1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7 
8 #undef DEBUG
9 
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/prom.h>
27 #include <asm/pci-bridge.h>
28 #include <asm/machdep.h>
29 #include <asm/msi_bitmap.h>
30 #include <asm/ppc-pci.h>
31 #include <asm/opal.h>
32 #include <asm/iommu.h>
33 #include <asm/tce.h>
34 #include <asm/xics.h>
35 #include <asm/debugfs.h>
36 #include <asm/firmware.h>
37 #include <asm/pnv-pci.h>
38 #include <asm/mmzone.h>
39 
40 #include <misc/cxl-base.h>
41 
42 #include "powernv.h"
43 #include "pci.h"
44 #include "../../../../drivers/pci/pci.h"
45 
46 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
47 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
48 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
49 
50 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
51 					      "NPU_OCAPI" };
52 
53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
54 
55 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
56 			    const char *fmt, ...)
57 {
58 	struct va_format vaf;
59 	va_list args;
60 	char pfix[32];
61 
62 	va_start(args, fmt);
63 
64 	vaf.fmt = fmt;
65 	vaf.va = &args;
66 
67 	if (pe->flags & PNV_IODA_PE_DEV)
68 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
69 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
70 		sprintf(pfix, "%04x:%02x     ",
71 			pci_domain_nr(pe->pbus), pe->pbus->number);
72 #ifdef CONFIG_PCI_IOV
73 	else if (pe->flags & PNV_IODA_PE_VF)
74 		sprintf(pfix, "%04x:%02x:%2x.%d",
75 			pci_domain_nr(pe->parent_dev->bus),
76 			(pe->rid & 0xff00) >> 8,
77 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
78 #endif /* CONFIG_PCI_IOV*/
79 
80 	printk("%spci %s: [PE# %.2x] %pV",
81 	       level, pfix, pe->pe_number, &vaf);
82 
83 	va_end(args);
84 }
85 
86 static bool pnv_iommu_bypass_disabled __read_mostly;
87 static bool pci_reset_phbs __read_mostly;
88 
89 static int __init iommu_setup(char *str)
90 {
91 	if (!str)
92 		return -EINVAL;
93 
94 	while (*str) {
95 		if (!strncmp(str, "nobypass", 8)) {
96 			pnv_iommu_bypass_disabled = true;
97 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
98 			break;
99 		}
100 		str += strcspn(str, ",");
101 		if (*str == ',')
102 			str++;
103 	}
104 
105 	return 0;
106 }
107 early_param("iommu", iommu_setup);
108 
109 static int __init pci_reset_phbs_setup(char *str)
110 {
111 	pci_reset_phbs = true;
112 	return 0;
113 }
114 
115 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
116 
117 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
118 {
119 	/*
120 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
121 	 * allocation code sometimes decides to put a 64-bit prefetchable
122 	 * BAR in the 32-bit window, so we have to compare the addresses.
123 	 *
124 	 * For simplicity we only test resource start.
125 	 */
126 	return (r->start >= phb->ioda.m64_base &&
127 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
128 }
129 
130 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
131 {
132 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
133 
134 	return (resource_flags & flags) == flags;
135 }
136 
137 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
138 {
139 	s64 rc;
140 
141 	phb->ioda.pe_array[pe_no].phb = phb;
142 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
143 
144 	/*
145 	 * Clear the PE frozen state as it might be put into frozen state
146 	 * in the last PCI remove path. It's not harmful to do so when the
147 	 * PE is already in unfrozen state.
148 	 */
149 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
150 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
151 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
152 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
153 			__func__, rc, phb->hose->global_number, pe_no);
154 
155 	return &phb->ioda.pe_array[pe_no];
156 }
157 
158 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
159 {
160 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
161 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
162 			__func__, pe_no, phb->hose->global_number);
163 		return;
164 	}
165 
166 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
167 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
168 			 __func__, pe_no, phb->hose->global_number);
169 
170 	pnv_ioda_init_pe(phb, pe_no);
171 }
172 
173 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
174 {
175 	long pe;
176 
177 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
178 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
179 			return pnv_ioda_init_pe(phb, pe);
180 	}
181 
182 	return NULL;
183 }
184 
185 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
186 {
187 	struct pnv_phb *phb = pe->phb;
188 	unsigned int pe_num = pe->pe_number;
189 
190 	WARN_ON(pe->pdev);
191 	WARN_ON(pe->npucomp); /* NPUs are not supposed to be freed */
192 	kfree(pe->npucomp);
193 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
194 	clear_bit(pe_num, phb->ioda.pe_alloc);
195 }
196 
197 /* The default M64 BAR is shared by all PEs */
198 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
199 {
200 	const char *desc;
201 	struct resource *r;
202 	s64 rc;
203 
204 	/* Configure the default M64 BAR */
205 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
206 					 OPAL_M64_WINDOW_TYPE,
207 					 phb->ioda.m64_bar_idx,
208 					 phb->ioda.m64_base,
209 					 0, /* unused */
210 					 phb->ioda.m64_size);
211 	if (rc != OPAL_SUCCESS) {
212 		desc = "configuring";
213 		goto fail;
214 	}
215 
216 	/* Enable the default M64 BAR */
217 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
218 				      OPAL_M64_WINDOW_TYPE,
219 				      phb->ioda.m64_bar_idx,
220 				      OPAL_ENABLE_M64_SPLIT);
221 	if (rc != OPAL_SUCCESS) {
222 		desc = "enabling";
223 		goto fail;
224 	}
225 
226 	/*
227 	 * Exclude the segments for reserved and root bus PE, which
228 	 * are first or last two PEs.
229 	 */
230 	r = &phb->hose->mem_resources[1];
231 	if (phb->ioda.reserved_pe_idx == 0)
232 		r->start += (2 * phb->ioda.m64_segsize);
233 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
234 		r->end -= (2 * phb->ioda.m64_segsize);
235 	else
236 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
237 			phb->ioda.reserved_pe_idx);
238 
239 	return 0;
240 
241 fail:
242 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
243 		rc, desc, phb->ioda.m64_bar_idx);
244 	opal_pci_phb_mmio_enable(phb->opal_id,
245 				 OPAL_M64_WINDOW_TYPE,
246 				 phb->ioda.m64_bar_idx,
247 				 OPAL_DISABLE_M64);
248 	return -EIO;
249 }
250 
251 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
252 					 unsigned long *pe_bitmap)
253 {
254 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
255 	struct pnv_phb *phb = hose->private_data;
256 	struct resource *r;
257 	resource_size_t base, sgsz, start, end;
258 	int segno, i;
259 
260 	base = phb->ioda.m64_base;
261 	sgsz = phb->ioda.m64_segsize;
262 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
263 		r = &pdev->resource[i];
264 		if (!r->parent || !pnv_pci_is_m64(phb, r))
265 			continue;
266 
267 		start = _ALIGN_DOWN(r->start - base, sgsz);
268 		end = _ALIGN_UP(r->end - base, sgsz);
269 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
270 			if (pe_bitmap)
271 				set_bit(segno, pe_bitmap);
272 			else
273 				pnv_ioda_reserve_pe(phb, segno);
274 		}
275 	}
276 }
277 
278 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
279 {
280 	struct resource *r;
281 	int index;
282 
283 	/*
284 	 * There are 16 M64 BARs, each of which has 8 segments. So
285 	 * there are as many M64 segments as the maximum number of
286 	 * PEs, which is 128.
287 	 */
288 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
289 		unsigned long base, segsz = phb->ioda.m64_segsize;
290 		int64_t rc;
291 
292 		base = phb->ioda.m64_base +
293 		       index * PNV_IODA1_M64_SEGS * segsz;
294 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
295 				OPAL_M64_WINDOW_TYPE, index, base, 0,
296 				PNV_IODA1_M64_SEGS * segsz);
297 		if (rc != OPAL_SUCCESS) {
298 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
299 				rc, phb->hose->global_number, index);
300 			goto fail;
301 		}
302 
303 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
304 				OPAL_M64_WINDOW_TYPE, index,
305 				OPAL_ENABLE_M64_SPLIT);
306 		if (rc != OPAL_SUCCESS) {
307 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
308 				rc, phb->hose->global_number, index);
309 			goto fail;
310 		}
311 	}
312 
313 	/*
314 	 * Exclude the segments for reserved and root bus PE, which
315 	 * are first or last two PEs.
316 	 */
317 	r = &phb->hose->mem_resources[1];
318 	if (phb->ioda.reserved_pe_idx == 0)
319 		r->start += (2 * phb->ioda.m64_segsize);
320 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
321 		r->end -= (2 * phb->ioda.m64_segsize);
322 	else
323 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
324 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
325 
326 	return 0;
327 
328 fail:
329 	for ( ; index >= 0; index--)
330 		opal_pci_phb_mmio_enable(phb->opal_id,
331 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
332 
333 	return -EIO;
334 }
335 
336 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
337 				    unsigned long *pe_bitmap,
338 				    bool all)
339 {
340 	struct pci_dev *pdev;
341 
342 	list_for_each_entry(pdev, &bus->devices, bus_list) {
343 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
344 
345 		if (all && pdev->subordinate)
346 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
347 						pe_bitmap, all);
348 	}
349 }
350 
351 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
352 {
353 	struct pci_controller *hose = pci_bus_to_host(bus);
354 	struct pnv_phb *phb = hose->private_data;
355 	struct pnv_ioda_pe *master_pe, *pe;
356 	unsigned long size, *pe_alloc;
357 	int i;
358 
359 	/* Root bus shouldn't use M64 */
360 	if (pci_is_root_bus(bus))
361 		return NULL;
362 
363 	/* Allocate bitmap */
364 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
365 	pe_alloc = kzalloc(size, GFP_KERNEL);
366 	if (!pe_alloc) {
367 		pr_warn("%s: Out of memory !\n",
368 			__func__);
369 		return NULL;
370 	}
371 
372 	/* Figure out reserved PE numbers by the PE */
373 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
374 
375 	/*
376 	 * the current bus might not own M64 window and that's all
377 	 * contributed by its child buses. For the case, we needn't
378 	 * pick M64 dependent PE#.
379 	 */
380 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
381 		kfree(pe_alloc);
382 		return NULL;
383 	}
384 
385 	/*
386 	 * Figure out the master PE and put all slave PEs to master
387 	 * PE's list to form compound PE.
388 	 */
389 	master_pe = NULL;
390 	i = -1;
391 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
392 		phb->ioda.total_pe_num) {
393 		pe = &phb->ioda.pe_array[i];
394 
395 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
396 		if (!master_pe) {
397 			pe->flags |= PNV_IODA_PE_MASTER;
398 			INIT_LIST_HEAD(&pe->slaves);
399 			master_pe = pe;
400 		} else {
401 			pe->flags |= PNV_IODA_PE_SLAVE;
402 			pe->master = master_pe;
403 			list_add_tail(&pe->list, &master_pe->slaves);
404 		}
405 
406 		/*
407 		 * P7IOC supports M64DT, which helps mapping M64 segment
408 		 * to one particular PE#. However, PHB3 has fixed mapping
409 		 * between M64 segment and PE#. In order to have same logic
410 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
411 		 * segment and PE# on P7IOC.
412 		 */
413 		if (phb->type == PNV_PHB_IODA1) {
414 			int64_t rc;
415 
416 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
417 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
418 					pe->pe_number / PNV_IODA1_M64_SEGS,
419 					pe->pe_number % PNV_IODA1_M64_SEGS);
420 			if (rc != OPAL_SUCCESS)
421 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
422 					__func__, rc, phb->hose->global_number,
423 					pe->pe_number);
424 		}
425 	}
426 
427 	kfree(pe_alloc);
428 	return master_pe;
429 }
430 
431 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
432 {
433 	struct pci_controller *hose = phb->hose;
434 	struct device_node *dn = hose->dn;
435 	struct resource *res;
436 	u32 m64_range[2], i;
437 	const __be32 *r;
438 	u64 pci_addr;
439 
440 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
441 		pr_info("  Not support M64 window\n");
442 		return;
443 	}
444 
445 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
446 		pr_info("  Firmware too old to support M64 window\n");
447 		return;
448 	}
449 
450 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
451 	if (!r) {
452 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
453 			dn);
454 		return;
455 	}
456 
457 	/*
458 	 * Find the available M64 BAR range and pickup the last one for
459 	 * covering the whole 64-bits space. We support only one range.
460 	 */
461 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
462 				       m64_range, 2)) {
463 		/* In absence of the property, assume 0..15 */
464 		m64_range[0] = 0;
465 		m64_range[1] = 16;
466 	}
467 	/* We only support 64 bits in our allocator */
468 	if (m64_range[1] > 63) {
469 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
470 			__func__, m64_range[1], phb->hose->global_number);
471 		m64_range[1] = 63;
472 	}
473 	/* Empty range, no m64 */
474 	if (m64_range[1] <= m64_range[0]) {
475 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
476 			__func__, phb->hose->global_number);
477 		return;
478 	}
479 
480 	/* Configure M64 informations */
481 	res = &hose->mem_resources[1];
482 	res->name = dn->full_name;
483 	res->start = of_translate_address(dn, r + 2);
484 	res->end = res->start + of_read_number(r + 4, 2) - 1;
485 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
486 	pci_addr = of_read_number(r, 2);
487 	hose->mem_offset[1] = res->start - pci_addr;
488 
489 	phb->ioda.m64_size = resource_size(res);
490 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
491 	phb->ioda.m64_base = pci_addr;
492 
493 	/* This lines up nicely with the display from processing OF ranges */
494 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
495 		res->start, res->end, pci_addr, m64_range[0],
496 		m64_range[0] + m64_range[1] - 1);
497 
498 	/* Mark all M64 used up by default */
499 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
500 
501 	/* Use last M64 BAR to cover M64 window */
502 	m64_range[1]--;
503 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
504 
505 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
506 
507 	/* Mark remaining ones free */
508 	for (i = m64_range[0]; i < m64_range[1]; i++)
509 		clear_bit(i, &phb->ioda.m64_bar_alloc);
510 
511 	/*
512 	 * Setup init functions for M64 based on IODA version, IODA3 uses
513 	 * the IODA2 code.
