xref: /openbmc/linux/arch/powerpc/platforms/powernv/pci-ioda.c (revision 2634682fdffd9ba6e74b76be8aa91cf8b2e05c41)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7 
8 #undef DEBUG
9 
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/prom.h>
27 #include <asm/pci-bridge.h>
28 #include <asm/machdep.h>
29 #include <asm/msi_bitmap.h>
30 #include <asm/ppc-pci.h>
31 #include <asm/opal.h>
32 #include <asm/iommu.h>
33 #include <asm/tce.h>
34 #include <asm/xics.h>
35 #include <asm/debugfs.h>
36 #include <asm/firmware.h>
37 #include <asm/pnv-pci.h>
38 #include <asm/mmzone.h>
39 
40 #include <misc/cxl-base.h>
41 
42 #include "powernv.h"
43 #include "pci.h"
44 #include "../../../../drivers/pci/pci.h"
45 
46 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
47 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
48 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
49 
50 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
51 					      "NPU_OCAPI" };
52 
53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
54 static void pnv_pci_configure_bus(struct pci_bus *bus);
55 
56 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
57 			    const char *fmt, ...)
58 {
59 	struct va_format vaf;
60 	va_list args;
61 	char pfix[32];
62 
63 	va_start(args, fmt);
64 
65 	vaf.fmt = fmt;
66 	vaf.va = &args;
67 
68 	if (pe->flags & PNV_IODA_PE_DEV)
69 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
70 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
71 		sprintf(pfix, "%04x:%02x     ",
72 			pci_domain_nr(pe->pbus), pe->pbus->number);
73 #ifdef CONFIG_PCI_IOV
74 	else if (pe->flags & PNV_IODA_PE_VF)
75 		sprintf(pfix, "%04x:%02x:%2x.%d",
76 			pci_domain_nr(pe->parent_dev->bus),
77 			(pe->rid & 0xff00) >> 8,
78 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
79 #endif /* CONFIG_PCI_IOV*/
80 
81 	printk("%spci %s: [PE# %.2x] %pV",
82 	       level, pfix, pe->pe_number, &vaf);
83 
84 	va_end(args);
85 }
86 
87 static bool pnv_iommu_bypass_disabled __read_mostly;
88 static bool pci_reset_phbs __read_mostly;
89 
90 static int __init iommu_setup(char *str)
91 {
92 	if (!str)
93 		return -EINVAL;
94 
95 	while (*str) {
96 		if (!strncmp(str, "nobypass", 8)) {
97 			pnv_iommu_bypass_disabled = true;
98 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
99 			break;
100 		}
101 		str += strcspn(str, ",");
102 		if (*str == ',')
103 			str++;
104 	}
105 
106 	return 0;
107 }
108 early_param("iommu", iommu_setup);
109 
110 static int __init pci_reset_phbs_setup(char *str)
111 {
112 	pci_reset_phbs = true;
113 	return 0;
114 }
115 
116 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
117 
118 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
119 {
120 	s64 rc;
121 
122 	phb->ioda.pe_array[pe_no].phb = phb;
123 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
124 	phb->ioda.pe_array[pe_no].dma_setup_done = false;
125 
126 	/*
127 	 * Clear the PE frozen state as it might be put into frozen state
128 	 * in the last PCI remove path. It's not harmful to do so when the
129 	 * PE is already in unfrozen state.
130 	 */
131 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
132 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
133 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
134 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
135 			__func__, rc, phb->hose->global_number, pe_no);
136 
137 	return &phb->ioda.pe_array[pe_no];
138 }
139 
140 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
141 {
142 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
143 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
144 			__func__, pe_no, phb->hose->global_number);
145 		return;
146 	}
147 
148 	mutex_lock(&phb->ioda.pe_alloc_mutex);
149 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
150 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
151 			 __func__, pe_no, phb->hose->global_number);
152 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
153 
154 	pnv_ioda_init_pe(phb, pe_no);
155 }
156 
157 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
158 {
159 	struct pnv_ioda_pe *ret = NULL;
160 	int run = 0, pe, i;
161 
162 	mutex_lock(&phb->ioda.pe_alloc_mutex);
163 
164 	/* scan backwards for a run of @count cleared bits */
165 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
166 		if (test_bit(pe, phb->ioda.pe_alloc)) {
167 			run = 0;
168 			continue;
169 		}
170 
171 		run++;
172 		if (run == count)
173 			break;
174 	}
175 	if (run != count)
176 		goto out;
177 
178 	for (i = pe; i < pe + count; i++) {
179 		set_bit(i, phb->ioda.pe_alloc);
180 		pnv_ioda_init_pe(phb, i);
181 	}
182 	ret = &phb->ioda.pe_array[pe];
183 
184 out:
185 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
186 	return ret;
187 }
188 
189 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
190 {
191 	struct pnv_phb *phb = pe->phb;
192 	unsigned int pe_num = pe->pe_number;
193 
194 	WARN_ON(pe->pdev);
195 	WARN_ON(pe->npucomp); /* NPUs for nvlink are not supposed to be freed */
196 	kfree(pe->npucomp);
197 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
198 
199 	mutex_lock(&phb->ioda.pe_alloc_mutex);
200 	clear_bit(pe_num, phb->ioda.pe_alloc);
201 	mutex_unlock(&phb->ioda.pe_alloc_mutex);
202 }
203 
204 /* The default M64 BAR is shared by all PEs */
205 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
206 {
207 	const char *desc;
208 	struct resource *r;
209 	s64 rc;
210 
211 	/* Configure the default M64 BAR */
212 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
213 					 OPAL_M64_WINDOW_TYPE,
214 					 phb->ioda.m64_bar_idx,
215 					 phb->ioda.m64_base,
216 					 0, /* unused */
217 					 phb->ioda.m64_size);
218 	if (rc != OPAL_SUCCESS) {
219 		desc = "configuring";
220 		goto fail;
221 	}
222 
223 	/* Enable the default M64 BAR */
224 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
225 				      OPAL_M64_WINDOW_TYPE,
226 				      phb->ioda.m64_bar_idx,
227 				      OPAL_ENABLE_M64_SPLIT);
228 	if (rc != OPAL_SUCCESS) {
229 		desc = "enabling";
230 		goto fail;
231 	}
232 
233 	/*
234 	 * Exclude the segments for reserved and root bus PE, which
235 	 * are first or last two PEs.
236 	 */
237 	r = &phb->hose->mem_resources[1];
238 	if (phb->ioda.reserved_pe_idx == 0)
239 		r->start += (2 * phb->ioda.m64_segsize);
240 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
241 		r->end -= (2 * phb->ioda.m64_segsize);
242 	else
243 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
244 			phb->ioda.reserved_pe_idx);
245 
246 	return 0;
247 
248 fail:
249 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
250 		rc, desc, phb->ioda.m64_bar_idx);
251 	opal_pci_phb_mmio_enable(phb->opal_id,
252 				 OPAL_M64_WINDOW_TYPE,
253 				 phb->ioda.m64_bar_idx,
254 				 OPAL_DISABLE_M64);
255 	return -EIO;
256 }
257 
258 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
259 					 unsigned long *pe_bitmap)
260 {
261 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
262 	struct resource *r;
263 	resource_size_t base, sgsz, start, end;
264 	int segno, i;
265 
266 	base = phb->ioda.m64_base;
267 	sgsz = phb->ioda.m64_segsize;
268 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
269 		r = &pdev->resource[i];
270 		if (!r->parent || !pnv_pci_is_m64(phb, r))
271 			continue;
272 
273 		start = ALIGN_DOWN(r->start - base, sgsz);
274 		end = ALIGN(r->end - base, sgsz);
275 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
276 			if (pe_bitmap)
277 				set_bit(segno, pe_bitmap);
278 			else
279 				pnv_ioda_reserve_pe(phb, segno);
280 		}
281 	}
282 }
283 
284 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
285 {
286 	struct resource *r;
287 	int index;
288 
289 	/*
290 	 * There are 16 M64 BARs, each of which has 8 segments. So
291 	 * there are as many M64 segments as the maximum number of
292 	 * PEs, which is 128.
293 	 */
294 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
295 		unsigned long base, segsz = phb->ioda.m64_segsize;
296 		int64_t rc;
297 
298 		base = phb->ioda.m64_base +
299 		       index * PNV_IODA1_M64_SEGS * segsz;
300 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
301 				OPAL_M64_WINDOW_TYPE, index, base, 0,
302 				PNV_IODA1_M64_SEGS * segsz);
303 		if (rc != OPAL_SUCCESS) {
304 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
305 				rc, phb->hose->global_number, index);
306 			goto fail;
307 		}
308 
309 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
310 				OPAL_M64_WINDOW_TYPE, index,
311 				OPAL_ENABLE_M64_SPLIT);
312 		if (rc != OPAL_SUCCESS) {
313 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
314 				rc, phb->hose->global_number, index);
315 			goto fail;
316 		}
317 	}
318 
319 	for (index = 0; index < phb->ioda.total_pe_num; index++) {
320 		int64_t rc;
321 
322 		/*
323 		 * P7IOC supports M64DT, which helps mapping M64 segment
324 		 * to one particular PE#. However, PHB3 has fixed mapping
325 		 * between M64 segment and PE#. In order to have same logic
326 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
327 		 * segment and PE# on P7IOC.
328 		 */
329 		rc = opal_pci_map_pe_mmio_window(phb->opal_id,
330 				index, OPAL_M64_WINDOW_TYPE,
331 				index / PNV_IODA1_M64_SEGS,
332 				index % PNV_IODA1_M64_SEGS);
333 		if (rc != OPAL_SUCCESS) {
334 			pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
335 				__func__, rc, phb->hose->global_number,
336 				index);
337 			goto fail;
338 		}
339 	}
340 
341 	/*
342 	 * Exclude the segments for reserved and root bus PE, which
343 	 * are first or last two PEs.
344 	 */
345 	r = &phb->hose->mem_resources[1];
346 	if (phb->ioda.reserved_pe_idx == 0)
347 		r->start += (2 * phb->ioda.m64_segsize);
348 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
349 		r->end -= (2 * phb->ioda.m64_segsize);
350 	else
351 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
352 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
353 
354 	return 0;
355 
356 fail:
357 	for ( ; index >= 0; index--)
358 		opal_pci_phb_mmio_enable(phb->opal_id,
359 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
360 
361 	return -EIO;
362 }
363 
364 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
365 				    unsigned long *pe_bitmap,
366 				    bool all)
367 {
368 	struct pci_dev *pdev;
369 
370 	list_for_each_entry(pdev, &bus->devices, bus_list) {
371 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
372 
373 		if (all && pdev->subordinate)
374 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
375 						pe_bitmap, all);
376 	}
377 }
378 
379 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
380 {
381 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
382 	struct pnv_ioda_pe *master_pe, *pe;
383 	unsigned long size, *pe_alloc;
384 	int i;
385 
386 	/* Root bus shouldn't use M64 */
387 	if (pci_is_root_bus(bus))
388 		return NULL;
389 
390 	/* Allocate bitmap */
391 	size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
392 	pe_alloc = kzalloc(size, GFP_KERNEL);
393 	if (!pe_alloc) {
394 		pr_warn("%s: Out of memory !\n",
395 			__func__);
396 		return NULL;
397 	}
398 
399 	/* Figure out reserved PE numbers by the PE */
400 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
401 
402 	/*
403 	 * the current bus might not own M64 window and that's all
404 	 * contributed by its child buses. For the case, we needn't
405 	 * pick M64 dependent PE#.
406 	 */
407 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
408 		kfree(pe_alloc);
409 		return NULL;
410 	}
411 
412 	/*
413 	 * Figure out the master PE and put all slave PEs to master
414 	 * PE's list to form compound PE.
