1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
52 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54 
55 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
56 #define POWERNV_IOMMU_MAX_LEVELS	5
57 
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59 
60 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61 			    const char *fmt, ...)
62 {
63 	struct va_format vaf;
64 	va_list args;
65 	char pfix[32];
66 
67 	va_start(args, fmt);
68 
69 	vaf.fmt = fmt;
70 	vaf.va = &args;
71 
72 	if (pe->flags & PNV_IODA_PE_DEV)
73 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75 		sprintf(pfix, "%04x:%02x     ",
76 			pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78 	else if (pe->flags & PNV_IODA_PE_VF)
79 		sprintf(pfix, "%04x:%02x:%2x.%d",
80 			pci_domain_nr(pe->parent_dev->bus),
81 			(pe->rid & 0xff00) >> 8,
82 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84 
85 	printk("%spci %s: [PE# %.3d] %pV",
86 	       level, pfix, pe->pe_number, &vaf);
87 
88 	va_end(args);
89 }
90 
91 #define pe_err(pe, fmt, ...)					\
92 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
93 #define pe_warn(pe, fmt, ...)					\
94 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
95 #define pe_info(pe, fmt, ...)					\
96 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
97 
98 static bool pnv_iommu_bypass_disabled __read_mostly;
99 
100 static int __init iommu_setup(char *str)
101 {
102 	if (!str)
103 		return -EINVAL;
104 
105 	while (*str) {
106 		if (!strncmp(str, "nobypass", 8)) {
107 			pnv_iommu_bypass_disabled = true;
108 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
109 			break;
110 		}
111 		str += strcspn(str, ",");
112 		if (*str == ',')
113 			str++;
114 	}
115 
116 	return 0;
117 }
118 early_param("iommu", iommu_setup);
119 
120 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
121 {
122 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
123 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
124 }
125 
126 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
127 {
128 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
129 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
130 			__func__, pe_no, phb->hose->global_number);
131 		return;
132 	}
133 
134 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
135 		pr_debug("%s: PE %d was reserved on PHB#%x\n",
136 			 __func__, pe_no, phb->hose->global_number);
137 
138 	phb->ioda.pe_array[pe_no].phb = phb;
139 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
140 }
141 
142 static unsigned int pnv_ioda_alloc_pe(struct pnv_phb *phb)
143 {
144 	unsigned long pe;
145 
146 	do {
147 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
148 					phb->ioda.total_pe_num, 0);
149 		if (pe >= phb->ioda.total_pe_num)
150 			return IODA_INVALID_PE;
151 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
152 
153 	phb->ioda.pe_array[pe].phb = phb;
154 	phb->ioda.pe_array[pe].pe_number = pe;
155 	return pe;
156 }
157 
158 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
159 {
160 	WARN_ON(phb->ioda.pe_array[pe].pdev);
161 
162 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
163 	clear_bit(pe, phb->ioda.pe_alloc);
164 }
165 
166 /* The default M64 BAR is shared by all PEs */
167 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
168 {
169 	const char *desc;
170 	struct resource *r;
171 	s64 rc;
172 
173 	/* Configure the default M64 BAR */
174 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
175 					 OPAL_M64_WINDOW_TYPE,
176 					 phb->ioda.m64_bar_idx,
177 					 phb->ioda.m64_base,
178 					 0, /* unused */
179 					 phb->ioda.m64_size);
180 	if (rc != OPAL_SUCCESS) {
181 		desc = "configuring";
182 		goto fail;
183 	}
184 
185 	/* Enable the default M64 BAR */
186 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
187 				      OPAL_M64_WINDOW_TYPE,
188 				      phb->ioda.m64_bar_idx,
189 				      OPAL_ENABLE_M64_SPLIT);
190 	if (rc != OPAL_SUCCESS) {
191 		desc = "enabling";
192 		goto fail;
193 	}
194 
195 	/* Mark the M64 BAR assigned */
196 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
197 
198 	/*
199 	 * Strip off the segment used by the reserved PE, which is
200 	 * expected to be 0 or last one of PE capabicity.
201 	 */
202 	r = &phb->hose->mem_resources[1];
203 	if (phb->ioda.reserved_pe_idx == 0)
204 		r->start += phb->ioda.m64_segsize;
205 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
206 		r->end -= phb->ioda.m64_segsize;
207 	else
208 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
209 			phb->ioda.reserved_pe_idx);
210 
211 	return 0;
212 
213 fail:
214 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
215 		rc, desc, phb->ioda.m64_bar_idx);
216 	opal_pci_phb_mmio_enable(phb->opal_id,
217 				 OPAL_M64_WINDOW_TYPE,
218 				 phb->ioda.m64_bar_idx,
219 				 OPAL_DISABLE_M64);
220 	return -EIO;
221 }
222 
223 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
224 					 unsigned long *pe_bitmap)
225 {
226 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
227 	struct pnv_phb *phb = hose->private_data;
228 	struct resource *r;
229 	resource_size_t base, sgsz, start, end;
230 	int segno, i;
231 
232 	base = phb->ioda.m64_base;
233 	sgsz = phb->ioda.m64_segsize;
234 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
235 		r = &pdev->resource[i];
236 		if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
237 			continue;
238 
239 		start = _ALIGN_DOWN(r->start - base, sgsz);
240 		end = _ALIGN_UP(r->end - base, sgsz);
241 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
242 			if (pe_bitmap)
243 				set_bit(segno, pe_bitmap);
244 			else
245 				pnv_ioda_reserve_pe(phb, segno);
246 		}
247 	}
248 }
249 
250 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
251 {
252 	struct resource *r;
253 	int index;
254 
255 	/*
256 	 * There are 16 M64 BARs, each of which has 8 segments. So
257 	 * there are as many M64 segments as the maximum number of
258 	 * PEs, which is 128.
259 	 */
260 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
261 		unsigned long base, segsz = phb->ioda.m64_segsize;
262 		int64_t rc;
263 
264 		base = phb->ioda.m64_base +
265 		       index * PNV_IODA1_M64_SEGS * segsz;
266 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
267 				OPAL_M64_WINDOW_TYPE, index, base, 0,
268 				PNV_IODA1_M64_SEGS * segsz);
269 		if (rc != OPAL_SUCCESS) {
270 			pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
271 				rc, phb->hose->global_number, index);
272 			goto fail;
273 		}
274 
275 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
276 				OPAL_M64_WINDOW_TYPE, index,
277 				OPAL_ENABLE_M64_SPLIT);
278 		if (rc != OPAL_SUCCESS) {
279 			pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
280 				rc, phb->hose->global_number, index);
281 			goto fail;
282 		}
283 	}
284 
285 	/*
286 	 * Exclude the segment used by the reserved PE, which
287 	 * is expected to be 0 or last supported PE#.
288 	 */
289 	r = &phb->hose->mem_resources[1];
290 	if (phb->ioda.reserved_pe_idx == 0)
291 		r->start += phb->ioda.m64_segsize;
292 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
293 		r->end -= phb->ioda.m64_segsize;
294 	else
295 		WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
296 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
297 
298 	return 0;
299 
300 fail:
301 	for ( ; index >= 0; index--)
302 		opal_pci_phb_mmio_enable(phb->opal_id,
303 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
304 
305 	return -EIO;
306 }
307 
308 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
309 				    unsigned long *pe_bitmap,
310 				    bool all)
311 {
312 	struct pci_dev *pdev;
313 
314 	list_for_each_entry(pdev, &bus->devices, bus_list) {
315 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
316 
317 		if (all && pdev->subordinate)
318 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
319 						pe_bitmap, all);
320 	}
321 }
322 
323 static unsigned int pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
324 {
325 	struct pci_controller *hose = pci_bus_to_host(bus);
326 	struct pnv_phb *phb = hose->private_data;
327 	struct pnv_ioda_pe *master_pe, *pe;
328 	unsigned long size, *pe_alloc;
329 	int i;
330 
331 	/* Root bus shouldn't use M64 */
332 	if (pci_is_root_bus(bus))
333 		return IODA_INVALID_PE;
334 
335 	/* Allocate bitmap */
336 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
337 	pe_alloc = kzalloc(size, GFP_KERNEL);
338 	if (!pe_alloc) {
339 		pr_warn("%s: Out of memory !\n",
340 			__func__);
341 		return IODA_INVALID_PE;
342 	}
343 
344 	/* Figure out reserved PE numbers by the PE */
345 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
346 
347 	/*
348 	 * the current bus might not own M64 window and that's all
349 	 * contributed by its child buses. For the case, we needn't
350 	 * pick M64 dependent PE#.
351 	 */
352 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
353 		kfree(pe_alloc);
354 		return IODA_INVALID_PE;
355 	}
356 
357 	/*
358 	 * Figure out the master PE and put all slave PEs to master
359 	 * PE's list to form compound PE.
360 	 */
361 	master_pe = NULL;
362 	i = -1;
363 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
364 		phb->ioda.total_pe_num) {
365 		pe = &phb->ioda.pe_array[i];
366 
367 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
368 		if (!master_pe) {
369 			pe->flags |= PNV_IODA_PE_MASTER;
370 			INIT_LIST_HEAD(&pe->slaves);
371 			master_pe = pe;
372 		} else {
373 			pe->flags |= PNV_IODA_PE_SLAVE;
374 			pe->master = master_pe;
375 			list_add_tail(&pe->list, &master_pe->slaves);
376 		}
377 
378 		/*
379 		 * P7IOC supports M64DT, which helps mapping M64 segment
380 		 * to one particular PE#. However, PHB3 has fixed mapping
381 		 * between M64 segment and PE#. In order to have same logic
382 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
383 		 * segment and PE# on P7IOC.
384 		 */
385 		if (phb->type == PNV_PHB_IODA1) {
386 			int64_t rc;
387 
388 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
389 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
390 					pe->pe_number / PNV_IODA1_M64_SEGS,
391 					pe->pe_number % PNV_IODA1_M64_SEGS);
392 			if (rc != OPAL_SUCCESS)
393 				pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
394 					__func__, rc, phb->hose->global_number,
395 					pe->pe_number);
396 		}
397 	}
398 
399 	kfree(pe_alloc);
400 	return master_pe->pe_number;
401 }
402 
403 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
404 {
405 	struct pci_controller *hose = phb->hose;
406 	struct device_node *dn = hose->dn;
407 	struct resource *res;
408 	const u32 *r;
409 	u64 pci_addr;
410 
411 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
412 		pr_info("  Not support M64 window\n");
413 		return;
414 	}
415 
416 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
417 		pr_info("  Firmware too old to support M64 window\n");
418 		return;
419 	}
420 
421 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
422 	if (!r) {
423 		pr_info("  No <ibm,opal-m64-window> on %s\n",
424 			dn->full_name);
425 		return;
426 	}
427 
428 	res = &hose->mem_resources[1];
429 	res->name = dn->full_name;
430 	res->start = of_translate_address(dn, r + 2);
431 	res->end = res->start + of_read_number(r + 4, 2) - 1;
432 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
433 	pci_addr = of_read_number(r, 2);
434 	hose->mem_offset[1] = res->start - pci_addr;
435 
436 	phb->ioda.m64_size = resource_size(res);
437 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
438 	phb->ioda.m64_base = pci_addr;
439 
440 	pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
441 			res->start, res->end, pci_addr);
442 
443 	/* Use last M64 BAR to cover M64 window */
444 	phb->ioda.m64_bar_idx = 15;
445 	if (phb->type == PNV_PHB_IODA1)
446 		phb->init_m64 = pnv_ioda1_init_m64;
447 	else
448 		phb->init_m64 = pnv_ioda2_init_m64;
449 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
450 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
451 }
452 
453 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
454 {
455 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
456 	struct pnv_ioda_pe *slave;
457 	s64 rc;
458 
459 	/* Fetch master PE */
460 	if (pe->flags & PNV_IODA_PE_SLAVE) {
461 		pe = pe->master;
462 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
463 			return;
464 
465 		pe_no = pe->pe_number;
466 	}
467 
468 	/* Freeze master PE */
469 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
470 				     pe_no,
471 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
472 	if (rc != OPAL_SUCCESS) {
473 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
474 			__func__, rc, phb->hose->global_number, pe_no);
475 		return;
476 	}
477 
478 	/* Freeze slave PEs */
479 	if (!(pe->flags & PNV_IODA_PE_MASTER))
480 		return;
481 
482 	list_for_each_entry(slave, &pe->slaves, list) {
483 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
484 					     slave->pe_number,
485 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
486 		if (rc != OPAL_SUCCESS)
487 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
488 				__func__, rc, phb->hose->global_number,
489 				slave->pe_number);
490 	}
491 }
492 
493 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
494 {
495 	struct pnv_ioda_pe *pe, *slave;
496 	s64 rc;
497 
498 	/* Find master PE */
499 	pe = &phb->ioda.pe_array[pe_no];
500 	if (pe->flags & PNV_IODA_PE_SLAVE) {
501 		pe = pe->master;
502 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
503 		pe_no = pe->pe_number;
504 	}
505 
506 	/* Clear frozen state for master PE */
507 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
508 	if (rc != OPAL_SUCCESS) {
509 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
510 			__func__, rc, opt, phb->hose->global_number, pe_no);
511 		return -EIO;
512 	}
513 
514 	if (!(pe->flags & PNV_IODA_PE_MASTER))
515 		return 0;
516 
517 	/* Clear frozen state for slave PEs */
518 	list_for_each_entry(slave, &pe->slaves, list) {
519 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
520 					     slave->pe_number,
521 					     opt);
522 		if (rc != OPAL_SUCCESS) {
523 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
524 				__func__, rc, opt, phb->hose->global_number,
525 				slave->pe_number);
526 			return -EIO;
527 		}
528 	}
529 
530 	return 0;
531 }
532 
533 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
534 {
535 	struct pnv_ioda_pe *slave, *pe;
536 	u8 fstate, state;
537 	__be16 pcierr;
538 	s64 rc;
539 
540 	/* Sanity check on PE number */
541 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
542 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
543 
544 	/*
545 	 * Fetch the master PE and the PE instance might be
546 	 * not initialized yet.