514 	 */
515 	if (phb->type == PNV_PHB_IODA1)
516 		phb->init_m64 = pnv_ioda1_init_m64;
517 	else
518 		phb->init_m64 = pnv_ioda2_init_m64;
519 }
520 
521 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
522 {
523 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
524 	struct pnv_ioda_pe *slave;
525 	s64 rc;
526 
527 	/* Fetch master PE */
528 	if (pe->flags & PNV_IODA_PE_SLAVE) {
529 		pe = pe->master;
530 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
531 			return;
532 
533 		pe_no = pe->pe_number;
534 	}
535 
536 	/* Freeze master PE */
537 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
538 				     pe_no,
539 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
540 	if (rc != OPAL_SUCCESS) {
541 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
542 			__func__, rc, phb->hose->global_number, pe_no);
543 		return;
544 	}
545 
546 	/* Freeze slave PEs */
547 	if (!(pe->flags & PNV_IODA_PE_MASTER))
548 		return;
549 
550 	list_for_each_entry(slave, &pe->slaves, list) {
551 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
552 					     slave->pe_number,
553 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
554 		if (rc != OPAL_SUCCESS)
555 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
556 				__func__, rc, phb->hose->global_number,
557 				slave->pe_number);
558 	}
559 }
560 
561 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
562 {
563 	struct pnv_ioda_pe *pe, *slave;
564 	s64 rc;
565 
566 	/* Find master PE */
567 	pe = &phb->ioda.pe_array[pe_no];
568 	if (pe->flags & PNV_IODA_PE_SLAVE) {
569 		pe = pe->master;
570 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
571 		pe_no = pe->pe_number;
572 	}
573 
574 	/* Clear frozen state for master PE */
575 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
576 	if (rc != OPAL_SUCCESS) {
577 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
578 			__func__, rc, opt, phb->hose->global_number, pe_no);
579 		return -EIO;
580 	}
581 
582 	if (!(pe->flags & PNV_IODA_PE_MASTER))
583 		return 0;
584 
585 	/* Clear frozen state for slave PEs */
586 	list_for_each_entry(slave, &pe->slaves, list) {
587 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
588 					     slave->pe_number,
589 					     opt);
590 		if (rc != OPAL_SUCCESS) {
591 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
592 				__func__, rc, opt, phb->hose->global_number,
593 				slave->pe_number);
594 			return -EIO;
595 		}
596 	}
597 
598 	return 0;
599 }
600 
601 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
602 {
603 	struct pnv_ioda_pe *slave, *pe;
604 	u8 fstate = 0, state;
605 	__be16 pcierr = 0;
606 	s64 rc;
607 
608 	/* Sanity check on PE number */
609 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
610 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
611 
612 	/*
613 	 * Fetch the master PE and the PE instance might be
614 	 * not initialized yet.
615 	 */
616 	pe = &phb->ioda.pe_array[pe_no];
617 	if (pe->flags & PNV_IODA_PE_SLAVE) {
618 		pe = pe->master;
619 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
620 		pe_no = pe->pe_number;
621 	}
622 
623 	/* Check the master PE */
624 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
625 					&state, &pcierr, NULL);
626 	if (rc != OPAL_SUCCESS) {
627 		pr_warn("%s: Failure %lld getting "
628 			"PHB#%x-PE#%x state\n",
629 			__func__, rc,
630 			phb->hose->global_number, pe_no);
631 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
632 	}
633 
634 	/* Check the slave PE */
635 	if (!(pe->flags & PNV_IODA_PE_MASTER))
636 		return state;
637 
638 	list_for_each_entry(slave, &pe->slaves, list) {
639 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
640 						slave->pe_number,
641 						&fstate,
642 						&pcierr,
643 						NULL);
644 		if (rc != OPAL_SUCCESS) {
645 			pr_warn("%s: Failure %lld getting "
646 				"PHB#%x-PE#%x state\n",
647 				__func__, rc,
648 				phb->hose->global_number, slave->pe_number);
649 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
650 		}
651 
652 		/*
653 		 * Override the result based on the ascending
654 		 * priority.
655 		 */
656 		if (fstate > state)
657 			state = fstate;
658 	}
659 
660 	return state;
661 }
662 
663 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
664 {
665 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
666 	struct pnv_phb *phb = hose->private_data;
667 	struct pci_dn *pdn = pci_get_pdn(dev);
668 
669 	if (!pdn)
670 		return NULL;
671 	if (pdn->pe_number == IODA_INVALID_PE)
672 		return NULL;
673 	return &phb->ioda.pe_array[pdn->pe_number];
674 }
675 
676 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
677 				  struct pnv_ioda_pe *parent,
678 				  struct pnv_ioda_pe *child,
679 				  bool is_add)
680 {
681 	const char *desc = is_add ? "adding" : "removing";
682 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
683 			      OPAL_REMOVE_PE_FROM_DOMAIN;
684 	struct pnv_ioda_pe *slave;
685 	long rc;
686 
687 	/* Parent PE affects child PE */
688 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
689 				child->pe_number, op);
690 	if (rc != OPAL_SUCCESS) {
691 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
692 			rc, desc);
693 		return -ENXIO;
694 	}
695 
696 	if (!(child->flags & PNV_IODA_PE_MASTER))
697 		return 0;
698 
699 	/* Compound case: parent PE affects slave PEs */
700 	list_for_each_entry(slave, &child->slaves, list) {
701 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
702 					slave->pe_number, op);
703 		if (rc != OPAL_SUCCESS) {
704 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
705 				rc, desc);
706 			return -ENXIO;
707 		}
708 	}
709 
710 	return 0;
711 }
712 
713 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
714 			      struct pnv_ioda_pe *pe,
715 			      bool is_add)
716 {
717 	struct pnv_ioda_pe *slave;
718 	struct pci_dev *pdev = NULL;
719 	int ret;
720 
721 	/*
722 	 * Clear PE frozen state. If it's master PE, we need
723 	 * clear slave PE frozen state as well.
724 	 */
725 	if (is_add) {
726 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
727 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
728 		if (pe->flags & PNV_IODA_PE_MASTER) {
729 			list_for_each_entry(slave, &pe->slaves, list)
730 				opal_pci_eeh_freeze_clear(phb->opal_id,
731 							  slave->pe_number,
732 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
733 		}
734 	}
735 
736 	/*
737 	 * Associate PE in PELT. We need add the PE into the
738 	 * corresponding PELT-V as well. Otherwise, the error
739 	 * originated from the PE might contribute to other
740 	 * PEs.
741 	 */
742 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
743 	if (ret)
744 		return ret;
745 
746 	/* For compound PEs, any one affects all of them */
747 	if (pe->flags & PNV_IODA_PE_MASTER) {
748 		list_for_each_entry(slave, &pe->slaves, list) {
749 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
750 			if (ret)
751 				return ret;
752 		}
753 	}
754 
755 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
756 		pdev = pe->pbus->self;
757 	else if (pe->flags & PNV_IODA_PE_DEV)
758 		pdev = pe->pdev->bus->self;
759 #ifdef CONFIG_PCI_IOV
760 	else if (pe->flags & PNV_IODA_PE_VF)
761 		pdev = pe->parent_dev;
762 #endif /* CONFIG_PCI_IOV */
763 	while (pdev) {
764 		struct pci_dn *pdn = pci_get_pdn(pdev);
765 		struct pnv_ioda_pe *parent;
766 
767 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
768 			parent = &phb->ioda.pe_array[pdn->pe_number];
769 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
770 			if (ret)
771 				return ret;
772 		}
773 
774 		pdev = pdev->bus->self;
775 	}
776 
777 	return 0;
778 }
779 
780 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
781 {
782 	struct pci_dev *parent;
783 	uint8_t bcomp, dcomp, fcomp;
784 	int64_t rc;
785 	long rid_end, rid;
786 
787 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
788 	if (pe->pbus) {
789 		int count;
790 
791 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
792 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
793 		parent = pe->pbus->self;
794 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
795 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
796 		else
797 			count = 1;
798 
799 		switch(count) {
800 		case  1: bcomp = OpalPciBusAll;         break;
801 		case  2: bcomp = OpalPciBus7Bits;       break;
802 		case  4: bcomp = OpalPciBus6Bits;       break;
803 		case  8: bcomp = OpalPciBus5Bits;       break;
804 		case 16: bcomp = OpalPciBus4Bits;       break;
805 		case 32: bcomp = OpalPciBus3Bits;       break;
806 		default:
807 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
808 			        count);
809 			/* Do an exact match only */
810 			bcomp = OpalPciBusAll;
811 		}
812 		rid_end = pe->rid + (count << 8);
813 	} else {
814 #ifdef CONFIG_PCI_IOV
815 		if (pe->flags & PNV_IODA_PE_VF)
816 			parent = pe->parent_dev;
817 		else
818 #endif
819 			parent = pe->pdev->bus->self;
820 		bcomp = OpalPciBusAll;
821 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
822 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
823 		rid_end = pe->rid + 1;
824 	}
825 
826 	/* Clear the reverse map */
827 	for (rid = pe->rid; rid < rid_end; rid++)
828 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
829 
830 	/* Release from all parents PELT-V */
831 	while (parent) {
832 		struct pci_dn *pdn = pci_get_pdn(parent);
833 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
834 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
835 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
836 			/* XXX What to do in case of error ? */
837 		}
838 		parent = parent->bus->self;
839 	}
840 
841 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
842 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
843 
844 	/* Disassociate PE in PELT */
845 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
846 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
847 	if (rc)
848 		pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
849 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
850 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
851 	if (rc)
852 		pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
853 
854 	pe->pbus = NULL;
855 	pe->pdev = NULL;
856 #ifdef CONFIG_PCI_IOV
857 	pe->parent_dev = NULL;
858 #endif
859 
860 	return 0;
861 }
862 
863 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
864 {
865 	struct pci_dev *parent;
866 	uint8_t bcomp, dcomp, fcomp;
867 	long rc, rid_end, rid;
868 
869 	/* Bus validation ? */
870 	if (pe->pbus) {
871 		int count;
872 
873 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
874 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
875 		parent = pe->pbus->self;
876 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
877 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
878 		else
879 			count = 1;
880 
881 		switch(count) {
882 		case  1: bcomp = OpalPciBusAll;		break;
883 		case  2: bcomp = OpalPciBus7Bits;	break;
884 		case  4: bcomp = OpalPciBus6Bits;	break;
885 		case  8: bcomp = OpalPciBus5Bits;	break;
886 		case 16: bcomp = OpalPciBus4Bits;	break;
887 		case 32: bcomp = OpalPciBus3Bits;	break;
888 		default:
889 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
890 			        count);
891 			/* Do an exact match only */
892 			bcomp = OpalPciBusAll;
893 		}
894 		rid_end = pe->rid + (count << 8);
895 	} else {
896 #ifdef CONFIG_PCI_IOV
897 		if (pe->flags & PNV_IODA_PE_VF)
898 			parent = pe->parent_dev;
899 		else
900 #endif /* CONFIG_PCI_IOV */
901 			parent = pe->pdev->bus->self;
902 		bcomp = OpalPciBusAll;
903 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
904 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
905 		rid_end = pe->rid + 1;
906 	}
907 
908 	/*
909 	 * Associate PE in PELT. We need add the PE into the
910 	 * corresponding PELT-V as well. Otherwise, the error
911 	 * originated from the PE might contribute to other
912 	 * PEs.
913 	 */
914 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
915 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
916 	if (rc) {
917 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
918 		return -ENXIO;
919 	}
920 
921 	/*
922 	 * Configure PELTV. NPUs don't have a PELTV table so skip
923 	 * configuration on them.
924 	 */
925 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
926 		pnv_ioda_set_peltv(phb, pe, true);
927 
928 	/* Setup reverse map */
929 	for (rid = pe->rid; rid < rid_end; rid++)
930 		phb->ioda.pe_rmap[rid] = pe->pe_number;
931 
932 	/* Setup one MVTs on IODA1 */
933 	if (phb->type != PNV_PHB_IODA1) {
934 		pe->mve_number = 0;
935 		goto out;
936 	}
937 
938 	pe->mve_number = pe->pe_number;
939 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
940 	if (rc != OPAL_SUCCESS) {
941 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
942 		       rc, pe->mve_number);
943 		pe->mve_number = -1;
944 	} else {
945 		rc = opal_pci_set_mve_enable(phb->opal_id,
946 					     pe->mve_number, OPAL_ENABLE_MVE);
947 		if (rc) {
948 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
949 			       rc, pe->mve_number);
950 			pe->mve_number = -1;
951 		}
952 	}
953 
954 out:
955 	return 0;
956 }
957 
958 #ifdef CONFIG_PCI_IOV
959 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
960 {
961 	struct pci_dn *pdn = pci_get_pdn(dev);
962 	int i;
963 	struct resource *res, res2;
964 	resource_size_t size;
965 	u16 num_vfs;
966 
967 	if (!dev->is_physfn)
968 		return -EINVAL;
969 
970 	/*
971 	 * "offset" is in VFs.  The M64 windows are sized so that when they
972 	 * are segmented, each segment is the same size as the IOV BAR.
973 	 * Each segment is in a separate PE, and the high order bits of the
974 	 * address are the PE number.  Therefore, each VF's BAR is in a
975 	 * separate PE, and changing the IOV BAR start address changes the
976 	 * range of PEs the VFs are in.
977 	 */
978 	num_vfs = pdn->num_vfs;
979 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
980 		res = &dev->resource[i + PCI_IOV_RESOURCES];
981 		if (!res->flags || !res->parent)
982 			continue;
983 
984 		/*
985 		 * The actual IOV BAR range is determined by the start address
986 		 * and the actual size for num_vfs VFs BAR.  This check is to
987 		 * make sure that after shifting, the range will not overlap
988 		 * with another device.
989 		 */
990 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
991 		res2.flags = res->flags;
992 		res2.start = res->start + (size * offset);
993 		res2.end = res2.start + (size * num_vfs) - 1;
994 
995 		if (res2.end > res->end) {
996 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
997 				i, &res2, res, num_vfs, offset);
998 			return -EBUSY;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * Since M64 BAR shares segments among all possible 256 PEs,
1004 	 * we have to shift the beginning of PF IOV BAR to make it start from
1005 	 * the segment which belongs to the PE number assigned to the first VF.
1006 	 * This creates a "hole" in the /proc/iomem which could be used for
1007 	 * allocating other resources so we reserve this area below and
1008 	 * release when IOV is released.
