1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
52 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54 
55 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
56 #define POWERNV_IOMMU_MAX_LEVELS	5
57 
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60 
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 			    const char *fmt, ...)
63 {
64 	struct va_format vaf;
65 	va_list args;
66 	char pfix[32];
67 
68 	va_start(args, fmt);
69 
70 	vaf.fmt = fmt;
71 	vaf.va = &args;
72 
73 	if (pe->flags & PNV_IODA_PE_DEV)
74 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 		sprintf(pfix, "%04x:%02x     ",
77 			pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79 	else if (pe->flags & PNV_IODA_PE_VF)
80 		sprintf(pfix, "%04x:%02x:%2x.%d",
81 			pci_domain_nr(pe->parent_dev->bus),
82 			(pe->rid & 0xff00) >> 8,
83 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85 
86 	printk("%spci %s: [PE# %.2x] %pV",
87 	       level, pfix, pe->pe_number, &vaf);
88 
89 	va_end(args);
90 }
91 
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93 
94 static int __init iommu_setup(char *str)
95 {
96 	if (!str)
97 		return -EINVAL;
98 
99 	while (*str) {
100 		if (!strncmp(str, "nobypass", 8)) {
101 			pnv_iommu_bypass_disabled = true;
102 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
103 			break;
104 		}
105 		str += strcspn(str, ",");
106 		if (*str == ',')
107 			str++;
108 	}
109 
110 	return 0;
111 }
112 early_param("iommu", iommu_setup);
113 
114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115 {
116 	/*
117 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
118 	 * allocation code sometimes decides to put a 64-bit prefetchable
119 	 * BAR in the 32-bit window, so we have to compare the addresses.
120 	 *
121 	 * For simplicity we only test resource start.
122 	 */
123 	return (r->start >= phb->ioda.m64_base &&
124 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 }
126 
127 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
128 {
129 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
130 
131 	return (resource_flags & flags) == flags;
132 }
133 
134 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
135 {
136 	s64 rc;
137 
138 	phb->ioda.pe_array[pe_no].phb = phb;
139 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
140 
141 	/*
142 	 * Clear the PE frozen state as it might be put into frozen state
143 	 * in the last PCI remove path. It's not harmful to do so when the
144 	 * PE is already in unfrozen state.
145 	 */
146 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
147 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
148 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
149 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
150 			__func__, rc, phb->hose->global_number, pe_no);
151 
152 	return &phb->ioda.pe_array[pe_no];
153 }
154 
155 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
156 {
157 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
158 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
159 			__func__, pe_no, phb->hose->global_number);
160 		return;
161 	}
162 
163 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
164 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
165 			 __func__, pe_no, phb->hose->global_number);
166 
167 	pnv_ioda_init_pe(phb, pe_no);
168 }
169 
170 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
171 {
172 	long pe;
173 
174 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
175 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
176 			return pnv_ioda_init_pe(phb, pe);
177 	}
178 
179 	return NULL;
180 }
181 
182 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
183 {
184 	struct pnv_phb *phb = pe->phb;
185 	unsigned int pe_num = pe->pe_number;
186 
187 	WARN_ON(pe->pdev);
188 
189 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
190 	clear_bit(pe_num, phb->ioda.pe_alloc);
191 }
192 
193 /* The default M64 BAR is shared by all PEs */
194 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
195 {
196 	const char *desc;
197 	struct resource *r;
198 	s64 rc;
199 
200 	/* Configure the default M64 BAR */
201 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
202 					 OPAL_M64_WINDOW_TYPE,
203 					 phb->ioda.m64_bar_idx,
204 					 phb->ioda.m64_base,
205 					 0, /* unused */
206 					 phb->ioda.m64_size);
207 	if (rc != OPAL_SUCCESS) {
208 		desc = "configuring";
209 		goto fail;
210 	}
211 
212 	/* Enable the default M64 BAR */
213 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
214 				      OPAL_M64_WINDOW_TYPE,
215 				      phb->ioda.m64_bar_idx,
216 				      OPAL_ENABLE_M64_SPLIT);
217 	if (rc != OPAL_SUCCESS) {
218 		desc = "enabling";
219 		goto fail;
220 	}
221 
222 	/*
223 	 * Exclude the segments for reserved and root bus PE, which
224 	 * are first or last two PEs.
