1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
52 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
53 
54 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
55 #define POWERNV_IOMMU_MAX_LEVELS	5
56 
57 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
58 
59 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
60 			    const char *fmt, ...)
61 {
62 	struct va_format vaf;
63 	va_list args;
64 	char pfix[32];
65 
66 	va_start(args, fmt);
67 
68 	vaf.fmt = fmt;
69 	vaf.va = &args;
70 
71 	if (pe->flags & PNV_IODA_PE_DEV)
72 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
73 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
74 		sprintf(pfix, "%04x:%02x     ",
75 			pci_domain_nr(pe->pbus), pe->pbus->number);
76 #ifdef CONFIG_PCI_IOV
77 	else if (pe->flags & PNV_IODA_PE_VF)
78 		sprintf(pfix, "%04x:%02x:%2x.%d",
79 			pci_domain_nr(pe->parent_dev->bus),
80 			(pe->rid & 0xff00) >> 8,
81 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
82 #endif /* CONFIG_PCI_IOV*/
83 
84 	printk("%spci %s: [PE# %.3d] %pV",
85 	       level, pfix, pe->pe_number, &vaf);
86 
87 	va_end(args);
88 }
89 
90 #define pe_err(pe, fmt, ...)					\
91 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
92 #define pe_warn(pe, fmt, ...)					\
93 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
94 #define pe_info(pe, fmt, ...)					\
95 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
96 
97 static bool pnv_iommu_bypass_disabled __read_mostly;
98 
99 static int __init iommu_setup(char *str)
100 {
101 	if (!str)
102 		return -EINVAL;
103 
104 	while (*str) {
105 		if (!strncmp(str, "nobypass", 8)) {
106 			pnv_iommu_bypass_disabled = true;
107 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
108 			break;
109 		}
110 		str += strcspn(str, ",");
111 		if (*str == ',')
112 			str++;
113 	}
114 
115 	return 0;
116 }
117 early_param("iommu", iommu_setup);
118 
119 /*
120  * stdcix is only supposed to be used in hypervisor real mode as per
121  * the architecture spec
122  */
123 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
124 {
125 	__asm__ __volatile__("stdcix %0,0,%1"
126 		: : "r" (val), "r" (paddr) : "memory");
127 }
128 
129 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
130 {
131 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
132 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
133 }
134 
135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
136 {
137 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
138 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
139 			__func__, pe_no, phb->hose->global_number);
140 		return;
141 	}
142 
143 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
144 		pr_warn("%s: PE %d was assigned on PHB#%x\n",
145 			__func__, pe_no, phb->hose->global_number);
146 		return;
147 	}
148 
149 	phb->ioda.pe_array[pe_no].phb = phb;
150 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
151 }
152 
153 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
154 {
155 	unsigned long pe;
156 
157 	do {
158 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
159 					phb->ioda.total_pe, 0);
160 		if (pe >= phb->ioda.total_pe)
161 			return IODA_INVALID_PE;
162 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
163 
164 	phb->ioda.pe_array[pe].phb = phb;
165 	phb->ioda.pe_array[pe].pe_number = pe;
166 	return pe;
167 }
168 
169 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
170 {
171 	WARN_ON(phb->ioda.pe_array[pe].pdev);
172 
173 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
174 	clear_bit(pe, phb->ioda.pe_alloc);
175 }
176 
177 /* The default M64 BAR is shared by all PEs */
178 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
179 {
180 	const char *desc;
181 	struct resource *r;
182 	s64 rc;
183 
184 	/* Configure the default M64 BAR */
185 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
186 					 OPAL_M64_WINDOW_TYPE,
187 					 phb->ioda.m64_bar_idx,
188 					 phb->ioda.m64_base,
189 					 0, /* unused */
190 					 phb->ioda.m64_size);
191 	if (rc != OPAL_SUCCESS) {
192 		desc = "configuring";
193 		goto fail;
194 	}
195 
196 	/* Enable the default M64 BAR */
197 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
198 				      OPAL_M64_WINDOW_TYPE,
199 				      phb->ioda.m64_bar_idx,
200 				      OPAL_ENABLE_M64_SPLIT);
201 	if (rc != OPAL_SUCCESS) {
202 		desc = "enabling";
203 		goto fail;
204 	}
205 
206 	/* Mark the M64 BAR assigned */
207 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
208 
209 	/*
210 	 * Strip off the segment used by the reserved PE, which is
211 	 * expected to be 0 or last one of PE capabicity.
212 	 */
213 	r = &phb->hose->mem_resources[1];
214 	if (phb->ioda.reserved_pe == 0)
215 		r->start += phb->ioda.m64_segsize;
216 	else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
217 		r->end -= phb->ioda.m64_segsize;
218 	else
219 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
220 			phb->ioda.reserved_pe);
221 
222 	return 0;
223 
224 fail:
225 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
226 		rc, desc, phb->ioda.m64_bar_idx);
227 	opal_pci_phb_mmio_enable(phb->opal_id,
228 				 OPAL_M64_WINDOW_TYPE,
229 				 phb->ioda.m64_bar_idx,
230 				 OPAL_DISABLE_M64);
231 	return -EIO;
232 }
233 
234 static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
235 {
236 	resource_size_t sgsz = phb->ioda.m64_segsize;
237 	struct pci_dev *pdev;
238 	struct resource *r;
239 	int base, step, i;
240 
241 	/*
242 	 * Root bus always has full M64 range and root port has
243 	 * M64 range used in reality. So we're checking root port
244 	 * instead of root bus.
245 	 */
246 	list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
247 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
248 			r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
249 			if (!r->parent ||
250 			    !pnv_pci_is_mem_pref_64(r->flags))
251 				continue;
252 
253 			base = (r->start - phb->ioda.m64_base) / sgsz;
254 			for (step = 0; step < resource_size(r) / sgsz; step++)
255 				pnv_ioda_reserve_pe(phb, base + step);
256 		}
257 	}
258 }
259 
260 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
261 				 struct pci_bus *bus, int all)
262 {
263 	resource_size_t segsz = phb->ioda.m64_segsize;
264 	struct pci_dev *pdev;
265 	struct resource *r;
266 	struct pnv_ioda_pe *master_pe, *pe;
267 	unsigned long size, *pe_alloc;
268 	bool found;
269 	int start, i, j;
270 
271 	/* Root bus shouldn't use M64 */
272 	if (pci_is_root_bus(bus))
273 		return IODA_INVALID_PE;
274 
275 	/* We support only one M64 window on each bus */
276 	found = false;
277 	pci_bus_for_each_resource(bus, r, i) {
278 		if (r && r->parent &&
279 		    pnv_pci_is_mem_pref_64(r->flags)) {
280 			found = true;
281 			break;
282 		}
283 	}
284 
285 	/* No M64 window found ? */
286 	if (!found)
287 		return IODA_INVALID_PE;
288 
289 	/* Allocate bitmap */
290 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
291 	pe_alloc = kzalloc(size, GFP_KERNEL);
292 	if (!pe_alloc) {
293 		pr_warn("%s: Out of memory !\n",
294 			__func__);
295 		return IODA_INVALID_PE;
296 	}
297 
298 	/*
299 	 * Figure out reserved PE numbers by the PE
300 	 * the its child PEs.
301 	 */
302 	start = (r->start - phb->ioda.m64_base) / segsz;
303 	for (i = 0; i < resource_size(r) / segsz; i++)
304 		set_bit(start + i, pe_alloc);
305 
306 	if (all)
307 		goto done;
308 
309 	/*
310 	 * If the PE doesn't cover all subordinate buses,
311 	 * we need subtract from reserved PEs for children.
312 	 */
313 	list_for_each_entry(pdev, &bus->devices, bus_list) {
314 		if (!pdev->subordinate)
315 			continue;
316 
317 		pci_bus_for_each_resource(pdev->subordinate, r, i) {
318 			if (!r || !r->parent ||
319 			    !pnv_pci_is_mem_pref_64(r->flags))
320 				continue;
321 
322 			start = (r->start - phb->ioda.m64_base) / segsz;
323 			for (j = 0; j < resource_size(r) / segsz ; j++)
324 				clear_bit(start + j, pe_alloc);
325                 }
326         }
327 
328 	/*
329 	 * the current bus might not own M64 window and that's all
330 	 * contributed by its child buses. For the case, we needn't
331 	 * pick M64 dependent PE#.
332 	 */
333 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
334 		kfree(pe_alloc);
335 		return IODA_INVALID_PE;
336 	}
337 
338 	/*
339 	 * Figure out the master PE and put all slave PEs to master
340 	 * PE's list to form compound PE.
341 	 */
342 done:
343 	master_pe = NULL;
344 	i = -1;
345 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
346 		phb->ioda.total_pe) {
347 		pe = &phb->ioda.pe_array[i];
348 
349 		if (!master_pe) {
350 			pe->flags |= PNV_IODA_PE_MASTER;
351 			INIT_LIST_HEAD(&pe->slaves);
352 			master_pe = pe;
353 		} else {
354 			pe->flags |= PNV_IODA_PE_SLAVE;
355 			pe->master = master_pe;
356 			list_add_tail(&pe->list, &master_pe->slaves);
357 		}
358 	}
359 
360 	kfree(pe_alloc);
361 	return master_pe->pe_number;
362 }
363 
364 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
365 {
366 	struct pci_controller *hose = phb->hose;
367 	struct device_node *dn = hose->dn;
368 	struct resource *res;
369 	const u32 *r;
370 	u64 pci_addr;
371 
372 	/* FIXME: Support M64 for P7IOC */
373 	if (phb->type != PNV_PHB_IODA2) {
374 		pr_info("  Not support M64 window\n");
375 		return;
376 	}
377 
378 	if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
379 		pr_info("  Firmware too old to support M64 window\n");
380 		return;
381 	}
382 
383 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
384 	if (!r) {
385 		pr_info("  No <ibm,opal-m64-window> on %s\n",
386 			dn->full_name);
387 		return;
388 	}
389 
390 	res = &hose->mem_resources[1];
391 	res->start = of_translate_address(dn, r + 2);
392 	res->end = res->start + of_read_number(r + 4, 2) - 1;
393 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
394 	pci_addr = of_read_number(r, 2);
395 	hose->mem_offset[1] = res->start - pci_addr;
396 
397 	phb->ioda.m64_size = resource_size(res);
398 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
399 	phb->ioda.m64_base = pci_addr;
400 
401 	pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
402 			res->start, res->end, pci_addr);
403 
404 	/* Use last M64 BAR to cover M64 window */
405 	phb->ioda.m64_bar_idx = 15;
406 	phb->init_m64 = pnv_ioda2_init_m64;
407 	phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
408 	phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
409 }
410 
411 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
412 {
413 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
414 	struct pnv_ioda_pe *slave;
415 	s64 rc;
416 
417 	/* Fetch master PE */
418 	if (pe->flags & PNV_IODA_PE_SLAVE) {
419 		pe = pe->master;
420 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
421 			return;
422 
423 		pe_no = pe->pe_number;
424 	}
425 
426 	/* Freeze master PE */
427 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
428 				     pe_no,
429 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
430 	if (rc != OPAL_SUCCESS) {
431 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
432 			__func__, rc, phb->hose->global_number, pe_no);
433 		return;
434 	}
435 
436 	/* Freeze slave PEs */
437 	if (!(pe->flags & PNV_IODA_PE_MASTER))
438 		return;
439 
440 	list_for_each_entry(slave, &pe->slaves, list) {
441 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
442 					     slave->pe_number,
443 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
444 		if (rc != OPAL_SUCCESS)
445 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
446 				__func__, rc, phb->hose->global_number,
447 				slave->pe_number);
448 	}
449 }
450 
451 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
452 {
453 	struct pnv_ioda_pe *pe, *slave;
454 	s64 rc;
455 
456 	/* Find master PE */
457 	pe = &phb->ioda.pe_array[pe_no];
458 	if (pe->flags & PNV_IODA_PE_SLAVE) {
459 		pe = pe->master;
460 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
461 		pe_no = pe->pe_number;
462 	}
463 
464 	/* Clear frozen state for master PE */
465 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
466 	if (rc != OPAL_SUCCESS) {
467 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
468 			__func__, rc, opt, phb->hose->global_number, pe_no);
469 		return -EIO;
470 	}
471 
472 	if (!(pe->flags & PNV_IODA_PE_MASTER))
473 		return 0;
474 
475 	/* Clear frozen state for slave PEs */
476 	list_for_each_entry(slave, &pe->slaves, list) {
477 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
478 					     slave->pe_number,
479 					     opt);
480 		if (rc != OPAL_SUCCESS) {
481 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
482 				__func__, rc, opt, phb->hose->global_number,
483 				slave->pe_number);
484 			return -EIO;
485 		}
486 	}
487 
488 	return 0;
489 }
490 
491 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
492 {
493 	struct pnv_ioda_pe *slave, *pe;
494 	u8 fstate, state;
495 	__be16 pcierr;
496 	s64 rc;
497 
498 	/* Sanity check on PE number */
499 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
500 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
501 
502 	/*
503 	 * Fetch the master PE and the PE instance might be
504 	 * not initialized yet.