415 	 */
416 	master_pe = NULL;
417 	i = -1;
418 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
419 		phb->ioda.total_pe_num) {
420 		pe = &phb->ioda.pe_array[i];
421 
422 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
423 		if (!master_pe) {
424 			pe->flags |= PNV_IODA_PE_MASTER;
425 			INIT_LIST_HEAD(&pe->slaves);
426 			master_pe = pe;
427 		} else {
428 			pe->flags |= PNV_IODA_PE_SLAVE;
429 			pe->master = master_pe;
430 			list_add_tail(&pe->list, &master_pe->slaves);
431 		}
432 	}
433 
434 	kfree(pe_alloc);
435 	return master_pe;
436 }
437 
438 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
439 {
440 	struct pci_controller *hose = phb->hose;
441 	struct device_node *dn = hose->dn;
442 	struct resource *res;
443 	u32 m64_range[2], i;
444 	const __be32 *r;
445 	u64 pci_addr;
446 
447 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
448 		pr_info("  Not support M64 window\n");
449 		return;
450 	}
451 
452 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
453 		pr_info("  Firmware too old to support M64 window\n");
454 		return;
455 	}
456 
457 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
458 	if (!r) {
459 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
460 			dn);
461 		return;
462 	}
463 
464 	/*
465 	 * Find the available M64 BAR range and pickup the last one for
466 	 * covering the whole 64-bits space. We support only one range.
467 	 */
468 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
469 				       m64_range, 2)) {
470 		/* In absence of the property, assume 0..15 */
471 		m64_range[0] = 0;
472 		m64_range[1] = 16;
473 	}
474 	/* We only support 64 bits in our allocator */
475 	if (m64_range[1] > 63) {
476 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
477 			__func__, m64_range[1], phb->hose->global_number);
478 		m64_range[1] = 63;
479 	}
480 	/* Empty range, no m64 */
481 	if (m64_range[1] <= m64_range[0]) {
482 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
483 			__func__, phb->hose->global_number);
484 		return;
485 	}
486 
487 	/* Configure M64 informations */
488 	res = &hose->mem_resources[1];
489 	res->name = dn->full_name;
490 	res->start = of_translate_address(dn, r + 2);
491 	res->end = res->start + of_read_number(r + 4, 2) - 1;
492 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
493 	pci_addr = of_read_number(r, 2);
494 	hose->mem_offset[1] = res->start - pci_addr;
495 
496 	phb->ioda.m64_size = resource_size(res);
497 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
498 	phb->ioda.m64_base = pci_addr;
499 
500 	/* This lines up nicely with the display from processing OF ranges */
501 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
502 		res->start, res->end, pci_addr, m64_range[0],
503 		m64_range[0] + m64_range[1] - 1);
504 
505 	/* Mark all M64 used up by default */
506 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
507 
508 	/* Use last M64 BAR to cover M64 window */
509 	m64_range[1]--;
510 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
511 
512 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
513 
514 	/* Mark remaining ones free */
515 	for (i = m64_range[0]; i < m64_range[1]; i++)
516 		clear_bit(i, &phb->ioda.m64_bar_alloc);
517 
518 	/*
519 	 * Setup init functions for M64 based on IODA version, IODA3 uses
520 	 * the IODA2 code.
521 	 */
522 	if (phb->type == PNV_PHB_IODA1)
523 		phb->init_m64 = pnv_ioda1_init_m64;
524 	else
525 		phb->init_m64 = pnv_ioda2_init_m64;
526 }
527 
528 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
529 {
530 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
531 	struct pnv_ioda_pe *slave;
532 	s64 rc;
533 
534 	/* Fetch master PE */
535 	if (pe->flags & PNV_IODA_PE_SLAVE) {
536 		pe = pe->master;
537 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
538 			return;
539 
540 		pe_no = pe->pe_number;
541 	}
542 
543 	/* Freeze master PE */
544 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
545 				     pe_no,
546 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
547 	if (rc != OPAL_SUCCESS) {
548 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
549 			__func__, rc, phb->hose->global_number, pe_no);
550 		return;
551 	}
552 
553 	/* Freeze slave PEs */
554 	if (!(pe->flags & PNV_IODA_PE_MASTER))
555 		return;
556 
557 	list_for_each_entry(slave, &pe->slaves, list) {
558 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
559 					     slave->pe_number,
560 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
561 		if (rc != OPAL_SUCCESS)
562 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
563 				__func__, rc, phb->hose->global_number,
564 				slave->pe_number);
565 	}
566 }
567 
568 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
569 {
570 	struct pnv_ioda_pe *pe, *slave;
571 	s64 rc;
572 
573 	/* Find master PE */
574 	pe = &phb->ioda.pe_array[pe_no];
575 	if (pe->flags & PNV_IODA_PE_SLAVE) {
576 		pe = pe->master;
577 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
578 		pe_no = pe->pe_number;
579 	}
580 
581 	/* Clear frozen state for master PE */
582 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
583 	if (rc != OPAL_SUCCESS) {
584 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
585 			__func__, rc, opt, phb->hose->global_number, pe_no);
586 		return -EIO;
587 	}
588 
589 	if (!(pe->flags & PNV_IODA_PE_MASTER))
590 		return 0;
591 
592 	/* Clear frozen state for slave PEs */
593 	list_for_each_entry(slave, &pe->slaves, list) {
594 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
595 					     slave->pe_number,
596 					     opt);
597 		if (rc != OPAL_SUCCESS) {
598 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
599 				__func__, rc, opt, phb->hose->global_number,
600 				slave->pe_number);
601 			return -EIO;
602 		}
603 	}
604 
605 	return 0;
606 }
607 
608 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
609 {
610 	struct pnv_ioda_pe *slave, *pe;
611 	u8 fstate = 0, state;
612 	__be16 pcierr = 0;
613 	s64 rc;
614 
615 	/* Sanity check on PE number */
616 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
617 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
618 
619 	/*
620 	 * Fetch the master PE and the PE instance might be
621 	 * not initialized yet.
622 	 */
623 	pe = &phb->ioda.pe_array[pe_no];
624 	if (pe->flags & PNV_IODA_PE_SLAVE) {
625 		pe = pe->master;
626 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
627 		pe_no = pe->pe_number;
628 	}
629 
630 	/* Check the master PE */
631 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
632 					&state, &pcierr, NULL);
633 	if (rc != OPAL_SUCCESS) {
634 		pr_warn("%s: Failure %lld getting "
635 			"PHB#%x-PE#%x state\n",
636 			__func__, rc,
637 			phb->hose->global_number, pe_no);
638 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
639 	}
640 
641 	/* Check the slave PE */
642 	if (!(pe->flags & PNV_IODA_PE_MASTER))
643 		return state;
644 
645 	list_for_each_entry(slave, &pe->slaves, list) {
646 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
647 						slave->pe_number,
648 						&fstate,
649 						&pcierr,
650 						NULL);
651 		if (rc != OPAL_SUCCESS) {
652 			pr_warn("%s: Failure %lld getting "
653 				"PHB#%x-PE#%x state\n",
654 				__func__, rc,
655 				phb->hose->global_number, slave->pe_number);
656 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
657 		}
658 
659 		/*
660 		 * Override the result based on the ascending
661 		 * priority.
662 		 */
663 		if (fstate > state)
664 			state = fstate;
665 	}
666 
667 	return state;
668 }
669 
670 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
671 {
672 	int pe_number = phb->ioda.pe_rmap[bdfn];
673 
674 	if (pe_number == IODA_INVALID_PE)
675 		return NULL;
676 
677 	return &phb->ioda.pe_array[pe_number];
678 }
679 
680 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
681 {
682 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
683 	struct pci_dn *pdn = pci_get_pdn(dev);
684 
685 	if (!pdn)
686 		return NULL;
687 	if (pdn->pe_number == IODA_INVALID_PE)
688 		return NULL;
689 	return &phb->ioda.pe_array[pdn->pe_number];
690 }
691 
692 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
693 				  struct pnv_ioda_pe *parent,
694 				  struct pnv_ioda_pe *child,
695 				  bool is_add)
696 {
697 	const char *desc = is_add ? "adding" : "removing";
698 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
699 			      OPAL_REMOVE_PE_FROM_DOMAIN;
700 	struct pnv_ioda_pe *slave;
701 	long rc;
702 
703 	/* Parent PE affects child PE */
704 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
705 				child->pe_number, op);
706 	if (rc != OPAL_SUCCESS) {
707 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
708 			rc, desc);
709 		return -ENXIO;
710 	}
711 
712 	if (!(child->flags & PNV_IODA_PE_MASTER))
713 		return 0;
714 
715 	/* Compound case: parent PE affects slave PEs */
716 	list_for_each_entry(slave, &child->slaves, list) {
717 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
718 					slave->pe_number, op);
719 		if (rc != OPAL_SUCCESS) {
720 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
721 				rc, desc);
722 			return -ENXIO;
723 		}
724 	}
725 
726 	return 0;
727 }
728 
729 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
730 			      struct pnv_ioda_pe *pe,
731 			      bool is_add)
732 {
733 	struct pnv_ioda_pe *slave;
734 	struct pci_dev *pdev = NULL;
735 	int ret;
736 
737 	/*
738 	 * Clear PE frozen state. If it's master PE, we need
739 	 * clear slave PE frozen state as well.
740 	 */
741 	if (is_add) {
742 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
743 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
744 		if (pe->flags & PNV_IODA_PE_MASTER) {
745 			list_for_each_entry(slave, &pe->slaves, list)
746 				opal_pci_eeh_freeze_clear(phb->opal_id,
747 							  slave->pe_number,
748 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
749 		}
750 	}
751 
752 	/*
753 	 * Associate PE in PELT. We need add the PE into the
754 	 * corresponding PELT-V as well. Otherwise, the error
755 	 * originated from the PE might contribute to other
756 	 * PEs.