547 	 */
548 	pe = &phb->ioda.pe_array[pe_no];
549 	if (pe->flags & PNV_IODA_PE_SLAVE) {
550 		pe = pe->master;
551 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
552 		pe_no = pe->pe_number;
553 	}
554 
555 	/* Check the master PE */
556 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
557 					&state, &pcierr, NULL);
558 	if (rc != OPAL_SUCCESS) {
559 		pr_warn("%s: Failure %lld getting "
560 			"PHB#%x-PE#%x state\n",
561 			__func__, rc,
562 			phb->hose->global_number, pe_no);
563 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
564 	}
565 
566 	/* Check the slave PE */
567 	if (!(pe->flags & PNV_IODA_PE_MASTER))
568 		return state;
569 
570 	list_for_each_entry(slave, &pe->slaves, list) {
571 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
572 						slave->pe_number,
573 						&fstate,
574 						&pcierr,
575 						NULL);
576 		if (rc != OPAL_SUCCESS) {
577 			pr_warn("%s: Failure %lld getting "
578 				"PHB#%x-PE#%x state\n",
579 				__func__, rc,
580 				phb->hose->global_number, slave->pe_number);
581 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
582 		}
583 
584 		/*
585 		 * Override the result based on the ascending
586 		 * priority.
587 		 */
588 		if (fstate > state)
589 			state = fstate;
590 	}
591 
592 	return state;
593 }
594 
595 /* Currently those 2 are only used when MSIs are enabled, this will change
596  * but in the meantime, we need to protect them to avoid warnings
597  */
598 #ifdef CONFIG_PCI_MSI
599 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
600 {
601 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
602 	struct pnv_phb *phb = hose->private_data;
603 	struct pci_dn *pdn = pci_get_pdn(dev);
604 
605 	if (!pdn)
606 		return NULL;
607 	if (pdn->pe_number == IODA_INVALID_PE)
608 		return NULL;
609 	return &phb->ioda.pe_array[pdn->pe_number];
610 }
611 #endif /* CONFIG_PCI_MSI */
612 
613 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
614 				  struct pnv_ioda_pe *parent,
615 				  struct pnv_ioda_pe *child,
616 				  bool is_add)
617 {
618 	const char *desc = is_add ? "adding" : "removing";
619 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
620 			      OPAL_REMOVE_PE_FROM_DOMAIN;
621 	struct pnv_ioda_pe *slave;
622 	long rc;
623 
624 	/* Parent PE affects child PE */
625 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
626 				child->pe_number, op);
627 	if (rc != OPAL_SUCCESS) {
628 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
629 			rc, desc);
630 		return -ENXIO;
631 	}
632 
633 	if (!(child->flags & PNV_IODA_PE_MASTER))
634 		return 0;
635 
636 	/* Compound case: parent PE affects slave PEs */
637 	list_for_each_entry(slave, &child->slaves, list) {
638 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
639 					slave->pe_number, op);
640 		if (rc != OPAL_SUCCESS) {
641 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
642 				rc, desc);
643 			return -ENXIO;
644 		}
645 	}
646 
647 	return 0;
648 }
649 
650 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
651 			      struct pnv_ioda_pe *pe,
652 			      bool is_add)
653 {
654 	struct pnv_ioda_pe *slave;
655 	struct pci_dev *pdev = NULL;
656 	int ret;
657 
658 	/*
659 	 * Clear PE frozen state. If it's master PE, we need
660 	 * clear slave PE frozen state as well.
661 	 */
662 	if (is_add) {
663 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
664 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
665 		if (pe->flags & PNV_IODA_PE_MASTER) {
666 			list_for_each_entry(slave, &pe->slaves, list)
667 				opal_pci_eeh_freeze_clear(phb->opal_id,
668 							  slave->pe_number,
669 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
670 		}
671 	}
672 
673 	/*
674 	 * Associate PE in PELT. We need add the PE into the
675 	 * corresponding PELT-V as well. Otherwise, the error
676 	 * originated from the PE might contribute to other
677 	 * PEs.
678 	 */
679 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
680 	if (ret)
681 		return ret;
682 
683 	/* For compound PEs, any one affects all of them */
684 	if (pe->flags & PNV_IODA_PE_MASTER) {
685 		list_for_each_entry(slave, &pe->slaves, list) {
686 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
687 			if (ret)
688 				return ret;
689 		}
690 	}
691 
692 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
693 		pdev = pe->pbus->self;
694 	else if (pe->flags & PNV_IODA_PE_DEV)
695 		pdev = pe->pdev->bus->self;
696 #ifdef CONFIG_PCI_IOV
697 	else if (pe->flags & PNV_IODA_PE_VF)
698 		pdev = pe->parent_dev;
699 #endif /* CONFIG_PCI_IOV */
700 	while (pdev) {
701 		struct pci_dn *pdn = pci_get_pdn(pdev);
702 		struct pnv_ioda_pe *parent;
703 
704 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
705 			parent = &phb->ioda.pe_array[pdn->pe_number];
706 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
707 			if (ret)
708 				return ret;
709 		}
710 
711 		pdev = pdev->bus->self;
712 	}
713 
714 	return 0;
715 }
716 
717 #ifdef CONFIG_PCI_IOV
718 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
719 {
720 	struct pci_dev *parent;
721 	uint8_t bcomp, dcomp, fcomp;
722 	int64_t rc;
723 	long rid_end, rid;
724 
725 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
726 	if (pe->pbus) {
727 		int count;
728 
729 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
730 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
731 		parent = pe->pbus->self;
732 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
733 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
734 		else
735 			count = 1;
736 
737 		switch(count) {
738 		case  1: bcomp = OpalPciBusAll;         break;
739 		case  2: bcomp = OpalPciBus7Bits;       break;
740 		case  4: bcomp = OpalPciBus6Bits;       break;
741 		case  8: bcomp = OpalPciBus5Bits;       break;
742 		case 16: bcomp = OpalPciBus4Bits;       break;
743 		case 32: bcomp = OpalPciBus3Bits;       break;
744 		default:
745 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
746 			        count);
747 			/* Do an exact match only */
748 			bcomp = OpalPciBusAll;
749 		}
750 		rid_end = pe->rid + (count << 8);
751 	} else {
752 		if (pe->flags & PNV_IODA_PE_VF)
753 			parent = pe->parent_dev;
754 		else
755 			parent = pe->pdev->bus->self;
756 		bcomp = OpalPciBusAll;
757 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
758 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
759 		rid_end = pe->rid + 1;
760 	}
761 
762 	/* Clear the reverse map */
763 	for (rid = pe->rid; rid < rid_end; rid++)
764 		phb->ioda.pe_rmap[rid] = 0;
765 
766 	/* Release from all parents PELT-V */
767 	while (parent) {
768 		struct pci_dn *pdn = pci_get_pdn(parent);
769 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
771 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
772 			/* XXX What to do in case of error ? */
773 		}
774 		parent = parent->bus->self;
775 	}
776 
777 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
778 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
779 
780 	/* Disassociate PE in PELT */
781 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
782 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
783 	if (rc)
784 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
785 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
786 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
787 	if (rc)
788 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
789 
790 	pe->pbus = NULL;
791 	pe->pdev = NULL;
792 	pe->parent_dev = NULL;
793 
794 	return 0;
795 }
796 #endif /* CONFIG_PCI_IOV */
797 
798 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
799 {
800 	struct pci_dev *parent;
801 	uint8_t bcomp, dcomp, fcomp;
802 	long rc, rid_end, rid;
803 
804 	/* Bus validation ? */
805 	if (pe->pbus) {
806 		int count;
807 
808 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
809 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
810 		parent = pe->pbus->self;
811 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
812 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
813 		else
814 			count = 1;
815 
816 		switch(count) {
817 		case  1: bcomp = OpalPciBusAll;		break;
818 		case  2: bcomp = OpalPciBus7Bits;	break;
819 		case  4: bcomp = OpalPciBus6Bits;	break;
820 		case  8: bcomp = OpalPciBus5Bits;	break;
821 		case 16: bcomp = OpalPciBus4Bits;	break;
822 		case 32: bcomp = OpalPciBus3Bits;	break;
823 		default:
824 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
825 			        count);
826 			/* Do an exact match only */
827 			bcomp = OpalPciBusAll;
828 		}
829 		rid_end = pe->rid + (count << 8);
830 	} else {
831 #ifdef CONFIG_PCI_IOV
832 		if (pe->flags & PNV_IODA_PE_VF)
833 			parent = pe->parent_dev;
834 		else
835 #endif /* CONFIG_PCI_IOV */
836 			parent = pe->pdev->bus->self;
837 		bcomp = OpalPciBusAll;
838 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
839 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
840 		rid_end = pe->rid + 1;
841 	}
842 
843 	/*
844 	 * Associate PE in PELT. We need add the PE into the
845 	 * corresponding PELT-V as well. Otherwise, the error
846 	 * originated from the PE might contribute to other
847 	 * PEs.
848 	 */
849 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
850 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
851 	if (rc) {
852 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
853 		return -ENXIO;
854 	}
855 
856 	/*
857 	 * Configure PELTV. NPUs don't have a PELTV table so skip
858 	 * configuration on them.
859 	 */
860 	if (phb->type != PNV_PHB_NPU)
861 		pnv_ioda_set_peltv(phb, pe, true);
862 
863 	/* Setup reverse map */
864 	for (rid = pe->rid; rid < rid_end; rid++)
865 		phb->ioda.pe_rmap[rid] = pe->pe_number;
866 
867 	/* Setup one MVTs on IODA1 */
868 	if (phb->type != PNV_PHB_IODA1) {
869 		pe->mve_number = 0;
870 		goto out;
871 	}
872 
873 	pe->mve_number = pe->pe_number;
874 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
875 	if (rc != OPAL_SUCCESS) {
876 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
877 		       rc, pe->mve_number);
878 		pe->mve_number = -1;
879 	} else {
880 		rc = opal_pci_set_mve_enable(phb->opal_id,
881 					     pe->mve_number, OPAL_ENABLE_MVE);
882 		if (rc) {
883 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
884 			       rc, pe->mve_number);
885 			pe->mve_number = -1;
886 		}
887 	}
888 
889 out:
890 	return 0;
891 }
892 
893 #ifdef CONFIG_PCI_IOV
894 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
895 {
896 	struct pci_dn *pdn = pci_get_pdn(dev);
897 	int i;
898 	struct resource *res, res2;
899 	resource_size_t size;
900 	u16 num_vfs;
901 
902 	if (!dev->is_physfn)
903 		return -EINVAL;
904 
905 	/*
906 	 * "offset" is in VFs.  The M64 windows are sized so that when they
907 	 * are segmented, each segment is the same size as the IOV BAR.
908 	 * Each segment is in a separate PE, and the high order bits of the
909 	 * address are the PE number.  Therefore, each VF's BAR is in a
910 	 * separate PE, and changing the IOV BAR start address changes the
911 	 * range of PEs the VFs are in.
912 	 */
913 	num_vfs = pdn->num_vfs;
914 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
915 		res = &dev->resource[i + PCI_IOV_RESOURCES];
916 		if (!res->flags || !res->parent)
917 			continue;
918 
919 		/*
920 		 * The actual IOV BAR range is determined by the start address
921 		 * and the actual size for num_vfs VFs BAR.  This check is to
922 		 * make sure that after shifting, the range will not overlap
923 		 * with another device.
924 		 */
925 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
926 		res2.flags = res->flags;
927 		res2.start = res->start + (size * offset);
928 		res2.end = res2.start + (size * num_vfs) - 1;
929 
930 		if (res2.end > res->end) {
931 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
932 				i, &res2, res, num_vfs, offset);
933 			return -EBUSY;
934 		}
935 	}
936 
937 	/*
938 	 * After doing so, there would be a "hole" in the /proc/iomem when
939 	 * offset is a positive value. It looks like the device return some
940 	 * mmio back to the system, which actually no one could use it.
