1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/memblock.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/iommu.h>
25 #include <linux/rculist.h>
26 #include <linux/sizes.h>
27 
28 #include <asm/sections.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/pci-bridge.h>
32 #include <asm/machdep.h>
33 #include <asm/msi_bitmap.h>
34 #include <asm/ppc-pci.h>
35 #include <asm/opal.h>
36 #include <asm/iommu.h>
37 #include <asm/tce.h>
38 #include <asm/xics.h>
39 #include <asm/debugfs.h>
40 #include <asm/firmware.h>
41 #include <asm/pnv-pci.h>
42 #include <asm/mmzone.h>
43 
44 #include <misc/cxl-base.h>
45 
46 #include "powernv.h"
47 #include "pci.h"
48 #include "../../../../drivers/pci/pci.h"
49 
50 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
51 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
52 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
53 
54 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
55 					      "NPU_OCAPI" };
56 
57 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
58 			    const char *fmt, ...)
59 {
60 	struct va_format vaf;
61 	va_list args;
62 	char pfix[32];
63 
64 	va_start(args, fmt);
65 
66 	vaf.fmt = fmt;
67 	vaf.va = &args;
68 
69 	if (pe->flags & PNV_IODA_PE_DEV)
70 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
71 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
72 		sprintf(pfix, "%04x:%02x     ",
73 			pci_domain_nr(pe->pbus), pe->pbus->number);
74 #ifdef CONFIG_PCI_IOV
75 	else if (pe->flags & PNV_IODA_PE_VF)
76 		sprintf(pfix, "%04x:%02x:%2x.%d",
77 			pci_domain_nr(pe->parent_dev->bus),
78 			(pe->rid & 0xff00) >> 8,
79 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
80 #endif /* CONFIG_PCI_IOV*/
81 
82 	printk("%spci %s: [PE# %.2x] %pV",
83 	       level, pfix, pe->pe_number, &vaf);
84 
85 	va_end(args);
86 }
87 
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89 static bool pci_reset_phbs __read_mostly;
90 
91 static int __init iommu_setup(char *str)
92 {
93 	if (!str)
94 		return -EINVAL;
95 
96 	while (*str) {
97 		if (!strncmp(str, "nobypass", 8)) {
98 			pnv_iommu_bypass_disabled = true;
99 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
100 			break;
101 		}
102 		str += strcspn(str, ",");
103 		if (*str == ',')
104 			str++;
105 	}
106 
107 	return 0;
108 }
109 early_param("iommu", iommu_setup);
110 
111 static int __init pci_reset_phbs_setup(char *str)
112 {
113 	pci_reset_phbs = true;
114 	return 0;
115 }
116 
117 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
118 
119 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
120 {
121 	/*
122 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
123 	 * allocation code sometimes decides to put a 64-bit prefetchable
124 	 * BAR in the 32-bit window, so we have to compare the addresses.
125 	 *
126 	 * For simplicity we only test resource start.
127 	 */
128 	return (r->start >= phb->ioda.m64_base &&
129 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
130 }
131 
132 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
133 {
134 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
135 
136 	return (resource_flags & flags) == flags;
137 }
138 
139 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
140 {
141 	s64 rc;
142 
143 	phb->ioda.pe_array[pe_no].phb = phb;
144 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
145 
146 	/*
147 	 * Clear the PE frozen state as it might be put into frozen state
148 	 * in the last PCI remove path. It's not harmful to do so when the
149 	 * PE is already in unfrozen state.
150 	 */
151 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
152 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
153 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
154 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
155 			__func__, rc, phb->hose->global_number, pe_no);
156 
157 	return &phb->ioda.pe_array[pe_no];
158 }
159 
160 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
161 {
162 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
163 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
164 			__func__, pe_no, phb->hose->global_number);
165 		return;
166 	}
167 
168 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
169 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
170 			 __func__, pe_no, phb->hose->global_number);
171 
172 	pnv_ioda_init_pe(phb, pe_no);
173 }
174 
175 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
176 {
177 	long pe;
178 
179 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
180 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
181 			return pnv_ioda_init_pe(phb, pe);
182 	}
183 
184 	return NULL;
185 }
186 
187 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
188 {
189 	struct pnv_phb *phb = pe->phb;
190 	unsigned int pe_num = pe->pe_number;
191 
192 	WARN_ON(pe->pdev);
193 	WARN_ON(pe->npucomp); /* NPUs are not supposed to be freed */
194 	kfree(pe->npucomp);
195 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
196 	clear_bit(pe_num, phb->ioda.pe_alloc);
197 }
198 
199 /* The default M64 BAR is shared by all PEs */
200 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
201 {
202 	const char *desc;
203 	struct resource *r;
204 	s64 rc;
205 
206 	/* Configure the default M64 BAR */
207 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
208 					 OPAL_M64_WINDOW_TYPE,
209 					 phb->ioda.m64_bar_idx,
210 					 phb->ioda.m64_base,
211 					 0, /* unused */
212 					 phb->ioda.m64_size);
213 	if (rc != OPAL_SUCCESS) {
214 		desc = "configuring";
215 		goto fail;
216 	}
217 
218 	/* Enable the default M64 BAR */
219 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
220 				      OPAL_M64_WINDOW_TYPE,
221 				      phb->ioda.m64_bar_idx,
222 				      OPAL_ENABLE_M64_SPLIT);
223 	if (rc != OPAL_SUCCESS) {
224 		desc = "enabling";
225 		goto fail;
226 	}
227 
228 	/*
229 	 * Exclude the segments for reserved and root bus PE, which
230 	 * are first or last two PEs.
231 	 */
232 	r = &phb->hose->mem_resources[1];
233 	if (phb->ioda.reserved_pe_idx == 0)
234 		r->start += (2 * phb->ioda.m64_segsize);
235 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
236 		r->end -= (2 * phb->ioda.m64_segsize);
237 	else
238 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
239 			phb->ioda.reserved_pe_idx);
240 
241 	return 0;
242 
243 fail:
244 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
245 		rc, desc, phb->ioda.m64_bar_idx);
246 	opal_pci_phb_mmio_enable(phb->opal_id,
247 				 OPAL_M64_WINDOW_TYPE,
248 				 phb->ioda.m64_bar_idx,
249 				 OPAL_DISABLE_M64);
250 	return -EIO;
251 }
252 
253 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
254 					 unsigned long *pe_bitmap)
255 {
256 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
257 	struct pnv_phb *phb = hose->private_data;
258 	struct resource *r;
259 	resource_size_t base, sgsz, start, end;
260 	int segno, i;
261 
262 	base = phb->ioda.m64_base;
263 	sgsz = phb->ioda.m64_segsize;
264 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
265 		r = &pdev->resource[i];
266 		if (!r->parent || !pnv_pci_is_m64(phb, r))
267 			continue;
268 
269 		start = _ALIGN_DOWN(r->start - base, sgsz);
270 		end = _ALIGN_UP(r->end - base, sgsz);
271 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
272 			if (pe_bitmap)
273 				set_bit(segno, pe_bitmap);
274 			else
275 				pnv_ioda_reserve_pe(phb, segno);
276 		}
277 	}
278 }
279 
280 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
281 {
282 	struct resource *r;
283 	int index;
284 
285 	/*
286 	 * There are 16 M64 BARs, each of which has 8 segments. So
287 	 * there are as many M64 segments as the maximum number of
288 	 * PEs, which is 128.
289 	 */
290 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
291 		unsigned long base, segsz = phb->ioda.m64_segsize;
292 		int64_t rc;
293 
294 		base = phb->ioda.m64_base +
295 		       index * PNV_IODA1_M64_SEGS * segsz;
296 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
297 				OPAL_M64_WINDOW_TYPE, index, base, 0,
298 				PNV_IODA1_M64_SEGS * segsz);
299 		if (rc != OPAL_SUCCESS) {
300 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
301 				rc, phb->hose->global_number, index);
302 			goto fail;
303 		}
304 
305 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
306 				OPAL_M64_WINDOW_TYPE, index,
307 				OPAL_ENABLE_M64_SPLIT);
308 		if (rc != OPAL_SUCCESS) {
309 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
310 				rc, phb->hose->global_number, index);
311 			goto fail;
312 		}
313 	}
314 
315 	/*
316 	 * Exclude the segments for reserved and root bus PE, which
317 	 * are first or last two PEs.
318 	 */
319 	r = &phb->hose->mem_resources[1];
320 	if (phb->ioda.reserved_pe_idx == 0)
321 		r->start += (2 * phb->ioda.m64_segsize);
322 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
323 		r->end -= (2 * phb->ioda.m64_segsize);
324 	else
325 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
326 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
327 
328 	return 0;
329 
330 fail:
331 	for ( ; index >= 0; index--)
332 		opal_pci_phb_mmio_enable(phb->opal_id,
333 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
334 
335 	return -EIO;
336 }
337 
338 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
339 				    unsigned long *pe_bitmap,
340 				    bool all)
341 {
342 	struct pci_dev *pdev;
343 
344 	list_for_each_entry(pdev, &bus->devices, bus_list) {
345 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
346 
347 		if (all && pdev->subordinate)
348 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
349 						pe_bitmap, all);
350 	}
351 }
352 
353 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
354 {
355 	struct pci_controller *hose = pci_bus_to_host(bus);
356 	struct pnv_phb *phb = hose->private_data;
357 	struct pnv_ioda_pe *master_pe, *pe;
358 	unsigned long size, *pe_alloc;
359 	int i;
360 
361 	/* Root bus shouldn't use M64 */
362 	if (pci_is_root_bus(bus))
363 		return NULL;
364 
365 	/* Allocate bitmap */
366 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
367 	pe_alloc = kzalloc(size, GFP_KERNEL);
368 	if (!pe_alloc) {
369 		pr_warn("%s: Out of memory !\n",
370 			__func__);
371 		return NULL;
372 	}
373 
374 	/* Figure out reserved PE numbers by the PE */
375 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
376 
377 	/*
378 	 * the current bus might not own M64 window and that's all
379 	 * contributed by its child buses. For the case, we needn't
380 	 * pick M64 dependent PE#.
381 	 */
382 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
383 		kfree(pe_alloc);
384 		return NULL;
385 	}
386 
387 	/*
388 	 * Figure out the master PE and put all slave PEs to master
389 	 * PE's list to form compound PE.
390 	 */
391 	master_pe = NULL;
392 	i = -1;
393 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
394 		phb->ioda.total_pe_num) {
395 		pe = &phb->ioda.pe_array[i];
396 
397 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
398 		if (!master_pe) {
399 			pe->flags |= PNV_IODA_PE_MASTER;
400 			INIT_LIST_HEAD(&pe->slaves);
401 			master_pe = pe;
402 		} else {
403 			pe->flags |= PNV_IODA_PE_SLAVE;
404 			pe->master = master_pe;
405 			list_add_tail(&pe->list, &master_pe->slaves);
406 		}
407 
408 		/*
409 		 * P7IOC supports M64DT, which helps mapping M64 segment
410 		 * to one particular PE#. However, PHB3 has fixed mapping
411 		 * between M64 segment and PE#. In order to have same logic
412 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
413 		 * segment and PE# on P7IOC.
414 		 */
415 		if (phb->type == PNV_PHB_IODA1) {
416 			int64_t rc;
417 
418 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
419 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
420 					pe->pe_number / PNV_IODA1_M64_SEGS,
421 					pe->pe_number % PNV_IODA1_M64_SEGS);
422 			if (rc != OPAL_SUCCESS)
423 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
424 					__func__, rc, phb->hose->global_number,
425 					pe->pe_number);
426 		}
427 	}
428 
429 	kfree(pe_alloc);
430 	return master_pe;
431 }
432 
433 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
434 {
435 	struct pci_controller *hose = phb->hose;
436 	struct device_node *dn = hose->dn;
437 	struct resource *res;
438 	u32 m64_range[2], i;
439 	const __be32 *r;
440 	u64 pci_addr;
441 
442 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
443 		pr_info("  Not support M64 window\n");
444 		return;
445 	}
446 
447 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
448 		pr_info("  Firmware too old to support M64 window\n");
449 		return;
450 	}
451 
452 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
453 	if (!r) {
454 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
455 			dn);
456 		return;
457 	}
458 
459 	/*
460 	 * Find the available M64 BAR range and pickup the last one for
461 	 * covering the whole 64-bits space. We support only one range.
462 	 */
463 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
464 				       m64_range, 2)) {
465 		/* In absence of the property, assume 0..15 */
466 		m64_range[0] = 0;
467 		m64_range[1] = 16;
468 	}
469 	/* We only support 64 bits in our allocator */
470 	if (m64_range[1] > 63) {
471 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
472 			__func__, m64_range[1], phb->hose->global_number);
473 		m64_range[1] = 63;
474 	}
475 	/* Empty range, no m64 */
476 	if (m64_range[1] <= m64_range[0]) {
477 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
478 			__func__, phb->hose->global_number);
479 		return;
480 	}
481 
482 	/* Configure M64 informations */
483 	res = &hose->mem_resources[1];
484 	res->name = dn->full_name;
485 	res->start = of_translate_address(dn, r + 2);
486 	res->end = res->start + of_read_number(r + 4, 2) - 1;
487 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
488 	pci_addr = of_read_number(r, 2);
489 	hose->mem_offset[1] = res->start - pci_addr;
490 
491 	phb->ioda.m64_size = resource_size(res);
492 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
493 	phb->ioda.m64_base = pci_addr;
494 
495 	/* This lines up nicely with the display from processing OF ranges */
496 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
497 		res->start, res->end, pci_addr, m64_range[0],
498 		m64_range[0] + m64_range[1] - 1);
499 
500 	/* Mark all M64 used up by default */
501 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
502 
503 	/* Use last M64 BAR to cover M64 window */
504 	m64_range[1]--;
505 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
506 
507 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
508 
509 	/* Mark remaining ones free */
510 	for (i = m64_range[0]; i < m64_range[1]; i++)
511 		clear_bit(i, &phb->ioda.m64_bar_alloc);
512 
513 	/*
514 	 * Setup init functions for M64 based on IODA version, IODA3 uses
515 	 * the IODA2 code.
