1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7 
8 #undef DEBUG
9 
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 #include <linux/debugfs.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/pci-bridge.h>
30 #include <asm/machdep.h>
31 #include <asm/msi_bitmap.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/opal.h>
34 #include <asm/iommu.h>
35 #include <asm/tce.h>
36 #include <asm/xics.h>
37 #include <asm/firmware.h>
38 #include <asm/pnv-pci.h>
39 #include <asm/mmzone.h>
40 #include <asm/xive.h>
41 
42 #include <misc/cxl-base.h>
43 
44 #include "powernv.h"
45 #include "pci.h"
46 #include "../../../../drivers/pci/pci.h"
47 
48 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_OCAPI" };
49 
50 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
51 static void pnv_pci_configure_bus(struct pci_bus *bus);
52 
53 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
54 			    const char *fmt, ...)
55 {
56 	struct va_format vaf;
57 	va_list args;
58 	char pfix[32];
59 
60 	va_start(args, fmt);
61 
62 	vaf.fmt = fmt;
63 	vaf.va = &args;
64 
65 	if (pe->flags & PNV_IODA_PE_DEV)
66 		strscpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
67 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
68 		sprintf(pfix, "%04x:%02x     ",
69 			pci_domain_nr(pe->pbus), pe->pbus->number);
70 #ifdef CONFIG_PCI_IOV
71 	else if (pe->flags & PNV_IODA_PE_VF)
72 		sprintf(pfix, "%04x:%02x:%2x.%d",
73 			pci_domain_nr(pe->parent_dev->bus),
74 			(pe->rid & 0xff00) >> 8,
75 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
76 #endif /* CONFIG_PCI_IOV*/
77 
78 	printk("%spci %s: [PE# %.2x] %pV",
79 	       level, pfix, pe->pe_number, &vaf);
80 
81 	va_end(args);
82 }
83 
84 static bool pnv_iommu_bypass_disabled __read_mostly;
85 static bool pci_reset_phbs __read_mostly;
86 
87 static int __init iommu_setup(char *str)
88 {
89 	if (!str)
90 		return -EINVAL;
91 
92 	while (*str) {
93 		if (!strncmp(str, "nobypass", 8)) {
94 			pnv_iommu_bypass_disabled = true;
95 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
96 			break;
97 		}
98 		str += strcspn(str, ",");
99 		if (*str == ',')
100 			str++;
101 	}
102 
103 	return 0;
104 }
105 early_param("iommu", iommu_setup);
106 
107 static int __init pci_reset_phbs_setup(char *str)
108 {
109 	pci_reset_phbs = true;
110 	return 0;
111 }
112 
113 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
114 
115 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
116 {
117 	s64 rc;
118 
119 	phb->ioda.pe_array[pe_no].phb = phb;
120 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
121 	phb->ioda.pe_array[pe_no].dma_setup_done = false;
122 
123 	/*
124 	 * Clear the PE frozen state as it might be put into frozen state
125 	 * in the last PCI remove path. It's not harmful to do so when the
126 	 * PE is already in unfrozen state.
127 	 */
128 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
129 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
130 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
131 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
132 			__func__, rc, phb->hose->global_number, pe_no);
133 
134 	return &phb->ioda.pe_array[pe_no];
135 }
136 
137 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
138 {
139 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
140 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
141 			__func__, pe_no, phb->hose->global_number);
142 		return;
143 	}
144 
145 	mutex_lock(&phb->ioda.pe_alloc_mutex);
146 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
147 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
148 			 __func__, pe_no, phb->hose->global_number);
149 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
150 
151 	pnv_ioda_init_pe(phb, pe_no);
152 }
153 
154 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
155 {
156 	struct pnv_ioda_pe *ret = NULL;
157 	int run = 0, pe, i;
158 
159 	mutex_lock(&phb->ioda.pe_alloc_mutex);
160 
161 	/* scan backwards for a run of @count cleared bits */
162 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
163 		if (test_bit(pe, phb->ioda.pe_alloc)) {
164 			run = 0;
165 			continue;
166 		}
167 
168 		run++;
169 		if (run == count)
170 			break;
171 	}
172 	if (run != count)
173 		goto out;
174 
175 	for (i = pe; i < pe + count; i++) {
176 		set_bit(i, phb->ioda.pe_alloc);
177 		pnv_ioda_init_pe(phb, i);
178 	}
179 	ret = &phb->ioda.pe_array[pe];
180 
181 out:
182 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
183 	return ret;
184 }
185 
186 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
187 {
188 	struct pnv_phb *phb = pe->phb;
189 	unsigned int pe_num = pe->pe_number;
190 
191 	WARN_ON(pe->pdev);
192 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
193 
194 	mutex_lock(&phb->ioda.pe_alloc_mutex);
195 	clear_bit(pe_num, phb->ioda.pe_alloc);
196 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
197 }
198 
199 /* The default M64 BAR is shared by all PEs */
200 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
201 {
202 	const char *desc;
203 	struct resource *r;
204 	s64 rc;
205 
206 	/* Configure the default M64 BAR */
207 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
208 					 OPAL_M64_WINDOW_TYPE,
209 					 phb->ioda.m64_bar_idx,
210 					 phb->ioda.m64_base,
211 					 0, /* unused */
212 					 phb->ioda.m64_size);
213 	if (rc != OPAL_SUCCESS) {
214 		desc = "configuring";
215 		goto fail;
216 	}
217 
218 	/* Enable the default M64 BAR */
219 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
220 				      OPAL_M64_WINDOW_TYPE,
221 				      phb->ioda.m64_bar_idx,
222 				      OPAL_ENABLE_M64_SPLIT);
223 	if (rc != OPAL_SUCCESS) {
224 		desc = "enabling";
225 		goto fail;
226 	}
227 
228 	/*
229 	 * Exclude the segments for reserved and root bus PE, which
230 	 * are first or last two PEs.
231 	 */
232 	r = &phb->hose->mem_resources[1];
233 	if (phb->ioda.reserved_pe_idx == 0)
234 		r->start += (2 * phb->ioda.m64_segsize);
235 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
236 		r->end -= (2 * phb->ioda.m64_segsize);
237 	else
238 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
239 			phb->ioda.reserved_pe_idx);
240 
241 	return 0;
242 
243 fail:
244 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
245 		rc, desc, phb->ioda.m64_bar_idx);
246 	opal_pci_phb_mmio_enable(phb->opal_id,
247 				 OPAL_M64_WINDOW_TYPE,
248 				 phb->ioda.m64_bar_idx,
249 				 OPAL_DISABLE_M64);
250 	return -EIO;
251 }
252 
253 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
254 					 unsigned long *pe_bitmap)
255 {
256 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
257 	struct resource *r;
258 	resource_size_t base, sgsz, start, end;
259 	int segno, i;
260 
261 	base = phb->ioda.m64_base;
262 	sgsz = phb->ioda.m64_segsize;
263 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
264 		r = &pdev->resource[i];
265 		if (!r->parent || !pnv_pci_is_m64(phb, r))
266 			continue;
267 
268 		start = ALIGN_DOWN(r->start - base, sgsz);
269 		end = ALIGN(r->end - base, sgsz);
270 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
271 			if (pe_bitmap)
272 				set_bit(segno, pe_bitmap);
273 			else
274 				pnv_ioda_reserve_pe(phb, segno);
275 		}
276 	}
277 }
278 
279 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
280 				    unsigned long *pe_bitmap,
281 				    bool all)
282 {
283 	struct pci_dev *pdev;
284 
285 	list_for_each_entry(pdev, &bus->devices, bus_list) {
286 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
287 
288 		if (all && pdev->subordinate)
289 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
290 						pe_bitmap, all);
291 	}
292 }
293 
294 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
295 {
296 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
297 	struct pnv_ioda_pe *master_pe, *pe;
298 	unsigned long size, *pe_alloc;
299 	int i;
300 
301 	/* Root bus shouldn't use M64 */
302 	if (pci_is_root_bus(bus))
303 		return NULL;
304 
305 	/* Allocate bitmap */
306 	size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
307 	pe_alloc = kzalloc(size, GFP_KERNEL);
308 	if (!pe_alloc) {
309 		pr_warn("%s: Out of memory !\n",
310 			__func__);
311 		return NULL;
312 	}
313 
314 	/* Figure out reserved PE numbers by the PE */
315 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
316 
317 	/*
318 	 * the current bus might not own M64 window and that's all
319 	 * contributed by its child buses. For the case, we needn't
320 	 * pick M64 dependent PE#.
321 	 */
322 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
323 		kfree(pe_alloc);
324 		return NULL;
325 	}
326 
327 	/*
328 	 * Figure out the master PE and put all slave PEs to master
329 	 * PE's list to form compound PE.
330 	 */
331 	master_pe = NULL;
332 	i = -1;
333 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
334 		phb->ioda.total_pe_num) {
335 		pe = &phb->ioda.pe_array[i];
336 
337 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
338 		if (!master_pe) {
339 			pe->flags |= PNV_IODA_PE_MASTER;
340 			INIT_LIST_HEAD(&pe->slaves);
341 			master_pe = pe;
342 		} else {
343 			pe->flags |= PNV_IODA_PE_SLAVE;
344 			pe->master = master_pe;
345 			list_add_tail(&pe->list, &master_pe->slaves);
346 		}
347 	}
348 
349 	kfree(pe_alloc);
350 	return master_pe;
351 }
352 
353 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
354 {
355 	struct pci_controller *hose = phb->hose;
356 	struct device_node *dn = hose->dn;
357 	struct resource *res;
358 	u32 m64_range[2], i;
359 	const __be32 *r;
360 	u64 pci_addr;
361 
362 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
363 		pr_info("  Not support M64 window\n");
364 		return;
365 	}
366 
367 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
368 		pr_info("  Firmware too old to support M64 window\n");
369 		return;
370 	}
371 
372 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
373 	if (!r) {
374 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
375 			dn);
376 		return;
377 	}
378 
379 	/*
380 	 * Find the available M64 BAR range and pickup the last one for
381 	 * covering the whole 64-bits space. We support only one range.
