1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Support PCI/PCIe on PowerNV platforms 4 * 5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 6 */ 7 8 #undef DEBUG 9 10 #include <linux/kernel.h> 11 #include <linux/pci.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/string.h> 15 #include <linux/init.h> 16 #include <linux/memblock.h> 17 #include <linux/irq.h> 18 #include <linux/io.h> 19 #include <linux/msi.h> 20 #include <linux/iommu.h> 21 #include <linux/rculist.h> 22 #include <linux/sizes.h> 23 24 #include <asm/sections.h> 25 #include <asm/io.h> 26 #include <asm/prom.h> 27 #include <asm/pci-bridge.h> 28 #include <asm/machdep.h> 29 #include <asm/msi_bitmap.h> 30 #include <asm/ppc-pci.h> 31 #include <asm/opal.h> 32 #include <asm/iommu.h> 33 #include <asm/tce.h> 34 #include <asm/xics.h> 35 #include <asm/debugfs.h> 36 #include <asm/firmware.h> 37 #include <asm/pnv-pci.h> 38 #include <asm/mmzone.h> 39 40 #include <misc/cxl-base.h> 41 42 #include "powernv.h" 43 #include "pci.h" 44 #include "../../../../drivers/pci/pci.h" 45 46 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ 47 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ 48 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 49 50 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK", 51 "NPU_OCAPI" }; 52 53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable); 54 static void pnv_pci_configure_bus(struct pci_bus *bus); 55 56 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, 57 const char *fmt, ...) 58 { 59 struct va_format vaf; 60 va_list args; 61 char pfix[32]; 62 63 va_start(args, fmt); 64 65 vaf.fmt = fmt; 66 vaf.va = &args; 67 68 if (pe->flags & PNV_IODA_PE_DEV) 69 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); 70 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 71 sprintf(pfix, "%04x:%02x ", 72 pci_domain_nr(pe->pbus), pe->pbus->number); 73 #ifdef CONFIG_PCI_IOV 74 else if (pe->flags & PNV_IODA_PE_VF) 75 sprintf(pfix, "%04x:%02x:%2x.%d", 76 pci_domain_nr(pe->parent_dev->bus), 77 (pe->rid & 0xff00) >> 8, 78 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); 79 #endif /* CONFIG_PCI_IOV*/ 80 81 printk("%spci %s: [PE# %.2x] %pV", 82 level, pfix, pe->pe_number, &vaf); 83 84 va_end(args); 85 } 86 87 static bool pnv_iommu_bypass_disabled __read_mostly; 88 static bool pci_reset_phbs __read_mostly; 89 90 static int __init iommu_setup(char *str) 91 { 92 if (!str) 93 return -EINVAL; 94 95 while (*str) { 96 if (!strncmp(str, "nobypass", 8)) { 97 pnv_iommu_bypass_disabled = true; 98 pr_info("PowerNV: IOMMU bypass window disabled.\n"); 99 break; 100 } 101 str += strcspn(str, ","); 102 if (*str == ',') 103 str++; 104 } 105 106 return 0; 107 } 108 early_param("iommu", iommu_setup); 109 110 static int __init pci_reset_phbs_setup(char *str) 111 { 112 pci_reset_phbs = true; 113 return 0; 114 } 115 116 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup); 117 118 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) 119 { 120 s64 rc; 121 122 phb->ioda.pe_array[pe_no].phb = phb; 123 phb->ioda.pe_array[pe_no].pe_number = pe_no; 124 phb->ioda.pe_array[pe_no].dma_setup_done = false; 125 126 /* 127 * Clear the PE frozen state as it might be put into frozen state 128 * in the last PCI remove path. It's not harmful to do so when the 129 * PE is already in unfrozen state. 130 */ 131 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, 132 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 133 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 134 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n", 135 __func__, rc, phb->hose->global_number, pe_no); 136 137 return &phb->ioda.pe_array[pe_no]; 138 } 139 140 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) 141 { 142 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { 143 pr_warn("%s: Invalid PE %x on PHB#%x\n", 144 __func__, pe_no, phb->hose->global_number); 145 return; 146 } 147 148 mutex_lock(&phb->ioda.pe_alloc_mutex); 149 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) 150 pr_debug("%s: PE %x was reserved on PHB#%x\n", 151 __func__, pe_no, phb->hose->global_number); 152 mutex_unlock(&phb->ioda.pe_alloc_mutex); 153 154 pnv_ioda_init_pe(phb, pe_no); 155 } 156 157 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count) 158 { 159 struct pnv_ioda_pe *ret = NULL; 160 int run = 0, pe, i; 161 162 mutex_lock(&phb->ioda.pe_alloc_mutex); 163 164 /* scan backwards for a run of @count cleared bits */ 165 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { 166 if (test_bit(pe, phb->ioda.pe_alloc)) { 167 run = 0; 168 continue; 169 } 170 171 run++; 172 if (run == count) 173 break; 174 } 175 if (run != count) 176 goto out; 177 178 for (i = pe; i < pe + count; i++) { 179 set_bit(i, phb->ioda.pe_alloc); 180 pnv_ioda_init_pe(phb, i); 181 } 182 ret = &phb->ioda.pe_array[pe]; 183 184 out: 185 mutex_unlock(&phb->ioda.pe_alloc_mutex); 186 return ret; 187 } 188 189 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) 190 { 191 struct pnv_phb *phb = pe->phb; 192 unsigned int pe_num = pe->pe_number; 193 194 WARN_ON(pe->pdev); 195 WARN_ON(pe->npucomp); /* NPUs for nvlink are not supposed to be freed */ 196 kfree(pe->npucomp); 197 memset(pe, 0, sizeof(struct pnv_ioda_pe)); 198 199 mutex_lock(&phb->ioda.pe_alloc_mutex); 200 clear_bit(pe_num, phb->ioda.pe_alloc); 201 mutex_unlock(&phb->ioda.pe_alloc_mutex); 202 } 203 204 /* The default M64 BAR is shared by all PEs */ 205 static int pnv_ioda2_init_m64(struct pnv_phb *phb) 206 { 207 const char *desc; 208 struct resource *r; 209 s64 rc; 210 211 /* Configure the default M64 BAR */ 212 rc = opal_pci_set_phb_mem_window(phb->opal_id, 213 OPAL_M64_WINDOW_TYPE, 214 phb->ioda.m64_bar_idx, 215 phb->ioda.m64_base, 216 0, /* unused */ 217 phb->ioda.m64_size); 218 if (rc != OPAL_SUCCESS) { 219 desc = "configuring"; 220 goto fail; 221 } 222 223 /* Enable the default M64 BAR */ 224 rc = opal_pci_phb_mmio_enable(phb->opal_id, 225 OPAL_M64_WINDOW_TYPE, 226 phb->ioda.m64_bar_idx, 227 OPAL_ENABLE_M64_SPLIT); 228 if (rc != OPAL_SUCCESS) { 229 desc = "enabling"; 230 goto fail; 231 } 232 233 /* 234 * Exclude the segments for reserved and root bus PE, which 235 * are first or last two PEs. 236 */ 237 r = &phb->hose->mem_resources[1]; 238 if (phb->ioda.reserved_pe_idx == 0) 239 r->start += (2 * phb->ioda.m64_segsize); 240 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 241 r->end -= (2 * phb->ioda.m64_segsize); 242 else 243 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n", 244 phb->ioda.reserved_pe_idx); 245 246 return 0; 247 248 fail: 249 pr_warn(" Failure %lld %s M64 BAR#%d\n", 250 rc, desc, phb->ioda.m64_bar_idx); 251 opal_pci_phb_mmio_enable(phb->opal_id, 252 OPAL_M64_WINDOW_TYPE, 253 phb->ioda.m64_bar_idx, 254 OPAL_DISABLE_M64); 255 return -EIO; 256 } 257 258 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, 259 unsigned long *pe_bitmap) 260 { 261 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 262 struct resource *r; 263 resource_size_t base, sgsz, start, end; 264 int segno, i; 265 266 base = phb->ioda.m64_base; 267 sgsz = phb->ioda.m64_segsize; 268 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 269 r = &pdev->resource[i]; 270 if (!r->parent || !pnv_pci_is_m64(phb, r)) 271 continue; 272 273 start = ALIGN_DOWN(r->start - base, sgsz); 274 end = ALIGN(r->end - base, sgsz); 275 for (segno = start / sgsz; segno < end / sgsz; segno++) { 276 if (pe_bitmap) 277 set_bit(segno, pe_bitmap); 278 else 279 pnv_ioda_reserve_pe(phb, segno); 280 } 281 } 282 } 283 284 static int pnv_ioda1_init_m64(struct pnv_phb *phb) 285 { 286 struct resource *r; 287 int index; 288 289 /* 290 * There are 16 M64 BARs, each of which has 8 segments. So 291 * there are as many M64 segments as the maximum number of 292 * PEs, which is 128. 293 */ 294 for (index = 0; index < PNV_IODA1_M64_NUM; index++) { 295 unsigned long base, segsz = phb->ioda.m64_segsize; 296 int64_t rc; 297 298 base = phb->ioda.m64_base + 299 index * PNV_IODA1_M64_SEGS * segsz; 300 rc = opal_pci_set_phb_mem_window(phb->opal_id, 301 OPAL_M64_WINDOW_TYPE, index, base, 0, 302 PNV_IODA1_M64_SEGS * segsz); 303 if (rc != OPAL_SUCCESS) { 304 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n", 305 rc, phb->hose->global_number, index); 306 goto fail; 307 } 308 309 rc = opal_pci_phb_mmio_enable(phb->opal_id, 310 OPAL_M64_WINDOW_TYPE, index, 311 OPAL_ENABLE_M64_SPLIT); 312 if (rc != OPAL_SUCCESS) { 313 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n", 314 rc, phb->hose->global_number, index); 315 goto fail; 316 } 317 } 318 319 for (index = 0; index < phb->ioda.total_pe_num; index++) { 320 int64_t rc; 321 322 /* 323 * P7IOC supports M64DT, which helps mapping M64 segment 324 * to one particular PE#. However, PHB3 has fixed mapping 325 * between M64 segment and PE#. In order to have same logic 326 * for P7IOC and PHB3, we enforce fixed mapping between M64 327 * segment and PE# on P7IOC. 328 */ 329 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 330 index, OPAL_M64_WINDOW_TYPE, 331 index / PNV_IODA1_M64_SEGS, 332 index % PNV_IODA1_M64_SEGS); 333 if (rc != OPAL_SUCCESS) { 334 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n", 335 __func__, rc, phb->hose->global_number, 336 index); 337 goto fail; 338 } 339 } 340 341 /* 342 * Exclude the segments for reserved and root bus PE, which 343 * are first or last two PEs. 344 */ 345 r = &phb->hose->mem_resources[1]; 346 if (phb->ioda.reserved_pe_idx == 0) 347 r->start += (2 * phb->ioda.m64_segsize); 348 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 349 r->end -= (2 * phb->ioda.m64_segsize); 350 else 351 WARN(1, "Wrong reserved PE#%x on PHB#%x\n", 352 phb->ioda.reserved_pe_idx, phb->hose->global_number); 353 354 return 0; 355 356 fail: 357 for ( ; index >= 0; index--) 358 opal_pci_phb_mmio_enable(phb->opal_id, 359 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); 360 361 return -EIO; 362 } 363 364 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, 365 unsigned long *pe_bitmap, 366 bool all) 367 { 368 struct pci_dev *pdev; 369 370 list_for_each_entry(pdev, &bus->devices, bus_list) { 371 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); 372 373 if (all && pdev->subordinate) 374 pnv_ioda_reserve_m64_pe(pdev->subordinate, 375 pe_bitmap, all); 376 } 377 } 378 379 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) 380 { 381 struct pnv_phb *phb = pci_bus_to_pnvhb(bus); 382 struct pnv_ioda_pe *master_pe, *pe; 383 unsigned long size, *pe_alloc; 384 int i; 385 386 /* Root bus shouldn't use M64 */ 387 if (pci_is_root_bus(bus)) 388 return NULL; 389 390 /* Allocate bitmap */ 391 size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); 392 pe_alloc = kzalloc(size, GFP_KERNEL); 393 if (!pe_alloc) { 394 pr_warn("%s: Out of memory !\n", 395 __func__); 396 return NULL; 397 } 398 399 /* Figure out reserved PE numbers by the PE */ 400 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); 401 402 /* 403 * the current bus might not own M64 window and that's all 404 * contributed by its child buses. For the case, we needn't 405 * pick M64 dependent PE#. 406 */ 407 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { 408 kfree(pe_alloc); 409 return NULL; 410 } 411 412 /* 413 * Figure out the master PE and put all slave PEs to master 414 * PE's list to form compound PE. 415 */ 416 master_pe = NULL; 417 i = -1; 418 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < 419 phb->ioda.total_pe_num) { 420 pe = &phb->ioda.pe_array[i]; 421 422 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; 423 if (!master_pe) { 424 pe->flags |= PNV_IODA_PE_MASTER; 425 INIT_LIST_HEAD(&pe->slaves); 426 master_pe = pe; 427 } else { 428 pe->flags |= PNV_IODA_PE_SLAVE; 429 pe->master = master_pe; 430 list_add_tail(&pe->list, &master_pe->slaves); 431 } 432 } 433 434 kfree(pe_alloc); 435 return master_pe; 436 } 437 438 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) 439 { 440 struct pci_controller *hose = phb->hose; 441 struct device_node *dn = hose->dn; 442 struct resource *res; 443 u32 m64_range[2], i; 444 const __be32 *r; 445 u64 pci_addr; 446 447 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { 448 pr_info(" Not support M64 window\n"); 449 return; 450 } 451 452 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 453 pr_info(" Firmware too old to support M64 window\n"); 454 return; 455 } 456 457 r = of_get_property(dn, "ibm,opal-m64-window", NULL); 458 if (!r) { 459 pr_info(" No <ibm,opal-m64-window> on %pOF\n", 460 dn); 461 return; 462 } 463 464 /* 465 * Find the available M64 BAR range and pickup the last one for 466 * covering the whole 64-bits space. We support only one range. 