225 	 */
226 	r = &phb->hose->mem_resources[1];
227 	if (phb->ioda.reserved_pe_idx == 0)
228 		r->start += (2 * phb->ioda.m64_segsize);
229 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
230 		r->end -= (2 * phb->ioda.m64_segsize);
231 	else
232 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
233 			phb->ioda.reserved_pe_idx);
234 
235 	return 0;
236 
237 fail:
238 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
239 		rc, desc, phb->ioda.m64_bar_idx);
240 	opal_pci_phb_mmio_enable(phb->opal_id,
241 				 OPAL_M64_WINDOW_TYPE,
242 				 phb->ioda.m64_bar_idx,
243 				 OPAL_DISABLE_M64);
244 	return -EIO;
245 }
246 
247 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
248 					 unsigned long *pe_bitmap)
249 {
250 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
251 	struct pnv_phb *phb = hose->private_data;
252 	struct resource *r;
253 	resource_size_t base, sgsz, start, end;
254 	int segno, i;
255 
256 	base = phb->ioda.m64_base;
257 	sgsz = phb->ioda.m64_segsize;
258 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
259 		r = &pdev->resource[i];
260 		if (!r->parent || !pnv_pci_is_m64(phb, r))
261 			continue;
262 
263 		start = _ALIGN_DOWN(r->start - base, sgsz);
264 		end = _ALIGN_UP(r->end - base, sgsz);
265 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
266 			if (pe_bitmap)
267 				set_bit(segno, pe_bitmap);
268 			else
269 				pnv_ioda_reserve_pe(phb, segno);
270 		}
271 	}
272 }
273 
274 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
275 {
276 	struct resource *r;
277 	int index;
278 
279 	/*
280 	 * There are 16 M64 BARs, each of which has 8 segments. So
281 	 * there are as many M64 segments as the maximum number of
282 	 * PEs, which is 128.
283 	 */
284 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
285 		unsigned long base, segsz = phb->ioda.m64_segsize;
286 		int64_t rc;
287 
288 		base = phb->ioda.m64_base +
289 		       index * PNV_IODA1_M64_SEGS * segsz;
290 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
291 				OPAL_M64_WINDOW_TYPE, index, base, 0,
292 				PNV_IODA1_M64_SEGS * segsz);
293 		if (rc != OPAL_SUCCESS) {
294 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
295 				rc, phb->hose->global_number, index);
296 			goto fail;
297 		}
298 
299 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
300 				OPAL_M64_WINDOW_TYPE, index,
301 				OPAL_ENABLE_M64_SPLIT);
302 		if (rc != OPAL_SUCCESS) {
303 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
304 				rc, phb->hose->global_number, index);
305 			goto fail;
306 		}
307 	}
308 
309 	/*
310 	 * Exclude the segments for reserved and root bus PE, which
311 	 * are first or last two PEs.
312 	 */
313 	r = &phb->hose->mem_resources[1];
314 	if (phb->ioda.reserved_pe_idx == 0)
315 		r->start += (2 * phb->ioda.m64_segsize);
316 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
317 		r->end -= (2 * phb->ioda.m64_segsize);
318 	else
319 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
320 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
321 
322 	return 0;
323 
324 fail:
325 	for ( ; index >= 0; index--)
326 		opal_pci_phb_mmio_enable(phb->opal_id,
327 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
328 
329 	return -EIO;
330 }
331 
332 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
333 				    unsigned long *pe_bitmap,
334 				    bool all)
335 {
336 	struct pci_dev *pdev;
337 
338 	list_for_each_entry(pdev, &bus->devices, bus_list) {
339 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
340 
341 		if (all && pdev->subordinate)
342 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
343 						pe_bitmap, all);
344 	}
345 }
346 
347 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
348 {
349 	struct pci_controller *hose = pci_bus_to_host(bus);
350 	struct pnv_phb *phb = hose->private_data;
351 	struct pnv_ioda_pe *master_pe, *pe;
352 	unsigned long size, *pe_alloc;
353 	int i;
354 
355 	/* Root bus shouldn't use M64 */
356 	if (pci_is_root_bus(bus))
357 		return NULL;
358 
359 	/* Allocate bitmap */
360 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
361 	pe_alloc = kzalloc(size, GFP_KERNEL);
362 	if (!pe_alloc) {
363 		pr_warn("%s: Out of memory !\n",
364 			__func__);
365 		return NULL;
366 	}
367 
368 	/* Figure out reserved PE numbers by the PE */
369 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
370 
371 	/*
372 	 * the current bus might not own M64 window and that's all
373 	 * contributed by its child buses. For the case, we needn't
374 	 * pick M64 dependent PE#.