382 	 */
383 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
384 				       m64_range, 2)) {
385 		/* In absence of the property, assume 0..15 */
386 		m64_range[0] = 0;
387 		m64_range[1] = 16;
388 	}
389 	/* We only support 64 bits in our allocator */
390 	if (m64_range[1] > 63) {
391 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
392 			__func__, m64_range[1], phb->hose->global_number);
393 		m64_range[1] = 63;
394 	}
395 	/* Empty range, no m64 */
396 	if (m64_range[1] <= m64_range[0]) {
397 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
398 			__func__, phb->hose->global_number);
399 		return;
400 	}
401 
402 	/* Configure M64 informations */
403 	res = &hose->mem_resources[1];
404 	res->name = dn->full_name;
405 	res->start = of_translate_address(dn, r + 2);
406 	res->end = res->start + of_read_number(r + 4, 2) - 1;
407 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
408 	pci_addr = of_read_number(r, 2);
409 	hose->mem_offset[1] = res->start - pci_addr;
410 
411 	phb->ioda.m64_size = resource_size(res);
412 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
413 	phb->ioda.m64_base = pci_addr;
414 
415 	/* This lines up nicely with the display from processing OF ranges */
416 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
417 		res->start, res->end, pci_addr, m64_range[0],
418 		m64_range[0] + m64_range[1] - 1);
419 
420 	/* Mark all M64 used up by default */
421 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
422 
423 	/* Use last M64 BAR to cover M64 window */
424 	m64_range[1]--;
425 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
426 
427 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
428 
429 	/* Mark remaining ones free */
430 	for (i = m64_range[0]; i < m64_range[1]; i++)
431 		clear_bit(i, &phb->ioda.m64_bar_alloc);
432 
433 	/*
434 	 * Setup init functions for M64 based on IODA version, IODA3 uses
435 	 * the IODA2 code.
436 	 */
437 	phb->init_m64 = pnv_ioda2_init_m64;
438 }
439 
440 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
441 {
442 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
443 	struct pnv_ioda_pe *slave;
444 	s64 rc;
445 
446 	/* Fetch master PE */
447 	if (pe->flags & PNV_IODA_PE_SLAVE) {
448 		pe = pe->master;
449 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
450 			return;
451 
452 		pe_no = pe->pe_number;
453 	}
454 
455 	/* Freeze master PE */
456 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
457 				     pe_no,
458 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
459 	if (rc != OPAL_SUCCESS) {
460 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
461 			__func__, rc, phb->hose->global_number, pe_no);
462 		return;
463 	}
464 
465 	/* Freeze slave PEs */
466 	if (!(pe->flags & PNV_IODA_PE_MASTER))
467 		return;
468 
469 	list_for_each_entry(slave, &pe->slaves, list) {
470 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
471 					     slave->pe_number,
472 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
473 		if (rc != OPAL_SUCCESS)
474 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
475 				__func__, rc, phb->hose->global_number,
476 				slave->pe_number);
477 	}
478 }
479 
480 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
481 {
482 	struct pnv_ioda_pe *pe, *slave;
483 	s64 rc;
484 
485 	/* Find master PE */
486 	pe = &phb->ioda.pe_array[pe_no];
487 	if (pe->flags & PNV_IODA_PE_SLAVE) {
488 		pe = pe->master;
489 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
490 		pe_no = pe->pe_number;
491 	}
492 
493 	/* Clear frozen state for master PE */
494 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
495 	if (rc != OPAL_SUCCESS) {
496 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
497 			__func__, rc, opt, phb->hose->global_number, pe_no);
498 		return -EIO;
499 	}
500 
501 	if (!(pe->flags & PNV_IODA_PE_MASTER))
502 		return 0;
503 
504 	/* Clear frozen state for slave PEs */
505 	list_for_each_entry(slave, &pe->slaves, list) {
506 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
507 					     slave->pe_number,
508 					     opt);
509 		if (rc != OPAL_SUCCESS) {
510 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
511 				__func__, rc, opt, phb->hose->global_number,
512 				slave->pe_number);
513 			return -EIO;
514 		}
515 	}
516 
517 	return 0;
518 }
519 
520 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
521 {
522 	struct pnv_ioda_pe *slave, *pe;
523 	u8 fstate = 0, state;
524 	__be16 pcierr = 0;
525 	s64 rc;
526 
527 	/* Sanity check on PE number */
528 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
529 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
530 
531 	/*
532 	 * Fetch the master PE and the PE instance might be
533 	 * not initialized yet.
534 	 */
535 	pe = &phb->ioda.pe_array[pe_no];
536 	if (pe->flags & PNV_IODA_PE_SLAVE) {
537 		pe = pe->master;
538 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
539 		pe_no = pe->pe_number;
540 	}
541 
542 	/* Check the master PE */
543 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
544 					&state, &pcierr, NULL);
545 	if (rc != OPAL_SUCCESS) {
546 		pr_warn("%s: Failure %lld getting "
547 			"PHB#%x-PE#%x state\n",
548 			__func__, rc,
549 			phb->hose->global_number, pe_no);
550 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
551 	}
552 
553 	/* Check the slave PE */
554 	if (!(pe->flags & PNV_IODA_PE_MASTER))
555 		return state;
556 
557 	list_for_each_entry(slave, &pe->slaves, list) {
558 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
559 						slave->pe_number,
560 						&fstate,
561 						&pcierr,
562 						NULL);
563 		if (rc != OPAL_SUCCESS) {
564 			pr_warn("%s: Failure %lld getting "
565 				"PHB#%x-PE#%x state\n",
566 				__func__, rc,
567 				phb->hose->global_number, slave->pe_number);
568 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
569 		}
570 
571 		/*
572 		 * Override the result based on the ascending
573 		 * priority.
574 		 */
575 		if (fstate > state)
576 			state = fstate;
577 	}
578 
579 	return state;
580 }
581 
582 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
583 {
584 	int pe_number = phb->ioda.pe_rmap[bdfn];
585 
586 	if (pe_number == IODA_INVALID_PE)
587 		return NULL;
588 
589 	return &phb->ioda.pe_array[pe_number];
590 }
591 
592 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
593 {
594 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
595 	struct pci_dn *pdn = pci_get_pdn(dev);
596 
597 	if (!pdn)
598 		return NULL;
599 	if (pdn->pe_number == IODA_INVALID_PE)
600 		return NULL;
601 	return &phb->ioda.pe_array[pdn->pe_number];
602 }
603 
604 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
605 				  struct pnv_ioda_pe *parent,
606 				  struct pnv_ioda_pe *child,
607 				  bool is_add)
608 {
609 	const char *desc = is_add ? "adding" : "removing";
610 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
611 			      OPAL_REMOVE_PE_FROM_DOMAIN;
612 	struct pnv_ioda_pe *slave;
613 	long rc;
614 
615 	/* Parent PE affects child PE */
616 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
617 				child->pe_number, op);
618 	if (rc != OPAL_SUCCESS) {
619 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
620 			rc, desc);
621 		return -ENXIO;
622 	}
623 
624 	if (!(child->flags & PNV_IODA_PE_MASTER))
625 		return 0;
626 
627 	/* Compound case: parent PE affects slave PEs */
628 	list_for_each_entry(slave, &child->slaves, list) {
629 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
630 					slave->pe_number, op);
631 		if (rc != OPAL_SUCCESS) {
632 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
633 				rc, desc);
634 			return -ENXIO;
635 		}
636 	}
637 
638 	return 0;
639 }
640 
641 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
642 			      struct pnv_ioda_pe *pe,
643 			      bool is_add)
644 {
645 	struct pnv_ioda_pe *slave;
646 	struct pci_dev *pdev = NULL;
647 	int ret;
648 
649 	/*
650 	 * Clear PE frozen state. If it's master PE, we need
651 	 * clear slave PE frozen state as well.
652 	 */
653 	if (is_add) {
654 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
655 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
656 		if (pe->flags & PNV_IODA_PE_MASTER) {
657 			list_for_each_entry(slave, &pe->slaves, list)
658 				opal_pci_eeh_freeze_clear(phb->opal_id,
659 							  slave->pe_number,
660 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
661 		}
662 	}
663 
664 	/*
665 	 * Associate PE in PELT. We need add the PE into the
666 	 * corresponding PELT-V as well. Otherwise, the error
667 	 * originated from the PE might contribute to other
668 	 * PEs.
669 	 */
670 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
671 	if (ret)
672 		return ret;
673 
674 	/* For compound PEs, any one affects all of them */
675 	if (pe->flags & PNV_IODA_PE_MASTER) {
676 		list_for_each_entry(slave, &pe->slaves, list) {
677 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
678 			if (ret)
679 				return ret;
680 		}
681 	}
682 
683 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
684 		pdev = pe->pbus->self;
685 	else if (pe->flags & PNV_IODA_PE_DEV)
686 		pdev = pe->pdev->bus->self;
687 #ifdef CONFIG_PCI_IOV
688 	else if (pe->flags & PNV_IODA_PE_VF)
689 		pdev = pe->parent_dev;
690 #endif /* CONFIG_PCI_IOV */
691 	while (pdev) {
692 		struct pci_dn *pdn = pci_get_pdn(pdev);
693 		struct pnv_ioda_pe *parent;
694 
695 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
696 			parent = &phb->ioda.pe_array[pdn->pe_number];
697 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
698 			if (ret)
699 				return ret;
700 		}
701 
702 		pdev = pdev->bus->self;
703 	}
704 
705 	return 0;
706 }
707 
708 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
709 				 struct pnv_ioda_pe *pe,
710 				 struct pci_dev *parent)
711 {
712 	int64_t rc;
713 
714 	while (parent) {
715 		struct pci_dn *pdn = pci_get_pdn(parent);
716 
717 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
718 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
719 						pe->pe_number,
720 						OPAL_REMOVE_PE_FROM_DOMAIN);
721 			/* XXX What to do in case of error ? */
722 		}
723 		parent = parent->bus->self;
724 	}
725 
726 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
727 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
728 
729 	/* Disassociate PE in PELT */
730 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
731 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
732 	if (rc)
733 		pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
734 }
735 
736 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
737 {
738 	struct pci_dev *parent;
739 	uint8_t bcomp, dcomp, fcomp;
740 	int64_t rc;
741 	long rid_end, rid;
742 
743 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
744 	if (pe->pbus) {
745 		int count;
746 
747 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
748 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
749 		parent = pe->pbus->self;
750 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
751 			count = resource_size(&pe->pbus->busn_res);
752 		else
753 			count = 1;
754 
755 		switch(count) {
756 		case  1: bcomp = OpalPciBusAll;         break;
757 		case  2: bcomp = OpalPciBus7Bits;       break;
758 		case  4: bcomp = OpalPciBus6Bits;       break;
759 		case  8: bcomp = OpalPciBus5Bits;       break;
760 		case 16: bcomp = OpalPciBus4Bits;       break;
761 		case 32: bcomp = OpalPciBus3Bits;       break;
762 		default:
763 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
764 			        count);
765 			/* Do an exact match only */
766 			bcomp = OpalPciBusAll;
767 		}
768 		rid_end = pe->rid + (count << 8);
769 	} else {
770 #ifdef CONFIG_PCI_IOV
771 		if (pe->flags & PNV_IODA_PE_VF)
772 			parent = pe->parent_dev;
773 		else
774 #endif
775 			parent = pe->pdev->bus->self;
776 		bcomp = OpalPciBusAll;
777 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
778 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
779 		rid_end = pe->rid + 1;
780 	}
781 
782 	/* Clear the reverse map */
783 	for (rid = pe->rid; rid < rid_end; rid++)
784 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
785 
786 	/*
787 	 * Release from all parents PELT-V. NPUs don't have a PELTV
788 	 * table
789 	 */
790 	if (phb->type != PNV_PHB_NPU_OCAPI)
791 		pnv_ioda_unset_peltv(phb, pe, parent);
792 
793 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
794 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
795 	if (rc)
796 		pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
797 
798 	pe->pbus = NULL;
799 	pe->pdev = NULL;
800 #ifdef CONFIG_PCI_IOV
801 	pe->parent_dev = NULL;
802 #endif
803 
804 	return 0;
805 }
806 
807 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
808 {
809 	uint8_t bcomp, dcomp, fcomp;
810 	long rc, rid_end, rid;
811 
812 	/* Bus validation ? */
813 	if (pe->pbus) {
814 		int count;
815 
816 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
817 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
818 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
819 			count = resource_size(&pe->pbus->busn_res);
820 		else
821 			count = 1;
822 
823 		switch(count) {
824 		case  1: bcomp = OpalPciBusAll;		break;
825 		case  2: bcomp = OpalPciBus7Bits;	break;
826 		case  4: bcomp = OpalPciBus6Bits;	break;
827 		case  8: bcomp = OpalPciBus5Bits;	break;
828 		case 16: bcomp = OpalPciBus4Bits;	break;
829 		case 32: bcomp = OpalPciBus3Bits;	break;
830 		default:
831 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
832 			        count);
833 			/* Do an exact match only */
834 			bcomp = OpalPciBusAll;
835 		}
836 		rid_end = pe->rid + (count << 8);
837 	} else {
838 		bcomp = OpalPciBusAll;
839 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
840 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
841 		rid_end = pe->rid + 1;
842 	}
843 
844 	/*
845 	 * Associate PE in PELT. We need add the PE into the
846 	 * corresponding PELT-V as well. Otherwise, the error
847 	 * originated from the PE might contribute to other
848 	 * PEs.