1009 	 */
1010 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1011 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1012 		if (!res->flags || !res->parent)
1013 			continue;
1014 
1015 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1016 		res2 = *res;
1017 		res->start += size * offset;
1018 
1019 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1020 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1021 			 num_vfs, offset);
1022 
1023 		if (offset < 0) {
1024 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1025 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1026 		}
1027 
1028 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1029 
1030 		if (offset > 0) {
1031 			pdn->holes[i].start = res2.start;
1032 			pdn->holes[i].end = res2.start + size * offset - 1;
1033 			pdn->holes[i].flags = IORESOURCE_BUS;
1034 			pdn->holes[i].name = "pnv_iov_reserved";
1035 			devm_request_resource(&dev->dev, res->parent,
1036 					&pdn->holes[i]);
1037 		}
1038 	}
1039 	return 0;
1040 }
1041 #endif /* CONFIG_PCI_IOV */
1042 
1043 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1044 {
1045 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1046 	struct pnv_phb *phb = hose->private_data;
1047 	struct pci_dn *pdn = pci_get_pdn(dev);
1048 	struct pnv_ioda_pe *pe;
1049 
1050 	if (!pdn) {
1051 		pr_err("%s: Device tree node not associated properly\n",
1052 			   pci_name(dev));
1053 		return NULL;
1054 	}
1055 	if (pdn->pe_number != IODA_INVALID_PE)
1056 		return NULL;
1057 
1058 	pe = pnv_ioda_alloc_pe(phb);
1059 	if (!pe) {
1060 		pr_warn("%s: Not enough PE# available, disabling device\n",
1061 			pci_name(dev));
1062 		return NULL;
1063 	}
1064 
1065 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1066 	 * pointer in the PE data structure, both should be destroyed at the
1067 	 * same time. However, this needs to be looked at more closely again
1068 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1069 	 *
1070 	 * At some point we want to remove the PDN completely anyways
1071 	 */
1072 	pci_dev_get(dev);
1073 	pdn->pe_number = pe->pe_number;
1074 	pe->flags = PNV_IODA_PE_DEV;
1075 	pe->pdev = dev;
1076 	pe->pbus = NULL;
1077 	pe->mve_number = -1;
1078 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1079 
1080 	pe_info(pe, "Associated device to PE\n");
1081 
1082 	if (pnv_ioda_configure_pe(phb, pe)) {
1083 		/* XXX What do we do here ? */
1084 		pnv_ioda_free_pe(pe);
1085 		pdn->pe_number = IODA_INVALID_PE;
1086 		pe->pdev = NULL;
1087 		pci_dev_put(dev);
1088 		return NULL;
1089 	}
1090 
1091 	/* Put PE to the list */
1092 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1093 
1094 	return pe;
1095 }
1096 
1097 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1098 {
1099 	struct pci_dev *dev;
1100 
1101 	list_for_each_entry(dev, &bus->devices, bus_list) {
1102 		struct pci_dn *pdn = pci_get_pdn(dev);
1103 
1104 		if (pdn == NULL) {
1105 			pr_warn("%s: No device node associated with device !\n",
1106 				pci_name(dev));
1107 			continue;
1108 		}
1109 
1110 		/*
1111 		 * In partial hotplug case, the PCI device might be still
1112 		 * associated with the PE and needn't attach it to the PE
1113 		 * again.
1114 		 */
1115 		if (pdn->pe_number != IODA_INVALID_PE)
1116 			continue;
1117 
1118 		pe->device_count++;
1119 		pdn->pe_number = pe->pe_number;
1120 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1121 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1122 	}
1123 }
1124 
1125 /*
1126  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1127  * single PCI bus. Another one that contains the primary PCI bus and its
1128  * subordinate PCI devices and buses. The second type of PE is normally
1129  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1130  */
1131 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1132 {
1133 	struct pci_controller *hose = pci_bus_to_host(bus);
1134 	struct pnv_phb *phb = hose->private_data;
1135 	struct pnv_ioda_pe *pe = NULL;
1136 	unsigned int pe_num;
1137 
1138 	/*
1139 	 * In partial hotplug case, the PE instance might be still alive.
1140 	 * We should reuse it instead of allocating a new one.
1141 	 */
1142 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1143 	if (pe_num != IODA_INVALID_PE) {
1144 		pe = &phb->ioda.pe_array[pe_num];
1145 		pnv_ioda_setup_same_PE(bus, pe);
1146 		return NULL;
1147 	}
1148 
1149 	/* PE number for root bus should have been reserved */
1150 	if (pci_is_root_bus(bus) &&
1151 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1152 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1153 
1154 	/* Check if PE is determined by M64 */
1155 	if (!pe)
1156 		pe = pnv_ioda_pick_m64_pe(bus, all);
1157 
1158 	/* The PE number isn't pinned by M64 */
1159 	if (!pe)
1160 		pe = pnv_ioda_alloc_pe(phb);
1161 
1162 	if (!pe) {
1163 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1164 			__func__, pci_domain_nr(bus), bus->number);
1165 		return NULL;
1166 	}
1167 
1168 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1169 	pe->pbus = bus;
1170 	pe->pdev = NULL;
1171 	pe->mve_number = -1;
1172 	pe->rid = bus->busn_res.start << 8;
1173 
1174 	if (all)
1175 		pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1176 			&bus->busn_res.start, &bus->busn_res.end,
1177 			pe->pe_number);
1178 	else
1179 		pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1180 			&bus->busn_res.start, pe->pe_number);
1181 
1182 	if (pnv_ioda_configure_pe(phb, pe)) {
1183 		/* XXX What do we do here ? */
1184 		pnv_ioda_free_pe(pe);
1185 		pe->pbus = NULL;
1186 		return NULL;
1187 	}
1188 
1189 	/* Associate it with all child devices */
1190 	pnv_ioda_setup_same_PE(bus, pe);
1191 
1192 	/* Put PE to the list */
1193 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1194 
1195 	return pe;
1196 }
1197 
1198 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1199 {
1200 	int pe_num, found_pe = false, rc;
1201 	long rid;
1202 	struct pnv_ioda_pe *pe;
1203 	struct pci_dev *gpu_pdev;
1204 	struct pci_dn *npu_pdn;
1205 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1206 	struct pnv_phb *phb = hose->private_data;
1207 
1208 	/*
1209 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1210 	 * error handling. This means we only have three PEs remaining
1211 	 * which need to be assigned to four links, implying some
1212 	 * links must share PEs.
1213 	 *
1214 	 * To achieve this we assign PEs such that NPUs linking the
1215 	 * same GPU get assigned the same PE.
1216 	 */
1217 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1218 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1219 		pe = &phb->ioda.pe_array[pe_num];
1220 		if (!pe->pdev)
1221 			continue;
1222 
1223 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1224 			/*
1225 			 * This device has the same peer GPU so should
1226 			 * be assigned the same PE as the existing
1227 			 * peer NPU.
1228 			 */
1229 			dev_info(&npu_pdev->dev,
1230 				"Associating to existing PE %x\n", pe_num);
1231 			pci_dev_get(npu_pdev);
1232 			npu_pdn = pci_get_pdn(npu_pdev);
1233 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1234 			npu_pdn->pe_number = pe_num;
1235 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1236 
1237 			/* Map the PE to this link */
1238 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1239 					OpalPciBusAll,
1240 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1241 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1242 					OPAL_MAP_PE);
1243 			WARN_ON(rc != OPAL_SUCCESS);
1244 			found_pe = true;
1245 			break;
1246 		}
1247 	}
1248 
1249 	if (!found_pe)
1250 		/*
1251 		 * Could not find an existing PE so allocate a new
1252 		 * one.
1253 		 */
1254 		return pnv_ioda_setup_dev_PE(npu_pdev);
1255 	else
1256 		return pe;
1257 }
1258 
1259 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1260 {
1261 	struct pci_dev *pdev;
1262 
1263 	list_for_each_entry(pdev, &bus->devices, bus_list)
1264 		pnv_ioda_setup_npu_PE(pdev);
1265 }
1266 
1267 static void pnv_pci_ioda_setup_PEs(void)
1268 {
1269 	struct pci_controller *hose;
1270 	struct pnv_phb *phb;
1271 	struct pci_bus *bus;
1272 	struct pci_dev *pdev;
1273 	struct pnv_ioda_pe *pe;
1274 
1275 	list_for_each_entry(hose, &hose_list, list_node) {
1276 		phb = hose->private_data;
1277 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1278 			/* PE#0 is needed for error reporting */
1279 			pnv_ioda_reserve_pe(phb, 0);
1280 			pnv_ioda_setup_npu_PEs(hose->bus);
1281 			if (phb->model == PNV_PHB_MODEL_NPU2)
1282 				WARN_ON_ONCE(pnv_npu2_init(hose));
1283 		}
1284 		if (phb->type == PNV_PHB_NPU_OCAPI) {
1285 			bus = hose->bus;
1286 			list_for_each_entry(pdev, &bus->devices, bus_list)
1287 				pnv_ioda_setup_dev_PE(pdev);
1288 		}
1289 	}
1290 	list_for_each_entry(hose, &hose_list, list_node) {
1291 		phb = hose->private_data;
1292 		if (phb->type != PNV_PHB_IODA2)
1293 			continue;
1294 
1295 		list_for_each_entry(pe, &phb->ioda.pe_list, list)
1296 			pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1297 	}
1298 }
1299 
1300 #ifdef CONFIG_PCI_IOV
1301 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1302 {
1303 	struct pci_bus        *bus;
1304 	struct pci_controller *hose;
1305 	struct pnv_phb        *phb;
1306 	struct pci_dn         *pdn;
1307 	int                    i, j;
1308 	int                    m64_bars;
1309 
1310 	bus = pdev->bus;
1311 	hose = pci_bus_to_host(bus);
1312 	phb = hose->private_data;
1313 	pdn = pci_get_pdn(pdev);
1314 
1315 	if (pdn->m64_single_mode)
1316 		m64_bars = num_vfs;
1317 	else
1318 		m64_bars = 1;
1319 
1320 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1321 		for (j = 0; j < m64_bars; j++) {
1322 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1323 				continue;
1324 			opal_pci_phb_mmio_enable(phb->opal_id,
1325 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1326 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1327 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1328 		}
1329 
1330 	kfree(pdn->m64_map);
1331 	return 0;
1332 }
1333 
1334 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1335 {
1336 	struct pci_bus        *bus;
1337 	struct pci_controller *hose;
1338 	struct pnv_phb        *phb;
1339 	struct pci_dn         *pdn;
1340 	unsigned int           win;
1341 	struct resource       *res;
1342 	int                    i, j;
1343 	int64_t                rc;
1344 	int                    total_vfs;
1345 	resource_size_t        size, start;
1346 	int                    pe_num;
1347 	int                    m64_bars;
1348 
1349 	bus = pdev->bus;
1350 	hose = pci_bus_to_host(bus);
1351 	phb = hose->private_data;
1352 	pdn = pci_get_pdn(pdev);
1353 	total_vfs = pci_sriov_get_totalvfs(pdev);
1354 
1355 	if (pdn->m64_single_mode)
1356 		m64_bars = num_vfs;
1357 	else
1358 		m64_bars = 1;
1359 
1360 	pdn->m64_map = kmalloc_array(m64_bars,
1361 				     sizeof(*pdn->m64_map),
1362 				     GFP_KERNEL);
1363 	if (!pdn->m64_map)
1364 		return -ENOMEM;
1365 	/* Initialize the m64_map to IODA_INVALID_M64 */
1366 	for (i = 0; i < m64_bars ; i++)
1367 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1368 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1369 
1370 
1371 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1372 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1373 		if (!res->flags || !res->parent)
1374 			continue;
1375 
1376 		for (j = 0; j < m64_bars; j++) {
1377 			do {
1378 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1379 						phb->ioda.m64_bar_idx + 1, 0);
1380 
1381 				if (win >= phb->ioda.m64_bar_idx + 1)
1382 					goto m64_failed;
1383 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1384 
1385 			pdn->m64_map[j][i] = win;
1386 
1387 			if (pdn->m64_single_mode) {
1388 				size = pci_iov_resource_size(pdev,
1389 							PCI_IOV_RESOURCES + i);
1390 				start = res->start + size * j;
1391 			} else {
1392 				size = resource_size(res);
1393 				start = res->start;
1394 			}
1395 
1396 			/* Map the M64 here */
1397 			if (pdn->m64_single_mode) {
1398 				pe_num = pdn->pe_num_map[j];
1399 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1400 						pe_num, OPAL_M64_WINDOW_TYPE,
1401 						pdn->m64_map[j][i], 0);
1402 			}
1403 
1404 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1405 						 OPAL_M64_WINDOW_TYPE,
1406 						 pdn->m64_map[j][i],
1407 						 start,
1408 						 0, /* unused */
1409 						 size);
1410 
1411 
1412 			if (rc != OPAL_SUCCESS) {
1413 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1414 					win, rc);
1415 				goto m64_failed;
1416 			}
1417 
1418 			if (pdn->m64_single_mode)
1419 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1420 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1421 			else
1422 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1423 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1424 
1425 			if (rc != OPAL_SUCCESS) {
1426 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1427 					win, rc);
1428 				goto m64_failed;
1429 			}
1430 		}
1431 	}
1432 	return 0;
1433 
1434 m64_failed:
1435 	pnv_pci_vf_release_m64(pdev, num_vfs);
1436 	return -EBUSY;
1437 }
1438 
1439 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1440 		int num);
1441 
1442 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1443 {
1444 	struct iommu_table    *tbl;
1445 	int64_t               rc;
1446 
1447 	tbl = pe->table_group.tables[0];
1448 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1449 	if (rc)
1450 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
1451 
1452 	pnv_pci_ioda2_set_bypass(pe, false);
1453 	if (pe->table_group.group) {
1454 		iommu_group_put(pe->table_group.group);
1455 		BUG_ON(pe->table_group.group);
1456 	}
1457 	iommu_tce_table_put(tbl);
1458 }
1459 
1460 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1461 {
1462 	struct pci_bus        *bus;
1463 	struct pci_controller *hose;
1464 	struct pnv_phb        *phb;
1465 	struct pnv_ioda_pe    *pe, *pe_n;
1466 	struct pci_dn         *pdn;
1467 
1468 	bus = pdev->bus;
1469 	hose = pci_bus_to_host(bus);
1470 	phb = hose->private_data;
1471 	pdn = pci_get_pdn(pdev);
1472 
1473 	if (!pdev->is_physfn)
1474 		return;
1475 
1476 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1477 		if (pe->parent_dev != pdev)
1478 			continue;
1479 
1480 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1481 
1482 		/* Remove from list */
1483 		mutex_lock(&phb->ioda.pe_list_mutex);
1484 		list_del(&pe->list);
1485 		mutex_unlock(&phb->ioda.pe_list_mutex);
1486 
1487 		pnv_ioda_deconfigure_pe(phb, pe);
1488 
1489 		pnv_ioda_free_pe(pe);
1490 	}
1491 }
1492 
1493 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1494 {
1495 	struct pci_bus        *bus;
1496 	struct pci_controller *hose;
1497 	struct pnv_phb        *phb;
1498 	struct pnv_ioda_pe    *pe;
1499 	struct pci_dn         *pdn;
1500 	u16                    num_vfs, i;
1501 
1502 	bus = pdev->bus;
1503 	hose = pci_bus_to_host(bus);
1504 	phb = hose->private_data;
1505 	pdn = pci_get_pdn(pdev);
1506 	num_vfs = pdn->num_vfs;
1507 
1508 	/* Release VF PEs */
1509 	pnv_ioda_release_vf_PE(pdev);
1510 
1511 	if (phb->type == PNV_PHB_IODA2) {
1512 		if (!pdn->m64_single_mode)
1513 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1514 
1515 		/* Release M64 windows */
1516 		pnv_pci_vf_release_m64(pdev, num_vfs);
1517 
1518 		/* Release PE numbers */
1519 		if (pdn->m64_single_mode) {
1520 			for (i = 0; i < num_vfs; i++) {
1521 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1522 					continue;
1523 
1524 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1525 				pnv_ioda_free_pe(pe);
1526 			}
1527 		} else
1528 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1529 		/* Releasing pe_num_map */
1530 		kfree(pdn->pe_num_map);
1531 	}
1532 }
1533 
1534 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1535 				       struct pnv_ioda_pe *pe);
1536 #ifdef CONFIG_IOMMU_API
1537 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
1538 		struct iommu_table_group *table_group, struct pci_bus *bus);
1539 
1540 #endif
1541 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1542 {
1543 	struct pci_bus        *bus;
1544 	struct pci_controller *hose;
1545 	struct pnv_phb        *phb;