375 	 */
376 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
377 		kfree(pe_alloc);
378 		return NULL;
379 	}
380 
381 	/*
382 	 * Figure out the master PE and put all slave PEs to master
383 	 * PE's list to form compound PE.
384 	 */
385 	master_pe = NULL;
386 	i = -1;
387 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
388 		phb->ioda.total_pe_num) {
389 		pe = &phb->ioda.pe_array[i];
390 
391 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
392 		if (!master_pe) {
393 			pe->flags |= PNV_IODA_PE_MASTER;
394 			INIT_LIST_HEAD(&pe->slaves);
395 			master_pe = pe;
396 		} else {
397 			pe->flags |= PNV_IODA_PE_SLAVE;
398 			pe->master = master_pe;
399 			list_add_tail(&pe->list, &master_pe->slaves);
400 		}
401 
402 		/*
403 		 * P7IOC supports M64DT, which helps mapping M64 segment
404 		 * to one particular PE#. However, PHB3 has fixed mapping
405 		 * between M64 segment and PE#. In order to have same logic
406 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
407 		 * segment and PE# on P7IOC.
408 		 */
409 		if (phb->type == PNV_PHB_IODA1) {
410 			int64_t rc;
411 
412 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
413 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
414 					pe->pe_number / PNV_IODA1_M64_SEGS,
415 					pe->pe_number % PNV_IODA1_M64_SEGS);
416 			if (rc != OPAL_SUCCESS)
417 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
418 					__func__, rc, phb->hose->global_number,
419 					pe->pe_number);
420 		}
421 	}
422 
423 	kfree(pe_alloc);
424 	return master_pe;
425 }
426 
427 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
428 {
429 	struct pci_controller *hose = phb->hose;
430 	struct device_node *dn = hose->dn;
431 	struct resource *res;
432 	u32 m64_range[2], i;
433 	const __be32 *r;
434 	u64 pci_addr;
435 
436 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
437 		pr_info("  Not support M64 window\n");
438 		return;
439 	}
440 
441 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
442 		pr_info("  Firmware too old to support M64 window\n");
443 		return;
444 	}
445 
446 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
447 	if (!r) {
448 		pr_info("  No <ibm,opal-m64-window> on %s\n",
449 			dn->full_name);
450 		return;
451 	}
452 
453 	/*
454 	 * Find the available M64 BAR range and pickup the last one for
455 	 * covering the whole 64-bits space. We support only one range.
456 	 */
457 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
458 				       m64_range, 2)) {
459 		/* In absence of the property, assume 0..15 */
460 		m64_range[0] = 0;
461 		m64_range[1] = 16;
462 	}
463 	/* We only support 64 bits in our allocator */
464 	if (m64_range[1] > 63) {
465 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
466 			__func__, m64_range[1], phb->hose->global_number);
467 		m64_range[1] = 63;
468 	}
469 	/* Empty range, no m64 */
470 	if (m64_range[1] <= m64_range[0]) {
471 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
472 			__func__, phb->hose->global_number);
473 		return;
474 	}
475 
476 	/* Configure M64 informations */
477 	res = &hose->mem_resources[1];
478 	res->name = dn->full_name;
479 	res->start = of_translate_address(dn, r + 2);
480 	res->end = res->start + of_read_number(r + 4, 2) - 1;
481 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
482 	pci_addr = of_read_number(r, 2);
483 	hose->mem_offset[1] = res->start - pci_addr;
484 
485 	phb->ioda.m64_size = resource_size(res);
486 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
487 	phb->ioda.m64_base = pci_addr;
488 
489 	/* This lines up nicely with the display from processing OF ranges */
490 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
491 		res->start, res->end, pci_addr, m64_range[0],
492 		m64_range[0] + m64_range[1] - 1);
493 
494 	/* Mark all M64 used up by default */
495 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
496 
497 	/* Use last M64 BAR to cover M64 window */
498 	m64_range[1]--;
499 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
500 
501 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
502 
503 	/* Mark remaining ones free */
504 	for (i = m64_range[0]; i < m64_range[1]; i++)
505 		clear_bit(i, &phb->ioda.m64_bar_alloc);
506 
507 	/*
508 	 * Setup init functions for M64 based on IODA version, IODA3 uses
509 	 * the IODA2 code.