941 	 */
942 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
943 		res = &dev->resource[i + PCI_IOV_RESOURCES];
944 		if (!res->flags || !res->parent)
945 			continue;
946 
947 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
948 		res2 = *res;
949 		res->start += size * offset;
950 
951 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
952 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
953 			 num_vfs, offset);
954 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
955 	}
956 	return 0;
957 }
958 #endif /* CONFIG_PCI_IOV */
959 
960 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
961 {
962 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
963 	struct pnv_phb *phb = hose->private_data;
964 	struct pci_dn *pdn = pci_get_pdn(dev);
965 	struct pnv_ioda_pe *pe;
966 	unsigned int pe_num;
967 
968 	if (!pdn) {
969 		pr_err("%s: Device tree node not associated properly\n",
970 			   pci_name(dev));
971 		return NULL;
972 	}
973 	if (pdn->pe_number != IODA_INVALID_PE)
974 		return NULL;
975 
976 	pe_num = pnv_ioda_alloc_pe(phb);
977 	if (pe_num == IODA_INVALID_PE) {
978 		pr_warning("%s: Not enough PE# available, disabling device\n",
979 			   pci_name(dev));
980 		return NULL;
981 	}
982 
983 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
984 	 * pointer in the PE data structure, both should be destroyed at the
985 	 * same time. However, this needs to be looked at more closely again
986 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
987 	 *
988 	 * At some point we want to remove the PDN completely anyways
989 	 */
990 	pe = &phb->ioda.pe_array[pe_num];
991 	pci_dev_get(dev);
992 	pdn->pcidev = dev;
993 	pdn->pe_number = pe_num;
994 	pe->flags = PNV_IODA_PE_DEV;
995 	pe->pdev = dev;
996 	pe->pbus = NULL;
997 	pe->mve_number = -1;
998 	pe->rid = dev->bus->number << 8 | pdn->devfn;
999 
1000 	pe_info(pe, "Associated device to PE\n");
1001 
1002 	if (pnv_ioda_configure_pe(phb, pe)) {
1003 		/* XXX What do we do here ? */
1004 		if (pe_num)
1005 			pnv_ioda_free_pe(phb, pe_num);
1006 		pdn->pe_number = IODA_INVALID_PE;
1007 		pe->pdev = NULL;
1008 		pci_dev_put(dev);
1009 		return NULL;
1010 	}
1011 
1012 	return pe;
1013 }
1014 
1015 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1016 {
1017 	struct pci_dev *dev;
1018 
1019 	list_for_each_entry(dev, &bus->devices, bus_list) {
1020 		struct pci_dn *pdn = pci_get_pdn(dev);
1021 
1022 		if (pdn == NULL) {
1023 			pr_warn("%s: No device node associated with device !\n",
1024 				pci_name(dev));
1025 			continue;
1026 		}
1027 		pdn->pcidev = dev;
1028 		pdn->pe_number = pe->pe_number;
1029 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1030 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1031 	}
1032 }
1033 
1034 /*
1035  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1036  * single PCI bus. Another one that contains the primary PCI bus and its
1037  * subordinate PCI devices and buses. The second type of PE is normally
1038  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1039  */
1040 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1041 {
1042 	struct pci_controller *hose = pci_bus_to_host(bus);
1043 	struct pnv_phb *phb = hose->private_data;
1044 	struct pnv_ioda_pe *pe;
1045 	unsigned int pe_num = IODA_INVALID_PE;
1046 
1047 	/* Check if PE is determined by M64 */
1048 	if (phb->pick_m64_pe)
1049 		pe_num = phb->pick_m64_pe(bus, all);
1050 
1051 	/* The PE number isn't pinned by M64 */
1052 	if (pe_num == IODA_INVALID_PE)
1053 		pe_num = pnv_ioda_alloc_pe(phb);
1054 
1055 	if (pe_num == IODA_INVALID_PE) {
1056 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1057 			__func__, pci_domain_nr(bus), bus->number);
1058 		return;
1059 	}
1060 
1061 	pe = &phb->ioda.pe_array[pe_num];
1062 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1063 	pe->pbus = bus;
1064 	pe->pdev = NULL;
1065 	pe->mve_number = -1;
1066 	pe->rid = bus->busn_res.start << 8;
1067 
1068 	if (all)
1069 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1070 			bus->busn_res.start, bus->busn_res.end, pe_num);
1071 	else
1072 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1073 			bus->busn_res.start, pe_num);
1074 
1075 	if (pnv_ioda_configure_pe(phb, pe)) {
1076 		/* XXX What do we do here ? */
1077 		if (pe_num)
1078 			pnv_ioda_free_pe(phb, pe_num);
1079 		pe->pbus = NULL;
1080 		return;
1081 	}
1082 
1083 	/* Associate it with all child devices */
1084 	pnv_ioda_setup_same_PE(bus, pe);
1085 
1086 	/* Put PE to the list */
1087 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1088 }
1089 
1090 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1091 {
1092 	int pe_num, found_pe = false, rc;
1093 	long rid;
1094 	struct pnv_ioda_pe *pe;
1095 	struct pci_dev *gpu_pdev;
1096 	struct pci_dn *npu_pdn;
1097 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1098 	struct pnv_phb *phb = hose->private_data;
1099 
1100 	/*
1101 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1102 	 * error handling. This means we only have three PEs remaining
1103 	 * which need to be assigned to four links, implying some
1104 	 * links must share PEs.
1105 	 *
1106 	 * To achieve this we assign PEs such that NPUs linking the
1107 	 * same GPU get assigned the same PE.
1108 	 */
1109 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1110 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1111 		pe = &phb->ioda.pe_array[pe_num];
1112 		if (!pe->pdev)
1113 			continue;
1114 
1115 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1116 			/*
1117 			 * This device has the same peer GPU so should
1118 			 * be assigned the same PE as the existing
1119 			 * peer NPU.
1120 			 */
1121 			dev_info(&npu_pdev->dev,
1122 				"Associating to existing PE %d\n", pe_num);
1123 			pci_dev_get(npu_pdev);
1124 			npu_pdn = pci_get_pdn(npu_pdev);
1125 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1126 			npu_pdn->pcidev = npu_pdev;
1127 			npu_pdn->pe_number = pe_num;
1128 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1129 
1130 			/* Map the PE to this link */
1131 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1132 					OpalPciBusAll,
1133 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1134 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1135 					OPAL_MAP_PE);
1136 			WARN_ON(rc != OPAL_SUCCESS);
1137 			found_pe = true;
1138 			break;
1139 		}
1140 	}
1141 
1142 	if (!found_pe)
1143 		/*
1144 		 * Could not find an existing PE so allocate a new
1145 		 * one.
1146 		 */
1147 		return pnv_ioda_setup_dev_PE(npu_pdev);
1148 	else
1149 		return pe;
1150 }
1151 
1152 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1153 {
1154 	struct pci_dev *pdev;
1155 
1156 	list_for_each_entry(pdev, &bus->devices, bus_list)
1157 		pnv_ioda_setup_npu_PE(pdev);
1158 }
1159 
1160 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1161 {
1162 	struct pci_dev *dev;
1163 
1164 	pnv_ioda_setup_bus_PE(bus, false);
1165 
1166 	list_for_each_entry(dev, &bus->devices, bus_list) {
1167 		if (dev->subordinate) {
1168 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1169 				pnv_ioda_setup_bus_PE(dev->subordinate, true);
1170 			else
1171 				pnv_ioda_setup_PEs(dev->subordinate);
1172 		}
1173 	}
1174 }
1175 
1176 /*
1177  * Configure PEs so that the downstream PCI buses and devices
1178  * could have their associated PE#. Unfortunately, we didn't
1179  * figure out the way to identify the PLX bridge yet. So we
1180  * simply put the PCI bus and the subordinate behind the root
1181  * port to PE# here. The game rule here is expected to be changed
1182  * as soon as we can detected PLX bridge correctly.
1183  */
1184 static void pnv_pci_ioda_setup_PEs(void)
1185 {
1186 	struct pci_controller *hose, *tmp;
1187 	struct pnv_phb *phb;
1188 
1189 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1190 		phb = hose->private_data;
1191 
1192 		/* M64 layout might affect PE allocation */
1193 		if (phb->reserve_m64_pe)
1194 			phb->reserve_m64_pe(hose->bus, NULL, true);
1195 
1196 		/*
1197 		 * On NPU PHB, we expect separate PEs for individual PCI
1198 		 * functions. PCI bus dependent PEs are required for the
1199 		 * remaining types of PHBs.
1200 		 */
1201 		if (phb->type == PNV_PHB_NPU) {
1202 			/* PE#0 is needed for error reporting */
1203 			pnv_ioda_reserve_pe(phb, 0);
1204 			pnv_ioda_setup_npu_PEs(hose->bus);
1205 		} else
1206 			pnv_ioda_setup_PEs(hose->bus);
1207 	}
1208 }
1209 
1210 #ifdef CONFIG_PCI_IOV
1211 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1212 {
1213 	struct pci_bus        *bus;
1214 	struct pci_controller *hose;
1215 	struct pnv_phb        *phb;
1216 	struct pci_dn         *pdn;
1217 	int                    i, j;
1218 	int                    m64_bars;
1219 
1220 	bus = pdev->bus;
1221 	hose = pci_bus_to_host(bus);
1222 	phb = hose->private_data;
1223 	pdn = pci_get_pdn(pdev);
1224 
1225 	if (pdn->m64_single_mode)
1226 		m64_bars = num_vfs;
1227 	else
1228 		m64_bars = 1;
1229 
1230 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1231 		for (j = 0; j < m64_bars; j++) {
1232 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1233 				continue;
1234 			opal_pci_phb_mmio_enable(phb->opal_id,
1235 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1236 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1237 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1238 		}
1239 
1240 	kfree(pdn->m64_map);
1241 	return 0;
1242 }
1243 
1244 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1245 {
1246 	struct pci_bus        *bus;
1247 	struct pci_controller *hose;
1248 	struct pnv_phb        *phb;
1249 	struct pci_dn         *pdn;
1250 	unsigned int           win;
1251 	struct resource       *res;
1252 	int                    i, j;
1253 	int64_t                rc;
1254 	int                    total_vfs;
1255 	resource_size_t        size, start;
1256 	int                    pe_num;
1257 	int                    m64_bars;
1258 
1259 	bus = pdev->bus;
1260 	hose = pci_bus_to_host(bus);
1261 	phb = hose->private_data;
1262 	pdn = pci_get_pdn(pdev);
1263 	total_vfs = pci_sriov_get_totalvfs(pdev);
1264 
1265 	if (pdn->m64_single_mode)
1266 		m64_bars = num_vfs;
1267 	else
1268 		m64_bars = 1;
1269 
1270 	pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1271 	if (!pdn->m64_map)
1272 		return -ENOMEM;
1273 	/* Initialize the m64_map to IODA_INVALID_M64 */
1274 	for (i = 0; i < m64_bars ; i++)
1275 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1276 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1277 
1278 
1279 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1280 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1281 		if (!res->flags || !res->parent)
1282 			continue;
1283 
1284 		for (j = 0; j < m64_bars; j++) {
1285 			do {
1286 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1287 						phb->ioda.m64_bar_idx + 1, 0);
1288 
1289 				if (win >= phb->ioda.m64_bar_idx + 1)
1290 					goto m64_failed;
1291 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1292 
1293 			pdn->m64_map[j][i] = win;
1294 
1295 			if (pdn->m64_single_mode) {
1296 				size = pci_iov_resource_size(pdev,
1297 							PCI_IOV_RESOURCES + i);
1298 				start = res->start + size * j;
1299 			} else {
1300 				size = resource_size(res);
1301 				start = res->start;
1302 			}
1303 
1304 			/* Map the M64 here */
1305 			if (pdn->m64_single_mode) {
1306 				pe_num = pdn->pe_num_map[j];
1307 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1308 						pe_num, OPAL_M64_WINDOW_TYPE,
1309 						pdn->m64_map[j][i], 0);
1310 			}
1311 
1312 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1313 						 OPAL_M64_WINDOW_TYPE,
1314 						 pdn->m64_map[j][i],
1315 						 start,
1316 						 0, /* unused */
1317 						 size);
1318 
1319 
1320 			if (rc != OPAL_SUCCESS) {
1321 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1322 					win, rc);
1323 				goto m64_failed;
1324 			}
1325 
1326 			if (pdn->m64_single_mode)
1327 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1328 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1329 			else
1330 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1331 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1332 
1333 			if (rc != OPAL_SUCCESS) {
1334 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1335 					win, rc);