1546 	struct pnv_ioda_pe    *pe;
1547 	int                    pe_num;
1548 	u16                    vf_index;
1549 	struct pci_dn         *pdn;
1550 
1551 	bus = pdev->bus;
1552 	hose = pci_bus_to_host(bus);
1553 	phb = hose->private_data;
1554 	pdn = pci_get_pdn(pdev);
1555 
1556 	if (!pdev->is_physfn)
1557 		return;
1558 
1559 	/* Reserve PE for each VF */
1560 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1561 		int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
1562 		int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
1563 		struct pci_dn *vf_pdn;
1564 
1565 		if (pdn->m64_single_mode)
1566 			pe_num = pdn->pe_num_map[vf_index];
1567 		else
1568 			pe_num = *pdn->pe_num_map + vf_index;
1569 
1570 		pe = &phb->ioda.pe_array[pe_num];
1571 		pe->pe_number = pe_num;
1572 		pe->phb = phb;
1573 		pe->flags = PNV_IODA_PE_VF;
1574 		pe->pbus = NULL;
1575 		pe->parent_dev = pdev;
1576 		pe->mve_number = -1;
1577 		pe->rid = (vf_bus << 8) | vf_devfn;
1578 
1579 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1580 			hose->global_number, pdev->bus->number,
1581 			PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
1582 
1583 		if (pnv_ioda_configure_pe(phb, pe)) {
1584 			/* XXX What do we do here ? */
1585 			pnv_ioda_free_pe(pe);
1586 			pe->pdev = NULL;
1587 			continue;
1588 		}
1589 
1590 		/* Put PE to the list */
1591 		mutex_lock(&phb->ioda.pe_list_mutex);
1592 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1593 		mutex_unlock(&phb->ioda.pe_list_mutex);
1594 
1595 		/* associate this pe to it's pdn */
1596 		list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
1597 			if (vf_pdn->busno == vf_bus &&
1598 			    vf_pdn->devfn == vf_devfn) {
1599 				vf_pdn->pe_number = pe_num;
1600 				break;
1601 			}
1602 		}
1603 
1604 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1605 #ifdef CONFIG_IOMMU_API
1606 		iommu_register_group(&pe->table_group,
1607 				pe->phb->hose->global_number, pe->pe_number);
1608 		pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL);
1609 #endif
1610 	}
1611 }
1612 
1613 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1614 {
1615 	struct pci_bus        *bus;
1616 	struct pci_controller *hose;
1617 	struct pnv_phb        *phb;
1618 	struct pnv_ioda_pe    *pe;
1619 	struct pci_dn         *pdn;
1620 	int                    ret;
1621 	u16                    i;
1622 
1623 	bus = pdev->bus;
1624 	hose = pci_bus_to_host(bus);
1625 	phb = hose->private_data;
1626 	pdn = pci_get_pdn(pdev);
1627 
1628 	if (phb->type == PNV_PHB_IODA2) {
1629 		if (!pdn->vfs_expanded) {
1630 			dev_info(&pdev->dev, "don't support this SRIOV device"
1631 				" with non 64bit-prefetchable IOV BAR\n");
1632 			return -ENOSPC;
1633 		}
1634 
1635 		/*
1636 		 * When M64 BARs functions in Single PE mode, the number of VFs
1637 		 * could be enabled must be less than the number of M64 BARs.
1638 		 */
1639 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1640 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1641 			return -EBUSY;
1642 		}
1643 
1644 		/* Allocating pe_num_map */
1645 		if (pdn->m64_single_mode)
1646 			pdn->pe_num_map = kmalloc_array(num_vfs,
1647 							sizeof(*pdn->pe_num_map),
1648 							GFP_KERNEL);
1649 		else
1650 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1651 
1652 		if (!pdn->pe_num_map)
1653 			return -ENOMEM;
1654 
1655 		if (pdn->m64_single_mode)
1656 			for (i = 0; i < num_vfs; i++)
1657 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1658 
1659 		/* Calculate available PE for required VFs */
1660 		if (pdn->m64_single_mode) {
1661 			for (i = 0; i < num_vfs; i++) {
1662 				pe = pnv_ioda_alloc_pe(phb);
1663 				if (!pe) {
1664 					ret = -EBUSY;
1665 					goto m64_failed;
1666 				}
1667 
1668 				pdn->pe_num_map[i] = pe->pe_number;
1669 			}
1670 		} else {
1671 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1672 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1673 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1674 				0, num_vfs, 0);
1675 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1676 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1677 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1678 				kfree(pdn->pe_num_map);
1679 				return -EBUSY;
1680 			}
1681 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1682 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1683 		}
1684 		pdn->num_vfs = num_vfs;
1685 
1686 		/* Assign M64 window accordingly */
1687 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1688 		if (ret) {
1689 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1690 			goto m64_failed;
1691 		}
1692 
1693 		/*
1694 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1695 		 * the IOV BAR according to the PE# allocated to the VFs.
1696 		 * Otherwise, the PE# for the VF will conflict with others.
1697 		 */
1698 		if (!pdn->m64_single_mode) {
1699 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1700 			if (ret)
1701 				goto m64_failed;
1702 		}
1703 	}
1704 
1705 	/* Setup VF PEs */
1706 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1707 
1708 	return 0;
1709 
1710 m64_failed:
1711 	if (pdn->m64_single_mode) {
1712 		for (i = 0; i < num_vfs; i++) {
1713 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1714 				continue;
1715 
1716 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1717 			pnv_ioda_free_pe(pe);
1718 		}
1719 	} else
1720 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1721 
1722 	/* Releasing pe_num_map */
1723 	kfree(pdn->pe_num_map);
1724 
1725 	return ret;
1726 }
1727 
1728 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1729 {
1730 	pnv_pci_sriov_disable(pdev);
1731 
1732 	/* Release PCI data */
1733 	remove_dev_pci_data(pdev);
1734 	return 0;
1735 }
1736 
1737 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1738 {
1739 	/* Allocate PCI data */
1740 	add_dev_pci_data(pdev);
1741 
1742 	return pnv_pci_sriov_enable(pdev, num_vfs);
1743 }
1744 #endif /* CONFIG_PCI_IOV */
1745 
1746 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1747 {
1748 	struct pci_dn *pdn = pci_get_pdn(pdev);
1749 	struct pnv_ioda_pe *pe;
1750 
1751 	/*
1752 	 * The function can be called while the PE#
1753 	 * hasn't been assigned. Do nothing for the
1754 	 * case.
1755 	 */
1756 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1757 		return;
1758 
1759 	pe = &phb->ioda.pe_array[pdn->pe_number];
1760 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1761 	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1762 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1763 	/*
1764 	 * Note: iommu_add_device() will fail here as
1765 	 * for physical PE: the device is already added by now;
1766 	 * for virtual PE: sysfs entries are not ready yet and
1767 	 * tce_iommu_bus_notifier will add the device to a group later.
1768 	 */
1769 }
1770 
1771 /*
1772  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1773  *
1774  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1775  * Devices can only access more than that if bit 59 of the PCI address is set
1776  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1777  * Many PCI devices are not capable of addressing that many bits, and as a
1778  * result are limited to the 4GB of virtual memory made available to 32-bit
1779  * devices in TVE#0.
1780  *
1781  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1782  * devices by configuring the virtual memory past the first 4GB inaccessible
1783  * by 64-bit DMAs.  This should only be used by devices that want more than
1784  * 4GB, and only on PEs that have no 32-bit devices.
1785  *
1786  * Currently this will only work on PHB3 (POWER8).
1787  */
1788 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1789 {
1790 	u64 window_size, table_size, tce_count, addr;
1791 	struct page *table_pages;
1792 	u64 tce_order = 28; /* 256MB TCEs */
1793 	__be64 *tces;
1794 	s64 rc;
1795 
1796 	/*
1797 	 * Window size needs to be a power of two, but needs to account for
1798 	 * shifting memory by the 4GB offset required to skip 32bit space.
1799 	 */
1800 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1801 	tce_count = window_size >> tce_order;
1802 	table_size = tce_count << 3;
1803 
1804 	if (table_size < PAGE_SIZE)
1805 		table_size = PAGE_SIZE;
1806 
1807 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1808 				       get_order(table_size));
1809 	if (!table_pages)
1810 		goto err;
1811 
1812 	tces = page_address(table_pages);
1813 	if (!tces)
1814 		goto err;
1815 
1816 	memset(tces, 0, table_size);
1817 
1818 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1819 		tces[(addr + (1ULL << 32)) >> tce_order] =
1820 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1821 	}
1822 
1823 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1824 					pe->pe_number,
1825 					/* reconfigure window 0 */
1826 					(pe->pe_number << 1) + 0,
1827 					1,
1828 					__pa(tces),
1829 					table_size,
1830 					1 << tce_order);
1831 	if (rc == OPAL_SUCCESS) {
1832 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1833 		return 0;
1834 	}
1835 err:
1836 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1837 	return -EIO;
1838 }
1839 
1840 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1841 		u64 dma_mask)
1842 {
1843 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1844 	struct pnv_phb *phb = hose->private_data;
1845 	struct pci_dn *pdn = pci_get_pdn(pdev);
1846 	struct pnv_ioda_pe *pe;
1847 
1848 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1849 		return false;
1850 
1851 	pe = &phb->ioda.pe_array[pdn->pe_number];
1852 	if (pe->tce_bypass_enabled) {
1853 		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1854 		if (dma_mask >= top)
1855 			return true;
1856 	}
1857 
1858 	/*
1859 	 * If the device can't set the TCE bypass bit but still wants
1860 	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1861 	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1862 	 * The device needs to be able to address all of this space.
1863 	 */
1864 	if (dma_mask >> 32 &&
1865 	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1866 	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1867 	    (pe->device_count == 1 || !pe->pbus) &&
1868 	    phb->model == PNV_PHB_MODEL_PHB3) {
1869 		/* Configure the bypass mode */
1870 		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1871 		if (rc)
1872 			return false;
1873 		/* 4GB offset bypasses 32-bit space */
1874 		pdev->dev.archdata.dma_offset = (1ULL << 32);
1875 		return true;
1876 	}
1877 
1878 	return false;
1879 }
1880 
1881 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1882 {
1883 	struct pci_dev *dev;
1884 
1885 	list_for_each_entry(dev, &bus->devices, bus_list) {
1886 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1887 		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1888 
1889 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1890 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1891 	}
1892 }
1893 
1894 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1895 						     bool real_mode)
1896 {
1897 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1898 		(phb->regs + 0x210);
1899 }
1900 
1901 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1902 		unsigned long index, unsigned long npages, bool rm)
1903 {
1904 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1905 			&tbl->it_group_list, struct iommu_table_group_link,
1906 			next);
1907 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1908 			struct pnv_ioda_pe, table_group);
1909 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1910 	unsigned long start, end, inc;
1911 
1912 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1913 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1914 			npages - 1);
1915 
1916 	/* p7ioc-style invalidation, 2 TCEs per write */
1917 	start |= (1ull << 63);
1918 	end |= (1ull << 63);
1919 	inc = 16;
1920         end |= inc - 1;	/* round up end to be different than start */
1921 
1922         mb(); /* Ensure above stores are visible */
1923         while (start <= end) {
1924 		if (rm)
1925 			__raw_rm_writeq_be(start, invalidate);
1926 		else
1927 			__raw_writeq_be(start, invalidate);
1928 
1929                 start += inc;
1930         }
1931 
1932 	/*
1933 	 * The iommu layer will do another mb() for us on build()
1934 	 * and we don't care on free()
1935 	 */
1936 }
1937 
1938 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1939 		long npages, unsigned long uaddr,
1940 		enum dma_data_direction direction,
1941 		unsigned long attrs)
1942 {
1943 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1944 			attrs);
1945 
1946 	if (!ret)
1947 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1948 
1949 	return ret;
1950 }
1951 
1952 #ifdef CONFIG_IOMMU_API
1953 /* Common for IODA1 and IODA2 */
1954 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1955 		unsigned long *hpa, enum dma_data_direction *direction,
1956 		bool realmode)
1957 {
1958 	return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
1959 }
1960 #endif
1961 
1962 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1963 		long npages)
1964 {
1965 	pnv_tce_free(tbl, index, npages);
1966 
1967 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1968 }
1969 
1970 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1971 	.set = pnv_ioda1_tce_build,
1972 #ifdef CONFIG_IOMMU_API
1973 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1974 	.tce_kill = pnv_pci_p7ioc_tce_invalidate,
1975 	.useraddrptr = pnv_tce_useraddrptr,
1976 #endif
1977 	.clear = pnv_ioda1_tce_free,
1978 	.get = pnv_tce_get,
1979 };
1980 
1981 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1982 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1983 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1984 
1985 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1986 {
1987 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1988 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1989 
1990 	mb(); /* Ensure previous TCE table stores are visible */
1991 	if (rm)
1992 		__raw_rm_writeq_be(val, invalidate);
1993 	else
1994 		__raw_writeq_be(val, invalidate);
1995 }
1996 
1997 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1998 {
1999 	/* 01xb - invalidate TCEs that match the specified PE# */
2000 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2001 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2002 
2003 	mb(); /* Ensure above stores are visible */
2004 	__raw_writeq_be(val, invalidate);
2005 }
2006 
2007 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2008 					unsigned shift, unsigned long index,
2009 					unsigned long npages)
2010 {
2011 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2012 	unsigned long start, end, inc;
2013 
2014 	/* We'll invalidate DMA address in PE scope */
2015 	start = PHB3_TCE_KILL_INVAL_ONE;
2016 	start |= (pe->pe_number & 0xFF);
2017 	end = start;
2018 
2019 	/* Figure out the start, end and step */
2020 	start |= (index << shift);
2021 	end |= ((index + npages - 1) << shift);
2022 	inc = (0x1ull << shift);
2023 	mb();
2024 
2025 	while (start <= end) {
2026 		if (rm)
2027 			__raw_rm_writeq_be(start, invalidate);
2028 		else
2029 			__raw_writeq_be(start, invalidate);
2030 		start += inc;
2031 	}
2032 }
2033 
2034 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2035 {
2036 	struct pnv_phb *phb = pe->phb;
2037 
2038 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2039 		pnv_pci_phb3_tce_invalidate_pe(pe);
2040 	else
2041 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2042 				  pe->pe_number, 0, 0, 0);
2043 }
2044 
2045 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2046 		unsigned long index, unsigned long npages, bool rm)
2047 {
2048 	struct iommu_table_group_link *tgl;
2049 
2050 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2051 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2052 				struct pnv_ioda_pe, table_group);
2053 		struct pnv_phb *phb = pe->phb;
2054 		unsigned int shift = tbl->it_page_shift;
2055 
2056 		/*
2057 		 * NVLink1 can use the TCE kill register directly as
2058 		 * it's the same as PHB3. NVLink2 is different and
2059 		 * should go via the OPAL call.