467 */ 468 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", 469 m64_range, 2)) { 470 /* In absence of the property, assume 0..15 */ 471 m64_range[0] = 0; 472 m64_range[1] = 16; 473 } 474 /* We only support 64 bits in our allocator */ 475 if (m64_range[1] > 63) { 476 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", 477 __func__, m64_range[1], phb->hose->global_number); 478 m64_range[1] = 63; 479 } 480 /* Empty range, no m64 */ 481 if (m64_range[1] <= m64_range[0]) { 482 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", 483 __func__, phb->hose->global_number); 484 return; 485 } 486 487 /* Configure M64 informations */ 488 res = &hose->mem_resources[1]; 489 res->name = dn->full_name; 490 res->start = of_translate_address(dn, r + 2); 491 res->end = res->start + of_read_number(r + 4, 2) - 1; 492 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 493 pci_addr = of_read_number(r, 2); 494 hose->mem_offset[1] = res->start - pci_addr; 495 496 phb->ioda.m64_size = resource_size(res); 497 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; 498 phb->ioda.m64_base = pci_addr; 499 500 /* This lines up nicely with the display from processing OF ranges */ 501 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", 502 res->start, res->end, pci_addr, m64_range[0], 503 m64_range[0] + m64_range[1] - 1); 504 505 /* Mark all M64 used up by default */ 506 phb->ioda.m64_bar_alloc = (unsigned long)-1; 507 508 /* Use last M64 BAR to cover M64 window */ 509 m64_range[1]--; 510 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; 511 512 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); 513 514 /* Mark remaining ones free */ 515 for (i = m64_range[0]; i < m64_range[1]; i++) 516 clear_bit(i, &phb->ioda.m64_bar_alloc); 517 518 /* 519 * Setup init functions for M64 based on IODA version, IODA3 uses 520 * the IODA2 code. 521 */ 522 if (phb->type == PNV_PHB_IODA1) 523 phb->init_m64 = pnv_ioda1_init_m64; 524 else 525 phb->init_m64 = pnv_ioda2_init_m64; 526 } 527 528 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) 529 { 530 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; 531 struct pnv_ioda_pe *slave; 532 s64 rc; 533 534 /* Fetch master PE */ 535 if (pe->flags & PNV_IODA_PE_SLAVE) { 536 pe = pe->master; 537 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) 538 return; 539 540 pe_no = pe->pe_number; 541 } 542 543 /* Freeze master PE */ 544 rc = opal_pci_eeh_freeze_set(phb->opal_id, 545 pe_no, 546 OPAL_EEH_ACTION_SET_FREEZE_ALL); 547 if (rc != OPAL_SUCCESS) { 548 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 549 __func__, rc, phb->hose->global_number, pe_no); 550 return; 551 } 552 553 /* Freeze slave PEs */ 554 if (!(pe->flags & PNV_IODA_PE_MASTER)) 555 return; 556 557 list_for_each_entry(slave, &pe->slaves, list) { 558 rc = opal_pci_eeh_freeze_set(phb->opal_id, 559 slave->pe_number, 560 OPAL_EEH_ACTION_SET_FREEZE_ALL); 561 if (rc != OPAL_SUCCESS) 562 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 563 __func__, rc, phb->hose->global_number, 564 slave->pe_number); 565 } 566 } 567 568 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) 569 { 570 struct pnv_ioda_pe *pe, *slave; 571 s64 rc; 572 573 /* Find master PE */ 574 pe = &phb->ioda.pe_array[pe_no]; 575 if (pe->flags & PNV_IODA_PE_SLAVE) { 576 pe = pe->master; 577 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 578 pe_no = pe->pe_number; 579 } 580 581 /* Clear frozen state for master PE */ 582 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); 583 if (rc != OPAL_SUCCESS) { 584 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 585 __func__, rc, opt, phb->hose->global_number, pe_no); 586 return -EIO; 587 } 588 589 if (!(pe->flags & PNV_IODA_PE_MASTER)) 590 return 0; 591 592 /* Clear frozen state for slave PEs */ 593 list_for_each_entry(slave, &pe->slaves, list) { 594 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 595 slave->pe_number, 596 opt); 597 if (rc != OPAL_SUCCESS) { 598 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 599 __func__, rc, opt, phb->hose->global_number, 600 slave->pe_number); 601 return -EIO; 602 } 603 } 604 605 return 0; 606 } 607 608 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) 609 { 610 struct pnv_ioda_pe *slave, *pe; 611 u8 fstate = 0, state; 612 __be16 pcierr = 0; 613 s64 rc; 614 615 /* Sanity check on PE number */ 616 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) 617 return OPAL_EEH_STOPPED_PERM_UNAVAIL; 618 619 /* 620 * Fetch the master PE and the PE instance might be 621 * not initialized yet. 622 */ 623 pe = &phb->ioda.pe_array[pe_no]; 624 if (pe->flags & PNV_IODA_PE_SLAVE) { 625 pe = pe->master; 626 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 627 pe_no = pe->pe_number; 628 } 629 630 /* Check the master PE */ 631 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, 632 &state, &pcierr, NULL); 633 if (rc != OPAL_SUCCESS) { 634 pr_warn("%s: Failure %lld getting " 635 "PHB#%x-PE#%x state\n", 636 __func__, rc, 637 phb->hose->global_number, pe_no); 638 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 639 } 640 641 /* Check the slave PE */ 642 if (!(pe->flags & PNV_IODA_PE_MASTER)) 643 return state; 644 645 list_for_each_entry(slave, &pe->slaves, list) { 646 rc = opal_pci_eeh_freeze_status(phb->opal_id, 647 slave->pe_number, 648 &fstate, 649 &pcierr, 650 NULL); 651 if (rc != OPAL_SUCCESS) { 652 pr_warn("%s: Failure %lld getting " 653 "PHB#%x-PE#%x state\n", 654 __func__, rc, 655 phb->hose->global_number, slave->pe_number); 656 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 657 } 658 659 /* 660 * Override the result based on the ascending 661 * priority. 662 */ 663 if (fstate > state) 664 state = fstate; 665 } 666 667 return state; 668 } 669 670 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn) 671 { 672 int pe_number = phb->ioda.pe_rmap[bdfn]; 673 674 if (pe_number == IODA_INVALID_PE) 675 return NULL; 676 677 return &phb->ioda.pe_array[pe_number]; 678 } 679 680 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) 681 { 682 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); 683 struct pci_dn *pdn = pci_get_pdn(dev); 684 685 if (!pdn) 686 return NULL; 687 if (pdn->pe_number == IODA_INVALID_PE) 688 return NULL; 689 return &phb->ioda.pe_array[pdn->pe_number]; 690 } 691 692 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, 693 struct pnv_ioda_pe *parent, 694 struct pnv_ioda_pe *child, 695 bool is_add) 696 { 697 const char *desc = is_add ? "adding" : "removing"; 698 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : 699 OPAL_REMOVE_PE_FROM_DOMAIN; 700 struct pnv_ioda_pe *slave; 701 long rc; 702 703 /* Parent PE affects child PE */ 704 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 705 child->pe_number, op); 706 if (rc != OPAL_SUCCESS) { 707 pe_warn(child, "OPAL error %ld %s to parent PELTV\n", 708 rc, desc); 709 return -ENXIO; 710 } 711 712 if (!(child->flags & PNV_IODA_PE_MASTER)) 713 return 0; 714 715 /* Compound case: parent PE affects slave PEs */ 716 list_for_each_entry(slave, &child->slaves, list) { 717 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 718 slave->pe_number, op); 719 if (rc != OPAL_SUCCESS) { 720 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", 721 rc, desc); 722 return -ENXIO; 723 } 724 } 725 726 return 0; 727 } 728 729 static int pnv_ioda_set_peltv(struct pnv_phb *phb, 730 struct pnv_ioda_pe *pe, 731 bool is_add) 732 { 733 struct pnv_ioda_pe *slave; 734 struct pci_dev *pdev = NULL; 735 int ret; 736 737 /* 738 * Clear PE frozen state. If it's master PE, we need 739 * clear slave PE frozen state as well. 740 */ 741 if (is_add) { 742 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 743 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 744 if (pe->flags & PNV_IODA_PE_MASTER) { 745 list_for_each_entry(slave, &pe->slaves, list) 746 opal_pci_eeh_freeze_clear(phb->opal_id, 747 slave->pe_number, 748 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 749 } 750 } 751 752 /* 753 * Associate PE in PELT. We need add the PE into the 754 * corresponding PELT-V as well. Otherwise, the error 755 * originated from the PE might contribute to other 756 * PEs. 757 */ 758 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); 759 if (ret) 760 return ret; 761 762 /* For compound PEs, any one affects all of them */ 763 if (pe->flags & PNV_IODA_PE_MASTER) { 764 list_for_each_entry(slave, &pe->slaves, list) { 765 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); 766 if (ret) 767 return ret; 768 } 769 } 770 771 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) 772 pdev = pe->pbus->self; 773 else if (pe->flags & PNV_IODA_PE_DEV) 774 pdev = pe->pdev->bus->self; 775 #ifdef CONFIG_PCI_IOV 776 else if (pe->flags & PNV_IODA_PE_VF) 777 pdev = pe->parent_dev; 778 #endif /* CONFIG_PCI_IOV */ 779 while (pdev) { 780 struct pci_dn *pdn = pci_get_pdn(pdev); 781 struct pnv_ioda_pe *parent; 782 783 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 784 parent = &phb->ioda.pe_array[pdn->pe_number]; 785 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); 786 if (ret) 787 return ret; 788 } 789 790 pdev = pdev->bus->self; 791 } 792 793 return 0; 794 } 795 796 static void pnv_ioda_unset_peltv(struct pnv_phb *phb, 797 struct pnv_ioda_pe *pe, 798 struct pci_dev *parent) 799 { 800 int64_t rc; 801 802 while (parent) { 803 struct pci_dn *pdn = pci_get_pdn(parent); 804 805 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 806 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, 807 pe->pe_number, 808 OPAL_REMOVE_PE_FROM_DOMAIN); 809 /* XXX What to do in case of error ? */ 810 } 811 parent = parent->bus->self; 812 } 813 814 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 815 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 816 817 /* Disassociate PE in PELT */ 818 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, 819 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 820 if (rc) 821 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc); 822 } 823 824 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 825 { 826 struct pci_dev *parent; 827 uint8_t bcomp, dcomp, fcomp; 828 int64_t rc; 829 long rid_end, rid; 830 831 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ 832 if (pe->pbus) { 833 int count; 834 835 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 836 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 837 parent = pe->pbus->self; 838 if (pe->flags & PNV_IODA_PE_BUS_ALL) 839 count = resource_size(&pe->pbus->busn_res); 840 else 841 count = 1; 842 843 switch(count) { 844 case 1: bcomp = OpalPciBusAll; break; 845 case 2: bcomp = OpalPciBus7Bits; break; 846 case 4: bcomp = OpalPciBus6Bits; break; 847 case 8: bcomp = OpalPciBus5Bits; break; 848 case 16: bcomp = OpalPciBus4Bits; break; 849 case 32: bcomp = OpalPciBus3Bits; break; 850 default: 851 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 852 count); 853 /* Do an exact match only */ 854 bcomp = OpalPciBusAll; 855 } 856 rid_end = pe->rid + (count << 8); 857 } else { 858 #ifdef CONFIG_PCI_IOV 859 if (pe->flags & PNV_IODA_PE_VF) 860 parent = pe->parent_dev; 861 else 862 #endif 863 parent = pe->pdev->bus->self; 864 bcomp = OpalPciBusAll; 865 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 866 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 867 rid_end = pe->rid + 1; 868 } 869 870 /* Clear the reverse map */ 871 for (rid = pe->rid; rid < rid_end; rid++) 872 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; 873 874 /* 875 * Release from all parents PELT-V. NPUs don't have a PELTV 876 * table 877 */ 878 if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI) 879 pnv_ioda_unset_peltv(phb, pe, parent); 880 881 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 882 