505 	 */
506 	pe = &phb->ioda.pe_array[pe_no];
507 	if (pe->flags & PNV_IODA_PE_SLAVE) {
508 		pe = pe->master;
509 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
510 		pe_no = pe->pe_number;
511 	}
512 
513 	/* Check the master PE */
514 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
515 					&state, &pcierr, NULL);
516 	if (rc != OPAL_SUCCESS) {
517 		pr_warn("%s: Failure %lld getting "
518 			"PHB#%x-PE#%x state\n",
519 			__func__, rc,
520 			phb->hose->global_number, pe_no);
521 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
522 	}
523 
524 	/* Check the slave PE */
525 	if (!(pe->flags & PNV_IODA_PE_MASTER))
526 		return state;
527 
528 	list_for_each_entry(slave, &pe->slaves, list) {
529 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
530 						slave->pe_number,
531 						&fstate,
532 						&pcierr,
533 						NULL);
534 		if (rc != OPAL_SUCCESS) {
535 			pr_warn("%s: Failure %lld getting "
536 				"PHB#%x-PE#%x state\n",
537 				__func__, rc,
538 				phb->hose->global_number, slave->pe_number);
539 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
540 		}
541 
542 		/*
543 		 * Override the result based on the ascending
544 		 * priority.
545 		 */
546 		if (fstate > state)
547 			state = fstate;
548 	}
549 
550 	return state;
551 }
552 
553 /* Currently those 2 are only used when MSIs are enabled, this will change
554  * but in the meantime, we need to protect them to avoid warnings
555  */
556 #ifdef CONFIG_PCI_MSI
557 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
558 {
559 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
560 	struct pnv_phb *phb = hose->private_data;
561 	struct pci_dn *pdn = pci_get_pdn(dev);
562 
563 	if (!pdn)
564 		return NULL;
565 	if (pdn->pe_number == IODA_INVALID_PE)
566 		return NULL;
567 	return &phb->ioda.pe_array[pdn->pe_number];
568 }
569 #endif /* CONFIG_PCI_MSI */
570 
571 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
572 				  struct pnv_ioda_pe *parent,
573 				  struct pnv_ioda_pe *child,
574 				  bool is_add)
575 {
576 	const char *desc = is_add ? "adding" : "removing";
577 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
578 			      OPAL_REMOVE_PE_FROM_DOMAIN;
579 	struct pnv_ioda_pe *slave;
580 	long rc;
581 
582 	/* Parent PE affects child PE */
583 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
584 				child->pe_number, op);
585 	if (rc != OPAL_SUCCESS) {
586 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
587 			rc, desc);
588 		return -ENXIO;
589 	}
590 
591 	if (!(child->flags & PNV_IODA_PE_MASTER))
592 		return 0;
593 
594 	/* Compound case: parent PE affects slave PEs */
595 	list_for_each_entry(slave, &child->slaves, list) {
596 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
597 					slave->pe_number, op);
598 		if (rc != OPAL_SUCCESS) {
599 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
600 				rc, desc);
601 			return -ENXIO;
602 		}
603 	}
604 
605 	return 0;
606 }
607 
608 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
609 			      struct pnv_ioda_pe *pe,
610 			      bool is_add)
611 {
612 	struct pnv_ioda_pe *slave;
613 	struct pci_dev *pdev = NULL;
614 	int ret;
615 
616 	/*
617 	 * Clear PE frozen state. If it's master PE, we need
618 	 * clear slave PE frozen state as well.
619 	 */
620 	if (is_add) {
621 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
622 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
623 		if (pe->flags & PNV_IODA_PE_MASTER) {
624 			list_for_each_entry(slave, &pe->slaves, list)
625 				opal_pci_eeh_freeze_clear(phb->opal_id,
626 							  slave->pe_number,
627 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
628 		}
629 	}
630 
631 	/*
632 	 * Associate PE in PELT. We need add the PE into the
633 	 * corresponding PELT-V as well. Otherwise, the error
634 	 * originated from the PE might contribute to other
635 	 * PEs.
636 	 */
637 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
638 	if (ret)
639 		return ret;
640 
641 	/* For compound PEs, any one affects all of them */
642 	if (pe->flags & PNV_IODA_PE_MASTER) {
643 		list_for_each_entry(slave, &pe->slaves, list) {
644 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
645 			if (ret)
646 				return ret;
647 		}
648 	}
649 
650 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
651 		pdev = pe->pbus->self;
652 	else if (pe->flags & PNV_IODA_PE_DEV)
653 		pdev = pe->pdev->bus->self;
654 #ifdef CONFIG_PCI_IOV
655 	else if (pe->flags & PNV_IODA_PE_VF)
656 		pdev = pe->parent_dev->bus->self;
657 #endif /* CONFIG_PCI_IOV */
658 	while (pdev) {
659 		struct pci_dn *pdn = pci_get_pdn(pdev);
660 		struct pnv_ioda_pe *parent;
661 
662 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
663 			parent = &phb->ioda.pe_array[pdn->pe_number];
664 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
665 			if (ret)
666 				return ret;
667 		}
668 
669 		pdev = pdev->bus->self;
670 	}
671 
672 	return 0;
673 }
674 
675 #ifdef CONFIG_PCI_IOV
676 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
677 {
678 	struct pci_dev *parent;
679 	uint8_t bcomp, dcomp, fcomp;
680 	int64_t rc;
681 	long rid_end, rid;
682 
683 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
684 	if (pe->pbus) {
685 		int count;
686 
687 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
688 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
689 		parent = pe->pbus->self;
690 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
691 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
692 		else
693 			count = 1;
694 
695 		switch(count) {
696 		case  1: bcomp = OpalPciBusAll;         break;
697 		case  2: bcomp = OpalPciBus7Bits;       break;
698 		case  4: bcomp = OpalPciBus6Bits;       break;
699 		case  8: bcomp = OpalPciBus5Bits;       break;
700 		case 16: bcomp = OpalPciBus4Bits;       break;
701 		case 32: bcomp = OpalPciBus3Bits;       break;
702 		default:
703 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
704 			        count);
705 			/* Do an exact match only */
706 			bcomp = OpalPciBusAll;
707 		}
708 		rid_end = pe->rid + (count << 8);
709 	} else {
710 		if (pe->flags & PNV_IODA_PE_VF)
711 			parent = pe->parent_dev;
712 		else
713 			parent = pe->pdev->bus->self;
714 		bcomp = OpalPciBusAll;
715 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
716 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
717 		rid_end = pe->rid + 1;
718 	}
719 
720 	/* Clear the reverse map */
721 	for (rid = pe->rid; rid < rid_end; rid++)
722 		phb->ioda.pe_rmap[rid] = 0;
723 
724 	/* Release from all parents PELT-V */
725 	while (parent) {
726 		struct pci_dn *pdn = pci_get_pdn(parent);
727 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
728 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
729 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
730 			/* XXX What to do in case of error ? */
731 		}
732 		parent = parent->bus->self;
733 	}
734 
735 	opal_pci_eeh_freeze_set(phb->opal_id, pe->pe_number,
736 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
737 
738 	/* Disassociate PE in PELT */
739 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
740 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
741 	if (rc)
742 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
743 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
744 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
745 	if (rc)
746 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
747 
748 	pe->pbus = NULL;
749 	pe->pdev = NULL;
750 	pe->parent_dev = NULL;
751 
752 	return 0;
753 }
754 #endif /* CONFIG_PCI_IOV */
755 
756 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
757 {
758 	struct pci_dev *parent;
759 	uint8_t bcomp, dcomp, fcomp;
760 	long rc, rid_end, rid;
761 
762 	/* Bus validation ? */
763 	if (pe->pbus) {
764 		int count;
765 
766 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
767 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
768 		parent = pe->pbus->self;
769 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
770 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
771 		else
772 			count = 1;
773 
774 		switch(count) {
775 		case  1: bcomp = OpalPciBusAll;		break;
776 		case  2: bcomp = OpalPciBus7Bits;	break;
777 		case  4: bcomp = OpalPciBus6Bits;	break;
778 		case  8: bcomp = OpalPciBus5Bits;	break;
779 		case 16: bcomp = OpalPciBus4Bits;	break;
780 		case 32: bcomp = OpalPciBus3Bits;	break;
781 		default:
782 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
783 			        count);
784 			/* Do an exact match only */
785 			bcomp = OpalPciBusAll;
786 		}
787 		rid_end = pe->rid + (count << 8);
788 	} else {
789 #ifdef CONFIG_PCI_IOV
790 		if (pe->flags & PNV_IODA_PE_VF)
791 			parent = pe->parent_dev;
792 		else
793 #endif /* CONFIG_PCI_IOV */
794 			parent = pe->pdev->bus->self;
795 		bcomp = OpalPciBusAll;
796 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
797 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
798 		rid_end = pe->rid + 1;
799 	}
800 
801 	/*
802 	 * Associate PE in PELT. We need add the PE into the
803 	 * corresponding PELT-V as well. Otherwise, the error
804 	 * originated from the PE might contribute to other
805 	 * PEs.
806 	 */
807 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
808 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
809 	if (rc) {
810 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
811 		return -ENXIO;
812 	}
813 
814 	/* Configure PELTV */
815 	pnv_ioda_set_peltv(phb, pe, true);
816 
817 	/* Setup reverse map */
818 	for (rid = pe->rid; rid < rid_end; rid++)
819 		phb->ioda.pe_rmap[rid] = pe->pe_number;
820 
821 	/* Setup one MVTs on IODA1 */
822 	if (phb->type != PNV_PHB_IODA1) {
823 		pe->mve_number = 0;
824 		goto out;
825 	}
826 
827 	pe->mve_number = pe->pe_number;
828 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
829 	if (rc != OPAL_SUCCESS) {
830 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
831 		       rc, pe->mve_number);
832 		pe->mve_number = -1;
833 	} else {
834 		rc = opal_pci_set_mve_enable(phb->opal_id,
835 					     pe->mve_number, OPAL_ENABLE_MVE);
836 		if (rc) {
837 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
838 			       rc, pe->mve_number);
839 			pe->mve_number = -1;
840 		}
841 	}
842 
843 out:
844 	return 0;
845 }
846 
847 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
848 				       struct pnv_ioda_pe *pe)
849 {
850 	struct pnv_ioda_pe *lpe;
851 
852 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
853 		if (lpe->dma_weight < pe->dma_weight) {
854 			list_add_tail(&pe->dma_link, &lpe->dma_link);
855 			return;
856 		}
857 	}
858 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
859 }
860 
861 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
862 {
863 	/* This is quite simplistic. The "base" weight of a device
864 	 * is 10. 0 means no DMA is to be accounted for it.