1336 				goto m64_failed;
1337 			}
1338 		}
1339 	}
1340 	return 0;
1341 
1342 m64_failed:
1343 	pnv_pci_vf_release_m64(pdev, num_vfs);
1344 	return -EBUSY;
1345 }
1346 
1347 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1348 		int num);
1349 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1350 
1351 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1352 {
1353 	struct iommu_table    *tbl;
1354 	int64_t               rc;
1355 
1356 	tbl = pe->table_group.tables[0];
1357 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1358 	if (rc)
1359 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1360 
1361 	pnv_pci_ioda2_set_bypass(pe, false);
1362 	if (pe->table_group.group) {
1363 		iommu_group_put(pe->table_group.group);
1364 		BUG_ON(pe->table_group.group);
1365 	}
1366 	pnv_pci_ioda2_table_free_pages(tbl);
1367 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1368 }
1369 
1370 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1371 {
1372 	struct pci_bus        *bus;
1373 	struct pci_controller *hose;
1374 	struct pnv_phb        *phb;
1375 	struct pnv_ioda_pe    *pe, *pe_n;
1376 	struct pci_dn         *pdn;
1377 
1378 	bus = pdev->bus;
1379 	hose = pci_bus_to_host(bus);
1380 	phb = hose->private_data;
1381 	pdn = pci_get_pdn(pdev);
1382 
1383 	if (!pdev->is_physfn)
1384 		return;
1385 
1386 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1387 		if (pe->parent_dev != pdev)
1388 			continue;
1389 
1390 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1391 
1392 		/* Remove from list */
1393 		mutex_lock(&phb->ioda.pe_list_mutex);
1394 		list_del(&pe->list);
1395 		mutex_unlock(&phb->ioda.pe_list_mutex);
1396 
1397 		pnv_ioda_deconfigure_pe(phb, pe);
1398 
1399 		pnv_ioda_free_pe(phb, pe->pe_number);
1400 	}
1401 }
1402 
1403 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1404 {
1405 	struct pci_bus        *bus;
1406 	struct pci_controller *hose;
1407 	struct pnv_phb        *phb;
1408 	struct pci_dn         *pdn;
1409 	struct pci_sriov      *iov;
1410 	u16                    num_vfs, i;
1411 
1412 	bus = pdev->bus;
1413 	hose = pci_bus_to_host(bus);
1414 	phb = hose->private_data;
1415 	pdn = pci_get_pdn(pdev);
1416 	iov = pdev->sriov;
1417 	num_vfs = pdn->num_vfs;
1418 
1419 	/* Release VF PEs */
1420 	pnv_ioda_release_vf_PE(pdev);
1421 
1422 	if (phb->type == PNV_PHB_IODA2) {
1423 		if (!pdn->m64_single_mode)
1424 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1425 
1426 		/* Release M64 windows */
1427 		pnv_pci_vf_release_m64(pdev, num_vfs);
1428 
1429 		/* Release PE numbers */
1430 		if (pdn->m64_single_mode) {
1431 			for (i = 0; i < num_vfs; i++) {
1432 				if (pdn->pe_num_map[i] != IODA_INVALID_PE)
1433 					pnv_ioda_free_pe(phb, pdn->pe_num_map[i]);
1434 			}
1435 		} else
1436 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1437 		/* Releasing pe_num_map */
1438 		kfree(pdn->pe_num_map);
1439 	}
1440 }
1441 
1442 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1443 				       struct pnv_ioda_pe *pe);
1444 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1445 {
1446 	struct pci_bus        *bus;
1447 	struct pci_controller *hose;
1448 	struct pnv_phb        *phb;
1449 	struct pnv_ioda_pe    *pe;
1450 	int                    pe_num;
1451 	u16                    vf_index;
1452 	struct pci_dn         *pdn;
1453 
1454 	bus = pdev->bus;
1455 	hose = pci_bus_to_host(bus);
1456 	phb = hose->private_data;
1457 	pdn = pci_get_pdn(pdev);
1458 
1459 	if (!pdev->is_physfn)
1460 		return;
1461 
1462 	/* Reserve PE for each VF */
1463 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1464 		if (pdn->m64_single_mode)
1465 			pe_num = pdn->pe_num_map[vf_index];
1466 		else
1467 			pe_num = *pdn->pe_num_map + vf_index;
1468 
1469 		pe = &phb->ioda.pe_array[pe_num];
1470 		pe->pe_number = pe_num;
1471 		pe->phb = phb;
1472 		pe->flags = PNV_IODA_PE_VF;
1473 		pe->pbus = NULL;
1474 		pe->parent_dev = pdev;
1475 		pe->mve_number = -1;
1476 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1477 			   pci_iov_virtfn_devfn(pdev, vf_index);
1478 
1479 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1480 			hose->global_number, pdev->bus->number,
1481 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1482 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1483 
1484 		if (pnv_ioda_configure_pe(phb, pe)) {
1485 			/* XXX What do we do here ? */
1486 			if (pe_num)
1487 				pnv_ioda_free_pe(phb, pe_num);
1488 			pe->pdev = NULL;
1489 			continue;
1490 		}
1491 
1492 		/* Put PE to the list */
1493 		mutex_lock(&phb->ioda.pe_list_mutex);
1494 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1495 		mutex_unlock(&phb->ioda.pe_list_mutex);
1496 
1497 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1498 	}
1499 }
1500 
1501 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1502 {
1503 	struct pci_bus        *bus;
1504 	struct pci_controller *hose;
1505 	struct pnv_phb        *phb;
1506 	struct pci_dn         *pdn;
1507 	int                    ret;
1508 	u16                    i;
1509 
1510 	bus = pdev->bus;
1511 	hose = pci_bus_to_host(bus);
1512 	phb = hose->private_data;
1513 	pdn = pci_get_pdn(pdev);
1514 
1515 	if (phb->type == PNV_PHB_IODA2) {
1516 		if (!pdn->vfs_expanded) {
1517 			dev_info(&pdev->dev, "don't support this SRIOV device"
1518 				" with non 64bit-prefetchable IOV BAR\n");
1519 			return -ENOSPC;
1520 		}
1521 
1522 		/*
1523 		 * When M64 BARs functions in Single PE mode, the number of VFs
1524 		 * could be enabled must be less than the number of M64 BARs.
1525 		 */
1526 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1527 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1528 			return -EBUSY;
1529 		}
1530 
1531 		/* Allocating pe_num_map */
1532 		if (pdn->m64_single_mode)
1533 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1534 					GFP_KERNEL);
1535 		else
1536 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1537 
1538 		if (!pdn->pe_num_map)
1539 			return -ENOMEM;
1540 
1541 		if (pdn->m64_single_mode)
1542 			for (i = 0; i < num_vfs; i++)
1543 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1544 
1545 		/* Calculate available PE for required VFs */
1546 		if (pdn->m64_single_mode) {
1547 			for (i = 0; i < num_vfs; i++) {
1548 				pdn->pe_num_map[i] = pnv_ioda_alloc_pe(phb);
1549 				if (pdn->pe_num_map[i] == IODA_INVALID_PE) {
1550 					ret = -EBUSY;
1551 					goto m64_failed;
1552 				}
1553 			}
1554 		} else {
1555 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1556 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1557 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1558 				0, num_vfs, 0);
1559 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1560 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1561 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1562 				kfree(pdn->pe_num_map);
1563 				return -EBUSY;
1564 			}
1565 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1566 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1567 		}
1568 		pdn->num_vfs = num_vfs;
1569 
1570 		/* Assign M64 window accordingly */
1571 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1572 		if (ret) {
1573 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1574 			goto m64_failed;
1575 		}
1576 
1577 		/*
1578 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1579 		 * the IOV BAR according to the PE# allocated to the VFs.
1580 		 * Otherwise, the PE# for the VF will conflict with others.
1581 		 */
1582 		if (!pdn->m64_single_mode) {
1583 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1584 			if (ret)
1585 				goto m64_failed;
1586 		}
1587 	}
1588 
1589 	/* Setup VF PEs */
1590 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1591 
1592 	return 0;
1593 
1594 m64_failed:
1595 	if (pdn->m64_single_mode) {
1596 		for (i = 0; i < num_vfs; i++) {
1597 			if (pdn->pe_num_map[i] != IODA_INVALID_PE)
1598 				pnv_ioda_free_pe(phb, pdn->pe_num_map[i]);
1599 		}
1600 	} else
1601 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1602 
1603 	/* Releasing pe_num_map */
1604 	kfree(pdn->pe_num_map);
1605 
1606 	return ret;
1607 }
1608 
1609 int pcibios_sriov_disable(struct pci_dev *pdev)
1610 {
1611 	pnv_pci_sriov_disable(pdev);
1612 
1613 	/* Release PCI data */
1614 	remove_dev_pci_data(pdev);
1615 	return 0;
1616 }
1617 
1618 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1619 {
1620 	/* Allocate PCI data */
1621 	add_dev_pci_data(pdev);
1622 
1623 	return pnv_pci_sriov_enable(pdev, num_vfs);
1624 }
1625 #endif /* CONFIG_PCI_IOV */
1626 
1627 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1628 {
1629 	struct pci_dn *pdn = pci_get_pdn(pdev);
1630 	struct pnv_ioda_pe *pe;
1631 
1632 	/*
1633 	 * The function can be called while the PE#
1634 	 * hasn't been assigned. Do nothing for the
1635 	 * case.
1636 	 */
1637 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1638 		return;
1639 
1640 	pe = &phb->ioda.pe_array[pdn->pe_number];
1641 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1642 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1643 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1644 	/*
1645 	 * Note: iommu_add_device() will fail here as
1646 	 * for physical PE: the device is already added by now;
1647 	 * for virtual PE: sysfs entries are not ready yet and
1648 	 * tce_iommu_bus_notifier will add the device to a group later.
1649 	 */
1650 }
1651 
1652 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1653 {
1654 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1655 	struct pnv_phb *phb = hose->private_data;
1656 	struct pci_dn *pdn = pci_get_pdn(pdev);
1657 	struct pnv_ioda_pe *pe;
1658 	uint64_t top;
1659 	bool bypass = false;
1660 	struct pci_dev *linked_npu_dev;
1661 	int i;
1662 
1663 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1664 		return -ENODEV;;
1665 
1666 	pe = &phb->ioda.pe_array[pdn->pe_number];
1667 	if (pe->tce_bypass_enabled) {
1668 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1669 		bypass = (dma_mask >= top);
1670 	}
1671 
1672 	if (bypass) {
1673 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1674 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1675 	} else {
1676 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1677 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1678 	}
1679 	*pdev->dev.dma_mask = dma_mask;
1680 
1681 	/* Update peer npu devices */
1682 	if (pe->flags & PNV_IODA_PE_PEER)
1683 		for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1684 			if (!pe->peers[i])
1685 				continue;
1686 
1687 			linked_npu_dev = pe->peers[i]->pdev;
1688 			if (dma_get_mask(&linked_npu_dev->dev) != dma_mask)
1689 				dma_set_mask(&linked_npu_dev->dev, dma_mask);
1690 		}
1691 
1692 	return 0;
1693 }
1694 
1695 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1696 {
1697 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1698 	struct pnv_phb *phb = hose->private_data;
1699 	struct pci_dn *pdn = pci_get_pdn(pdev);
1700 	struct pnv_ioda_pe *pe;
1701 	u64 end, mask;
1702 
1703 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1704 		return 0;
1705 
1706 	pe = &phb->ioda.pe_array[pdn->pe_number];
1707 	if (!pe->tce_bypass_enabled)
1708 		return __dma_get_required_mask(&pdev->dev);
1709 
1710 
1711 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1712 	mask = 1ULL << (fls64(end) - 1);
1713 	mask += mask - 1;
1714 
1715 	return mask;
1716 }
1717 
1718 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1719 				   struct pci_bus *bus)
1720 {
1721 	struct pci_dev *dev;
1722 
1723 	list_for_each_entry(dev, &bus->devices, bus_list) {
1724 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1725 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1726 		iommu_add_device(&dev->dev);
1727 
1728 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1729 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1730 	}
1731 }
1732 
1733 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1734 		unsigned long index, unsigned long npages, bool rm)
1735 {
1736 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1737 			&tbl->it_group_list, struct iommu_table_group_link,
1738 			next);
1739 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1740 			struct pnv_ioda_pe, table_group);
1741 	__be64 __iomem *invalidate = rm ?
