pnv_phb *phb = pe->phb;
3497 
3498 	if (phb->type == PNV_PHB_IODA1) {
3499 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3500 				     phb->ioda.io_segmap);
3501 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3502 				     phb->ioda.m32_segmap);
3503 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3504 				     phb->ioda.m64_segmap);
3505 	} else if (phb->type == PNV_PHB_IODA2) {
3506 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3507 				     phb->ioda.m32_segmap);
3508 	}
3509 }
3510 
3511 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3512 {
3513 	struct pnv_phb *phb = pe->phb;
3514 	struct pnv_ioda_pe *slave, *tmp;
3515 
3516 	list_del(&pe->list);
3517 	switch (phb->type) {
3518 	case PNV_PHB_IODA1:
3519 		pnv_pci_ioda1_release_pe_dma(pe);
3520 		break;
3521 	case PNV_PHB_IODA2:
3522 		pnv_pci_ioda2_release_pe_dma(pe);
3523 		break;
3524 	default:
3525 		WARN_ON(1);
3526 	}
3527 
3528 	pnv_ioda_release_pe_seg(pe);
3529 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3530 
3531 	/* Release slave PEs in the compound PE */
3532 	if (pe->flags & PNV_IODA_PE_MASTER) {
3533 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3534 			list_del(&slave->list);
3535 			pnv_ioda_free_pe(slave);
3536 		}
3537 	}
3538 
3539 	/*
3540 	 * The PE for root bus can be removed because of hotplug in EEH
3541 	 * recovery for fenced PHB error. We need to mark the PE dead so
3542 	 * that it can be populated again in PCI hot add path. The PE
3543 	 * shouldn't be destroyed as it's the global reserved resource.
3544 	 */
3545 	if (phb->ioda.root_pe_populated &&
3546 	    phb->ioda.root_pe_idx == pe->pe_number)
3547 		phb->ioda.root_pe_populated = false;
3548 	else
3549 		pnv_ioda_free_pe(pe);
3550 }
3551 
3552 static void pnv_pci_release_device(struct pci_dev *pdev)
3553 {
3554 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3555 	struct pnv_phb *phb = hose->private_data;
3556 	struct pci_dn *pdn = pci_get_pdn(pdev);
3557 	struct pnv_ioda_pe *pe;
3558 
3559 	if (pdev->is_virtfn)
3560 		return;
3561 
3562 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3563 		return;
3564 
3565 	/*
3566 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3567 	 * isn't removed and added afterwards in this scenario. We should
3568 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3569 	 * device count is decreased on removing devices while failing to
3570 	 * be increased on adding devices. It leads to unbalanced PE's device
3571 	 * count and eventually make normal PCI hotplug path broken.
3572 	 */
3573 	pe = &phb->ioda.pe_array[pdn->pe_number];
3574 	pdn->pe_number = IODA_INVALID_PE;
3575 
3576 	WARN_ON(--pe->device_count < 0);
3577 	if (pe->device_count == 0)
3578 		pnv_ioda_release_pe(pe);
3579 }
3580 
3581 static void pnv_npu_disable_device(struct pci_dev *pdev)
3582 {
3583 	struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
3584 	struct eeh_pe *eehpe = edev ? edev->pe : NULL;
3585 
3586 	if (eehpe && eeh_ops && eeh_ops->reset)
3587 		eeh_ops->reset(eehpe, EEH_RESET_HOT);
3588 }
3589 
3590 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3591 {
3592 	struct pnv_phb *phb = hose->private_data;
3593 
3594 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3595 		       OPAL_ASSERT_RESET);
3596 }
3597 
3598 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3599 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3600 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3601 	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
3602 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3603 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3604 	.enable_device_hook	= pnv_pci_enable_device_hook,
3605 	.release_device		= pnv_pci_release_device,
3606 	.window_alignment	= pnv_pci_window_alignment,
3607 	.setup_bridge		= pnv_pci_setup_bridge,
3608 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3609 	.shutdown		= pnv_pci_ioda_shutdown,
3610 };
3611 
3612 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3613 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3614 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3615 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3616 	.enable_device_hook	= pnv_pci_enable_device_hook,
3617 	.window_alignment	= pnv_pci_window_alignment,
3618 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3619 	.shutdown		= pnv_pci_ioda_shutdown,
3620 	.disable_device		= pnv_npu_disable_device,
3621 };
3622 
3623 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3624 	.enable_device_hook	= pnv_pci_enable_device_hook,
3625 	.window_alignment	= pnv_pci_window_alignment,
3626 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3627 	.shutdown		= pnv_pci_ioda_shutdown,
3628 };
3629 
3630 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3631 					 u64 hub_id, int ioda_type)
3632 {
3633 	struct pci_controller *hose;
3634 	struct pnv_phb *phb;
3635 	unsigned long size, m64map_off, m32map_off, pemap_off;
3636 	unsigned long iomap_off = 0, dma32map_off = 0;
3637 	struct resource r;
3638 	const __be64 *prop64;
3639 	const __be32 *prop32;
3640 	int len;
3641 	unsigned int segno;
3642 	u64 phb_id;
3643 	void *aux;
3644 	long rc;
3645 
3646 	if (!of_device_is_available(np))
3647 		return;
3648 
3649 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3650 
3651 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3652 	if (!prop64) {