865 	 */
866 
867 	/* If it's a bridge, no DMA */
868 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
869 		return 0;
870 
871 	/* Reduce the weight of slow USB controllers */
872 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
873 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
874 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
875 		return 3;
876 
877 	/* Increase the weight of RAID (includes Obsidian) */
878 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
879 		return 15;
880 
881 	/* Default */
882 	return 10;
883 }
884 
885 #ifdef CONFIG_PCI_IOV
886 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
887 {
888 	struct pci_dn *pdn = pci_get_pdn(dev);
889 	int i;
890 	struct resource *res, res2;
891 	resource_size_t size;
892 	u16 num_vfs;
893 
894 	if (!dev->is_physfn)
895 		return -EINVAL;
896 
897 	/*
898 	 * "offset" is in VFs.  The M64 windows are sized so that when they
899 	 * are segmented, each segment is the same size as the IOV BAR.
900 	 * Each segment is in a separate PE, and the high order bits of the
901 	 * address are the PE number.  Therefore, each VF's BAR is in a
902 	 * separate PE, and changing the IOV BAR start address changes the
903 	 * range of PEs the VFs are in.
904 	 */
905 	num_vfs = pdn->num_vfs;
906 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
907 		res = &dev->resource[i + PCI_IOV_RESOURCES];
908 		if (!res->flags || !res->parent)
909 			continue;
910 
911 		if (!pnv_pci_is_mem_pref_64(res->flags))
912 			continue;
913 
914 		/*
915 		 * The actual IOV BAR range is determined by the start address
916 		 * and the actual size for num_vfs VFs BAR.  This check is to
917 		 * make sure that after shifting, the range will not overlap
918 		 * with another device.
919 		 */
920 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
921 		res2.flags = res->flags;
922 		res2.start = res->start + (size * offset);
923 		res2.end = res2.start + (size * num_vfs) - 1;
924 
925 		if (res2.end > res->end) {
926 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
927 				i, &res2, res, num_vfs, offset);
928 			return -EBUSY;
929 		}
930 	}
931 
932 	/*
933 	 * After doing so, there would be a "hole" in the /proc/iomem when
934 	 * offset is a positive value. It looks like the device return some
935 	 * mmio back to the system, which actually no one could use it.
936 	 */
937 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
938 		res = &dev->resource[i + PCI_IOV_RESOURCES];
939 		if (!res->flags || !res->parent)
940 			continue;
941 
942 		if (!pnv_pci_is_mem_pref_64(res->flags))
943 			continue;
944 
945 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
946 		res2 = *res;
947 		res->start += size * offset;
948 
949 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (enabling %d VFs shifted by %d)\n",
950 			 i, &res2, res, num_vfs, offset);
951 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
952 	}
953 	return 0;
954 }
955 #endif /* CONFIG_PCI_IOV */
956 
957 #if 0
958 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
959 {
960 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
961 	struct pnv_phb *phb = hose->private_data;
962 	struct pci_dn *pdn = pci_get_pdn(dev);
963 	struct pnv_ioda_pe *pe;
964 	int pe_num;
965 
966 	if (!pdn) {
967 		pr_err("%s: Device tree node not associated properly\n",
968 			   pci_name(dev));
969 		return NULL;
970 	}
971 	if (pdn->pe_number != IODA_INVALID_PE)
972 		return NULL;
973 
974 	/* PE#0 has been pre-set */
975 	if (dev->bus->number == 0)
976 		pe_num = 0;
977 	else
978 		pe_num = pnv_ioda_alloc_pe(phb);
979 	if (pe_num == IODA_INVALID_PE) {
980 		pr_warning("%s: Not enough PE# available, disabling device\n",
981 			   pci_name(dev));
982 		return NULL;
983 	}
984 
985 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
986 	 * pointer in the PE data structure, both should be destroyed at the
987 	 * same time. However, this needs to be looked at more closely again
988 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
989 	 *
990 	 * At some point we want to remove the PDN completely anyways
991 	 */
992 	pe = &phb->ioda.pe_array[pe_num];
993 	pci_dev_get(dev);
994 	pdn->pcidev = dev;
995 	pdn->pe_number = pe_num;
996 	pe->pdev = dev;
997 	pe->pbus = NULL;
998 	pe->tce32_seg = -1;
999 	pe->mve_number = -1;
1000 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1001 
1002 	pe_info(pe, "Associated device to PE\n");
1003 
1004 	if (pnv_ioda_configure_pe(phb, pe)) {
1005 		/* XXX What do we do here ? */
1006 		if (pe_num)
1007 			pnv_ioda_free_pe(phb, pe_num);
1008 		pdn->pe_number = IODA_INVALID_PE;
1009 		pe->pdev = NULL;
1010 		pci_dev_put(dev);
1011 		return NULL;
1012 	}
1013 
1014 	/* Assign a DMA weight to the device */
1015 	pe->dma_weight = pnv_ioda_dma_weight(dev);
1016 	if (pe->dma_weight != 0) {
1017 		phb->ioda.dma_weight += pe->dma_weight;
1018 		phb->ioda.dma_pe_count++;
1019 	}
1020 
1021 	/* Link the PE */
1022 	pnv_ioda_link_pe_by_weight(phb, pe);
1023 
1024 	return pe;
1025 }
1026 #endif /* Useful for SRIOV case */
1027 
1028 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1029 {
1030 	struct pci_dev *dev;
1031 
1032 	list_for_each_entry(dev, &bus->devices, bus_list) {
1033 		struct pci_dn *pdn = pci_get_pdn(dev);
1034 
1035 		if (pdn == NULL) {
1036 			pr_warn("%s: No device node associated with device !\n",
1037 				pci_name(dev));
1038 			continue;
1039 		}
1040 		pdn->pe_number = pe->pe_number;
1041 		pe->dma_weight += pnv_ioda_dma_weight(dev);
1042 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1043 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1044 	}
1045 }
1046 
1047 /*
1048  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1049  * single PCI bus. Another one that contains the primary PCI bus and its
1050  * subordinate PCI devices and buses. The second type of PE is normally
1051  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1052  */
1053 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
1054 {
1055 	struct pci_controller *hose = pci_bus_to_host(bus);
1056 	struct pnv_phb *phb = hose->private_data;
1057 	struct pnv_ioda_pe *pe;
1058 	int pe_num = IODA_INVALID_PE;
1059 
1060 	/* Check if PE is determined by M64 */
1061 	if (phb->pick_m64_pe)
1062 		pe_num = phb->pick_m64_pe(phb, bus, all);
1063 
1064 	/* The PE number isn't pinned by M64 */
1065 	if (pe_num == IODA_INVALID_PE)
1066 		pe_num = pnv_ioda_alloc_pe(phb);
1067 
1068 	if (pe_num == IODA_INVALID_PE) {
1069 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1070 			__func__, pci_domain_nr(bus), bus->number);
1071 		return;
1072 	}
1073 
1074 	pe = &phb->ioda.pe_array[pe_num];
1075 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1076 	pe->pbus = bus;
1077 	pe->pdev = NULL;
1078 	pe->tce32_seg = -1;
1079 	pe->mve_number = -1;
1080 	pe->rid = bus->busn_res.start << 8;
1081 	pe->dma_weight = 0;
1082 
1083 	if (all)
1084 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1085 			bus->busn_res.start, bus->busn_res.end, pe_num);
1086 	else
1087 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1088 			bus->busn_res.start, pe_num);
1089 
1090 	if (pnv_ioda_configure_pe(phb, pe)) {
1091 		/* XXX What do we do here ? */
1092 		if (pe_num)
1093 			pnv_ioda_free_pe(phb, pe_num);
1094 		pe->pbus = NULL;
1095 		return;
1096 	}
1097 
1098 	/* Associate it with all child devices */
1099 	pnv_ioda_setup_same_PE(bus, pe);
1100 
1101 	/* Put PE to the list */
1102 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1103 
1104 	/* Account for one DMA PE if at least one DMA capable device exist
1105 	 * below the bridge
1106 	 */
1107 	if (pe->dma_weight != 0) {
1108 		phb->ioda.dma_weight += pe->dma_weight;
1109 		phb->ioda.dma_pe_count++;
1110 	}
1111 
1112 	/* Link the PE */
1113 	pnv_ioda_link_pe_by_weight(phb, pe);
1114 }
1115 
1116 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1117 {
1118 	struct pci_dev *dev;
1119 
1120 	pnv_ioda_setup_bus_PE(bus, 0);
1121 
1122 	list_for_each_entry(dev, &bus->devices, bus_list) {
1123 		if (dev->subordinate) {
1124 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1125 				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
1126 			else
1127 				pnv_ioda_setup_PEs(dev->subordinate);
1128 		}
1129 	}
1130 }
1131 
1132 /*
1133  * Configure PEs so that the downstream PCI buses and devices
1134  * could have their associated PE#. Unfortunately, we didn't
1135  * figure out the way to identify the PLX bridge yet. So we
1136  * simply put the PCI bus and the subordinate behind the root
1137  * port to PE# here. The game rule here is expected to be changed
1138  * as soon as we can detected PLX bridge correctly.