849 	 */
850 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
851 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
852 	if (rc) {
853 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
854 		return -ENXIO;
855 	}
856 
857 	/*
858 	 * Configure PELTV. NPUs don't have a PELTV table so skip
859 	 * configuration on them.
860 	 */
861 	if (phb->type != PNV_PHB_NPU_OCAPI)
862 		pnv_ioda_set_peltv(phb, pe, true);
863 
864 	/* Setup reverse map */
865 	for (rid = pe->rid; rid < rid_end; rid++)
866 		phb->ioda.pe_rmap[rid] = pe->pe_number;
867 
868 	/* Setup one MVTs on IODA1 */
869 	if (phb->type != PNV_PHB_IODA1) {
870 		pe->mve_number = 0;
871 		goto out;
872 	}
873 
874 	pe->mve_number = pe->pe_number;
875 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
876 	if (rc != OPAL_SUCCESS) {
877 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
878 		       rc, pe->mve_number);
879 		pe->mve_number = -1;
880 	} else {
881 		rc = opal_pci_set_mve_enable(phb->opal_id,
882 					     pe->mve_number, OPAL_ENABLE_MVE);
883 		if (rc) {
884 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
885 			       rc, pe->mve_number);
886 			pe->mve_number = -1;
887 		}
888 	}
889 
890 out:
891 	return 0;
892 }
893 
894 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
895 {
896 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
897 	struct pci_dn *pdn = pci_get_pdn(dev);
898 	struct pnv_ioda_pe *pe;
899 
900 	if (!pdn) {
901 		pr_err("%s: Device tree node not associated properly\n",
902 			   pci_name(dev));
903 		return NULL;
904 	}
905 	if (pdn->pe_number != IODA_INVALID_PE)
906 		return NULL;
907 
908 	pe = pnv_ioda_alloc_pe(phb, 1);
909 	if (!pe) {
910 		pr_warn("%s: Not enough PE# available, disabling device\n",
911 			pci_name(dev));
912 		return NULL;
913 	}
914 
915 	/* NOTE: We don't get a reference for the pointer in the PE
916 	 * data structure, both the device and PE structures should be
917 	 * destroyed at the same time.
918 	 *
919 	 * At some point we want to remove the PDN completely anyways
920 	 */
921 	pdn->pe_number = pe->pe_number;
922 	pe->flags = PNV_IODA_PE_DEV;
923 	pe->pdev = dev;
924 	pe->pbus = NULL;
925 	pe->mve_number = -1;
926 	pe->rid = dev->bus->number << 8 | pdn->devfn;
927 	pe->device_count++;
928 
929 	pe_info(pe, "Associated device to PE\n");
930 
931 	if (pnv_ioda_configure_pe(phb, pe)) {
932 		/* XXX What do we do here ? */
933 		pnv_ioda_free_pe(pe);
934 		pdn->pe_number = IODA_INVALID_PE;
935 		pe->pdev = NULL;
936 		return NULL;
937 	}
938 
939 	/* Put PE to the list */
940 	mutex_lock(&phb->ioda.pe_list_mutex);
941 	list_add_tail(&pe->list, &phb->ioda.pe_list);
942 	mutex_unlock(&phb->ioda.pe_list_mutex);
943 	return pe;
944 }
945 
946 /*
947  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
948  * single PCI bus. Another one that contains the primary PCI bus and its
949  * subordinate PCI devices and buses. The second type of PE is normally
950  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
951  */
952 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
953 {
954 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
955 	struct pnv_ioda_pe *pe = NULL;
956 	unsigned int pe_num;
957 
958 	/*
959 	 * In partial hotplug case, the PE instance might be still alive.
960 	 * We should reuse it instead of allocating a new one.
961 	 */
962 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
963 	if (WARN_ON(pe_num != IODA_INVALID_PE)) {
964 		pe = &phb->ioda.pe_array[pe_num];
965 		return NULL;
966 	}
967 
968 	/* PE number for root bus should have been reserved */
969 	if (pci_is_root_bus(bus))
970 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
971 
972 	/* Check if PE is determined by M64 */
973 	if (!pe)
974 		pe = pnv_ioda_pick_m64_pe(bus, all);
975 
976 	/* The PE number isn't pinned by M64 */
977 	if (!pe)
978 		pe = pnv_ioda_alloc_pe(phb, 1);
979 
980 	if (!pe) {
981 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
982 			__func__, pci_domain_nr(bus), bus->number);
983 		return NULL;
984 	}
985 
986 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
987 	pe->pbus = bus;
988 	pe->pdev = NULL;
989 	pe->mve_number = -1;
990 	pe->rid = bus->busn_res.start << 8;
991 
992 	if (all)
993 		pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
994 			&bus->busn_res.start, &bus->busn_res.end,
995 			pe->pe_number);
996 	else
997 		pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
998 			&bus->busn_res.start, pe->pe_number);
999 
1000 	if (pnv_ioda_configure_pe(phb, pe)) {
1001 		/* XXX What do we do here ? */
1002 		pnv_ioda_free_pe(pe);
1003 		pe->pbus = NULL;
1004 		return NULL;
1005 	}
1006 
1007 	/* Put PE to the list */
1008 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1009 
1010 	return pe;
1011 }
1012 
1013 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1014 {
1015 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1016 	struct pci_dn *pdn = pci_get_pdn(pdev);
1017 	struct pnv_ioda_pe *pe;
1018 
1019 	/* Check if the BDFN for this device is associated with a PE yet */
1020 	pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1021 	if (!pe) {
1022 		/* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1023 		if (WARN_ON(pdev->is_virtfn))
1024 			return;
1025 
1026 		pnv_pci_configure_bus(pdev->bus);
1027 		pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1028 		pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1029 
1030 
1031 		/*
1032 		 * If we can't setup the IODA PE something has gone horribly
1033 		 * wrong and we can't enable DMA for the device.
1034 		 */
1035 		if (WARN_ON(!pe))
1036 			return;
1037 	} else {
1038 		pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1039 	}
1040 
1041 	/*
1042 	 * We assume that bridges *probably* don't need to do any DMA so we can
1043 	 * skip allocating a TCE table, etc unless we get a non-bridge device.
1044 	 */
1045 	if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1046 		switch (phb->type) {
1047 		case PNV_PHB_IODA2:
1048 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
1049 			break;
1050 		default:
1051 			pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1052 				__func__, phb->hose->global_number, phb->type);
1053 		}
1054 	}
1055 
1056 	if (pdn)
1057 		pdn->pe_number = pe->pe_number;
1058 	pe->device_count++;
1059 
1060 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1061 	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1062 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1063 
1064 	/* PEs with a DMA weight of zero won't have a group */
1065 	if (pe->table_group.group)
1066 		iommu_add_device(&pe->table_group, &pdev->dev);
1067 }
1068 
1069 /*
1070  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1071  *
1072  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1073  * Devices can only access more than that if bit 59 of the PCI address is set
1074  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1075  * Many PCI devices are not capable of addressing that many bits, and as a
1076  * result are limited to the 4GB of virtual memory made available to 32-bit
1077  * devices in TVE#0.
1078  *
1079  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1080  * devices by configuring the virtual memory past the first 4GB inaccessible
1081  * by 64-bit DMAs.  This should only be used by devices that want more than
1082  * 4GB, and only on PEs that have no 32-bit devices.
1083  *
1084  * Currently this will only work on PHB3 (POWER8).
1085  */
1086 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1087 {
1088 	u64 window_size, table_size, tce_count, addr;
1089 	struct page *table_pages;
1090 	u64 tce_order = 28; /* 256MB TCEs */
1091 	__be64 *tces;
1092 	s64 rc;
1093 
1094 	/*
1095 	 * Window size needs to be a power of two, but needs to account for
1096 	 * shifting memory by the 4GB offset required to skip 32bit space.
1097 	 */
1098 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1099 	tce_count = window_size >> tce_order;
1100 	table_size = tce_count << 3;
1101 
1102 	if (table_size < PAGE_SIZE)
1103 		table_size = PAGE_SIZE;
1104 
1105 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1106 				       get_order(table_size));
1107 	if (!table_pages)
1108 		goto err;
1109 
1110 	tces = page_address(table_pages);
1111 	if (!tces)
1112 		goto err;
1113 
1114 	memset(tces, 0, table_size);
1115 
1116 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1117 		tces[(addr + (1ULL << 32)) >> tce_order] =
1118 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1119 	}
1120 
1121 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1122 					pe->pe_number,
1123 					/* reconfigure window 0 */
1124 					(pe->pe_number << 1) + 0,
1125 					1,
1126 					__pa(tces),
1127 					table_size,
1128 					1 << tce_order);
1129 	if (rc == OPAL_SUCCESS) {
1130 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1131 		return 0;
1132 	}
1133 err:
1134 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1135 	return -EIO;
1136 }
1137 
1138 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1139 		u64 dma_mask)
1140 {
1141 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1142 	struct pci_dn *pdn = pci_get_pdn(pdev);
1143 	struct pnv_ioda_pe *pe;
1144 
1145 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1146 		return false;
1147 
1148 	pe = &phb->ioda.pe_array[pdn->pe_number];
1149 	if (pe->tce_bypass_enabled) {
1150 		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1151 		if (dma_mask >= top)
1152 			return true;
1153 	}
1154 
1155 	/*
1156 	 * If the device can't set the TCE bypass bit but still wants
1157 	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1158 	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1159 	 * The device needs to be able to address all of this space.