516 	 */
517 	if (phb->type == PNV_PHB_IODA1)
518 		phb->init_m64 = pnv_ioda1_init_m64;
519 	else
520 		phb->init_m64 = pnv_ioda2_init_m64;
521 }
522 
523 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
524 {
525 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
526 	struct pnv_ioda_pe *slave;
527 	s64 rc;
528 
529 	/* Fetch master PE */
530 	if (pe->flags & PNV_IODA_PE_SLAVE) {
531 		pe = pe->master;
532 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
533 			return;
534 
535 		pe_no = pe->pe_number;
536 	}
537 
538 	/* Freeze master PE */
539 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
540 				     pe_no,
541 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
542 	if (rc != OPAL_SUCCESS) {
543 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
544 			__func__, rc, phb->hose->global_number, pe_no);
545 		return;
546 	}
547 
548 	/* Freeze slave PEs */
549 	if (!(pe->flags & PNV_IODA_PE_MASTER))
550 		return;
551 
552 	list_for_each_entry(slave, &pe->slaves, list) {
553 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
554 					     slave->pe_number,
555 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
556 		if (rc != OPAL_SUCCESS)
557 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
558 				__func__, rc, phb->hose->global_number,
559 				slave->pe_number);
560 	}
561 }
562 
563 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
564 {
565 	struct pnv_ioda_pe *pe, *slave;
566 	s64 rc;
567 
568 	/* Find master PE */
569 	pe = &phb->ioda.pe_array[pe_no];
570 	if (pe->flags & PNV_IODA_PE_SLAVE) {
571 		pe = pe->master;
572 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
573 		pe_no = pe->pe_number;
574 	}
575 
576 	/* Clear frozen state for master PE */
577 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
578 	if (rc != OPAL_SUCCESS) {
579 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
580 			__func__, rc, opt, phb->hose->global_number, pe_no);
581 		return -EIO;
582 	}
583 
584 	if (!(pe->flags & PNV_IODA_PE_MASTER))
585 		return 0;
586 
587 	/* Clear frozen state for slave PEs */
588 	list_for_each_entry(slave, &pe->slaves, list) {
589 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
590 					     slave->pe_number,
591 					     opt);
592 		if (rc != OPAL_SUCCESS) {
593 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
594 				__func__, rc, opt, phb->hose->global_number,
595 				slave->pe_number);
596 			return -EIO;
597 		}
598 	}
599 
600 	return 0;
601 }
602 
603 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
604 {
605 	struct pnv_ioda_pe *slave, *pe;
606 	u8 fstate = 0, state;
607 	__be16 pcierr = 0;
608 	s64 rc;
609 
610 	/* Sanity check on PE number */
611 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
612 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
613 
614 	/*
615 	 * Fetch the master PE and the PE instance might be
616 	 * not initialized yet.
617 	 */
618 	pe = &phb->ioda.pe_array[pe_no];
619 	if (pe->flags & PNV_IODA_PE_SLAVE) {
620 		pe = pe->master;
621 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
622 		pe_no = pe->pe_number;
623 	}
624 
625 	/* Check the master PE */
626 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
627 					&state, &pcierr, NULL);
628 	if (rc != OPAL_SUCCESS) {
629 		pr_warn("%s: Failure %lld getting "
630 			"PHB#%x-PE#%x state\n",
631 			__func__, rc,
632 			phb->hose->global_number, pe_no);
633 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
634 	}
635 
636 	/* Check the slave PE */
637 	if (!(pe->flags & PNV_IODA_PE_MASTER))
638 		return state;
639 
640 	list_for_each_entry(slave, &pe->slaves, list) {
641 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
642 						slave->pe_number,
643 						&fstate,
644 						&pcierr,
645 						NULL);
646 		if (rc != OPAL_SUCCESS) {
647 			pr_warn("%s: Failure %lld getting "
648 				"PHB#%x-PE#%x state\n",
649 				__func__, rc,
650 				phb->hose->global_number, slave->pe_number);
651 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
652 		}
653 
654 		/*
655 		 * Override the result based on the ascending
656 		 * priority.
657 		 */
658 		if (fstate > state)
659 			state = fstate;
660 	}
661 
662 	return state;
663 }
664 
665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 {
667 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
668 	struct pnv_phb *phb = hose->private_data;
669 	struct pci_dn *pdn = pci_get_pdn(dev);
670 
671 	if (!pdn)
672 		return NULL;
673 	if (pdn->pe_number == IODA_INVALID_PE)
674 		return NULL;
675 	return &phb->ioda.pe_array[pdn->pe_number];
676 }
677 
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679 				  struct pnv_ioda_pe *parent,
680 				  struct pnv_ioda_pe *child,
681 				  bool is_add)
682 {
683 	const char *desc = is_add ? "adding" : "removing";
684 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685 			      OPAL_REMOVE_PE_FROM_DOMAIN;
686 	struct pnv_ioda_pe *slave;
687 	long rc;
688 
689 	/* Parent PE affects child PE */
690 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691 				child->pe_number, op);
692 	if (rc != OPAL_SUCCESS) {
693 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694 			rc, desc);
695 		return -ENXIO;
696 	}
697 
698 	if (!(child->flags & PNV_IODA_PE_MASTER))
699 		return 0;
700 
701 	/* Compound case: parent PE affects slave PEs */
702 	list_for_each_entry(slave, &child->slaves, list) {
703 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704 					slave->pe_number, op);
705 		if (rc != OPAL_SUCCESS) {
706 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707 				rc, desc);
708 			return -ENXIO;
709 		}
710 	}
711 
712 	return 0;
713 }
714 
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716 			      struct pnv_ioda_pe *pe,
717 			      bool is_add)
718 {
719 	struct pnv_ioda_pe *slave;
720 	struct pci_dev *pdev = NULL;
721 	int ret;
722 
723 	/*
724 	 * Clear PE frozen state. If it's master PE, we need
725 	 * clear slave PE frozen state as well.
726 	 */
727 	if (is_add) {
728 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730 		if (pe->flags & PNV_IODA_PE_MASTER) {
731 			list_for_each_entry(slave, &pe->slaves, list)
732 				opal_pci_eeh_freeze_clear(phb->opal_id,
733 							  slave->pe_number,
734 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735 		}
736 	}
737 
738 	/*
739 	 * Associate PE in PELT. We need add the PE into the
740 	 * corresponding PELT-V as well. Otherwise, the error
741 	 * originated from the PE might contribute to other
742 	 * PEs.
743 	 */
744 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745 	if (ret)
746 		return ret;
747 
748 	/* For compound PEs, any one affects all of them */
749 	if (pe->flags & PNV_IODA_PE_MASTER) {
750 		list_for_each_entry(slave, &pe->slaves, list) {
751 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752 			if (ret)
753 				return ret;
754 		}
755 	}
756 
757 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758 		pdev = pe->pbus->self;
759 	else if (pe->flags & PNV_IODA_PE_DEV)
760 		pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762 	else if (pe->flags & PNV_IODA_PE_VF)
763 		pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765 	while (pdev) {
766 		struct pci_dn *pdn = pci_get_pdn(pdev);
767 		struct pnv_ioda_pe *parent;
768 
769 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 			parent = &phb->ioda.pe_array[pdn->pe_number];
771 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772 			if (ret)
773 				return ret;
774 		}
775 
776 		pdev = pdev->bus->self;
777 	}
778 
779 	return 0;
780 }
781 
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784 	struct pci_dev *parent;
785 	uint8_t bcomp, dcomp, fcomp;
786 	int64_t rc;
787 	long rid_end, rid;
788 
789 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790 	if (pe->pbus) {
791 		int count;
792 
793 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795 		parent = pe->pbus->self;
796 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
797 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798 		else
799 			count = 1;
800 
801 		switch(count) {
802 		case  1: bcomp = OpalPciBusAll;         break;
803 		case  2: bcomp = OpalPciBus7Bits;       break;
804 		case  4: bcomp = OpalPciBus6Bits;       break;
805 		case  8: bcomp = OpalPciBus5Bits;       break;
806 		case 16: bcomp = OpalPciBus4Bits;       break;
807 		case 32: bcomp = OpalPciBus3Bits;       break;
808 		default:
809 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810 			        count);
811 			/* Do an exact match only */
812 			bcomp = OpalPciBusAll;
813 		}
814 		rid_end = pe->rid + (count << 8);
815 	} else {
816 #ifdef CONFIG_PCI_IOV
817 		if (pe->flags & PNV_IODA_PE_VF)
818 			parent = pe->parent_dev;
819 		else
820 #endif
821 			parent = pe->pdev->bus->self;
822 		bcomp = OpalPciBusAll;
823 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825 		rid_end = pe->rid + 1;
826 	}
827 
828 	/* Clear the reverse map */
829 	for (rid = pe->rid; rid < rid_end; rid++)
830 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831 
832 	/* Release from all parents PELT-V */
833 	while (parent) {
834 		struct pci_dn *pdn = pci_get_pdn(parent);
835 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838 			/* XXX What to do in case of error ? */
839 		}
840 		parent = parent->bus->self;
841 	}
842 
843 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845 
846 	/* Disassociate PE in PELT */
847 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849 	if (rc)
850 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
851 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853 	if (rc)
854 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855 
856 	pe->pbus = NULL;
857 	pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859 	pe->parent_dev = NULL;
860 #endif
861 
862 	return 0;
863 }
864 
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867 	struct pci_dev *parent;
868 	uint8_t bcomp, dcomp, fcomp;
869 	long rc, rid_end, rid;
870 
871 	/* Bus validation ? */
872 	if (pe->pbus) {
873 		int count;
874 
875 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877 		parent = pe->pbus->self;
878 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
879 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880 		else
881 			count = 1;
882 
883 		switch(count) {
884 		case  1: bcomp = OpalPciBusAll;		break;
885 		case  2: bcomp = OpalPciBus7Bits;	break;
886 		case  4: bcomp = OpalPciBus6Bits;	break;
887 		case  8: bcomp = OpalPciBus5Bits;	break;
888 		case 16: bcomp = OpalPciBus4Bits;	break;
889 		case 32: bcomp = OpalPciBus3Bits;	break;
890 		default:
891 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892 			        count);
893 			/* Do an exact match only */
894 			bcomp = OpalPciBusAll;
895 		}
896 		rid_end = pe->rid + (count << 8);
897 	} else {
898 #ifdef CONFIG_PCI_IOV
899 		if (pe->flags & PNV_IODA_PE_VF)
900 			parent = pe->parent_dev;
901 		else
902 #endif /* CONFIG_PCI_IOV */
903 			parent = pe->pdev->bus->self;
904 		bcomp = OpalPciBusAll;
905 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907 		rid_end = pe->rid + 1;
908 	}
909 
910 	/*
911 	 * Associate PE in PELT. We need add the PE into the
912 	 * corresponding PELT-V as well. Otherwise, the error
913 	 * originated from the PE might contribute to other
914 	 * PEs.
915 	 */
916 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
918 	if (rc) {
919 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920 		return -ENXIO;
921 	}
922 
923 	/*
924 	 * Configure PELTV. NPUs don't have a PELTV table so skip
925 	 * configuration on them.
926 	 */
927 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
928 		pnv_ioda_set_peltv(phb, pe, true);
929 
930 	/* Setup reverse map */
931 	for (rid = pe->rid; rid < rid_end; rid++)
932 		phb->ioda.pe_rmap[rid] = pe->pe_number;
933 
934 	/* Setup one MVTs on IODA1 */
935 	if (phb->type != PNV_PHB_IODA1) {
936 		pe->mve_number = 0;
937 		goto out;
938 	}
939 
940 	pe->mve_number = pe->pe_number;
941 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942 	if (rc != OPAL_SUCCESS) {
943 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944 		       rc, pe->mve_number);
945 		pe->mve_number = -1;
946 	} else {
947 		rc = opal_pci_set_mve_enable(phb->opal_id,
948 					     pe->mve_number, OPAL_ENABLE_MVE);
949 		if (rc) {
950 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951 			       rc, pe->mve_number);
952 			pe->mve_number = -1;
953 		}
954 	}
955 
956 out:
957 	return 0;
958 }
959 
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963 	struct pci_dn *pdn = pci_get_pdn(dev);
964 	int i;
965 	struct resource *res, res2;
966 	resource_size_t size;
967 	u16 num_vfs;
968 
969 	if (!dev->is_physfn)
970 		return -EINVAL;
971 
972 	/*
973 	 * "offset" is in VFs.  The M64 windows are sized so that when they
974 	 * are segmented, each segment is the same size as the IOV BAR.
975 	 * Each segment is in a separate PE, and the high order bits of the
976 	 * address are the PE number.  Therefore, each VF's BAR is in a
977 	 * separate PE, and changing the IOV BAR start address changes the
978 	 * range of PEs the VFs are in.
979 	 */
980 	num_vfs = pdn->num_vfs;
981 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982 		res = &dev->resource[i + PCI_IOV_RESOURCES];
983 		if (!res->flags || !res->parent)
984 			continue;
985 
986 		/*
987 		 * The actual IOV BAR range is determined by the start address
988 		 * and the actual size for num_vfs VFs BAR.  This check is to
989 		 * make sure that after shifting, the range will not overlap
990 		 * with another device.
991 		 */
992 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993 		res2.flags = res->flags;
994 		res2.start = res->start + (size * offset);
995 		res2.end = res2.start + (size * num_vfs) - 1;
996 
997 		if (res2.end > res->end) {
998 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999 				i, &res2, res, num_vfs, offset);
1000 			return -EBUSY;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * Since M64 BAR shares segments among all possible 256 PEs,
1006 	 * we have to shift the beginning of PF IOV BAR to make it start from
1007 	 * the segment which belongs to the PE number assigned to the first VF.
1008 	 * This creates a "hole" in the /proc/iomem which could be used for
1009 	 * allocating other resources so we reserve this area below and
1010 	 * release when IOV is released.