1139  */
1140 static void pnv_pci_ioda_setup_PEs(void)
1141 {
1142 	struct pci_controller *hose, *tmp;
1143 	struct pnv_phb *phb;
1144 
1145 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1146 		phb = hose->private_data;
1147 
1148 		/* M64 layout might affect PE allocation */
1149 		if (phb->reserve_m64_pe)
1150 			phb->reserve_m64_pe(phb);
1151 
1152 		pnv_ioda_setup_PEs(hose->bus);
1153 	}
1154 }
1155 
1156 #ifdef CONFIG_PCI_IOV
1157 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1158 {
1159 	struct pci_bus        *bus;
1160 	struct pci_controller *hose;
1161 	struct pnv_phb        *phb;
1162 	struct pci_dn         *pdn;
1163 	int                    i, j;
1164 
1165 	bus = pdev->bus;
1166 	hose = pci_bus_to_host(bus);
1167 	phb = hose->private_data;
1168 	pdn = pci_get_pdn(pdev);
1169 
1170 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1171 		for (j = 0; j < M64_PER_IOV; j++) {
1172 			if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1173 				continue;
1174 			opal_pci_phb_mmio_enable(phb->opal_id,
1175 				OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1176 			clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1177 			pdn->m64_wins[i][j] = IODA_INVALID_M64;
1178 		}
1179 
1180 	return 0;
1181 }
1182 
1183 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1184 {
1185 	struct pci_bus        *bus;
1186 	struct pci_controller *hose;
1187 	struct pnv_phb        *phb;
1188 	struct pci_dn         *pdn;
1189 	unsigned int           win;
1190 	struct resource       *res;
1191 	int                    i, j;
1192 	int64_t                rc;
1193 	int                    total_vfs;
1194 	resource_size_t        size, start;
1195 	int                    pe_num;
1196 	int                    vf_groups;
1197 	int                    vf_per_group;
1198 
1199 	bus = pdev->bus;
1200 	hose = pci_bus_to_host(bus);
1201 	phb = hose->private_data;
1202 	pdn = pci_get_pdn(pdev);
1203 	total_vfs = pci_sriov_get_totalvfs(pdev);
1204 
1205 	/* Initialize the m64_wins to IODA_INVALID_M64 */
1206 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1207 		for (j = 0; j < M64_PER_IOV; j++)
1208 			pdn->m64_wins[i][j] = IODA_INVALID_M64;
1209 
1210 	if (pdn->m64_per_iov == M64_PER_IOV) {
1211 		vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1212 		vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1213 			roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1214 	} else {
1215 		vf_groups = 1;
1216 		vf_per_group = 1;
1217 	}
1218 
1219 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1220 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1221 		if (!res->flags || !res->parent)
1222 			continue;
1223 
1224 		if (!pnv_pci_is_mem_pref_64(res->flags))
1225 			continue;
1226 
1227 		for (j = 0; j < vf_groups; j++) {
1228 			do {
1229 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1230 						phb->ioda.m64_bar_idx + 1, 0);
1231 
1232 				if (win >= phb->ioda.m64_bar_idx + 1)
1233 					goto m64_failed;
1234 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1235 
1236 			pdn->m64_wins[i][j] = win;
1237 
1238 			if (pdn->m64_per_iov == M64_PER_IOV) {
1239 				size = pci_iov_resource_size(pdev,
1240 							PCI_IOV_RESOURCES + i);
1241 				size = size * vf_per_group;
1242 				start = res->start + size * j;
1243 			} else {
1244 				size = resource_size(res);
1245 				start = res->start;
1246 			}
1247 
1248 			/* Map the M64 here */
1249 			if (pdn->m64_per_iov == M64_PER_IOV) {
1250 				pe_num = pdn->offset + j;
1251 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1252 						pe_num, OPAL_M64_WINDOW_TYPE,
1253 						pdn->m64_wins[i][j], 0);
1254 			}
1255 
1256 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1257 						 OPAL_M64_WINDOW_TYPE,
1258 						 pdn->m64_wins[i][j],
1259 						 start,
1260 						 0, /* unused */
1261 						 size);
1262 
1263 
1264 			if (rc != OPAL_SUCCESS) {
1265 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1266 					win, rc);
1267 				goto m64_failed;
1268 			}
1269 
1270 			if (pdn->m64_per_iov == M64_PER_IOV)
1271 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1272 				     OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1273 			else
1274 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1275 				     OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1276 
1277 			if (rc != OPAL_SUCCESS) {
1278 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1279 					win, rc);
1280 				goto m64_failed;
1281 			}
1282 		}
1283 	}
1284 	return 0;
1285 
1286 m64_failed:
1287 	pnv_pci_vf_release_m64(pdev);
1288 	return -EBUSY;
1289 }
1290 
1291 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1292 {
1293 	struct pci_bus        *bus;
1294 	struct pci_controller *hose;
1295 	struct pnv_phb        *phb;
1296 	struct iommu_table    *tbl;
1297 	unsigned long         addr;
1298 	int64_t               rc;
1299 
1300 	bus = dev->bus;
1301 	hose = pci_bus_to_host(bus);
1302 	phb = hose->private_data;
1303 	tbl = pe->table_group.tables[0];
1304 	addr = tbl->it_base;
1305 
1306 	opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1307 				   pe->pe_number << 1, 1, __pa(addr),
1308 				   0, 0x1000);
1309 
1310 	rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1311 				        pe->pe_number,
1312 				        (pe->pe_number << 1) + 1,
1313 				        pe->tce_bypass_base,
1314 				        0);
1315 	if (rc)
1316 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1317 
1318 	pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1319 	if (pe->table_group.group) {
1320 		iommu_group_put(pe->table_group.group);
1321 		BUG_ON(pe->table_group.group);
1322 	}
1323 	pnv_pci_ioda2_table_free_pages(tbl);
1324 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1325 }
1326 
1327 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1328 {
1329 	struct pci_bus        *bus;
1330 	struct pci_controller *hose;
1331 	struct pnv_phb        *phb;
1332 	struct pnv_ioda_pe    *pe, *pe_n;
1333 	struct pci_dn         *pdn;
1334 	u16                    vf_index;
1335 	int64_t                rc;
1336 
1337 	bus = pdev->bus;
1338 	hose = pci_bus_to_host(bus);
1339 	phb = hose->private_data;
1340 	pdn = pci_get_pdn(pdev);
1341 
1342 	if (!pdev->is_physfn)
1343 		return;
1344 
1345 	if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1346 		int   vf_group;
1347 		int   vf_per_group;
1348 		int   vf_index1;
1349 
1350 		vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1351 
1352 		for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1353 			for (vf_index = vf_group * vf_per_group;
1354 				vf_index < (vf_group + 1) * vf_per_group &&
1355 				vf_index < num_vfs;
1356 				vf_index++)
1357 				for (vf_index1 = vf_group * vf_per_group;
1358 					vf_index1 < (vf_group + 1) * vf_per_group &&
1359 					vf_index1 < num_vfs;
1360 					vf_index1++){
1361 
1362 					rc = opal_pci_set_peltv(phb->opal_id,
1363 						pdn->offset + vf_index,
1364 						pdn->offset + vf_index1,
1365 						OPAL_REMOVE_PE_FROM_DOMAIN);
1366 
1367 					if (rc)
1368 					    dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1369 						__func__,
1370 						pdn->offset + vf_index1, rc);
1371 				}
1372 	}
1373 
1374 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1375 		if (pe->parent_dev != pdev)
1376 			continue;
1377 
1378 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1379 
1380 		/* Remove from list */
1381 		mutex_lock(&phb->ioda.pe_list_mutex);
1382 		list_del(&pe->list);
1383 		mutex_unlock(&phb->ioda.pe_list_mutex);
1384 
1385 		pnv_ioda_deconfigure_pe(phb, pe);
1386 
1387 		pnv_ioda_free_pe(phb, pe->pe_number);
1388 	}
1389 }
1390 
1391 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1392 {
1393 	struct pci_bus        *bus;
1394 	struct pci_controller *hose;
1395 	struct pnv_phb        *phb;
1396 	struct pci_dn         *pdn;
1397 	struct pci_sriov      *iov;
1398 	u16 num_vfs;
1399 
1400 	bus = pdev->bus;
1401 	hose = pci_bus_to_host(bus);
1402 	phb = hose->private_data;
1403 	pdn = pci_get_pdn(pdev);
1404 	iov = pdev->sriov;
1405 	num_vfs = pdn->num_vfs;
1406 
1407 	/* Release VF PEs */
1408 	pnv_ioda_release_vf_PE(pdev, num_vfs);
1409 
1410 	if (phb->type == PNV_PHB_IODA2) {
1411 		if (pdn->m64_per_iov == 1)
1412 			pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1413 
1414 		/* Release M64 windows */
1415 		pnv_pci_vf_release_m64(pdev);
1416 
1417 		/* Release PE numbers */
1418 		bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1419 		pdn->offset = 0;
1420 	}
1421 }
1422 
1423 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1424 				       struct pnv_ioda_pe *pe);
1425 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1426 {
1427 	struct pci_bus        *bus;
1428 	struct pci_controller *hose;
1429 	struct pnv_phb        *phb;
1430 	struct pnv_ioda_pe    *pe;
1431 	int                    pe_num;
1432 	u16                    vf_index;
1433 	struct pci_dn         *pdn;
1434 	int64_t                rc;
1435 
1436 	bus = pdev->bus;
1437 	hose = pci_bus_to_host(bus);
1438 	phb = hose->private_data;
1439 	pdn = pci_get_pdn(pdev);
1440 
1441 	if (!pdev->is_physfn)
1442 		return;
1443 
1444 	/* Reserve PE for each VF */
1445 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1446 		pe_num = pdn->offset + vf_index;
1447 
1448 		pe = &phb->ioda.pe_array[pe_num];
1449 		pe->pe_number = pe_num;
1450 		pe->phb = phb;
1451 		pe->flags = PNV_IODA_PE_VF;
1452 		pe->pbus = NULL;
1453 		pe->parent_dev = pdev;
1454 		pe->tce32_seg = -1;
1455 		pe->mve_number = -1;
1456 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1457 			   pci_iov_virtfn_devfn(pdev, vf_index);
1458 
1459 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1460 			hose->global_number, pdev->bus->number,
1461 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1462 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1463 
1464 		if (pnv_ioda_configure_pe(phb, pe)) {
1465 			/* XXX What do we do here ? */
1466 			if (pe_num)
1467 				pnv_ioda_free_pe(phb, pe_num);
1468 			pe->pdev = NULL;
1469 			continue;
1470 		}
1471 
1472 		/* Put PE to the list */
1473 		mutex_lock(&phb->ioda.pe_list_mutex);
1474 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1475 		mutex_unlock(&phb->ioda.pe_list_mutex);
1476 
1477 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1478 	}
1479 
1480 	if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1481 		int   vf_group;
1482 		int   vf_per_group;
1483 		int   vf_index1;
1484 
1485 		vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1486 
1487 		for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1488 			for (vf_index = vf_group * vf_per_group;
1489 			     vf_index < (vf_group + 1) * vf_per_group &&
1490 			     vf_index < num_vfs;
1491 			     vf_index++) {
1492 				for (vf_index1 = vf_group * vf_per_group;
1493 				     vf_index1 < (vf_group + 1) * vf_per_group &&
1494 				     vf_index1 < num_vfs;
1495 				     vf_index1++) {
1496 
1497 					rc = opal_pci_set_peltv(phb->opal_id,
1498 						pdn->offset + vf_index,
1499 						pdn->offset + vf_index1,
1500 						OPAL_ADD_PE_TO_DOMAIN);
1501 
1502 					if (rc)
1503 					    dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1504 						__func__,
1505 						pdn->offset + vf_index1, rc);
1506 				}
1507 			}
1508 		}
1509 	}
1510 }
1511 
1512 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1513 {
1514 	struct pci_bus        *bus;
1515 	struct pci_controller *hose;
1516 	struct pnv_phb        *phb;
1517 	struct pci_dn         *pdn;
1518 	int                    ret;
1519 
1520 	bus = pdev->bus;
1521 	hose = pci_bus_to_host(bus);
1522 	phb = hose->private_data;
1523 	pdn = pci_get_pdn(pdev);
1524 
1525 	if (phb->type == PNV_PHB_IODA2) {
1526 		/* Calculate available PE for required VFs */
1527 		mutex_lock(&phb->ioda.pe_alloc_mutex);
1528 		pdn->offset = bitmap_find_next_zero_area(
1529 			phb->ioda.pe_alloc, phb->ioda.total_pe,
1530 			0, num_vfs, 0);
1531 		if (pdn->offset >= phb->ioda.total_pe) {
1532 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1533 			dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1534 			pdn->offset = 0;
1535 			return -EBUSY;
1536 		}
1537 		bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1538 		pdn->num_vfs = num_vfs;
1539 		mutex_unlock(&phb->ioda.pe_alloc_mutex);
1540 
1541 		/* Assign M64 window accordingly */
1542 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1543 		if (ret) {
1544 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1545 			goto m64_failed;
1546 		}
1547 
1548 		/*
1549 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1550 		 * the IOV BAR according to the PE# allocated to the VFs.
1551 		 * Otherwise, the PE# for the VF will conflict with others.
1552 		 */
1553 		if (pdn->m64_per_iov == 1) {
1554 			ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1555 			if (ret)
1556 				goto m64_failed;
1557 		}
1558 	}
1559 
1560 	/* Setup VF PEs */
1561 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1562 
1563 	return 0;
1564 
1565 m64_failed:
1566 	bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1567 	pdn->offset = 0;
1568 
1569 	return ret;
1570 }
1571 
1572 int pcibios_sriov_disable(struct pci_dev *pdev)
1573 {
1574 	pnv_pci_sriov_disable(pdev);
1575 
1576 	/* Release PCI data */
1577 	remove_dev_pci_data(pdev);
1578 	return 0;
1579 }
1580 
1581 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1582 {
1583 	/* Allocate PCI data */
1584 	add_dev_pci_data(pdev);
1585 
1586 	pnv_pci_sriov_enable(pdev, num_vfs);
1587 	return 0;
1588 }
1589 #endif /* CONFIG_PCI_IOV */
1590 
1591 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1592 {
1593 	struct pci_dn *pdn = pci_get_pdn(pdev);
1594 	struct pnv_ioda_pe *pe;
1595 
1596 	/*
1597 	 * The function can be called while the PE#
1598 	 * hasn't been assigned. Do nothing for the
1599 	 * case.