1160 	 */
1161 	if (dma_mask >> 32 &&
1162 	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1163 	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1164 	    (pe->device_count == 1 || !pe->pbus) &&
1165 	    phb->model == PNV_PHB_MODEL_PHB3) {
1166 		/* Configure the bypass mode */
1167 		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1168 		if (rc)
1169 			return false;
1170 		/* 4GB offset bypasses 32-bit space */
1171 		pdev->dev.archdata.dma_offset = (1ULL << 32);
1172 		return true;
1173 	}
1174 
1175 	return false;
1176 }
1177 
1178 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb)
1179 {
1180 	return phb->regs + 0x210;
1181 }
1182 
1183 #ifdef CONFIG_IOMMU_API
1184 /* Common for IODA1 and IODA2 */
1185 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1186 		unsigned long *hpa, enum dma_data_direction *direction)
1187 {
1188 	return pnv_tce_xchg(tbl, index, hpa, direction);
1189 }
1190 #endif
1191 
1192 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1193 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1194 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1195 
1196 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1197 {
1198 	/* 01xb - invalidate TCEs that match the specified PE# */
1199 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1200 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1201 
1202 	mb(); /* Ensure above stores are visible */
1203 	__raw_writeq_be(val, invalidate);
1204 }
1205 
1206 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe,
1207 					unsigned shift, unsigned long index,
1208 					unsigned long npages)
1209 {
1210 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1211 	unsigned long start, end, inc;
1212 
1213 	/* We'll invalidate DMA address in PE scope */
1214 	start = PHB3_TCE_KILL_INVAL_ONE;
1215 	start |= (pe->pe_number & 0xFF);
1216 	end = start;
1217 
1218 	/* Figure out the start, end and step */
1219 	start |= (index << shift);
1220 	end |= ((index + npages - 1) << shift);
1221 	inc = (0x1ull << shift);
1222 	mb();
1223 
1224 	while (start <= end) {
1225 		__raw_writeq_be(start, invalidate);
1226 		start += inc;
1227 	}
1228 }
1229 
1230 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1231 {
1232 	struct pnv_phb *phb = pe->phb;
1233 
1234 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1235 		pnv_pci_phb3_tce_invalidate_pe(pe);
1236 	else
1237 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1238 				  pe->pe_number, 0, 0, 0);
1239 }
1240 
1241 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1242 		unsigned long index, unsigned long npages)
1243 {
1244 	struct iommu_table_group_link *tgl;
1245 
1246 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1247 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1248 				struct pnv_ioda_pe, table_group);
1249 		struct pnv_phb *phb = pe->phb;
1250 		unsigned int shift = tbl->it_page_shift;
1251 
1252 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1253 			pnv_pci_phb3_tce_invalidate(pe, shift,
1254 						    index, npages);
1255 		else
1256 			opal_pci_tce_kill(phb->opal_id,
1257 					  OPAL_PCI_TCE_KILL_PAGES,
1258 					  pe->pe_number, 1u << shift,
1259 					  index << shift, npages);
1260 	}
1261 }
1262 
1263 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1264 		long npages, unsigned long uaddr,
1265 		enum dma_data_direction direction,
1266 		unsigned long attrs)
1267 {
1268 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1269 			attrs);
1270 
1271 	if (!ret)
1272 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1273 
1274 	return ret;
1275 }
1276 
1277 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1278 		long npages)
1279 {
1280 	pnv_tce_free(tbl, index, npages);
1281 
1282 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1283 }
1284 
1285 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1286 	.set = pnv_ioda2_tce_build,
1287 #ifdef CONFIG_IOMMU_API
1288 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1289 	.tce_kill = pnv_pci_ioda2_tce_invalidate,
1290 	.useraddrptr = pnv_tce_useraddrptr,
1291 #endif
1292 	.clear = pnv_ioda2_tce_free,
1293 	.get = pnv_tce_get,
1294 	.free = pnv_pci_ioda2_table_free_pages,
1295 };
1296 
1297 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1298 		int num, struct iommu_table *tbl)
1299 {
1300 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1301 			table_group);
1302 	struct pnv_phb *phb = pe->phb;
1303 	int64_t rc;
1304 	const unsigned long size = tbl->it_indirect_levels ?
1305 			tbl->it_level_size : tbl->it_size;
1306 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1307 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1308 
1309 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1310 		num, start_addr, start_addr + win_size - 1,
1311 		IOMMU_PAGE_SIZE(tbl));
1312 
1313 	/*
1314 	 * Map TCE table through TVT. The TVE index is the PE number
1315 	 * shifted by 1 bit for 32-bits DMA space.
1316 	 */
1317 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
1318 			pe->pe_number,
1319 			(pe->pe_number << 1) + num,
1320 			tbl->it_indirect_levels + 1,
1321 			__pa(tbl->it_base),
1322 			size << 3,
1323 			IOMMU_PAGE_SIZE(tbl));
1324 	if (rc) {
1325 		pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1326 		return rc;
1327 	}
1328 
1329 	pnv_pci_link_table_and_group(phb->hose->node, num,
1330 			tbl, &pe->table_group);
1331 	pnv_pci_ioda2_tce_invalidate_pe(pe);
1332 
1333 	return 0;
1334 }
1335 
1336 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1337 {
1338 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
1339 	int64_t rc;
1340 
1341 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1342 	if (enable) {
1343 		phys_addr_t top = memblock_end_of_DRAM();
1344 
1345 		top = roundup_pow_of_two(top);
1346 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1347 						     pe->pe_number,
1348 						     window_id,
1349 						     pe->tce_bypass_base,
1350 						     top);
1351 	} else {
1352 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1353 						     pe->pe_number,
1354 						     window_id,
1355 						     pe->tce_bypass_base,
1356 						     0);
1357 	}
1358 	if (rc)
1359 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1360 	else
1361 		pe->tce_bypass_enabled = enable;
1362 }
1363 
1364 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1365 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
1366 		bool alloc_userspace_copy, struct iommu_table **ptbl)
1367 {
1368 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1369 			table_group);
1370 	int nid = pe->phb->hose->node;
1371 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1372 	long ret;
1373 	struct iommu_table *tbl;
1374 
1375 	tbl = pnv_pci_table_alloc(nid);
1376 	if (!tbl)
1377 		return -ENOMEM;
1378 
1379 	tbl->it_ops = &pnv_ioda2_iommu_ops;
1380 
1381 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
1382 			bus_offset, page_shift, window_size,
1383 			levels, alloc_userspace_copy, tbl);
1384 	if (ret) {
1385 		iommu_tce_table_put(tbl);
1386 		return ret;
1387 	}
1388 
1389 	*ptbl = tbl;
1390 
1391 	return 0;
1392 }
1393 
1394 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1395 {
1396 	struct iommu_table *tbl = NULL;
1397 	long rc;
1398 	unsigned long res_start, res_end;
1399 
1400 	/*
1401 	 * crashkernel= specifies the kdump kernel's maximum memory at
1402 	 * some offset and there is no guaranteed the result is a power
1403 	 * of 2, which will cause errors later.
1404 	 */
1405 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1406 
1407 	/*
1408 	 * In memory constrained environments, e.g. kdump kernel, the
1409 	 * DMA window can be larger than available memory, which will
1410 	 * cause errors later.
1411 	 */
1412 	const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER);
1413 
1414 	/*
1415 	 * We create the default window as big as we can. The constraint is
1416 	 * the max order of allocation possible. The TCE table is likely to
1417 	 * end up being multilevel and with on-demand allocation in place,
1418 	 * the initial use is not going to be huge as the default window aims
1419 	 * to support crippled devices (i.e. not fully 64bit DMAble) only.
1420 	 */
1421 	/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1422 	const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1423 	/* Each TCE level cannot exceed maxblock so go multilevel if needed */
1424 	unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1425 	unsigned long tcelevel_order = ilog2(maxblock >> 3);
1426 	unsigned int levels = tces_order / tcelevel_order;
1427 
1428 	if (tces_order % tcelevel_order)
1429 		levels += 1;
1430 	/*
1431 	 * We try to stick to default levels (which is >1 at the moment) in
1432 	 * order to save memory by relying on on-demain TCE level allocation.
1433 	 */
1434 	levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1435 
1436 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1437 			window_size, levels, false, &tbl);
1438 	if (rc) {
1439 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1440 				rc);
1441 		return rc;
1442 	}
1443 
1444 	/* We use top part of 32bit space for MMIO so exclude it from DMA */
1445 	res_start = 0;
1446 	res_end = 0;
1447 	if (window_size > pe->phb->ioda.m32_pci_base) {
1448 		res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1449 		res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1450 	}
1451 
1452 	tbl->it_index = (pe->phb->hose->global_number << 16) | pe->pe_number;
1453 	if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end))
1454 		rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1455 	else
1456 		rc = -ENOMEM;
1457 	if (rc) {
1458 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc);
1459 		iommu_tce_table_put(tbl);
1460 		tbl = NULL; /* This clears iommu_table_base below */
1461 	}
1462 	if (!pnv_iommu_bypass_disabled)
1463 		pnv_pci_ioda2_set_bypass(pe, true);
1464 
1465 	/*
1466 	 * Set table base for the case of IOMMU DMA use. Usually this is done
1467 	 * from dma_dev_setup() which is not called when a device is returned
1468 	 * from VFIO so do it here.