1011 	 */
1012 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1013 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1014 		if (!res->flags || !res->parent)
1015 			continue;
1016 
1017 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1018 		res2 = *res;
1019 		res->start += size * offset;
1020 
1021 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1022 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1023 			 num_vfs, offset);
1024 
1025 		if (offset < 0) {
1026 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1027 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1028 		}
1029 
1030 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1031 
1032 		if (offset > 0) {
1033 			pdn->holes[i].start = res2.start;
1034 			pdn->holes[i].end = res2.start + size * offset - 1;
1035 			pdn->holes[i].flags = IORESOURCE_BUS;
1036 			pdn->holes[i].name = "pnv_iov_reserved";
1037 			devm_request_resource(&dev->dev, res->parent,
1038 					&pdn->holes[i]);
1039 		}
1040 	}
1041 	return 0;
1042 }
1043 #endif /* CONFIG_PCI_IOV */
1044 
1045 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1046 {
1047 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1048 	struct pnv_phb *phb = hose->private_data;
1049 	struct pci_dn *pdn = pci_get_pdn(dev);
1050 	struct pnv_ioda_pe *pe;
1051 
1052 	if (!pdn) {
1053 		pr_err("%s: Device tree node not associated properly\n",
1054 			   pci_name(dev));
1055 		return NULL;
1056 	}
1057 	if (pdn->pe_number != IODA_INVALID_PE)
1058 		return NULL;
1059 
1060 	pe = pnv_ioda_alloc_pe(phb);
1061 	if (!pe) {
1062 		pr_warn("%s: Not enough PE# available, disabling device\n",
1063 			pci_name(dev));
1064 		return NULL;
1065 	}
1066 
1067 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1068 	 * pointer in the PE data structure, both should be destroyed at the
1069 	 * same time. However, this needs to be looked at more closely again
1070 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1071 	 *
1072 	 * At some point we want to remove the PDN completely anyways
1073 	 */
1074 	pci_dev_get(dev);
1075 	pdn->pe_number = pe->pe_number;
1076 	pe->flags = PNV_IODA_PE_DEV;
1077 	pe->pdev = dev;
1078 	pe->pbus = NULL;
1079 	pe->mve_number = -1;
1080 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1081 
1082 	pe_info(pe, "Associated device to PE\n");
1083 
1084 	if (pnv_ioda_configure_pe(phb, pe)) {
1085 		/* XXX What do we do here ? */
1086 		pnv_ioda_free_pe(pe);
1087 		pdn->pe_number = IODA_INVALID_PE;
1088 		pe->pdev = NULL;
1089 		pci_dev_put(dev);
1090 		return NULL;
1091 	}
1092 
1093 	/* Put PE to the list */
1094 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1095 
1096 	return pe;
1097 }
1098 
1099 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1100 {
1101 	struct pci_dev *dev;
1102 
1103 	list_for_each_entry(dev, &bus->devices, bus_list) {
1104 		struct pci_dn *pdn = pci_get_pdn(dev);
1105 
1106 		if (pdn == NULL) {
1107 			pr_warn("%s: No device node associated with device !\n",
1108 				pci_name(dev));
1109 			continue;
1110 		}
1111 
1112 		/*
1113 		 * In partial hotplug case, the PCI device might be still
1114 		 * associated with the PE and needn't attach it to the PE
1115 		 * again.
1116 		 */
1117 		if (pdn->pe_number != IODA_INVALID_PE)
1118 			continue;
1119 
1120 		pe->device_count++;
1121 		pdn->pe_number = pe->pe_number;
1122 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1123 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1124 	}
1125 }
1126 
1127 /*
1128  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1129  * single PCI bus. Another one that contains the primary PCI bus and its
1130  * subordinate PCI devices and buses. The second type of PE is normally
1131  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1132  */
1133 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1134 {
1135 	struct pci_controller *hose = pci_bus_to_host(bus);
1136 	struct pnv_phb *phb = hose->private_data;
1137 	struct pnv_ioda_pe *pe = NULL;
1138 	unsigned int pe_num;
1139 
1140 	/*
1141 	 * In partial hotplug case, the PE instance might be still alive.
1142 	 * We should reuse it instead of allocating a new one.
1143 	 */
1144 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1145 	if (pe_num != IODA_INVALID_PE) {
1146 		pe = &phb->ioda.pe_array[pe_num];
1147 		pnv_ioda_setup_same_PE(bus, pe);
1148 		return NULL;
1149 	}
1150 
1151 	/* PE number for root bus should have been reserved */
1152 	if (pci_is_root_bus(bus) &&
1153 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1154 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1155 
1156 	/* Check if PE is determined by M64 */
1157 	if (!pe)
1158 		pe = pnv_ioda_pick_m64_pe(bus, all);
1159 
1160 	/* The PE number isn't pinned by M64 */
1161 	if (!pe)
1162 		pe = pnv_ioda_alloc_pe(phb);
1163 
1164 	if (!pe) {
1165 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1166 			__func__, pci_domain_nr(bus), bus->number);
1167 		return NULL;
1168 	}
1169 
1170 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1171 	pe->pbus = bus;
1172 	pe->pdev = NULL;
1173 	pe->mve_number = -1;
1174 	pe->rid = bus->busn_res.start << 8;
1175 
1176 	if (all)
1177 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1178 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1179 	else
1180 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1181 			bus->busn_res.start, pe->pe_number);
1182 
1183 	if (pnv_ioda_configure_pe(phb, pe)) {
1184 		/* XXX What do we do here ? */
1185 		pnv_ioda_free_pe(pe);
1186 		pe->pbus = NULL;
1187 		return NULL;
1188 	}
1189 
1190 	/* Associate it with all child devices */
1191 	pnv_ioda_setup_same_PE(bus, pe);
1192 
1193 	/* Put PE to the list */
1194 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1195 
1196 	return pe;
1197 }
1198 
1199 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1200 {
1201 	int pe_num, found_pe = false, rc;
1202 	long rid;
1203 	struct pnv_ioda_pe *pe;
1204 	struct pci_dev *gpu_pdev;
1205 	struct pci_dn *npu_pdn;
1206 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1207 	struct pnv_phb *phb = hose->private_data;
1208 
1209 	/*
1210 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1211 	 * error handling. This means we only have three PEs remaining
1212 	 * which need to be assigned to four links, implying some
1213 	 * links must share PEs.
1214 	 *
1215 	 * To achieve this we assign PEs such that NPUs linking the
1216 	 * same GPU get assigned the same PE.
1217 	 */
1218 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1219 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1220 		pe = &phb->ioda.pe_array[pe_num];
1221 		if (!pe->pdev)
1222 			continue;
1223 
1224 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1225 			/*
1226 			 * This device has the same peer GPU so should
1227 			 * be assigned the same PE as the existing
1228 			 * peer NPU.
1229 			 */
1230 			dev_info(&npu_pdev->dev,
1231 				"Associating to existing PE %x\n", pe_num);
1232 			pci_dev_get(npu_pdev);
1233 			npu_pdn = pci_get_pdn(npu_pdev);
1234 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1235 			npu_pdn->pe_number = pe_num;
1236 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1237 
1238 			/* Map the PE to this link */
1239 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1240 					OpalPciBusAll,
1241 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1242 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1243 					OPAL_MAP_PE);
1244 			WARN_ON(rc != OPAL_SUCCESS);
1245 			found_pe = true;
1246 			break;
1247 		}
1248 	}
1249 
1250 	if (!found_pe)
1251 		/*
1252 		 * Could not find an existing PE so allocate a new
1253 		 * one.
1254 		 */
1255 		return pnv_ioda_setup_dev_PE(npu_pdev);
1256 	else
1257 		return pe;
1258 }
1259 
1260 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1261 {
1262 	struct pci_dev *pdev;
1263 
1264 	list_for_each_entry(pdev, &bus->devices, bus_list)
1265 		pnv_ioda_setup_npu_PE(pdev);
1266 }
1267 
1268 static void pnv_pci_ioda_setup_PEs(void)
1269 {
1270 	struct pci_controller *hose;
1271 	struct pnv_phb *phb;
1272 	struct pci_bus *bus;
1273 	struct pci_dev *pdev;
1274 	struct pnv_ioda_pe *pe;
1275 
1276 	list_for_each_entry(hose, &hose_list, list_node) {
1277 		phb = hose->private_data;
1278 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1279 			/* PE#0 is needed for error reporting */
1280 			pnv_ioda_reserve_pe(phb, 0);
1281 			pnv_ioda_setup_npu_PEs(hose->bus);
1282 			if (phb->model == PNV_PHB_MODEL_NPU2)
1283 				WARN_ON_ONCE(pnv_npu2_init(hose));
1284 		}
1285 		if (phb->type == PNV_PHB_NPU_OCAPI) {
1286 			bus = hose->bus;
1287 			list_for_each_entry(pdev, &bus->devices, bus_list)
1288 				pnv_ioda_setup_dev_PE(pdev);
1289 		}
1290 	}
1291 	list_for_each_entry(hose, &hose_list, list_node) {
1292 		phb = hose->private_data;
1293 		if (phb->type != PNV_PHB_IODA2)
1294 			continue;
1295 
1296 		list_for_each_entry(pe, &phb->ioda.pe_list, list)
1297 			pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1298 	}
1299 }
1300 
1301 #ifdef CONFIG_PCI_IOV
1302 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1303 {
1304 	struct pci_bus        *bus;
1305 	struct pci_controller *hose;
1306 	struct pnv_phb        *phb;
1307 	struct pci_dn         *pdn;
1308 	int                    i, j;
1309 	int                    m64_bars;
1310 
1311 	bus = pdev->bus;
1312 	hose = pci_bus_to_host(bus);
1313 	phb = hose->private_data;
1314 	pdn = pci_get_pdn(pdev);
1315 
1316 	if (pdn->m64_single_mode)
1317 		m64_bars = num_vfs;
1318 	else
1319 		m64_bars = 1;
1320 
1321 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1322 		for (j = 0; j < m64_bars; j++) {
1323 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1324 				continue;
1325 			opal_pci_phb_mmio_enable(phb->opal_id,
1326 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1327 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1328 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1329 		}
1330 
1331 	kfree(pdn->m64_map);
1332 	return 0;
1333 }
1334 
1335 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1336 {
1337 	struct pci_bus        *bus;
1338 	struct pci_controller *hose;
1339 	struct pnv_phb        *phb;
1340 	struct pci_dn         *pdn;
1341 	unsigned int           win;
1342 	struct resource       *res;
1343 	int                    i, j;
1344 	int64_t                rc;
1345 	int                    total_vfs;
1346 	resource_size_t        size, start;
1347 	int                    pe_num;
1348 	int                    m64_bars;
1349 
1350 	bus = pdev->bus;
1351 	hose = pci_bus_to_host(bus);
1352 	phb = hose->private_data;
1353 	pdn = pci_get_pdn(pdev);
1354 	total_vfs = pci_sriov_get_totalvfs(pdev);
1355 
1356 	if (pdn->m64_single_mode)
1357 		m64_bars = num_vfs;
1358 	else
1359 		m64_bars = 1;
1360 
1361 	pdn->m64_map = kmalloc_array(m64_bars,
1362 				     sizeof(*pdn->m64_map),
1363 				     GFP_KERNEL);
1364 	if (!pdn->m64_map)
1365 		return -ENOMEM;
1366 	/* Initialize the m64_map to IODA_INVALID_M64 */
1367 	for (i = 0; i < m64_bars ; i++)
1368 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1369 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1370 
1371 
1372 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1373 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1374 		if (!res->flags || !res->parent)
1375 			continue;
1376 
1377 		for (j = 0; j < m64_bars; j++) {
1378 			do {
1379 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1380 						phb->ioda.m64_bar_idx + 1, 0);
1381 
1382 				if (win >= phb->ioda.m64_bar_idx + 1)
1383 					goto m64_failed;
1384 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1385 
1386 			pdn->m64_map[j][i] = win;
1387 
1388 			if (pdn->m64_single_mode) {
1389 				size = pci_iov_resource_size(pdev,
1390 							PCI_IOV_RESOURCES + i);
1391 				start = res->start + size * j;
1392 			} else {
1393 				size = resource_size(res);
1394 				start = res->start;
1395 			}
1396 
1397 			/* Map the M64 here */
1398 			if (pdn->m64_single_mode) {
1399 				pe_num = pdn->pe_num_map[j];
1400 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1401 						pe_num, OPAL_M64_WINDOW_TYPE,
1402 						pdn->m64_map[j][i], 0);
1403 			}
1404 
1405 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1406 						 OPAL_M64_WINDOW_TYPE,
1407 						 pdn->m64_map[j][i],
1408 						 start,
1409 						 0, /* unused */
1410 						 size);
1411 
1412 
1413 			if (rc != OPAL_SUCCESS) {
1414 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1415 					win, rc);
1416 				goto m64_failed;
1417 			}
1418 
1419 			if (pdn->m64_single_mode)
1420 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1421 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1422 			else
1423 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1424 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1425 
1426 			if (rc != OPAL_SUCCESS) {
1427 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1428 					win, rc);
1429 				goto m64_failed;
1430 			}
1431 		}
1432 	}
1433 	return 0;
1434 
1435 m64_failed:
1436 	pnv_pci_vf_release_m64(pdev, num_vfs);
1437 	return -EBUSY;
1438 }
1439 
1440 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1441 		int num);
1442 
1443 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1444 {
1445 	struct iommu_table    *tbl;
1446 	int64_t               rc;
1447 
1448 	tbl = pe->table_group.tables[0];
1449 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1450 	if (rc)
1451 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1452 
1453 	pnv_pci_ioda2_set_bypass(pe, false);
1454 	if (pe->table_group.group) {
1455 		iommu_group_put(pe->table_group.group);
1456 		BUG_ON(pe->table_group.group);
1457 	}
1458 	iommu_tce_table_put(tbl);
1459 }
1460 
1461 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1462 {
1463 	struct pci_bus        *bus;
1464 	struct pci_controller *hose;
1465 	struct pnv_phb        *phb;
1466 	struct pnv_ioda_pe    *pe, *pe_n;
1467 	struct pci_dn         *pdn;
1468 
1469 	bus = pdev->bus;
1470 	hose = pci_bus_to_host(bus);
1471 	phb = hose->private_data;
1472 	pdn = pci_get_pdn(pdev);
1473 
1474 	if (!pdev->is_physfn)
1475 		return;
1476 
1477 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1478 		if (pe->parent_dev != pdev)
1479 			continue;
1480 
1481 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1482 
1483 		/* Remove from list */
1484 		mutex_lock(&phb->ioda.pe_list_mutex);
1485 		list_del(&pe->list);
1486 		mutex_unlock(&phb->ioda.pe_list_mutex);
1487 
1488 		pnv_ioda_deconfigure_pe(phb, pe);
1489 
1490 		pnv_ioda_free_pe(pe);
1491 	}
1492 }
1493 
1494 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1495 {
1496 	struct pci_bus        *bus;
1497 	struct pci_controller *hose;
1498 	struct pnv_phb        *phb;
1499 	struct pnv_ioda_pe    *pe;
1500 	struct pci_dn         *pdn;
1501 	u16                    num_vfs, i;
1502 
1503 	bus = pdev->bus;
1504 	hose = pci_bus_to_host(bus);
1505 	phb = hose->private_data;
1506 	pdn = pci_get_pdn(pdev);
1507 	num_vfs = pdn->num_vfs;
1508 
1509 	/* Release VF PEs */
1510 	pnv_ioda_release_vf_PE(pdev);
1511 
1512 	if (phb->type == PNV_PHB_IODA2) {
1513 		if (!pdn->m64_single_mode)
1514 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1515 
1516 		/* Release M64 windows */
1517 		pnv_pci_vf_release_m64(pdev, num_vfs);
1518 
1519 		/* Release PE numbers */
1520 		if (pdn->m64_single_mode) {
1521 			for (i = 0; i < num_vfs; i++) {
1522 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1523 					continue;
1524 
1525 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1526 				pnv_ioda_free_pe(pe);
1527 			}
1528 		} else
1529 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1530 		/* Releasing pe_num_map */
1531 		kfree(pdn->pe_num_map);
1532 	}
1533 }
1534 
1535 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1536 				       struct pnv_ioda_pe *pe);
1537 #ifdef CONFIG_IOMMU_API
1538 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
1539 		struct iommu_table_group *table_group, struct pci_bus *bus);
1540 
1541 #endif
1542 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1543 {
1544 	struct pci_bus        *bus;
1545 	struct pci_controller *hose;
1546 	struct pnv_phb        *phb;
1547 	struct pnv_ioda_pe    *pe;
1548 	int                    pe_num;
1549 	u16                    vf_index;
1550 	struct pci_dn         *pdn;
1551 
1552 	bus = pdev->bus;
1553 	hose = pci_bus_to_host(bus);
1554 	phb = hose->private_data;
1555 	pdn = pci_get_pdn(pdev);
1556 
1557 	if (!pdev->is_physfn)
1558 		return;
1559 
1560 	/* Reserve PE for each VF */
1561 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1562 		if (pdn->m64_single_mode)
1563 			pe_num = pdn->pe_num_map[vf_index];
1564 		else
1565 			pe_num = *pdn->pe_num_map + vf_index;
1566 
1567 		pe = &phb->ioda.pe_array[pe_num];
1568 		pe->pe_number = pe_num;
1569 		pe->phb = phb;
1570 		pe->flags = PNV_IODA_PE_VF;
1571 		pe->pbus = NULL;
1572 		pe->parent_dev = pdev;
1573 		pe->mve_number = -1;
1574 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1575 			   pci_iov_virtfn_devfn(pdev, vf_index);
1576 
1577 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1578 			hose->global_number, pdev->bus->number,
1579 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1580 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1581 
1582 		if (pnv_ioda_configure_pe(phb, pe)) {
1583 			/* XXX What do we do here ? */
1584 			pnv_ioda_free_pe(pe);
1585 			pe->pdev = NULL;
1586 			continue;
1587 		}
1588 
1589 		/* Put PE to the list */
1590 		mutex_lock(&phb->ioda.pe_list_mutex);
1591 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1592 		mutex_unlock(&phb->ioda.pe_list_mutex);
1593 
1594 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1595 #ifdef CONFIG_IOMMU_API
1596 		pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL);
1597 #endif
1598 	}
1599 }
1600 
1601 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1602 {
1603 	struct pci_bus        *bus;
1604 	struct pci_controller *hose;
1605 	struct pnv_phb        *phb;
1606 	struct pnv_ioda_pe    *pe;
1607 	struct pci_dn         *pdn;
1608 	int                    ret;
1609 	u16                    i;
1610 
1611 	bus = pdev->bus;
1612 	hose = pci_bus_to_host(bus);
1613 	phb = hose->private_data;
1614 	pdn = pci_get_pdn(pdev);
1615 
1616 	if (phb->type == PNV_PHB_IODA2) {
1617 		if (!pdn->vfs_expanded) {
1618 			dev_info(&pdev->dev, "don't support this SRIOV device"
1619 				" with non 64bit-prefetchable IOV BAR\n");
1620 			return -ENOSPC;
1621 		}
1622 
1623 		/*
1624 		 * When M64 BARs functions in Single PE mode, the number of VFs
1625 		 * could be enabled must be less than the number of M64 BARs.