1600 	 */
1601 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1602 		return;
1603 
1604 	pe = &phb->ioda.pe_array[pdn->pe_number];
1605 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1606 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1607 	/*
1608 	 * Note: iommu_add_device() will fail here as
1609 	 * for physical PE: the device is already added by now;
1610 	 * for virtual PE: sysfs entries are not ready yet and
1611 	 * tce_iommu_bus_notifier will add the device to a group later.
1612 	 */
1613 }
1614 
1615 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1616 {
1617 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1618 	struct pnv_phb *phb = hose->private_data;
1619 	struct pci_dn *pdn = pci_get_pdn(pdev);
1620 	struct pnv_ioda_pe *pe;
1621 	uint64_t top;
1622 	bool bypass = false;
1623 
1624 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1625 		return -ENODEV;;
1626 
1627 	pe = &phb->ioda.pe_array[pdn->pe_number];
1628 	if (pe->tce_bypass_enabled) {
1629 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1630 		bypass = (dma_mask >= top);
1631 	}
1632 
1633 	if (bypass) {
1634 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1635 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1636 		set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1637 	} else {
1638 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1639 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1640 		set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1641 	}
1642 	*pdev->dev.dma_mask = dma_mask;
1643 	return 0;
1644 }
1645 
1646 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1647 					      struct pci_dev *pdev)
1648 {
1649 	struct pci_dn *pdn = pci_get_pdn(pdev);
1650 	struct pnv_ioda_pe *pe;
1651 	u64 end, mask;
1652 
1653 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1654 		return 0;
1655 
1656 	pe = &phb->ioda.pe_array[pdn->pe_number];
1657 	if (!pe->tce_bypass_enabled)
1658 		return __dma_get_required_mask(&pdev->dev);
1659 
1660 
1661 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1662 	mask = 1ULL << (fls64(end) - 1);
1663 	mask += mask - 1;
1664 
1665 	return mask;
1666 }
1667 
1668 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1669 				   struct pci_bus *bus)
1670 {
1671 	struct pci_dev *dev;
1672 
1673 	list_for_each_entry(dev, &bus->devices, bus_list) {
1674 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1675 		iommu_add_device(&dev->dev);
1676 
1677 		if (dev->subordinate)
1678 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1679 	}
1680 }
1681 
1682 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1683 		unsigned long index, unsigned long npages, bool rm)
1684 {
1685 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1686 			&tbl->it_group_list, struct iommu_table_group_link,
1687 			next);
1688 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1689 			struct pnv_ioda_pe, table_group);
1690 	__be64 __iomem *invalidate = rm ?
1691 		(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1692 		pe->phb->ioda.tce_inval_reg;
1693 	unsigned long start, end, inc;
1694 	const unsigned shift = tbl->it_page_shift;
1695 
1696 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1697 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1698 			npages - 1);
1699 
1700 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1701 	if (tbl->it_busno) {
1702 		start <<= shift;
1703 		end <<= shift;
1704 		inc = 128ull << shift;
1705 		start |= tbl->it_busno;
1706 		end |= tbl->it_busno;
1707 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1708 		/* p7ioc-style invalidation, 2 TCEs per write */
1709 		start |= (1ull << 63);
1710 		end |= (1ull << 63);
1711 		inc = 16;
1712         } else {
1713 		/* Default (older HW) */
1714                 inc = 128;
1715 	}
1716 
1717         end |= inc - 1;	/* round up end to be different than start */
1718 
1719         mb(); /* Ensure above stores are visible */
1720         while (start <= end) {
1721 		if (rm)
1722 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1723 		else
1724 			__raw_writeq(cpu_to_be64(start), invalidate);
1725                 start += inc;
1726         }
1727 
1728 	/*
1729 	 * The iommu layer will do another mb() for us on build()
1730 	 * and we don't care on free()
1731 	 */
1732 }
1733 
1734 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1735 		long npages, unsigned long uaddr,
1736 		enum dma_data_direction direction,
1737 		struct dma_attrs *attrs)
1738 {
1739 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1740 			attrs);
1741 
1742 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1743 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1744 
1745 	return ret;
1746 }
1747 
1748 #ifdef CONFIG_IOMMU_API
1749 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1750 		unsigned long *hpa, enum dma_data_direction *direction)
1751 {
1752 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1753 
1754 	if (!ret && (tbl->it_type &
1755 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1756 		pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1757 
1758 	return ret;
1759 }
1760 #endif
1761 
1762 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1763 		long npages)
1764 {
1765 	pnv_tce_free(tbl, index, npages);
1766 
1767 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1768 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1769 }
1770 
1771 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1772 	.set = pnv_ioda1_tce_build,
1773 #ifdef CONFIG_IOMMU_API
1774 	.exchange = pnv_ioda1_tce_xchg,
1775 #endif
1776 	.clear = pnv_ioda1_tce_free,
1777 	.get = pnv_tce_get,
1778 };
1779 
1780 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1781 {
1782 	/* 01xb - invalidate TCEs that match the specified PE# */
1783 	unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1784 	struct pnv_phb *phb = pe->phb;
1785 
1786 	if (!phb->ioda.tce_inval_reg)
1787 		return;
1788 
1789 	mb(); /* Ensure above stores are visible */
1790 	__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1791 }
1792 
1793 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1794 		__be64 __iomem *invalidate, unsigned shift,
1795 		unsigned long index, unsigned long npages)
1796 {
1797 	unsigned long start, end, inc;
1798 
1799 	/* We'll invalidate DMA address in PE scope */
1800 	start = 0x2ull << 60;
1801 	start |= (pe_number & 0xFF);
1802 	end = start;
1803 
1804 	/* Figure out the start, end and step */
1805 	start |= (index << shift);
1806 	end |= ((index + npages - 1) << shift);
1807 	inc = (0x1ull << shift);
1808 	mb();
1809 
1810 	while (start <= end) {
1811 		if (rm)
1812 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1813 		else
1814 			__raw_writeq(cpu_to_be64(start), invalidate);
1815 		start += inc;
1816 	}
1817 }
1818 
1819 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1820 		unsigned long index, unsigned long npages, bool rm)
1821 {
1822 	struct iommu_table_group_link *tgl;
1823 
1824 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1825 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1826 				struct pnv_ioda_pe, table_group);
1827 		__be64 __iomem *invalidate = rm ?
1828 			(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1829 			pe->phb->ioda.tce_inval_reg;
1830 
1831 		pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1832 			invalidate, tbl->it_page_shift,
1833 			index, npages);
1834 	}
1835 }
1836 
1837 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1838 		long npages, unsigned long uaddr,
1839 		enum dma_data_direction direction,
1840 		struct dma_attrs *attrs)
1841 {
1842 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1843 			attrs);
1844 
1845 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1846 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1847 
1848 	return ret;
1849 }
1850 
1851 #ifdef CONFIG_IOMMU_API
1852 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1853 		unsigned long *hpa, enum dma_data_direction *direction)
1854 {
1855 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1856 
1857 	if (!ret && (tbl->it_type &
1858 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1859 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1860 
1861 	return ret;
1862 }
1863 #endif
1864 
1865 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1866 		long npages)
1867 {
1868 	pnv_tce_free(tbl, index, npages);
1869 
1870 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1871 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1872 }
1873 
1874 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1875 {
1876 	pnv_pci_ioda2_table_free_pages(tbl);
1877 	iommu_free_table(tbl, "pnv");
1878 }
1879 
1880 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1881 	.set = pnv_ioda2_tce_build,
1882 #ifdef CONFIG_IOMMU_API
1883 	.exchange = pnv_ioda2_tce_xchg,
1884 #endif
1885 	.clear = pnv_ioda2_tce_free,
1886 	.get = pnv_tce_get,
1887 	.free = pnv_ioda2_table_free,
1888 };
1889 
1890 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1891 				      struct pnv_ioda_pe *pe, unsigned int base,
1892 				      unsigned int segs)
1893 {
1894 
1895 	struct page *tce_mem = NULL;
1896 	struct iommu_table *tbl;
1897 	unsigned int i;
1898 	int64_t rc;
1899 	void *addr;
1900 
1901 	/* XXX FIXME: Handle 64-bit only DMA devices */
1902 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1903 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1904 
1905 	/* We shouldn't already have a 32-bit DMA associated */
1906 	if (WARN_ON(pe->tce32_seg >= 0))
1907 		return;
1908 
1909 	tbl = pnv_pci_table_alloc(phb->hose->node);
1910 	iommu_register_group(&pe->table_group, phb->hose->global_number,
1911 			pe->pe_number);
1912 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1913 
1914 	/* Grab a 32-bit TCE table */
1915 	pe->tce32_seg = base;
1916 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1917 		(base << 28), ((base + segs) << 28) - 1);
1918 
1919 	/* XXX Currently, we allocate one big contiguous table for the
1920 	 * TCEs. We only really need one chunk per 256M of TCE space
1921 	 * (ie per segment) but that's an optimization for later, it
1922 	 * requires some added smarts with our get/put_tce implementation
1923 	 */
1924 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1925 				   get_order(TCE32_TABLE_SIZE * segs));
1926 	if (!tce_mem) {
1927 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1928 		goto fail;
1929 	}
1930 	addr = page_address(tce_mem);
1931 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
1932 
1933 	/* Configure HW */
1934 	for (i = 0; i < segs; i++) {
1935 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1936 					      pe->pe_number,
1937 					      base + i, 1,
1938 					      __pa(addr) + TCE32_TABLE_SIZE * i,
1939 					      TCE32_TABLE_SIZE, 0x1000);
1940 		if (rc) {
1941 			pe_err(pe, " Failed to configure 32-bit TCE table,"
1942 			       " err %ld\n", rc);
1943 			goto fail;
1944 		}
1945 	}
1946 
1947 	/* Setup linux iommu table */
1948 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1949 				  base << 28, IOMMU_PAGE_SHIFT_4K);
1950 
1951 	/* OPAL variant of P7IOC SW invalidated TCEs */
1952 	if (phb->ioda.tce_inval_reg)
1953 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1954 				 TCE_PCI_SWINV_FREE   |
1955 				 TCE_PCI_SWINV_PAIR);
1956 
1957 	tbl->it_ops = &pnv_ioda1_iommu_ops;
1958 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1959 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1960 	iommu_init_table(tbl, phb->hose->node);
1961 
1962 	if (pe->flags & PNV_IODA_PE_DEV) {
1963 		/*
1964 		 * Setting table base here only for carrying iommu_group
1965 		 * further down to let iommu_add_device() do the job.
1966 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1967 		 */
1968 		set_iommu_table_base(&pe->pdev->dev, tbl);
1969 		iommu_add_device(&pe->pdev->dev);
1970 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1971 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1972 
1973 	return;
1974  fail:
1975 	/* XXX Failure: Try to fallback to 64-bit only ? */
1976 	if (pe->tce32_seg >= 0)
1977 		pe->tce32_seg = -1;
1978 	if (tce_mem)
1979 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1980 	if (tbl) {
1981 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1982 		iommu_free_table(tbl, "pnv");
1983 	}
1984 }
1985 
1986 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1987 		int num, struct iommu_table *tbl)
1988 {
1989 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1990 			table_group);
1991 	struct pnv_phb *phb = pe->phb;
1992 	int64_t rc;
1993 	const unsigned long size = tbl->it_indirect_levels ?
1994 			tbl->it_level_size : tbl->it_size;
1995 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1996 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1997 
1998 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
1999 			start_addr, start_addr + win_size - 1,
2000 			IOMMU_PAGE_SIZE(tbl));
2001 
2002 	/*
2003 	 * Map TCE table through TVT. The TVE index is the PE number
2004 	 * shifted by 1 bit for 32-bits DMA space.