1469 	 */
1470 	if (pe->pdev)
1471 		set_iommu_table_base(&pe->pdev->dev, tbl);
1472 
1473 	return 0;
1474 }
1475 
1476 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1477 		int num)
1478 {
1479 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1480 			table_group);
1481 	struct pnv_phb *phb = pe->phb;
1482 	long ret;
1483 
1484 	pe_info(pe, "Removing DMA window #%d\n", num);
1485 
1486 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1487 			(pe->pe_number << 1) + num,
1488 			0/* levels */, 0/* table address */,
1489 			0/* table size */, 0/* page size */);
1490 	if (ret)
1491 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1492 	else
1493 		pnv_pci_ioda2_tce_invalidate_pe(pe);
1494 
1495 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1496 
1497 	return ret;
1498 }
1499 
1500 #ifdef CONFIG_IOMMU_API
1501 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1502 		__u64 window_size, __u32 levels)
1503 {
1504 	unsigned long bytes = 0;
1505 	const unsigned window_shift = ilog2(window_size);
1506 	unsigned entries_shift = window_shift - page_shift;
1507 	unsigned table_shift = entries_shift + 3;
1508 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1509 	unsigned long direct_table_size;
1510 
1511 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1512 			!is_power_of_2(window_size))
1513 		return 0;
1514 
1515 	/* Calculate a direct table size from window_size and levels */
1516 	entries_shift = (entries_shift + levels - 1) / levels;
1517 	table_shift = entries_shift + 3;
1518 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
1519 	direct_table_size =  1UL << table_shift;
1520 
1521 	for ( ; levels; --levels) {
1522 		bytes += ALIGN(tce_table_size, direct_table_size);
1523 
1524 		tce_table_size /= direct_table_size;
1525 		tce_table_size <<= 3;
1526 		tce_table_size = max_t(unsigned long,
1527 				tce_table_size, direct_table_size);
1528 	}
1529 
1530 	return bytes + bytes; /* one for HW table, one for userspace copy */
1531 }
1532 
1533 static long pnv_pci_ioda2_create_table_userspace(
1534 		struct iommu_table_group *table_group,
1535 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
1536 		struct iommu_table **ptbl)
1537 {
1538 	long ret = pnv_pci_ioda2_create_table(table_group,
1539 			num, page_shift, window_size, levels, true, ptbl);
1540 
1541 	if (!ret)
1542 		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
1543 				page_shift, window_size, levels);
1544 	return ret;
1545 }
1546 
1547 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1548 {
1549 	struct pci_dev *dev;
1550 
1551 	list_for_each_entry(dev, &bus->devices, bus_list) {
1552 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1553 		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1554 
1555 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1556 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1557 	}
1558 }
1559 
1560 static long pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
1561 {
1562 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1563 						table_group);
1564 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
1565 	struct iommu_table *tbl = pe->table_group.tables[0];
1566 
1567 	/*
1568 	 * iommu_ops transfers the ownership per a device and we mode
1569 	 * the group ownership with the first device in the group.
1570 	 */
1571 	if (!tbl)
1572 		return 0;
1573 
1574 	pnv_pci_ioda2_set_bypass(pe, false);
1575 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1576 	if (pe->pbus)
1577 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1578 	else if (pe->pdev)
1579 		set_iommu_table_base(&pe->pdev->dev, NULL);
1580 	iommu_tce_table_put(tbl);
1581 
1582 	return 0;
1583 }
1584 
1585 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
1586 {
1587 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1588 						table_group);
1589 
1590 	/* See the comment about iommu_ops above */
1591 	if (pe->table_group.tables[0])
1592 		return;
1593 	pnv_pci_ioda2_setup_default_config(pe);
1594 	if (pe->pbus)
1595 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1596 }
1597 
1598 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1599 	.get_table_size = pnv_pci_ioda2_get_table_size,
1600 	.create_table = pnv_pci_ioda2_create_table_userspace,
1601 	.set_window = pnv_pci_ioda2_set_window,
1602 	.unset_window = pnv_pci_ioda2_unset_window,
1603 	.take_ownership = pnv_ioda2_take_ownership,
1604 	.release_ownership = pnv_ioda2_release_ownership,
1605 };
1606 #endif
1607 
1608 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1609 				struct pnv_ioda_pe *pe)
1610 {
1611 	int64_t rc;
1612 
1613 	/* TVE #1 is selected by PCI address bit 59 */
1614 	pe->tce_bypass_base = 1ull << 59;
1615 
1616 	/* The PE will reserve all possible 32-bits space */
1617 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1618 		phb->ioda.m32_pci_base);
1619 
1620 	/* Setup linux iommu table */
1621 	pe->table_group.tce32_start = 0;
1622 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
1623 	pe->table_group.max_dynamic_windows_supported =
1624 			IOMMU_TABLE_GROUP_MAX_TABLES;
1625 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
1626 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
1627 
1628 	rc = pnv_pci_ioda2_setup_default_config(pe);
1629 	if (rc)
1630 		return;
1631 
1632 #ifdef CONFIG_IOMMU_API
1633 	pe->table_group.ops = &pnv_pci_ioda2_ops;
1634 	iommu_register_group(&pe->table_group, phb->hose->global_number,
1635 			     pe->pe_number);
1636 #endif
1637 	pe->dma_setup_done = true;
1638 }
1639 
1640 /*
1641  * Called from KVM in real mode to EOI passthru interrupts. The ICP
1642  * EOI is handled directly in KVM in kvmppc_deliver_irq_passthru().
1643  *
1644  * The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call
1645  * needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ
1646  * numbers of the in-the-middle MSI domain are vector numbers and it's
1647  * good enough for OPAL. Use that.
1648  */
1649 int64_t pnv_opal_pci_msi_eoi(struct irq_data *d)
1650 {
1651 	struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data);
1652 	struct pnv_phb *phb = hose->private_data;
1653 
1654 	return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq);
1655 }
1656 
1657 /*
1658  * The IRQ data is mapped in the XICS domain, with OPAL HW IRQ numbers
1659  */
1660 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1661 {
1662 	int64_t rc;
1663 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1664 	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1665 	struct pnv_phb *phb = hose->private_data;
1666 
1667 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1668 	WARN_ON_ONCE(rc);
1669 
1670 	icp_native_eoi(d);
1671 }
1672 
1673 /* P8/CXL only */
1674 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1675 {
1676 	struct irq_data *idata;
1677 	struct irq_chip *ichip;
1678 
1679 	/* The MSI EOI OPAL call is only needed on PHB3 */
1680 	if (phb->model != PNV_PHB_MODEL_PHB3)
1681 		return;
1682 
1683 	if (!phb->ioda.irq_chip_init) {
1684 		/*
1685 		 * First time we setup an MSI IRQ, we need to setup the
1686 		 * corresponding IRQ chip to route correctly.
1687 		 */
1688 		idata = irq_get_irq_data(virq);
1689 		ichip = irq_data_get_irq_chip(idata);
1690 		phb->ioda.irq_chip_init = 1;
1691 		phb->ioda.irq_chip = *ichip;
1692 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
1693 	}
1694 	irq_set_chip(virq, &phb->ioda.irq_chip);
1695 	irq_set_chip_data(virq, phb->hose);
1696 }
1697 
1698 static struct irq_chip pnv_pci_msi_irq_chip;
1699 
1700 /*
1701  * Returns true iff chip is something that we could call
1702  * pnv_opal_pci_msi_eoi for.
1703  */
1704 bool is_pnv_opal_msi(struct irq_chip *chip)
1705 {
1706 	return chip == &pnv_pci_msi_irq_chip;
1707 }
1708 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
1709 
1710 static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1711 				    unsigned int xive_num,
1712 				    unsigned int is_64, struct msi_msg *msg)
1713 {
1714 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1715 	__be32 data;
1716 	int rc;
1717 
1718 	dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__,
1719 		is_64 ? "64" : "32", xive_num);
1720 
1721 	/* No PE assigned ? bail out ... no MSI for you ! */
1722 	if (pe == NULL)
1723 		return -ENXIO;
1724 
1725 	/* Check if we have an MVE */
1726 	if (pe->mve_number < 0)
1727 		return -ENXIO;
1728 
1729 	/* Force 32-bit MSI on some broken devices */
1730 	if (dev->no_64bit_msi)
1731 		is_64 = 0;
1732 
1733 	/* Assign XIVE to PE */
1734 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1735 	if (rc) {
1736 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1737 			pci_name(dev), rc, xive_num);
1738 		return -EIO;
1739 	}
1740 
1741 	if (is_64) {
1742 		__be64 addr64;
1743 
1744 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1745 				     &addr64, &data);
1746 		if (rc) {
1747 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1748 				pci_name(dev), rc);
1749 			return -EIO;
1750 		}
1751 		msg->address_hi = be64_to_cpu(addr64) >> 32;
1752 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
1753 	} else {
1754 		__be32 addr32;
1755 
1756 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1757 				     &addr32, &data);
1758 		if (rc) {
1759 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1760 				pci_name(dev), rc);
1761 			return -EIO;
1762 		}
1763 		msg->address_hi = 0;
1764 		msg->address_lo = be32_to_cpu(addr32);
1765 	}
1766 	msg->data = be32_to_cpu(data);
1767 
1768 	return 0;
1769 }
1770 
1771 /*
1772  * The msi_free() op is called before irq_domain_free_irqs_top() when
1773  * the handler data is still available. Use that to clear the XIVE
1774  * controller.
1775  */
1776 static void pnv_msi_ops_msi_free(struct irq_domain *domain,
1777 				 struct msi_domain_info *info,
1778 				 unsigned int irq)
1779 {
1780 	if (xive_enabled())
1781 		xive_irq_free_data(irq);
1782 }
1783 
1784 static struct msi_domain_ops pnv_pci_msi_domain_ops = {
1785 	.msi_free	= pnv_msi_ops_msi_free,
1786 };
1787 
1788 static void pnv_msi_shutdown(struct irq_data *d)
1789 {
1790 	d = d->parent_data;
1791 	if (d->chip->irq_shutdown)
1792 		d->chip->irq_shutdown(d);
1793 }
1794 
1795 static void pnv_msi_mask(struct irq_data *d)
1796 {
1797 	pci_msi_mask_irq(d);
1798 	irq_chip_mask_parent(d);
1799 }
1800 
1801 static void pnv_msi_unmask(struct irq_data *d)
1802 {
1803 	pci_msi_unmask_irq(d);
1804 	irq_chip_unmask_parent(d);
1805 }
1806 
1807 static struct irq_chip pnv_pci_msi_irq_chip = {
1808 	.name		= "PNV-PCI-MSI",
1809 	.irq_shutdown	= pnv_msi_shutdown,
1810 	.irq_mask	= pnv_msi_mask,
1811 	.irq_unmask	= pnv_msi_unmask,
1812 	.irq_eoi	= irq_chip_eoi_parent,
1813 };
1814 
1815 static struct msi_domain_info pnv_msi_domain_info = {
1816 	.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
1817 		  MSI_FLAG_MULTI_PCI_MSI  | MSI_FLAG_PCI_MSIX),
1818 	.ops   = &pnv_pci_msi_domain_ops,
1819 	.chip  = &pnv_pci_msi_irq_chip,
1820 };
1821 
1822 static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg)
1823 {
1824 	struct msi_desc *entry = irq_data_get_msi_desc(d);
1825 	struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
1826 	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1827 	struct pnv_phb *phb = hose->private_data;
1828 	int rc;
1829 
1830 	rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq,
1831 				      entry->pci.msi_attrib.is_64, msg);
1832 	if (rc)
1833 		dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n",
1834 			entry->pci.msi_attrib.is_64 ? "64" : "32", d->hwirq, rc);
1835 }
1836 
1837 /*
1838  * The IRQ data is mapped in the MSI domain in which HW IRQ numbers
1839  * correspond to vector numbers.