1626 		 */
1627 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1628 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1629 			return -EBUSY;
1630 		}
1631 
1632 		/* Allocating pe_num_map */
1633 		if (pdn->m64_single_mode)
1634 			pdn->pe_num_map = kmalloc_array(num_vfs,
1635 							sizeof(*pdn->pe_num_map),
1636 							GFP_KERNEL);
1637 		else
1638 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1639 
1640 		if (!pdn->pe_num_map)
1641 			return -ENOMEM;
1642 
1643 		if (pdn->m64_single_mode)
1644 			for (i = 0; i < num_vfs; i++)
1645 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1646 
1647 		/* Calculate available PE for required VFs */
1648 		if (pdn->m64_single_mode) {
1649 			for (i = 0; i < num_vfs; i++) {
1650 				pe = pnv_ioda_alloc_pe(phb);
1651 				if (!pe) {
1652 					ret = -EBUSY;
1653 					goto m64_failed;
1654 				}
1655 
1656 				pdn->pe_num_map[i] = pe->pe_number;
1657 			}
1658 		} else {
1659 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1660 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1661 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1662 				0, num_vfs, 0);
1663 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1664 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1665 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1666 				kfree(pdn->pe_num_map);
1667 				return -EBUSY;
1668 			}
1669 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1670 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1671 		}
1672 		pdn->num_vfs = num_vfs;
1673 
1674 		/* Assign M64 window accordingly */
1675 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1676 		if (ret) {
1677 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1678 			goto m64_failed;
1679 		}
1680 
1681 		/*
1682 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1683 		 * the IOV BAR according to the PE# allocated to the VFs.
1684 		 * Otherwise, the PE# for the VF will conflict with others.
1685 		 */
1686 		if (!pdn->m64_single_mode) {
1687 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1688 			if (ret)
1689 				goto m64_failed;
1690 		}
1691 	}
1692 
1693 	/* Setup VF PEs */
1694 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1695 
1696 	return 0;
1697 
1698 m64_failed:
1699 	if (pdn->m64_single_mode) {
1700 		for (i = 0; i < num_vfs; i++) {
1701 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1702 				continue;
1703 
1704 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1705 			pnv_ioda_free_pe(pe);
1706 		}
1707 	} else
1708 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1709 
1710 	/* Releasing pe_num_map */
1711 	kfree(pdn->pe_num_map);
1712 
1713 	return ret;
1714 }
1715 
1716 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1717 {
1718 	pnv_pci_sriov_disable(pdev);
1719 
1720 	/* Release PCI data */
1721 	remove_dev_pci_data(pdev);
1722 	return 0;
1723 }
1724 
1725 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1726 {
1727 	/* Allocate PCI data */
1728 	add_dev_pci_data(pdev);
1729 
1730 	return pnv_pci_sriov_enable(pdev, num_vfs);
1731 }
1732 #endif /* CONFIG_PCI_IOV */
1733 
1734 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1735 {
1736 	struct pci_dn *pdn = pci_get_pdn(pdev);
1737 	struct pnv_ioda_pe *pe;
1738 
1739 	/*
1740 	 * The function can be called while the PE#
1741 	 * hasn't been assigned. Do nothing for the
1742 	 * case.
1743 	 */
1744 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1745 		return;
1746 
1747 	pe = &phb->ioda.pe_array[pdn->pe_number];
1748 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1749 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1750 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1751 	/*
1752 	 * Note: iommu_add_device() will fail here as
1753 	 * for physical PE: the device is already added by now;
1754 	 * for virtual PE: sysfs entries are not ready yet and
1755 	 * tce_iommu_bus_notifier will add the device to a group later.
1756 	 */
1757 }
1758 
1759 /*
1760  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1761  *
1762  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1763  * Devices can only access more than that if bit 59 of the PCI address is set
1764  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1765  * Many PCI devices are not capable of addressing that many bits, and as a
1766  * result are limited to the 4GB of virtual memory made available to 32-bit
1767  * devices in TVE#0.
1768  *
1769  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1770  * devices by configuring the virtual memory past the first 4GB inaccessible
1771  * by 64-bit DMAs.  This should only be used by devices that want more than
1772  * 4GB, and only on PEs that have no 32-bit devices.
1773  *
1774  * Currently this will only work on PHB3 (POWER8).
1775  */
1776 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1777 {
1778 	u64 window_size, table_size, tce_count, addr;
1779 	struct page *table_pages;
1780 	u64 tce_order = 28; /* 256MB TCEs */
1781 	__be64 *tces;
1782 	s64 rc;
1783 
1784 	/*
1785 	 * Window size needs to be a power of two, but needs to account for
1786 	 * shifting memory by the 4GB offset required to skip 32bit space.
1787 	 */
1788 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1789 	tce_count = window_size >> tce_order;
1790 	table_size = tce_count << 3;
1791 
1792 	if (table_size < PAGE_SIZE)
1793 		table_size = PAGE_SIZE;
1794 
1795 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1796 				       get_order(table_size));
1797 	if (!table_pages)
1798 		goto err;
1799 
1800 	tces = page_address(table_pages);
1801 	if (!tces)
1802 		goto err;
1803 
1804 	memset(tces, 0, table_size);
1805 
1806 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1807 		tces[(addr + (1ULL << 32)) >> tce_order] =
1808 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1809 	}
1810 
1811 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1812 					pe->pe_number,
1813 					/* reconfigure window 0 */
1814 					(pe->pe_number << 1) + 0,
1815 					1,
1816 					__pa(tces),
1817 					table_size,
1818 					1 << tce_order);
1819 	if (rc == OPAL_SUCCESS) {
1820 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1821 		return 0;
1822 	}
1823 err:
1824 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1825 	return -EIO;
1826 }
1827 
1828 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1829 {
1830 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1831 	struct pnv_phb *phb = hose->private_data;
1832 	struct pci_dn *pdn = pci_get_pdn(pdev);
1833 	struct pnv_ioda_pe *pe;
1834 	uint64_t top;
1835 	bool bypass = false;
1836 	s64 rc;
1837 
1838 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1839 		return -ENODEV;
1840 
1841 	pe = &phb->ioda.pe_array[pdn->pe_number];
1842 	if (pe->tce_bypass_enabled) {
1843 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1844 		bypass = (dma_mask >= top);
1845 	}
1846 
1847 	if (bypass) {
1848 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1849 		set_dma_ops(&pdev->dev, &dma_nommu_ops);
1850 	} else {
1851 		/*
1852 		 * If the device can't set the TCE bypass bit but still wants
1853 		 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1854 		 * bypass the 32-bit region and be usable for 64-bit DMAs.
1855 		 * The device needs to be able to address all of this space.
1856 		 */
1857 		if (dma_mask >> 32 &&
1858 		    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1859 		    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1860 		    (pe->device_count == 1 || !pe->pbus) &&
1861 		    phb->model == PNV_PHB_MODEL_PHB3) {
1862 			/* Configure the bypass mode */
1863 			rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1864 			if (rc)
1865 				return rc;
1866 			/* 4GB offset bypasses 32-bit space */
1867 			set_dma_offset(&pdev->dev, (1ULL << 32));
1868 			set_dma_ops(&pdev->dev, &dma_nommu_ops);
1869 		} else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1870 			/*
1871 			 * Fail the request if a DMA mask between 32 and 64 bits
1872 			 * was requested but couldn't be fulfilled. Ideally we
1873 			 * would do this for 64-bits but historically we have
1874 			 * always fallen back to 32-bits.