510 	 */
511 	if (phb->type == PNV_PHB_IODA1)
512 		phb->init_m64 = pnv_ioda1_init_m64;
513 	else
514 		phb->init_m64 = pnv_ioda2_init_m64;
515 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
516 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
517 }
518 
519 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
520 {
521 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
522 	struct pnv_ioda_pe *slave;
523 	s64 rc;
524 
525 	/* Fetch master PE */
526 	if (pe->flags & PNV_IODA_PE_SLAVE) {
527 		pe = pe->master;
528 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
529 			return;
530 
531 		pe_no = pe->pe_number;
532 	}
533 
534 	/* Freeze master PE */
535 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
536 				     pe_no,
537 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
538 	if (rc != OPAL_SUCCESS) {
539 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
540 			__func__, rc, phb->hose->global_number, pe_no);
541 		return;
542 	}
543 
544 	/* Freeze slave PEs */
545 	if (!(pe->flags & PNV_IODA_PE_MASTER))
546 		return;
547 
548 	list_for_each_entry(slave, &pe->slaves, list) {
549 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
550 					     slave->pe_number,
551 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
552 		if (rc != OPAL_SUCCESS)
553 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
554 				__func__, rc, phb->hose->global_number,
555 				slave->pe_number);
556 	}
557 }
558 
559 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
560 {
561 	struct pnv_ioda_pe *pe, *slave;
562 	s64 rc;
563 
564 	/* Find master PE */
565 	pe = &phb->ioda.pe_array[pe_no];
566 	if (pe->flags & PNV_IODA_PE_SLAVE) {
567 		pe = pe->master;
568 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
569 		pe_no = pe->pe_number;
570 	}
571 
572 	/* Clear frozen state for master PE */
573 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
574 	if (rc != OPAL_SUCCESS) {
575 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
576 			__func__, rc, opt, phb->hose->global_number, pe_no);
577 		return -EIO;
578 	}
579 
580 	if (!(pe->flags & PNV_IODA_PE_MASTER))
581 		return 0;
582 
583 	/* Clear frozen state for slave PEs */
584 	list_for_each_entry(slave, &pe->slaves, list) {
585 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
586 					     slave->pe_number,
587 					     opt);
588 		if (rc != OPAL_SUCCESS) {
589 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
590 				__func__, rc, opt, phb->hose->global_number,
591 				slave->pe_number);
592 			return -EIO;
593 		}
594 	}
595 
596 	return 0;
597 }
598 
599 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
600 {
601 	struct pnv_ioda_pe *slave, *pe;
602 	u8 fstate, state;
603 	__be16 pcierr;
604 	s64 rc;
605 
606 	/* Sanity check on PE number */
607 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
608 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
609 
610 	/*
611 	 * Fetch the master PE and the PE instance might be
612 	 * not initialized yet.
613 	 */
614 	pe = &phb->ioda.pe_array[pe_no];
615 	if (pe->flags & PNV_IODA_PE_SLAVE) {
616 		pe = pe->master;
617 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
618 		pe_no = pe->pe_number;
619 	}
620 
621 	/* Check the master PE */
622 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
623 					&state, &pcierr, NULL);
624 	if (rc != OPAL_SUCCESS) {
625 		pr_warn("%s: Failure %lld getting "
626 			"PHB#%x-PE#%x state\n",
627 			__func__, rc,
628 			phb->hose->global_number, pe_no);
629 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
630 	}
631 
632 	/* Check the slave PE */
633 	if (!(pe->flags & PNV_IODA_PE_MASTER))
634 		return state;
635 
636 	list_for_each_entry(slave, &pe->slaves, list) {
637 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
638 						slave->pe_number,
639 						&fstate,
640 						&pcierr,
641 						NULL);
642 		if (rc != OPAL_SUCCESS) {
643 			pr_warn("%s: Failure %lld getting "
644 				"PHB#%x-PE#%x state\n",
645 				__func__, rc,
646 				phb->hose->global_number, slave->pe_number);
647 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
648 		}
649 
650 		/*
651 		 * Override the result based on the ascending
652 		 * priority.