1742 		(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1743 		pe->phb->ioda.tce_inval_reg;
1744 	unsigned long start, end, inc;
1745 	const unsigned shift = tbl->it_page_shift;
1746 
1747 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1748 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1749 			npages - 1);
1750 
1751 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1752 	if (tbl->it_busno) {
1753 		start <<= shift;
1754 		end <<= shift;
1755 		inc = 128ull << shift;
1756 		start |= tbl->it_busno;
1757 		end |= tbl->it_busno;
1758 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1759 		/* p7ioc-style invalidation, 2 TCEs per write */
1760 		start |= (1ull << 63);
1761 		end |= (1ull << 63);
1762 		inc = 16;
1763         } else {
1764 		/* Default (older HW) */
1765                 inc = 128;
1766 	}
1767 
1768         end |= inc - 1;	/* round up end to be different than start */
1769 
1770         mb(); /* Ensure above stores are visible */
1771         while (start <= end) {
1772 		if (rm)
1773 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1774 		else
1775 			__raw_writeq(cpu_to_be64(start), invalidate);
1776                 start += inc;
1777         }
1778 
1779 	/*
1780 	 * The iommu layer will do another mb() for us on build()
1781 	 * and we don't care on free()
1782 	 */
1783 }
1784 
1785 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1786 		long npages, unsigned long uaddr,
1787 		enum dma_data_direction direction,
1788 		struct dma_attrs *attrs)
1789 {
1790 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1791 			attrs);
1792 
1793 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1794 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1795 
1796 	return ret;
1797 }
1798 
1799 #ifdef CONFIG_IOMMU_API
1800 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1801 		unsigned long *hpa, enum dma_data_direction *direction)
1802 {
1803 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1804 
1805 	if (!ret && (tbl->it_type &
1806 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1807 		pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1808 
1809 	return ret;
1810 }
1811 #endif
1812 
1813 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1814 		long npages)
1815 {
1816 	pnv_tce_free(tbl, index, npages);
1817 
1818 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1819 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1820 }
1821 
1822 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1823 	.set = pnv_ioda1_tce_build,
1824 #ifdef CONFIG_IOMMU_API
1825 	.exchange = pnv_ioda1_tce_xchg,
1826 #endif
1827 	.clear = pnv_ioda1_tce_free,
1828 	.get = pnv_tce_get,
1829 };
1830 
1831 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1832 {
1833 	/* 01xb - invalidate TCEs that match the specified PE# */
1834 	unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1835 	struct pnv_phb *phb = pe->phb;
1836 	struct pnv_ioda_pe *npe;
1837 	int i;
1838 
1839 	if (!phb->ioda.tce_inval_reg)
1840 		return;
1841 
1842 	mb(); /* Ensure above stores are visible */
1843 	__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1844 
1845 	if (pe->flags & PNV_IODA_PE_PEER)
1846 		for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1847 			npe = pe->peers[i];
1848 			if (!npe || npe->phb->type != PNV_PHB_NPU)
1849 				continue;
1850 
1851 			pnv_npu_tce_invalidate_entire(npe);
1852 		}
1853 }
1854 
1855 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1856 		__be64 __iomem *invalidate, unsigned shift,
1857 		unsigned long index, unsigned long npages)
1858 {
1859 	unsigned long start, end, inc;
1860 
1861 	/* We'll invalidate DMA address in PE scope */
1862 	start = 0x2ull << 60;
1863 	start |= (pe_number & 0xFF);
1864 	end = start;
1865 
1866 	/* Figure out the start, end and step */
1867 	start |= (index << shift);
1868 	end |= ((index + npages - 1) << shift);
1869 	inc = (0x1ull << shift);
1870 	mb();
1871 
1872 	while (start <= end) {
1873 		if (rm)
1874 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1875 		else
1876 			__raw_writeq(cpu_to_be64(start), invalidate);
1877 		start += inc;
1878 	}
1879 }
1880 
1881 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1882 		unsigned long index, unsigned long npages, bool rm)
1883 {
1884 	struct iommu_table_group_link *tgl;
1885 
1886 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1887 		struct pnv_ioda_pe *npe;
1888 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1889 				struct pnv_ioda_pe, table_group);
1890 		__be64 __iomem *invalidate = rm ?
1891 			(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1892 			pe->phb->ioda.tce_inval_reg;
1893 		int i;
1894 
1895 		pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1896 			invalidate, tbl->it_page_shift,
1897 			index, npages);
1898 
1899 		if (pe->flags & PNV_IODA_PE_PEER)
1900 			/* Invalidate PEs using the same TCE table */
1901 			for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1902 				npe = pe->peers[i];
1903 				if (!npe || npe->phb->type != PNV_PHB_NPU)
1904 					continue;
1905 
1906 				pnv_npu_tce_invalidate(npe, tbl, index,
1907 							npages, rm);
1908 			}
1909 	}
1910 }
1911 
1912 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1913 		long npages, unsigned long uaddr,
1914 		enum dma_data_direction direction,
1915 		struct dma_attrs *attrs)
1916 {
1917 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1918 			attrs);
1919 
1920 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1921 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1922 
1923 	return ret;
1924 }
1925 
1926 #ifdef CONFIG_IOMMU_API
1927 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1928 		unsigned long *hpa, enum dma_data_direction *direction)
1929 {
1930 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1931 
1932 	if (!ret && (tbl->it_type &
1933 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1934 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1935 
1936 	return ret;
1937 }
1938 #endif
1939 
1940 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1941 		long npages)
1942 {
1943 	pnv_tce_free(tbl, index, npages);
1944 
1945 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1946 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1947 }
1948 
1949 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1950 {
1951 	pnv_pci_ioda2_table_free_pages(tbl);
1952 	iommu_free_table(tbl, "pnv");
1953 }
1954 
1955 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1956 	.set = pnv_ioda2_tce_build,
1957 #ifdef CONFIG_IOMMU_API
1958 	.exchange = pnv_ioda2_tce_xchg,
1959 #endif
1960 	.clear = pnv_ioda2_tce_free,
1961 	.get = pnv_tce_get,
1962 	.free = pnv_ioda2_table_free,
1963 };
1964 
1965 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1966 {
1967 	unsigned int *weight = (unsigned int *)data;
1968 
1969 	/* This is quite simplistic. The "base" weight of a device
1970 	 * is 10. 0 means no DMA is to be accounted for it.
1971 	 */
1972 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1973 		return 0;
1974 
1975 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1976 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1977 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1978 		*weight += 3;
1979 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1980 		*weight += 15;
1981 	else
1982 		*weight += 10;
1983 
1984 	return 0;
1985 }
1986 
1987 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1988 {
1989 	unsigned int weight = 0;
1990 
1991 	/* SRIOV VF has same DMA32 weight as its PF */
1992 #ifdef CONFIG_PCI_IOV
1993 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1994 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1995 		return weight;
1996 	}
1997 #endif
1998 
1999 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2000 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2001 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2002 		struct pci_dev *pdev;
2003 
2004 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2005 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2006 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2007 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2008 	}
2009 
2010 	return weight;
2011 }
2012 
2013 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2014 				       struct pnv_ioda_pe *pe)
2015 {
2016 
2017 	struct page *tce_mem = NULL;
2018 	struct iommu_table *tbl;
2019 	unsigned int weight, total_weight = 0;
2020 	unsigned int tce32_segsz, base, segs, avail, i;
2021 	int64_t rc;
2022 	void *addr;
2023 
2024 	/* XXX FIXME: Handle 64-bit only DMA devices */
2025 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2026 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2027 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2028 	if (!weight)
2029 		return;
2030 
2031 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2032 		     &total_weight);
2033 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2034 	if (!segs)
2035 		segs = 1;
2036 
2037 	/*
2038 	 * Allocate contiguous DMA32 segments. We begin with the expected
2039 	 * number of segments. With one more attempt, the number of DMA32
2040 	 * segments to be allocated is decreased by one until one segment
2041 	 * is allocated successfully.
2042 	 */
2043 	do {
2044 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2045 			for (avail = 0, i = base; i < base + segs; i++) {
2046 				if (phb->ioda.dma32_segmap[i] ==
2047 				    IODA_INVALID_PE)
2048 					avail++;
2049 			}
2050 
2051 			if (avail == segs)
2052 				goto found;
2053 		}
2054 	} while (--segs);
2055 
2056 	if (!segs) {
2057 		pe_warn(pe, "No available DMA32 segments\n");
2058 		return;
2059 	}
2060 
2061 found:
2062 	tbl = pnv_pci_table_alloc(phb->hose->node);
2063 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2064 			pe->pe_number);
2065 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2066 
2067 	/* Grab a 32-bit TCE table */
2068 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2069 		weight, total_weight, base, segs);
2070 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2071 		base * PNV_IODA1_DMA32_SEGSIZE,
2072 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2073 
2074 	/* XXX Currently, we allocate one big contiguous table for the
2075 	 * TCEs. We only really need one chunk per 256M of TCE space
2076 	 * (ie per segment) but that's an optimization for later, it
2077 	 * requires some added smarts with our get/put_tce implementation
2078 	 *
2079 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2080 	 * bytes
2081 	 */
2082 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2083 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2084 				   get_order(tce32_segsz * segs));
2085 	if (!tce_mem) {
2086 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2087 		goto fail;
2088 	}
2089 	addr = page_address(tce_mem);
2090 	memset(addr, 0, tce32_segsz * segs);
2091 
2092 	/* Configure HW */
2093 	for (i = 0; i < segs; i++) {
2094 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2095 					      pe->pe_number,
2096 					      base + i, 1,
2097 					      __pa(addr) + tce32_segsz * i,
2098 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2099 		if (rc) {
2100 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2101 			       " err %ld\n", rc);
2102 			goto fail;
2103 		}
2104 	}
2105 
2106 	/* Setup DMA32 segment mapping */
2107 	for (i = base; i < base + segs; i++)
2108 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2109 
2110 	/* Setup linux iommu table */
2111 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2112 				  base * PNV_IODA1_DMA32_SEGSIZE,
2113 				  IOMMU_PAGE_SHIFT_4K);
2114 
2115 	/* OPAL variant of P7IOC SW invalidated TCEs */
2116 	if (phb->ioda.tce_inval_reg)
2117 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2118 				 TCE_PCI_SWINV_FREE   |
2119 				 TCE_PCI_SWINV_PAIR);
2120 
2121 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2122 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2123 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2124 	iommu_init_table(tbl, phb->hose->node);
2125 
2126 	if (pe->flags & PNV_IODA_PE_DEV) {
2127 		/*
2128 		 * Setting table base here only for carrying iommu_group
2129 		 * further down to let iommu_add_device() do the job.
2130 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2131 		 */
2132 		set_iommu_table_base(&pe->pdev->dev, tbl);
2133 		iommu_add_device(&pe->pdev->dev);
2134 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2135 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2136 
2137 	return;
2138  fail:
2139 	/* XXX Failure: Try to fallback to 64-bit only ? */
2140 	if (tce_mem)
2141 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2142 	if (tbl) {
2143 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2144 		iommu_free_table(tbl, "pnv");
2145 	}
2146 }
2147 
2148 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2149 		int num, struct iommu_table *tbl)
2150 {
2151 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2152 			table_group);
2153 	struct pnv_phb *phb = pe->phb;
2154 	int64_t rc;
2155 	const unsigned long size = tbl->it_indirect_levels ?
2156 			tbl->it_level_size : tbl->it_size;
2157 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2158 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2159 
2160 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2161 			start_addr, start_addr + win_size - 1,
2162 			IOMMU_PAGE_SIZE(tbl));
2163 
2164 	/*
2165 	 * Map TCE table through TVT. The TVE index is the PE number
2166 	 * shifted by 1 bit for 32-bits DMA space.
2167 	 */
2168 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2169 			pe->pe_number,
2170 			(pe->pe_number << 1) + num,
2171 			tbl->it_indirect_levels + 1,
2172 			__pa(tbl->it_base),
2173 			size << 3,
2174 			IOMMU_PAGE_SIZE(tbl));
2175 	if (rc) {
2176 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2177 		return rc;
2178 	}
2179 
2180 	pnv_pci_link_table_and_group(phb->hose->node, num,
2181 			tbl, &pe->table_group);
2182 	pnv_pci_ioda2_tce_invalidate_entire(pe);
2183 
2184 	return 0;
2185 }
2186 
2187 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2188 {
2189 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2190 	int64_t rc;
2191 
2192 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2193 	if (enable) {
2194 		phys_addr_t top = memblock_end_of_DRAM();
2195 
2196 		top = roundup_pow_of_two(top);
2197 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2198 						     pe->pe_number,
2199 						     window_id,
2200 						     pe->tce_bypass_base,
2201 						     top);
2202 	} else {
2203 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2204 						     pe->pe_number,
2205 						     window_id,
2206 						     pe->tce_bypass_base,
2207 						     0);
2208 	}
2209 	if (rc)
2210 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2211 	else
2212 		pe->tce_bypass_enabled = enable;
2213 }
2214 
2215 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2216 		__u32 page_shift, __u64 window_size, __u32 levels,
2217 		struct iommu_table *tbl);
2218 
2219 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2220 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2221 		struct iommu_table **ptbl)
2222 {
2223 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2224 			table_group);
2225 	int nid = pe->phb->hose->node;
2226 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2227 	long ret;
2228 	struct iommu_table *tbl;
2229 
2230 	tbl = pnv_pci_table_alloc(nid);
2231 	if (!tbl)
2232 		return -ENOMEM;
2233 
2234 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2235 			bus_offset, page_shift, window_size,
2236 			levels, tbl);
2237 	if (ret) {
2238 		iommu_free_table(tbl, "pnv");
2239 		return ret;
2240 	}
2241 
2242 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2243 	if (pe->phb->ioda.tce_inval_reg)
2244 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2245 
2246 	*ptbl = tbl;
2247 
2248 	return 0;
2249 }
2250 
2251 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2252 {
2253 	struct iommu_table *tbl = NULL;
2254 	long rc;
2255 
2256 	/*
2257 	 * crashkernel= specifies the kdump kernel's maximum memory at
2258 	 * some offset and there is no guaranteed the result is a power
2259 	 * of 2, which will cause errors later.