1875 			 */
1876 			return -ENOMEM;
1877 		} else {
1878 			dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1879 			set_dma_ops(&pdev->dev, &dma_iommu_ops);
1880 		}
1881 	}
1882 	*pdev->dev.dma_mask = dma_mask;
1883 
1884 	/* Update peer npu devices */
1885 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1886 
1887 	return 0;
1888 }
1889 
1890 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1891 {
1892 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1893 	struct pnv_phb *phb = hose->private_data;
1894 	struct pci_dn *pdn = pci_get_pdn(pdev);
1895 	struct pnv_ioda_pe *pe;
1896 	u64 end, mask;
1897 
1898 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1899 		return 0;
1900 
1901 	pe = &phb->ioda.pe_array[pdn->pe_number];
1902 	if (!pe->tce_bypass_enabled)
1903 		return __dma_get_required_mask(&pdev->dev);
1904 
1905 
1906 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1907 	mask = 1ULL << (fls64(end) - 1);
1908 	mask += mask - 1;
1909 
1910 	return mask;
1911 }
1912 
1913 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1914 {
1915 	struct pci_dev *dev;
1916 
1917 	list_for_each_entry(dev, &bus->devices, bus_list) {
1918 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1919 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1920 
1921 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1922 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1923 	}
1924 }
1925 
1926 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1927 						     bool real_mode)
1928 {
1929 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1930 		(phb->regs + 0x210);
1931 }
1932 
1933 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1934 		unsigned long index, unsigned long npages, bool rm)
1935 {
1936 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1937 			&tbl->it_group_list, struct iommu_table_group_link,
1938 			next);
1939 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1940 			struct pnv_ioda_pe, table_group);
1941 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1942 	unsigned long start, end, inc;
1943 
1944 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1945 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1946 			npages - 1);
1947 
1948 	/* p7ioc-style invalidation, 2 TCEs per write */
1949 	start |= (1ull << 63);
1950 	end |= (1ull << 63);
1951 	inc = 16;
1952         end |= inc - 1;	/* round up end to be different than start */
1953 
1954         mb(); /* Ensure above stores are visible */
1955         while (start <= end) {
1956 		if (rm)
1957 			__raw_rm_writeq_be(start, invalidate);
1958 		else
1959 			__raw_writeq_be(start, invalidate);
1960 
1961                 start += inc;
1962         }
1963 
1964 	/*
1965 	 * The iommu layer will do another mb() for us on build()
1966 	 * and we don't care on free()
1967 	 */
1968 }
1969 
1970 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1971 		long npages, unsigned long uaddr,
1972 		enum dma_data_direction direction,
1973 		unsigned long attrs)
1974 {
1975 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1976 			attrs);
1977 
1978 	if (!ret)
1979 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1980 
1981 	return ret;
1982 }
1983 
1984 #ifdef CONFIG_IOMMU_API
1985 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1986 		unsigned long *hpa, enum dma_data_direction *direction)
1987 {
1988 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
1989 
1990 	if (!ret)
1991 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1992 
1993 	return ret;
1994 }
1995 
1996 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
1997 		unsigned long *hpa, enum dma_data_direction *direction)
1998 {
1999 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2000 
2001 	if (!ret)
2002 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2003 
2004 	return ret;
2005 }
2006 #endif
2007 
2008 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2009 		long npages)
2010 {
2011 	pnv_tce_free(tbl, index, npages);
2012 
2013 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2014 }
2015 
2016 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2017 	.set = pnv_ioda1_tce_build,
2018 #ifdef CONFIG_IOMMU_API
2019 	.exchange = pnv_ioda1_tce_xchg,
2020 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
2021 	.useraddrptr = pnv_tce_useraddrptr,
2022 #endif
2023 	.clear = pnv_ioda1_tce_free,
2024 	.get = pnv_tce_get,
2025 };
2026 
2027 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
2028 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
2029 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
2030 
2031 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2032 {
2033 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2034 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2035 
2036 	mb(); /* Ensure previous TCE table stores are visible */
2037 	if (rm)
2038 		__raw_rm_writeq_be(val, invalidate);
2039 	else
2040 		__raw_writeq_be(val, invalidate);
2041 }
2042 
2043 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2044 {
2045 	/* 01xb - invalidate TCEs that match the specified PE# */
2046 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2047 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2048 
2049 	mb(); /* Ensure above stores are visible */
2050 	__raw_writeq_be(val, invalidate);
2051 }
2052 
2053 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2054 					unsigned shift, unsigned long index,
2055 					unsigned long npages)
2056 {
2057 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2058 	unsigned long start, end, inc;
2059 
2060 	/* We'll invalidate DMA address in PE scope */
2061 	start = PHB3_TCE_KILL_INVAL_ONE;
2062 	start |= (pe->pe_number & 0xFF);
2063 	end = start;
2064 
2065 	/* Figure out the start, end and step */
2066 	start |= (index << shift);
2067 	end |= ((index + npages - 1) << shift);
2068 	inc = (0x1ull << shift);
2069 	mb();
2070 
2071 	while (start <= end) {
2072 		if (rm)
2073 			__raw_rm_writeq_be(start, invalidate);
2074 		else
2075 			__raw_writeq_be(start, invalidate);
2076 		start += inc;
2077 	}
2078 }
2079 
2080 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2081 {
2082 	struct pnv_phb *phb = pe->phb;
2083 
2084 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2085 		pnv_pci_phb3_tce_invalidate_pe(pe);
2086 	else
2087 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2088 				  pe->pe_number, 0, 0, 0);
2089 }
2090 
2091 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2092 		unsigned long index, unsigned long npages, bool rm)
2093 {
2094 	struct iommu_table_group_link *tgl;
2095 
2096 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2097 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2098 				struct pnv_ioda_pe, table_group);
2099 		struct pnv_phb *phb = pe->phb;
2100 		unsigned int shift = tbl->it_page_shift;
2101 
2102 		/*
2103 		 * NVLink1 can use the TCE kill register directly as
2104 		 * it's the same as PHB3. NVLink2 is different and
2105 		 * should go via the OPAL call.
2106 		 */
2107 		if (phb->model == PNV_PHB_MODEL_NPU) {
2108 			/*
2109 			 * The NVLink hardware does not support TCE kill
2110 			 * per TCE entry so we have to invalidate
2111 			 * the entire cache for it.
2112 			 */
2113 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2114 			continue;
2115 		}
2116 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2117 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2118 						    index, npages);
2119 		else
2120 			opal_pci_tce_kill(phb->opal_id,
2121 					  OPAL_PCI_TCE_KILL_PAGES,
2122 					  pe->pe_number, 1u << shift,
2123 					  index << shift, npages);
2124 	}
2125 }
2126 
2127 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2128 {
2129 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2130 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2131 	else
2132 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2133 }
2134 
2135 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2136 		long npages, unsigned long uaddr,
2137 		enum dma_data_direction direction,
2138 		unsigned long attrs)
2139 {
2140 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2141 			attrs);
2142 
2143 	if (!ret)
2144 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2145 
2146 	return ret;
2147 }
2148 
2149 #ifdef CONFIG_IOMMU_API
2150 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2151 		unsigned long *hpa, enum dma_data_direction *direction)
2152 {
2153 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2154 
2155 	if (!ret)
2156 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2157 
2158 	return ret;
2159 }
2160 
2161 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2162 		unsigned long *hpa, enum dma_data_direction *direction)
2163 {
2164 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2165 
2166 	if (!ret)
2167 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2168 
2169 	return ret;
2170 }
2171 #endif
2172 
2173 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2174 		long npages)
2175 {
2176 	pnv_tce_free(tbl, index, npages);
2177 
2178 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2179 }
2180 
2181 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2182 	.set = pnv_ioda2_tce_build,
2183 #ifdef CONFIG_IOMMU_API
2184 	.exchange = pnv_ioda2_tce_xchg,
2185 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2186 	.useraddrptr = pnv_tce_useraddrptr,
2187 #endif
2188 	.clear = pnv_ioda2_tce_free,
2189 	.get = pnv_tce_get,
2190 	.free = pnv_pci_ioda2_table_free_pages,
2191 };
2192 
2193 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2194 {
2195 	unsigned int *weight = (unsigned int *)data;
2196 
2197 	/* This is quite simplistic. The "base" weight of a device
2198 	 * is 10. 0 means no DMA is to be accounted for it.
2199 	 */
2200 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2201 		return 0;
2202 
2203 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2204 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2205 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2206 		*weight += 3;
2207 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2208 		*weight += 15;
2209 	else
2210 		*weight += 10;
2211 
2212 	return 0;
2213 }
2214 
2215 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2216 {
2217 	unsigned int weight = 0;
2218 
2219 	/* SRIOV VF has same DMA32 weight as its PF */
2220 #ifdef CONFIG_PCI_IOV
2221 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2222 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2223 		return weight;
2224 	}
2225 #endif
2226 
2227 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2228 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2229 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2230 		struct pci_dev *pdev;
2231 
2232 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2233 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2234 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2235 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2236 	}
2237 
2238 	return weight;
2239 }
2240 
2241 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2242 				       struct pnv_ioda_pe *pe)
2243 {
2244 
2245 	struct page *tce_mem = NULL;
2246 	struct iommu_table *tbl;
2247 	unsigned int weight, total_weight = 0;
2248 	unsigned int tce32_segsz, base, segs, avail, i;
2249 	int64_t rc;
2250 	void *addr;
2251 
2252 	/* XXX FIXME: Handle 64-bit only DMA devices */
2253 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2254 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2255 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2256 	if (!weight)
2257 		return;
2258 
2259 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2260 		     &total_weight);
2261 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2262 	if (!segs)
2263 		segs = 1;
2264 
2265 	/*
2266 	 * Allocate contiguous DMA32 segments. We begin with the expected
2267 	 * number of segments. With one more attempt, the number of DMA32
2268 	 * segments to be allocated is decreased by one until one segment
2269 	 * is allocated successfully.
2270 	 */
2271 	do {
2272 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2273 			for (avail = 0, i = base; i < base + segs; i++) {
2274 				if (phb->ioda.dma32_segmap[i] ==
2275 				    IODA_INVALID_PE)
2276 					avail++;
2277 			}
2278 
2279 			if (avail == segs)
2280 				goto found;
2281 		}
2282 	} while (--segs);
2283 
2284 	if (!segs) {
2285 		pe_warn(pe, "No available DMA32 segments\n");
2286 		return;
2287 	}
2288 
2289 found:
2290 	tbl = pnv_pci_table_alloc(phb->hose->node);
2291 	if (WARN_ON(!tbl))
2292 		return;
2293 
2294 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2295 			pe->pe_number);
2296 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2297 
2298 	/* Grab a 32-bit TCE table */
2299 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2300 		weight, total_weight, base, segs);
2301 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2302 		base * PNV_IODA1_DMA32_SEGSIZE,
2303 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2304 
2305 	/* XXX Currently, we allocate one big contiguous table for the
2306 	 * TCEs. We only really need one chunk per 256M of TCE space
2307 	 * (ie per segment) but that's an optimization for later, it
2308 	 * requires some added smarts with our get/put_tce implementation
2309 	 *
2310 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2311 	 * bytes
2312 	 */
2313 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2314 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2315 				   get_order(tce32_segsz * segs));
2316 	if (!tce_mem) {
2317 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2318 		goto fail;
2319 	}
2320 	addr = page_address(tce_mem);
2321 	memset(addr, 0, tce32_segsz * segs);
2322 
2323 	/* Configure HW */
2324 	for (i = 0; i < segs; i++) {
2325 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2326 					      pe->pe_number,
2327 					      base + i, 1,
2328 					      __pa(addr) + tce32_segsz * i,
2329 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2330 		if (rc) {
2331 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2332 			       " err %ld\n", rc);
2333 			goto fail;
2334 		}
2335 	}
2336 
2337 	/* Setup DMA32 segment mapping */
2338 	for (i = base; i < base + segs; i++)
2339 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2340 
2341 	/* Setup linux iommu table */
2342 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2343 				  base * PNV_IODA1_DMA32_SEGSIZE,
2344 				  IOMMU_PAGE_SHIFT_4K);
2345 
2346 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2347 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2348 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2349 	iommu_init_table(tbl, phb->hose->node);
2350 
2351 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2352 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2353 
2354 	return;
2355  fail:
2356 	/* XXX Failure: Try to fallback to 64-bit only ? */
2357 	if (tce_mem)
2358 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2359 	if (tbl) {
2360 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2361 		iommu_tce_table_put(tbl);
2362 	}
2363 }
2364 
2365 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2366 		int num, struct iommu_table *tbl)
2367 {
2368 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2369 			table_group);
2370 	struct pnv_phb *phb = pe->phb;
2371 	int64_t rc;
2372 	const unsigned long size = tbl->it_indirect_levels ?
2373 			tbl->it_level_size : tbl->it_size;
2374 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2375 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2376 
2377 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2378 			start_addr, start_addr + win_size - 1,
2379 			IOMMU_PAGE_SIZE(tbl));
2380 
2381 	/*
2382 	 * Map TCE table through TVT. The TVE index is the PE number
2383 	 * shifted by 1 bit for 32-bits DMA space.
2384 	 */
2385 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2386 			pe->pe_number,
2387 			(pe->pe_number << 1) + num,
2388 			tbl->it_indirect_levels + 1,
2389 			__pa(tbl->it_base),
2390 			size << 3,
2391 			IOMMU_PAGE_SIZE(tbl));
2392 	if (rc) {
2393 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2394 		return rc;
2395 	}
2396 
2397 	pnv_pci_link_table_and_group(phb->hose->node, num,
2398 			tbl, &pe->table_group);
2399 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2400 
2401 	return 0;
2402 }
2403 
2404 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2405 {
2406 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2407 	int64_t rc;
2408 
2409 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2410 	if (enable) {
2411 		phys_addr_t top = memblock_end_of_DRAM();
2412 
2413 		top = roundup_pow_of_two(top);
2414 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2415 						     pe->pe_number,
2416 						     window_id,
2417 						     pe->tce_bypass_base,
2418 						     top);
2419 	} else {
2420 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2421 						     pe->pe_number,
2422 						     window_id,
2423 						     pe->tce_bypass_base,
2424 						     0);
2425 	}
2426 	if (rc)
2427 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2428 	else
2429 		pe->tce_bypass_enabled = enable;
2430 }
2431 
2432 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2433 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2434 		bool alloc_userspace_copy, struct iommu_table **ptbl)
2435 {
2436 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2437 			table_group);
2438 	int nid = pe->phb->hose->node;
2439 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2440 	long ret;
2441 	struct iommu_table *tbl;
2442 
2443 	tbl = pnv_pci_table_alloc(nid);
2444 	if (!tbl)
2445 		return -ENOMEM;
2446 
2447 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2448 
2449 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2450 			bus_offset, page_shift, window_size,
2451 			levels, alloc_userspace_copy, tbl);
2452 	if (ret) {
2453 		iommu_tce_table_put(tbl);
2454 		return ret;
2455 	}
2456 
2457 	*ptbl = tbl;
2458 
2459 	return 0;
2460 }
2461 
2462 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2463 {
2464 	struct iommu_table *tbl = NULL;
2465 	long rc;
2466 
2467 	/*
2468 	 * crashkernel= specifies the kdump kernel's maximum memory at
2469 	 * some offset and there is no guaranteed the result is a power
2470 	 * of 2, which will cause errors later.
2471 	 */
2472 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2473 
2474 	/*
2475 	 * In memory constrained environments, e.g. kdump kernel, the
2476 	 * DMA window can be larger than available memory, which will
2477 	 * cause errors later.