653 		 */
654 		if (fstate > state)
655 			state = fstate;
656 	}
657 
658 	return state;
659 }
660 
661 /* Currently those 2 are only used when MSIs are enabled, this will change
662  * but in the meantime, we need to protect them to avoid warnings
663  */
664 #ifdef CONFIG_PCI_MSI
665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 {
667 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
668 	struct pnv_phb *phb = hose->private_data;
669 	struct pci_dn *pdn = pci_get_pdn(dev);
670 
671 	if (!pdn)
672 		return NULL;
673 	if (pdn->pe_number == IODA_INVALID_PE)
674 		return NULL;
675 	return &phb->ioda.pe_array[pdn->pe_number];
676 }
677 #endif /* CONFIG_PCI_MSI */
678 
679 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
680 				  struct pnv_ioda_pe *parent,
681 				  struct pnv_ioda_pe *child,
682 				  bool is_add)
683 {
684 	const char *desc = is_add ? "adding" : "removing";
685 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
686 			      OPAL_REMOVE_PE_FROM_DOMAIN;
687 	struct pnv_ioda_pe *slave;
688 	long rc;
689 
690 	/* Parent PE affects child PE */
691 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
692 				child->pe_number, op);
693 	if (rc != OPAL_SUCCESS) {
694 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
695 			rc, desc);
696 		return -ENXIO;
697 	}
698 
699 	if (!(child->flags & PNV_IODA_PE_MASTER))
700 		return 0;
701 
702 	/* Compound case: parent PE affects slave PEs */
703 	list_for_each_entry(slave, &child->slaves, list) {
704 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
705 					slave->pe_number, op);
706 		if (rc != OPAL_SUCCESS) {
707 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
708 				rc, desc);
709 			return -ENXIO;
710 		}
711 	}
712 
713 	return 0;
714 }
715 
716 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
717 			      struct pnv_ioda_pe *pe,
718 			      bool is_add)
719 {
720 	struct pnv_ioda_pe *slave;
721 	struct pci_dev *pdev = NULL;
722 	int ret;
723 
724 	/*
725 	 * Clear PE frozen state. If it's master PE, we need
726 	 * clear slave PE frozen state as well.
727 	 */
728 	if (is_add) {
729 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
730 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
731 		if (pe->flags & PNV_IODA_PE_MASTER) {
732 			list_for_each_entry(slave, &pe->slaves, list)
733 				opal_pci_eeh_freeze_clear(phb->opal_id,
734 							  slave->pe_number,
735 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
736 		}
737 	}
738 
739 	/*
740 	 * Associate PE in PELT. We need add the PE into the
741 	 * corresponding PELT-V as well. Otherwise, the error
742 	 * originated from the PE might contribute to other
743 	 * PEs.
744 	 */
745 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
746 	if (ret)
747 		return ret;
748 
749 	/* For compound PEs, any one affects all of them */
750 	if (pe->flags & PNV_IODA_PE_MASTER) {
751 		list_for_each_entry(slave, &pe->slaves, list) {
752 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
753 			if (ret)
754 				return ret;
755 		}
756 	}
757 
758 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
759 		pdev = pe->pbus->self;
760 	else if (pe->flags & PNV_IODA_PE_DEV)
761 		pdev = pe->pdev->bus->self;
762 #ifdef CONFIG_PCI_IOV
763 	else if (pe->flags & PNV_IODA_PE_VF)
764 		pdev = pe->parent_dev;
765 #endif /* CONFIG_PCI_IOV */
766 	while (pdev) {
767 		struct pci_dn *pdn = pci_get_pdn(pdev);
768 		struct pnv_ioda_pe *parent;
769 
770 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
771 			parent = &phb->ioda.pe_array[pdn->pe_number];
772 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
773 			if (ret)
774 				return ret;
775 		}
776 
777 		pdev = pdev->bus->self;
778 	}
779 
780 	return 0;
781 }
782 
783 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
784 {
785 	struct pci_dev *parent;
786 	uint8_t bcomp, dcomp, fcomp;
787 	int64_t rc;
788 	long rid_end, rid;
789 
790 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
791 	if (pe->pbus) {
792 		int count;
793 
794 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
795 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
796 		parent = pe->pbus->self;