bcomp, dcomp, fcomp, OPAL_UNMAP_PE); 883 if (rc) 884 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc); 885 886 pe->pbus = NULL; 887 pe->pdev = NULL; 888 #ifdef CONFIG_PCI_IOV 889 pe->parent_dev = NULL; 890 #endif 891 892 return 0; 893 } 894 895 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 896 { 897 struct pci_dev *parent; 898 uint8_t bcomp, dcomp, fcomp; 899 long rc, rid_end, rid; 900 901 /* Bus validation ? */ 902 if (pe->pbus) { 903 int count; 904 905 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 906 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 907 parent = pe->pbus->self; 908 if (pe->flags & PNV_IODA_PE_BUS_ALL) 909 count = resource_size(&pe->pbus->busn_res); 910 else 911 count = 1; 912 913 switch(count) { 914 case 1: bcomp = OpalPciBusAll; break; 915 case 2: bcomp = OpalPciBus7Bits; break; 916 case 4: bcomp = OpalPciBus6Bits; break; 917 case 8: bcomp = OpalPciBus5Bits; break; 918 case 16: bcomp = OpalPciBus4Bits; break; 919 case 32: bcomp = OpalPciBus3Bits; break; 920 default: 921 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 922 count); 923 /* Do an exact match only */ 924 bcomp = OpalPciBusAll; 925 } 926 rid_end = pe->rid + (count << 8); 927 } else { 928 #ifdef CONFIG_PCI_IOV 929 if (pe->flags & PNV_IODA_PE_VF) 930 parent = pe->parent_dev; 931 else 932 #endif /* CONFIG_PCI_IOV */ 933 parent = pe->pdev->bus->self; 934 bcomp = OpalPciBusAll; 935 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 936 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 937 rid_end = pe->rid + 1; 938 } 939 940 /* 941 * Associate PE in PELT. We need add the PE into the 942 * corresponding PELT-V as well. Otherwise, the error 943 * originated from the PE might contribute to other 944 * PEs. 945 */ 946 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 947 bcomp, dcomp, fcomp, OPAL_MAP_PE); 948 if (rc) { 949 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 950 return -ENXIO; 951 } 952 953 /* 954 * Configure PELTV. NPUs don't have a PELTV table so skip 955 * configuration on them. 956 */ 957 if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI) 958 pnv_ioda_set_peltv(phb, pe, true); 959 960 /* Setup reverse map */ 961 for (rid = pe->rid; rid < rid_end; rid++) 962 phb->ioda.pe_rmap[rid] = pe->pe_number; 963 964 /* Setup one MVTs on IODA1 */ 965 if (phb->type != PNV_PHB_IODA1) { 966 pe->mve_number = 0; 967 goto out; 968 } 969 970 pe->mve_number = pe->pe_number; 971 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); 972 if (rc != OPAL_SUCCESS) { 973 pe_err(pe, "OPAL error %ld setting up MVE %x\n", 974 rc, pe->mve_number); 975 pe->mve_number = -1; 976 } else { 977 rc = opal_pci_set_mve_enable(phb->opal_id, 978 pe->mve_number, OPAL_ENABLE_MVE); 979 if (rc) { 980 pe_err(pe, "OPAL error %ld enabling MVE %x\n", 981 rc, pe->mve_number); 982 pe->mve_number = -1; 983 } 984 } 985 986 out: 987 return 0; 988 } 989 990 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) 991 { 992 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); 993 struct pci_dn *pdn = pci_get_pdn(dev); 994 struct pnv_ioda_pe *pe; 995 996 if (!pdn) { 997 pr_err("%s: Device tree node not associated properly\n", 998 pci_name(dev)); 999 return NULL; 1000 } 1001 if (pdn->pe_number != IODA_INVALID_PE) 1002 return NULL; 1003 1004 pe = pnv_ioda_alloc_pe(phb, 1); 1005 if (!pe) { 1006 pr_warn("%s: Not enough PE# available, disabling device\n", 1007 pci_name(dev)); 1008 return NULL; 1009 } 1010 1011 /* NOTE: We don't get a reference for the pointer in the PE 1012 * data structure, both the device and PE structures should be 1013 * destroyed at the same time. However, removing nvlink 1014 * devices will need some work. 1015 * 1016 * At some point we want to remove the PDN completely anyways 1017 */ 1018 pdn->pe_number = pe->pe_number; 1019 pe->flags = PNV_IODA_PE_DEV; 1020 pe->pdev = dev; 1021 pe->pbus = NULL; 1022 pe->mve_number = -1; 1023 pe->rid = dev->bus->number << 8 | pdn->devfn; 1024 pe->device_count++; 1025 1026 pe_info(pe, "Associated device to PE\n"); 1027 1028 if (pnv_ioda_configure_pe(phb, pe)) { 1029 /* XXX What do we do here ? */ 1030 pnv_ioda_free_pe(pe); 1031 pdn->pe_number = IODA_INVALID_PE; 1032 pe->pdev = NULL; 1033 return NULL; 1034 } 1035 1036 /* Put PE to the list */ 1037 mutex_lock(&phb->ioda.pe_list_mutex); 1038 list_add_tail(&pe->list, &phb->ioda.pe_list); 1039 mutex_unlock(&phb->ioda.pe_list_mutex); 1040 return pe; 1041 } 1042 1043 /* 1044 * There're 2 types of PCI bus sensitive PEs: One that is compromised of 1045 * single PCI bus. Another one that contains the primary PCI bus and its 1046 * subordinate PCI devices and buses. The second type of PE is normally 1047 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. 1048 */ 1049 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) 1050 { 1051 struct pnv_phb *phb = pci_bus_to_pnvhb(bus); 1052 struct pnv_ioda_pe *pe = NULL; 1053 unsigned int pe_num; 1054 1055 /* 1056 * In partial hotplug case, the PE instance might be still alive. 1057 * We should reuse it instead of allocating a new one. 1058 */ 1059 pe_num = phb->ioda.pe_rmap[bus->number << 8]; 1060 if (WARN_ON(pe_num != IODA_INVALID_PE)) { 1061 pe = &phb->ioda.pe_array[pe_num]; 1062 return NULL; 1063 } 1064 1065 /* PE number for root bus should have been reserved */ 1066 if (pci_is_root_bus(bus)) 1067 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; 1068 1069 /* Check if PE is determined by M64 */ 1070 if (!pe) 1071 pe = pnv_ioda_pick_m64_pe(bus, all); 1072 1073 /* The PE number isn't pinned by M64 */ 1074 if (!pe) 1075 pe = pnv_ioda_alloc_pe(phb, 1); 1076 1077 if (!pe) { 1078 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n", 1079 __func__, pci_domain_nr(bus), bus->number); 1080 return NULL; 1081 } 1082 1083 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); 1084 pe->pbus = bus; 1085 pe->pdev = NULL; 1086 pe->mve_number = -1; 1087 pe->rid = bus->busn_res.start << 8; 1088 1089 if (all) 1090 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n", 1091 &bus->busn_res.start, &bus->busn_res.end, 1092 pe->pe_number); 1093 else 1094 pe_info(pe, "Secondary bus %pad associated with PE#%x\n", 1095 &bus->busn_res.start, pe->pe_number); 1096 1097 if (pnv_ioda_configure_pe(phb, pe)) { 1098 /* XXX What do we do here ? */ 1099 pnv_ioda_free_pe(pe); 1100 pe->pbus = NULL; 1101 return NULL; 1102 } 1103 1104 /* Put PE to the list */ 1105 list_add_tail(&pe->list, &phb->ioda.pe_list); 1106 1107 return pe; 1108 } 1109 1110 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev) 1111 { 1112 int pe_num, found_pe = false, rc; 1113 long rid; 1114 struct pnv_ioda_pe *pe; 1115 struct pci_dev *gpu_pdev; 1116 struct pci_dn *npu_pdn; 1117 struct pnv_phb *phb = pci_bus_to_pnvhb(npu_pdev->bus); 1118 1119 /* 1120 * Intentionally leak a reference on the npu device (for 1121 * nvlink only; this is not an opencapi path) to make sure it 1122 * never goes away, as it's been the case all along and some 1123 * work is needed otherwise. 1124 */ 1125 pci_dev_get(npu_pdev); 1126 1127 /* 1128 * Due to a hardware errata PE#0 on the NPU is reserved for 1129 * error handling. This means we only have three PEs remaining 1130 * which need to be assigned to four links, implying some 1131 * links must share PEs. 1132 * 1133 * To achieve this we assign PEs such that NPUs linking the 1134 * same GPU get assigned the same PE. 1135 */ 1136 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev); 1137 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 1138 pe = &phb->ioda.pe_array[pe_num]; 1139 if (!pe->pdev) 1140 continue; 1141 1142 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) { 1143 /* 1144 * This device has the same peer GPU so should 1145 * be assigned the same PE as the existing 1146 * peer NPU. 1147 */ 1148 dev_info(&npu_pdev->dev, 1149 "Associating to existing PE %x\n", pe_num); 1150 npu_pdn = pci_get_pdn(npu_pdev); 1151 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn; 1152 npu_pdn->pe_number = pe_num; 1153 phb->ioda.pe_rmap[rid] = pe->pe_number; 1154 pe->device_count++; 1155 1156 /* Map the PE to this link */ 1157 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid, 1158 OpalPciBusAll, 1159 OPAL_COMPARE_RID_DEVICE_NUMBER, 1160 OPAL_COMPARE_RID_FUNCTION_NUMBER, 1161 OPAL_MAP_PE); 1162 WARN_ON(rc != OPAL_SUCCESS); 1163 found_pe = true; 1164 break; 1165 } 1166 } 1167 1168 if (!found_pe) 1169 /* 1170 * Could not find an existing PE so allocate a new 1171 * one. 1172 */ 1173 return pnv_ioda_setup_dev_PE(npu_pdev); 1174 else 1175 return pe; 1176 } 1177 1178 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus) 1179 { 1180 struct pci_dev *pdev; 1181 1182 list_for_each_entry(pdev, &bus->devices, bus_list) 1183 pnv_ioda_setup_npu_PE(pdev); 1184 } 1185 1186 static void pnv_pci_ioda_setup_nvlink(void) 1187 { 1188 struct pci_controller *hose; 1189 struct pnv_phb *phb; 1190 struct pnv_ioda_pe *pe; 1191 1192 list_for_each_entry(hose, &hose_list, list_node) { 1193 phb = hose->private_data; 1194 if (phb->type == PNV_PHB_NPU_NVLINK) { 1195 /* PE#0 is needed for error reporting */ 1196 pnv_ioda_reserve_pe(phb, 0); 1197 pnv_ioda_setup_npu_PEs(hose->bus); 1198 if (phb->model == PNV_PHB_MODEL_NPU2) 1199 WARN_ON_ONCE(pnv_npu2_init(hose)); 1200 } 1201 } 1202 list_for_each_entry(hose, &hose_list, list_node) { 1203 phb = hose->private_data; 1204 if (phb->type != PNV_PHB_IODA2) 1205 continue; 1206 1207 list_for_each_entry(pe, &phb->ioda.pe_list, list) 1208 pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV); 1209 } 1210 1211 #ifdef CONFIG_IOMMU_API 1212 /* setup iommu groups so we can do nvlink pass-thru */ 1213 pnv_pci_npu_setup_iommu_groups(); 1214 #endif 1215 } 1216 1217 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, 1218 struct pnv_ioda_pe *pe); 1219 1220 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev) 1221 { 1222 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 1223 struct pci_dn *pdn = pci_get_pdn(pdev); 1224 struct pnv_ioda_pe *pe; 1225 1226 /* Check if the BDFN for this device is associated with a PE yet */ 1227 pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8)); 1228 if (!pe) { 1229 /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */ 1230 if (WARN_ON(pdev->is_virtfn)) 1231 return; 1232 1233 pnv_pci_configure_bus(pdev->bus); 1234 pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8)); 1235 pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff); 1236 1237 1238 /* 1239 * If we can't setup the IODA PE something has gone horribly 1240 * wrong and we can't enable DMA for the device. 1241 */ 1242 if (WARN_ON(!pe)) 1243 return; 1244 } else { 1245 pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number); 1246 } 1247 1248 /* 1249 * We assume that bridges *probably* don't need to do any DMA so we can 1250 * skip allocating a TCE table, etc unless we get a non-bridge device. 1251 */ 1252 if (!pe->dma_setup_done && !pci_is_bridge(pdev)) { 1253 switch (phb->type) { 1254 case PNV_PHB_IODA1: 1255 pnv_pci_ioda1_setup_dma_pe(phb, pe); 1256 break; 1257 case PNV_PHB_IODA2: 1258 pnv_pci_ioda2_setup_dma_pe(phb, pe); 1259 break; 1260 default: 1261 pr_warn("%s: No DMA for PHB#%x (type %d)\n", 1262 __func__, phb->hose->global_number, phb->type); 1263 } 1264 } 1265 1266 if (pdn) 1267 pdn->pe_number = pe->pe_number; 1268 pe->device_count++; 1269 1270 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); 1271 pdev->dev.archdata.dma_offset = pe->tce_bypass_base; 1272 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); 1273 1274 /* PEs with a DMA weight of zero won't have a group */ 1275 if (pe->table_group.group) 1276 iommu_add_device(&pe->table_group, &pdev->dev); 1277 } 1278 1279 /* 1280 * Reconfigure TVE#0 to be usable as 64-bit DMA space. 1281 * 1282 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses. 1283 * Devices can only access more than that if bit 59 of the PCI address is set 1284 * by hardware, which indicates TVE#1 should be used instead of TVE#0. 1285 * Many PCI devices are not capable of addressing that many bits, and as a 1286 * result are limited to the 4GB of virtual memory made available to 32-bit 1287 * devices in TVE#0. 