2478 	 */
2479 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2480 
2481 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2482 			IOMMU_PAGE_SHIFT_4K,
2483 			window_size,
2484 			POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl);
2485 	if (rc) {
2486 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2487 				rc);
2488 		return rc;
2489 	}
2490 
2491 	iommu_init_table(tbl, pe->phb->hose->node);
2492 
2493 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2494 	if (rc) {
2495 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2496 				rc);
2497 		iommu_tce_table_put(tbl);
2498 		return rc;
2499 	}
2500 
2501 	if (!pnv_iommu_bypass_disabled)
2502 		pnv_pci_ioda2_set_bypass(pe, true);
2503 
2504 	return 0;
2505 }
2506 
2507 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2508 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2509 		int num)
2510 {
2511 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2512 			table_group);
2513 	struct pnv_phb *phb = pe->phb;
2514 	long ret;
2515 
2516 	pe_info(pe, "Removing DMA window #%d\n", num);
2517 
2518 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2519 			(pe->pe_number << 1) + num,
2520 			0/* levels */, 0/* table address */,
2521 			0/* table size */, 0/* page size */);
2522 	if (ret)
2523 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2524 	else
2525 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2526 
2527 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2528 
2529 	return ret;
2530 }
2531 #endif
2532 
2533 #ifdef CONFIG_IOMMU_API
2534 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2535 		__u64 window_size, __u32 levels)
2536 {
2537 	unsigned long bytes = 0;
2538 	const unsigned window_shift = ilog2(window_size);
2539 	unsigned entries_shift = window_shift - page_shift;
2540 	unsigned table_shift = entries_shift + 3;
2541 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2542 	unsigned long direct_table_size;
2543 
2544 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2545 			!is_power_of_2(window_size))
2546 		return 0;
2547 
2548 	/* Calculate a direct table size from window_size and levels */
2549 	entries_shift = (entries_shift + levels - 1) / levels;
2550 	table_shift = entries_shift + 3;
2551 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2552 	direct_table_size =  1UL << table_shift;
2553 
2554 	for ( ; levels; --levels) {
2555 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2556 
2557 		tce_table_size /= direct_table_size;
2558 		tce_table_size <<= 3;
2559 		tce_table_size = max_t(unsigned long,
2560 				tce_table_size, direct_table_size);
2561 	}
2562 
2563 	return bytes + bytes; /* one for HW table, one for userspace copy */
2564 }
2565 
2566 static long pnv_pci_ioda2_create_table_userspace(
2567 		struct iommu_table_group *table_group,
2568 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2569 		struct iommu_table **ptbl)
2570 {
2571 	return pnv_pci_ioda2_create_table(table_group,
2572 			num, page_shift, window_size, levels, true, ptbl);
2573 }
2574 
2575 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2576 {
2577 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2578 						table_group);
2579 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2580 	struct iommu_table *tbl = pe->table_group.tables[0];
2581 
2582 	pnv_pci_ioda2_set_bypass(pe, false);
2583 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2584 	if (pe->pbus)
2585 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2586 	iommu_tce_table_put(tbl);
2587 }
2588 
2589 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2590 {
2591 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2592 						table_group);
2593 
2594 	pnv_pci_ioda2_setup_default_config(pe);
2595 	if (pe->pbus)
2596 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2597 }
2598 
2599 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2600 	.get_table_size = pnv_pci_ioda2_get_table_size,
2601 	.create_table = pnv_pci_ioda2_create_table_userspace,
2602 	.set_window = pnv_pci_ioda2_set_window,
2603 	.unset_window = pnv_pci_ioda2_unset_window,
2604 	.take_ownership = pnv_ioda2_take_ownership,
2605 	.release_ownership = pnv_ioda2_release_ownership,
2606 };
2607 
2608 static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe,
2609 		struct iommu_table_group *table_group,
2610 		struct pci_bus *bus)
2611 {
2612 	struct pci_dev *dev;
2613 
2614 	list_for_each_entry(dev, &bus->devices, bus_list) {
2615 		iommu_add_device(table_group, &dev->dev);
2616 
2617 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2618 			pnv_ioda_setup_bus_iommu_group_add_devices(pe,
2619 					table_group, dev->subordinate);
2620 	}
2621 }
2622 
2623 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
2624 		struct iommu_table_group *table_group, struct pci_bus *bus)
2625 {
2626 
2627 	if (pe->flags & PNV_IODA_PE_DEV)
2628 		iommu_add_device(table_group, &pe->pdev->dev);
2629 
2630 	if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus)
2631 		pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group,
2632 				bus);
2633 }
2634 
2635 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
2636 
2637 static void pnv_pci_ioda_setup_iommu_api(void)
2638 {
2639 	struct pci_controller *hose;
2640 	struct pnv_phb *phb;
2641 	struct pnv_ioda_pe *pe;
2642 
2643 	/*
2644 	 * There are 4 types of PEs:
2645 	 * - PNV_IODA_PE_BUS: a downstream port with an adapter,
2646 	 *   created from pnv_pci_setup_bridge();
2647 	 * - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it,
2648 	 *   created from pnv_pci_setup_bridge();
2649 	 * - PNV_IODA_PE_VF: a SRIOV virtual function,
2650 	 *   created from pnv_pcibios_sriov_enable();
2651 	 * - PNV_IODA_PE_DEV: an NPU or OCAPI device,
2652 	 *   created from pnv_pci_ioda_fixup().
2653 	 *
2654 	 * Normally a PE is represented by an IOMMU group, however for
2655 	 * devices with side channels the groups need to be more strict.
2656 	 */
2657 	list_for_each_entry(hose, &hose_list, list_node) {
2658 		phb = hose->private_data;
2659 
2660 		if (phb->type == PNV_PHB_NPU_NVLINK)
2661 			continue;
2662 
2663 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2664 			struct iommu_table_group *table_group;
2665 
2666 			table_group = pnv_try_setup_npu_table_group(pe);
2667 			if (!table_group) {
2668 				if (!pnv_pci_ioda_pe_dma_weight(pe))
2669 					continue;
2670 
2671 				table_group = &pe->table_group;
2672 				iommu_register_group(&pe->table_group,
2673 						pe->phb->hose->global_number,
2674 						pe->pe_number);
2675 			}
2676 			pnv_ioda_setup_bus_iommu_group(pe, table_group,
2677 					pe->pbus);
2678 		}
2679 	}
2680 
2681 	/*
2682 	 * Now we have all PHBs discovered, time to add NPU devices to
2683 	 * the corresponding IOMMU groups.
2684 	 */
2685 	list_for_each_entry(hose, &hose_list, list_node) {
2686 		unsigned long  pgsizes;
2687 
2688 		phb = hose->private_data;
2689 
2690 		if (phb->type != PNV_PHB_NPU_NVLINK)
2691 			continue;
2692 
2693 		pgsizes = pnv_ioda_parse_tce_sizes(phb);
2694 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2695 			/*
2696 			 * IODA2 bridges get this set up from
2697 			 * pci_controller_ops::setup_bridge but NPU bridges
2698 			 * do not have this hook defined so we do it here.
2699 			 */
2700 			pe->table_group.pgsizes = pgsizes;
2701 			pnv_npu_compound_attach(pe);
2702 		}
2703 	}
2704 }
2705 #else /* !CONFIG_IOMMU_API */
2706 static void pnv_pci_ioda_setup_iommu_api(void) { };
2707 #endif
2708 
2709 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2710 {
2711 	struct pci_controller *hose = phb->hose;
2712 	struct device_node *dn = hose->dn;
2713 	unsigned long mask = 0;
2714 	int i, rc, count;
2715 	u32 val;
2716 
2717 	count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2718 	if (count <= 0) {
2719 		mask = SZ_4K | SZ_64K;
2720 		/* Add 16M for POWER8 by default */
2721 		if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2722 				!cpu_has_feature(CPU_FTR_ARCH_300))
2723 			mask |= SZ_16M | SZ_256M;
2724 		return mask;
2725 	}
2726 
2727 	for (i = 0; i < count; i++) {
2728 		rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2729 						i, &val);
2730 		if (rc == 0)
2731 			mask |= 1ULL << val;
2732 	}
2733 
2734 	return mask;
2735 }
2736 
2737 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2738 				       struct pnv_ioda_pe *pe)
2739 {
2740 	int64_t rc;
2741 
2742 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2743 		return;
2744 
2745 	/* TVE #1 is selected by PCI address bit 59 */
2746 	pe->tce_bypass_base = 1ull << 59;
2747 
2748 	/* The PE will reserve all possible 32-bits space */
2749 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2750 		phb->ioda.m32_pci_base);
2751 
2752 	/* Setup linux iommu table */
2753 	pe->table_group.tce32_start = 0;
2754 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2755 	pe->table_group.max_dynamic_windows_supported =
2756 			IOMMU_TABLE_GROUP_MAX_TABLES;
2757 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2758 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2759 #ifdef CONFIG_IOMMU_API
2760 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2761 #endif
2762 
2763 	rc = pnv_pci_ioda2_setup_default_config(pe);
2764 	if (rc)
2765 		return;
2766 
2767 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2768 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2769 }
2770 
2771 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2772 {
2773 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2774 					   ioda.irq_chip);
2775 
2776 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2777 }
2778 
2779 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2780 {
2781 	int64_t rc;
2782 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2783 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2784 
2785 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2786 	WARN_ON_ONCE(rc);
2787 
2788 	icp_native_eoi(d);
2789 }
2790 
2791 
2792 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2793 {
2794 	struct irq_data *idata;
2795 	struct irq_chip *ichip;
2796 
2797 	/* The MSI EOI OPAL call is only needed on PHB3 */
2798 	if (phb->model != PNV_PHB_MODEL_PHB3)
2799 		return;
2800 
2801 	if (!phb->ioda.irq_chip_init) {
2802 		/*
2803 		 * First time we setup an MSI IRQ, we need to setup the
2804 		 * corresponding IRQ chip to route correctly.
2805 		 */
2806 		idata = irq_get_irq_data(virq);
2807 		ichip = irq_data_get_irq_chip(idata);
2808 		phb->ioda.irq_chip_init = 1;
2809 		phb->ioda.irq_chip = *ichip;
2810 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2811 	}
2812 	irq_set_chip(virq, &phb->ioda.irq_chip);
2813 }
2814 
2815 /*
2816  * Returns true iff chip is something that we could call
2817  * pnv_opal_pci_msi_eoi for.
2818  */
2819 bool is_pnv_opal_msi(struct irq_chip *chip)
2820 {
2821 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2822 }
2823 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2824 
2825 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2826 				  unsigned int hwirq, unsigned int virq,
2827 				  unsigned int is_64, struct msi_msg *msg)
2828 {
2829 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2830 	unsigned int xive_num = hwirq - phb->msi_base;
2831 	__be32 data;
2832 	int rc;
2833 
2834 	/* No PE assigned ? bail out ... no MSI for you ! */
2835 	if (pe == NULL)
2836 		return -ENXIO;
2837 
2838 	/* Check if we have an MVE */
2839 	if (pe->mve_number < 0)
2840 		return -ENXIO;
2841 
2842 	/* Force 32-bit MSI on some broken devices */
2843 	if (dev->no_64bit_msi)
2844 		is_64 = 0;
2845 
2846 	/* Assign XIVE to PE */
2847 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2848 	if (rc) {
2849 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2850 			pci_name(dev), rc, xive_num);
2851 		return -EIO;
2852 	}
2853 
2854 	if (is_64) {
2855 		__be64 addr64;
2856 
2857 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2858 				     &addr64, &data);
2859 		if (rc) {
2860 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2861 				pci_name(dev), rc);
2862 			return -EIO;
2863 		}
2864 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2865 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2866 	} else {
2867 		__be32 addr32;
2868 
2869 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2870 				     &addr32, &data);
2871 		if (rc) {
2872 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2873 				pci_name(dev), rc);
2874 			return -EIO;
2875 		}
2876 		msg->address_hi = 0;
2877 		msg->address_lo = be32_to_cpu(addr32);
2878 	}
2879 	msg->data = be32_to_cpu(data);
2880 
2881 	pnv_set_msi_irq_chip(phb, virq);
2882 
2883 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2884 		 " address=%x_%08x data=%x PE# %x\n",
2885 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2886 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2887 
2888 	return 0;
2889 }
2890 
2891 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2892 {
2893 	unsigned int count;
2894 	const __be32 *prop = of_get_property(phb->hose->dn,
2895 					     "ibm,opal-msi-ranges", NULL);
2896 	if (!prop) {
2897 		/* BML Fallback */
2898 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2899 	}
2900 	if (!prop)
2901 		return;
2902 
2903 	phb->msi_base = be32_to_cpup(prop);
2904 	count = be32_to_cpup(prop + 1);
2905 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2906 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2907 		       phb->hose->global_number);
2908 		return;
2909 	}
2910 
2911 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2912 	phb->msi32_support = 1;
2913 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2914 		count, phb->msi_base);
2915 }
2916 
2917 #ifdef CONFIG_PCI_IOV
2918 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2919 {
2920 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2921 	struct pnv_phb *phb = hose->private_data;
2922 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2923 	struct resource *res;
2924 	int i;
2925 	resource_size_t size, total_vf_bar_sz;
2926 	struct pci_dn *pdn;
2927 	int mul, total_vfs;
2928 
2929 	if (!pdev->is_physfn || pci_dev_is_added(pdev))
2930 		return;
2931 
2932 	pdn = pci_get_pdn(pdev);
2933 	pdn->vfs_expanded = 0;
2934 	pdn->m64_single_mode = false;
2935 
2936 	total_vfs = pci_sriov_get_totalvfs(pdev);
2937 	mul = phb->ioda.total_pe_num;
2938 	total_vf_bar_sz = 0;
2939 
2940 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2941 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2942 		if (!res->flags || res->parent)
2943 			continue;
2944 		if (!pnv_pci_is_m64_flags(res->flags)) {
2945 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2946 					" non M64 VF BAR%d: %pR. \n",
2947 				 i, res);
2948 			goto truncate_iov;
2949 		}
2950 
2951 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2952 				i + PCI_IOV_RESOURCES);
2953 
2954 		/*
2955 		 * If bigger than quarter of M64 segment size, just round up
2956 		 * power of two.
2957 		 *
2958 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2959 		 * with other devices, IOV BAR size is expanded to be
2960 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2961 		 * segment size , the expanded size would equal to half of the
2962 		 * whole M64 space size, which will exhaust the M64 Space and
2963 		 * limit the system flexibility.  This is a design decision to
2964 		 * set the boundary to quarter of the M64 segment size.
2965 		 */
2966 		if (total_vf_bar_sz > gate) {
2967 			mul = roundup_pow_of_two(total_vfs);
2968 			dev_info(&pdev->dev,
2969 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2970 				total_vf_bar_sz, gate, mul);
2971 			pdn->m64_single_mode = true;
2972 			break;
2973 		}
2974 	}
2975 
2976 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2977 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2978 		if (!res->flags || res->parent)
2979 			continue;
2980 
2981 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2982 		/*
2983 		 * On PHB3, the minimum size alignment of M64 BAR in single
2984 		 * mode is 32MB.