797 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
798 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
799 		else
800 			count = 1;
801 
802 		switch(count) {
803 		case  1: bcomp = OpalPciBusAll;         break;
804 		case  2: bcomp = OpalPciBus7Bits;       break;
805 		case  4: bcomp = OpalPciBus6Bits;       break;
806 		case  8: bcomp = OpalPciBus5Bits;       break;
807 		case 16: bcomp = OpalPciBus4Bits;       break;
808 		case 32: bcomp = OpalPciBus3Bits;       break;
809 		default:
810 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
811 			        count);
812 			/* Do an exact match only */
813 			bcomp = OpalPciBusAll;
814 		}
815 		rid_end = pe->rid + (count << 8);
816 	} else {
817 #ifdef CONFIG_PCI_IOV
818 		if (pe->flags & PNV_IODA_PE_VF)
819 			parent = pe->parent_dev;
820 		else
821 #endif
822 			parent = pe->pdev->bus->self;
823 		bcomp = OpalPciBusAll;
824 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
825 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
826 		rid_end = pe->rid + 1;
827 	}
828 
829 	/* Clear the reverse map */
830 	for (rid = pe->rid; rid < rid_end; rid++)
831 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
832 
833 	/* Release from all parents PELT-V */
834 	while (parent) {
835 		struct pci_dn *pdn = pci_get_pdn(parent);
836 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
837 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
838 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
839 			/* XXX What to do in case of error ? */
840 		}
841 		parent = parent->bus->self;
842 	}
843 
844 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
845 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
846 
847 	/* Disassociate PE in PELT */
848 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
849 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
850 	if (rc)
851 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
852 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
853 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
854 	if (rc)
855 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
856 
857 	pe->pbus = NULL;
858 	pe->pdev = NULL;
859 #ifdef CONFIG_PCI_IOV
860 	pe->parent_dev = NULL;
861 #endif
862 
863 	return 0;
864 }
865 
866 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
867 {
868 	struct pci_dev *parent;
869 	uint8_t bcomp, dcomp, fcomp;
870 	long rc, rid_end, rid;
871 
872 	/* Bus validation ? */
873 	if (pe->pbus) {
874 		int count;
875 
876 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
877 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
878 		parent = pe->pbus->self;
879 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
880 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
881 		else
882 			count = 1;
883 
884 		switch(count) {
885 		case  1: bcomp = OpalPciBusAll;		break;
886 		case  2: bcomp = OpalPciBus7Bits;	break;
887 		case  4: bcomp = OpalPciBus6Bits;	break;
888 		case  8: bcomp = OpalPciBus5Bits;	break;
889 		case 16: bcomp = OpalPciBus4Bits;	break;
890 		case 32: bcomp = OpalPciBus3Bits;	break;
891 		default:
892 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
893 			        count);
894 			/* Do an exact match only */
895 			bcomp = OpalPciBusAll;
896 		}
897 		rid_end = pe->rid + (count << 8);
898 	} else {
899 #ifdef CONFIG_PCI_IOV
900 		if (pe->flags & PNV_IODA_PE_VF)
901 			parent = pe->parent_dev;
902 		else
903 #endif /* CONFIG_PCI_IOV */
904 			parent = pe->pdev->bus->self;
905 		bcomp = OpalPciBusAll;
906 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
907 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
908 		rid_end = pe->rid + 1;
909 	}
910 
911 	/*
912 	 * Associate PE in PELT. We need add the PE into the
913 	 * corresponding PELT-V as well. Otherwise, the error
914 	 * originated from the PE might contribute to other
915 	 * PEs.
916 	 */
917 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
918 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
919 	if (rc) {
920 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
921 		return -ENXIO;
922 	}
923 
924 	/*
925 	 * Configure PELTV. NPUs don't have a PELTV table so skip
926 	 * configuration on them.