2060 		 */
2061 		if (phb->model == PNV_PHB_MODEL_NPU) {
2062 			/*
2063 			 * The NVLink hardware does not support TCE kill
2064 			 * per TCE entry so we have to invalidate
2065 			 * the entire cache for it.
2066 			 */
2067 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2068 			continue;
2069 		}
2070 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2071 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2072 						    index, npages);
2073 		else
2074 			opal_pci_tce_kill(phb->opal_id,
2075 					  OPAL_PCI_TCE_KILL_PAGES,
2076 					  pe->pe_number, 1u << shift,
2077 					  index << shift, npages);
2078 	}
2079 }
2080 
2081 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2082 {
2083 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2084 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2085 	else
2086 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2087 }
2088 
2089 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2090 		long npages, unsigned long uaddr,
2091 		enum dma_data_direction direction,
2092 		unsigned long attrs)
2093 {
2094 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2095 			attrs);
2096 
2097 	if (!ret)
2098 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2099 
2100 	return ret;
2101 }
2102 
2103 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2104 		long npages)
2105 {
2106 	pnv_tce_free(tbl, index, npages);
2107 
2108 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2109 }
2110 
2111 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2112 	.set = pnv_ioda2_tce_build,
2113 #ifdef CONFIG_IOMMU_API
2114 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
2115 	.tce_kill = pnv_pci_ioda2_tce_invalidate,
2116 	.useraddrptr = pnv_tce_useraddrptr,
2117 #endif
2118 	.clear = pnv_ioda2_tce_free,
2119 	.get = pnv_tce_get,
2120 	.free = pnv_pci_ioda2_table_free_pages,
2121 };
2122 
2123 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2124 {
2125 	unsigned int *weight = (unsigned int *)data;
2126 
2127 	/* This is quite simplistic. The "base" weight of a device
2128 	 * is 10. 0 means no DMA is to be accounted for it.
2129 	 */
2130 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2131 		return 0;
2132 
2133 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2134 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2135 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2136 		*weight += 3;
2137 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2138 		*weight += 15;
2139 	else
2140 		*weight += 10;
2141 
2142 	return 0;
2143 }
2144 
2145 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2146 {
2147 	unsigned int weight = 0;
2148 
2149 	/* SRIOV VF has same DMA32 weight as its PF */
2150 #ifdef CONFIG_PCI_IOV
2151 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2152 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2153 		return weight;
2154 	}
2155 #endif
2156 
2157 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2158 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2159 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2160 		struct pci_dev *pdev;
2161 
2162 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2163 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2164 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2165 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2166 	}
2167 
2168 	return weight;
2169 }
2170 
2171 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2172 				       struct pnv_ioda_pe *pe)
2173 {
2174 
2175 	struct page *tce_mem = NULL;
2176 	struct iommu_table *tbl;
2177 	unsigned int weight, total_weight = 0;
2178 	unsigned int tce32_segsz, base, segs, avail, i;
2179 	int64_t rc;
2180 	void *addr;
2181 
2182 	/* XXX FIXME: Handle 64-bit only DMA devices */
2183 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2184 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2185 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2186 	if (!weight)
2187 		return;
2188 
2189 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2190 		     &total_weight);
2191 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2192 	if (!segs)
2193 		segs = 1;
2194 
2195 	/*
2196 	 * Allocate contiguous DMA32 segments. We begin with the expected
2197 	 * number of segments. With one more attempt, the number of DMA32
2198 	 * segments to be allocated is decreased by one until one segment
2199 	 * is allocated successfully.
2200 	 */
2201 	do {
2202 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2203 			for (avail = 0, i = base; i < base + segs; i++) {
2204 				if (phb->ioda.dma32_segmap[i] ==
2205 				    IODA_INVALID_PE)
2206 					avail++;
2207 			}
2208 
2209 			if (avail == segs)
2210 				goto found;
2211 		}
2212 	} while (--segs);
2213 
2214 	if (!segs) {
2215 		pe_warn(pe, "No available DMA32 segments\n");
2216 		return;
2217 	}
2218 
2219 found:
2220 	tbl = pnv_pci_table_alloc(phb->hose->node);
2221 	if (WARN_ON(!tbl))
2222 		return;
2223 
2224 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2225 			pe->pe_number);
2226 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2227 
2228 	/* Grab a 32-bit TCE table */
2229 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2230 		weight, total_weight, base, segs);
2231 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2232 		base * PNV_IODA1_DMA32_SEGSIZE,
2233 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2234 
2235 	/* XXX Currently, we allocate one big contiguous table for the
2236 	 * TCEs. We only really need one chunk per 256M of TCE space
2237 	 * (ie per segment) but that's an optimization for later, it
2238 	 * requires some added smarts with our get/put_tce implementation
2239 	 *
2240 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2241 	 * bytes
2242 	 */
2243 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2244 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2245 				   get_order(tce32_segsz * segs));
2246 	if (!tce_mem) {
2247 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2248 		goto fail;
2249 	}
2250 	addr = page_address(tce_mem);
2251 	memset(addr, 0, tce32_segsz * segs);
2252 
2253 	/* Configure HW */
2254 	for (i = 0; i < segs; i++) {
2255 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2256 					      pe->pe_number,
2257 					      base + i, 1,
2258 					      __pa(addr) + tce32_segsz * i,
2259 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2260 		if (rc) {
2261 			pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
2262 			       rc);
2263 			goto fail;
2264 		}
2265 	}
2266 
2267 	/* Setup DMA32 segment mapping */
2268 	for (i = base; i < base + segs; i++)
2269 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2270 
2271 	/* Setup linux iommu table */
2272 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2273 				  base * PNV_IODA1_DMA32_SEGSIZE,
2274 				  IOMMU_PAGE_SHIFT_4K);
2275 
2276 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2277 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2278 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2279 	iommu_init_table(tbl, phb->hose->node, 0, 0);
2280 
2281 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2282 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2283 
2284 	return;
2285  fail:
2286 	/* XXX Failure: Try to fallback to 64-bit only ? */
2287 	if (tce_mem)
2288 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2289 	if (tbl) {
2290 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2291 		iommu_tce_table_put(tbl);
2292 	}
2293 }
2294 
2295 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2296 		int num, struct iommu_table *tbl)
2297 {
2298 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2299 			table_group);
2300 	struct pnv_phb *phb = pe->phb;
2301 	int64_t rc;
2302 	const unsigned long size = tbl->it_indirect_levels ?
2303 			tbl->it_level_size : tbl->it_size;
2304 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2305 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2306 
2307 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
2308 		num, start_addr, start_addr + win_size - 1,
2309 		IOMMU_PAGE_SIZE(tbl));
2310 
2311 	/*
2312 	 * Map TCE table through TVT. The TVE index is the PE number
2313 	 * shifted by 1 bit for 32-bits DMA space.
2314 	 */
2315 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2316 			pe->pe_number,
2317 			(pe->pe_number << 1) + num,
2318 			tbl->it_indirect_levels + 1,
2319 			__pa(tbl->it_base),
2320 			size << 3,
2321 			IOMMU_PAGE_SIZE(tbl));
2322 	if (rc) {
2323 		pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
2324 		return rc;
2325 	}
2326 
2327 	pnv_pci_link_table_and_group(phb->hose->node, num,
2328 			tbl, &pe->table_group);
2329 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2330 
2331 	return 0;
2332 }
2333 
2334 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2335 {
2336 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2337 	int64_t rc;
2338 
2339 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2340 	if (enable) {
2341 		phys_addr_t top = memblock_end_of_DRAM();
2342 
2343 		top = roundup_pow_of_two(top);
2344 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2345 						     pe->pe_number,
2346 						     window_id,
2347 						     pe->tce_bypass_base,
2348 						     top);
2349 	} else {
2350 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2351 						     pe->pe_number,
2352 						     window_id,
2353 						     pe->tce_bypass_base,
2354 						     0);
2355 	}
2356 	if (rc)
2357 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2358 	else
2359 		pe->tce_bypass_enabled = enable;
2360 }
2361 
2362 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2363 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2364 		bool alloc_userspace_copy, struct iommu_table **ptbl)
2365 {
2366 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2367 			table_group);
2368 	int nid = pe->phb->hose->node;
2369 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2370 	long ret;
2371 	struct iommu_table *tbl;
2372 
2373 	tbl = pnv_pci_table_alloc(nid);
2374 	if (!tbl)
2375 		return -ENOMEM;
2376 
2377 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2378 
2379 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2380 			bus_offset, page_shift, window_size,
2381 			levels, alloc_userspace_copy, tbl);
2382 	if (ret) {
2383 		iommu_tce_table_put(tbl);
2384 		return ret;
2385 	}
2386 
2387 	*ptbl = tbl;
2388 
2389 	return 0;
2390 }
2391 
2392 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2393 {
2394 	struct iommu_table *tbl = NULL;
2395 	long rc;
2396 	unsigned long res_start, res_end;
2397 
2398 	/*
2399 	 * crashkernel= specifies the kdump kernel's maximum memory at
2400 	 * some offset and there is no guaranteed the result is a power
2401 	 * of 2, which will cause errors later.
2402 	 */
2403 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2404 
2405 	/*
2406 	 * In memory constrained environments, e.g. kdump kernel, the
2407 	 * DMA window can be larger than available memory, which will
2408 	 * cause errors later.
2409 	 */
2410 	const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
2411 
2412 	/*
2413 	 * We create the default window as big as we can. The constraint is
2414 	 * the max order of allocation possible. The TCE table is likely to
2415 	 * end up being multilevel and with on-demand allocation in place,
2416 	 * the initial use is not going to be huge as the default window aims
2417 	 * to support crippled devices (i.e. not fully 64bit DMAble) only.
2418 	 */
2419 	/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
2420 	const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
2421 	/* Each TCE level cannot exceed maxblock so go multilevel if needed */
2422 	unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
2423 	unsigned long tcelevel_order = ilog2(maxblock >> 3);
2424 	unsigned int levels = tces_order / tcelevel_order;
2425 
2426 	if (tces_order % tcelevel_order)
2427 		levels += 1;
2428 	/*
2429 	 * We try to stick to default levels (which is >1 at the moment) in
2430 	 * order to save memory by relying on on-demain TCE level allocation.
2431 	 */
2432 	levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
2433 
2434 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
2435 			window_size, levels, false, &tbl);
2436 	if (rc) {
2437 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2438 				rc);
2439 		return rc;
2440 	}
2441 
2442 	/* We use top part of 32bit space for MMIO so exclude it from DMA */
2443 	res_start = 0;
2444 	res_end = 0;
2445 	if (window_size > pe->phb->ioda.m32_pci_base) {
2446 		res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
2447 		res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
2448 	}
2449 	iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end);
2450 
2451 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2452 	if (rc) {
2453 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2454 				rc);
2455 		iommu_tce_table_put(tbl);
2456 		return rc;
2457 	}
2458 
2459 	if (!pnv_iommu_bypass_disabled)
2460 		pnv_pci_ioda2_set_bypass(pe, true);
2461 
2462 	/*
2463 	 * Set table base for the case of IOMMU DMA use. Usually this is done
2464 	 * from dma_dev_setup() which is not called when a device is returned
2465 	 * from VFIO so do it here.