757 	 */
758 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
759 	if (ret)
760 		return ret;
761 
762 	/* For compound PEs, any one affects all of them */
763 	if (pe->flags & PNV_IODA_PE_MASTER) {
764 		list_for_each_entry(slave, &pe->slaves, list) {
765 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
766 			if (ret)
767 				return ret;
768 		}
769 	}
770 
771 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
772 		pdev = pe->pbus->self;
773 	else if (pe->flags & PNV_IODA_PE_DEV)
774 		pdev = pe->pdev->bus->self;
775 #ifdef CONFIG_PCI_IOV
776 	else if (pe->flags & PNV_IODA_PE_VF)
777 		pdev = pe->parent_dev;
778 #endif /* CONFIG_PCI_IOV */
779 	while (pdev) {
780 		struct pci_dn *pdn = pci_get_pdn(pdev);
781 		struct pnv_ioda_pe *parent;
782 
783 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
784 			parent = &phb->ioda.pe_array[pdn->pe_number];
785 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
786 			if (ret)
787 				return ret;
788 		}
789 
790 		pdev = pdev->bus->self;
791 	}
792 
793 	return 0;
794 }
795 
796 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
797 				 struct pnv_ioda_pe *pe,
798 				 struct pci_dev *parent)
799 {
800 	int64_t rc;
801 
802 	while (parent) {
803 		struct pci_dn *pdn = pci_get_pdn(parent);
804 
805 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
806 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
807 						pe->pe_number,
808 						OPAL_REMOVE_PE_FROM_DOMAIN);
809 			/* XXX What to do in case of error ? */
810 		}
811 		parent = parent->bus->self;
812 	}
813 
814 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
815 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
816 
817 	/* Disassociate PE in PELT */
818 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
819 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
820 	if (rc)
821 		pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
822 }
823 
824 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
825 {
826 	struct pci_dev *parent;
827 	uint8_t bcomp, dcomp, fcomp;
828 	int64_t rc;
829 	long rid_end, rid;
830 
831 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
832 	if (pe->pbus) {
833 		int count;
834 
835 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
836 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
837 		parent = pe->pbus->self;
838 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
839 			count = resource_size(&pe->pbus->busn_res);
840 		else
841 			count = 1;
842 
843 		switch(count) {
844 		case  1: bcomp = OpalPciBusAll;         break;
845 		case  2: bcomp = OpalPciBus7Bits;       break;
846 		case  4: bcomp = OpalPciBus6Bits;       break;
847 		case  8: bcomp = OpalPciBus5Bits;       break;
848 		case 16: bcomp = OpalPciBus4Bits;       break;
849 		case 32: bcomp = OpalPciBus3Bits;       break;
850 		default:
851 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
852 			        count);
853 			/* Do an exact match only */
854 			bcomp = OpalPciBusAll;
855 		}
856 		rid_end = pe->rid + (count << 8);
857 	} else {
858 #ifdef CONFIG_PCI_IOV
859 		if (pe->flags & PNV_IODA_PE_VF)
860 			parent = pe->parent_dev;
861 		else
862 #endif
863 			parent = pe->pdev->bus->self;
864 		bcomp = OpalPciBusAll;
865 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
866 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
867 		rid_end = pe->rid + 1;
868 	}
869 
870 	/* Clear the reverse map */
871 	for (rid = pe->rid; rid < rid_end; rid++)
872 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
873 
874 	/*
875 	 * Release from all parents PELT-V. NPUs don't have a PELTV
876 	 * table
877 	 */
878 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
879 		pnv_ioda_unset_peltv(phb, pe, parent);
880 
881 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
882 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
883 	if (rc)
884 		pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
885 
886 	pe->pbus = NULL;
887 	pe->pdev = NULL;
888 #ifdef CONFIG_PCI_IOV
889 	pe->parent_dev = NULL;
890 #endif
891 
892 	return 0;
893 }
894 
895 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
896 {
897 	struct pci_dev *parent;
898 	uint8_t bcomp, dcomp, fcomp;
899 	long rc, rid_end, rid;
900 
901 	/* Bus validation ? */
902 	if (pe->pbus) {
903 		int count;
904 
905 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
906 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
907 		parent = pe->pbus->self;
908 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
909 			count = resource_size(&pe->pbus->busn_res);
910 		else
911 			count = 1;
912 
913 		switch(count) {
914 		case  1: bcomp = OpalPciBusAll;		break;
915 		case  2: bcomp = OpalPciBus7Bits;	break;
916 		case  4: bcomp = OpalPciBus6Bits;	break;
917 		case  8: bcomp = OpalPciBus5Bits;	break;
918 		case 16: bcomp = OpalPciBus4Bits;	break;
919 		case 32: bcomp = OpalPciBus3Bits;	break;
920 		default:
921 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
922 			        count);
923 			/* Do an exact match only */
924 			bcomp = OpalPciBusAll;
925 		}
926 		rid_end = pe->rid + (count << 8);
927 	} else {
928 #ifdef CONFIG_PCI_IOV
929 		if (pe->flags & PNV_IODA_PE_VF)
930 			parent = pe->parent_dev;
931 		else
932 #endif /* CONFIG_PCI_IOV */
933 			parent = pe->pdev->bus->self;
934 		bcomp = OpalPciBusAll;
935 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
936 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
937 		rid_end = pe->rid + 1;
938 	}
939 
940 	/*
941 	 * Associate PE in PELT. We need add the PE into the
942 	 * corresponding PELT-V as well. Otherwise, the error
943 	 * originated from the PE might contribute to other
944 	 * PEs.
945 	 */
946 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
947 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
948 	if (rc) {
949 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
950 		return -ENXIO;
951 	}
952 
953 	/*
954 	 * Configure PELTV. NPUs don't have a PELTV table so skip
955 	 * configuration on them.
956 	 */
957 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
958 		pnv_ioda_set_peltv(phb, pe, true);
959 
960 	/* Setup reverse map */
961 	for (rid = pe->rid; rid < rid_end; rid++)
962 		phb->ioda.pe_rmap[rid] = pe->pe_number;
963 
964 	/* Setup one MVTs on IODA1 */
965 	if (phb->type != PNV_PHB_IODA1) {
966 		pe->mve_number = 0;
967 		goto out;
968 	}
969 
970 	pe->mve_number = pe->pe_number;
971 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
972 	if (rc != OPAL_SUCCESS) {
973 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
974 		       rc, pe->mve_number);
975 		pe->mve_number = -1;
976 	} else {
977 		rc = opal_pci_set_mve_enable(phb->opal_id,
978 					     pe->mve_number, OPAL_ENABLE_MVE);
979 		if (rc) {
980 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
981 			       rc, pe->mve_number);
982 			pe->mve_number = -1;
983 		}
984 	}
985 
986 out:
987 	return 0;
988 }
989 
990 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
991 {
992 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
993 	struct pci_dn *pdn = pci_get_pdn(dev);
994 	struct pnv_ioda_pe *pe;
995 
996 	if (!pdn) {
997 		pr_err("%s: Device tree node not associated properly\n",
998 			   pci_name(dev));
999 		return NULL;
1000 	}
1001 	if (pdn->pe_number != IODA_INVALID_PE)
1002 		return NULL;
1003 
1004 	pe = pnv_ioda_alloc_pe(phb, 1);
1005 	if (!pe) {
1006 		pr_warn("%s: Not enough PE# available, disabling device\n",
1007 			pci_name(dev));
1008 		return NULL;
1009 	}
1010 
1011 	/* NOTE: We don't get a reference for the pointer in the PE
1012 	 * data structure, both the device and PE structures should be
1013 	 * destroyed at the same time. However, removing nvlink
1014 	 * devices will need some work.
1015 	 *
1016 	 * At some point we want to remove the PDN completely anyways
1017 	 */
1018 	pdn->pe_number = pe->pe_number;
1019 	pe->flags = PNV_IODA_PE_DEV;
1020 	pe->pdev = dev;
1021 	pe->pbus = NULL;
1022 	pe->mve_number = -1;
1023 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1024 	pe->device_count++;
1025 
1026 	pe_info(pe, "Associated device to PE\n");
1027 
1028 	if (pnv_ioda_configure_pe(phb, pe)) {
1029 		/* XXX What do we do here ? */
1030 		pnv_ioda_free_pe(pe);
1031 		pdn->pe_number = IODA_INVALID_PE;
1032 		pe->pdev = NULL;
1033 		return NULL;
1034 	}
1035 
1036 	/* Put PE to the list */
1037 	mutex_lock(&phb->ioda.pe_list_mutex);
1038 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1039 	mutex_unlock(&phb->ioda.pe_list_mutex);
1040 	return pe;
1041 }
1042 
1043 /*
1044  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1045  * single PCI bus. Another one that contains the primary PCI bus and its
1046  * subordinate PCI devices and buses. The second type of PE is normally
1047  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1048  */
1049 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1050 {
1051 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
1052 	struct pnv_ioda_pe *pe = NULL;
1053 	unsigned int pe_num;
1054 
1055 	/*
1056 	 * In partial hotplug case, the PE instance might be still alive.
1057 	 * We should reuse it instead of allocating a new one.
1058 	 */
1059 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1060 	if (WARN_ON(pe_num != IODA_INVALID_PE)) {
1061 		pe = &phb->ioda.pe_array[pe_num];
1062 		return NULL;
1063 	}
1064 
1065 	/* PE number for root bus should have been reserved */
1066 	if (pci_is_root_bus(bus))
1067 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1068 
1069 	/* Check if PE is determined by M64 */
1070 	if (!pe)
1071 		pe = pnv_ioda_pick_m64_pe(bus, all);
1072 
1073 	/* The PE number isn't pinned by M64 */
1074 	if (!pe)
1075 		pe = pnv_ioda_alloc_pe(phb, 1);
1076 
1077 	if (!pe) {
1078 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1079 			__func__, pci_domain_nr(bus), bus->number);
1080 		return NULL;
1081 	}
1082 
1083 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1084 	pe->pbus = bus;
1085 	pe->pdev = NULL;
1086 	pe->mve_number = -1;
1087 	pe->rid = bus->busn_res.start << 8;
1088 
1089 	if (all)
1090 		pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1091 			&bus->busn_res.start, &bus->busn_res.end,
1092 			pe->pe_number);
1093 	else
1094 		pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1095 			&bus->busn_res.start, pe->pe_number);
1096 
1097 	if (pnv_ioda_configure_pe(phb, pe)) {
1098 		/* XXX What do we do here ? */
1099 		pnv_ioda_free_pe(pe);
1100 		pe->pbus = NULL;
1101 		return NULL;
1102 	}
1103 
1104 	/* Put PE to the list */
1105 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1106 
1107 	return pe;
1108 }
1109 
1110 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1111 {
1112 	int pe_num, found_pe = false, rc;
1113 	long rid;
1114 	struct pnv_ioda_pe *pe;
1115 	struct pci_dev *gpu_pdev;
1116 	struct pci_dn *npu_pdn;
1117 	struct pnv_phb *phb = pci_bus_to_pnvhb(npu_pdev->bus);
1118 
1119 	/*
1120 	 * Intentionally leak a reference on the npu device (for
1121 	 * nvlink only; this is not an opencapi path) to make sure it
1122 	 * never goes away, as it's been the case all along and some
1123 	 * work is needed otherwise.
1124 	 */
1125 	pci_dev_get(npu_pdev);
1126 
1127 	/*
1128 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1129 	 * error handling. This means we only have three PEs remaining
1130 	 * which need to be assigned to four links, implying some
1131 	 * links must share PEs.
1132 	 *
1133 	 * To achieve this we assign PEs such that NPUs linking the
1134 	 * same GPU get assigned the same PE.
1135 	 */
1136 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1137 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1138 		pe = &phb->ioda.pe_array[pe_num];
1139 		if (!pe->pdev)
1140 			continue;
1141 
1142 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1143 			/*
1144 			 * This device has the same peer GPU so should
1145 			 * be assigned the same PE as the existing
1146 			 * peer NPU.
1147 			 */
1148 			dev_info(&npu_pdev->dev,
1149 				"Associating to existing PE %x\n", pe_num);
1150 			npu_pdn = pci_get_pdn(npu_pdev);
1151 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1152 			npu_pdn->pe_number = pe_num;
1153 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1154 			pe->device_count++;
1155 
1156 			/* Map the PE to this link */
1157 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1158 					OpalPciBusAll,
1159 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1160 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1161 					OPAL_MAP_PE);
1162 			WARN_ON(rc != OPAL_SUCCESS);
1163 			found_pe = true;
1164 			break;
1165 		}
1166 	}
1167 
1168 	if (!found_pe)
1169 		/*
1170 		 * Could not find an existing PE so allocate a new
1171 		 * one.
1172 		 */
1173 		return pnv_ioda_setup_dev_PE(npu_pdev);
1174 	else
1175 		return pe;
1176 }
1177 
1178 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1179 {
1180 	struct pci_dev *pdev;
1181 
1182 	list_for_each_entry(pdev, &bus->devices, bus_list)
1183 		pnv_ioda_setup_npu_PE(pdev);
1184 }
1185 
1186 static void pnv_pci_ioda_setup_nvlink(void)
1187 {
1188 	struct pci_controller *hose;
1189 	struct pnv_phb *phb;
1190 	struct pnv_ioda_pe *pe;
1191 
1192 	list_for_each_entry(hose, &hose_list, list_node) {
1193 		phb = hose->private_data;
1194 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1195 			/* PE#0 is needed for error reporting */
1196 			pnv_ioda_reserve_pe(phb, 0);
1197 			pnv_ioda_setup_npu_PEs(hose->bus);
1198 			if (phb->model == PNV_PHB_MODEL_NPU2)
1199 				WARN_ON_ONCE(pnv_npu2_init(hose));
1200 		}
1201 	}
1202 	list_for_each_entry(hose, &hose_list, list_node) {
1203 		phb = hose->private_data;
1204 		if (phb->type != PNV_PHB_IODA2)
1205 			continue;
1206 
1207 		list_for_each_entry(pe, &phb->ioda.pe_list, list)
1208 			pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1209 	}
1210 
1211 #ifdef CONFIG_IOMMU_API
1212 	/* setup iommu groups so we can do nvlink pass-thru */
1213 	pnv_pci_npu_setup_iommu_groups();
1214 #endif
1215 }
1216 
1217 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1218 				       struct pnv_ioda_pe *pe);
1219 
1220 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1221 {
1222 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1223 	struct pci_dn *pdn = pci_get_pdn(pdev);
1224 	struct pnv_ioda_pe *pe;
1225 
1226 	/* Check if the BDFN for this device is associated with a PE yet */
1227 	pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1228 	if (!pe) {
1229 		/* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1230 		if (WARN_ON(pdev->is_virtfn))
1231 			return;
1232 
1233 		pnv_pci_configure_bus(pdev->bus);
1234 		pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1235 		pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1236 
1237 
1238 		/*
1239 		 * If we can't setup the IODA PE something has gone horribly
1240 		 * wrong and we can't enable DMA for the device.