2260 	 */
2261 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2262 
2263 	/*
2264 	 * In memory constrained environments, e.g. kdump kernel, the
2265 	 * DMA window can be larger than available memory, which will
2266 	 * cause errors later.
2267 	 */
2268 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2269 
2270 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2271 			IOMMU_PAGE_SHIFT_4K,
2272 			window_size,
2273 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2274 	if (rc) {
2275 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2276 				rc);
2277 		return rc;
2278 	}
2279 
2280 	iommu_init_table(tbl, pe->phb->hose->node);
2281 
2282 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2283 	if (rc) {
2284 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2285 				rc);
2286 		pnv_ioda2_table_free(tbl);
2287 		return rc;
2288 	}
2289 
2290 	if (!pnv_iommu_bypass_disabled)
2291 		pnv_pci_ioda2_set_bypass(pe, true);
2292 
2293 	/* OPAL variant of PHB3 invalidated TCEs */
2294 	if (pe->phb->ioda.tce_inval_reg)
2295 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2296 
2297 	/*
2298 	 * Setting table base here only for carrying iommu_group
2299 	 * further down to let iommu_add_device() do the job.
2300 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2301 	 */
2302 	if (pe->flags & PNV_IODA_PE_DEV)
2303 		set_iommu_table_base(&pe->pdev->dev, tbl);
2304 
2305 	return 0;
2306 }
2307 
2308 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2309 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2310 		int num)
2311 {
2312 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2313 			table_group);
2314 	struct pnv_phb *phb = pe->phb;
2315 	long ret;
2316 
2317 	pe_info(pe, "Removing DMA window #%d\n", num);
2318 
2319 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2320 			(pe->pe_number << 1) + num,
2321 			0/* levels */, 0/* table address */,
2322 			0/* table size */, 0/* page size */);
2323 	if (ret)
2324 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2325 	else
2326 		pnv_pci_ioda2_tce_invalidate_entire(pe);
2327 
2328 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2329 
2330 	return ret;
2331 }
2332 #endif
2333 
2334 #ifdef CONFIG_IOMMU_API
2335 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2336 		__u64 window_size, __u32 levels)
2337 {
2338 	unsigned long bytes = 0;
2339 	const unsigned window_shift = ilog2(window_size);
2340 	unsigned entries_shift = window_shift - page_shift;
2341 	unsigned table_shift = entries_shift + 3;
2342 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2343 	unsigned long direct_table_size;
2344 
2345 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2346 			(window_size > memory_hotplug_max()) ||
2347 			!is_power_of_2(window_size))
2348 		return 0;
2349 
2350 	/* Calculate a direct table size from window_size and levels */
2351 	entries_shift = (entries_shift + levels - 1) / levels;
2352 	table_shift = entries_shift + 3;
2353 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2354 	direct_table_size =  1UL << table_shift;
2355 
2356 	for ( ; levels; --levels) {
2357 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2358 
2359 		tce_table_size /= direct_table_size;
2360 		tce_table_size <<= 3;
2361 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2362 	}
2363 
2364 	return bytes;
2365 }
2366 
2367 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2368 {
2369 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2370 						table_group);
2371 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2372 	struct iommu_table *tbl = pe->table_group.tables[0];
2373 
2374 	pnv_pci_ioda2_set_bypass(pe, false);
2375 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2376 	pnv_ioda2_table_free(tbl);
2377 }
2378 
2379 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2380 {
2381 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2382 						table_group);
2383 
2384 	pnv_pci_ioda2_setup_default_config(pe);
2385 }
2386 
2387 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2388 	.get_table_size = pnv_pci_ioda2_get_table_size,
2389 	.create_table = pnv_pci_ioda2_create_table,
2390 	.set_window = pnv_pci_ioda2_set_window,
2391 	.unset_window = pnv_pci_ioda2_unset_window,
2392 	.take_ownership = pnv_ioda2_take_ownership,
2393 	.release_ownership = pnv_ioda2_release_ownership,
2394 };
2395 #endif
2396 
2397 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2398 {
2399 	const __be64 *swinvp;
2400 
2401 	/* OPAL variant of PHB3 invalidated TCEs */
2402 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2403 	if (!swinvp)
2404 		return;
2405 
2406 	phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2407 	phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2408 }
2409 
2410 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2411 		unsigned levels, unsigned long limit,
2412 		unsigned long *current_offset, unsigned long *total_allocated)
2413 {
2414 	struct page *tce_mem = NULL;
2415 	__be64 *addr, *tmp;
2416 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2417 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2418 	unsigned entries = 1UL << (shift - 3);
2419 	long i;
2420 
2421 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2422 	if (!tce_mem) {
2423 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2424 		return NULL;
2425 	}
2426 	addr = page_address(tce_mem);
2427 	memset(addr, 0, allocated);
2428 	*total_allocated += allocated;
2429 
2430 	--levels;
2431 	if (!levels) {
2432 		*current_offset += allocated;
2433 		return addr;
2434 	}
2435 
2436 	for (i = 0; i < entries; ++i) {
2437 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2438 				levels, limit, current_offset, total_allocated);
2439 		if (!tmp)
2440 			break;
2441 
2442 		addr[i] = cpu_to_be64(__pa(tmp) |
2443 				TCE_PCI_READ | TCE_PCI_WRITE);
2444 
2445 		if (*current_offset >= limit)
2446 			break;
2447 	}
2448 
2449 	return addr;
2450 }
2451 
2452 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2453 		unsigned long size, unsigned level);
2454 
2455 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2456 		__u32 page_shift, __u64 window_size, __u32 levels,
2457 		struct iommu_table *tbl)
2458 {
2459 	void *addr;
2460 	unsigned long offset = 0, level_shift, total_allocated = 0;
2461 	const unsigned window_shift = ilog2(window_size);
2462 	unsigned entries_shift = window_shift - page_shift;
2463 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2464 	const unsigned long tce_table_size = 1UL << table_shift;
2465 
2466 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2467 		return -EINVAL;
2468 
2469 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2470 		return -EINVAL;
2471 
2472 	/* Adjust direct table size from window_size and levels */
2473 	entries_shift = (entries_shift + levels - 1) / levels;
2474 	level_shift = entries_shift + 3;
2475 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2476 
2477 	/* Allocate TCE table */
2478 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2479 			levels, tce_table_size, &offset, &total_allocated);
2480 
2481 	/* addr==NULL means that the first level allocation failed */
2482 	if (!addr)
2483 		return -ENOMEM;
2484 
2485 	/*
2486 	 * First level was allocated but some lower level failed as
2487 	 * we did not allocate as much as we wanted,
2488 	 * release partially allocated table.
2489 	 */
2490 	if (offset < tce_table_size) {
2491 		pnv_pci_ioda2_table_do_free_pages(addr,
2492 				1ULL << (level_shift - 3), levels - 1);
2493 		return -ENOMEM;
2494 	}
2495 
2496 	/* Setup linux iommu table */
2497 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2498 			page_shift);
2499 	tbl->it_level_size = 1ULL << (level_shift - 3);
2500 	tbl->it_indirect_levels = levels - 1;
2501 	tbl->it_allocated_size = total_allocated;
2502 
2503 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2504 			window_size, tce_table_size, bus_offset);
2505 
2506 	return 0;
2507 }
2508 
2509 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2510 		unsigned long size, unsigned level)
2511 {
2512 	const unsigned long addr_ul = (unsigned long) addr &
2513 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2514 
2515 	if (level) {
2516 		long i;
2517 		u64 *tmp = (u64 *) addr_ul;
2518 
2519 		for (i = 0; i < size; ++i) {
2520 			unsigned long hpa = be64_to_cpu(tmp[i]);
2521 
2522 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2523 				continue;
2524 
2525 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2526 					level - 1);
2527 		}
2528 	}
2529 
2530 	free_pages(addr_ul, get_order(size << 3));
2531 }
2532 
2533 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2534 {
2535 	const unsigned long size = tbl->it_indirect_levels ?
2536 			tbl->it_level_size : tbl->it_size;
2537 
2538 	if (!tbl->it_size)
2539 		return;
2540 
2541 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2542 			tbl->it_indirect_levels);
2543 }
2544 
2545 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2546 				       struct pnv_ioda_pe *pe)
2547 {
2548 	int64_t rc;
2549 
2550 	/* TVE #1 is selected by PCI address bit 59 */
2551 	pe->tce_bypass_base = 1ull << 59;
2552 
2553 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2554 			pe->pe_number);
2555 
2556 	/* The PE will reserve all possible 32-bits space */
2557 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2558 		phb->ioda.m32_pci_base);
2559 
2560 	/* Setup linux iommu table */
2561 	pe->table_group.tce32_start = 0;
2562 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2563 	pe->table_group.max_dynamic_windows_supported =
2564 			IOMMU_TABLE_GROUP_MAX_TABLES;
2565 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2566 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2567 #ifdef CONFIG_IOMMU_API
2568 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2569 #endif
2570 
2571 	rc = pnv_pci_ioda2_setup_default_config(pe);
2572 	if (rc)
2573 		return;
2574 
2575 	if (pe->flags & PNV_IODA_PE_DEV)
2576 		iommu_add_device(&pe->pdev->dev);
2577 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2578 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2579 }
2580 
2581 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2582 {
2583 	struct pci_controller *hose = phb->hose;
2584 	struct pnv_ioda_pe *pe;
2585 	unsigned int weight;
2586 
2587 	/* If we have more PE# than segments available, hand out one
2588 	 * per PE until we run out and let the rest fail. If not,
2589 	 * then we assign at least one segment per PE, plus more based
2590 	 * on the amount of devices under that PE
2591 	 */
2592 	pr_info("PCI: Domain %04x has %d available 32-bit DMA segments\n",
2593 		hose->global_number, phb->ioda.dma32_count);
2594 
2595 	pnv_pci_ioda_setup_opal_tce_kill(phb);
2596 
2597 	/* Walk our PE list and configure their DMA segments */
2598 	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2599 		weight = pnv_pci_ioda_pe_dma_weight(pe);
2600 		if (!weight)
2601 			continue;
2602 
2603 		/*
2604 		 * For IODA2 compliant PHB3, we needn't care about the weight.
2605 		 * The all available 32-bits DMA space will be assigned to
2606 		 * the specific PE.
2607 		 */
2608 		if (phb->type == PNV_PHB_IODA1) {
2609 			pnv_pci_ioda1_setup_dma_pe(phb, pe);
2610 		} else if (phb->type == PNV_PHB_IODA2) {
2611 			pe_info(pe, "Assign DMA32 space\n");
2612 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
2613 		} else if (phb->type == PNV_PHB_NPU) {
2614 			/*
2615 			 * We initialise the DMA space for an NPU PHB
2616 			 * after setup of the PHB is complete as we
2617 			 * point the NPU TVT to the the same location
2618 			 * as the PHB3 TVT.
2619 			 */
2620 		}
2621 	}
2622 }
2623 
2624 #ifdef CONFIG_PCI_MSI
2625 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2626 {
2627 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2628 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2629 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2630 					   ioda.irq_chip);
2631 	int64_t rc;
2632 
2633 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2634 	WARN_ON_ONCE(rc);
2635 
2636 	icp_native_eoi(d);
2637 }
2638 
2639 
2640 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2641 {
2642 	struct irq_data *idata;
2643 	struct irq_chip *ichip;
2644 
2645 	if (phb->type != PNV_PHB_IODA2)
2646 		return;
2647 
2648 	if (!phb->ioda.irq_chip_init) {
2649 		/*
2650 		 * First time we setup an MSI IRQ, we need to setup the
2651 		 * corresponding IRQ chip to route correctly.
2652 		 */
2653 		idata = irq_get_irq_data(virq);
2654 		ichip = irq_data_get_irq_chip(idata);
2655 		phb->ioda.irq_chip_init = 1;
2656 		phb->ioda.irq_chip = *ichip;
2657 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2658 	}
2659 	irq_set_chip(virq, &phb->ioda.irq_chip);
2660 }
2661 
2662 #ifdef CONFIG_CXL_BASE
2663 
2664 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2665 {
2666 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2667 
2668 	return of_node_get(hose->dn);
2669 }
2670 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2671 
2672 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2673 {
2674 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2675 	struct pnv_phb *phb = hose->private_data;
2676 	struct pnv_ioda_pe *pe;
2677 	int rc;
2678 
2679 	pe = pnv_ioda_get_pe(dev);
2680 	if (!pe)
2681 		return -ENODEV;
2682 
2683 	pe_info(pe, "Switching PHB to CXL\n");
2684 
2685 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2686 	if (rc)
2687 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2688 
2689 	return rc;
2690 }
2691 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2692 
2693 /* Find PHB for cxl dev and allocate MSI hwirqs?