2466 	 */
2467 	if (pe->pdev)
2468 		set_iommu_table_base(&pe->pdev->dev, tbl);
2469 
2470 	return 0;
2471 }
2472 
2473 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2474 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2475 		int num)
2476 {
2477 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2478 			table_group);
2479 	struct pnv_phb *phb = pe->phb;
2480 	long ret;
2481 
2482 	pe_info(pe, "Removing DMA window #%d\n", num);
2483 
2484 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2485 			(pe->pe_number << 1) + num,
2486 			0/* levels */, 0/* table address */,
2487 			0/* table size */, 0/* page size */);
2488 	if (ret)
2489 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2490 	else
2491 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2492 
2493 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2494 
2495 	return ret;
2496 }
2497 #endif
2498 
2499 #ifdef CONFIG_IOMMU_API
2500 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2501 		__u64 window_size, __u32 levels)
2502 {
2503 	unsigned long bytes = 0;
2504 	const unsigned window_shift = ilog2(window_size);
2505 	unsigned entries_shift = window_shift - page_shift;
2506 	unsigned table_shift = entries_shift + 3;
2507 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2508 	unsigned long direct_table_size;
2509 
2510 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2511 			!is_power_of_2(window_size))
2512 		return 0;
2513 
2514 	/* Calculate a direct table size from window_size and levels */
2515 	entries_shift = (entries_shift + levels - 1) / levels;
2516 	table_shift = entries_shift + 3;
2517 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2518 	direct_table_size =  1UL << table_shift;
2519 
2520 	for ( ; levels; --levels) {
2521 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2522 
2523 		tce_table_size /= direct_table_size;
2524 		tce_table_size <<= 3;
2525 		tce_table_size = max_t(unsigned long,
2526 				tce_table_size, direct_table_size);
2527 	}
2528 
2529 	return bytes + bytes; /* one for HW table, one for userspace copy */
2530 }
2531 
2532 static long pnv_pci_ioda2_create_table_userspace(
2533 		struct iommu_table_group *table_group,
2534 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2535 		struct iommu_table **ptbl)
2536 {
2537 	long ret = pnv_pci_ioda2_create_table(table_group,
2538 			num, page_shift, window_size, levels, true, ptbl);
2539 
2540 	if (!ret)
2541 		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2542 				page_shift, window_size, levels);
2543 	return ret;
2544 }
2545 
2546 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2547 {
2548 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2549 						table_group);
2550 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2551 	struct iommu_table *tbl = pe->table_group.tables[0];
2552 
2553 	pnv_pci_ioda2_set_bypass(pe, false);
2554 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2555 	if (pe->pbus)
2556 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2557 	else if (pe->pdev)
2558 		set_iommu_table_base(&pe->pdev->dev, NULL);
2559 	iommu_tce_table_put(tbl);
2560 }
2561 
2562 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2563 {
2564 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2565 						table_group);
2566 
2567 	pnv_pci_ioda2_setup_default_config(pe);
2568 	if (pe->pbus)
2569 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2570 }
2571 
2572 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2573 	.get_table_size = pnv_pci_ioda2_get_table_size,
2574 	.create_table = pnv_pci_ioda2_create_table_userspace,
2575 	.set_window = pnv_pci_ioda2_set_window,
2576 	.unset_window = pnv_pci_ioda2_unset_window,
2577 	.take_ownership = pnv_ioda2_take_ownership,
2578 	.release_ownership = pnv_ioda2_release_ownership,
2579 };
2580 
2581 static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe,
2582 		struct iommu_table_group *table_group,
2583 		struct pci_bus *bus)
2584 {
2585 	struct pci_dev *dev;
2586 
2587 	list_for_each_entry(dev, &bus->devices, bus_list) {
2588 		iommu_add_device(table_group, &dev->dev);
2589 
2590 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2591 			pnv_ioda_setup_bus_iommu_group_add_devices(pe,
2592 					table_group, dev->subordinate);
2593 	}
2594 }
2595 
2596 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
2597 		struct iommu_table_group *table_group, struct pci_bus *bus)
2598 {
2599 
2600 	if (pe->flags & PNV_IODA_PE_DEV)
2601 		iommu_add_device(table_group, &pe->pdev->dev);
2602 
2603 	if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus)
2604 		pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group,
2605 				bus);
2606 }
2607 
2608 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
2609 
2610 static void pnv_pci_ioda_setup_iommu_api(void)
2611 {
2612 	struct pci_controller *hose;
2613 	struct pnv_phb *phb;
2614 	struct pnv_ioda_pe *pe;
2615 
2616 	/*
2617 	 * There are 4 types of PEs:
2618 	 * - PNV_IODA_PE_BUS: a downstream port with an adapter,
2619 	 *   created from pnv_pci_setup_bridge();
2620 	 * - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it,
2621 	 *   created from pnv_pci_setup_bridge();
2622 	 * - PNV_IODA_PE_VF: a SRIOV virtual function,
2623 	 *   created from pnv_pcibios_sriov_enable();
2624 	 * - PNV_IODA_PE_DEV: an NPU or OCAPI device,
2625 	 *   created from pnv_pci_ioda_fixup().
2626 	 *
2627 	 * Normally a PE is represented by an IOMMU group, however for
2628 	 * devices with side channels the groups need to be more strict.
2629 	 */
2630 	list_for_each_entry(hose, &hose_list, list_node) {
2631 		phb = hose->private_data;
2632 
2633 		if (phb->type == PNV_PHB_NPU_NVLINK ||
2634 		    phb->type == PNV_PHB_NPU_OCAPI)
2635 			continue;
2636 
2637 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2638 			struct iommu_table_group *table_group;
2639 
2640 			table_group = pnv_try_setup_npu_table_group(pe);
2641 			if (!table_group) {
2642 				if (!pnv_pci_ioda_pe_dma_weight(pe))
2643 					continue;
2644 
2645 				table_group = &pe->table_group;
2646 				iommu_register_group(&pe->table_group,
2647 						pe->phb->hose->global_number,
2648 						pe->pe_number);
2649 			}
2650 			pnv_ioda_setup_bus_iommu_group(pe, table_group,
2651 					pe->pbus);
2652 		}
2653 	}
2654 
2655 	/*
2656 	 * Now we have all PHBs discovered, time to add NPU devices to
2657 	 * the corresponding IOMMU groups.
2658 	 */
2659 	list_for_each_entry(hose, &hose_list, list_node) {
2660 		unsigned long  pgsizes;
2661 
2662 		phb = hose->private_data;
2663 
2664 		if (phb->type != PNV_PHB_NPU_NVLINK)
2665 			continue;
2666 
2667 		pgsizes = pnv_ioda_parse_tce_sizes(phb);
2668 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2669 			/*
2670 			 * IODA2 bridges get this set up from
2671 			 * pci_controller_ops::setup_bridge but NPU bridges
2672 			 * do not have this hook defined so we do it here.
2673 			 */
2674 			pe->table_group.pgsizes = pgsizes;
2675 			pnv_npu_compound_attach(pe);
2676 		}
2677 	}
2678 }
2679 #else /* !CONFIG_IOMMU_API */
2680 static void pnv_pci_ioda_setup_iommu_api(void) { };
2681 #endif
2682 
2683 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2684 {
2685 	struct pci_controller *hose = phb->hose;
2686 	struct device_node *dn = hose->dn;
2687 	unsigned long mask = 0;
2688 	int i, rc, count;
2689 	u32 val;
2690 
2691 	count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2692 	if (count <= 0) {
2693 		mask = SZ_4K | SZ_64K;
2694 		/* Add 16M for POWER8 by default */
2695 		if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2696 				!cpu_has_feature(CPU_FTR_ARCH_300))
2697 			mask |= SZ_16M | SZ_256M;
2698 		return mask;
2699 	}
2700 
2701 	for (i = 0; i < count; i++) {
2702 		rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2703 						i, &val);
2704 		if (rc == 0)
2705 			mask |= 1ULL << val;
2706 	}
2707 
2708 	return mask;
2709 }
2710 
2711 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2712 				       struct pnv_ioda_pe *pe)
2713 {
2714 	int64_t rc;
2715 
2716 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2717 		return;
2718 
2719 	/* TVE #1 is selected by PCI address bit 59 */
2720 	pe->tce_bypass_base = 1ull << 59;
2721 
2722 	/* The PE will reserve all possible 32-bits space */
2723 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2724 		phb->ioda.m32_pci_base);
2725 
2726 	/* Setup linux iommu table */
2727 	pe->table_group.tce32_start = 0;
2728 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2729 	pe->table_group.max_dynamic_windows_supported =
2730 			IOMMU_TABLE_GROUP_MAX_TABLES;
2731 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2732 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2733 #ifdef CONFIG_IOMMU_API
2734 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2735 #endif
2736 
2737 	rc = pnv_pci_ioda2_setup_default_config(pe);
2738 	if (rc)
2739 		return;
2740 
2741 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2742 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2743 }
2744 
2745 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2746 {
2747 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2748 					   ioda.irq_chip);
2749 
2750 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2751 }
2752 
2753 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2754 {
2755 	int64_t rc;
2756 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2757 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2758 
2759 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2760 	WARN_ON_ONCE(rc);
2761 
2762 	icp_native_eoi(d);
2763 }
2764 
2765 
2766 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2767 {
2768 	struct irq_data *idata;
2769 	struct irq_chip *ichip;
2770 
2771 	/* The MSI EOI OPAL call is only needed on PHB3 */
2772 	if (phb->model != PNV_PHB_MODEL_PHB3)
2773 		return;
2774 
2775 	if (!phb->ioda.irq_chip_init) {
2776 		/*
2777 		 * First time we setup an MSI IRQ, we need to setup the
2778 		 * corresponding IRQ chip to route correctly.
2779 		 */
2780 		idata = irq_get_irq_data(virq);
2781 		ichip = irq_data_get_irq_chip(idata);
2782 		phb->ioda.irq_chip_init = 1;
2783 		phb->ioda.irq_chip = *ichip;
2784 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2785 	}
2786 	irq_set_chip(virq, &phb->ioda.irq_chip);
2787 }
2788 
2789 /*
2790  * Returns true iff chip is something that we could call
2791  * pnv_opal_pci_msi_eoi for.
2792  */
2793 bool is_pnv_opal_msi(struct irq_chip *chip)
2794 {
2795 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2796 }
2797 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2798 
2799 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2800 				  unsigned int hwirq, unsigned int virq,
2801 				  unsigned int is_64, struct msi_msg *msg)
2802 {
2803 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2804 	unsigned int xive_num = hwirq - phb->msi_base;
2805 	__be32 data;
2806 	int rc;
2807 
2808 	/* No PE assigned ? bail out ... no MSI for you ! */
2809 	if (pe == NULL)
2810 		return -ENXIO;
2811 
2812 	/* Check if we have an MVE */
2813 	if (pe->mve_number < 0)
2814 		return -ENXIO;
2815 
2816 	/* Force 32-bit MSI on some broken devices */
2817 	if (dev->no_64bit_msi)
2818 		is_64 = 0;
2819 
2820 	/* Assign XIVE to PE */
2821 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2822 	if (rc) {
2823 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2824 			pci_name(dev), rc, xive_num);
2825 		return -EIO;
2826 	}
2827 
2828 	if (is_64) {
2829 		__be64 addr64;
2830 
2831 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2832 				     &addr64, &data);
2833 		if (rc) {
2834 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2835 				pci_name(dev), rc);
2836 			return -EIO;
2837 		}
2838 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2839 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2840 	} else {
2841 		__be32 addr32;
2842 
2843 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2844 				     &addr32, &data);
2845 		if (rc) {
2846 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2847 				pci_name(dev), rc);
2848 			return -EIO;
2849 		}
2850 		msg->address_hi = 0;
2851 		msg->address_lo = be32_to_cpu(addr32);
2852 	}
2853 	msg->data = be32_to_cpu(data);
2854 
2855 	pnv_set_msi_irq_chip(phb, virq);
2856 
2857 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2858 		 " address=%x_%08x data=%x PE# %x\n",
2859 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2860 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2861 
2862 	return 0;
2863 }
2864 
2865 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2866 {
2867 	unsigned int count;
2868 	const __be32 *prop = of_get_property(phb->hose->dn,
2869 					     "ibm,opal-msi-ranges", NULL);
2870 	if (!prop) {
2871 		/* BML Fallback */
2872 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2873 	}
2874 	if (!prop)
2875 		return;
2876 
2877 	phb->msi_base = be32_to_cpup(prop);
2878 	count = be32_to_cpup(prop + 1);
2879 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2880 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2881 		       phb->hose->global_number);
2882 		return;
2883 	}
2884 
2885 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2886 	phb->msi32_support = 1;
2887 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2888 		count, phb->msi_base);
2889 }
2890 
2891 #ifdef CONFIG_PCI_IOV
2892 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2893 {
2894 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2895 	struct pnv_phb *phb = hose->private_data;
2896 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2897 	struct resource *res;
2898 	int i;
2899 	resource_size_t size, total_vf_bar_sz;
2900 	struct pci_dn *pdn;
2901 	int mul, total_vfs;
2902 
2903 	if (!pdev->is_physfn || pci_dev_is_added(pdev))
2904 		return;
2905 
2906 	pdn = pci_get_pdn(pdev);
2907 	pdn->vfs_expanded = 0;
2908 	pdn->m64_single_mode = false;
2909 
2910 	total_vfs = pci_sriov_get_totalvfs(pdev);
2911 	mul = phb->ioda.total_pe_num;
2912 	total_vf_bar_sz = 0;
2913 
2914 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2915 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2916 		if (!res->flags || res->parent)
2917 			continue;
2918 		if (!pnv_pci_is_m64_flags(res->flags)) {
2919 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2920 					" non M64 VF BAR%d: %pR. \n",
2921 				 i, res);
2922 			goto truncate_iov;
2923 		}
2924 
2925 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2926 				i + PCI_IOV_RESOURCES);
2927 
2928 		/*
2929 		 * If bigger than quarter of M64 segment size, just round up
2930 		 * power of two.
2931 		 *
2932 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2933 		 * with other devices, IOV BAR size is expanded to be
2934 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2935 		 * segment size , the expanded size would equal to half of the
2936 		 * whole M64 space size, which will exhaust the M64 Space and
2937 		 * limit the system flexibility.  This is a design decision to
2938 		 * set the boundary to quarter of the M64 segment size.
2939 		 */
2940 		if (total_vf_bar_sz > gate) {
2941 			mul = roundup_pow_of_two(total_vfs);
2942 			dev_info(&pdev->dev,
2943 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2944 				total_vf_bar_sz, gate, mul);
2945 			pdn->m64_single_mode = true;
2946 			break;
2947 		}
2948 	}
2949 
2950 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2951 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2952 		if (!res->flags || res->parent)
2953 			continue;
2954 
2955 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2956 		/*
2957 		 * On PHB3, the minimum size alignment of M64 BAR in single
2958 		 * mode is 32MB.