1241 		 */
1242 		if (WARN_ON(!pe))
1243 			return;
1244 	} else {
1245 		pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1246 	}
1247 
1248 	/*
1249 	 * We assume that bridges *probably* don't need to do any DMA so we can
1250 	 * skip allocating a TCE table, etc unless we get a non-bridge device.
1251 	 */
1252 	if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1253 		switch (phb->type) {
1254 		case PNV_PHB_IODA1:
1255 			pnv_pci_ioda1_setup_dma_pe(phb, pe);
1256 			break;
1257 		case PNV_PHB_IODA2:
1258 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
1259 			break;
1260 		default:
1261 			pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1262 				__func__, phb->hose->global_number, phb->type);
1263 		}
1264 	}
1265 
1266 	if (pdn)
1267 		pdn->pe_number = pe->pe_number;
1268 	pe->device_count++;
1269 
1270 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1271 	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1272 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1273 
1274 	/* PEs with a DMA weight of zero won't have a group */
1275 	if (pe->table_group.group)
1276 		iommu_add_device(&pe->table_group, &pdev->dev);
1277 }
1278 
1279 /*
1280  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1281  *
1282  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1283  * Devices can only access more than that if bit 59 of the PCI address is set
1284  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1285  * Many PCI devices are not capable of addressing that many bits, and as a
1286  * result are limited to the 4GB of virtual memory made available to 32-bit
1287  * devices in TVE#0.
1288  *
1289  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1290  * devices by configuring the virtual memory past the first 4GB inaccessible
1291  * by 64-bit DMAs.  This should only be used by devices that want more than
1292  * 4GB, and only on PEs that have no 32-bit devices.
1293  *
1294  * Currently this will only work on PHB3 (POWER8).
1295  */
1296 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1297 {
1298 	u64 window_size, table_size, tce_count, addr;
1299 	struct page *table_pages;
1300 	u64 tce_order = 28; /* 256MB TCEs */
1301 	__be64 *tces;
1302 	s64 rc;
1303 
1304 	/*
1305 	 * Window size needs to be a power of two, but needs to account for
1306 	 * shifting memory by the 4GB offset required to skip 32bit space.
1307 	 */
1308 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1309 	tce_count = window_size >> tce_order;
1310 	table_size = tce_count << 3;
1311 
1312 	if (table_size < PAGE_SIZE)
1313 		table_size = PAGE_SIZE;
1314 
1315 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1316 				       get_order(table_size));
1317 	if (!table_pages)
1318 		goto err;
1319 
1320 	tces = page_address(table_pages);
1321 	if (!tces)
1322 		goto err;
1323 
1324 	memset(tces, 0, table_size);
1325 
1326 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1327 		tces[(addr + (1ULL << 32)) >> tce_order] =
1328 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1329 	}
1330 
1331 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1332 					pe->pe_number,
1333 					/* reconfigure window 0 */
1334 					(pe->pe_number << 1) + 0,
1335 					1,
1336 					__pa(tces),
1337 					table_size,
1338 					1 << tce_order);
1339 	if (rc == OPAL_SUCCESS) {
1340 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1341 		return 0;
1342 	}
1343 err:
1344 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1345 	return -EIO;
1346 }
1347 
1348 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1349 		u64 dma_mask)
1350 {
1351 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1352 	struct pci_dn *pdn = pci_get_pdn(pdev);
1353 	struct pnv_ioda_pe *pe;
1354 
1355 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1356 		return false;
1357 
1358 	pe = &phb->ioda.pe_array[pdn->pe_number];
1359 	if (pe->tce_bypass_enabled) {
1360 		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1361 		if (dma_mask >= top)
1362 			return true;
1363 	}
1364 
1365 	/*
1366 	 * If the device can't set the TCE bypass bit but still wants
1367 	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1368 	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1369 	 * The device needs to be able to address all of this space.
1370 	 */
1371 	if (dma_mask >> 32 &&
1372 	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1373 	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1374 	    (pe->device_count == 1 || !pe->pbus) &&
1375 	    phb->model == PNV_PHB_MODEL_PHB3) {
1376 		/* Configure the bypass mode */
1377 		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1378 		if (rc)
1379 			return false;
1380 		/* 4GB offset bypasses 32-bit space */
1381 		pdev->dev.archdata.dma_offset = (1ULL << 32);
1382 		return true;
1383 	}
1384 
1385 	return false;
1386 }
1387 
1388 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1389 						     bool real_mode)
1390 {
1391 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1392 		(phb->regs + 0x210);
1393 }
1394 
1395 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1396 		unsigned long index, unsigned long npages, bool rm)
1397 {
1398 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1399 			&tbl->it_group_list, struct iommu_table_group_link,
1400 			next);
1401 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1402 			struct pnv_ioda_pe, table_group);
1403 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1404 	unsigned long start, end, inc;
1405 
1406 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1407 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1408 			npages - 1);
1409 
1410 	/* p7ioc-style invalidation, 2 TCEs per write */
1411 	start |= (1ull << 63);
1412 	end |= (1ull << 63);
1413 	inc = 16;
1414         end |= inc - 1;	/* round up end to be different than start */
1415 
1416         mb(); /* Ensure above stores are visible */
1417         while (start <= end) {
1418 		if (rm)
1419 			__raw_rm_writeq_be(start, invalidate);
1420 		else
1421 			__raw_writeq_be(start, invalidate);
1422 
1423                 start += inc;
1424         }
1425 
1426 	/*
1427 	 * The iommu layer will do another mb() for us on build()
1428 	 * and we don't care on free()
1429 	 */
1430 }
1431 
1432 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1433 		long npages, unsigned long uaddr,
1434 		enum dma_data_direction direction,
1435 		unsigned long attrs)
1436 {
1437 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1438 			attrs);
1439 
1440 	if (!ret)
1441 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1442 
1443 	return ret;
1444 }
1445 
1446 #ifdef CONFIG_IOMMU_API
1447 /* Common for IODA1 and IODA2 */
1448 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1449 		unsigned long *hpa, enum dma_data_direction *direction,
1450 		bool realmode)
1451 {
1452 	return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
1453 }
1454 #endif
1455 
1456 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1457 		long npages)
1458 {
1459 	pnv_tce_free(tbl, index, npages);
1460 
1461 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1462 }
1463 
1464 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1465 	.set = pnv_ioda1_tce_build,
1466 #ifdef CONFIG_IOMMU_API
1467 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1468 	.tce_kill = pnv_pci_p7ioc_tce_invalidate,
1469 	.useraddrptr = pnv_tce_useraddrptr,
1470 #endif
1471 	.clear = pnv_ioda1_tce_free,
1472 	.get = pnv_tce_get,
1473 };
1474 
1475 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1476 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1477 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1478 
1479 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1480 {
1481 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1482 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1483 
1484 	mb(); /* Ensure previous TCE table stores are visible */
1485 	if (rm)
1486 		__raw_rm_writeq_be(val, invalidate);
1487 	else
1488 		__raw_writeq_be(val, invalidate);
1489 }
1490 
1491 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1492 {
1493 	/* 01xb - invalidate TCEs that match the specified PE# */
1494 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1495 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1496 
1497 	mb(); /* Ensure above stores are visible */
1498 	__raw_writeq_be(val, invalidate);
1499 }
1500 
1501 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1502 					unsigned shift, unsigned long index,
1503 					unsigned long npages)
1504 {
1505 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1506 	unsigned long start, end, inc;
1507 
1508 	/* We'll invalidate DMA address in PE scope */
1509 	start = PHB3_TCE_KILL_INVAL_ONE;
1510 	start |= (pe->pe_number & 0xFF);
1511 	end = start;
1512 
1513 	/* Figure out the start, end and step */
1514 	start |= (index << shift);
1515 	end |= ((index + npages - 1) << shift);
1516 	inc = (0x1ull << shift);
1517 	mb();
1518 
1519 	while (start <= end) {
1520 		if (rm)
1521 			__raw_rm_writeq_be(start, invalidate);
1522 		else
1523 			__raw_writeq_be(start, invalidate);
1524 		start += inc;
1525 	}
1526 }
1527 
1528 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1529 {
1530 	struct pnv_phb *phb = pe->phb;
1531 
1532 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1533 		pnv_pci_phb3_tce_invalidate_pe(pe);
1534 	else
1535 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1536 				  pe->pe_number, 0, 0, 0);
1537 }
1538 
1539 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1540 		unsigned long index, unsigned long npages, bool rm)
1541 {
1542 	struct iommu_table_group_link *tgl;
1543 
1544 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1545 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1546 				struct pnv_ioda_pe, table_group);
1547 		struct pnv_phb *phb = pe->phb;
1548 		unsigned int shift = tbl->it_page_shift;
1549 
1550 		/*
1551 		 * NVLink1 can use the TCE kill register directly as
1552 		 * it's the same as PHB3. NVLink2 is different and
1553 		 * should go via the OPAL call.
1554 		 */
1555 		if (phb->model == PNV_PHB_MODEL_NPU) {
1556 			/*
1557 			 * The NVLink hardware does not support TCE kill
1558 			 * per TCE entry so we have to invalidate
1559 			 * the entire cache for it.
1560 			 */
1561 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1562 			continue;
1563 		}
1564 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1565 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1566 						    index, npages);
1567 		else
1568 			opal_pci_tce_kill(phb->opal_id,
1569 					  OPAL_PCI_TCE_KILL_PAGES,
1570 					  pe->pe_number, 1u << shift,
1571 					  index << shift, npages);
1572 	}
1573 }
1574 
1575 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1576 {
1577 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
1578 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1579 	else
1580 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
1581 }
1582 
1583 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1584 		long npages, unsigned long uaddr,
1585 		enum dma_data_direction direction,
1586 		unsigned long attrs)
1587 {
1588 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1589 			attrs);
1590 
1591 	if (!ret)
1592 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1593 
1594 	return ret;
1595 }
1596 
1597 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1598 		long npages)
1599 {
1600 	pnv_tce_free(tbl, index, npages);
1601 
1602 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1603 }
1604 
1605 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1606 	.set = pnv_ioda2_tce_build,
1607 #ifdef CONFIG_IOMMU_API
1608 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1609 	.tce_kill = pnv_pci_ioda2_tce_invalidate,
1610 	.useraddrptr = pnv_tce_useraddrptr,
1611 #endif
1612 	.clear = pnv_ioda2_tce_free,
1613 	.get = pnv_tce_get,
1614 	.free = pnv_pci_ioda2_table_free_pages,
1615 };
1616 
1617 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1618 {
1619 	unsigned int *weight = (unsigned int *)data;
1620 
1621 	/* This is quite simplistic. The "base" weight of a device
1622 	 * is 10. 0 means no DMA is to be accounted for it.