3653 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3654 		return;
3655 	}
3656 	phb_id = be64_to_cpup(prop64);
3657 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3658 
3659 	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3660 	if (!phb)
3661 		panic("%s: Failed to allocate %zu bytes\n", __func__,
3662 		      sizeof(*phb));
3663 
3664 	/* Allocate PCI controller */
3665 	phb->hose = hose = pcibios_alloc_controller(np);
3666 	if (!phb->hose) {
3667 		pr_err("  Can't allocate PCI controller for %pOF\n",
3668 		       np);
3669 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3670 		return;
3671 	}
3672 
3673 	spin_lock_init(&phb->lock);
3674 	prop32 = of_get_property(np, "bus-range", &len);
3675 	if (prop32 && len == 8) {
3676 		hose->first_busno = be32_to_cpu(prop32[0]);
3677 		hose->last_busno = be32_to_cpu(prop32[1]);
3678 	} else {
3679 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3680 		hose->first_busno = 0;
3681 		hose->last_busno = 0xff;
3682 	}
3683 	hose->private_data = phb;
3684 	phb->hub_id = hub_id;
3685 	phb->opal_id = phb_id;
3686 	phb->type = ioda_type;
3687 	mutex_init(&phb->ioda.pe_alloc_mutex);
3688 
3689 	/* Detect specific models for error handling */
3690 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3691 		phb->model = PNV_PHB_MODEL_P7IOC;
3692 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3693 		phb->model = PNV_PHB_MODEL_PHB3;
3694 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3695 		phb->model = PNV_PHB_MODEL_NPU;
3696 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3697 		phb->model = PNV_PHB_MODEL_NPU2;
3698 	else
3699 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3700 
3701 	/* Initialize diagnostic data buffer */
3702 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3703 	if (prop32)
3704 		phb->diag_data_size = be32_to_cpup(prop32);
3705 	else
3706 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3707 
3708 	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3709 	if (!phb->diag_data)
3710 		panic("%s: Failed to allocate %u bytes\n", __func__,
3711 		      phb->diag_data_size);
3712 
3713 	/* Parse 32-bit and IO ranges (if any) */
3714 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3715 
3716 	/* Get registers */
3717 	if (!of_address_to_resource(np, 0, &r)) {
3718 		phb->regs_phys = r.start;
3719 		phb->regs = ioremap(r.start, resource_size(&r));
3720 		if (phb->regs == NULL)
3721 			pr_err("  Failed to map registers !\n");
3722 	}
3723 
3724 	/* Initialize more IODA stuff */
3725 	phb->ioda.total_pe_num = 1;
3726 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3727 	if (prop32)
3728 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3729 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3730 	if (prop32)
3731 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3732 
3733 	/* Invalidate RID to PE# mapping */
3734 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3735 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3736 
3737 	/* Parse 64-bit MMIO range */
3738 	pnv_ioda_parse_m64_window(phb);
3739 
3740 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3741 	/* FW Has already off top 64k of M32 space (MSI space) */
3742 	phb->ioda.m32_size += 0x10000;
3743 
3744 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3745 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3746 	phb->ioda.io_size = hose->pci_io_size;
3747 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3748 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3749 
3750 	/* Calculate how many 32-bit TCE segments we have */
3751 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3752 				PNV_IODA1_DMA32_SEGSIZE;
3753 
3754 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3755 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3756 			sizeof(unsigned long));
3757 	m64map_off = size;
3758 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3759 	m32map_off = size;
3760 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3761 	if (phb->type == PNV_PHB_IODA1) {
3762 		iomap_off = size;
3763 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3764 		dma32map_off = size;
3765 		size += phb->ioda.dma32_count *
3766 			sizeof(phb->ioda.dma32_segmap[0]);
3767 	}
3768 	pemap_off = size;
3769 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3770 	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3771 	if (!aux)
3772 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3773 	phb->ioda.pe_alloc = aux;
3774 	phb->ioda.m64_segmap = aux + m64map_off;
3775 	phb->ioda.m32_segmap = aux + m32map_off;
3776 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3777 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3778 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3779 	}
3780 	if (phb->type == PNV_PHB_IODA1) {
3781 		phb->ioda.io_segmap = aux + iomap_off;
3782 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3783 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3784 
3785 		phb->ioda.dma32_segmap = aux + dma32map_off;
3786 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3787 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3788 	}
3789 	phb->ioda.pe_array = aux + pemap_off;
3790 
3791 	/*
3792 	 * Choose PE number for root bus, which shouldn't have
3793 	 * M64 resources consumed by its child devices. To pick
3794 	 * the PE number adjacent to the reserved one if possible.