1840  */
1841 static void pnv_msi_eoi(struct irq_data *d)
1842 {
1843 	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1844 	struct pnv_phb *phb = hose->private_data;
1845 
1846 	if (phb->model == PNV_PHB_MODEL_PHB3) {
1847 		/*
1848 		 * The EOI OPAL call takes an OPAL HW IRQ number but
1849 		 * since it is translated into a vector number in
1850 		 * OPAL, use that directly.
1851 		 */
1852 		WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq));
1853 	}
1854 
1855 	irq_chip_eoi_parent(d);
1856 }
1857 
1858 static struct irq_chip pnv_msi_irq_chip = {
1859 	.name			= "PNV-MSI",
1860 	.irq_shutdown		= pnv_msi_shutdown,
1861 	.irq_mask		= irq_chip_mask_parent,
1862 	.irq_unmask		= irq_chip_unmask_parent,
1863 	.irq_eoi		= pnv_msi_eoi,
1864 	.irq_set_affinity	= irq_chip_set_affinity_parent,
1865 	.irq_compose_msi_msg	= pnv_msi_compose_msg,
1866 };
1867 
1868 static int pnv_irq_parent_domain_alloc(struct irq_domain *domain,
1869 				       unsigned int virq, int hwirq)
1870 {
1871 	struct irq_fwspec parent_fwspec;
1872 	int ret;
1873 
1874 	parent_fwspec.fwnode = domain->parent->fwnode;
1875 	parent_fwspec.param_count = 2;
1876 	parent_fwspec.param[0] = hwirq;
1877 	parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1878 
1879 	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
1880 	if (ret)
1881 		return ret;
1882 
1883 	return 0;
1884 }
1885 
1886 static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1887 				unsigned int nr_irqs, void *arg)
1888 {
1889 	struct pci_controller *hose = domain->host_data;
1890 	struct pnv_phb *phb = hose->private_data;
1891 	msi_alloc_info_t *info = arg;
1892 	struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc);
1893 	int hwirq;
1894 	int i, ret;
1895 
1896 	hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs);
1897 	if (hwirq < 0) {
1898 		dev_warn(&pdev->dev, "failed to find a free MSI\n");
1899 		return -ENOSPC;
1900 	}
1901 
1902 	dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
1903 		hose->dn, virq, hwirq, nr_irqs);
1904 
1905 	for (i = 0; i < nr_irqs; i++) {
1906 		ret = pnv_irq_parent_domain_alloc(domain, virq + i,
1907 						  phb->msi_base + hwirq + i);
1908 		if (ret)
1909 			goto out;
1910 
1911 		irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
1912 					      &pnv_msi_irq_chip, hose);
1913 	}
1914 
1915 	return 0;
1916 
1917 out:
1918 	irq_domain_free_irqs_parent(domain, virq, i - 1);
1919 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs);
1920 	return ret;
1921 }
1922 
1923 static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1924 				unsigned int nr_irqs)
1925 {
1926 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1927 	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1928 	struct pnv_phb *phb = hose->private_data;
1929 
1930 	pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn,
1931 		 virq, d->hwirq, nr_irqs);
1932 
1933 	msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs);
1934 	/* XIVE domain is cleared through ->msi_free() */
1935 }
1936 
1937 static const struct irq_domain_ops pnv_irq_domain_ops = {
1938 	.alloc  = pnv_irq_domain_alloc,
1939 	.free   = pnv_irq_domain_free,
1940 };
1941 
1942 static int __init pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count)
1943 {
1944 	struct pnv_phb *phb = hose->private_data;
1945 	struct irq_domain *parent = irq_get_default_host();
1946 
1947 	hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id);
1948 	if (!hose->fwnode)
1949 		return -ENOMEM;
1950 
1951 	hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
1952 						       hose->fwnode,
1953 						       &pnv_irq_domain_ops, hose);
1954 	if (!hose->dev_domain) {
1955 		pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
1956 		       hose->dn, hose->global_number);
1957 		irq_domain_free_fwnode(hose->fwnode);
1958 		return -ENOMEM;
1959 	}
1960 
1961 	hose->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(hose->dn),
1962 						     &pnv_msi_domain_info,
1963 						     hose->dev_domain);
1964 	if (!hose->msi_domain) {
1965 		pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
1966 		       hose->dn, hose->global_number);
1967 		irq_domain_free_fwnode(hose->fwnode);
1968 		irq_domain_remove(hose->dev_domain);
1969 		return -ENOMEM;
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 static void __init pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1976 {
1977 	unsigned int count;
1978 	const __be32 *prop = of_get_property(phb->hose->dn,
1979 					     "ibm,opal-msi-ranges", NULL);
1980 	if (!prop) {
1981 		/* BML Fallback */
1982 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1983 	}
1984 	if (!prop)
1985 		return;
1986 
1987 	phb->msi_base = be32_to_cpup(prop);
1988 	count = be32_to_cpup(prop + 1);
1989 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
1990 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1991 		       phb->hose->global_number);
1992 		return;
1993 	}
1994 
1995 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1996 		count, phb->msi_base);
1997 
1998 	pnv_msi_allocate_domains(phb->hose, count);
1999 }
2000 
2001 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2002 				  struct resource *res)
2003 {
2004 	struct pnv_phb *phb = pe->phb;
2005 	struct pci_bus_region region;
2006 	int index;
2007 	int64_t rc;
2008 
2009 	if (!res || !res->flags || res->start > res->end ||
2010 	    res->flags & IORESOURCE_UNSET)
2011 		return;
2012 
2013 	if (res->flags & IORESOURCE_IO) {
2014 		region.start = res->start - phb->ioda.io_pci_base;
2015 		region.end   = res->end - phb->ioda.io_pci_base;
2016 		index = region.start / phb->ioda.io_segsize;
2017 
2018 		while (index < phb->ioda.total_pe_num &&
2019 		       region.start <= region.end) {
2020 			phb->ioda.io_segmap[index] = pe->pe_number;
2021 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2022 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2023 			if (rc != OPAL_SUCCESS) {
2024 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2025 				       __func__, rc, index, pe->pe_number);
2026 				break;
2027 			}
2028 
2029 			region.start += phb->ioda.io_segsize;
2030 			index++;
2031 		}
2032 	} else if ((res->flags & IORESOURCE_MEM) &&
2033 		   !pnv_pci_is_m64(phb, res)) {
2034 		region.start = res->start -
2035 			       phb->hose->mem_offset[0] -
2036 			       phb->ioda.m32_pci_base;
2037 		region.end   = res->end -
2038 			       phb->hose->mem_offset[0] -
2039 			       phb->ioda.m32_pci_base;
2040 		index = region.start / phb->ioda.m32_segsize;
2041 
2042 		while (index < phb->ioda.total_pe_num &&
2043 		       region.start <= region.end) {
2044 			phb->ioda.m32_segmap[index] = pe->pe_number;
2045 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2046 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2047 			if (rc != OPAL_SUCCESS) {
2048 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2049 				       __func__, rc, index, pe->pe_number);
2050 				break;
2051 			}
2052 
2053 			region.start += phb->ioda.m32_segsize;
2054 			index++;
2055 		}
2056 	}
2057 }
2058 
2059 /*
2060  * This function is supposed to be called on basis of PE from top
2061  * to bottom style. So the I/O or MMIO segment assigned to
2062  * parent PE could be overridden by its child PEs if necessary.
2063  */
2064 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2065 {
2066 	struct pci_dev *pdev;
2067 	int i;
2068 
2069 	/*
2070 	 * NOTE: We only care PCI bus based PE for now. For PCI
2071 	 * device based PE, for example SRIOV sensitive VF should
2072 	 * be figured out later.
2073 	 */
2074 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2075 
2076 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2077 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2078 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2079 
2080 		/*
2081 		 * If the PE contains all subordinate PCI buses, the
2082 		 * windows of the child bridges should be mapped to
2083 		 * the PE as well.
2084 		 */
2085 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2086 			continue;
2087 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2088 			pnv_ioda_setup_pe_res(pe,
2089 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2090 	}
2091 }
2092 
2093 #ifdef CONFIG_DEBUG_FS
2094 static int pnv_pci_diag_data_set(void *data, u64 val)
2095 {
2096 	struct pnv_phb *phb = data;
2097 	s64 ret;
2098 
2099 	/* Retrieve the diag data from firmware */
2100 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2101 					  phb->diag_data_size);
2102 	if (ret != OPAL_SUCCESS)
2103 		return -EIO;
2104 
2105 	/* Print the diag data to the kernel log */
2106 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2107 	return 0;
2108 }
2109 
2110 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2111 			 "%llu\n");
2112 
2113 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2114 {
2115 	struct pnv_phb *phb = data;
2116 	int pe_num;
2117 
2118 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2119 		struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2120 
2121 		if (!test_bit(pe_num, phb->ioda.pe_alloc))
2122 			continue;
2123 
2124 		pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2125 			pe->rid, pe->device_count,
2126 			(pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2127 			(pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2128 			(pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2129 			(pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2130 			(pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2131 			(pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2138 			 pnv_pci_ioda_pe_dump, "%llu\n");
2139 
2140 #endif /* CONFIG_DEBUG_FS */
2141 
2142 static void pnv_pci_ioda_create_dbgfs(void)
2143 {
2144 #ifdef CONFIG_DEBUG_FS
2145 	struct pci_controller *hose, *tmp;
2146 	struct pnv_phb *phb;
2147 	char name[16];
2148 
2149 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2150 		phb = hose->private_data;
2151 
2152 		sprintf(name, "PCI%04x", hose->global_number);
2153 		phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir);
2154 
2155 		debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2156 					   phb, &pnv_pci_diag_data_fops);
2157 		debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2158 					   phb, &pnv_pci_ioda_pe_dump_fops);
2159 	}
2160 #endif /* CONFIG_DEBUG_FS */
2161 }
2162 
2163 static void pnv_pci_enable_bridge(struct pci_bus *bus)
2164 {
2165 	struct pci_dev *dev = bus->self;
2166 	struct pci_bus *child;
2167 
2168 	/* Empty bus ? bail */
2169 	if (list_empty(&bus->devices))
2170 		return;
2171 
2172 	/*
2173 	 * If there's a bridge associated with that bus enable it. This works
2174 	 * around races in the generic code if the enabling is done during
2175 	 * parallel probing. This can be removed once those races have been
2176 	 * fixed.