1623 	 */
1624 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1625 		return 0;
1626 
1627 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1628 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1629 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1630 		*weight += 3;
1631 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1632 		*weight += 15;
1633 	else
1634 		*weight += 10;
1635 
1636 	return 0;
1637 }
1638 
1639 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1640 {
1641 	unsigned int weight = 0;
1642 
1643 	/* SRIOV VF has same DMA32 weight as its PF */
1644 #ifdef CONFIG_PCI_IOV
1645 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1646 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1647 		return weight;
1648 	}
1649 #endif
1650 
1651 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1652 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1653 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1654 		struct pci_dev *pdev;
1655 
1656 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1657 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1658 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
1659 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
1660 	}
1661 
1662 	return weight;
1663 }
1664 
1665 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1666 				       struct pnv_ioda_pe *pe)
1667 {
1668 
1669 	struct page *tce_mem = NULL;
1670 	struct iommu_table *tbl;
1671 	unsigned int weight, total_weight = 0;
1672 	unsigned int tce32_segsz, base, segs, avail, i;
1673 	int64_t rc;
1674 	void *addr;
1675 
1676 	/* XXX FIXME: Handle 64-bit only DMA devices */
1677 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1678 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1679 	weight = pnv_pci_ioda_pe_dma_weight(pe);
1680 	if (!weight)
1681 		return;
1682 
1683 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
1684 		     &total_weight);
1685 	segs = (weight * phb->ioda.dma32_count) / total_weight;
1686 	if (!segs)
1687 		segs = 1;
1688 
1689 	/*
1690 	 * Allocate contiguous DMA32 segments. We begin with the expected
1691 	 * number of segments. With one more attempt, the number of DMA32
1692 	 * segments to be allocated is decreased by one until one segment
1693 	 * is allocated successfully.
1694 	 */
1695 	do {
1696 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
1697 			for (avail = 0, i = base; i < base + segs; i++) {
1698 				if (phb->ioda.dma32_segmap[i] ==
1699 				    IODA_INVALID_PE)
1700 					avail++;
1701 			}
1702 
1703 			if (avail == segs)
1704 				goto found;
1705 		}
1706 	} while (--segs);
1707 
1708 	if (!segs) {
1709 		pe_warn(pe, "No available DMA32 segments\n");
1710 		return;
1711 	}
1712 
1713 found:
1714 	tbl = pnv_pci_table_alloc(phb->hose->node);
1715 	if (WARN_ON(!tbl))
1716 		return;
1717 
1718 	iommu_register_group(&pe->table_group, phb->hose->global_number,
1719 			pe->pe_number);
1720 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1721 
1722 	/* Grab a 32-bit TCE table */
1723 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
1724 		weight, total_weight, base, segs);
1725 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1726 		base * PNV_IODA1_DMA32_SEGSIZE,
1727 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
1728 
1729 	/* XXX Currently, we allocate one big contiguous table for the
1730 	 * TCEs. We only really need one chunk per 256M of TCE space
1731 	 * (ie per segment) but that's an optimization for later, it
1732 	 * requires some added smarts with our get/put_tce implementation
1733 	 *
1734 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
1735 	 * bytes
1736 	 */
1737 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
1738 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1739 				   get_order(tce32_segsz * segs));
1740 	if (!tce_mem) {
1741 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1742 		goto fail;
1743 	}
1744 	addr = page_address(tce_mem);
1745 	memset(addr, 0, tce32_segsz * segs);
1746 
1747 	/* Configure HW */
1748 	for (i = 0; i < segs; i++) {
1749 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1750 					      pe->pe_number,
1751 					      base + i, 1,
1752 					      __pa(addr) + tce32_segsz * i,
1753 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
1754 		if (rc) {
1755 			pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
1756 			       rc);
1757 			goto fail;
1758 		}
1759 	}
1760 
1761 	/* Setup DMA32 segment mapping */
1762 	for (i = base; i < base + segs; i++)
1763 		phb->ioda.dma32_segmap[i] = pe->pe_number;
1764 
1765 	/* Setup linux iommu table */
1766 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
1767 				  base * PNV_IODA1_DMA32_SEGSIZE,
1768 				  IOMMU_PAGE_SHIFT_4K);
1769 
1770 	tbl->it_ops = &pnv_ioda1_iommu_ops;
1771 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1772 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1773 	iommu_init_table(tbl, phb->hose->node, 0, 0);
1774 
1775 	pe->dma_setup_done = true;
1776 	return;
1777  fail:
1778 	/* XXX Failure: Try to fallback to 64-bit only ? */
1779 	if (tce_mem)
1780 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
1781 	if (tbl) {
1782 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1783 		iommu_tce_table_put(tbl);
1784 	}
1785 }
1786 
1787 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1788 		int num, struct iommu_table *tbl)
1789 {
1790 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1791 			table_group);
1792 	struct pnv_phb *phb = pe->phb;
1793 	int64_t rc;
1794 	const unsigned long size = tbl->it_indirect_levels ?
1795 			tbl->it_level_size : tbl->it_size;
1796 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1797 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1798 
1799 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1800 		num, start_addr, start_addr + win_size - 1,
1801 		IOMMU_PAGE_SIZE(tbl));
1802 
1803 	/*
1804 	 * Map TCE table through TVT. The TVE index is the PE number
1805 	 * shifted by 1 bit for 32-bits DMA space.
1806 	 */
1807 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
1808 			pe->pe_number,
1809 			(pe->pe_number << 1) + num,
1810 			tbl->it_indirect_levels + 1,
1811 			__pa(tbl->it_base),
1812 			size << 3,
1813 			IOMMU_PAGE_SIZE(tbl));
1814 	if (rc) {
1815 		pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1816 		return rc;
1817 	}
1818 
1819 	pnv_pci_link_table_and_group(phb->hose->node, num,
1820 			tbl, &pe->table_group);
1821 	pnv_pci_ioda2_tce_invalidate_pe(pe);
1822 
1823 	return 0;
1824 }
1825 
1826 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1827 {
1828 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
1829 	int64_t rc;
1830 
1831 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1832 	if (enable) {
1833 		phys_addr_t top = memblock_end_of_DRAM();
1834 
1835 		top = roundup_pow_of_two(top);
1836 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1837 						     pe->pe_number,
1838 						     window_id,
1839 						     pe->tce_bypass_base,
1840 						     top);
1841 	} else {
1842 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1843 						     pe->pe_number,
1844 						     window_id,
1845 						     pe->tce_bypass_base,
1846 						     0);
1847 	}
1848 	if (rc)
1849 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1850 	else
1851 		pe->tce_bypass_enabled = enable;
1852 }
1853 
1854 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1855 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
1856 		bool alloc_userspace_copy, struct iommu_table **ptbl)
1857 {
1858 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1859 			table_group);
1860 	int nid = pe->phb->hose->node;
1861 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1862 	long ret;
1863 	struct iommu_table *tbl;
1864 
1865 	tbl = pnv_pci_table_alloc(nid);
1866 	if (!tbl)
1867 		return -ENOMEM;
1868 
1869 	tbl->it_ops = &pnv_ioda2_iommu_ops;
1870 
1871 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
1872 			bus_offset, page_shift, window_size,
1873 			levels, alloc_userspace_copy, tbl);
1874 	if (ret) {
1875 		iommu_tce_table_put(tbl);
1876 		return ret;
1877 	}
1878 
1879 	*ptbl = tbl;
1880 
1881 	return 0;
1882 }
1883 
1884 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1885 {
1886 	struct iommu_table *tbl = NULL;
1887 	long rc;
1888 	unsigned long res_start, res_end;
1889 
1890 	/*
1891 	 * crashkernel= specifies the kdump kernel's maximum memory at
1892 	 * some offset and there is no guaranteed the result is a power
1893 	 * of 2, which will cause errors later.
1894 	 */
1895 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1896 
1897 	/*
1898 	 * In memory constrained environments, e.g. kdump kernel, the
1899 	 * DMA window can be larger than available memory, which will
1900 	 * cause errors later.
1901 	 */
1902 	const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
1903 
1904 	/*
1905 	 * We create the default window as big as we can. The constraint is
1906 	 * the max order of allocation possible. The TCE table is likely to
1907 	 * end up being multilevel and with on-demand allocation in place,
1908 	 * the initial use is not going to be huge as the default window aims
1909 	 * to support crippled devices (i.e. not fully 64bit DMAble) only.
1910 	 */
1911 	/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1912 	const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1913 	/* Each TCE level cannot exceed maxblock so go multilevel if needed */
1914 	unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1915 	unsigned long tcelevel_order = ilog2(maxblock >> 3);
1916 	unsigned int levels = tces_order / tcelevel_order;
1917 
1918 	if (tces_order % tcelevel_order)
1919 		levels += 1;
1920 	/*
1921 	 * We try to stick to default levels (which is >1 at the moment) in
1922 	 * order to save memory by relying on on-demain TCE level allocation.
1923 	 */
1924 	levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1925 
1926 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1927 			window_size, levels, false, &tbl);
1928 	if (rc) {
1929 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1930 				rc);
1931 		return rc;
1932 	}
1933 
1934 	/* We use top part of 32bit space for MMIO so exclude it from DMA */
1935 	res_start = 0;
1936 	res_end = 0;
1937 	if (window_size > pe->phb->ioda.m32_pci_base) {
1938 		res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1939 		res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1940 	}
1941 	iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end);
1942 
1943 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1944 	if (rc) {
1945 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
1946 				rc);
1947 		iommu_tce_table_put(tbl);
1948 		return rc;
1949 	}
1950 
1951 	if (!pnv_iommu_bypass_disabled)
1952 		pnv_pci_ioda2_set_bypass(pe, true);
1953 
1954 	/*
1955 	 * Set table base for the case of IOMMU DMA use. Usually this is done
1956 	 * from dma_dev_setup() which is not called when a device is returned
1957 	 * from VFIO so do it here.