2005 	 */
2006 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2007 			pe->pe_number,
2008 			(pe->pe_number << 1) + num,
2009 			tbl->it_indirect_levels + 1,
2010 			__pa(tbl->it_base),
2011 			size << 3,
2012 			IOMMU_PAGE_SIZE(tbl));
2013 	if (rc) {
2014 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2015 		return rc;
2016 	}
2017 
2018 	pnv_pci_link_table_and_group(phb->hose->node, num,
2019 			tbl, &pe->table_group);
2020 	pnv_pci_ioda2_tce_invalidate_entire(pe);
2021 
2022 	return 0;
2023 }
2024 
2025 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2026 {
2027 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2028 	int64_t rc;
2029 
2030 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2031 	if (enable) {
2032 		phys_addr_t top = memblock_end_of_DRAM();
2033 
2034 		top = roundup_pow_of_two(top);
2035 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2036 						     pe->pe_number,
2037 						     window_id,
2038 						     pe->tce_bypass_base,
2039 						     top);
2040 	} else {
2041 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2042 						     pe->pe_number,
2043 						     window_id,
2044 						     pe->tce_bypass_base,
2045 						     0);
2046 	}
2047 	if (rc)
2048 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2049 	else
2050 		pe->tce_bypass_enabled = enable;
2051 }
2052 
2053 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2054 		__u32 page_shift, __u64 window_size, __u32 levels,
2055 		struct iommu_table *tbl);
2056 
2057 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2058 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2059 		struct iommu_table **ptbl)
2060 {
2061 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2062 			table_group);
2063 	int nid = pe->phb->hose->node;
2064 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2065 	long ret;
2066 	struct iommu_table *tbl;
2067 
2068 	tbl = pnv_pci_table_alloc(nid);
2069 	if (!tbl)
2070 		return -ENOMEM;
2071 
2072 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2073 			bus_offset, page_shift, window_size,
2074 			levels, tbl);
2075 	if (ret) {
2076 		iommu_free_table(tbl, "pnv");
2077 		return ret;
2078 	}
2079 
2080 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2081 	if (pe->phb->ioda.tce_inval_reg)
2082 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2083 
2084 	*ptbl = tbl;
2085 
2086 	return 0;
2087 }
2088 
2089 #ifdef CONFIG_IOMMU_API
2090 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2091 		int num)
2092 {
2093 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2094 			table_group);
2095 	struct pnv_phb *phb = pe->phb;
2096 	long ret;
2097 
2098 	pe_info(pe, "Removing DMA window #%d\n", num);
2099 
2100 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2101 			(pe->pe_number << 1) + num,
2102 			0/* levels */, 0/* table address */,
2103 			0/* table size */, 0/* page size */);
2104 	if (ret)
2105 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2106 	else
2107 		pnv_pci_ioda2_tce_invalidate_entire(pe);
2108 
2109 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2110 
2111 	return ret;
2112 }
2113 
2114 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2115 {
2116 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2117 						table_group);
2118 
2119 	iommu_take_ownership(table_group->tables[0]);
2120 	pnv_pci_ioda2_set_bypass(pe, false);
2121 }
2122 
2123 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2124 {
2125 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2126 						table_group);
2127 
2128 	iommu_release_ownership(table_group->tables[0]);
2129 	pnv_pci_ioda2_set_bypass(pe, true);
2130 }
2131 
2132 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2133 	.create_table = pnv_pci_ioda2_create_table,
2134 	.set_window = pnv_pci_ioda2_set_window,
2135 	.unset_window = pnv_pci_ioda2_unset_window,
2136 	.take_ownership = pnv_ioda2_take_ownership,
2137 	.release_ownership = pnv_ioda2_release_ownership,
2138 };
2139 #endif
2140 
2141 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2142 {
2143 	const __be64 *swinvp;
2144 
2145 	/* OPAL variant of PHB3 invalidated TCEs */
2146 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2147 	if (!swinvp)
2148 		return;
2149 
2150 	phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2151 	phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2152 }
2153 
2154 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2155 		unsigned levels, unsigned long limit,
2156 		unsigned long *current_offset)
2157 {
2158 	struct page *tce_mem = NULL;
2159 	__be64 *addr, *tmp;
2160 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2161 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2162 	unsigned entries = 1UL << (shift - 3);
2163 	long i;
2164 
2165 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2166 	if (!tce_mem) {
2167 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2168 		return NULL;
2169 	}
2170 	addr = page_address(tce_mem);
2171 	memset(addr, 0, allocated);
2172 
2173 	--levels;
2174 	if (!levels) {
2175 		*current_offset += allocated;
2176 		return addr;
2177 	}
2178 
2179 	for (i = 0; i < entries; ++i) {
2180 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2181 				levels, limit, current_offset);
2182 		if (!tmp)
2183 			break;
2184 
2185 		addr[i] = cpu_to_be64(__pa(tmp) |
2186 				TCE_PCI_READ | TCE_PCI_WRITE);
2187 
2188 		if (*current_offset >= limit)
2189 			break;
2190 	}
2191 
2192 	return addr;
2193 }
2194 
2195 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2196 		unsigned long size, unsigned level);
2197 
2198 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2199 		__u32 page_shift, __u64 window_size, __u32 levels,
2200 		struct iommu_table *tbl)
2201 {
2202 	void *addr;
2203 	unsigned long offset = 0, level_shift;
2204 	const unsigned window_shift = ilog2(window_size);
2205 	unsigned entries_shift = window_shift - page_shift;
2206 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2207 	const unsigned long tce_table_size = 1UL << table_shift;
2208 
2209 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2210 		return -EINVAL;
2211 
2212 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2213 		return -EINVAL;
2214 
2215 	/* Adjust direct table size from window_size and levels */
2216 	entries_shift = (entries_shift + levels - 1) / levels;
2217 	level_shift = entries_shift + 3;
2218 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2219 
2220 	/* Allocate TCE table */
2221 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2222 			levels, tce_table_size, &offset);
2223 
2224 	/* addr==NULL means that the first level allocation failed */
2225 	if (!addr)
2226 		return -ENOMEM;
2227 
2228 	/*
2229 	 * First level was allocated but some lower level failed as
2230 	 * we did not allocate as much as we wanted,
2231 	 * release partially allocated table.
2232 	 */
2233 	if (offset < tce_table_size) {
2234 		pnv_pci_ioda2_table_do_free_pages(addr,
2235 				1ULL << (level_shift - 3), levels - 1);
2236 		return -ENOMEM;
2237 	}
2238 
2239 	/* Setup linux iommu table */
2240 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2241 			page_shift);
2242 	tbl->it_level_size = 1ULL << (level_shift - 3);
2243 	tbl->it_indirect_levels = levels - 1;
2244 
2245 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2246 			window_size, tce_table_size, bus_offset);
2247 
2248 	return 0;
2249 }
2250 
2251 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2252 		unsigned long size, unsigned level)
2253 {
2254 	const unsigned long addr_ul = (unsigned long) addr &
2255 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2256 
2257 	if (level) {
2258 		long i;
2259 		u64 *tmp = (u64 *) addr_ul;
2260 
2261 		for (i = 0; i < size; ++i) {
2262 			unsigned long hpa = be64_to_cpu(tmp[i]);
2263 
2264 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2265 				continue;
2266 
2267 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2268 					level - 1);
2269 		}
2270 	}
2271 
2272 	free_pages(addr_ul, get_order(size << 3));
2273 }
2274 
2275 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2276 {
2277 	const unsigned long size = tbl->it_indirect_levels ?
2278 			tbl->it_level_size : tbl->it_size;
2279 
2280 	if (!tbl->it_size)
2281 		return;
2282 
2283 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2284 			tbl->it_indirect_levels);
2285 }
2286 
2287 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2288 				       struct pnv_ioda_pe *pe)
2289 {
2290 	struct iommu_table *tbl = NULL;
2291 	int64_t rc;
2292 
2293 	/* We shouldn't already have a 32-bit DMA associated */
2294 	if (WARN_ON(pe->tce32_seg >= 0))
2295 		return;
2296 
2297 	/* TVE #1 is selected by PCI address bit 59 */
2298 	pe->tce_bypass_base = 1ull << 59;
2299 
2300 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2301 			pe->pe_number);
2302 
2303 	/* The PE will reserve all possible 32-bits space */
2304 	pe->tce32_seg = 0;
2305 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2306 		phb->ioda.m32_pci_base);
2307 
2308 	/* Setup linux iommu table */
2309 	pe->table_group.tce32_start = 0;
2310 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2311 	pe->table_group.max_dynamic_windows_supported =
2312 			IOMMU_TABLE_GROUP_MAX_TABLES;
2313 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2314 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2315 
2316 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2317 			IOMMU_PAGE_SHIFT_4K,
2318 			pe->table_group.tce32_size,
2319 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2320 	if (rc) {
2321 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld", rc);
2322 		goto fail;
2323 	}
2324 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2325 
2326 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2327 	iommu_init_table(tbl, phb->hose->node);
2328 #ifdef CONFIG_IOMMU_API
2329 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2330 #endif
2331 
2332 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2333 	if (rc) {
2334 		pe_err(pe, "Failed to configure 32-bit TCE table,"
2335 		       " err %ld\n", rc);
2336 		goto fail;
2337 	}
2338 
2339 	/* OPAL variant of PHB3 invalidated TCEs */
2340 	if (phb->ioda.tce_inval_reg)
2341 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2342 
2343 	if (pe->flags & PNV_IODA_PE_DEV) {
2344 		/*
2345 		 * Setting table base here only for carrying iommu_group
2346 		 * further down to let iommu_add_device() do the job.
2347 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2348 		 */
2349 		set_iommu_table_base(&pe->pdev->dev, tbl);
2350 		iommu_add_device(&pe->pdev->dev);
2351 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2352 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2353 
2354 	/* Also create a bypass window */
2355 	if (!pnv_iommu_bypass_disabled)
2356 		pnv_pci_ioda2_set_bypass(pe, true);
2357 
2358 	return;
2359 fail:
2360 	if (pe->tce32_seg >= 0)
2361 		pe->tce32_seg = -1;
2362 	if (tbl) {
2363 		pnv_pci_ioda2_table_free_pages(tbl);
2364 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2365 		iommu_free_table(tbl, "pnv");
2366 	}
2367 }
2368 
2369 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2370 {
2371 	struct pci_controller *hose = phb->hose;
2372 	unsigned int residual, remaining, segs, tw, base;
2373 	struct pnv_ioda_pe *pe;
2374 
2375 	/* If we have more PE# than segments available, hand out one
2376 	 * per PE until we run out and let the rest fail. If not,
2377 	 * then we assign at least one segment per PE, plus more based
2378 	 * on the amount of devices under that PE
2379 	 */
2380 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2381 		residual = 0;
2382 	else
2383 		residual = phb->ioda.tce32_count -
2384 			phb->ioda.dma_pe_count;
2385 
2386 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2387 		hose->global_number, phb->ioda.tce32_count);
2388 	pr_info("PCI: %d PE# for a total weight of %d\n",
2389 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2390 
2391 	pnv_pci_ioda_setup_opal_tce_kill(phb);
2392 
2393 	/* Walk our PE list and configure their DMA segments, hand them
2394 	 * out one base segment plus any residual segments based on
2395 	 * weight
2396 	 */
2397 	remaining = phb->ioda.tce32_count;
2398 	tw = phb->ioda.dma_weight;
2399 	base = 0;
2400 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2401 		if (!pe->dma_weight)
2402 			continue;
2403 		if (!remaining) {
2404 			pe_warn(pe, "No DMA32 resources available\n");
2405 			continue;
2406 		}
2407 		segs = 1;
2408 		if (residual) {
2409 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2410 			if (segs > remaining)
2411 				segs = remaining;
2412 		}
2413 
2414 		/*
2415 		 * For IODA2 compliant PHB3, we needn't care about the weight.
2416 		 * The all available 32-bits DMA space will be assigned to
2417 		 * the specific PE.