2177 	 */
2178 	if (dev) {
2179 		int rc = pci_enable_device(dev);
2180 		if (rc)
2181 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
2182 		pci_set_master(dev);
2183 	}
2184 
2185 	/* Perform the same to child busses */
2186 	list_for_each_entry(child, &bus->children, node)
2187 		pnv_pci_enable_bridge(child);
2188 }
2189 
2190 static void pnv_pci_enable_bridges(void)
2191 {
2192 	struct pci_controller *hose;
2193 
2194 	list_for_each_entry(hose, &hose_list, list_node)
2195 		pnv_pci_enable_bridge(hose->bus);
2196 }
2197 
2198 static void pnv_pci_ioda_fixup(void)
2199 {
2200 	pnv_pci_ioda_create_dbgfs();
2201 
2202 	pnv_pci_enable_bridges();
2203 
2204 #ifdef CONFIG_EEH
2205 	pnv_eeh_post_init();
2206 #endif
2207 }
2208 
2209 /*
2210  * Returns the alignment for I/O or memory windows for P2P
2211  * bridges. That actually depends on how PEs are segmented.
2212  * For now, we return I/O or M32 segment size for PE sensitive
2213  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2214  * 1MiB for memory) will be returned.
2215  *
2216  * The current PCI bus might be put into one PE, which was
2217  * create against the parent PCI bridge. For that case, we
2218  * needn't enlarge the alignment so that we can save some
2219  * resources.
2220  */
2221 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2222 						unsigned long type)
2223 {
2224 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2225 	int num_pci_bridges = 0;
2226 	struct pci_dev *bridge;
2227 
2228 	bridge = bus->self;
2229 	while (bridge) {
2230 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2231 			num_pci_bridges++;
2232 			if (num_pci_bridges >= 2)
2233 				return 1;
2234 		}
2235 
2236 		bridge = bridge->bus->self;
2237 	}
2238 
2239 	/*
2240 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
2241 	 * alignment for any 64-bit resource, PCIe doesn't care and
2242 	 * bridges only do 64-bit prefetchable anyway.
2243 	 */
2244 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2245 		return phb->ioda.m64_segsize;
2246 	if (type & IORESOURCE_MEM)
2247 		return phb->ioda.m32_segsize;
2248 
2249 	return phb->ioda.io_segsize;
2250 }
2251 
2252 /*
2253  * We are updating root port or the upstream port of the
2254  * bridge behind the root port with PHB's windows in order
2255  * to accommodate the changes on required resources during
2256  * PCI (slot) hotplug, which is connected to either root
2257  * port or the downstream ports of PCIe switch behind the
2258  * root port.
2259  */
2260 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2261 					   unsigned long type)
2262 {
2263 	struct pci_controller *hose = pci_bus_to_host(bus);
2264 	struct pnv_phb *phb = hose->private_data;
2265 	struct pci_dev *bridge = bus->self;
2266 	struct resource *r, *w;
2267 	bool msi_region = false;
2268 	int i;
2269 
2270 	/* Check if we need apply fixup to the bridge's windows */
2271 	if (!pci_is_root_bus(bridge->bus) &&
2272 	    !pci_is_root_bus(bridge->bus->self->bus))
2273 		return;
2274 
2275 	/* Fixup the resources */
2276 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2277 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2278 		if (!r->flags || !r->parent)
2279 			continue;
2280 
2281 		w = NULL;
2282 		if (r->flags & type & IORESOURCE_IO)
2283 			w = &hose->io_resource;
2284 		else if (pnv_pci_is_m64(phb, r) &&
2285 			 (type & IORESOURCE_PREFETCH) &&
2286 			 phb->ioda.m64_segsize)
2287 			w = &hose->mem_resources[1];
2288 		else if (r->flags & type & IORESOURCE_MEM) {
2289 			w = &hose->mem_resources[0];
2290 			msi_region = true;
2291 		}
2292 
2293 		r->start = w->start;
2294 		r->end = w->end;
2295 
2296 		/* The 64KB 32-bits MSI region shouldn't be included in
2297 		 * the 32-bits bridge window. Otherwise, we can see strange
2298 		 * issues. One of them is EEH error observed on Garrison.
2299 		 *
2300 		 * Exclude top 1MB region which is the minimal alignment of
2301 		 * 32-bits bridge window.
2302 		 */
2303 		if (msi_region) {
2304 			r->end += 0x10000;
2305 			r->end -= 0x100000;
2306 		}
2307 	}
2308 }
2309 
2310 static void pnv_pci_configure_bus(struct pci_bus *bus)
2311 {
2312 	struct pci_dev *bridge = bus->self;
2313 	struct pnv_ioda_pe *pe;
2314 	bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2315 
2316 	dev_info(&bus->dev, "Configuring PE for bus\n");
2317 
2318 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2319 	if (WARN_ON(list_empty(&bus->devices)))
2320 		return;
2321 
2322 	/* Reserve PEs according to used M64 resources */
2323 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
2324 
2325 	/*
2326 	 * Assign PE. We might run here because of partial hotplug.
2327 	 * For the case, we just pick up the existing PE and should
2328 	 * not allocate resources again.
2329 	 */
2330 	pe = pnv_ioda_setup_bus_PE(bus, all);
2331 	if (!pe)
2332 		return;
2333 
2334 	pnv_ioda_setup_pe_seg(pe);
2335 }
2336 
2337 static resource_size_t pnv_pci_default_alignment(void)
2338 {
2339 	return PAGE_SIZE;
2340 }
2341 
2342 /* Prevent enabling devices for which we couldn't properly
2343  * assign a PE
2344  */
2345 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2346 {
2347 	struct pci_dn *pdn;
2348 
2349 	pdn = pci_get_pdn(dev);
2350 	if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
2351 		pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
2352 		return false;
2353 	}
2354 
2355 	return true;
2356 }
2357 
2358 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2359 {
2360 	struct pci_dn *pdn;
2361 	struct pnv_ioda_pe *pe;
2362 
2363 	pdn = pci_get_pdn(dev);
2364 	if (!pdn)
2365 		return false;
2366 
2367 	if (pdn->pe_number == IODA_INVALID_PE) {
2368 		pe = pnv_ioda_setup_dev_PE(dev);
2369 		if (!pe)
2370 			return false;
2371 	}
2372 	return true;
2373 }
2374 
2375 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2376 {
2377 	struct iommu_table *tbl = pe->table_group.tables[0];
2378 	int64_t rc;
2379 
2380 	if (!pe->dma_setup_done)
2381 		return;
2382 
2383 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2384 	if (rc)
2385 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2386 
2387 	pnv_pci_ioda2_set_bypass(pe, false);
2388 	if (pe->table_group.group) {
2389 		iommu_group_put(pe->table_group.group);
2390 		WARN_ON(pe->table_group.group);
2391 	}
2392 
2393 	iommu_tce_table_put(tbl);
2394 }
2395 
2396 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2397 				 unsigned short win,
2398 				 unsigned int *map)
2399 {
2400 	struct pnv_phb *phb = pe->phb;
2401 	int idx;
2402 	int64_t rc;
2403 
2404 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2405 		if (map[idx] != pe->pe_number)
2406 			continue;
2407 
2408 		rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2409 				phb->ioda.reserved_pe_idx, win, 0, idx);
2410 
2411 		if (rc != OPAL_SUCCESS)
2412 			pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2413 				rc, win, idx);
2414 
2415 		map[idx] = IODA_INVALID_PE;
2416 	}
2417 }
2418 
2419 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2420 {
2421 	struct pnv_phb *phb = pe->phb;
2422 
2423 	if (phb->type == PNV_PHB_IODA2) {
2424 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2425 				     phb->ioda.m32_segmap);
2426 	}
2427 }
2428 
2429 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2430 {
2431 	struct pnv_phb *phb = pe->phb;
2432 	struct pnv_ioda_pe *slave, *tmp;
2433 
2434 	pe_info(pe, "Releasing PE\n");
2435 
2436 	mutex_lock(&phb->ioda.pe_list_mutex);
2437 	list_del(&pe->list);
2438 	mutex_unlock(&phb->ioda.pe_list_mutex);
2439 
2440 	switch (phb->type) {
2441 	case PNV_PHB_IODA2:
2442 		pnv_pci_ioda2_release_pe_dma(pe);
2443 		break;
2444 	case PNV_PHB_NPU_OCAPI:
2445 		break;
2446 	default:
2447 		WARN_ON(1);
2448 	}
2449 
2450 	pnv_ioda_release_pe_seg(pe);
2451 	pnv_ioda_deconfigure_pe(pe->phb, pe);
2452 
2453 	/* Release slave PEs in the compound PE */
2454 	if (pe->flags & PNV_IODA_PE_MASTER) {
2455 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2456 			list_del(&slave->list);
2457 			pnv_ioda_free_pe(slave);
2458 		}
2459 	}
2460 
2461 	/*
2462 	 * The PE for root bus can be removed because of hotplug in EEH
2463 	 * recovery for fenced PHB error. We need to mark the PE dead so
2464 	 * that it can be populated again in PCI hot add path. The PE
2465 	 * shouldn't be destroyed as it's the global reserved resource.
2466 	 */
2467 	if (phb->ioda.root_pe_idx == pe->pe_number)
2468 		return;
2469 
2470 	pnv_ioda_free_pe(pe);
2471 }
2472 
2473 static void pnv_pci_release_device(struct pci_dev *pdev)
2474 {
2475 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2476 	struct pci_dn *pdn = pci_get_pdn(pdev);
2477 	struct pnv_ioda_pe *pe;
2478 
2479 	/* The VF PE state is torn down when sriov_disable() is called */
2480 	if (pdev->is_virtfn)
2481 		return;
2482 
2483 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2484 		return;
2485 
2486 #ifdef CONFIG_PCI_IOV
2487 	/*
2488 	 * FIXME: Try move this to sriov_disable(). It's here since we allocate
2489 	 * the iov state at probe time since we need to fiddle with the IOV
2490 	 * resources.
2491 	 */
2492 	if (pdev->is_physfn)
2493 		kfree(pdev->dev.archdata.iov_data);
2494 #endif
2495 
2496 	/*
2497 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
2498 	 * isn't removed and added afterwards in this scenario. We should
2499 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2500 	 * device count is decreased on removing devices while failing to
2501 	 * be increased on adding devices. It leads to unbalanced PE's device
2502 	 * count and eventually make normal PCI hotplug path broken.