927 	 */
928 	if (phb->type != PNV_PHB_NPU)
929 		pnv_ioda_set_peltv(phb, pe, true);
930 
931 	/* Setup reverse map */
932 	for (rid = pe->rid; rid < rid_end; rid++)
933 		phb->ioda.pe_rmap[rid] = pe->pe_number;
934 
935 	/* Setup one MVTs on IODA1 */
936 	if (phb->type != PNV_PHB_IODA1) {
937 		pe->mve_number = 0;
938 		goto out;
939 	}
940 
941 	pe->mve_number = pe->pe_number;
942 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
943 	if (rc != OPAL_SUCCESS) {
944 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
945 		       rc, pe->mve_number);
946 		pe->mve_number = -1;
947 	} else {
948 		rc = opal_pci_set_mve_enable(phb->opal_id,
949 					     pe->mve_number, OPAL_ENABLE_MVE);
950 		if (rc) {
951 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
952 			       rc, pe->mve_number);
953 			pe->mve_number = -1;
954 		}
955 	}
956 
957 out:
958 	return 0;
959 }
960 
961 #ifdef CONFIG_PCI_IOV
962 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
963 {
964 	struct pci_dn *pdn = pci_get_pdn(dev);
965 	int i;
966 	struct resource *res, res2;
967 	resource_size_t size;
968 	u16 num_vfs;
969 
970 	if (!dev->is_physfn)
971 		return -EINVAL;
972 
973 	/*
974 	 * "offset" is in VFs.  The M64 windows are sized so that when they
975 	 * are segmented, each segment is the same size as the IOV BAR.
976 	 * Each segment is in a separate PE, and the high order bits of the
977 	 * address are the PE number.  Therefore, each VF's BAR is in a
978 	 * separate PE, and changing the IOV BAR start address changes the
979 	 * range of PEs the VFs are in.
980 	 */
981 	num_vfs = pdn->num_vfs;
982 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
983 		res = &dev->resource[i + PCI_IOV_RESOURCES];
984 		if (!res->flags || !res->parent)
985 			continue;
986 
987 		/*
988 		 * The actual IOV BAR range is determined by the start address
989 		 * and the actual size for num_vfs VFs BAR.  This check is to
990 		 * make sure that after shifting, the range will not overlap
991 		 * with another device.
992 		 */
993 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
994 		res2.flags = res->flags;
995 		res2.start = res->start + (size * offset);
996 		res2.end = res2.start + (size * num_vfs) - 1;
997 
998 		if (res2.end > res->end) {
999 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1000 				i, &res2, res, num_vfs, offset);
1001 			return -EBUSY;
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * After doing so, there would be a "hole" in the /proc/iomem when
1007 	 * offset is a positive value. It looks like the device return some
1008 	 * mmio back to the system, which actually no one could use it.
1009 	 */
1010 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1011 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1012 		if (!res->flags || !res->parent)
1013 			continue;
1014 
1015 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1016 		res2 = *res;
1017 		res->start += size * offset;
1018 
1019 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1020 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1021 			 num_vfs, offset);
1022 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1023 	}
1024 	return 0;
1025 }
1026 #endif /* CONFIG_PCI_IOV */
1027 
1028 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1029 {
1030 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1031 	struct pnv_phb *phb = hose->private_data;
1032 	struct pci_dn *pdn = pci_get_pdn(dev);
1033 	struct pnv_ioda_pe *pe;
1034 
1035 	if (!pdn) {
1036 		pr_err("%s: Device tree node not associated properly\n",
1037 			   pci_name(dev));
1038 		return NULL;
1039 	}
1040 	if (pdn->pe_number != IODA_INVALID_PE)
1041 		return NULL;
1042 
1043 	pe = pnv_ioda_alloc_pe(phb);
1044 	if (!pe) {
1045 		pr_warning("%s: Not enough PE# available, disabling device\n",
1046 			   pci_name(dev));
1047 		return NULL;
1048 	}
1049 
1050 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1051 	 * pointer in the PE data structure, both should be destroyed at the
1052 	 * same time. However, this needs to be looked at more closely again
1053 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1054 	 *
1055 	 * At some point we want to remove the PDN completely anyways
1056 	 */
1057 	pci_dev_get(dev);
1058 	pdn->pcidev = dev;
1059 	pdn->pe_number = pe->pe_number;
1060 	pe->flags = PNV_IODA_PE_DEV;
1061 	pe->pdev = dev;
1062 	pe->pbus = NULL;
1063 	pe->mve_number = -1;
1064 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1065 
1066 	pe_info(pe, "Associated device to PE\n");
1067 
1068 	if (pnv_ioda_configure_pe(phb, pe)) {
1069 		/* XXX What do we do here ? */
1070 		pnv_ioda_free_pe(pe);
1071 		pdn->pe_number = IODA_INVALID_PE;
1072 		pe->pdev = NULL;
1073 		pci_dev_put(dev);
1074 		return NULL;
1075 	}
1076 
1077 	/* Put PE to the list */
1078 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1079 
1080 	return pe;
1081 }
1082 
1083 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1084 {
1085 	struct pci_dev *dev;
1086 
1087 	list_for_each_entry(dev, &bus->devices, bus_list) {
1088 		struct pci_dn *pdn = pci_get_pdn(dev);
1089 
1090 		if (pdn == NULL) {
1091 			pr_warn("%s: No device node associated with device !\n",
1092 				pci_name(dev));
1093 			continue;
1094 		}
1095 
1096 		/*
1097 		 * In partial hotplug case, the PCI device might be still
1098 		 * associated with the PE and needn't attach it to the PE
1099 		 * again.