2418 		 */
2419 		if (phb->type == PNV_PHB_IODA1) {
2420 			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2421 				pe->dma_weight, segs);
2422 			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2423 		} else {
2424 			pe_info(pe, "Assign DMA32 space\n");
2425 			segs = 0;
2426 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
2427 		}
2428 
2429 		remaining -= segs;
2430 		base += segs;
2431 	}
2432 }
2433 
2434 #ifdef CONFIG_PCI_MSI
2435 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2436 {
2437 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2438 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2439 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2440 					   ioda.irq_chip);
2441 	int64_t rc;
2442 
2443 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2444 	WARN_ON_ONCE(rc);
2445 
2446 	icp_native_eoi(d);
2447 }
2448 
2449 
2450 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2451 {
2452 	struct irq_data *idata;
2453 	struct irq_chip *ichip;
2454 
2455 	if (phb->type != PNV_PHB_IODA2)
2456 		return;
2457 
2458 	if (!phb->ioda.irq_chip_init) {
2459 		/*
2460 		 * First time we setup an MSI IRQ, we need to setup the
2461 		 * corresponding IRQ chip to route correctly.
2462 		 */
2463 		idata = irq_get_irq_data(virq);
2464 		ichip = irq_data_get_irq_chip(idata);
2465 		phb->ioda.irq_chip_init = 1;
2466 		phb->ioda.irq_chip = *ichip;
2467 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2468 	}
2469 	irq_set_chip(virq, &phb->ioda.irq_chip);
2470 }
2471 
2472 #ifdef CONFIG_CXL_BASE
2473 
2474 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2475 {
2476 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2477 
2478 	return of_node_get(hose->dn);
2479 }
2480 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2481 
2482 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2483 {
2484 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2485 	struct pnv_phb *phb = hose->private_data;
2486 	struct pnv_ioda_pe *pe;
2487 	int rc;
2488 
2489 	pe = pnv_ioda_get_pe(dev);
2490 	if (!pe)
2491 		return -ENODEV;
2492 
2493 	pe_info(pe, "Switching PHB to CXL\n");
2494 
2495 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2496 	if (rc)
2497 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2498 
2499 	return rc;
2500 }
2501 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2502 
2503 /* Find PHB for cxl dev and allocate MSI hwirqs?
2504  * Returns the absolute hardware IRQ number
2505  */
2506 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2507 {
2508 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2509 	struct pnv_phb *phb = hose->private_data;
2510 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2511 
2512 	if (hwirq < 0) {
2513 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
2514 		return -ENOSPC;
2515 	}
2516 
2517 	return phb->msi_base + hwirq;
2518 }
2519 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2520 
2521 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2522 {
2523 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2524 	struct pnv_phb *phb = hose->private_data;
2525 
2526 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2527 }
2528 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2529 
2530 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2531 				  struct pci_dev *dev)
2532 {
2533 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2534 	struct pnv_phb *phb = hose->private_data;
2535 	int i, hwirq;
2536 
2537 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
2538 		if (!irqs->range[i])
2539 			continue;
2540 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2541 			 i, irqs->offset[i],
2542 			 irqs->range[i]);
2543 		hwirq = irqs->offset[i] - phb->msi_base;
2544 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2545 				       irqs->range[i]);
2546 	}
2547 }
2548 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2549 
2550 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2551 			       struct pci_dev *dev, int num)
2552 {
2553 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2554 	struct pnv_phb *phb = hose->private_data;
2555 	int i, hwirq, try;
2556 
2557 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2558 
2559 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
2560 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2561 		try = num;
2562 		while (try) {
2563 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2564 			if (hwirq >= 0)
2565 				break;
2566 			try /= 2;
2567 		}
2568 		if (!try)
2569 			goto fail;
2570 
2571 		irqs->offset[i] = phb->msi_base + hwirq;
2572 		irqs->range[i] = try;
2573 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2574 			 i, irqs->offset[i], irqs->range[i]);
2575 		num -= try;
2576 	}
2577 	if (num)
2578 		goto fail;
2579 
2580 	return 0;
2581 fail:
2582 	pnv_cxl_release_hwirq_ranges(irqs, dev);
2583 	return -ENOSPC;
2584 }
2585 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2586 
2587 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2588 {
2589 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2590 	struct pnv_phb *phb = hose->private_data;
2591 
2592 	return phb->msi_bmp.irq_count;
2593 }
2594 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2595 
2596 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2597 			   unsigned int virq)
2598 {
2599 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2600 	struct pnv_phb *phb = hose->private_data;
2601 	unsigned int xive_num = hwirq - phb->msi_base;
2602 	struct pnv_ioda_pe *pe;
2603 	int rc;
2604 
2605 	if (!(pe = pnv_ioda_get_pe(dev)))
2606 		return -ENODEV;
2607 
2608 	/* Assign XIVE to PE */
2609 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2610 	if (rc) {
2611 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2612 			"hwirq 0x%x XIVE 0x%x PE\n",
2613 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2614 		return -EIO;
2615 	}
2616 	set_msi_irq_chip(phb, virq);
2617 
2618 	return 0;
2619 }
2620 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2621 #endif
2622 
2623 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2624 				  unsigned int hwirq, unsigned int virq,
2625 				  unsigned int is_64, struct msi_msg *msg)
2626 {
2627 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2628 	unsigned int xive_num = hwirq - phb->msi_base;
2629 	__be32 data;
2630 	int rc;
2631 
2632 	/* No PE assigned ? bail out ... no MSI for you ! */
2633 	if (pe == NULL)
2634 		return -ENXIO;
2635 
2636 	/* Check if we have an MVE */
2637 	if (pe->mve_number < 0)
2638 		return -ENXIO;
2639 
2640 	/* Force 32-bit MSI on some broken devices */
2641 	if (dev->no_64bit_msi)
2642 		is_64 = 0;
2643 
2644 	/* Assign XIVE to PE */
2645 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2646 	if (rc) {
2647 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2648 			pci_name(dev), rc, xive_num);
2649 		return -EIO;
2650 	}
2651 
2652 	if (is_64) {
2653 		__be64 addr64;
2654 
2655 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2656 				     &addr64, &data);
2657 		if (rc) {
2658 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2659 				pci_name(dev), rc);
2660 			return -EIO;
2661 		}
2662 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2663 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2664 	} else {
2665 		__be32 addr32;
2666 
2667 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2668 				     &addr32, &data);
2669 		if (rc) {
2670 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2671 				pci_name(dev), rc);
2672 			return -EIO;
2673 		}
2674 		msg->address_hi = 0;
2675 		msg->address_lo = be32_to_cpu(addr32);
2676 	}
2677 	msg->data = be32_to_cpu(data);
2678 
2679 	set_msi_irq_chip(phb, virq);
2680 
2681 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2682 		 " address=%x_%08x data=%x PE# %d\n",
2683 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2684 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2685 
2686 	return 0;
2687 }
2688 
2689 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2690 {
2691 	unsigned int count;
2692 	const __be32 *prop = of_get_property(phb->hose->dn,
2693 					     "ibm,opal-msi-ranges", NULL);
2694 	if (!prop) {
2695 		/* BML Fallback */
2696 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2697 	}
2698 	if (!prop)
2699 		return;
2700 
2701 	phb->msi_base = be32_to_cpup(prop);
2702 	count = be32_to_cpup(prop + 1);
2703 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2704 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2705 		       phb->hose->global_number);
2706 		return;
2707 	}
2708 
2709 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2710 	phb->msi32_support = 1;
2711 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2712 		count, phb->msi_base);
2713 }
2714 #else
2715 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2716 #endif /* CONFIG_PCI_MSI */
2717 
2718 #ifdef CONFIG_PCI_IOV
2719 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2720 {
2721 	struct pci_controller *hose;
2722 	struct pnv_phb *phb;
2723 	struct resource *res;
2724 	int i;
2725 	resource_size_t size;
2726 	struct pci_dn *pdn;
2727 	int mul, total_vfs;
2728 
2729 	if (!pdev->is_physfn || pdev->is_added)
2730 		return;
2731 
2732 	hose = pci_bus_to_host(pdev->bus);
2733 	phb = hose->private_data;
2734 
2735 	pdn = pci_get_pdn(pdev);
2736 	pdn->vfs_expanded = 0;
2737 
2738 	total_vfs = pci_sriov_get_totalvfs(pdev);
2739 	pdn->m64_per_iov = 1;
2740 	mul = phb->ioda.total_pe;
2741 
2742 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2743 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2744 		if (!res->flags || res->parent)
2745 			continue;
2746 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2747 			dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2748 				 i, res);
2749 			continue;
2750 		}
2751 
2752 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2753 
2754 		/* bigger than 64M */
2755 		if (size > (1 << 26)) {
2756 			dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2757 				 i, res);
2758 			pdn->m64_per_iov = M64_PER_IOV;
2759 			mul = roundup_pow_of_two(total_vfs);
2760 			break;
2761 		}
2762 	}
2763 
2764 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2765 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2766 		if (!res->flags || res->parent)
2767 			continue;
2768 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2769 			dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2770 				 i, res);
2771 			continue;
2772 		}
2773 
2774 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2775 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2776 		res->end = res->start + size * mul - 1;
2777 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2778 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2779 			 i, res, mul);
2780 	}
2781 	pdn->vfs_expanded = mul;
2782 }
2783 #endif /* CONFIG_PCI_IOV */
2784 
2785 /*
2786  * This function is supposed to be called on basis of PE from top
2787  * to bottom style. So the the I/O or MMIO segment assigned to
2788  * parent PE could be overrided by its child PEs if necessary.
2789  */
2790 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2791 				  struct pnv_ioda_pe *pe)
2792 {
2793 	struct pnv_phb *phb = hose->private_data;
2794 	struct pci_bus_region region;
2795 	struct resource *res;
2796 	int i, index;
2797 	int rc;
2798 
2799 	/*
2800 	 * NOTE: We only care PCI bus based PE for now. For PCI
2801 	 * device based PE, for example SRIOV sensitive VF should
2802 	 * be figured out later.
2803 	 */
2804 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2805 
2806 	pci_bus_for_each_resource(pe->pbus, res, i) {
2807 		if (!res || !res->flags ||
2808 		    res->start > res->end)
2809 			continue;
2810 
2811 		if (res->flags & IORESOURCE_IO) {
2812 			region.start = res->start - phb->ioda.io_pci_base;
2813 			region.end   = res->end - phb->ioda.io_pci_base;
2814 			index = region.start / phb->ioda.io_segsize;
2815 
2816 			while (index < phb->ioda.total_pe &&
2817 			       region.start <= region.end) {
2818 				phb->ioda.io_segmap[index] = pe->pe_number;
2819 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2820 					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2821 				if (rc != OPAL_SUCCESS) {
2822 					pr_err("%s: OPAL error %d when mapping IO "
2823 					       "segment #%d to PE#%d\n",
2824 					       __func__, rc, index, pe->pe_number);
2825 					break;
2826 				}
2827 
2828 				region.start += phb->ioda.io_segsize;
2829 				index++;
2830 			}
2831 		} else if ((res->flags & IORESOURCE_MEM) &&
2832 			   !pnv_pci_is_mem_pref_64(res->flags)) {
2833 			region.start = res->start -
2834 				       hose->mem_offset[0] -
2835 				       phb->ioda.m32_pci_base;
2836 			region.end   = res->end -
2837 				       hose->mem_offset[0] -
2838 				       phb->ioda.m32_pci_base;
2839 			index = region.start / phb->ioda.m32_segsize;
2840 
2841 			while (index < phb->ioda.total_pe &&
2842 			       region.start <= region.end) {
2843 				phb->ioda.m32_segmap[index] = pe->pe_number;
2844 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2845 					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2846 				if (rc != OPAL_SUCCESS) {
2847 					pr_err("%s: OPAL error %d when mapping M32 "
2848 					       "segment#%d to PE#%d",
2849 					       __func__, rc, index, pe->pe_number);
2850 					break;
2851 				}
2852 
2853 				region.start += phb->ioda.m32_segsize;
2854 				index++;
2855 			}
2856 		}
2857 	}
2858 }
2859 
2860 static void pnv_pci_ioda_setup_seg(void)
2861 {
2862 	struct pci_controller *tmp, *hose;
2863 	struct pnv_phb *phb;
2864 	struct pnv_ioda_pe *pe;
2865 
2866 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2867 		phb = hose->private_data;
2868 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2869 			pnv_ioda_setup_pe_seg(hose, pe);
2870 		}
2871 	}
2872 }
2873 
2874 static void pnv_pci_ioda_setup_DMA(void)
2875 {
2876 	struct pci_controller *hose, *tmp;
2877 	struct pnv_phb *phb;
2878 
2879 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2880 		pnv_ioda_setup_dma(hose->private_data);
2881 
2882 		/* Mark the PHB initialization done */
2883 		phb = hose->private_data;
2884 		phb->initialized = 1;
2885 	}
2886 }
2887 
2888 static void pnv_pci_ioda_create_dbgfs(void)
2889 {
2890 #ifdef CONFIG_DEBUG_FS
2891 	struct pci_controller *hose, *tmp;
2892 	struct pnv_phb *phb;
2893 	char name[16];
2894 
2895 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2896 		phb = hose->private_data;
2897 
2898 		sprintf(name, "PCI%04x", hose->global_number);
2899 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2900 		if (!phb->dbgfs)
2901 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2902 				__func__, hose->global_number);
2903 	}
2904 #endif /* CONFIG_DEBUG_FS */
2905 }
2906 
2907 static void pnv_pci_ioda_fixup(void)
2908 {
2909 	pnv_pci_ioda_setup_PEs();
2910 	pnv_pci_ioda_setup_seg();
2911 	pnv_pci_ioda_setup_DMA();
2912 
2913 	pnv_pci_ioda_create_dbgfs();
2914 
2915 #ifdef CONFIG_EEH
2916 	eeh_init();
2917 	eeh_addr_cache_build();
2918 #endif
2919 }
2920 
2921 /*
2922  * Returns the alignment for I/O or memory windows for P2P
2923  * bridges. That actually depends on how PEs are segmented.