2985 		 */
2986 		if (pdn->m64_single_mode && (size < SZ_32M))
2987 			goto truncate_iov;
2988 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2989 		res->end = res->start + size * mul - 1;
2990 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2991 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2992 			 i, res, mul);
2993 	}
2994 	pdn->vfs_expanded = mul;
2995 
2996 	return;
2997 
2998 truncate_iov:
2999 	/* To save MMIO space, IOV BAR is truncated. */
3000 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3001 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3002 		res->flags = 0;
3003 		res->end = res->start - 1;
3004 	}
3005 }
3006 #endif /* CONFIG_PCI_IOV */
3007 
3008 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3009 				  struct resource *res)
3010 {
3011 	struct pnv_phb *phb = pe->phb;
3012 	struct pci_bus_region region;
3013 	int index;
3014 	int64_t rc;
3015 
3016 	if (!res || !res->flags || res->start > res->end)
3017 		return;
3018 
3019 	if (res->flags & IORESOURCE_IO) {
3020 		region.start = res->start - phb->ioda.io_pci_base;
3021 		region.end   = res->end - phb->ioda.io_pci_base;
3022 		index = region.start / phb->ioda.io_segsize;
3023 
3024 		while (index < phb->ioda.total_pe_num &&
3025 		       region.start <= region.end) {
3026 			phb->ioda.io_segmap[index] = pe->pe_number;
3027 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3028 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3029 			if (rc != OPAL_SUCCESS) {
3030 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3031 				       __func__, rc, index, pe->pe_number);
3032 				break;
3033 			}
3034 
3035 			region.start += phb->ioda.io_segsize;
3036 			index++;
3037 		}
3038 	} else if ((res->flags & IORESOURCE_MEM) &&
3039 		   !pnv_pci_is_m64(phb, res)) {
3040 		region.start = res->start -
3041 			       phb->hose->mem_offset[0] -
3042 			       phb->ioda.m32_pci_base;
3043 		region.end   = res->end -
3044 			       phb->hose->mem_offset[0] -
3045 			       phb->ioda.m32_pci_base;
3046 		index = region.start / phb->ioda.m32_segsize;
3047 
3048 		while (index < phb->ioda.total_pe_num &&
3049 		       region.start <= region.end) {
3050 			phb->ioda.m32_segmap[index] = pe->pe_number;
3051 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3052 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3053 			if (rc != OPAL_SUCCESS) {
3054 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3055 				       __func__, rc, index, pe->pe_number);
3056 				break;
3057 			}
3058 
3059 			region.start += phb->ioda.m32_segsize;
3060 			index++;
3061 		}
3062 	}
3063 }
3064 
3065 /*
3066  * This function is supposed to be called on basis of PE from top
3067  * to bottom style. So the the I/O or MMIO segment assigned to
3068  * parent PE could be overridden by its child PEs if necessary.
3069  */
3070 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3071 {
3072 	struct pci_dev *pdev;
3073 	int i;
3074 
3075 	/*
3076 	 * NOTE: We only care PCI bus based PE for now. For PCI
3077 	 * device based PE, for example SRIOV sensitive VF should
3078 	 * be figured out later.
3079 	 */
3080 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3081 
3082 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3083 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3084 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3085 
3086 		/*
3087 		 * If the PE contains all subordinate PCI buses, the
3088 		 * windows of the child bridges should be mapped to
3089 		 * the PE as well.
3090 		 */
3091 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3092 			continue;
3093 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3094 			pnv_ioda_setup_pe_res(pe,
3095 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3096 	}
3097 }
3098 
3099 #ifdef CONFIG_DEBUG_FS
3100 static int pnv_pci_diag_data_set(void *data, u64 val)
3101 {
3102 	struct pci_controller *hose;
3103 	struct pnv_phb *phb;
3104 	s64 ret;
3105 
3106 	if (val != 1ULL)
3107 		return -EINVAL;
3108 
3109 	hose = (struct pci_controller *)data;
3110 	if (!hose || !hose->private_data)
3111 		return -ENODEV;
3112 
3113 	phb = hose->private_data;
3114 
3115 	/* Retrieve the diag data from firmware */
3116 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3117 					  phb->diag_data_size);
3118 	if (ret != OPAL_SUCCESS)
3119 		return -EIO;
3120 
3121 	/* Print the diag data to the kernel log */
3122 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3123 	return 0;
3124 }
3125 
3126 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3127 			pnv_pci_diag_data_set, "%llu\n");
3128 
3129 #endif /* CONFIG_DEBUG_FS */
3130 
3131 static void pnv_pci_ioda_create_dbgfs(void)
3132 {
3133 #ifdef CONFIG_DEBUG_FS
3134 	struct pci_controller *hose, *tmp;
3135 	struct pnv_phb *phb;
3136 	char name[16];
3137 
3138 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3139 		phb = hose->private_data;
3140 
3141 		/* Notify initialization of PHB done */
3142 		phb->initialized = 1;
3143 
3144 		sprintf(name, "PCI%04x", hose->global_number);
3145 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3146 		if (!phb->dbgfs) {
3147 			pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3148 				__func__, hose->global_number);
3149 			continue;
3150 		}
3151 
3152 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3153 				    &pnv_pci_diag_data_fops);
3154 	}
3155 #endif /* CONFIG_DEBUG_FS */
3156 }
3157 
3158 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3159 {
3160 	struct pci_dev *dev = bus->self;
3161 	struct pci_bus *child;
3162 
3163 	/* Empty bus ? bail */
3164 	if (list_empty(&bus->devices))
3165 		return;
3166 
3167 	/*
3168 	 * If there's a bridge associated with that bus enable it. This works
3169 	 * around races in the generic code if the enabling is done during
3170 	 * parallel probing. This can be removed once those races have been
3171 	 * fixed.
3172 	 */
3173 	if (dev) {
3174 		int rc = pci_enable_device(dev);
3175 		if (rc)
3176 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
3177 		pci_set_master(dev);
3178 	}
3179 
3180 	/* Perform the same to child busses */
3181 	list_for_each_entry(child, &bus->children, node)
3182 		pnv_pci_enable_bridge(child);
3183 }
3184 
3185 static void pnv_pci_enable_bridges(void)
3186 {
3187 	struct pci_controller *hose;
3188 
3189 	list_for_each_entry(hose, &hose_list, list_node)
3190 		pnv_pci_enable_bridge(hose->bus);
3191 }
3192 
3193 static void pnv_pci_ioda_fixup(void)
3194 {
3195 	pnv_pci_ioda_setup_PEs();
3196 	pnv_pci_ioda_setup_iommu_api();
3197 	pnv_pci_ioda_create_dbgfs();
3198 
3199 	pnv_pci_enable_bridges();
3200 
3201 #ifdef CONFIG_EEH
3202 	pnv_eeh_post_init();
3203 #endif
3204 }
3205 
3206 /*
3207  * Returns the alignment for I/O or memory windows for P2P
3208  * bridges. That actually depends on how PEs are segmented.
3209  * For now, we return I/O or M32 segment size for PE sensitive
3210  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3211  * 1MiB for memory) will be returned.
3212  *
3213  * The current PCI bus might be put into one PE, which was
3214  * create against the parent PCI bridge. For that case, we
3215  * needn't enlarge the alignment so that we can save some
3216  * resources.
3217  */
3218 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3219 						unsigned long type)
3220 {
3221 	struct pci_dev *bridge;
3222 	struct pci_controller *hose = pci_bus_to_host(bus);
3223 	struct pnv_phb *phb = hose->private_data;
3224 	int num_pci_bridges = 0;
3225 
3226 	bridge = bus->self;
3227 	while (bridge) {
3228 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3229 			num_pci_bridges++;
3230 			if (num_pci_bridges >= 2)
3231 				return 1;
3232 		}
3233 
3234 		bridge = bridge->bus->self;
3235 	}
3236 
3237 	/*
3238 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3239 	 * alignment for any 64-bit resource, PCIe doesn't care and
3240 	 * bridges only do 64-bit prefetchable anyway.
3241 	 */
3242 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3243 		return phb->ioda.m64_segsize;
3244 	if (type & IORESOURCE_MEM)
3245 		return phb->ioda.m32_segsize;
3246 
3247 	return phb->ioda.io_segsize;
3248 }
3249 
3250 /*
3251  * We are updating root port or the upstream port of the
3252  * bridge behind the root port with PHB's windows in order
3253  * to accommodate the changes on required resources during
3254  * PCI (slot) hotplug, which is connected to either root
3255  * port or the downstream ports of PCIe switch behind the
3256  * root port.
3257  */
3258 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3259 					   unsigned long type)
3260 {
3261 	struct pci_controller *hose = pci_bus_to_host(bus);
3262 	struct pnv_phb *phb = hose->private_data;
3263 	struct pci_dev *bridge = bus->self;
3264 	struct resource *r, *w;
3265 	bool msi_region = false;
3266 	int i;
3267 
3268 	/* Check if we need apply fixup to the bridge's windows */
3269 	if (!pci_is_root_bus(bridge->bus) &&
3270 	    !pci_is_root_bus(bridge->bus->self->bus))
3271 		return;
3272 
3273 	/* Fixup the resources */
3274 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3275 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3276 		if (!r->flags || !r->parent)
3277 			continue;
3278 
3279 		w = NULL;
3280 		if (r->flags & type & IORESOURCE_IO)
3281 			w = &hose->io_resource;
3282 		else if (pnv_pci_is_m64(phb, r) &&
3283 			 (type & IORESOURCE_PREFETCH) &&
3284 			 phb->ioda.m64_segsize)
3285 			w = &hose->mem_resources[1];
3286 		else if (r->flags & type & IORESOURCE_MEM) {
3287 			w = &hose->mem_resources[0];
3288 			msi_region = true;
3289 		}
3290 
3291 		r->start = w->start;
3292 		r->end = w->end;
3293 
3294 		/* The 64KB 32-bits MSI region shouldn't be included in
3295 		 * the 32-bits bridge window. Otherwise, we can see strange
3296 		 * issues. One of them is EEH error observed on Garrison.
3297 		 *
3298 		 * Exclude top 1MB region which is the minimal alignment of
3299 		 * 32-bits bridge window.
3300 		 */
3301 		if (msi_region) {
3302 			r->end += 0x10000;
3303 			r->end -= 0x100000;
3304 		}
3305 	}
3306 }
3307 
3308 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3309 {
3310 	struct pci_controller *hose = pci_bus_to_host(bus);
3311 	struct pnv_phb *phb = hose->private_data;
3312 	struct pci_dev *bridge = bus->self;
3313 	struct pnv_ioda_pe *pe;
3314 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3315 
3316 	/* Extend bridge's windows if necessary */
3317 	pnv_pci_fixup_bridge_resources(bus, type);
3318 
3319 	/* The PE for root bus should be realized before any one else */
3320 	if (!phb->ioda.root_pe_populated) {
3321 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3322 		if (pe) {
3323 			phb->ioda.root_pe_idx = pe->pe_number;
3324 			phb->ioda.root_pe_populated = true;
3325 		}
3326 	}
3327 
3328 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3329 	if (list_empty(&bus->devices))
3330 		return;
3331 
3332 	/* Reserve PEs according to used M64 resources */
3333 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
3334 
3335 	/*
3336 	 * Assign PE. We might run here because of partial hotplug.
3337 	 * For the case, we just pick up the existing PE and should
3338 	 * not allocate resources again.
3339 	 */
3340 	pe = pnv_ioda_setup_bus_PE(bus, all);
3341 	if (!pe)
3342 		return;
3343 
3344 	pnv_ioda_setup_pe_seg(pe);
3345 	switch (phb->type) {
3346 	case PNV_PHB_IODA1:
3347 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3348 		break;
3349 	case PNV_PHB_IODA2:
3350 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3351 		break;
3352 	default:
3353 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3354 			__func__, phb->hose->global_number, phb->type);
3355 	}
3356 }
3357 
3358 static resource_size_t pnv_pci_default_alignment(void)
3359 {
3360 	return PAGE_SIZE;
3361 }
3362 
3363 #ifdef CONFIG_PCI_IOV
3364 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3365 						      int resno)
3366 {
3367 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3368 	struct pnv_phb *phb = hose->private_data;
3369 	struct pci_dn *pdn = pci_get_pdn(pdev);
3370 	resource_size_t align;
3371 
3372 	/*
3373 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3374 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3375 	 * BAR should be size aligned.
3376 	 *
3377 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3378 	 * powernv-specific hardware restriction is gone. But if just use the
3379 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3380 	 * in one segment of M64 #15, which introduces the PE conflict between
3381 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3382 	 * m64_segsize.
3383 	 *
3384 	 * This function returns the total IOV BAR size if M64 BAR is in
3385 	 * Shared PE mode or just VF BAR size if not.
3386 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3387 	 * M64 segment size if IOV BAR size is less.
3388 	 */
3389 	align = pci_iov_resource_size(pdev, resno);
3390 	if (!pdn->vfs_expanded)
3391 		return align;
3392 	if (pdn->m64_single_mode)
3393 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3394 
3395 	return pdn->vfs_expanded * align;
3396 }
3397 #endif /* CONFIG_PCI_IOV */
3398 
3399 /* Prevent enabling devices for which we couldn't properly
3400  * assign a PE
3401  */
3402 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3403 {
3404 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3405 	struct pnv_phb *phb = hose->private_data;
3406 	struct pci_dn *pdn;
3407 
3408 	/* The function is probably called while the PEs have
3409 	 * not be created yet. For example, resource reassignment
3410 	 * during PCI probe period. We just skip the check if
3411 	 * PEs isn't ready.