1288 * 1289 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit 1290 * devices by configuring the virtual memory past the first 4GB inaccessible 1291 * by 64-bit DMAs. This should only be used by devices that want more than 1292 * 4GB, and only on PEs that have no 32-bit devices. 1293 * 1294 * Currently this will only work on PHB3 (POWER8). 1295 */ 1296 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe) 1297 { 1298 u64 window_size, table_size, tce_count, addr; 1299 struct page *table_pages; 1300 u64 tce_order = 28; /* 256MB TCEs */ 1301 __be64 *tces; 1302 s64 rc; 1303 1304 /* 1305 * Window size needs to be a power of two, but needs to account for 1306 * shifting memory by the 4GB offset required to skip 32bit space. 1307 */ 1308 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32)); 1309 tce_count = window_size >> tce_order; 1310 table_size = tce_count << 3; 1311 1312 if (table_size < PAGE_SIZE) 1313 table_size = PAGE_SIZE; 1314 1315 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL, 1316 get_order(table_size)); 1317 if (!table_pages) 1318 goto err; 1319 1320 tces = page_address(table_pages); 1321 if (!tces) 1322 goto err; 1323 1324 memset(tces, 0, table_size); 1325 1326 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) { 1327 tces[(addr + (1ULL << 32)) >> tce_order] = 1328 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE); 1329 } 1330 1331 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id, 1332 pe->pe_number, 1333 /* reconfigure window 0 */ 1334 (pe->pe_number << 1) + 0, 1335 1, 1336 __pa(tces), 1337 table_size, 1338 1 << tce_order); 1339 if (rc == OPAL_SUCCESS) { 1340 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n"); 1341 return 0; 1342 } 1343 err: 1344 pe_err(pe, "Error configuring 64-bit DMA bypass\n"); 1345 return -EIO; 1346 } 1347 1348 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev, 1349 u64 dma_mask) 1350 { 1351 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 1352 struct pci_dn *pdn = pci_get_pdn(pdev); 1353 struct pnv_ioda_pe *pe; 1354 1355 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1356 return false; 1357 1358 pe = &phb->ioda.pe_array[pdn->pe_number]; 1359 if (pe->tce_bypass_enabled) { 1360 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; 1361 if (dma_mask >= top) 1362 return true; 1363 } 1364 1365 /* 1366 * If the device can't set the TCE bypass bit but still wants 1367 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to 1368 * bypass the 32-bit region and be usable for 64-bit DMAs. 1369 * The device needs to be able to address all of this space. 1370 */ 1371 if (dma_mask >> 32 && 1372 dma_mask > (memory_hotplug_max() + (1ULL << 32)) && 1373 /* pe->pdev should be set if it's a single device, pe->pbus if not */ 1374 (pe->device_count == 1 || !pe->pbus) && 1375 phb->model == PNV_PHB_MODEL_PHB3) { 1376 /* Configure the bypass mode */ 1377 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe); 1378 if (rc) 1379 return false; 1380 /* 4GB offset bypasses 32-bit space */ 1381 pdev->dev.archdata.dma_offset = (1ULL << 32); 1382 return true; 1383 } 1384 1385 return false; 1386 } 1387 1388 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, 1389 bool real_mode) 1390 { 1391 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : 1392 (phb->regs + 0x210); 1393 } 1394 1395 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, 1396 unsigned long index, unsigned long npages, bool rm) 1397 { 1398 struct iommu_table_group_link *tgl = list_first_entry_or_null( 1399 &tbl->it_group_list, struct iommu_table_group_link, 1400 next); 1401 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1402 struct pnv_ioda_pe, table_group); 1403 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1404 unsigned long start, end, inc; 1405 1406 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); 1407 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + 1408 npages - 1); 1409 1410 /* p7ioc-style invalidation, 2 TCEs per write */ 1411 start |= (1ull << 63); 1412 end |= (1ull << 63); 1413 inc = 16; 1414 end |= inc - 1; /* round up end to be different than start */ 1415 1416 mb(); /* Ensure above stores are visible */ 1417 while (start <= end) { 1418 if (rm) 1419 __raw_rm_writeq_be(start, invalidate); 1420 else 1421 __raw_writeq_be(start, invalidate); 1422 1423 start += inc; 1424 } 1425 1426 /* 1427 * The iommu layer will do another mb() for us on build() 1428 * and we don't care on free() 1429 */ 1430 } 1431 1432 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, 1433 long npages, unsigned long uaddr, 1434 enum dma_data_direction direction, 1435 unsigned long attrs) 1436 { 1437 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1438 attrs); 1439 1440 if (!ret) 1441 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1442 1443 return ret; 1444 } 1445 1446 #ifdef CONFIG_IOMMU_API 1447 /* Common for IODA1 and IODA2 */ 1448 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index, 1449 unsigned long *hpa, enum dma_data_direction *direction, 1450 bool realmode) 1451 { 1452 return pnv_tce_xchg(tbl, index, hpa, direction, !realmode); 1453 } 1454 #endif 1455 1456 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, 1457 long npages) 1458 { 1459 pnv_tce_free(tbl, index, npages); 1460 1461 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1462 } 1463 1464 static struct iommu_table_ops pnv_ioda1_iommu_ops = { 1465 .set = pnv_ioda1_tce_build, 1466 #ifdef CONFIG_IOMMU_API 1467 .xchg_no_kill = pnv_ioda_tce_xchg_no_kill, 1468 .tce_kill = pnv_pci_p7ioc_tce_invalidate, 1469 .useraddrptr = pnv_tce_useraddrptr, 1470 #endif 1471 .clear = pnv_ioda1_tce_free, 1472 .get = pnv_tce_get, 1473 }; 1474 1475 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) 1476 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) 1477 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) 1478 1479 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 1480 { 1481 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm); 1482 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL; 1483 1484 mb(); /* Ensure previous TCE table stores are visible */ 1485 if (rm) 1486 __raw_rm_writeq_be(val, invalidate); 1487 else 1488 __raw_writeq_be(val, invalidate); 1489 } 1490 1491 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1492 { 1493 /* 01xb - invalidate TCEs that match the specified PE# */ 1494 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); 1495 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); 1496 1497 mb(); /* Ensure above stores are visible */ 1498 __raw_writeq_be(val, invalidate); 1499 } 1500 1501 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, 1502 unsigned shift, unsigned long index, 1503 unsigned long npages) 1504 { 1505 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1506 unsigned long start, end, inc; 1507 1508 /* We'll invalidate DMA address in PE scope */ 1509 start = PHB3_TCE_KILL_INVAL_ONE; 1510 start |= (pe->pe_number & 0xFF); 1511 end = start; 1512 1513 /* Figure out the start, end and step */ 1514 start |= (index << shift); 1515 end |= ((index + npages - 1) << shift); 1516 inc = (0x1ull << shift); 1517 mb(); 1518 1519 while (start <= end) { 1520 if (rm) 1521 __raw_rm_writeq_be(start, invalidate); 1522 else 1523 __raw_writeq_be(start, invalidate); 1524 start += inc; 1525 } 1526 } 1527 1528 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1529 { 1530 struct pnv_phb *phb = pe->phb; 1531 1532 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1533 pnv_pci_phb3_tce_invalidate_pe(pe); 1534 else 1535 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, 1536 pe->pe_number, 0, 0, 0); 1537 } 1538 1539 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, 1540 unsigned long index, unsigned long npages, bool rm) 1541 { 1542 struct iommu_table_group_link *tgl; 1543 1544 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) { 1545 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1546 struct pnv_ioda_pe, table_group); 1547 struct pnv_phb *phb = pe->phb; 1548 unsigned int shift = tbl->it_page_shift; 1549 1550 /* 1551 * NVLink1 can use the TCE kill register directly as 1552 * it's the same as PHB3. NVLink2 is different and 1553 * should go via the OPAL call. 1554 */ 1555 if (phb->model == PNV_PHB_MODEL_NPU) { 1556 /* 1557 * The NVLink hardware does not support TCE kill 1558 * per TCE entry so we have to invalidate 1559 * the entire cache for it. 1560 */ 1561 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 1562 continue; 1563 } 1564 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1565 pnv_pci_phb3_tce_invalidate(pe, rm, shift, 1566 index, npages); 1567 else 1568 opal_pci_tce_kill(phb->opal_id, 1569 OPAL_PCI_TCE_KILL_PAGES, 1570 pe->pe_number, 1u << shift, 1571 index << shift, npages); 1572 } 1573 } 1574 1575 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 1576 { 1577 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3) 1578 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 1579 else 1580 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0); 1581 } 1582 1583 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, 1584 long npages, unsigned long uaddr, 1585 enum dma_data_direction direction, 1586 unsigned long attrs) 1587 { 1588 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1589 attrs); 1590 1591 if (!ret) 1592 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 1593 1594 return ret; 1595 } 1596 1597 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, 1598 long npages) 1599 { 1600 pnv_tce_free(tbl, index, npages); 1601 1602 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 1603 } 1604 1605 static struct iommu_table_ops pnv_ioda2_iommu_ops = { 1606 .set = pnv_ioda2_tce_build, 1607 #ifdef CONFIG_IOMMU_API 1608 .xchg_no_kill = pnv_ioda_tce_xchg_no_kill, 1609 .tce_kill = pnv_pci_ioda2_tce_invalidate, 1610 .useraddrptr = pnv_tce_useraddrptr, 1611 #endif 1612 .clear = pnv_ioda2_tce_free, 1613 .get = pnv_tce_get, 1614 .free = pnv_pci_ioda2_table_free_pages, 1615 }; 1616 1617 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) 1618 { 1619 unsigned int *weight = (unsigned int *)data; 1620 1621 /* This is quite simplistic. The "base" weight of a device 1622 * is 10. 0 means no DMA is to be accounted for it. 1623 */ 1624 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) 1625 return 0; 1626 1627 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || 1628 dev->class == PCI_CLASS_SERIAL_USB_OHCI || 1629 dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1630 *weight += 3; 1631 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) 1632 *weight += 15; 1633 else 1634 *weight += 10; 1635 1636 return 0; 1637 } 1638 1639 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) 1640 { 1641 unsigned int weight = 0; 1642 1643 /* SRIOV VF has same DMA32 weight as its PF */ 1644 #ifdef CONFIG_PCI_IOV 1645 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { 1646 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); 1647 return weight; 1648 } 1649 #endif 1650 1651 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { 1652 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); 1653 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { 1654 struct pci_dev *pdev; 1655 1656 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) 1657 pnv_pci_ioda_dev_dma_weight(pdev, &weight); 1658 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { 1659 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); 1660 } 1661 1662 return weight; 1663 } 1664 1665 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, 1666 struct pnv_ioda_pe *pe) 1667 { 1668 1669 struct page *tce_mem = NULL; 1670 struct iommu_table *tbl; 1671 unsigned int weight, total_weight = 0; 1672 unsigned int tce32_segsz, base, segs, avail, i; 1673 int64_t rc; 1674 void *addr; 1675 1676 /* XXX FIXME: Handle 64-bit only DMA devices */ 1677 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ 1678 /* XXX FIXME: Allocate multi-level tables on PHB3 */ 1679 weight = pnv_pci_ioda_pe_dma_weight(pe); 1680 if (!weight) 1681 return; 1682 1683 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, 1684 &total_weight); 1685 segs = (weight * phb->ioda.dma32_count) / total_weight; 1686 if (!segs) 1687 segs = 1; 1688 1689 /* 1690 * Allocate contiguous DMA32 segments. We begin with the expected 1691 * number of segments. With one more attempt, the number of DMA32 1692 * segments to be allocated is decreased by one until one segment 1693 * is allocated successfully. 