2959 		 */
2960 		if (pdn->m64_single_mode && (size < SZ_32M))
2961 			goto truncate_iov;
2962 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2963 		res->end = res->start + size * mul - 1;
2964 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2965 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2966 			 i, res, mul);
2967 	}
2968 	pdn->vfs_expanded = mul;
2969 
2970 	return;
2971 
2972 truncate_iov:
2973 	/* To save MMIO space, IOV BAR is truncated. */
2974 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2975 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2976 		res->flags = 0;
2977 		res->end = res->start - 1;
2978 	}
2979 }
2980 #endif /* CONFIG_PCI_IOV */
2981 
2982 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2983 				  struct resource *res)
2984 {
2985 	struct pnv_phb *phb = pe->phb;
2986 	struct pci_bus_region region;
2987 	int index;
2988 	int64_t rc;
2989 
2990 	if (!res || !res->flags || res->start > res->end)
2991 		return;
2992 
2993 	if (res->flags & IORESOURCE_IO) {
2994 		region.start = res->start - phb->ioda.io_pci_base;
2995 		region.end   = res->end - phb->ioda.io_pci_base;
2996 		index = region.start / phb->ioda.io_segsize;
2997 
2998 		while (index < phb->ioda.total_pe_num &&
2999 		       region.start <= region.end) {
3000 			phb->ioda.io_segmap[index] = pe->pe_number;
3001 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3002 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3003 			if (rc != OPAL_SUCCESS) {
3004 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3005 				       __func__, rc, index, pe->pe_number);
3006 				break;
3007 			}
3008 
3009 			region.start += phb->ioda.io_segsize;
3010 			index++;
3011 		}
3012 	} else if ((res->flags & IORESOURCE_MEM) &&
3013 		   !pnv_pci_is_m64(phb, res)) {
3014 		region.start = res->start -
3015 			       phb->hose->mem_offset[0] -
3016 			       phb->ioda.m32_pci_base;
3017 		region.end   = res->end -
3018 			       phb->hose->mem_offset[0] -
3019 			       phb->ioda.m32_pci_base;
3020 		index = region.start / phb->ioda.m32_segsize;
3021 
3022 		while (index < phb->ioda.total_pe_num &&
3023 		       region.start <= region.end) {
3024 			phb->ioda.m32_segmap[index] = pe->pe_number;
3025 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3026 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3027 			if (rc != OPAL_SUCCESS) {
3028 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3029 				       __func__, rc, index, pe->pe_number);
3030 				break;
3031 			}
3032 
3033 			region.start += phb->ioda.m32_segsize;
3034 			index++;
3035 		}
3036 	}
3037 }
3038 
3039 /*
3040  * This function is supposed to be called on basis of PE from top
3041  * to bottom style. So the the I/O or MMIO segment assigned to
3042  * parent PE could be overridden by its child PEs if necessary.
3043  */
3044 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3045 {
3046 	struct pci_dev *pdev;
3047 	int i;
3048 
3049 	/*
3050 	 * NOTE: We only care PCI bus based PE for now. For PCI
3051 	 * device based PE, for example SRIOV sensitive VF should
3052 	 * be figured out later.
3053 	 */
3054 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3055 
3056 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3057 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3058 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3059 
3060 		/*
3061 		 * If the PE contains all subordinate PCI buses, the
3062 		 * windows of the child bridges should be mapped to
3063 		 * the PE as well.
3064 		 */
3065 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3066 			continue;
3067 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3068 			pnv_ioda_setup_pe_res(pe,
3069 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3070 	}
3071 }
3072 
3073 #ifdef CONFIG_DEBUG_FS
3074 static int pnv_pci_diag_data_set(void *data, u64 val)
3075 {
3076 	struct pci_controller *hose;
3077 	struct pnv_phb *phb;
3078 	s64 ret;
3079 
3080 	if (val != 1ULL)
3081 		return -EINVAL;
3082 
3083 	hose = (struct pci_controller *)data;
3084 	if (!hose || !hose->private_data)
3085 		return -ENODEV;
3086 
3087 	phb = hose->private_data;
3088 
3089 	/* Retrieve the diag data from firmware */
3090 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3091 					  phb->diag_data_size);
3092 	if (ret != OPAL_SUCCESS)
3093 		return -EIO;
3094 
3095 	/* Print the diag data to the kernel log */
3096 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3097 	return 0;
3098 }
3099 
3100 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
3101 			 "%llu\n");
3102 
3103 #endif /* CONFIG_DEBUG_FS */
3104 
3105 static void pnv_pci_ioda_create_dbgfs(void)
3106 {
3107 #ifdef CONFIG_DEBUG_FS
3108 	struct pci_controller *hose, *tmp;
3109 	struct pnv_phb *phb;
3110 	char name[16];
3111 
3112 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3113 		phb = hose->private_data;
3114 
3115 		/* Notify initialization of PHB done */
3116 		phb->initialized = 1;
3117 
3118 		sprintf(name, "PCI%04x", hose->global_number);
3119 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3120 		if (!phb->dbgfs) {
3121 			pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3122 				__func__, hose->global_number);
3123 			continue;
3124 		}
3125 
3126 		debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
3127 					   hose, &pnv_pci_diag_data_fops);
3128 	}
3129 #endif /* CONFIG_DEBUG_FS */
3130 }
3131 
3132 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3133 {
3134 	struct pci_dev *dev = bus->self;
3135 	struct pci_bus *child;
3136 
3137 	/* Empty bus ? bail */
3138 	if (list_empty(&bus->devices))
3139 		return;
3140 
3141 	/*
3142 	 * If there's a bridge associated with that bus enable it. This works
3143 	 * around races in the generic code if the enabling is done during
3144 	 * parallel probing. This can be removed once those races have been
3145 	 * fixed.
3146 	 */
3147 	if (dev) {
3148 		int rc = pci_enable_device(dev);
3149 		if (rc)
3150 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
3151 		pci_set_master(dev);
3152 	}
3153 
3154 	/* Perform the same to child busses */
3155 	list_for_each_entry(child, &bus->children, node)
3156 		pnv_pci_enable_bridge(child);
3157 }
3158 
3159 static void pnv_pci_enable_bridges(void)
3160 {
3161 	struct pci_controller *hose;
3162 
3163 	list_for_each_entry(hose, &hose_list, list_node)
3164 		pnv_pci_enable_bridge(hose->bus);
3165 }
3166 
3167 static void pnv_pci_ioda_fixup(void)
3168 {
3169 	pnv_pci_ioda_setup_PEs();
3170 	pnv_pci_ioda_setup_iommu_api();
3171 	pnv_pci_ioda_create_dbgfs();
3172 
3173 	pnv_pci_enable_bridges();
3174 
3175 #ifdef CONFIG_EEH
3176 	pnv_eeh_post_init();
3177 #endif
3178 }
3179 
3180 /*
3181  * Returns the alignment for I/O or memory windows for P2P
3182  * bridges. That actually depends on how PEs are segmented.
3183  * For now, we return I/O or M32 segment size for PE sensitive
3184  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3185  * 1MiB for memory) will be returned.
3186  *
3187  * The current PCI bus might be put into one PE, which was
3188  * create against the parent PCI bridge. For that case, we
3189  * needn't enlarge the alignment so that we can save some
3190  * resources.
3191  */
3192 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3193 						unsigned long type)
3194 {
3195 	struct pci_dev *bridge;
3196 	struct pci_controller *hose = pci_bus_to_host(bus);
3197 	struct pnv_phb *phb = hose->private_data;
3198 	int num_pci_bridges = 0;
3199 
3200 	bridge = bus->self;
3201 	while (bridge) {
3202 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3203 			num_pci_bridges++;
3204 			if (num_pci_bridges >= 2)
3205 				return 1;
3206 		}
3207 
3208 		bridge = bridge->bus->self;
3209 	}
3210 
3211 	/*
3212 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3213 	 * alignment for any 64-bit resource, PCIe doesn't care and
3214 	 * bridges only do 64-bit prefetchable anyway.
3215 	 */
3216 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3217 		return phb->ioda.m64_segsize;
3218 	if (type & IORESOURCE_MEM)
3219 		return phb->ioda.m32_segsize;
3220 
3221 	return phb->ioda.io_segsize;
3222 }
3223 
3224 /*
3225  * We are updating root port or the upstream port of the
3226  * bridge behind the root port with PHB's windows in order
3227  * to accommodate the changes on required resources during
3228  * PCI (slot) hotplug, which is connected to either root
3229  * port or the downstream ports of PCIe switch behind the
3230  * root port.
3231  */
3232 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3233 					   unsigned long type)
3234 {
3235 	struct pci_controller *hose = pci_bus_to_host(bus);
3236 	struct pnv_phb *phb = hose->private_data;
3237 	struct pci_dev *bridge = bus->self;
3238 	struct resource *r, *w;
3239 	bool msi_region = false;
3240 	int i;
3241 
3242 	/* Check if we need apply fixup to the bridge's windows */
3243 	if (!pci_is_root_bus(bridge->bus) &&
3244 	    !pci_is_root_bus(bridge->bus->self->bus))
3245 		return;
3246 
3247 	/* Fixup the resources */
3248 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3249 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3250 		if (!r->flags || !r->parent)
3251 			continue;
3252 
3253 		w = NULL;
3254 		if (r->flags & type & IORESOURCE_IO)
3255 			w = &hose->io_resource;
3256 		else if (pnv_pci_is_m64(phb, r) &&
3257 			 (type & IORESOURCE_PREFETCH) &&
3258 			 phb->ioda.m64_segsize)
3259 			w = &hose->mem_resources[1];
3260 		else if (r->flags & type & IORESOURCE_MEM) {
3261 			w = &hose->mem_resources[0];
3262 			msi_region = true;
3263 		}
3264 
3265 		r->start = w->start;
3266 		r->end = w->end;
3267 
3268 		/* The 64KB 32-bits MSI region shouldn't be included in
3269 		 * the 32-bits bridge window. Otherwise, we can see strange
3270 		 * issues. One of them is EEH error observed on Garrison.
3271 		 *
3272 		 * Exclude top 1MB region which is the minimal alignment of
3273 		 * 32-bits bridge window.
3274 		 */
3275 		if (msi_region) {
3276 			r->end += 0x10000;
3277 			r->end -= 0x100000;
3278 		}
3279 	}
3280 }
3281 
3282 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3283 {
3284 	struct pci_controller *hose = pci_bus_to_host(bus);
3285 	struct pnv_phb *phb = hose->private_data;
3286 	struct pci_dev *bridge = bus->self;
3287 	struct pnv_ioda_pe *pe;
3288 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3289 
3290 	/* Extend bridge's windows if necessary */
3291 	pnv_pci_fixup_bridge_resources(bus, type);
3292 
3293 	/* The PE for root bus should be realized before any one else */
3294 	if (!phb->ioda.root_pe_populated) {
3295 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3296 		if (pe) {
3297 			phb->ioda.root_pe_idx = pe->pe_number;
3298 			phb->ioda.root_pe_populated = true;
3299 		}
3300 	}
3301 
3302 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3303 	if (list_empty(&bus->devices))
3304 		return;
3305 
3306 	/* Reserve PEs according to used M64 resources */
3307 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
3308 
3309 	/*
3310 	 * Assign PE. We might run here because of partial hotplug.
3311 	 * For the case, we just pick up the existing PE and should
3312 	 * not allocate resources again.
3313 	 */
3314 	pe = pnv_ioda_setup_bus_PE(bus, all);
3315 	if (!pe)
3316 		return;
3317 
3318 	pnv_ioda_setup_pe_seg(pe);
3319 	switch (phb->type) {
3320 	case PNV_PHB_IODA1:
3321 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3322 		break;
3323 	case PNV_PHB_IODA2:
3324 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3325 		break;
3326 	default:
3327 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3328 			__func__, phb->hose->global_number, phb->type);
3329 	}
3330 }
3331 
3332 static resource_size_t pnv_pci_default_alignment(void)
3333 {
3334 	return PAGE_SIZE;
3335 }
3336 
3337 #ifdef CONFIG_PCI_IOV
3338 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3339 						      int resno)
3340 {
3341 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3342 	struct pnv_phb *phb = hose->private_data;
3343 	struct pci_dn *pdn = pci_get_pdn(pdev);
3344 	resource_size_t align;
3345 
3346 	/*
3347 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3348 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3349 	 * BAR should be size aligned.
3350 	 *
3351 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3352 	 * powernv-specific hardware restriction is gone. But if just use the
3353 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3354 	 * in one segment of M64 #15, which introduces the PE conflict between
3355 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3356 	 * m64_segsize.
3357 	 *
3358 	 * This function returns the total IOV BAR size if M64 BAR is in
3359 	 * Shared PE mode or just VF BAR size if not.
3360 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3361 	 * M64 segment size if IOV BAR size is less.
3362 	 */
3363 	align = pci_iov_resource_size(pdev, resno);
3364 	if (!pdn->vfs_expanded)
3365 		return align;
3366 	if (pdn->m64_single_mode)
3367 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3368 
3369 	return pdn->vfs_expanded * align;
3370 }
3371 #endif /* CONFIG_PCI_IOV */
3372 
3373 /* Prevent enabling devices for which we couldn't properly
3374  * assign a PE
3375  */
3376 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3377 {
3378 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3379 	struct pnv_phb *phb = hose->private_data;
3380 	struct pci_dn *pdn;
3381 
3382 	/* The function is probably called while the PEs have
3383 	 * not be created yet. For example, resource reassignment
3384 	 * during PCI probe period. We just skip the check if
3385 	 * PEs isn't ready.