3412 	 */
3413 	if (!phb->initialized)
3414 		return true;
3415 
3416 	pdn = pci_get_pdn(dev);
3417 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3418 		return false;
3419 
3420 	return true;
3421 }
3422 
3423 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3424 				       int num)
3425 {
3426 	struct pnv_ioda_pe *pe = container_of(table_group,
3427 					      struct pnv_ioda_pe, table_group);
3428 	struct pnv_phb *phb = pe->phb;
3429 	unsigned int idx;
3430 	long rc;
3431 
3432 	pe_info(pe, "Removing DMA window #%d\n", num);
3433 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3434 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3435 			continue;
3436 
3437 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3438 						idx, 0, 0ul, 0ul, 0ul);
3439 		if (rc != OPAL_SUCCESS) {
3440 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3441 				rc, idx);
3442 			return rc;
3443 		}
3444 
3445 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3446 	}
3447 
3448 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3449 	return OPAL_SUCCESS;
3450 }
3451 
3452 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3453 {
3454 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3455 	struct iommu_table *tbl = pe->table_group.tables[0];
3456 	int64_t rc;
3457 
3458 	if (!weight)
3459 		return;
3460 
3461 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3462 	if (rc != OPAL_SUCCESS)
3463 		return;
3464 
3465 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3466 	if (pe->table_group.group) {
3467 		iommu_group_put(pe->table_group.group);
3468 		WARN_ON(pe->table_group.group);
3469 	}
3470 
3471 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3472 	iommu_tce_table_put(tbl);
3473 }
3474 
3475 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3476 {
3477 	struct iommu_table *tbl = pe->table_group.tables[0];
3478 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3479 #ifdef CONFIG_IOMMU_API
3480 	int64_t rc;
3481 #endif
3482 
3483 	if (!weight)
3484 		return;
3485 
3486 #ifdef CONFIG_IOMMU_API
3487 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3488 	if (rc)
3489 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3490 #endif
3491 
3492 	pnv_pci_ioda2_set_bypass(pe, false);
3493 	if (pe->table_group.group) {
3494 		iommu_group_put(pe->table_group.group);
3495 		WARN_ON(pe->table_group.group);
3496 	}
3497 
3498 	iommu_tce_table_put(tbl);
3499 }
3500 
3501 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3502 				 unsigned short win,
3503 				 unsigned int *map)
3504 {
3505 	struct pnv_phb *phb = pe->phb;
3506 	int idx;
3507 	int64_t rc;
3508 
3509 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3510 		if (map[idx] != pe->pe_number)
3511 			continue;
3512 
3513 		if (win == OPAL_M64_WINDOW_TYPE)
3514 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3515 					phb->ioda.reserved_pe_idx, win,
3516 					idx / PNV_IODA1_M64_SEGS,
3517 					idx % PNV_IODA1_M64_SEGS);
3518 		else
3519 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3520 					phb->ioda.reserved_pe_idx, win, 0, idx);
3521 
3522 		if (rc != OPAL_SUCCESS)
3523 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3524 				rc, win, idx);
3525 
3526 		map[idx] = IODA_INVALID_PE;
3527 	}
3528 }
3529 
3530 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3531 {
3532 	struct pnv_phb *phb = pe->phb;
3533 
3534 	if (phb->type == PNV_PHB_IODA1) {
3535 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3536 				     phb->ioda.io_segmap);
3537 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3538 				     phb->ioda.m32_segmap);
3539 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3540 				     phb->ioda.m64_segmap);
3541 	} else if (phb->type == PNV_PHB_IODA2) {
3542 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3543 				     phb->ioda.m32_segmap);
3544 	}
3545 }
3546 
3547 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3548 {
3549 	struct pnv_phb *phb = pe->phb;
3550 	struct pnv_ioda_pe *slave, *tmp;
3551 
3552 	list_del(&pe->list);
3553 	switch (phb->type) {
3554 	case PNV_PHB_IODA1:
3555 		pnv_pci_ioda1_release_pe_dma(pe);
3556 		break;
3557 	case PNV_PHB_IODA2:
3558 		pnv_pci_ioda2_release_pe_dma(pe);
3559 		break;
3560 	default:
3561 		WARN_ON(1);
3562 	}
3563 
3564 	pnv_ioda_release_pe_seg(pe);
3565 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3566 
3567 	/* Release slave PEs in the compound PE */
3568 	if (pe->flags & PNV_IODA_PE_MASTER) {
3569 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3570 			list_del(&slave->list);
3571 			pnv_ioda_free_pe(slave);
3572 		}
3573 	}
3574 
3575 	/*
3576 	 * The PE for root bus can be removed because of hotplug in EEH
3577 	 * recovery for fenced PHB error. We need to mark the PE dead so
3578 	 * that it can be populated again in PCI hot add path. The PE
3579 	 * shouldn't be destroyed as it's the global reserved resource.
3580 	 */
3581 	if (phb->ioda.root_pe_populated &&
3582 	    phb->ioda.root_pe_idx == pe->pe_number)
3583 		phb->ioda.root_pe_populated = false;
3584 	else
3585 		pnv_ioda_free_pe(pe);
3586 }
3587 
3588 static void pnv_pci_release_device(struct pci_dev *pdev)
3589 {
3590 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3591 	struct pnv_phb *phb = hose->private_data;
3592 	struct pci_dn *pdn = pci_get_pdn(pdev);
3593 	struct pnv_ioda_pe *pe;
3594 
3595 	if (pdev->is_virtfn)
3596 		return;
3597 
3598 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3599 		return;
3600 
3601 	/*
3602 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3603 	 * isn't removed and added afterwards in this scenario. We should
3604 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3605 	 * device count is decreased on removing devices while failing to
3606 	 * be increased on adding devices. It leads to unbalanced PE's device
3607 	 * count and eventually make normal PCI hotplug path broken.
3608 	 */
3609 	pe = &phb->ioda.pe_array[pdn->pe_number];
3610 	pdn->pe_number = IODA_INVALID_PE;
3611 
3612 	WARN_ON(--pe->device_count < 0);
3613 	if (pe->device_count == 0)
3614 		pnv_ioda_release_pe(pe);
3615 }
3616 
3617 static void pnv_npu_disable_device(struct pci_dev *pdev)
3618 {
3619 	struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
3620 	struct eeh_pe *eehpe = edev ? edev->pe : NULL;
3621 
3622 	if (eehpe && eeh_ops && eeh_ops->reset)
3623 		eeh_ops->reset(eehpe, EEH_RESET_HOT);
3624 }
3625 
3626 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3627 {
3628 	struct pnv_phb *phb = hose->private_data;
3629 
3630 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3631 		       OPAL_ASSERT_RESET);
3632 }
3633 
3634 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3635 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3636 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3637 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3638 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3639 	.enable_device_hook	= pnv_pci_enable_device_hook,
3640 	.release_device		= pnv_pci_release_device,
3641 	.window_alignment	= pnv_pci_window_alignment,
3642 	.setup_bridge		= pnv_pci_setup_bridge,
3643 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3644 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3645 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3646 	.shutdown		= pnv_pci_ioda_shutdown,
3647 };
3648 
3649 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3650 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3651 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3652 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3653 	.enable_device_hook	= pnv_pci_enable_device_hook,
3654 	.window_alignment	= pnv_pci_window_alignment,
3655 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3656 	.shutdown		= pnv_pci_ioda_shutdown,
3657 	.disable_device		= pnv_npu_disable_device,
3658 };
3659 
3660 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3661 	.enable_device_hook	= pnv_pci_enable_device_hook,
3662 	.window_alignment	= pnv_pci_window_alignment,
3663 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3664 	.shutdown		= pnv_pci_ioda_shutdown,
3665 };
3666 
3667 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3668 					 u64 hub_id, int ioda_type)
3669 {
3670 	struct pci_controller *hose;
3671 	struct pnv_phb *phb;
3672 	unsigned long size, m64map_off, m32map_off, pemap_off;
3673 	unsigned long iomap_off = 0, dma32map_off = 0;
3674 	struct resource r;
3675 	const __be64 *prop64;
3676 	const __be32 *prop32;
3677 	int len;
3678 	unsigned int segno;
3679 	u64 phb_id;
3680 	void *aux;
3681 	long rc;
3682 
3683 	if (!of_device_is_available(np))
3684 		return;
3685 
3686 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3687 
3688 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3689 	if (!prop64) {
3690 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3691 		return;
3692 	}
3693 	phb_id = be64_to_cpup(prop64);
3694 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3695 
3696 	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3697 
3698 	/* Allocate PCI controller */
3699 	phb->hose = hose = pcibios_alloc_controller(np);
3700 	if (!phb->hose) {
3701 		pr_err("  Can't allocate PCI controller for %pOF\n",
3702 		       np);
3703 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3704 		return;
3705 	}
3706 
3707 	spin_lock_init(&phb->lock);
3708 	prop32 = of_get_property(np, "bus-range", &len);
3709 	if (prop32 && len == 8) {
3710 		hose->first_busno = be32_to_cpu(prop32[0]);
3711 		hose->last_busno = be32_to_cpu(prop32[1]);
3712 	} else {
3713 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3714 		hose->first_busno = 0;
3715 		hose->last_busno = 0xff;
3716 	}
3717 	hose->private_data = phb;
3718 	phb->hub_id = hub_id;
3719 	phb->opal_id = phb_id;
3720 	phb->type = ioda_type;
3721 	mutex_init(&phb->ioda.pe_alloc_mutex);
3722 
3723 	/* Detect specific models for error handling */
3724 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3725 		phb->model = PNV_PHB_MODEL_P7IOC;
3726 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3727 		phb->model = PNV_PHB_MODEL_PHB3;
3728 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3729 		phb->model = PNV_PHB_MODEL_NPU;
3730 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3731 		phb->model = PNV_PHB_MODEL_NPU2;
3732 	else
3733 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3734 
3735 	/* Initialize diagnostic data buffer */
3736 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3737 	if (prop32)
3738 		phb->diag_data_size = be32_to_cpup(prop32);
3739 	else
3740 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3741 
3742 	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3743 
3744 	/* Parse 32-bit and IO ranges (if any) */
3745 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3746 
3747 	/* Get registers */
3748 	if (!of_address_to_resource(np, 0, &r)) {
3749 		phb->regs_phys = r.start;
3750 		phb->regs = ioremap(r.start, resource_size(&r));
3751 		if (phb->regs == NULL)
3752 			pr_err("  Failed to map registers !\n");
3753 	}
3754 
3755 	/* Initialize more IODA stuff */
3756 	phb->ioda.total_pe_num = 1;
3757 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3758 	if (prop32)
3759 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3760 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3761 	if (prop32)
3762 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3763 
3764 	/* Invalidate RID to PE# mapping */
3765 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3766 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3767 
3768 	/* Parse 64-bit MMIO range */
3769 	pnv_ioda_parse_m64_window(phb);
3770 
3771 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3772 	/* FW Has already off top 64k of M32 space (MSI space) */
3773 	phb->ioda.m32_size += 0x10000;
3774 
3775 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3776 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3777 	phb->ioda.io_size = hose->pci_io_size;
3778 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3779 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3780 
3781 	/* Calculate how many 32-bit TCE segments we have */
3782 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3783 				PNV_IODA1_DMA32_SEGSIZE;
3784 
3785 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3786 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3787 			sizeof(unsigned long));
3788 	m64map_off = size;
3789 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3790 	m32map_off = size;
3791 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3792 	if (phb->type == PNV_PHB_IODA1) {
3793 		iomap_off = size;
3794 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3795 		dma32map_off = size;
3796 		size += phb->ioda.dma32_count *
3797 			sizeof(phb->ioda.dma32_segmap[0]);
3798 	}
3799 	pemap_off = size;
3800 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3801 	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3802 	phb->ioda.pe_alloc = aux;
3803 	phb->ioda.m64_segmap = aux + m64map_off;
3804 	phb->ioda.m32_segmap = aux + m32map_off;
3805 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3806 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3807 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3808 	}
3809 	if (phb->type == PNV_PHB_IODA1) {
3810 		phb->ioda.io_segmap = aux + iomap_off;
3811 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3812 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3813 
3814 		phb->ioda.dma32_segmap = aux + dma32map_off;
3815 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3816 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3817 	}
3818 	phb->ioda.pe_array = aux + pemap_off;
3819 
3820 	/*
3821 	 * Choose PE number for root bus, which shouldn't have
3822 	 * M64 resources consumed by its child devices. To pick
3823 	 * the PE number adjacent to the reserved one if possible.
3824 	 */
3825 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3826 	if (phb->ioda.reserved_pe_idx == 0) {
3827 		phb->ioda.root_pe_idx = 1;
3828 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3829 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3830 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3831 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3832 	} else {
3833 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3834 	}
3835 
3836 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3837 	mutex_init(&phb->ioda.pe_list_mutex);
3838 
3839 	/* Calculate how many 32-bit TCE segments we have */
3840 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3841 				PNV_IODA1_DMA32_SEGSIZE;
3842 
3843 #if 0 /* We should really do that ... */
3844 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3845 					 window_type,
3846 					 window_num,
3847 					 starting_real_address,
3848 					 starting_pci_address,
3849 					 segment_size);
3850 #endif
3851 
3852 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3853 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3854 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3855 	if (phb->ioda.m64_size)
3856 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3857 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3858 	if (phb->ioda.io_size)
3859 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3860 			phb->ioda.io_size, phb->ioda.io_segsize);
3861 
3862 
3863 	phb->hose->ops = &pnv_pci_ops;
3864 	phb->get_pe_state = pnv_ioda_get_pe_state;
3865 	phb->freeze_pe = pnv_ioda_freeze_pe;
3866 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3867 
3868 	/* Setup MSI support */
3869 	pnv_pci_init_ioda_msis(phb);
3870 
3871 	/*
3872 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3873 	 * to let the PCI core do resource assignment. It's supposed
3874 	 * that the PCI core will do correct I/O and MMIO alignment
3875 	 * for the P2P bridge bars so that each PCI bus (excluding
3876 	 * the child P2P bridges) can form individual PE.
3877 	 */
3878 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3879 
3880 	switch (phb->type) {
3881 	case PNV_PHB_NPU_NVLINK:
3882 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3883 		break;
3884 	case PNV_PHB_NPU_OCAPI:
3885 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3886 		break;
3887 	default:
3888 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3889 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3890 	}
3891 
3892 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3893 
3894 #ifdef CONFIG_PCI_IOV
3895 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3896 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3897 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3898 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3899 #endif
3900 
3901 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3902 
3903 	/* Reset IODA tables to a clean state */
3904 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3905 	if (rc)
3906 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3907 
3908 	/*
3909 	 * If we're running in kdump kernel, the previous kernel never
3910 	 * shutdown PCI devices correctly. We already got IODA table
3911 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3912 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3913 	 * kernel parameter will force this reset too.
3914 	 */
3915 	if (is_kdump_kernel() || pci_reset_phbs) {
3916 		pr_info("  Issue PHB reset ...\n");
3917 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3918 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3919 	}
3920 
3921 	/* Remove M64 resource if we can't configure it successfully */
3922 	if (!phb->init_m64 || phb->init_m64(phb))
3923 		hose->mem_resources[1].flags = 0;
3924 }
3925 
3926 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3927 {
3928 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3929 }
3930 
3931 void __init pnv_pci_init_npu_phb(struct device_node *np)
3932 {
3933 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3934 }
3935 
3936 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3937 {
3938 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3939 }
3940 
3941 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3942 {
3943 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3944 	struct pnv_phb *phb = hose->private_data;
3945 
3946 	if (!machine_is(powernv))
3947 		return;
3948 
3949 	if (phb->type == PNV_PHB_NPU_OCAPI)
3950 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3951 }
3952 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3953 
3954 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3955 {
3956 	struct device_node *phbn;
3957 	const __be64 *prop64;
3958 	u64 hub_id;
3959 
3960 	pr_info("Probing IODA IO-Hub %pOF\n", np);
3961 
3962 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3963 	if (!prop64) {
3964 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3965 		return;
3966 	}
3967 	hub_id = be64_to_cpup(prop64);
3968 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3969 
3970 	/* Count child PHBs */
3971 	for_each_child_of_node(np, phbn) {
3972 		/* Look for IODA1 PHBs */
3973 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3974 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3975 	}
3976 }
3977