1694 */ 1695 do { 1696 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { 1697 for (avail = 0, i = base; i < base + segs; i++) { 1698 if (phb->ioda.dma32_segmap[i] == 1699 IODA_INVALID_PE) 1700 avail++; 1701 } 1702 1703 if (avail == segs) 1704 goto found; 1705 } 1706 } while (--segs); 1707 1708 if (!segs) { 1709 pe_warn(pe, "No available DMA32 segments\n"); 1710 return; 1711 } 1712 1713 found: 1714 tbl = pnv_pci_table_alloc(phb->hose->node); 1715 if (WARN_ON(!tbl)) 1716 return; 1717 1718 iommu_register_group(&pe->table_group, phb->hose->global_number, 1719 pe->pe_number); 1720 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); 1721 1722 /* Grab a 32-bit TCE table */ 1723 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", 1724 weight, total_weight, base, segs); 1725 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", 1726 base * PNV_IODA1_DMA32_SEGSIZE, 1727 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); 1728 1729 /* XXX Currently, we allocate one big contiguous table for the 1730 * TCEs. We only really need one chunk per 256M of TCE space 1731 * (ie per segment) but that's an optimization for later, it 1732 * requires some added smarts with our get/put_tce implementation 1733 * 1734 * Each TCE page is 4KB in size and each TCE entry occupies 8 1735 * bytes 1736 */ 1737 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); 1738 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, 1739 get_order(tce32_segsz * segs)); 1740 if (!tce_mem) { 1741 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); 1742 goto fail; 1743 } 1744 addr = page_address(tce_mem); 1745 memset(addr, 0, tce32_segsz * segs); 1746 1747 /* Configure HW */ 1748 for (i = 0; i < segs; i++) { 1749 rc = opal_pci_map_pe_dma_window(phb->opal_id, 1750 pe->pe_number, 1751 base + i, 1, 1752 __pa(addr) + tce32_segsz * i, 1753 tce32_segsz, IOMMU_PAGE_SIZE_4K); 1754 if (rc) { 1755 pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n", 1756 rc); 1757 goto fail; 1758 } 1759 } 1760 1761 /* Setup DMA32 segment mapping */ 1762 for (i = base; i < base + segs; i++) 1763 phb->ioda.dma32_segmap[i] = pe->pe_number; 1764 1765 /* Setup linux iommu table */ 1766 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, 1767 base * PNV_IODA1_DMA32_SEGSIZE, 1768 IOMMU_PAGE_SHIFT_4K); 1769 1770 tbl->it_ops = &pnv_ioda1_iommu_ops; 1771 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; 1772 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; 1773 iommu_init_table(tbl, phb->hose->node, 0, 0); 1774 1775 pe->dma_setup_done = true; 1776 return; 1777 fail: 1778 /* XXX Failure: Try to fallback to 64-bit only ? */ 1779 if (tce_mem) 1780 __free_pages(tce_mem, get_order(tce32_segsz * segs)); 1781 if (tbl) { 1782 pnv_pci_unlink_table_and_group(tbl, &pe->table_group); 1783 iommu_tce_table_put(tbl); 1784 } 1785 } 1786 1787 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, 1788 int num, struct iommu_table *tbl) 1789 { 1790 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 1791 table_group); 1792 struct pnv_phb *phb = pe->phb; 1793 int64_t rc; 1794 const unsigned long size = tbl->it_indirect_levels ? 1795 tbl->it_level_size : tbl->it_size; 1796 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; 1797 const __u64 win_size = tbl->it_size << tbl->it_page_shift; 1798 1799 pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n", 1800 num, start_addr, start_addr + win_size - 1, 1801 IOMMU_PAGE_SIZE(tbl)); 1802 1803 /* 1804 * Map TCE table through TVT. The TVE index is the PE number 1805 * shifted by 1 bit for 32-bits DMA space. 1806 */ 1807 rc = opal_pci_map_pe_dma_window(phb->opal_id, 1808 pe->pe_number, 1809 (pe->pe_number << 1) + num, 1810 tbl->it_indirect_levels + 1, 1811 __pa(tbl->it_base), 1812 size << 3, 1813 IOMMU_PAGE_SIZE(tbl)); 1814 if (rc) { 1815 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc); 1816 return rc; 1817 } 1818 1819 pnv_pci_link_table_and_group(phb->hose->node, num, 1820 tbl, &pe->table_group); 1821 pnv_pci_ioda2_tce_invalidate_pe(pe); 1822 1823 return 0; 1824 } 1825 1826 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) 1827 { 1828 uint16_t window_id = (pe->pe_number << 1 ) + 1; 1829 int64_t rc; 1830 1831 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); 1832 if (enable) { 1833 phys_addr_t top = memblock_end_of_DRAM(); 1834 1835 top = roundup_pow_of_two(top); 1836 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 1837 pe->pe_number, 1838 window_id, 1839 pe->tce_bypass_base, 1840 top); 1841 } else { 1842 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 1843 pe->pe_number, 1844 window_id, 1845 pe->tce_bypass_base, 1846 0); 1847 } 1848 if (rc) 1849 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); 1850 else 1851 pe->tce_bypass_enabled = enable; 1852 } 1853 1854 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, 1855 int num, __u32 page_shift, __u64 window_size, __u32 levels, 1856 bool alloc_userspace_copy, struct iommu_table **ptbl) 1857 { 1858 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 1859 table_group); 1860 int nid = pe->phb->hose->node; 1861 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; 1862 long ret; 1863 struct iommu_table *tbl; 1864 1865 tbl = pnv_pci_table_alloc(nid); 1866 if (!tbl) 1867 return -ENOMEM; 1868 1869 tbl->it_ops = &pnv_ioda2_iommu_ops; 1870 1871 ret = pnv_pci_ioda2_table_alloc_pages(nid, 1872 bus_offset, page_shift, window_size, 1873 levels, alloc_userspace_copy, tbl); 1874 if (ret) { 1875 iommu_tce_table_put(tbl); 1876 return ret; 1877 } 1878 1879 *ptbl = tbl; 1880 1881 return 0; 1882 } 1883 1884 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) 1885 { 1886 struct iommu_table *tbl = NULL; 1887 long rc; 1888 unsigned long res_start, res_end; 1889 1890 /* 1891 * crashkernel= specifies the kdump kernel's maximum memory at 1892 * some offset and there is no guaranteed the result is a power 1893 * of 2, which will cause errors later. 1894 */ 1895 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); 1896 1897 /* 1898 * In memory constrained environments, e.g. kdump kernel, the 1899 * DMA window can be larger than available memory, which will 1900 * cause errors later. 1901 */ 1902 const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1); 1903 1904 /* 1905 * We create the default window as big as we can. The constraint is 1906 * the max order of allocation possible. The TCE table is likely to 1907 * end up being multilevel and with on-demand allocation in place, 1908 * the initial use is not going to be huge as the default window aims 1909 * to support crippled devices (i.e. not fully 64bit DMAble) only. 1910 */ 1911 /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */ 1912 const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory); 1913 /* Each TCE level cannot exceed maxblock so go multilevel if needed */ 1914 unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT); 1915 unsigned long tcelevel_order = ilog2(maxblock >> 3); 1916 unsigned int levels = tces_order / tcelevel_order; 1917 1918 if (tces_order % tcelevel_order) 1919 levels += 1; 1920 /* 1921 * We try to stick to default levels (which is >1 at the moment) in 1922 * order to save memory by relying on on-demain TCE level allocation. 1923 */ 1924 levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS); 1925 1926 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT, 1927 window_size, levels, false, &tbl); 1928 if (rc) { 1929 pe_err(pe, "Failed to create 32-bit TCE table, err %ld", 1930 rc); 1931 return rc; 1932 } 1933 1934 /* We use top part of 32bit space for MMIO so exclude it from DMA */ 1935 res_start = 0; 1936 res_end = 0; 1937 if (window_size > pe->phb->ioda.m32_pci_base) { 1938 res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift; 1939 res_end = min(window_size, SZ_4G) >> tbl->it_page_shift; 1940 } 1941 iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end); 1942 1943 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); 1944 if (rc) { 1945 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", 1946 rc); 1947 iommu_tce_table_put(tbl); 1948 return rc; 1949 } 1950 1951 if (!pnv_iommu_bypass_disabled) 1952 pnv_pci_ioda2_set_bypass(pe, true); 1953 1954 /* 1955 * Set table base for the case of IOMMU DMA use. Usually this is done 1956 * from dma_dev_setup() which is not called when a device is returned 1957 * from VFIO so do it here. 1958 */ 1959 if (pe->pdev) 1960 set_iommu_table_base(&pe->pdev->dev, tbl); 1961 1962 return 0; 1963 } 1964 1965 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 1966 int num) 1967 { 1968 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 1969 table_group); 1970 struct pnv_phb *phb = pe->phb; 1971 long ret; 1972 1973 pe_info(pe, "Removing DMA window #%d\n", num); 1974 1975 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 1976 (pe->pe_number << 1) + num, 1977 0/* levels */, 0/* table address */, 1978 0/* table size */, 0/* page size */); 1979 if (ret) 1980 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); 1981 else 1982 pnv_pci_ioda2_tce_invalidate_pe(pe); 1983 1984 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 1985 1986 return ret; 1987 } 1988 1989 #ifdef CONFIG_IOMMU_API 1990 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, 1991 __u64 window_size, __u32 levels) 1992 { 1993 unsigned long bytes = 0; 1994 const unsigned window_shift = ilog2(window_size); 1995 unsigned entries_shift = window_shift - page_shift; 1996 unsigned table_shift = entries_shift + 3; 1997 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); 1998 unsigned long direct_table_size; 1999 2000 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || 2001 !is_power_of_2(window_size)) 2002 return 0; 2003 2004 /* Calculate a direct table size from window_size and levels */ 2005 entries_shift = (entries_shift + levels - 1) / levels; 2006 table_shift = entries_shift + 3; 2007 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); 2008 direct_table_size = 1UL << table_shift; 2009 2010 for ( ; levels; --levels) { 2011 bytes += ALIGN(tce_table_size, direct_table_size); 2012 2013 tce_table_size /= direct_table_size; 2014 tce_table_size <<= 3; 2015 tce_table_size = max_t(unsigned long, 2016 tce_table_size, direct_table_size); 2017 } 2018 2019 return bytes + bytes; /* one for HW table, one for userspace copy */ 2020 } 2021 2022 static long pnv_pci_ioda2_create_table_userspace( 2023 struct iommu_table_group *table_group, 2024 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2025 struct iommu_table **ptbl) 2026 { 2027 long ret = pnv_pci_ioda2_create_table(table_group, 2028 num, page_shift, window_size, levels, true, ptbl); 2029 2030 if (!ret) 2031 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size( 2032 page_shift, window_size, levels); 2033 return ret; 2034 } 2035 2036 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus) 2037 { 2038 struct pci_dev *dev; 2039 2040 list_for_each_entry(dev, &bus->devices, bus_list) { 2041 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); 2042 dev->dev.archdata.dma_offset = pe->tce_bypass_base; 2043 2044 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 2045 pnv_ioda_setup_bus_dma(pe, dev->subordinate); 2046 } 2047 } 2048 2049 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) 2050 { 2051 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2052 table_group); 2053 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ 2054 struct iommu_table *tbl = pe->table_group.tables[0]; 2055 2056 pnv_pci_ioda2_set_bypass(pe, false); 2057 pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2058 if (pe->pbus) 2059 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2060 else if (pe->pdev) 2061 set_iommu_table_base(&pe->pdev->dev, NULL); 2062 iommu_tce_table_put(tbl); 2063 } 2064 2065 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) 2066 { 2067 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2068 table_group); 2069 2070 pnv_pci_ioda2_setup_default_config(pe); 2071 if (pe->pbus) 2072 