1958 	 */
1959 	if (pe->pdev)
1960 		set_iommu_table_base(&pe->pdev->dev, tbl);
1961 
1962 	return 0;
1963 }
1964 
1965 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1966 		int num)
1967 {
1968 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1969 			table_group);
1970 	struct pnv_phb *phb = pe->phb;
1971 	long ret;
1972 
1973 	pe_info(pe, "Removing DMA window #%d\n", num);
1974 
1975 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1976 			(pe->pe_number << 1) + num,
1977 			0/* levels */, 0/* table address */,
1978 			0/* table size */, 0/* page size */);
1979 	if (ret)
1980 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1981 	else
1982 		pnv_pci_ioda2_tce_invalidate_pe(pe);
1983 
1984 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1985 
1986 	return ret;
1987 }
1988 
1989 #ifdef CONFIG_IOMMU_API
1990 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1991 		__u64 window_size, __u32 levels)
1992 {
1993 	unsigned long bytes = 0;
1994 	const unsigned window_shift = ilog2(window_size);
1995 	unsigned entries_shift = window_shift - page_shift;
1996 	unsigned table_shift = entries_shift + 3;
1997 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1998 	unsigned long direct_table_size;
1999 
2000 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2001 			!is_power_of_2(window_size))
2002 		return 0;
2003 
2004 	/* Calculate a direct table size from window_size and levels */
2005 	entries_shift = (entries_shift + levels - 1) / levels;
2006 	table_shift = entries_shift + 3;
2007 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2008 	direct_table_size =  1UL << table_shift;
2009 
2010 	for ( ; levels; --levels) {
2011 		bytes += ALIGN(tce_table_size, direct_table_size);
2012 
2013 		tce_table_size /= direct_table_size;
2014 		tce_table_size <<= 3;
2015 		tce_table_size = max_t(unsigned long,
2016 				tce_table_size, direct_table_size);
2017 	}
2018 
2019 	return bytes + bytes; /* one for HW table, one for userspace copy */
2020 }
2021 
2022 static long pnv_pci_ioda2_create_table_userspace(
2023 		struct iommu_table_group *table_group,
2024 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2025 		struct iommu_table **ptbl)
2026 {
2027 	long ret = pnv_pci_ioda2_create_table(table_group,
2028 			num, page_shift, window_size, levels, true, ptbl);
2029 
2030 	if (!ret)
2031 		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2032 				page_shift, window_size, levels);
2033 	return ret;
2034 }
2035 
2036 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
2037 {
2038 	struct pci_dev *dev;
2039 
2040 	list_for_each_entry(dev, &bus->devices, bus_list) {
2041 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
2042 		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
2043 
2044 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2045 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
2046 	}
2047 }
2048 
2049 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2050 {
2051 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2052 						table_group);
2053 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2054 	struct iommu_table *tbl = pe->table_group.tables[0];
2055 
2056 	pnv_pci_ioda2_set_bypass(pe, false);
2057 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2058 	if (pe->pbus)
2059 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2060 	else if (pe->pdev)
2061 		set_iommu_table_base(&pe->pdev->dev, NULL);
2062 	iommu_tce_table_put(tbl);
2063 }
2064 
2065 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2066 {
2067 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2068 						table_group);
2069 
2070 	pnv_pci_ioda2_setup_default_config(pe);
2071 	if (pe->pbus)
2072 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2073 }
2074 
2075 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2076 	.get_table_size = pnv_pci_ioda2_get_table_size,
2077 	.create_table = pnv_pci_ioda2_create_table_userspace,
2078 	.set_window = pnv_pci_ioda2_set_window,
2079 	.unset_window = pnv_pci_ioda2_unset_window,
2080 	.take_ownership = pnv_ioda2_take_ownership,
2081 	.release_ownership = pnv_ioda2_release_ownership,
2082 };
2083 #endif
2084 
2085 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2086 				struct pnv_ioda_pe *pe)
2087 {
2088 	int64_t rc;
2089 
2090 	/* TVE #1 is selected by PCI address bit 59 */
2091 	pe->tce_bypass_base = 1ull << 59;
2092 
2093 	/* The PE will reserve all possible 32-bits space */
2094 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2095 		phb->ioda.m32_pci_base);
2096 
2097 	/* Setup linux iommu table */
2098 	pe->table_group.tce32_start = 0;
2099 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2100 	pe->table_group.max_dynamic_windows_supported =
2101 			IOMMU_TABLE_GROUP_MAX_TABLES;
2102 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2103 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2104 
2105 	rc = pnv_pci_ioda2_setup_default_config(pe);
2106 	if (rc)
2107 		return;
2108 
2109 #ifdef CONFIG_IOMMU_API
2110 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2111 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2112 			     pe->pe_number);
2113 #endif
2114 	pe->dma_setup_done = true;
2115 }
2116 
2117 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2118 {
2119 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2120 					   ioda.irq_chip);
2121 
2122 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2123 }
2124 
2125 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2126 {
2127 	int64_t rc;
2128 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2129 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2130 
2131 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2132 	WARN_ON_ONCE(rc);
2133 
2134 	icp_native_eoi(d);
2135 }
2136 
2137 
2138 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2139 {
2140 	struct irq_data *idata;
2141 	struct irq_chip *ichip;
2142 
2143 	/* The MSI EOI OPAL call is only needed on PHB3 */
2144 	if (phb->model != PNV_PHB_MODEL_PHB3)
2145 		return;
2146 
2147 	if (!phb->ioda.irq_chip_init) {
2148 		/*
2149 		 * First time we setup an MSI IRQ, we need to setup the
2150 		 * corresponding IRQ chip to route correctly.
2151 		 */
2152 		idata = irq_get_irq_data(virq);
2153 		ichip = irq_data_get_irq_chip(idata);
2154 		phb->ioda.irq_chip_init = 1;
2155 		phb->ioda.irq_chip = *ichip;
2156 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2157 	}
2158 	irq_set_chip(virq, &phb->ioda.irq_chip);
2159 }
2160 
2161 /*
2162  * Returns true iff chip is something that we could call
2163  * pnv_opal_pci_msi_eoi for.
2164  */
2165 bool is_pnv_opal_msi(struct irq_chip *chip)
2166 {
2167 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2168 }
2169 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2170 
2171 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2172 				  unsigned int hwirq, unsigned int virq,
2173 				  unsigned int is_64, struct msi_msg *msg)
2174 {
2175 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2176 	unsigned int xive_num = hwirq - phb->msi_base;
2177 	__be32 data;
2178 	int rc;
2179 
2180 	/* No PE assigned ? bail out ... no MSI for you ! */
2181 	if (pe == NULL)
2182 		return -ENXIO;
2183 
2184 	/* Check if we have an MVE */
2185 	if (pe->mve_number < 0)
2186 		return -ENXIO;
2187 
2188 	/* Force 32-bit MSI on some broken devices */
2189 	if (dev->no_64bit_msi)
2190 		is_64 = 0;
2191 
2192 	/* Assign XIVE to PE */
2193 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2194 	if (rc) {
2195 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2196 			pci_name(dev), rc, xive_num);
2197 		return -EIO;
2198 	}
2199 
2200 	if (is_64) {
2201 		__be64 addr64;
2202 
2203 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2204 				     &addr64, &data);
2205 		if (rc) {
2206 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2207 				pci_name(dev), rc);
2208 			return -EIO;
2209 		}
2210 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2211 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2212 	} else {
2213 		__be32 addr32;
2214 
2215 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2216 				     &addr32, &data);
2217 		if (rc) {
2218 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2219 				pci_name(dev), rc);
2220 			return -EIO;
2221 		}
2222 		msg->address_hi = 0;
2223 		msg->address_lo = be32_to_cpu(addr32);
2224 	}
2225 	msg->data = be32_to_cpu(data);
2226 
2227 	pnv_set_msi_irq_chip(phb, virq);
2228 
2229 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2230 		 " address=%x_%08x data=%x PE# %x\n",
2231 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2232 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2233 
2234 	return 0;
2235 }
2236 
2237 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2238 {
2239 	unsigned int count;
2240 	const __be32 *prop = of_get_property(phb->hose->dn,
2241 					     "ibm,opal-msi-ranges", NULL);
2242 	if (!prop) {
2243 		/* BML Fallback */
2244 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2245 	}
2246 	if (!prop)
2247 		return;
2248 
2249 	phb->msi_base = be32_to_cpup(prop);
2250 	count = be32_to_cpup(prop + 1);
2251 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2252 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2253 		       phb->hose->global_number);
2254 		return;
2255 	}
2256 
2257 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2258 	phb->msi32_support = 1;
2259 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2260 		count, phb->msi_base);
2261 }
2262 
2263 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2264 				  struct resource *res)
2265 {
2266 	struct pnv_phb *phb = pe->phb;
2267 	struct pci_bus_region region;
2268 	int index;
2269 	int64_t rc;
2270 
2271 	if (!res || !res->flags || res->start > res->end)
2272 		return;
2273 
2274 	if (res->flags & IORESOURCE_IO) {
2275 		region.start = res->start - phb->ioda.io_pci_base;
2276 		region.end   = res->end - phb->ioda.io_pci_base;
2277 		index = region.start / phb->ioda.io_segsize;
2278 
2279 		while (index < phb->ioda.total_pe_num &&
2280 		       region.start <= region.end) {
2281 			phb->ioda.io_segmap[index] = pe->pe_number;
2282 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2283 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2284 			if (rc != OPAL_SUCCESS) {
2285 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2286 				       __func__, rc, index, pe->pe_number);
2287 				break;
2288 			}
2289 
2290 			region.start += phb->ioda.io_segsize;
2291 			index++;
2292 		}
2293 	} else if ((res->flags & IORESOURCE_MEM) &&
2294 		   !pnv_pci_is_m64(phb, res)) {
2295 		region.start = res->start -
2296 			       phb->hose->mem_offset[0] -
2297 			       phb->ioda.m32_pci_base;
2298 		region.end   = res->end -
2299 			       phb->hose->mem_offset[0] -
2300 			       phb->ioda.m32_pci_base;
2301 		index = region.start / phb->ioda.m32_segsize;
2302 
2303 		while (index < phb->ioda.total_pe_num &&
2304 		       region.start <= region.end) {
2305 			phb->ioda.m32_segmap[index] = pe->pe_number;
2306 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2307 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2308 			if (rc != OPAL_SUCCESS) {
2309 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2310 				       __func__, rc, index, pe->pe_number);
2311 				break;
2312 			}
2313 
2314 			region.start += phb->ioda.m32_segsize;
2315 			index++;
2316 		}
2317 	}
2318 }
2319 
2320 /*
2321  * This function is supposed to be called on basis of PE from top
2322  * to bottom style. So the the I/O or MMIO segment assigned to
2323  * parent PE could be overridden by its child PEs if necessary.
2324  */
2325 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2326 {
2327 	struct pci_dev *pdev;
2328 	int i;
2329 
2330 	/*
2331 	 * NOTE: We only care PCI bus based PE for now. For PCI
2332 	 * device based PE, for example SRIOV sensitive VF should
2333 	 * be figured out later.
2334 	 */
2335 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2336 
2337 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2338 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2339 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2340 
2341 		/*
2342 		 * If the PE contains all subordinate PCI buses, the
2343 		 * windows of the child bridges should be mapped to
2344 		 * the PE as well.
2345 		 */
2346 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2347 			continue;
2348 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2349 			pnv_ioda_setup_pe_res(pe,
2350 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2351 	}
2352 }
2353 
2354 #ifdef CONFIG_DEBUG_FS
2355 static int pnv_pci_diag_data_set(void *data, u64 val)
2356 {
2357 	struct pnv_phb *phb = data;
2358 	s64 ret;
2359 
2360 	/* Retrieve the diag data from firmware */
2361 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2362 					  phb->diag_data_size);
2363 	if (ret != OPAL_SUCCESS)
2364 		return -EIO;
2365 
2366 	/* Print the diag data to the kernel log */
2367 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2368 	return 0;
2369 }
2370 
2371 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2372 			 "%llu\n");
2373 
2374 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2375 {
2376 	struct pnv_phb *phb = data;
2377 	int pe_num;
2378 
2379 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2380 		struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2381 
2382 		if (!test_bit(pe_num, phb->ioda.pe_alloc))
2383 			continue;
2384 
2385 		pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2386 			pe->rid, pe->device_count,
2387 			(pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2388 			(pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2389 			(pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2390 			(pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2391 			(pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2392 			(pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2393 	}
2394 
2395 	return 0;
2396 }
2397 
2398 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2399 			 pnv_pci_ioda_pe_dump, "%llu\n");
2400 
2401 #endif /* CONFIG_DEBUG_FS */
2402 
2403 static void pnv_pci_ioda_create_dbgfs(void)
2404 {
2405 #ifdef CONFIG_DEBUG_FS
2406 	struct pci_controller *hose, *tmp;
2407 	struct pnv_phb *phb;
2408 	char name[16];
2409 
2410 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2411 		phb = hose->private_data;
2412 
2413 		/* Notify initialization of PHB done */
2414 		phb->initialized = 1;
2415 
2416 		sprintf(name, "PCI%04x", hose->global_number);
2417 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2418 
2419 		debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2420 					   phb, &pnv_pci_diag_data_fops);
2421 		debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2422 					   phb, &pnv_pci_ioda_pe_dump_fops);
2423 	}
2424 #endif /* CONFIG_DEBUG_FS */
2425 }
2426 
2427 static void pnv_pci_enable_bridge(struct pci_bus *bus)
2428 {
2429 	struct pci_dev *dev = bus->self;
2430 	struct pci_bus *child;
2431 
2432 	/* Empty bus ? bail */
2433 	if (list_empty(&bus->devices))
2434 		return;
2435 
2436 	/*
2437 	 * If there's a bridge associated with that bus enable it. This works
2438 	 * around races in the generic code if the enabling is done during
2439 	 * parallel probing. This can be removed once those races have been
2440 	 * fixed.
2441 	 */
2442 	if (dev) {
2443 		int rc = pci_enable_device(dev);
2444 		if (rc)
2445 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
2446 		pci_set_master(dev);
2447 	}
2448 
2449 	/* Perform the same to child busses */
2450 	list_for_each_entry(child, &bus->children, node)
2451 		pnv_pci_enable_bridge(child);
2452 }
2453 
2454 static void pnv_pci_enable_bridges(void)
2455 {
2456 	struct pci_controller *hose;
2457 
2458 	list_for_each_entry(hose, &hose_list, list_node)
2459 		pnv_pci_enable_bridge(hose->bus);
2460 }
2461 
2462 static void pnv_pci_ioda_fixup(void)
2463 {
2464 	pnv_pci_ioda_setup_nvlink();
2465 	pnv_pci_ioda_create_dbgfs();
2466 
2467 	pnv_pci_enable_bridges();
2468 
2469 #ifdef CONFIG_EEH
2470 	pnv_eeh_post_init();
2471 #endif
2472 }
2473 
2474 /*
2475  * Returns the alignment for I/O or memory windows for P2P
2476  * bridges. That actually depends on how PEs are segmented.