2694  * Returns the absolute hardware IRQ number
2695  */
2696 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2697 {
2698 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2699 	struct pnv_phb *phb = hose->private_data;
2700 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2701 
2702 	if (hwirq < 0) {
2703 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
2704 		return -ENOSPC;
2705 	}
2706 
2707 	return phb->msi_base + hwirq;
2708 }
2709 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2710 
2711 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2712 {
2713 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2714 	struct pnv_phb *phb = hose->private_data;
2715 
2716 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2717 }
2718 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2719 
2720 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2721 				  struct pci_dev *dev)
2722 {
2723 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2724 	struct pnv_phb *phb = hose->private_data;
2725 	int i, hwirq;
2726 
2727 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
2728 		if (!irqs->range[i])
2729 			continue;
2730 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2731 			 i, irqs->offset[i],
2732 			 irqs->range[i]);
2733 		hwirq = irqs->offset[i] - phb->msi_base;
2734 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2735 				       irqs->range[i]);
2736 	}
2737 }
2738 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2739 
2740 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2741 			       struct pci_dev *dev, int num)
2742 {
2743 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2744 	struct pnv_phb *phb = hose->private_data;
2745 	int i, hwirq, try;
2746 
2747 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2748 
2749 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
2750 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2751 		try = num;
2752 		while (try) {
2753 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2754 			if (hwirq >= 0)
2755 				break;
2756 			try /= 2;
2757 		}
2758 		if (!try)
2759 			goto fail;
2760 
2761 		irqs->offset[i] = phb->msi_base + hwirq;
2762 		irqs->range[i] = try;
2763 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2764 			 i, irqs->offset[i], irqs->range[i]);
2765 		num -= try;
2766 	}
2767 	if (num)
2768 		goto fail;
2769 
2770 	return 0;
2771 fail:
2772 	pnv_cxl_release_hwirq_ranges(irqs, dev);
2773 	return -ENOSPC;
2774 }
2775 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2776 
2777 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2778 {
2779 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2780 	struct pnv_phb *phb = hose->private_data;
2781 
2782 	return phb->msi_bmp.irq_count;
2783 }
2784 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2785 
2786 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2787 			   unsigned int virq)
2788 {
2789 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2790 	struct pnv_phb *phb = hose->private_data;
2791 	unsigned int xive_num = hwirq - phb->msi_base;
2792 	struct pnv_ioda_pe *pe;
2793 	int rc;
2794 
2795 	if (!(pe = pnv_ioda_get_pe(dev)))
2796 		return -ENODEV;
2797 
2798 	/* Assign XIVE to PE */
2799 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2800 	if (rc) {
2801 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2802 			"hwirq 0x%x XIVE 0x%x PE\n",
2803 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2804 		return -EIO;
2805 	}
2806 	set_msi_irq_chip(phb, virq);
2807 
2808 	return 0;
2809 }
2810 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2811 #endif
2812 
2813 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2814 				  unsigned int hwirq, unsigned int virq,
2815 				  unsigned int is_64, struct msi_msg *msg)
2816 {
2817 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2818 	unsigned int xive_num = hwirq - phb->msi_base;
2819 	__be32 data;
2820 	int rc;
2821 
2822 	/* No PE assigned ? bail out ... no MSI for you ! */
2823 	if (pe == NULL)
2824 		return -ENXIO;
2825 
2826 	/* Check if we have an MVE */
2827 	if (pe->mve_number < 0)
2828 		return -ENXIO;
2829 
2830 	/* Force 32-bit MSI on some broken devices */
2831 	if (dev->no_64bit_msi)
2832 		is_64 = 0;
2833 
2834 	/* Assign XIVE to PE */
2835 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2836 	if (rc) {
2837 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2838 			pci_name(dev), rc, xive_num);
2839 		return -EIO;
2840 	}
2841 
2842 	if (is_64) {
2843 		__be64 addr64;
2844 
2845 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2846 				     &addr64, &data);
2847 		if (rc) {
2848 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2849 				pci_name(dev), rc);
2850 			return -EIO;
2851 		}
2852 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2853 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2854 	} else {
2855 		__be32 addr32;
2856 
2857 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2858 				     &addr32, &data);
2859 		if (rc) {
2860 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2861 				pci_name(dev), rc);
2862 			return -EIO;
2863 		}
2864 		msg->address_hi = 0;
2865 		msg->address_lo = be32_to_cpu(addr32);
2866 	}
2867 	msg->data = be32_to_cpu(data);
2868 
2869 	set_msi_irq_chip(phb, virq);
2870 
2871 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2872 		 " address=%x_%08x data=%x PE# %d\n",
2873 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2874 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2875 
2876 	return 0;
2877 }
2878 
2879 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2880 {
2881 	unsigned int count;
2882 	const __be32 *prop = of_get_property(phb->hose->dn,
2883 					     "ibm,opal-msi-ranges", NULL);
2884 	if (!prop) {
2885 		/* BML Fallback */
2886 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2887 	}
2888 	if (!prop)
2889 		return;
2890 
2891 	phb->msi_base = be32_to_cpup(prop);
2892 	count = be32_to_cpup(prop + 1);
2893 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2894 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2895 		       phb->hose->global_number);
2896 		return;
2897 	}
2898 
2899 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2900 	phb->msi32_support = 1;
2901 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2902 		count, phb->msi_base);
2903 }
2904 #else
2905 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2906 #endif /* CONFIG_PCI_MSI */
2907 
2908 #ifdef CONFIG_PCI_IOV
2909 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2910 {
2911 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2912 	struct pnv_phb *phb = hose->private_data;
2913 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2914 	struct resource *res;
2915 	int i;
2916 	resource_size_t size, total_vf_bar_sz;
2917 	struct pci_dn *pdn;
2918 	int mul, total_vfs;
2919 
2920 	if (!pdev->is_physfn || pdev->is_added)
2921 		return;
2922 
2923 	pdn = pci_get_pdn(pdev);
2924 	pdn->vfs_expanded = 0;
2925 	pdn->m64_single_mode = false;
2926 
2927 	total_vfs = pci_sriov_get_totalvfs(pdev);
2928 	mul = phb->ioda.total_pe_num;
2929 	total_vf_bar_sz = 0;
2930 
2931 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2932 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2933 		if (!res->flags || res->parent)
2934 			continue;
2935 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2936 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2937 					" non M64 VF BAR%d: %pR. \n",
2938 				 i, res);
2939 			goto truncate_iov;
2940 		}
2941 
2942 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2943 				i + PCI_IOV_RESOURCES);
2944 
2945 		/*
2946 		 * If bigger than quarter of M64 segment size, just round up
2947 		 * power of two.
2948 		 *
2949 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2950 		 * with other devices, IOV BAR size is expanded to be
2951 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2952 		 * segment size , the expanded size would equal to half of the
2953 		 * whole M64 space size, which will exhaust the M64 Space and
2954 		 * limit the system flexibility.  This is a design decision to
2955 		 * set the boundary to quarter of the M64 segment size.
2956 		 */
2957 		if (total_vf_bar_sz > gate) {
2958 			mul = roundup_pow_of_two(total_vfs);
2959 			dev_info(&pdev->dev,
2960 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2961 				total_vf_bar_sz, gate, mul);
2962 			pdn->m64_single_mode = true;
2963 			break;
2964 		}
2965 	}
2966 
2967 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2968 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2969 		if (!res->flags || res->parent)
2970 			continue;
2971 
2972 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2973 		/*
2974 		 * On PHB3, the minimum size alignment of M64 BAR in single
2975 		 * mode is 32MB.
2976 		 */
2977 		if (pdn->m64_single_mode && (size < SZ_32M))
2978 			goto truncate_iov;
2979 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2980 		res->end = res->start + size * mul - 1;
2981 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2982 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2983 			 i, res, mul);
2984 	}
2985 	pdn->vfs_expanded = mul;
2986 
2987 	return;
2988 
2989 truncate_iov:
2990 	/* To save MMIO space, IOV BAR is truncated. */
2991 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2992 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2993 		res->flags = 0;
2994 		res->end = res->start - 1;
2995 	}
2996 }
2997 #endif /* CONFIG_PCI_IOV */
2998 
2999 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3000 				  struct resource *res)
3001 {
3002 	struct pnv_phb *phb = pe->phb;
3003 	struct pci_bus_region region;
3004 	int index;
3005 	int64_t rc;
3006 
3007 	if (!res || !res->flags || res->start > res->end)
3008 		return;
3009 
3010 	if (res->flags & IORESOURCE_IO) {
3011 		region.start = res->start - phb->ioda.io_pci_base;
3012 		region.end   = res->end - phb->ioda.io_pci_base;
3013 		index = region.start / phb->ioda.io_segsize;
3014 
3015 		while (index < phb->ioda.total_pe_num &&
3016 		       region.start <= region.end) {
3017 			phb->ioda.io_segmap[index] = pe->pe_number;
3018 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3019 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3020 			if (rc != OPAL_SUCCESS) {
3021 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
3022 				       __func__, rc, index, pe->pe_number);
3023 				break;
3024 			}
3025 
3026 			region.start += phb->ioda.io_segsize;
3027 			index++;
3028 		}
3029 	} else if ((res->flags & IORESOURCE_MEM) &&
3030 		   !pnv_pci_is_mem_pref_64(res->flags)) {
3031 		region.start = res->start -
3032 			       phb->hose->mem_offset[0] -
3033 			       phb->ioda.m32_pci_base;
3034 		region.end   = res->end -
3035 			       phb->hose->mem_offset[0] -
3036 			       phb->ioda.m32_pci_base;
3037 		index = region.start / phb->ioda.m32_segsize;
3038 
3039 		while (index < phb->ioda.total_pe_num &&
3040 		       region.start <= region.end) {
3041 			phb->ioda.m32_segmap[index] = pe->pe_number;
3042 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3043 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3044 			if (rc != OPAL_SUCCESS) {
3045 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
3046 				       __func__, rc, index, pe->pe_number);
3047 				break;
3048 			}
3049 
3050 			region.start += phb->ioda.m32_segsize;
3051 			index++;
3052 		}
3053 	}
3054 }
3055 
3056 /*
3057  * This function is supposed to be called on basis of PE from top
3058  * to bottom style. So the the I/O or MMIO segment assigned to
3059  * parent PE could be overrided by its child PEs if necessary.
3060  */
3061 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3062 {
3063 	struct pci_dev *pdev;
3064 	int i;
3065 
3066 	/*
3067 	 * NOTE: We only care PCI bus based PE for now. For PCI
3068 	 * device based PE, for example SRIOV sensitive VF should
3069 	 * be figured out later.
3070 	 */
3071 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3072 
3073 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3074 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3075 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3076 
3077 		/*
3078 		 * If the PE contains all subordinate PCI buses, the
3079 		 * windows of the child bridges should be mapped to
3080 		 * the PE as well.
3081 		 */
3082 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3083 			continue;
3084 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3085 			pnv_ioda_setup_pe_res(pe,
3086 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3087 	}
3088 }
3089 
3090 static void pnv_pci_ioda_setup_seg(void)
3091 {
3092 	struct pci_controller *tmp, *hose;
3093 	struct pnv_phb *phb;
3094 	struct pnv_ioda_pe *pe;
3095 
3096 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3097 		phb = hose->private_data;
3098 
3099 		/* NPU PHB does not support IO or MMIO segmentation */
3100 		if (phb->type == PNV_PHB_NPU)
3101 			continue;
3102 
3103 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3104 			pnv_ioda_setup_pe_seg(pe);
3105 		}
3106 	}
3107 }
3108 
3109 static void pnv_pci_ioda_setup_DMA(void)
3110 {
3111 	struct pci_controller *hose, *tmp;
3112 	struct pnv_phb *phb;
3113 
3114 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3115 		pnv_ioda_setup_dma(hose->private_data);
3116 
3117 		/* Mark the PHB initialization done */
3118 		phb = hose->private_data;
3119 		phb->initialized = 1;
3120 	}
3121 }
3122 
3123 static void pnv_pci_ioda_create_dbgfs(void)
3124 {
3125 #ifdef CONFIG_DEBUG_FS
3126 	struct pci_controller *hose, *tmp;
3127 	struct pnv_phb *phb;
3128 	char name[16];
3129 
3130 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3131 		phb = hose->private_data;
3132 
3133 		sprintf(name, "PCI%04x", hose->global_number);
3134 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3135 		if (!phb->dbgfs)
3136 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3137 				__func__, hose->global_number);
3138 	}
3139 #endif /* CONFIG_DEBUG_FS */
3140 }
3141 
3142 static void pnv_npu_ioda_fixup(void)
3143 {
3144 	bool enable_bypass;
3145 	struct pci_controller *hose, *tmp;
3146 	struct pnv_phb *phb;
3147 	struct pnv_ioda_pe *pe;
3148 	unsigned int weight;
3149 
3150 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3151 		phb = hose->private_data;
3152 		if (phb->type != PNV_PHB_NPU)
3153 			continue;
3154 
3155 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3156 			weight = pnv_pci_ioda_pe_dma_weight(pe);
3157 			if (WARN_ON(!weight))
3158 				continue;
3159 
3160 			enable_bypass = dma_get_mask(&pe->pdev->dev) ==
3161 				DMA_BIT_MASK(64);
3162 			pnv_npu_init_dma_pe(pe);
3163 			pnv_npu_dma_set_bypass(pe, enable_bypass);
3164 		}
3165 	}
3166 }
3167 
3168 static void pnv_pci_ioda_fixup(void)
3169 {
3170 	pnv_pci_ioda_setup_PEs();
3171 	pnv_pci_ioda_setup_seg();
3172 	pnv_pci_ioda_setup_DMA();
3173 
3174 	pnv_pci_ioda_create_dbgfs();
3175 
3176 #ifdef CONFIG_EEH
3177 	eeh_init();
3178 	eeh_addr_cache_build();
3179 #endif
3180 
3181 	/* Link NPU IODA tables to their PCI devices. */
3182 	pnv_npu_ioda_fixup();
3183 }
3184 
3185 /*
3186  * Returns the alignment for I/O or memory windows for P2P
3187  * bridges. That actually depends on how PEs are segmented.