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2073 } 2074 2075 static struct iommu_table_group_ops pnv_pci_ioda2_ops = { 2076 .get_table_size = pnv_pci_ioda2_get_table_size, 2077 .create_table = pnv_pci_ioda2_create_table_userspace, 2078 .set_window = pnv_pci_ioda2_set_window, 2079 .unset_window = pnv_pci_ioda2_unset_window, 2080 .take_ownership = pnv_ioda2_take_ownership, 2081 .release_ownership = pnv_ioda2_release_ownership, 2082 }; 2083 #endif 2084 2085 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 2086 struct pnv_ioda_pe *pe) 2087 { 2088 int64_t rc; 2089 2090 /* TVE #1 is selected by PCI address bit 59 */ 2091 pe->tce_bypass_base = 1ull << 59; 2092 2093 /* The PE will reserve all possible 32-bits space */ 2094 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", 2095 phb->ioda.m32_pci_base); 2096 2097 /* Setup linux iommu table */ 2098 pe->table_group.tce32_start = 0; 2099 pe->table_group.tce32_size = phb->ioda.m32_pci_base; 2100 pe->table_group.max_dynamic_windows_supported = 2101 IOMMU_TABLE_GROUP_MAX_TABLES; 2102 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; 2103 pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb); 2104 2105 rc = pnv_pci_ioda2_setup_default_config(pe); 2106 if (rc) 2107 return; 2108 2109 #ifdef CONFIG_IOMMU_API 2110 pe->table_group.ops = &pnv_pci_ioda2_ops; 2111 iommu_register_group(&pe->table_group, phb->hose->global_number, 2112 pe->pe_number); 2113 #endif 2114 pe->dma_setup_done = true; 2115 } 2116 2117 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq) 2118 { 2119 struct pnv_phb *phb = container_of(chip, struct pnv_phb, 2120 ioda.irq_chip); 2121 2122 return opal_pci_msi_eoi(phb->opal_id, hw_irq); 2123 } 2124 2125 static void pnv_ioda2_msi_eoi(struct irq_data *d) 2126 { 2127 int64_t rc; 2128 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 2129 struct irq_chip *chip = irq_data_get_irq_chip(d); 2130 2131 rc = pnv_opal_pci_msi_eoi(chip, hw_irq); 2132 WARN_ON_ONCE(rc); 2133 2134 icp_native_eoi(d); 2135 } 2136 2137 2138 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) 2139 { 2140 struct irq_data *idata; 2141 struct irq_chip *ichip; 2142 2143 /* The MSI EOI OPAL call is only needed on PHB3 */ 2144 if (phb->model != PNV_PHB_MODEL_PHB3) 2145 return; 2146 2147 if (!phb->ioda.irq_chip_init) { 2148 /* 2149 * First time we setup an MSI IRQ, we need to setup the 2150 * corresponding IRQ chip to route correctly. 2151 */ 2152 idata = irq_get_irq_data(virq); 2153 ichip = irq_data_get_irq_chip(idata); 2154 phb->ioda.irq_chip_init = 1; 2155 phb->ioda.irq_chip = *ichip; 2156 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; 2157 } 2158 irq_set_chip(virq, &phb->ioda.irq_chip); 2159 } 2160 2161 /* 2162 * Returns true iff chip is something that we could call 2163 * pnv_opal_pci_msi_eoi for. 2164 */ 2165 bool is_pnv_opal_msi(struct irq_chip *chip) 2166 { 2167 return chip->irq_eoi == pnv_ioda2_msi_eoi; 2168 } 2169 EXPORT_SYMBOL_GPL(is_pnv_opal_msi); 2170 2171 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, 2172 unsigned int hwirq, unsigned int virq, 2173 unsigned int is_64, struct msi_msg *msg) 2174 { 2175 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); 2176 unsigned int xive_num = hwirq - phb->msi_base; 2177 __be32 data; 2178 int rc; 2179 2180 /* No PE assigned ? bail out ... no MSI for you ! */ 2181 if (pe == NULL) 2182 return -ENXIO; 2183 2184 /* Check if we have an MVE */ 2185 if (pe->mve_number < 0) 2186 return -ENXIO; 2187 2188 /* Force 32-bit MSI on some broken devices */ 2189 if (dev->no_64bit_msi) 2190 is_64 = 0; 2191 2192 /* Assign XIVE to PE */ 2193 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); 2194 if (rc) { 2195 pr_warn("%s: OPAL error %d setting XIVE %d PE\n", 2196 pci_name(dev), rc, xive_num); 2197 return -EIO; 2198 } 2199 2200 if (is_64) { 2201 __be64 addr64; 2202 2203 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, 2204 &addr64, &data); 2205 if (rc) { 2206 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", 2207 pci_name(dev), rc); 2208 return -EIO; 2209 } 2210 msg->address_hi = be64_to_cpu(addr64) >> 32; 2211 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; 2212 } else { 2213 __be32 addr32; 2214 2215 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, 2216 &addr32, &data); 2217 if (rc) { 2218 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", 2219 pci_name(dev), rc); 2220 return -EIO; 2221 } 2222 msg->address_hi = 0; 2223 msg->address_lo = be32_to_cpu(addr32); 2224 } 2225 msg->data = be32_to_cpu(data); 2226 2227 pnv_set_msi_irq_chip(phb, virq); 2228 2229 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," 2230 " address=%x_%08x data=%x PE# %x\n", 2231 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, 2232 msg->address_hi, msg->address_lo, data, pe->pe_number); 2233 2234 return 0; 2235 } 2236 2237 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) 2238 { 2239 unsigned int count; 2240 const __be32 *prop = of_get_property(phb->hose->dn, 2241 "ibm,opal-msi-ranges", NULL); 2242 if (!prop) { 2243 /* BML Fallback */ 2244 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); 2245 } 2246 if (!prop) 2247 return; 2248 2249 phb->msi_base = be32_to_cpup(prop); 2250 count = be32_to_cpup(prop + 1); 2251 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { 2252 pr_err("PCI %d: Failed to allocate MSI bitmap !\n", 2253 phb->hose->global_number); 2254 return; 2255 } 2256 2257 phb->msi_setup = pnv_pci_ioda_msi_setup; 2258 phb->msi32_support = 1; 2259 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", 2260 count, phb->msi_base); 2261 } 2262 2263 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, 2264 struct resource *res) 2265 { 2266 struct pnv_phb *phb = pe->phb; 2267 struct pci_bus_region region; 2268 int index; 2269 int64_t rc; 2270 2271 if (!res || !res->flags || res->start > res->end) 2272 return; 2273 2274 if (res->flags & IORESOURCE_IO) { 2275 region.start = res->start - phb->ioda.io_pci_base; 2276 region.end = res->end - phb->ioda.io_pci_base; 2277 index = region.start / phb->ioda.io_segsize; 2278 2279 while (index < phb->ioda.total_pe_num && 2280 region.start <= region.end) { 2281 phb->ioda.io_segmap[index] = pe->pe_number; 2282 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 2283 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); 2284 if (rc != OPAL_SUCCESS) { 2285 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n", 2286 __func__, rc, index, pe->pe_number); 2287 break; 2288 } 2289 2290 region.start += phb->ioda.io_segsize; 2291 index++; 2292 } 2293 } else if ((res->flags & IORESOURCE_MEM) && 2294 !pnv_pci_is_m64(phb, res)) { 2295 region.start = res->start - 2296 phb->hose->mem_offset[0] - 2297 phb->ioda.m32_pci_base; 2298 region.end = res->end - 2299 phb->hose->mem_offset[0] - 2300 phb->ioda.m32_pci_base; 2301 index = region.start / phb->ioda.m32_segsize; 2302 2303 while (index < phb->ioda.total_pe_num && 2304 region.start <= region.end) { 2305 phb->ioda.m32_segmap[index] = pe->pe_number; 2306 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 2307 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); 2308 if (rc != OPAL_SUCCESS) { 2309 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x", 2310 __func__, rc, index, pe->pe_number); 2311 break; 2312 } 2313 2314 region.start += phb->ioda.m32_segsize; 2315 index++; 2316 } 2317 } 2318 } 2319 2320 /* 2321 * This function is supposed to be called on basis of PE from top 2322 * to bottom style. So the the I/O or MMIO segment assigned to 2323 * parent PE could be overridden by its child PEs if necessary. 2324 */ 2325 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) 2326 { 2327 struct pci_dev *pdev; 2328 int i; 2329 2330 /* 2331 * NOTE: We only care PCI bus based PE for now. For PCI 2332 * device based PE, for example SRIOV sensitive VF should 2333 * be figured out later. 2334 */ 2335 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); 2336 2337 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 2338 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2339 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); 2340 2341 /* 2342 * If the PE contains all subordinate PCI buses, the 2343 * windows of the child bridges should be mapped to 2344 * the PE as well. 2345 */ 2346 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) 2347 continue; 2348 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) 2349 pnv_ioda_setup_pe_res(pe, 2350 &pdev->resource[PCI_BRIDGE_RESOURCES + i]); 2351 } 2352 } 2353 2354 #ifdef CONFIG_DEBUG_FS 2355 static int pnv_pci_diag_data_set(void *data, u64 val) 2356 { 2357 struct pnv_phb *phb = data; 2358 s64 ret; 2359 2360 /* Retrieve the diag data from firmware */ 2361 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data, 2362 phb->diag_data_size); 2363 if (ret != OPAL_SUCCESS) 2364 return -EIO; 2365 2366 /* Print the diag data to the kernel log */ 2367 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data); 2368 return 0; 2369 } 2370 2371 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set, 2372 "%llu\n"); 2373 2374 static int pnv_pci_ioda_pe_dump(void *data, u64 val) 2375 { 2376 struct pnv_phb *phb = data; 2377 int pe_num; 2378 2379 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 2380 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num]; 2381 2382 if (!test_bit(pe_num, phb->ioda.pe_alloc)) 2383 continue; 2384 2385 pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n", 2386 pe->rid, pe->device_count, 2387 (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "", 2388 (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "", 2389 (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "", 2390 (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "", 2391 (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "", 2392 (pe->flags & PNV_IODA_PE_VF) ? "vf " : ""); 2393 } 2394 2395 return 0; 2396 } 2397 2398 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL, 2399 pnv_pci_ioda_pe_dump, "%llu\n"); 2400 2401 #endif /* CONFIG_DEBUG_FS */ 2402 2403 static void pnv_pci_ioda_create_dbgfs(void) 2404 { 2405 #ifdef CONFIG_DEBUG_FS 2406 struct pci_controller *hose, *tmp; 2407 struct pnv_phb *phb; 2408 char name[16]; 2409 2410 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 2411 phb = hose->private_data; 2412 2413 /* Notify initialization of PHB done */ 2414 phb->initialized = 1; 2415 2416 sprintf(name, "PCI%04x", hose->global_number); 2417 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); 2418 2419 debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs, 2420 phb, &pnv_pci_diag_data_fops); 2421 debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs, 2422 phb, &pnv_pci_ioda_pe_dump_fops); 2423 } 2424 #endif /* CONFIG_DEBUG_FS */ 2425 } 2426 2427 static void pnv_pci_enable_bridge(struct pci_bus *bus) 2428 { 2429 struct pci_dev *dev = bus->self; 2430 struct pci_bus *child; 2431 2432 /* Empty bus ? bail */ 2433 if (list_empty(&bus->devices)) 2434 return; 2435 2436 /* 2437 * If there's a bridge associated with that bus enable it. This works 2438 * around races in the generic code if the enabling is done during 2439 * parallel probing. This can be removed once those races have been 2440 * fixed. 2441 */ 2442 if (dev) { 2443 int rc = pci_enable_device(dev); 2444 if (rc) 2445 pci_err(dev, "Error enabling bridge (%d)\n", rc); 2446 pci_set_master(dev); 2447 } 2448 2449 /* Perform the same to child busses */ 2450 list_for_each_entry(child, &bus->children, node) 2451 pnv_pci_enable_bridge(child); 2452 } 2453 2454 static void pnv_pci_enable_bridges(void) 2455 { 2456 struct pci_controller *hose; 2457 2458 list_for_each_entry(hose, &hose_list, list_node) 2459 pnv_pci_enable_bridge(hose->bus); 2460 } 2461 2462 static void pnv_pci_ioda_fixup(void) 2463 { 2464 pnv_pci_ioda_setup_nvlink(); 2465 pnv_pci_ioda_create_dbgfs(); 2466 2467 pnv_pci_enable_bridges(); 2468 2469 #ifdef CONFIG_EEH 2470 pnv_eeh_post_init(); 2471 #endif 2472 } 2473 2474 /* 2475 * Returns the alignment for I/O or memory windows for P2P 2476 * bridges. That actually depends on how PEs are segmented. 2477 * For now, we return I/O or M32 segment size for PE sensitive 2478 * P2P bridges. Otherwise, the default values (4KiB for I/O, 2479 * 1MiB for memory) will be returned. 