2477  * For now, we return I/O or M32 segment size for PE sensitive
2478  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2479  * 1MiB for memory) will be returned.
2480  *
2481  * The current PCI bus might be put into one PE, which was
2482  * create against the parent PCI bridge. For that case, we
2483  * needn't enlarge the alignment so that we can save some
2484  * resources.
2485  */
2486 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2487 						unsigned long type)
2488 {
2489 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2490 	int num_pci_bridges = 0;
2491 	struct pci_dev *bridge;
2492 
2493 	bridge = bus->self;
2494 	while (bridge) {
2495 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2496 			num_pci_bridges++;
2497 			if (num_pci_bridges >= 2)
2498 				return 1;
2499 		}
2500 
2501 		bridge = bridge->bus->self;
2502 	}
2503 
2504 	/*
2505 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
2506 	 * alignment for any 64-bit resource, PCIe doesn't care and
2507 	 * bridges only do 64-bit prefetchable anyway.
2508 	 */
2509 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2510 		return phb->ioda.m64_segsize;
2511 	if (type & IORESOURCE_MEM)
2512 		return phb->ioda.m32_segsize;
2513 
2514 	return phb->ioda.io_segsize;
2515 }
2516 
2517 /*
2518  * We are updating root port or the upstream port of the
2519  * bridge behind the root port with PHB's windows in order
2520  * to accommodate the changes on required resources during
2521  * PCI (slot) hotplug, which is connected to either root
2522  * port or the downstream ports of PCIe switch behind the
2523  * root port.
2524  */
2525 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2526 					   unsigned long type)
2527 {
2528 	struct pci_controller *hose = pci_bus_to_host(bus);
2529 	struct pnv_phb *phb = hose->private_data;
2530 	struct pci_dev *bridge = bus->self;
2531 	struct resource *r, *w;
2532 	bool msi_region = false;
2533 	int i;
2534 
2535 	/* Check if we need apply fixup to the bridge's windows */
2536 	if (!pci_is_root_bus(bridge->bus) &&
2537 	    !pci_is_root_bus(bridge->bus->self->bus))
2538 		return;
2539 
2540 	/* Fixup the resources */
2541 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2542 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2543 		if (!r->flags || !r->parent)
2544 			continue;
2545 
2546 		w = NULL;
2547 		if (r->flags & type & IORESOURCE_IO)
2548 			w = &hose->io_resource;
2549 		else if (pnv_pci_is_m64(phb, r) &&
2550 			 (type & IORESOURCE_PREFETCH) &&
2551 			 phb->ioda.m64_segsize)
2552 			w = &hose->mem_resources[1];
2553 		else if (r->flags & type & IORESOURCE_MEM) {
2554 			w = &hose->mem_resources[0];
2555 			msi_region = true;
2556 		}
2557 
2558 		r->start = w->start;
2559 		r->end = w->end;
2560 
2561 		/* The 64KB 32-bits MSI region shouldn't be included in
2562 		 * the 32-bits bridge window. Otherwise, we can see strange
2563 		 * issues. One of them is EEH error observed on Garrison.
2564 		 *
2565 		 * Exclude top 1MB region which is the minimal alignment of
2566 		 * 32-bits bridge window.
2567 		 */
2568 		if (msi_region) {
2569 			r->end += 0x10000;
2570 			r->end -= 0x100000;
2571 		}
2572 	}
2573 }
2574 
2575 static void pnv_pci_configure_bus(struct pci_bus *bus)
2576 {
2577 	struct pci_dev *bridge = bus->self;
2578 	struct pnv_ioda_pe *pe;
2579 	bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2580 
2581 	dev_info(&bus->dev, "Configuring PE for bus\n");
2582 
2583 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2584 	if (WARN_ON(list_empty(&bus->devices)))
2585 		return;
2586 
2587 	/* Reserve PEs according to used M64 resources */
2588 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
2589 
2590 	/*
2591 	 * Assign PE. We might run here because of partial hotplug.
2592 	 * For the case, we just pick up the existing PE and should
2593 	 * not allocate resources again.
2594 	 */
2595 	pe = pnv_ioda_setup_bus_PE(bus, all);
2596 	if (!pe)
2597 		return;
2598 
2599 	pnv_ioda_setup_pe_seg(pe);
2600 }
2601 
2602 static resource_size_t pnv_pci_default_alignment(void)
2603 {
2604 	return PAGE_SIZE;
2605 }
2606 
2607 /* Prevent enabling devices for which we couldn't properly
2608  * assign a PE
2609  */
2610 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2611 {
2612 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
2613 	struct pci_dn *pdn;
2614 
2615 	/* The function is probably called while the PEs have
2616 	 * not be created yet. For example, resource reassignment
2617 	 * during PCI probe period. We just skip the check if
2618 	 * PEs isn't ready.
2619 	 */
2620 	if (!phb->initialized)
2621 		return true;
2622 
2623 	pdn = pci_get_pdn(dev);
2624 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2625 		return false;
2626 
2627 	return true;
2628 }
2629 
2630 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2631 {
2632 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2633 	struct pnv_phb *phb = hose->private_data;
2634 	struct pci_dn *pdn;
2635 	struct pnv_ioda_pe *pe;
2636 
2637 	if (!phb->initialized)
2638 		return true;
2639 
2640 	pdn = pci_get_pdn(dev);
2641 	if (!pdn)
2642 		return false;
2643 
2644 	if (pdn->pe_number == IODA_INVALID_PE) {
2645 		pe = pnv_ioda_setup_dev_PE(dev);
2646 		if (!pe)
2647 			return false;
2648 	}
2649 	return true;
2650 }
2651 
2652 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
2653 				       int num)
2654 {
2655 	struct pnv_ioda_pe *pe = container_of(table_group,
2656 					      struct pnv_ioda_pe, table_group);
2657 	struct pnv_phb *phb = pe->phb;
2658 	unsigned int idx;
2659 	long rc;
2660 
2661 	pe_info(pe, "Removing DMA window #%d\n", num);
2662 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
2663 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
2664 			continue;
2665 
2666 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2667 						idx, 0, 0ul, 0ul, 0ul);
2668 		if (rc != OPAL_SUCCESS) {
2669 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
2670 				rc, idx);
2671 			return rc;
2672 		}
2673 
2674 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
2675 	}
2676 
2677 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2678 	return OPAL_SUCCESS;
2679 }
2680 
2681 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
2682 {
2683 	struct iommu_table *tbl = pe->table_group.tables[0];
2684 	int64_t rc;
2685 
2686 	if (!pe->dma_setup_done)
2687 		return;
2688 
2689 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
2690 	if (rc != OPAL_SUCCESS)
2691 		return;
2692 
2693 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
2694 	if (pe->table_group.group) {
2695 		iommu_group_put(pe->table_group.group);
2696 		WARN_ON(pe->table_group.group);
2697 	}
2698 
2699 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
2700 	iommu_tce_table_put(tbl);
2701 }
2702 
2703 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2704 {
2705 	struct iommu_table *tbl = pe->table_group.tables[0];
2706 	int64_t rc;
2707 
2708 	if (!pe->dma_setup_done)
2709 		return;
2710 
2711 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2712 	if (rc)
2713 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2714 
2715 	pnv_pci_ioda2_set_bypass(pe, false);
2716 	if (pe->table_group.group) {
2717 		iommu_group_put(pe->table_group.group);
2718 		WARN_ON(pe->table_group.group);
2719 	}
2720 
2721 	iommu_tce_table_put(tbl);
2722 }
2723 
2724 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2725 				 unsigned short win,
2726 				 unsigned int *map)
2727 {
2728 	struct pnv_phb *phb = pe->phb;
2729 	int idx;
2730 	int64_t rc;
2731 
2732 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2733 		if (map[idx] != pe->pe_number)
2734 			continue;
2735 
2736 		rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2737 				phb->ioda.reserved_pe_idx, win, 0, idx);
2738 
2739 		if (rc != OPAL_SUCCESS)
2740 			pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2741 				rc, win, idx);
2742 
2743 		map[idx] = IODA_INVALID_PE;
2744 	}
2745 }
2746 
2747 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2748 {
2749 	struct pnv_phb *phb = pe->phb;
2750 
2751 	if (phb->type == PNV_PHB_IODA1) {
2752 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
2753 				     phb->ioda.io_segmap);
2754 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2755 				     phb->ioda.m32_segmap);
2756 		/* M64 is pre-configured by pnv_ioda1_init_m64() */
2757 	} else if (phb->type == PNV_PHB_IODA2) {
2758 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2759 				     phb->ioda.m32_segmap);
2760 	}
2761 }
2762 
2763 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2764 {
2765 	struct pnv_phb *phb = pe->phb;
2766 	struct pnv_ioda_pe *slave, *tmp;
2767 
2768 	pe_info(pe, "Releasing PE\n");
2769 
2770 	mutex_lock(&phb->ioda.pe_list_mutex);
2771 	list_del(&pe->list);
2772 	mutex_unlock(&phb->ioda.pe_list_mutex);
2773 
2774 	switch (phb->type) {
2775 	case PNV_PHB_IODA1:
2776 		pnv_pci_ioda1_release_pe_dma(pe);
2777 		break;
2778 	case PNV_PHB_IODA2:
2779 		pnv_pci_ioda2_release_pe_dma(pe);
2780 		break;
2781 	case PNV_PHB_NPU_OCAPI:
2782 		break;
2783 	default:
2784 		WARN_ON(1);
2785 	}
2786 
2787 	pnv_ioda_release_pe_seg(pe);
2788 	pnv_ioda_deconfigure_pe(pe->phb, pe);
2789 
2790 	/* Release slave PEs in the compound PE */
2791 	if (pe->flags & PNV_IODA_PE_MASTER) {
2792 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2793 			list_del(&slave->list);
2794 			pnv_ioda_free_pe(slave);
2795 		}
2796 	}
2797 
2798 	/*
2799 	 * The PE for root bus can be removed because of hotplug in EEH
2800 	 * recovery for fenced PHB error. We need to mark the PE dead so
2801 	 * that it can be populated again in PCI hot add path. The PE
2802 	 * shouldn't be destroyed as it's the global reserved resource.
2803 	 */
2804 	if (phb->ioda.root_pe_idx == pe->pe_number)
2805 		return;
2806 
2807 	pnv_ioda_free_pe(pe);
2808 }
2809 
2810 static void pnv_pci_release_device(struct pci_dev *pdev)
2811 {
2812 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2813 	struct pci_dn *pdn = pci_get_pdn(pdev);
2814 	struct pnv_ioda_pe *pe;
2815 
2816 	/* The VF PE state is torn down when sriov_disable() is called */
2817 	if (pdev->is_virtfn)
2818 		return;
2819 
2820 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2821 		return;
2822 
2823 #ifdef CONFIG_PCI_IOV
2824 	/*
2825 	 * FIXME: Try move this to sriov_disable(). It's here since we allocate
2826 	 * the iov state at probe time since we need to fiddle with the IOV
2827 	 * resources.
2828 	 */
2829 	if (pdev->is_physfn)
2830 		kfree(pdev->dev.archdata.iov_data);
2831 #endif
2832 
2833 	/*
2834 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
2835 	 * isn't removed and added afterwards in this scenario. We should
2836 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2837 	 * device count is decreased on removing devices while failing to
2838 	 * be increased on adding devices. It leads to unbalanced PE's device
2839 	 * count and eventually make normal PCI hotplug path broken.