2503 	 */
2504 	pe = &phb->ioda.pe_array[pdn->pe_number];
2505 	pdn->pe_number = IODA_INVALID_PE;
2506 
2507 	WARN_ON(--pe->device_count < 0);
2508 	if (pe->device_count == 0)
2509 		pnv_ioda_release_pe(pe);
2510 }
2511 
2512 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2513 {
2514 	struct pnv_phb *phb = hose->private_data;
2515 
2516 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2517 		       OPAL_ASSERT_RESET);
2518 }
2519 
2520 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2521 {
2522 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2523 	struct pnv_ioda_pe *pe;
2524 
2525 	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2526 		if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2527 			continue;
2528 
2529 		if (!pe->pbus)
2530 			continue;
2531 
2532 		if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2533 			pe->pbus = bus;
2534 			break;
2535 		}
2536 	}
2537 }
2538 
2539 #ifdef CONFIG_IOMMU_API
2540 static struct iommu_group *pnv_pci_device_group(struct pci_controller *hose,
2541 						struct pci_dev *pdev)
2542 {
2543 	struct pnv_phb *phb = hose->private_data;
2544 	struct pnv_ioda_pe *pe;
2545 
2546 	if (WARN_ON(!phb))
2547 		return ERR_PTR(-ENODEV);
2548 
2549 	pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
2550 	if (!pe)
2551 		return ERR_PTR(-ENODEV);
2552 
2553 	if (!pe->table_group.group)
2554 		return ERR_PTR(-ENODEV);
2555 
2556 	return iommu_group_ref_get(pe->table_group.group);
2557 }
2558 #endif
2559 
2560 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2561 	.dma_dev_setup		= pnv_pci_ioda_dma_dev_setup,
2562 	.dma_bus_setup		= pnv_pci_ioda_dma_bus_setup,
2563 	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
2564 	.enable_device_hook	= pnv_pci_enable_device_hook,
2565 	.release_device		= pnv_pci_release_device,
2566 	.window_alignment	= pnv_pci_window_alignment,
2567 	.setup_bridge		= pnv_pci_fixup_bridge_resources,
2568 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2569 	.shutdown		= pnv_pci_ioda_shutdown,
2570 #ifdef CONFIG_IOMMU_API
2571 	.device_group		= pnv_pci_device_group,
2572 #endif
2573 };
2574 
2575 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2576 	.enable_device_hook	= pnv_ocapi_enable_device_hook,
2577 	.release_device		= pnv_pci_release_device,
2578 	.window_alignment	= pnv_pci_window_alignment,
2579 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2580 	.shutdown		= pnv_pci_ioda_shutdown,
2581 };
2582 
2583 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2584 					 u64 hub_id, int ioda_type)
2585 {
2586 	struct pci_controller *hose;
2587 	struct pnv_phb *phb;
2588 	unsigned long size, m64map_off, m32map_off, pemap_off;
2589 	struct pnv_ioda_pe *root_pe;
2590 	struct resource r;
2591 	const __be64 *prop64;
2592 	const __be32 *prop32;
2593 	int len;
2594 	unsigned int segno;
2595 	u64 phb_id;
2596 	void *aux;
2597 	long rc;
2598 
2599 	if (!of_device_is_available(np))
2600 		return;
2601 
2602 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
2603 
2604 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2605 	if (!prop64) {
2606 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2607 		return;
2608 	}
2609 	phb_id = be64_to_cpup(prop64);
2610 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2611 
2612 	phb = kzalloc(sizeof(*phb), GFP_KERNEL);
2613 	if (!phb)
2614 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2615 		      sizeof(*phb));
2616 
2617 	/* Allocate PCI controller */
2618 	phb->hose = hose = pcibios_alloc_controller(np);
2619 	if (!phb->hose) {
2620 		pr_err("  Can't allocate PCI controller for %pOF\n",
2621 		       np);
2622 		memblock_free(phb, sizeof(struct pnv_phb));
2623 		return;
2624 	}
2625 
2626 	spin_lock_init(&phb->lock);
2627 	prop32 = of_get_property(np, "bus-range", &len);
2628 	if (prop32 && len == 8) {
2629 		hose->first_busno = be32_to_cpu(prop32[0]);
2630 		hose->last_busno = be32_to_cpu(prop32[1]);
2631 	} else {
2632 		pr_warn("  Broken <bus-range> on %pOF\n", np);
2633 		hose->first_busno = 0;
2634 		hose->last_busno = 0xff;
2635 	}
2636 	hose->private_data = phb;
2637 	phb->hub_id = hub_id;
2638 	phb->opal_id = phb_id;
2639 	phb->type = ioda_type;
2640 	mutex_init(&phb->ioda.pe_alloc_mutex);
2641 
2642 	/* Detect specific models for error handling */
2643 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2644 		phb->model = PNV_PHB_MODEL_P7IOC;
2645 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2646 		phb->model = PNV_PHB_MODEL_PHB3;
2647 	else
2648 		phb->model = PNV_PHB_MODEL_UNKNOWN;
2649 
2650 	/* Initialize diagnostic data buffer */
2651 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
2652 	if (prop32)
2653 		phb->diag_data_size = be32_to_cpup(prop32);
2654 	else
2655 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
2656 
2657 	phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL);
2658 	if (!phb->diag_data)
2659 		panic("%s: Failed to allocate %u bytes\n", __func__,
2660 		      phb->diag_data_size);
2661 
2662 	/* Parse 32-bit and IO ranges (if any) */
2663 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2664 
2665 	/* Get registers */
2666 	if (!of_address_to_resource(np, 0, &r)) {
2667 		phb->regs_phys = r.start;
2668 		phb->regs = ioremap(r.start, resource_size(&r));
2669 		if (phb->regs == NULL)
2670 			pr_err("  Failed to map registers !\n");
2671 	}
2672 
2673 	/* Initialize more IODA stuff */
2674 	phb->ioda.total_pe_num = 1;
2675 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2676 	if (prop32)
2677 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
2678 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2679 	if (prop32)
2680 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
2681 
2682 	/* Invalidate RID to PE# mapping */
2683 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
2684 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
2685 
2686 	/* Parse 64-bit MMIO range */
2687 	pnv_ioda_parse_m64_window(phb);
2688 
2689 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2690 	/* FW Has already off top 64k of M32 space (MSI space) */
2691 	phb->ioda.m32_size += 0x10000;
2692 
2693 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
2694 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2695 	phb->ioda.io_size = hose->pci_io_size;
2696 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
2697 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2698 
2699 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2700 	size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
2701 			sizeof(unsigned long));
2702 	m64map_off = size;
2703 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
2704 	m32map_off = size;
2705 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
2706 	pemap_off = size;
2707 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
2708 	aux = kzalloc(size, GFP_KERNEL);
2709 	if (!aux)
2710 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
2711 
2712 	phb->ioda.pe_alloc = aux;
2713 	phb->ioda.m64_segmap = aux + m64map_off;
2714 	phb->ioda.m32_segmap = aux + m32map_off;
2715 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
2716 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
2717 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
2718 	}
2719 	phb->ioda.pe_array = aux + pemap_off;
2720 
2721 	/*
2722 	 * Choose PE number for root bus, which shouldn't have
2723 	 * M64 resources consumed by its child devices. To pick
2724 	 * the PE number adjacent to the reserved one if possible.
2725 	 */
2726 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
2727 	if (phb->ioda.reserved_pe_idx == 0) {
2728 		phb->ioda.root_pe_idx = 1;
2729 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2730 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
2731 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
2732 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2733 	} else {
2734 		/* otherwise just allocate one */
2735 		root_pe = pnv_ioda_alloc_pe(phb, 1);
2736 		phb->ioda.root_pe_idx = root_pe->pe_number;
2737 	}
2738 
2739 	INIT_LIST_HEAD(&phb->ioda.pe_list);
2740 	mutex_init(&phb->ioda.pe_list_mutex);
2741 
2742 #if 0 /* We should really do that ... */
2743 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
2744 					 window_type,
2745 					 window_num,
2746 					 starting_real_address,
2747 					 starting_pci_address,
2748 					 segment_size);
2749 #endif
2750 
2751 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2752 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
2753 		phb->ioda.m32_size, phb->ioda.m32_segsize);
2754 	if (phb->ioda.m64_size)
2755 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2756 			phb->ioda.m64_size, phb->ioda.m64_segsize);
2757 	if (phb->ioda.io_size)
2758 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
2759 			phb->ioda.io_size, phb->ioda.io_segsize);
2760 
2761 
2762 	phb->hose->ops = &pnv_pci_ops;
2763 	phb->get_pe_state = pnv_ioda_get_pe_state;
2764 	phb->freeze_pe = pnv_ioda_freeze_pe;
2765 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2766 
2767 	/* Setup MSI support */
2768 	pnv_pci_init_ioda_msis(phb);
2769 
2770 	/*
2771 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2772 	 * to let the PCI core do resource assignment. It's supposed
2773 	 * that the PCI core will do correct I/O and MMIO alignment
2774 	 * for the P2P bridge bars so that each PCI bus (excluding
2775 	 * the child P2P bridges) can form individual PE.
2776 	 */
2777 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2778 
2779 	switch (phb->type) {
2780 	case PNV_PHB_NPU_OCAPI:
2781 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
2782 		break;
2783 	default:
2784 		hose->controller_ops = pnv_pci_ioda_controller_ops;
2785 	}
2786 
2787 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
2788 
2789 #ifdef CONFIG_PCI_IOV
2790 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
2791 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
2792 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
2793 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
2794 #endif
2795 
2796 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2797 
2798 	/* Reset IODA tables to a clean state */
2799 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2800 	if (rc)
2801 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
2802 
2803 	/*
2804 	 * If we're running in kdump kernel, the previous kernel never
2805 	 * shutdown PCI devices correctly. We already got IODA table
2806 	 * cleaned out. So we have to issue PHB reset to stop all PCI
2807 	 * transactions from previous kernel. The ppc_pci_reset_phbs
2808 	 * kernel parameter will force this reset too. Additionally,
2809 	 * if the IODA reset above failed then use a bigger hammer.
2810 	 * This can happen if we get a PHB fatal error in very early
2811 	 * boot.
2812 	 */
2813 	if (is_kdump_kernel() || pci_reset_phbs || rc) {
2814 		pr_info("  Issue PHB reset ...\n");
2815 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2816 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2817 	}
2818 
2819 	/* Remove M64 resource if we can't configure it successfully */
2820 	if (!phb->init_m64 || phb->init_m64(phb))
2821 		hose->mem_resources[1].flags = 0;
2822 
2823 	/* create pci_dn's for DT nodes under this PHB */
2824 	pci_devs_phb_init_dynamic(hose);
2825 }
2826 
2827 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2828 {
2829 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2830 }
2831 
2832 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
2833 {
2834 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
2835 }
2836 
2837 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
2838 {
2839 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
2840 
2841 	if (!machine_is(powernv))
2842 		return;
2843 
2844 	if (phb->type == PNV_PHB_NPU_OCAPI)
2845 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
2846 }
2847 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
2848