2480 * 2481 * The current PCI bus might be put into one PE, which was 2482 * create against the parent PCI bridge. For that case, we 2483 * needn't enlarge the alignment so that we can save some 2484 * resources. 2485 */ 2486 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, 2487 unsigned long type) 2488 { 2489 struct pnv_phb *phb = pci_bus_to_pnvhb(bus); 2490 int num_pci_bridges = 0; 2491 struct pci_dev *bridge; 2492 2493 bridge = bus->self; 2494 while (bridge) { 2495 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { 2496 num_pci_bridges++; 2497 if (num_pci_bridges >= 2) 2498 return 1; 2499 } 2500 2501 bridge = bridge->bus->self; 2502 } 2503 2504 /* 2505 * We fall back to M32 if M64 isn't supported. We enforce the M64 2506 * alignment for any 64-bit resource, PCIe doesn't care and 2507 * bridges only do 64-bit prefetchable anyway. 2508 */ 2509 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type)) 2510 return phb->ioda.m64_segsize; 2511 if (type & IORESOURCE_MEM) 2512 return phb->ioda.m32_segsize; 2513 2514 return phb->ioda.io_segsize; 2515 } 2516 2517 /* 2518 * We are updating root port or the upstream port of the 2519 * bridge behind the root port with PHB's windows in order 2520 * to accommodate the changes on required resources during 2521 * PCI (slot) hotplug, which is connected to either root 2522 * port or the downstream ports of PCIe switch behind the 2523 * root port. 2524 */ 2525 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, 2526 unsigned long type) 2527 { 2528 struct pci_controller *hose = pci_bus_to_host(bus); 2529 struct pnv_phb *phb = hose->private_data; 2530 struct pci_dev *bridge = bus->self; 2531 struct resource *r, *w; 2532 bool msi_region = false; 2533 int i; 2534 2535 /* Check if we need apply fixup to the bridge's windows */ 2536 if (!pci_is_root_bus(bridge->bus) && 2537 !pci_is_root_bus(bridge->bus->self->bus)) 2538 return; 2539 2540 /* Fixup the resources */ 2541 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { 2542 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; 2543 if (!r->flags || !r->parent) 2544 continue; 2545 2546 w = NULL; 2547 if (r->flags & type & IORESOURCE_IO) 2548 w = &hose->io_resource; 2549 else if (pnv_pci_is_m64(phb, r) && 2550 (type & IORESOURCE_PREFETCH) && 2551 phb->ioda.m64_segsize) 2552 w = &hose->mem_resources[1]; 2553 else if (r->flags & type & IORESOURCE_MEM) { 2554 w = &hose->mem_resources[0]; 2555 msi_region = true; 2556 } 2557 2558 r->start = w->start; 2559 r->end = w->end; 2560 2561 /* The 64KB 32-bits MSI region shouldn't be included in 2562 * the 32-bits bridge window. Otherwise, we can see strange 2563 * issues. One of them is EEH error observed on Garrison. 2564 * 2565 * Exclude top 1MB region which is the minimal alignment of 2566 * 32-bits bridge window. 2567 */ 2568 if (msi_region) { 2569 r->end += 0x10000; 2570 r->end -= 0x100000; 2571 } 2572 } 2573 } 2574 2575 static void pnv_pci_configure_bus(struct pci_bus *bus) 2576 { 2577 struct pci_dev *bridge = bus->self; 2578 struct pnv_ioda_pe *pe; 2579 bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); 2580 2581 dev_info(&bus->dev, "Configuring PE for bus\n"); 2582 2583 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ 2584 if (WARN_ON(list_empty(&bus->devices))) 2585 return; 2586 2587 /* Reserve PEs according to used M64 resources */ 2588 pnv_ioda_reserve_m64_pe(bus, NULL, all); 2589 2590 /* 2591 * Assign PE. We might run here because of partial hotplug. 2592 * For the case, we just pick up the existing PE and should 2593 * not allocate resources again. 2594 */ 2595 pe = pnv_ioda_setup_bus_PE(bus, all); 2596 if (!pe) 2597 return; 2598 2599 pnv_ioda_setup_pe_seg(pe); 2600 } 2601 2602 static resource_size_t pnv_pci_default_alignment(void) 2603 { 2604 return PAGE_SIZE; 2605 } 2606 2607 /* Prevent enabling devices for which we couldn't properly 2608 * assign a PE 2609 */ 2610 static bool pnv_pci_enable_device_hook(struct pci_dev *dev) 2611 { 2612 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); 2613 struct pci_dn *pdn; 2614 2615 /* The function is probably called while the PEs have 2616 * not be created yet. For example, resource reassignment 2617 * during PCI probe period. We just skip the check if 2618 * PEs isn't ready. 2619 */ 2620 if (!phb->initialized) 2621 return true; 2622 2623 pdn = pci_get_pdn(dev); 2624 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 2625 return false; 2626 2627 return true; 2628 } 2629 2630 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev) 2631 { 2632 struct pci_controller *hose = pci_bus_to_host(dev->bus); 2633 struct pnv_phb *phb = hose->private_data; 2634 struct pci_dn *pdn; 2635 struct pnv_ioda_pe *pe; 2636 2637 if (!phb->initialized) 2638 return true; 2639 2640 pdn = pci_get_pdn(dev); 2641 if (!pdn) 2642 return false; 2643 2644 if (pdn->pe_number == IODA_INVALID_PE) { 2645 pe = pnv_ioda_setup_dev_PE(dev); 2646 if (!pe) 2647 return false; 2648 } 2649 return true; 2650 } 2651 2652 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, 2653 int num) 2654 { 2655 struct pnv_ioda_pe *pe = container_of(table_group, 2656 struct pnv_ioda_pe, table_group); 2657 struct pnv_phb *phb = pe->phb; 2658 unsigned int idx; 2659 long rc; 2660 2661 pe_info(pe, "Removing DMA window #%d\n", num); 2662 for (idx = 0; idx < phb->ioda.dma32_count; idx++) { 2663 if (phb->ioda.dma32_segmap[idx] != pe->pe_number) 2664 continue; 2665 2666 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 2667 idx, 0, 0ul, 0ul, 0ul); 2668 if (rc != OPAL_SUCCESS) { 2669 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", 2670 rc, idx); 2671 return rc; 2672 } 2673 2674 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; 2675 } 2676 2677 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 2678 return OPAL_SUCCESS; 2679 } 2680 2681 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) 2682 { 2683 struct iommu_table *tbl = pe->table_group.tables[0]; 2684 int64_t rc; 2685 2686 if (!pe->dma_setup_done) 2687 return; 2688 2689 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); 2690 if (rc != OPAL_SUCCESS) 2691 return; 2692 2693 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); 2694 if (pe->table_group.group) { 2695 iommu_group_put(pe->table_group.group); 2696 WARN_ON(pe->table_group.group); 2697 } 2698 2699 free_pages(tbl->it_base, get_order(tbl->it_size << 3)); 2700 iommu_tce_table_put(tbl); 2701 } 2702 2703 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) 2704 { 2705 struct iommu_table *tbl = pe->table_group.tables[0]; 2706 int64_t rc; 2707 2708 if (pe->dma_setup_done) 2709 return; 2710 2711 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2712 if (rc) 2713 pe_warn(pe, "OPAL error %lld release DMA window\n", rc); 2714 2715 pnv_pci_ioda2_set_bypass(pe, false); 2716 if (pe->table_group.group) { 2717 iommu_group_put(pe->table_group.group); 2718 WARN_ON(pe->table_group.group); 2719 } 2720 2721 iommu_tce_table_put(tbl); 2722 } 2723 2724 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, 2725 unsigned short win, 2726 unsigned int *map) 2727 { 2728 struct pnv_phb *phb = pe->phb; 2729 int idx; 2730 int64_t rc; 2731 2732 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { 2733 if (map[idx] != pe->pe_number) 2734 continue; 2735 2736 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 2737 phb->ioda.reserved_pe_idx, win, 0, idx); 2738 2739 if (rc != OPAL_SUCCESS) 2740 pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n", 2741 rc, win, idx); 2742 2743 map[idx] = IODA_INVALID_PE; 2744 } 2745 } 2746 2747 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) 2748 { 2749 struct pnv_phb *phb = pe->phb; 2750 2751 if (phb->type == PNV_PHB_IODA1) { 2752 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, 2753 phb->ioda.io_segmap); 2754 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 2755 phb->ioda.m32_segmap); 2756 /* M64 is pre-configured by pnv_ioda1_init_m64() */ 2757 } else if (phb->type == PNV_PHB_IODA2) { 2758 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 2759 phb->ioda.m32_segmap); 2760 } 2761 } 2762 2763 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) 2764 { 2765 struct pnv_phb *phb = pe->phb; 2766 struct pnv_ioda_pe *slave, *tmp; 2767 2768 pe_info(pe, "Releasing PE\n"); 2769 2770 mutex_lock(&phb->ioda.pe_list_mutex); 2771 list_del(&pe->list); 2772 mutex_unlock(&phb->ioda.pe_list_mutex); 2773 2774 switch (phb->type) { 2775 case PNV_PHB_IODA1: 2776 pnv_pci_ioda1_release_pe_dma(pe); 2777 break; 2778 case PNV_PHB_IODA2: 2779 pnv_pci_ioda2_release_pe_dma(pe); 2780 break; 2781 case PNV_PHB_NPU_OCAPI: 2782 break; 2783 default: 2784 WARN_ON(1); 2785 } 2786 2787 pnv_ioda_release_pe_seg(pe); 2788 pnv_ioda_deconfigure_pe(pe->phb, pe); 2789 2790 /* Release slave PEs in the compound PE */ 2791 if (pe->flags & PNV_IODA_PE_MASTER) { 2792 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { 2793 list_del(&slave->list); 2794 pnv_ioda_free_pe(slave); 2795 } 2796 } 2797 2798 /* 2799 * The PE for root bus can be removed because of hotplug in EEH 2800 * recovery for fenced PHB error. We need to mark the PE dead so 2801 * that it can be populated again in PCI hot add path. The PE 2802 * shouldn't be destroyed as it's the global reserved resource. 2803 */ 2804 if (phb->ioda.root_pe_idx == pe->pe_number) 2805 return; 2806 2807 pnv_ioda_free_pe(pe); 2808 } 2809 2810 static void pnv_pci_release_device(struct pci_dev *pdev) 2811 { 2812 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 2813 struct pci_dn *pdn = pci_get_pdn(pdev); 2814 struct pnv_ioda_pe *pe; 2815 2816 /* The VF PE state is torn down when sriov_disable() is called */ 2817 if (pdev->is_virtfn) 2818 return; 2819 2820 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 2821 return; 2822 2823 #ifdef CONFIG_PCI_IOV 2824 /* 2825 * FIXME: Try move this to sriov_disable(). It's here since we allocate 2826 * the iov state at probe time since we need to fiddle with the IOV 2827 * resources. 2828 */ 2829 if (pdev->is_physfn) 2830 kfree(pdev->dev.archdata.iov_data); 2831 #endif 2832 2833 /* 2834 * PCI hotplug can happen as part of EEH error recovery. The @pdn 2835 * isn't removed and added afterwards in this scenario. We should 2836 * set the PE number in @pdn to an invalid one. Otherwise, the PE's 2837 * device count is decreased on removing devices while failing to 2838 * be increased on adding devices. It leads to unbalanced PE's device 2839 * count and eventually make normal PCI hotplug path broken. 2840 */ 2841 pe = &phb->ioda.pe_array[pdn->pe_number]; 2842 pdn->pe_number = IODA_INVALID_PE; 2843 2844 WARN_ON(--pe->device_count < 0); 2845 if (pe->device_count == 0) 2846 pnv_ioda_release_pe(pe); 2847 } 2848 2849 static void pnv_npu_disable_device(struct pci_dev *pdev) 2850 { 2851 struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev); 2852 struct eeh_pe *eehpe = edev ? edev->pe : NULL; 2853 2854 if (eehpe && eeh_ops && eeh_ops->reset) 2855 eeh_ops->reset(eehpe, EEH_RESET_HOT); 2856 } 2857 2858 static void pnv_pci_ioda_shutdown(struct pci_controller *hose) 2859 { 2860 struct pnv_phb *phb = hose->private_data; 2861 2862 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, 2863 OPAL_ASSERT_RESET); 2864 } 2865 2866 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus) 2867 { 2868 struct pnv_phb *phb = pci_bus_to_pnvhb(bus); 2869 struct pnv_ioda_pe *pe; 2870 2871 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2872 if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))) 2873 continue; 2874 2875 if (!pe->pbus) 2876 continue; 2877 2878 if (bus->number == ((pe->rid >> 8) & 0xFF)) { 2879 pe->pbus = bus; 2880 break; 2881 } 2882 } 2883 } 2884 2885 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { 2886 .dma_dev_setup = pnv_pci_ioda_dma_dev_setup, 2887 .dma_bus_setup = pnv_pci_ioda_dma_bus_setup, 2888 .