3795 	 */
3796 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3797 	if (phb->ioda.reserved_pe_idx == 0) {
3798 		phb->ioda.root_pe_idx = 1;
3799 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3800 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3801 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3802 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3803 	} else {
3804 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3805 	}
3806 
3807 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3808 	mutex_init(&phb->ioda.pe_list_mutex);
3809 
3810 	/* Calculate how many 32-bit TCE segments we have */
3811 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3812 				PNV_IODA1_DMA32_SEGSIZE;
3813 
3814 #if 0 /* We should really do that ... */
3815 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3816 					 window_type,
3817 					 window_num,
3818 					 starting_real_address,
3819 					 starting_pci_address,
3820 					 segment_size);
3821 #endif
3822 
3823 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3824 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3825 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3826 	if (phb->ioda.m64_size)
3827 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3828 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3829 	if (phb->ioda.io_size)
3830 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3831 			phb->ioda.io_size, phb->ioda.io_segsize);
3832 
3833 
3834 	phb->hose->ops = &pnv_pci_ops;
3835 	phb->get_pe_state = pnv_ioda_get_pe_state;
3836 	phb->freeze_pe = pnv_ioda_freeze_pe;
3837 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3838 
3839 	/* Setup MSI support */
3840 	pnv_pci_init_ioda_msis(phb);
3841 
3842 	/*
3843 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3844 	 * to let the PCI core do resource assignment. It's supposed
3845 	 * that the PCI core will do correct I/O and MMIO alignment
3846 	 * for the P2P bridge bars so that each PCI bus (excluding
3847 	 * the child P2P bridges) can form individual PE.
3848 	 */
3849 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3850 
3851 	switch (phb->type) {
3852 	case PNV_PHB_NPU_NVLINK:
3853 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3854 		break;
3855 	case PNV_PHB_NPU_OCAPI:
3856 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3857 		break;
3858 	default:
3859 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3860 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3861 	}
3862 
3863 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3864 
3865 #ifdef CONFIG_PCI_IOV
3866 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3867 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3868 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3869 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3870 #endif
3871 
3872 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3873 
3874 	/* Reset IODA tables to a clean state */
3875 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3876 	if (rc)
3877 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3878 
3879 	/*
3880 	 * If we're running in kdump kernel, the previous kernel never
3881 	 * shutdown PCI devices correctly. We already got IODA table
3882 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3883 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3884 	 * kernel parameter will force this reset too. Additionally,
3885 	 * if the IODA reset above failed then use a bigger hammer.
3886 	 * This can happen if we get a PHB fatal error in very early
3887 	 * boot.
3888 	 */
3889 	if (is_kdump_kernel() || pci_reset_phbs || rc) {
3890 		pr_info("  Issue PHB reset ...\n");
3891 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3892 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3893 	}
3894 
3895 	/* Remove M64 resource if we can't configure it successfully */
3896 	if (!phb->init_m64 || phb->init_m64(phb))
3897 		hose->mem_resources[1].flags = 0;
3898 }
3899 
3900 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3901 {
3902 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3903 }
3904 
3905 void __init pnv_pci_init_npu_phb(struct device_node *np)
3906 {
3907 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3908 }
3909 
3910 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3911 {
3912 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3913 }
3914 
3915 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3916 {
3917 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3918 	struct pnv_phb *phb = hose->private_data;
3919 
3920 	if (!machine_is(powernv))
3921 		return;
3922 
3923 	if (phb->type == PNV_PHB_NPU_OCAPI)
3924 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3925 }
3926 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3927 
3928 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3929 {
3930 	struct device_node *phbn;
3931 	const __be64 *prop64;
3932 	u64 hub_id;
3933 
3934 	pr_info("Probing IODA IO-Hub %pOF\n", np);
3935 
3936 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3937 	if (!prop64) {
3938 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3939 		return;
3940 	}
3941 	hub_id = be64_to_cpup(prop64);
3942 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3943 
3944 	/* Count child PHBs */
3945 	for_each_child_of_node(np, phbn) {
3946 		/* Look for IODA1 PHBs */
3947 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3948 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3949 	}
3950 }
3951