3386 	 */
3387 	if (!phb->initialized)
3388 		return true;
3389 
3390 	pdn = pci_get_pdn(dev);
3391 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3392 		return false;
3393 
3394 	return true;
3395 }
3396 
3397 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3398 				       int num)
3399 {
3400 	struct pnv_ioda_pe *pe = container_of(table_group,
3401 					      struct pnv_ioda_pe, table_group);
3402 	struct pnv_phb *phb = pe->phb;
3403 	unsigned int idx;
3404 	long rc;
3405 
3406 	pe_info(pe, "Removing DMA window #%d\n", num);
3407 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3408 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3409 			continue;
3410 
3411 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3412 						idx, 0, 0ul, 0ul, 0ul);
3413 		if (rc != OPAL_SUCCESS) {
3414 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3415 				rc, idx);
3416 			return rc;
3417 		}
3418 
3419 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3420 	}
3421 
3422 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3423 	return OPAL_SUCCESS;
3424 }
3425 
3426 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3427 {
3428 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3429 	struct iommu_table *tbl = pe->table_group.tables[0];
3430 	int64_t rc;
3431 
3432 	if (!weight)
3433 		return;
3434 
3435 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3436 	if (rc != OPAL_SUCCESS)
3437 		return;
3438 
3439 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3440 	if (pe->table_group.group) {
3441 		iommu_group_put(pe->table_group.group);
3442 		WARN_ON(pe->table_group.group);
3443 	}
3444 
3445 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3446 	iommu_tce_table_put(tbl);
3447 }
3448 
3449 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3450 {
3451 	struct iommu_table *tbl = pe->table_group.tables[0];
3452 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3453 #ifdef CONFIG_IOMMU_API
3454 	int64_t rc;
3455 #endif
3456 
3457 	if (!weight)
3458 		return;
3459 
3460 #ifdef CONFIG_IOMMU_API
3461 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3462 	if (rc)
3463 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
3464 #endif
3465 
3466 	pnv_pci_ioda2_set_bypass(pe, false);
3467 	if (pe->table_group.group) {
3468 		iommu_group_put(pe->table_group.group);
3469 		WARN_ON(pe->table_group.group);
3470 	}
3471 
3472 	iommu_tce_table_put(tbl);
3473 }
3474 
3475 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3476 				 unsigned short win,
3477 				 unsigned int *map)
3478 {
3479 	struct pnv_phb *phb = pe->phb;
3480 	int idx;
3481 	int64_t rc;
3482 
3483 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3484 		if (map[idx] != pe->pe_number)
3485 			continue;
3486 
3487 		if (win == OPAL_M64_WINDOW_TYPE)
3488 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3489 					phb->ioda.reserved_pe_idx, win,
3490 					idx / PNV_IODA1_M64_SEGS,
3491 					idx % PNV_IODA1_M64_SEGS);
3492 		else
3493 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3494 					phb->ioda.reserved_pe_idx, win, 0, idx);
3495 
3496 		if (rc != OPAL_SUCCESS)
3497 			pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
3498 				rc, win, idx);
3499 
3500 		map[idx] = IODA_INVALID_PE;
3501 	}
3502 }
3503 
3504 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3505 {
3506 	struct pnv_phb *phb = pe->phb;
3507 
3508 	if (phb->type == PNV_PHB_IODA1) {
3509 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3510 				     phb->ioda.io_segmap);
3511 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3512 				     phb->ioda.m32_segmap);
3513 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3514 				     phb->ioda.m64_segmap);
3515 	} else if (phb->type == PNV_PHB_IODA2) {
3516 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3517 				     phb->ioda.m32_segmap);
3518 	}
3519 }
3520 
3521 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3522 {
3523 	struct pnv_phb *phb = pe->phb;
3524 	struct pnv_ioda_pe *slave, *tmp;
3525 
3526 	list_del(&pe->list);
3527 	switch (phb->type) {
3528 	case PNV_PHB_IODA1:
3529 		pnv_pci_ioda1_release_pe_dma(pe);
3530 		break;
3531 	case PNV_PHB_IODA2:
3532 		pnv_pci_ioda2_release_pe_dma(pe);
3533 		break;
3534 	default:
3535 		WARN_ON(1);
3536 	}
3537 
3538 	pnv_ioda_release_pe_seg(pe);
3539 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3540 
3541 	/* Release slave PEs in the compound PE */
3542 	if (pe->flags & PNV_IODA_PE_MASTER) {
3543 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3544 			list_del(&slave->list);
3545 			pnv_ioda_free_pe(slave);
3546 		}
3547 	}
3548 
3549 	/*
3550 	 * The PE for root bus can be removed because of hotplug in EEH
3551 	 * recovery for fenced PHB error. We need to mark the PE dead so
3552 	 * that it can be populated again in PCI hot add path. The PE
3553 	 * shouldn't be destroyed as it's the global reserved resource.
3554 	 */
3555 	if (phb->ioda.root_pe_populated &&
3556 	    phb->ioda.root_pe_idx == pe->pe_number)
3557 		phb->ioda.root_pe_populated = false;
3558 	else
3559 		pnv_ioda_free_pe(pe);
3560 }
3561 
3562 static void pnv_pci_release_device(struct pci_dev *pdev)
3563 {
3564 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3565 	struct pnv_phb *phb = hose->private_data;
3566 	struct pci_dn *pdn = pci_get_pdn(pdev);
3567 	struct pnv_ioda_pe *pe;
3568 
3569 	if (pdev->is_virtfn)
3570 		return;
3571 
3572 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3573 		return;
3574 
3575 	/*
3576 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3577 	 * isn't removed and added afterwards in this scenario. We should
3578 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3579 	 * device count is decreased on removing devices while failing to
3580 	 * be increased on adding devices. It leads to unbalanced PE's device
3581 	 * count and eventually make normal PCI hotplug path broken.
3582 	 */
3583 	pe = &phb->ioda.pe_array[pdn->pe_number];
3584 	pdn->pe_number = IODA_INVALID_PE;
3585 
3586 	WARN_ON(--pe->device_count < 0);
3587 	if (pe->device_count == 0)
3588 		pnv_ioda_release_pe(pe);
3589 }
3590 
3591 static void pnv_npu_disable_device(struct pci_dev *pdev)
3592 {
3593 	struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
3594 	struct eeh_pe *eehpe = edev ? edev->pe : NULL;
3595 
3596 	if (eehpe && eeh_ops && eeh_ops->reset)
3597 		eeh_ops->reset(eehpe, EEH_RESET_HOT);
3598 }
3599 
3600 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3601 {
3602 	struct pnv_phb *phb = hose->private_data;
3603 
3604 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3605 		       OPAL_ASSERT_RESET);
3606 }
3607 
3608 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3609 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3610 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3611 	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
3612 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3613 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3614 	.enable_device_hook	= pnv_pci_enable_device_hook,
3615 	.release_device		= pnv_pci_release_device,
3616 	.window_alignment	= pnv_pci_window_alignment,
3617 	.setup_bridge		= pnv_pci_setup_bridge,
3618 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3619 	.shutdown		= pnv_pci_ioda_shutdown,
3620 };
3621 
3622 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3623 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3624 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3625 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3626 	.enable_device_hook	= pnv_pci_enable_device_hook,
3627 	.window_alignment	= pnv_pci_window_alignment,
3628 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3629 	.shutdown		= pnv_pci_ioda_shutdown,
3630 	.disable_device		= pnv_npu_disable_device,
3631 };
3632 
3633 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3634 	.enable_device_hook	= pnv_pci_enable_device_hook,
3635 	.window_alignment	= pnv_pci_window_alignment,
3636 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3637 	.shutdown		= pnv_pci_ioda_shutdown,
3638 };
3639 
3640 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3641 					 u64 hub_id, int ioda_type)
3642 {
3643 	struct pci_controller *hose;
3644 	struct pnv_phb *phb;
3645 	unsigned long size, m64map_off, m32map_off, pemap_off;
3646 	unsigned long iomap_off = 0, dma32map_off = 0;
3647 	struct resource r;
3648 	const __be64 *prop64;
3649 	const __be32 *prop32;
3650 	int len;
3651 	unsigned int segno;
3652 	u64 phb_id;
3653 	void *aux;
3654 	long rc;
3655 
3656 	if (!of_device_is_available(np))
3657 		return;
3658 
3659 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3660 
3661 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3662 	if (!prop64) {
3663 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3664 		return;
3665 	}
3666 	phb_id = be64_to_cpup(prop64);
3667 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3668 
3669 	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3670 	if (!phb)
3671 		panic("%s: Failed to allocate %zu bytes\n", __func__,
3672 		      sizeof(*phb));
3673 
3674 	/* Allocate PCI controller */
3675 	phb->hose = hose = pcibios_alloc_controller(np);
3676 	if (!phb->hose) {
3677 		pr_err("  Can't allocate PCI controller for %pOF\n",
3678 		       np);
3679 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3680 		return;
3681 	}
3682 
3683 	spin_lock_init(&phb->lock);
3684 	prop32 = of_get_property(np, "bus-range", &len);
3685 	if (prop32 && len == 8) {
3686 		hose->first_busno = be32_to_cpu(prop32[0]);
3687 		hose->last_busno = be32_to_cpu(prop32[1]);
3688 	} else {
3689 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3690 		hose->first_busno = 0;
3691 		hose->last_busno = 0xff;
3692 	}
3693 	hose->private_data = phb;
3694 	phb->hub_id = hub_id;
3695 	phb->opal_id = phb_id;
3696 	phb->type = ioda_type;
3697 	mutex_init(&phb->ioda.pe_alloc_mutex);
3698 
3699 	/* Detect specific models for error handling */
3700 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3701 		phb->model = PNV_PHB_MODEL_P7IOC;
3702 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3703 		phb->model = PNV_PHB_MODEL_PHB3;
3704 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3705 		phb->model = PNV_PHB_MODEL_NPU;
3706 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3707 		phb->model = PNV_PHB_MODEL_NPU2;
3708 	else
3709 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3710 
3711 	/* Initialize diagnostic data buffer */
3712 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3713 	if (prop32)
3714 		phb->diag_data_size = be32_to_cpup(prop32);
3715 	else
3716 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3717 
3718 	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3719 	if (!phb->diag_data)
3720 		panic("%s: Failed to allocate %u bytes\n", __func__,
3721 		      phb->diag_data_size);
3722 
3723 	/* Parse 32-bit and IO ranges (if any) */
3724 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3725 
3726 	/* Get registers */
3727 	if (!of_address_to_resource(np, 0, &r)) {
3728 		phb->regs_phys = r.start;
3729 		phb->regs = ioremap(r.start, resource_size(&r));
3730 		if (phb->regs == NULL)
3731 			pr_err("  Failed to map registers !\n");
3732 	}
3733 
3734 	/* Initialize more IODA stuff */
3735 	phb->ioda.total_pe_num = 1;
3736 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3737 	if (prop32)
3738 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3739 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3740 	if (prop32)
3741 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3742 
3743 	/* Invalidate RID to PE# mapping */
3744 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3745 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3746 
3747 	/* Parse 64-bit MMIO range */
3748 	pnv_ioda_parse_m64_window(phb);
3749 
3750 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3751 	/* FW Has already off top 64k of M32 space (MSI space) */
3752 	phb->ioda.m32_size += 0x10000;
3753 
3754 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3755 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3756 	phb->ioda.io_size = hose->pci_io_size;
3757 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3758 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3759 
3760 	/* Calculate how many 32-bit TCE segments we have */
3761 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3762 				PNV_IODA1_DMA32_SEGSIZE;
3763 
3764 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3765 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3766 			sizeof(unsigned long));
3767 	m64map_off = size;
3768 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3769 	m32map_off = size;
3770 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3771 	if (phb->type == PNV_PHB_IODA1) {
3772 		iomap_off = size;
3773 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3774 		dma32map_off = size;
3775 		size += phb->ioda.dma32_count *
3776 			sizeof(phb->ioda.dma32_segmap[0]);
3777 	}
3778 	pemap_off = size;
3779 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3780 	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3781 	if (!aux)
3782 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3783 	phb->ioda.pe_alloc = aux;
3784 	phb->ioda.m64_segmap = aux + m64map_off;
3785 	phb->ioda.m32_segmap = aux + m32map_off;
3786 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3787 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3788 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3789 	}
3790 	if (phb->type == PNV_PHB_IODA1) {
3791 		phb->ioda.io_segmap = aux + iomap_off;
3792 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3793 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3794 
3795 		phb->ioda.dma32_segmap = aux + dma32map_off;
3796 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3797 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3798 	}
3799 	phb->ioda.pe_array = aux + pemap_off;
3800 
3801 	/*
3802 	 * Choose PE number for root bus, which shouldn't have
3803 	 * M64 resources consumed by its child devices. To pick
3804 	 * the PE number adjacent to the reserved one if possible.
3805 	 */
3806 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3807 	if (phb->ioda.reserved_pe_idx == 0) {
3808 		phb->ioda.root_pe_idx = 1;
3809 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3810 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3811 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3812 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3813 	} else {
3814 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3815 	}
3816 
3817 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3818 	mutex_init(&phb->ioda.pe_list_mutex);
3819 
3820 	/* Calculate how many 32-bit TCE segments we have */
3821 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3822 				PNV_IODA1_DMA32_SEGSIZE;
3823 
3824 #if 0 /* We should really do that ... */
3825 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3826 					 window_type,
3827 					 window_num,
3828 					 starting_real_address,
3829 					 starting_pci_address,
3830 					 segment_size);
3831 #endif
3832 
3833 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3834 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3835 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3836 	if (phb->ioda.m64_size)
3837 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3838 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3839 	if (phb->ioda.io_size)
3840 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3841 			phb->ioda.io_size, phb->ioda.io_segsize);
3842 
3843 
3844 	phb->hose->ops = &pnv_pci_ops;
3845 	phb->get_pe_state = pnv_ioda_get_pe_state;
3846 	phb->freeze_pe = pnv_ioda_freeze_pe;
3847 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3848 
3849 	/* Setup MSI support */
3850 	pnv_pci_init_ioda_msis(phb);
3851 
3852 	/*
3853 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3854 	 * to let the PCI core do resource assignment. It's supposed
3855 	 * that the PCI core will do correct I/O and MMIO alignment
3856 	 * for the P2P bridge bars so that each PCI bus (excluding
3857 	 * the child P2P bridges) can form individual PE.
3858 	 */
3859 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3860 
3861 	switch (phb->type) {
3862 	case PNV_PHB_NPU_NVLINK:
3863 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3864 		break;
3865 	case PNV_PHB_NPU_OCAPI:
3866 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3867 		break;
3868 	default:
3869 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3870 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3871 	}
3872 
3873 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3874 
3875 #ifdef CONFIG_PCI_IOV
3876 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3877 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3878 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3879 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3880 #endif
3881 
3882 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3883 
3884 	/* Reset IODA tables to a clean state */
3885 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3886 	if (rc)
3887 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3888 
3889 	/*
3890 	 * If we're running in kdump kernel, the previous kernel never
3891 	 * shutdown PCI devices correctly. We already got IODA table
3892 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3893 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3894 	 * kernel parameter will force this reset too. Additionally,
3895 	 * if the IODA reset above failed then use a bigger hammer.
3896 	 * This can happen if we get a PHB fatal error in very early
3897 	 * boot.
3898 	 */
3899 	if (is_kdump_kernel() || pci_reset_phbs || rc) {
3900 		pr_info("  Issue PHB reset ...\n");
3901 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3902 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3903 	}
3904 
3905 	/* Remove M64 resource if we can't configure it successfully */
3906 	if (!phb->init_m64 || phb->init_m64(phb))
3907 		hose->mem_resources[1].flags = 0;
3908 }
3909 
3910 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3911 {
3912 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3913 }
3914 
3915 void __init pnv_pci_init_npu_phb(struct device_node *np)
3916 {
3917 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3918 }
3919 
3920 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3921 {
3922 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3923 }
3924 
3925 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3926 {
3927 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3928 	struct pnv_phb *phb = hose->private_data;
3929 
3930 	if (!machine_is(powernv))
3931 		return;
3932 
3933 	if (phb->type == PNV_PHB_NPU_OCAPI)
3934 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3935 }
3936 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3937 
3938 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3939 {
3940 	struct device_node *phbn;
3941 	const __be64 *prop64;
3942 	u64 hub_id;
3943 
3944 	pr_info("Probing IODA IO-Hub %pOF\n", np);
3945 
3946 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3947 	if (!prop64) {
3948 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3949 		return;
3950 	}
3951 	hub_id = be64_to_cpup(prop64);
3952 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3953 
3954 	/* Count child PHBs */
3955 	for_each_child_of_node(np, phbn) {
3956 		/* Look for IODA1 PHBs */
3957 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3958 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3959 	}
3960 }
3961