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported, 2889 .setup_msi_irqs = pnv_setup_msi_irqs, 2890 .teardown_msi_irqs = pnv_teardown_msi_irqs, 2891 .enable_device_hook = pnv_pci_enable_device_hook, 2892 .release_device = pnv_pci_release_device, 2893 .window_alignment = pnv_pci_window_alignment, 2894 .setup_bridge = pnv_pci_fixup_bridge_resources, 2895 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 2896 .shutdown = pnv_pci_ioda_shutdown, 2897 }; 2898 2899 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = { 2900 .setup_msi_irqs = pnv_setup_msi_irqs, 2901 .teardown_msi_irqs = pnv_teardown_msi_irqs, 2902 .enable_device_hook = pnv_pci_enable_device_hook, 2903 .window_alignment = pnv_pci_window_alignment, 2904 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 2905 .shutdown = pnv_pci_ioda_shutdown, 2906 .disable_device = pnv_npu_disable_device, 2907 }; 2908 2909 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = { 2910 .enable_device_hook = pnv_ocapi_enable_device_hook, 2911 .release_device = pnv_pci_release_device, 2912 .window_alignment = pnv_pci_window_alignment, 2913 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 2914 .shutdown = pnv_pci_ioda_shutdown, 2915 }; 2916 2917 static void __init pnv_pci_init_ioda_phb(struct device_node *np, 2918 u64 hub_id, int ioda_type) 2919 { 2920 struct pci_controller *hose; 2921 struct pnv_phb *phb; 2922 unsigned long size, m64map_off, m32map_off, pemap_off; 2923 unsigned long iomap_off = 0, dma32map_off = 0; 2924 struct pnv_ioda_pe *root_pe; 2925 struct resource r; 2926 const __be64 *prop64; 2927 const __be32 *prop32; 2928 int len; 2929 unsigned int segno; 2930 u64 phb_id; 2931 void *aux; 2932 long rc; 2933 2934 if (!of_device_is_available(np)) 2935 return; 2936 2937 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np); 2938 2939 prop64 = of_get_property(np, "ibm,opal-phbid", NULL); 2940 if (!prop64) { 2941 pr_err(" Missing \"ibm,opal-phbid\" property !\n"); 2942 return; 2943 } 2944 phb_id = be64_to_cpup(prop64); 2945 pr_debug(" PHB-ID : 0x%016llx\n", phb_id); 2946 2947 phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES); 2948 if (!phb) 2949 panic("%s: Failed to allocate %zu bytes\n", __func__, 2950 sizeof(*phb)); 2951 2952 /* Allocate PCI controller */ 2953 phb->hose = hose = pcibios_alloc_controller(np); 2954 if (!phb->hose) { 2955 pr_err(" Can't allocate PCI controller for %pOF\n", 2956 np); 2957 memblock_free(__pa(phb), sizeof(struct pnv_phb)); 2958 return; 2959 } 2960 2961 spin_lock_init(&phb->lock); 2962 prop32 = of_get_property(np, "bus-range", &len); 2963 if (prop32 && len == 8) { 2964 hose->first_busno = be32_to_cpu(prop32[0]); 2965 hose->last_busno = be32_to_cpu(prop32[1]); 2966 } else { 2967 pr_warn(" Broken <bus-range> on %pOF\n", np); 2968 hose->first_busno = 0; 2969 hose->last_busno = 0xff; 2970 } 2971 hose->private_data = phb; 2972 phb->hub_id = hub_id; 2973 phb->opal_id = phb_id; 2974 phb->type = ioda_type; 2975 mutex_init(&phb->ioda.pe_alloc_mutex); 2976 2977 /* Detect specific models for error handling */ 2978 if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) 2979 phb->model = PNV_PHB_MODEL_P7IOC; 2980 else if (of_device_is_compatible(np, "ibm,power8-pciex")) 2981 phb->model = PNV_PHB_MODEL_PHB3; 2982 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex")) 2983 phb->model = PNV_PHB_MODEL_NPU; 2984 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex")) 2985 phb->model = PNV_PHB_MODEL_NPU2; 2986 else 2987 phb->model = PNV_PHB_MODEL_UNKNOWN; 2988 2989 /* Initialize diagnostic data buffer */ 2990 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL); 2991 if (prop32) 2992 phb->diag_data_size = be32_to_cpup(prop32); 2993 else 2994 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE; 2995 2996 phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES); 2997 if (!phb->diag_data) 2998 panic("%s: Failed to allocate %u bytes\n", __func__, 2999 phb->diag_data_size); 3000 3001 /* Parse 32-bit and IO ranges (if any) */ 3002 pci_process_bridge_OF_ranges(hose, np, !hose->global_number); 3003 3004 /* Get registers */ 3005 if (!of_address_to_resource(np, 0, &r)) { 3006 phb->regs_phys = r.start; 3007 phb->regs = ioremap(r.start, resource_size(&r)); 3008 if (phb->regs == NULL) 3009 pr_err(" Failed to map registers !\n"); 3010 } 3011 3012 /* Initialize more IODA stuff */ 3013 phb->ioda.total_pe_num = 1; 3014 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); 3015 if (prop32) 3016 phb->ioda.total_pe_num = be32_to_cpup(prop32); 3017 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); 3018 if (prop32) 3019 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); 3020 3021 /* Invalidate RID to PE# mapping */ 3022 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) 3023 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; 3024 3025 /* Parse 64-bit MMIO range */ 3026 pnv_ioda_parse_m64_window(phb); 3027 3028 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); 3029 /* FW Has already off top 64k of M32 space (MSI space) */ 3030 phb->ioda.m32_size += 0x10000; 3031 3032 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; 3033 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; 3034 phb->ioda.io_size = hose->pci_io_size; 3035 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; 3036 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ 3037 3038 /* Calculate how many 32-bit TCE segments we have */ 3039 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3040 PNV_IODA1_DMA32_SEGSIZE; 3041 3042 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ 3043 size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, 3044 sizeof(unsigned long)); 3045 m64map_off = size; 3046 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); 3047 m32map_off = size; 3048 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); 3049 if (phb->type == PNV_PHB_IODA1) { 3050 iomap_off = size; 3051 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); 3052 dma32map_off = size; 3053 size += phb->ioda.dma32_count * 3054 sizeof(phb->ioda.dma32_segmap[0]); 3055 } 3056 pemap_off = size; 3057 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); 3058 aux = memblock_alloc(size, SMP_CACHE_BYTES); 3059 if (!aux) 3060 panic("%s: Failed to allocate %lu bytes\n", __func__, size); 3061 phb->ioda.pe_alloc = aux; 3062 phb->ioda.m64_segmap = aux + m64map_off; 3063 phb->ioda.m32_segmap = aux + m32map_off; 3064 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { 3065 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; 3066 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; 3067 } 3068 if (phb->type == PNV_PHB_IODA1) { 3069 phb->ioda.io_segmap = aux + iomap_off; 3070 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) 3071 phb->ioda.io_segmap[segno] = IODA_INVALID_PE; 3072 3073 phb->ioda.dma32_segmap = aux + dma32map_off; 3074 for (segno = 0; segno < phb->ioda.dma32_count; segno++) 3075 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; 3076 } 3077 phb->ioda.pe_array = aux + pemap_off; 3078 3079 /* 3080 * Choose PE number for root bus, which shouldn't have 3081 * M64 resources consumed by its child devices. To pick 3082 * the PE number adjacent to the reserved one if possible. 3083 */ 3084 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); 3085 if (phb->ioda.reserved_pe_idx == 0) { 3086 phb->ioda.root_pe_idx = 1; 3087 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3088 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { 3089 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; 3090 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3091 } else { 3092 /* otherwise just allocate one */ 3093 root_pe = pnv_ioda_alloc_pe(phb, 1); 3094 phb->ioda.root_pe_idx = root_pe->pe_number; 3095 } 3096 3097 INIT_LIST_HEAD(&phb->ioda.pe_list); 3098 mutex_init(&phb->ioda.pe_list_mutex); 3099 3100 /* Calculate how many 32-bit TCE segments we have */ 3101 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3102 PNV_IODA1_DMA32_SEGSIZE; 3103 3104 #if 0 /* We should really do that ... */ 3105 rc = opal_pci_set_phb_mem_window(opal->phb_id, 3106 window_type, 3107 window_num, 3108 starting_real_address, 3109 starting_pci_address, 3110 segment_size); 3111 #endif 3112 3113 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", 3114 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, 3115 phb->ioda.m32_size, phb->ioda.m32_segsize); 3116 if (phb->ioda.m64_size) 3117 pr_info(" M64: 0x%lx [segment=0x%lx]\n", 3118 phb->ioda.m64_size, phb->ioda.m64_segsize); 3119 if (phb->ioda.io_size) 3120 pr_info(" IO: 0x%x [segment=0x%x]\n", 3121 phb->ioda.io_size, phb->ioda.io_segsize); 3122 3123 3124 phb->hose->ops = &pnv_pci_ops; 3125 phb->get_pe_state = pnv_ioda_get_pe_state; 3126 phb->freeze_pe = pnv_ioda_freeze_pe; 3127 phb->unfreeze_pe = pnv_ioda_unfreeze_pe; 3128 3129 /* Setup MSI support */ 3130 pnv_pci_init_ioda_msis(phb); 3131 3132 /* 3133 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here 3134 * to let the PCI core do resource assignment. It's supposed 3135 * that the PCI core will do correct I/O and MMIO alignment 3136 * for the P2P bridge bars so that each PCI bus (excluding 3137 * the child P2P bridges) can form individual PE. 3138 */ 3139 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; 3140 3141 switch (phb->type) { 3142 case PNV_PHB_NPU_NVLINK: 3143 hose->controller_ops = pnv_npu_ioda_controller_ops; 3144 break; 3145 case PNV_PHB_NPU_OCAPI: 3146 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops; 3147 break; 3148 default: 3149 hose->controller_ops = pnv_pci_ioda_controller_ops; 3150 } 3151 3152 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment; 3153 3154 #ifdef CONFIG_PCI_IOV 3155 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov; 3156 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; 3157 ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable; 3158 ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable; 3159 #endif 3160 3161 pci_add_flags(PCI_REASSIGN_ALL_RSRC); 3162 3163 /* Reset IODA tables to a clean state */ 3164 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); 3165 if (rc) 3166 pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc); 3167 3168 /* 3169 * If we're running in kdump kernel, the previous kernel never 3170 * shutdown PCI devices correctly. We already got IODA table 3171 * cleaned out. So we have to issue PHB reset to stop all PCI 3172 * transactions from previous kernel. The ppc_pci_reset_phbs 3173 * kernel parameter will force this reset too. Additionally, 3174 * if the IODA reset above failed then use a bigger hammer. 3175 * This can happen if we get a PHB fatal error in very early 3176 * boot. 3177 */ 3178 if (is_kdump_kernel() || pci_reset_phbs || rc) { 3179 pr_info(" Issue PHB reset ...\n"); 3180 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); 3181 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); 3182 } 3183 3184 /* Remove M64 resource if we can't configure it successfully */ 3185 if (!phb->init_m64 || phb->init_m64(phb)) 3186 hose->mem_resources[1].flags = 0; 3187 } 3188 3189 void __init pnv_pci_init_ioda2_phb(struct device_node *np) 3190 { 3191 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); 3192 } 3193 3194 void __init pnv_pci_init_npu_phb(struct device_node *np) 3195 { 3196 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK); 3197 } 3198 3199 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np) 3200 { 3201 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI); 3202 } 3203 3204 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev) 3205 { 3206 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); 3207 3208 if (!machine_is(powernv)) 3209 return; 3210 3211 if (phb->type == PNV_PHB_NPU_OCAPI) 3212 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE; 3213 } 3214 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup); 3215 3216 void __init pnv_pci_init_ioda_hub(struct device_node *np) 3217 { 3218 struct device_node *phbn; 3219 const __be64 *prop64; 3220 u64 hub_id; 3221 3222 pr_info("Probing IODA IO-Hub %pOF\n", np); 3223 3224 prop64 = of_get_property(np, "ibm,opal-hubid", NULL); 3225 if (!prop64) { 3226 pr_err(" Missing \"ibm,opal-hubid\" property !\n"); 3227 return; 3228 } 3229 hub_id = be64_to_cpup(prop64); 3230 pr_devel(" HUB-ID : 0x%016llx\n", hub_id); 3231 3232 /* Count child PHBs */ 3233 for_each_child_of_node(np, phbn) { 3234 /* Look for IODA1 PHBs */ 3235 if (of_device_is_compatible(phbn, "ibm,ioda-phb")) 3236 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); 3237 } 3238 } 3239