3188  * For now, we return I/O or M32 segment size for PE sensitive
3189  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3190  * 1MiB for memory) will be returned.
3191  *
3192  * The current PCI bus might be put into one PE, which was
3193  * create against the parent PCI bridge. For that case, we
3194  * needn't enlarge the alignment so that we can save some
3195  * resources.
3196  */
3197 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3198 						unsigned long type)
3199 {
3200 	struct pci_dev *bridge;
3201 	struct pci_controller *hose = pci_bus_to_host(bus);
3202 	struct pnv_phb *phb = hose->private_data;
3203 	int num_pci_bridges = 0;
3204 
3205 	bridge = bus->self;
3206 	while (bridge) {
3207 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3208 			num_pci_bridges++;
3209 			if (num_pci_bridges >= 2)
3210 				return 1;
3211 		}
3212 
3213 		bridge = bridge->bus->self;
3214 	}
3215 
3216 	/* We fail back to M32 if M64 isn't supported */
3217 	if (phb->ioda.m64_segsize &&
3218 	    pnv_pci_is_mem_pref_64(type))
3219 		return phb->ioda.m64_segsize;
3220 	if (type & IORESOURCE_MEM)
3221 		return phb->ioda.m32_segsize;
3222 
3223 	return phb->ioda.io_segsize;
3224 }
3225 
3226 #ifdef CONFIG_PCI_IOV
3227 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3228 						      int resno)
3229 {
3230 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3231 	struct pnv_phb *phb = hose->private_data;
3232 	struct pci_dn *pdn = pci_get_pdn(pdev);
3233 	resource_size_t align;
3234 
3235 	/*
3236 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3237 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3238 	 * BAR should be size aligned.
3239 	 *
3240 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3241 	 * powernv-specific hardware restriction is gone. But if just use the
3242 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3243 	 * in one segment of M64 #15, which introduces the PE conflict between
3244 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3245 	 * m64_segsize.
3246 	 *
3247 	 * This function returns the total IOV BAR size if M64 BAR is in
3248 	 * Shared PE mode or just VF BAR size if not.
3249 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3250 	 * M64 segment size if IOV BAR size is less.
3251 	 */
3252 	align = pci_iov_resource_size(pdev, resno);
3253 	if (!pdn->vfs_expanded)
3254 		return align;
3255 	if (pdn->m64_single_mode)
3256 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3257 
3258 	return pdn->vfs_expanded * align;
3259 }
3260 #endif /* CONFIG_PCI_IOV */
3261 
3262 /* Prevent enabling devices for which we couldn't properly
3263  * assign a PE
3264  */
3265 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3266 {
3267 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3268 	struct pnv_phb *phb = hose->private_data;
3269 	struct pci_dn *pdn;
3270 
3271 	/* The function is probably called while the PEs have
3272 	 * not be created yet. For example, resource reassignment
3273 	 * during PCI probe period. We just skip the check if
3274 	 * PEs isn't ready.
3275 	 */
3276 	if (!phb->initialized)
3277 		return true;
3278 
3279 	pdn = pci_get_pdn(dev);
3280 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3281 		return false;
3282 
3283 	return true;
3284 }
3285 
3286 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3287 {
3288 	struct pnv_phb *phb = hose->private_data;
3289 
3290 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3291 		       OPAL_ASSERT_RESET);
3292 }
3293 
3294 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3295 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3296 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3297 #ifdef CONFIG_PCI_MSI
3298 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3299 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3300 #endif
3301 	.enable_device_hook	= pnv_pci_enable_device_hook,
3302 	.window_alignment	= pnv_pci_window_alignment,
3303 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3304 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3305 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3306 	.shutdown		= pnv_pci_ioda_shutdown,
3307 };
3308 
3309 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3310 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3311 #ifdef CONFIG_PCI_MSI
3312 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3313 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3314 #endif
3315 	.enable_device_hook	= pnv_pci_enable_device_hook,
3316 	.window_alignment	= pnv_pci_window_alignment,
3317 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3318 	.dma_set_mask		= pnv_npu_dma_set_mask,
3319 	.shutdown		= pnv_pci_ioda_shutdown,
3320 };
3321 
3322 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3323 					 u64 hub_id, int ioda_type)
3324 {
3325 	struct pci_controller *hose;
3326 	struct pnv_phb *phb;
3327 	unsigned long size, m64map_off, m32map_off, pemap_off;
3328 	unsigned long iomap_off = 0, dma32map_off = 0;
3329 	const __be64 *prop64;
3330 	const __be32 *prop32;
3331 	int len;
3332 	unsigned int segno;
3333 	u64 phb_id;
3334 	void *aux;
3335 	long rc;
3336 
3337 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3338 
3339 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3340 	if (!prop64) {
3341 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3342 		return;
3343 	}
3344 	phb_id = be64_to_cpup(prop64);
3345 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3346 
3347 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3348 
3349 	/* Allocate PCI controller */
3350 	phb->hose = hose = pcibios_alloc_controller(np);
3351 	if (!phb->hose) {
3352 		pr_err("  Can't allocate PCI controller for %s\n",
3353 		       np->full_name);
3354 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3355 		return;
3356 	}
3357 
3358 	spin_lock_init(&phb->lock);
3359 	prop32 = of_get_property(np, "bus-range", &len);
3360 	if (prop32 && len == 8) {
3361 		hose->first_busno = be32_to_cpu(prop32[0]);
3362 		hose->last_busno = be32_to_cpu(prop32[1]);
3363 	} else {
3364 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3365 		hose->first_busno = 0;
3366 		hose->last_busno = 0xff;
3367 	}
3368 	hose->private_data = phb;
3369 	phb->hub_id = hub_id;
3370 	phb->opal_id = phb_id;
3371 	phb->type = ioda_type;
3372 	mutex_init(&phb->ioda.pe_alloc_mutex);
3373 
3374 	/* Detect specific models for error handling */
3375 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3376 		phb->model = PNV_PHB_MODEL_P7IOC;
3377 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3378 		phb->model = PNV_PHB_MODEL_PHB3;
3379 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3380 		phb->model = PNV_PHB_MODEL_NPU;
3381 	else
3382 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3383 
3384 	/* Parse 32-bit and IO ranges (if any) */
3385 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3386 
3387 	/* Get registers */
3388 	phb->regs = of_iomap(np, 0);
3389 	if (phb->regs == NULL)
3390 		pr_err("  Failed to map registers !\n");
3391 
3392 	/* Initialize more IODA stuff */
3393 	phb->ioda.total_pe_num = 1;
3394 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3395 	if (prop32)
3396 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3397 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3398 	if (prop32)
3399 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3400 
3401 	/* Parse 64-bit MMIO range */
3402 	pnv_ioda_parse_m64_window(phb);
3403 
3404 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3405 	/* FW Has already off top 64k of M32 space (MSI space) */
3406 	phb->ioda.m32_size += 0x10000;
3407 
3408 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3409 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3410 	phb->ioda.io_size = hose->pci_io_size;
3411 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3412 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3413 
3414 	/* Calculate how many 32-bit TCE segments we have */
3415 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3416 				PNV_IODA1_DMA32_SEGSIZE;
3417 
3418 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3419 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
3420 	m64map_off = size;
3421 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3422 	m32map_off = size;
3423 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3424 	if (phb->type == PNV_PHB_IODA1) {
3425 		iomap_off = size;
3426 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3427 		dma32map_off = size;
3428 		size += phb->ioda.dma32_count *
3429 			sizeof(phb->ioda.dma32_segmap[0]);
3430 	}
3431 	pemap_off = size;
3432 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3433 	aux = memblock_virt_alloc(size, 0);
3434 	phb->ioda.pe_alloc = aux;
3435 	phb->ioda.m64_segmap = aux + m64map_off;
3436 	phb->ioda.m32_segmap = aux + m32map_off;
3437 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3438 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3439 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3440 	}
3441 	if (phb->type == PNV_PHB_IODA1) {
3442 		phb->ioda.io_segmap = aux + iomap_off;
3443 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3444 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3445 
3446 		phb->ioda.dma32_segmap = aux + dma32map_off;
3447 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3448 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3449 	}
3450 	phb->ioda.pe_array = aux + pemap_off;
3451 	set_bit(phb->ioda.reserved_pe_idx, phb->ioda.pe_alloc);
3452 
3453 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3454 	mutex_init(&phb->ioda.pe_list_mutex);
3455 
3456 	/* Calculate how many 32-bit TCE segments we have */
3457 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3458 				PNV_IODA1_DMA32_SEGSIZE;
3459 
3460 #if 0 /* We should really do that ... */
3461 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3462 					 window_type,
3463 					 window_num,
3464 					 starting_real_address,
3465 					 starting_pci_address,
3466 					 segment_size);
3467 #endif
3468 
3469 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3470 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3471 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3472 	if (phb->ioda.m64_size)
3473 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3474 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3475 	if (phb->ioda.io_size)
3476 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3477 			phb->ioda.io_size, phb->ioda.io_segsize);
3478 
3479 
3480 	phb->hose->ops = &pnv_pci_ops;
3481 	phb->get_pe_state = pnv_ioda_get_pe_state;
3482 	phb->freeze_pe = pnv_ioda_freeze_pe;
3483 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3484 
3485 	/* Setup TCEs */
3486 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3487 
3488 	/* Setup MSI support */
3489 	pnv_pci_init_ioda_msis(phb);
3490 
3491 	/*
3492 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3493 	 * to let the PCI core do resource assignment. It's supposed
3494 	 * that the PCI core will do correct I/O and MMIO alignment
3495 	 * for the P2P bridge bars so that each PCI bus (excluding
3496 	 * the child P2P bridges) can form individual PE.
3497 	 */
3498 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3499 
3500 	if (phb->type == PNV_PHB_NPU)
3501 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3502 	else
3503 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3504 
3505 #ifdef CONFIG_PCI_IOV
3506 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3507 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3508 #endif
3509 
3510 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3511 
3512 	/* Reset IODA tables to a clean state */
3513 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3514 	if (rc)
3515 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3516 
3517 	/* If we're running in kdump kerenl, the previous kerenl never
3518 	 * shutdown PCI devices correctly. We already got IODA table
3519 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3520 	 * transactions from previous kerenl.
3521 	 */
3522 	if (is_kdump_kernel()) {
3523 		pr_info("  Issue PHB reset ...\n");
3524 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3525 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3526 	}
3527 
3528 	/* Remove M64 resource if we can't configure it successfully */
3529 	if (!phb->init_m64 || phb->init_m64(phb))
3530 		hose->mem_resources[1].flags = 0;
3531 }
3532 
3533 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3534 {
3535 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3536 }
3537 
3538 void __init pnv_pci_init_npu_phb(struct device_node *np)
3539 {
3540 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3541 }
3542 
3543 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3544 {
3545 	struct device_node *phbn;
3546 	const __be64 *prop64;
3547 	u64 hub_id;
3548 
3549 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3550 
3551 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3552 	if (!prop64) {
3553 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3554 		return;
3555 	}
3556 	hub_id = be64_to_cpup(prop64);
3557 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3558 
3559 	/* Count child PHBs */
3560 	for_each_child_of_node(np, phbn) {
3561 		/* Look for IODA1 PHBs */
3562 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3563 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3564 	}
3565 }
3566