2924  * For now, we return I/O or M32 segment size for PE sensitive
2925  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2926  * 1MiB for memory) will be returned.
2927  *
2928  * The current PCI bus might be put into one PE, which was
2929  * create against the parent PCI bridge. For that case, we
2930  * needn't enlarge the alignment so that we can save some
2931  * resources.
2932  */
2933 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2934 						unsigned long type)
2935 {
2936 	struct pci_dev *bridge;
2937 	struct pci_controller *hose = pci_bus_to_host(bus);
2938 	struct pnv_phb *phb = hose->private_data;
2939 	int num_pci_bridges = 0;
2940 
2941 	bridge = bus->self;
2942 	while (bridge) {
2943 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2944 			num_pci_bridges++;
2945 			if (num_pci_bridges >= 2)
2946 				return 1;
2947 		}
2948 
2949 		bridge = bridge->bus->self;
2950 	}
2951 
2952 	/* We fail back to M32 if M64 isn't supported */
2953 	if (phb->ioda.m64_segsize &&
2954 	    pnv_pci_is_mem_pref_64(type))
2955 		return phb->ioda.m64_segsize;
2956 	if (type & IORESOURCE_MEM)
2957 		return phb->ioda.m32_segsize;
2958 
2959 	return phb->ioda.io_segsize;
2960 }
2961 
2962 #ifdef CONFIG_PCI_IOV
2963 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2964 						      int resno)
2965 {
2966 	struct pci_dn *pdn = pci_get_pdn(pdev);
2967 	resource_size_t align, iov_align;
2968 
2969 	iov_align = resource_size(&pdev->resource[resno]);
2970 	if (iov_align)
2971 		return iov_align;
2972 
2973 	align = pci_iov_resource_size(pdev, resno);
2974 	if (pdn->vfs_expanded)
2975 		return pdn->vfs_expanded * align;
2976 
2977 	return align;
2978 }
2979 #endif /* CONFIG_PCI_IOV */
2980 
2981 /* Prevent enabling devices for which we couldn't properly
2982  * assign a PE
2983  */
2984 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2985 {
2986 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2987 	struct pnv_phb *phb = hose->private_data;
2988 	struct pci_dn *pdn;
2989 
2990 	/* The function is probably called while the PEs have
2991 	 * not be created yet. For example, resource reassignment
2992 	 * during PCI probe period. We just skip the check if
2993 	 * PEs isn't ready.
2994 	 */
2995 	if (!phb->initialized)
2996 		return true;
2997 
2998 	pdn = pci_get_pdn(dev);
2999 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3000 		return false;
3001 
3002 	return true;
3003 }
3004 
3005 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
3006 			       u32 devfn)
3007 {
3008 	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
3009 }
3010 
3011 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3012 {
3013 	struct pnv_phb *phb = hose->private_data;
3014 
3015 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3016 		       OPAL_ASSERT_RESET);
3017 }
3018 
3019 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3020        .dma_dev_setup = pnv_pci_dma_dev_setup,
3021 #ifdef CONFIG_PCI_MSI
3022        .setup_msi_irqs = pnv_setup_msi_irqs,
3023        .teardown_msi_irqs = pnv_teardown_msi_irqs,
3024 #endif
3025        .enable_device_hook = pnv_pci_enable_device_hook,
3026        .window_alignment = pnv_pci_window_alignment,
3027        .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3028        .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3029        .shutdown = pnv_pci_ioda_shutdown,
3030 };
3031 
3032 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3033 					 u64 hub_id, int ioda_type)
3034 {
3035 	struct pci_controller *hose;
3036 	struct pnv_phb *phb;
3037 	unsigned long size, m32map_off, pemap_off, iomap_off = 0;
3038 	const __be64 *prop64;
3039 	const __be32 *prop32;
3040 	int len;
3041 	u64 phb_id;
3042 	void *aux;
3043 	long rc;
3044 
3045 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3046 
3047 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3048 	if (!prop64) {
3049 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3050 		return;
3051 	}
3052 	phb_id = be64_to_cpup(prop64);
3053 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3054 
3055 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3056 
3057 	/* Allocate PCI controller */
3058 	phb->hose = hose = pcibios_alloc_controller(np);
3059 	if (!phb->hose) {
3060 		pr_err("  Can't allocate PCI controller for %s\n",
3061 		       np->full_name);
3062 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3063 		return;
3064 	}
3065 
3066 	spin_lock_init(&phb->lock);
3067 	prop32 = of_get_property(np, "bus-range", &len);
3068 	if (prop32 && len == 8) {
3069 		hose->first_busno = be32_to_cpu(prop32[0]);
3070 		hose->last_busno = be32_to_cpu(prop32[1]);
3071 	} else {
3072 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3073 		hose->first_busno = 0;
3074 		hose->last_busno = 0xff;
3075 	}
3076 	hose->private_data = phb;
3077 	phb->hub_id = hub_id;
3078 	phb->opal_id = phb_id;
3079 	phb->type = ioda_type;
3080 	mutex_init(&phb->ioda.pe_alloc_mutex);
3081 
3082 	/* Detect specific models for error handling */
3083 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3084 		phb->model = PNV_PHB_MODEL_P7IOC;
3085 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3086 		phb->model = PNV_PHB_MODEL_PHB3;
3087 	else
3088 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3089 
3090 	/* Parse 32-bit and IO ranges (if any) */
3091 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3092 
3093 	/* Get registers */
3094 	phb->regs = of_iomap(np, 0);
3095 	if (phb->regs == NULL)
3096 		pr_err("  Failed to map registers !\n");
3097 
3098 	/* Initialize more IODA stuff */
3099 	phb->ioda.total_pe = 1;
3100 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3101 	if (prop32)
3102 		phb->ioda.total_pe = be32_to_cpup(prop32);
3103 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3104 	if (prop32)
3105 		phb->ioda.reserved_pe = be32_to_cpup(prop32);
3106 
3107 	/* Parse 64-bit MMIO range */
3108 	pnv_ioda_parse_m64_window(phb);
3109 
3110 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3111 	/* FW Has already off top 64k of M32 space (MSI space) */
3112 	phb->ioda.m32_size += 0x10000;
3113 
3114 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
3115 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3116 	phb->ioda.io_size = hose->pci_io_size;
3117 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
3118 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3119 
3120 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3121 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
3122 	m32map_off = size;
3123 	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
3124 	if (phb->type == PNV_PHB_IODA1) {
3125 		iomap_off = size;
3126 		size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
3127 	}
3128 	pemap_off = size;
3129 	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
3130 	aux = memblock_virt_alloc(size, 0);
3131 	phb->ioda.pe_alloc = aux;
3132 	phb->ioda.m32_segmap = aux + m32map_off;
3133 	if (phb->type == PNV_PHB_IODA1)
3134 		phb->ioda.io_segmap = aux + iomap_off;
3135 	phb->ioda.pe_array = aux + pemap_off;
3136 	set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
3137 
3138 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
3139 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3140 	mutex_init(&phb->ioda.pe_list_mutex);
3141 
3142 	/* Calculate how many 32-bit TCE segments we have */
3143 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
3144 
3145 #if 0 /* We should really do that ... */
3146 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3147 					 window_type,
3148 					 window_num,
3149 					 starting_real_address,
3150 					 starting_pci_address,
3151 					 segment_size);
3152 #endif
3153 
3154 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3155 		phb->ioda.total_pe, phb->ioda.reserved_pe,
3156 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3157 	if (phb->ioda.m64_size)
3158 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3159 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3160 	if (phb->ioda.io_size)
3161 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3162 			phb->ioda.io_size, phb->ioda.io_segsize);
3163 
3164 
3165 	phb->hose->ops = &pnv_pci_ops;
3166 	phb->get_pe_state = pnv_ioda_get_pe_state;
3167 	phb->freeze_pe = pnv_ioda_freeze_pe;
3168 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3169 
3170 	/* Setup RID -> PE mapping function */
3171 	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
3172 
3173 	/* Setup TCEs */
3174 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3175 	phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
3176 
3177 	/* Setup MSI support */
3178 	pnv_pci_init_ioda_msis(phb);
3179 
3180 	/*
3181 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3182 	 * to let the PCI core do resource assignment. It's supposed
3183 	 * that the PCI core will do correct I/O and MMIO alignment
3184 	 * for the P2P bridge bars so that each PCI bus (excluding
3185 	 * the child P2P bridges) can form individual PE.
3186 	 */
3187 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3188 	hose->controller_ops = pnv_pci_ioda_controller_ops;
3189 
3190 #ifdef CONFIG_PCI_IOV
3191 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3192 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3193 #endif
3194 
3195 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3196 
3197 	/* Reset IODA tables to a clean state */
3198 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3199 	if (rc)
3200 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3201 
3202 	/* If we're running in kdump kerenl, the previous kerenl never
3203 	 * shutdown PCI devices correctly. We already got IODA table
3204 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3205 	 * transactions from previous kerenl.
3206 	 */
3207 	if (is_kdump_kernel()) {
3208 		pr_info("  Issue PHB reset ...\n");
3209 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3210 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3211 	}
3212 
3213 	/* Remove M64 resource if we can't configure it successfully */
3214 	if (!phb->init_m64 || phb->init_m64(phb))
3215 		hose->mem_resources[1].flags = 0;
3216 }
3217 
3218 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3219 {
3220 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3221 }
3222 
3223 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3224 {
3225 	struct device_node *phbn;
3226 	const __be64 *prop64;
3227 	u64 hub_id;
3228 
3229 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3230 
3231 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3232 	if (!prop64) {
3233 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3234 		return;
3235 	}
3236 	hub_id = be64_to_cpup(prop64);
3237 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3238 
3239 	/* Count child PHBs */
3240 	for_each_child_of_node(np, phbn) {
3241 		/* Look for IODA1 PHBs */
3242 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3243 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3244 	}
3245 }
3246