2840 	 */
2841 	pe = &phb->ioda.pe_array[pdn->pe_number];
2842 	pdn->pe_number = IODA_INVALID_PE;
2843 
2844 	WARN_ON(--pe->device_count < 0);
2845 	if (pe->device_count == 0)
2846 		pnv_ioda_release_pe(pe);
2847 }
2848 
2849 static void pnv_npu_disable_device(struct pci_dev *pdev)
2850 {
2851 	struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
2852 	struct eeh_pe *eehpe = edev ? edev->pe : NULL;
2853 
2854 	if (eehpe && eeh_ops && eeh_ops->reset)
2855 		eeh_ops->reset(eehpe, EEH_RESET_HOT);
2856 }
2857 
2858 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2859 {
2860 	struct pnv_phb *phb = hose->private_data;
2861 
2862 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2863 		       OPAL_ASSERT_RESET);
2864 }
2865 
2866 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2867 {
2868 	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2869 	struct pnv_ioda_pe *pe;
2870 
2871 	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2872 		if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2873 			continue;
2874 
2875 		if (!pe->pbus)
2876 			continue;
2877 
2878 		if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2879 			pe->pbus = bus;
2880 			break;
2881 		}
2882 	}
2883 }
2884 
2885 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2886 	.dma_dev_setup		= pnv_pci_ioda_dma_dev_setup,
2887 	.dma_bus_setup		= pnv_pci_ioda_dma_bus_setup,
2888 	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
2889 	.setup_msi_irqs		= pnv_setup_msi_irqs,
2890 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
2891 	.enable_device_hook	= pnv_pci_enable_device_hook,
2892 	.release_device		= pnv_pci_release_device,
2893 	.window_alignment	= pnv_pci_window_alignment,
2894 	.setup_bridge		= pnv_pci_fixup_bridge_resources,
2895 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2896 	.shutdown		= pnv_pci_ioda_shutdown,
2897 };
2898 
2899 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
2900 	.setup_msi_irqs		= pnv_setup_msi_irqs,
2901 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
2902 	.enable_device_hook	= pnv_pci_enable_device_hook,
2903 	.window_alignment	= pnv_pci_window_alignment,
2904 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2905 	.shutdown		= pnv_pci_ioda_shutdown,
2906 	.disable_device		= pnv_npu_disable_device,
2907 };
2908 
2909 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2910 	.enable_device_hook	= pnv_ocapi_enable_device_hook,
2911 	.release_device		= pnv_pci_release_device,
2912 	.window_alignment	= pnv_pci_window_alignment,
2913 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2914 	.shutdown		= pnv_pci_ioda_shutdown,
2915 };
2916 
2917 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2918 					 u64 hub_id, int ioda_type)
2919 {
2920 	struct pci_controller *hose;
2921 	struct pnv_phb *phb;
2922 	unsigned long size, m64map_off, m32map_off, pemap_off;
2923 	unsigned long iomap_off = 0, dma32map_off = 0;
2924 	struct pnv_ioda_pe *root_pe;
2925 	struct resource r;
2926 	const __be64 *prop64;
2927 	const __be32 *prop32;
2928 	int len;
2929 	unsigned int segno;
2930 	u64 phb_id;
2931 	void *aux;
2932 	long rc;
2933 
2934 	if (!of_device_is_available(np))
2935 		return;
2936 
2937 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
2938 
2939 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2940 	if (!prop64) {
2941 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2942 		return;
2943 	}
2944 	phb_id = be64_to_cpup(prop64);
2945 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2946 
2947 	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
2948 	if (!phb)
2949 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2950 		      sizeof(*phb));
2951 
2952 	/* Allocate PCI controller */
2953 	phb->hose = hose = pcibios_alloc_controller(np);
2954 	if (!phb->hose) {
2955 		pr_err("  Can't allocate PCI controller for %pOF\n",
2956 		       np);
2957 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
2958 		return;
2959 	}
2960 
2961 	spin_lock_init(&phb->lock);
2962 	prop32 = of_get_property(np, "bus-range", &len);
2963 	if (prop32 && len == 8) {
2964 		hose->first_busno = be32_to_cpu(prop32[0]);
2965 		hose->last_busno = be32_to_cpu(prop32[1]);
2966 	} else {
2967 		pr_warn("  Broken <bus-range> on %pOF\n", np);
2968 		hose->first_busno = 0;
2969 		hose->last_busno = 0xff;
2970 	}
2971 	hose->private_data = phb;
2972 	phb->hub_id = hub_id;
2973 	phb->opal_id = phb_id;
2974 	phb->type = ioda_type;
2975 	mutex_init(&phb->ioda.pe_alloc_mutex);
2976 
2977 	/* Detect specific models for error handling */
2978 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2979 		phb->model = PNV_PHB_MODEL_P7IOC;
2980 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2981 		phb->model = PNV_PHB_MODEL_PHB3;
2982 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
2983 		phb->model = PNV_PHB_MODEL_NPU;
2984 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
2985 		phb->model = PNV_PHB_MODEL_NPU2;
2986 	else
2987 		phb->model = PNV_PHB_MODEL_UNKNOWN;
2988 
2989 	/* Initialize diagnostic data buffer */
2990 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
2991 	if (prop32)
2992 		phb->diag_data_size = be32_to_cpup(prop32);
2993 	else
2994 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
2995 
2996 	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
2997 	if (!phb->diag_data)
2998 		panic("%s: Failed to allocate %u bytes\n", __func__,
2999 		      phb->diag_data_size);
3000 
3001 	/* Parse 32-bit and IO ranges (if any) */
3002 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3003 
3004 	/* Get registers */
3005 	if (!of_address_to_resource(np, 0, &r)) {
3006 		phb->regs_phys = r.start;
3007 		phb->regs = ioremap(r.start, resource_size(&r));
3008 		if (phb->regs == NULL)
3009 			pr_err("  Failed to map registers !\n");
3010 	}
3011 
3012 	/* Initialize more IODA stuff */
3013 	phb->ioda.total_pe_num = 1;
3014 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3015 	if (prop32)
3016 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3017 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3018 	if (prop32)
3019 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3020 
3021 	/* Invalidate RID to PE# mapping */
3022 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3023 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3024 
3025 	/* Parse 64-bit MMIO range */
3026 	pnv_ioda_parse_m64_window(phb);
3027 
3028 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3029 	/* FW Has already off top 64k of M32 space (MSI space) */
3030 	phb->ioda.m32_size += 0x10000;
3031 
3032 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3033 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3034 	phb->ioda.io_size = hose->pci_io_size;
3035 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3036 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3037 
3038 	/* Calculate how many 32-bit TCE segments we have */
3039 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3040 				PNV_IODA1_DMA32_SEGSIZE;
3041 
3042 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3043 	size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3044 			sizeof(unsigned long));
3045 	m64map_off = size;
3046 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3047 	m32map_off = size;
3048 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3049 	if (phb->type == PNV_PHB_IODA1) {
3050 		iomap_off = size;
3051 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3052 		dma32map_off = size;
3053 		size += phb->ioda.dma32_count *
3054 			sizeof(phb->ioda.dma32_segmap[0]);
3055 	}
3056 	pemap_off = size;
3057 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3058 	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3059 	if (!aux)
3060 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3061 	phb->ioda.pe_alloc = aux;
3062 	phb->ioda.m64_segmap = aux + m64map_off;
3063 	phb->ioda.m32_segmap = aux + m32map_off;
3064 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3065 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3066 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3067 	}
3068 	if (phb->type == PNV_PHB_IODA1) {
3069 		phb->ioda.io_segmap = aux + iomap_off;
3070 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3071 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3072 
3073 		phb->ioda.dma32_segmap = aux + dma32map_off;
3074 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3075 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3076 	}
3077 	phb->ioda.pe_array = aux + pemap_off;
3078 
3079 	/*
3080 	 * Choose PE number for root bus, which shouldn't have
3081 	 * M64 resources consumed by its child devices. To pick
3082 	 * the PE number adjacent to the reserved one if possible.
3083 	 */
3084 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3085 	if (phb->ioda.reserved_pe_idx == 0) {
3086 		phb->ioda.root_pe_idx = 1;
3087 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3088 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3089 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3090 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3091 	} else {
3092 		/* otherwise just allocate one */
3093 		root_pe = pnv_ioda_alloc_pe(phb, 1);
3094 		phb->ioda.root_pe_idx = root_pe->pe_number;
3095 	}
3096 
3097 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3098 	mutex_init(&phb->ioda.pe_list_mutex);
3099 
3100 	/* Calculate how many 32-bit TCE segments we have */
3101 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3102 				PNV_IODA1_DMA32_SEGSIZE;
3103 
3104 #if 0 /* We should really do that ... */
3105 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3106 					 window_type,
3107 					 window_num,
3108 					 starting_real_address,
3109 					 starting_pci_address,
3110 					 segment_size);
3111 #endif
3112 
3113 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3114 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3115 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3116 	if (phb->ioda.m64_size)
3117 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3118 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3119 	if (phb->ioda.io_size)
3120 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3121 			phb->ioda.io_size, phb->ioda.io_segsize);
3122 
3123 
3124 	phb->hose->ops = &pnv_pci_ops;
3125 	phb->get_pe_state = pnv_ioda_get_pe_state;
3126 	phb->freeze_pe = pnv_ioda_freeze_pe;
3127 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3128 
3129 	/* Setup MSI support */
3130 	pnv_pci_init_ioda_msis(phb);
3131 
3132 	/*
3133 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3134 	 * to let the PCI core do resource assignment. It's supposed
3135 	 * that the PCI core will do correct I/O and MMIO alignment
3136 	 * for the P2P bridge bars so that each PCI bus (excluding
3137 	 * the child P2P bridges) can form individual PE.
3138 	 */
3139 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3140 
3141 	switch (phb->type) {
3142 	case PNV_PHB_NPU_NVLINK:
3143 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3144 		break;
3145 	case PNV_PHB_NPU_OCAPI:
3146 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3147 		break;
3148 	default:
3149 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3150 	}
3151 
3152 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3153 
3154 #ifdef CONFIG_PCI_IOV
3155 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
3156 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3157 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3158 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3159 #endif
3160 
3161 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3162 
3163 	/* Reset IODA tables to a clean state */
3164 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3165 	if (rc)
3166 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3167 
3168 	/*
3169 	 * If we're running in kdump kernel, the previous kernel never
3170 	 * shutdown PCI devices correctly. We already got IODA table
3171 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3172 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3173 	 * kernel parameter will force this reset too. Additionally,
3174 	 * if the IODA reset above failed then use a bigger hammer.
3175 	 * This can happen if we get a PHB fatal error in very early
3176 	 * boot.
3177 	 */
3178 	if (is_kdump_kernel() || pci_reset_phbs || rc) {
3179 		pr_info("  Issue PHB reset ...\n");
3180 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3181 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3182 	}
3183 
3184 	/* Remove M64 resource if we can't configure it successfully */
3185 	if (!phb->init_m64 || phb->init_m64(phb))
3186 		hose->mem_resources[1].flags = 0;
3187 }
3188 
3189 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3190 {
3191 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3192 }
3193 
3194 void __init pnv_pci_init_npu_phb(struct device_node *np)
3195 {
3196 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3197 }
3198 
3199 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3200 {
3201 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3202 }
3203 
3204 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3205 {
3206 	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
3207 
3208 	if (!machine_is(powernv))
3209 		return;
3210 
3211 	if (phb->type == PNV_PHB_NPU_OCAPI)
3212 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3213 }
3214 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3215 
3216 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3217 {
3218 	struct device_node *phbn;
3219 	const __be64 *prop64;
3220 	u64 hub_id;
3221 
3222 	pr_info("Probing IODA IO-Hub %pOF\n", np);
3223 
3224 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3225 	if (!prop64) {
3226 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3227 		return;
3228 	}
3229 	hub_id = be64_to_cpup(prop64);
3230 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3231 
3232 	/* Count child PHBs */
3233 	for_each_child_of_node(np, phbn) {
3234 		/* Look for IODA1 PHBs */
3235 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3236 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3237 	}
3238 }
3239