1100 		 */
1101 		if (pdn->pe_number != IODA_INVALID_PE)
1102 			continue;
1103 
1104 		pe->device_count++;
1105 		pdn->pcidev = dev;
1106 		pdn->pe_number = pe->pe_number;
1107 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1108 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1109 	}
1110 }
1111 
1112 /*
1113  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1114  * single PCI bus. Another one that contains the primary PCI bus and its
1115  * subordinate PCI devices and buses. The second type of PE is normally
1116  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1117  */
1118 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1119 {
1120 	struct pci_controller *hose = pci_bus_to_host(bus);
1121 	struct pnv_phb *phb = hose->private_data;
1122 	struct pnv_ioda_pe *pe = NULL;
1123 	unsigned int pe_num;
1124 
1125 	/*
1126 	 * In partial hotplug case, the PE instance might be still alive.
1127 	 * We should reuse it instead of allocating a new one.
1128 	 */
1129 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1130 	if (pe_num != IODA_INVALID_PE) {
1131 		pe = &phb->ioda.pe_array[pe_num];
1132 		pnv_ioda_setup_same_PE(bus, pe);
1133 		return NULL;
1134 	}
1135 
1136 	/* PE number for root bus should have been reserved */
1137 	if (pci_is_root_bus(bus) &&
1138 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1139 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1140 
1141 	/* Check if PE is determined by M64 */
1142 	if (!pe && phb->pick_m64_pe)
1143 		pe = phb->pick_m64_pe(bus, all);
1144 
1145 	/* The PE number isn't pinned by M64 */
1146 	if (!pe)
1147 		pe = pnv_ioda_alloc_pe(phb);
1148 
1149 	if (!pe) {
1150 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1151 			__func__, pci_domain_nr(bus), bus->number);
1152 		return NULL;
1153 	}
1154 
1155 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1156 	pe->pbus = bus;
1157 	pe->pdev = NULL;
1158 	pe->mve_number = -1;
1159 	pe->rid = bus->busn_res.start << 8;
1160 
1161 	if (all)
1162 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1163 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1164 	else
1165 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1166 			bus->busn_res.start, pe->pe_number);
1167 
1168 	if (pnv_ioda_configure_pe(phb, pe)) {
1169 		/* XXX What do we do here ? */
1170 		pnv_ioda_free_pe(pe);
1171 		pe->pbus = NULL;
1172 		return NULL;
1173 	}
1174 
1175 	/* Associate it with all child devices */
1176 	pnv_ioda_setup_same_PE(bus, pe);
1177 
1178 	/* Put PE to the list */
1179 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1180 
1181 	return pe;
1182 }
1183 
1184 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1185 {
1186 	int pe_num, found_pe = false, rc;
1187 	long rid;
1188 	struct pnv_ioda_pe *pe;
1189 	struct pci_dev *gpu_pdev;
1190 	struct pci_dn *npu_pdn;
1191 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1192 	struct pnv_phb *phb = hose->private_data;
1193 
1194 	/*
1195 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1196 	 * error handling. This means we only have three PEs remaining
1197 	 * which need to be assigned to four links, implying some
1198 	 * links must share PEs.
1199 	 *
1200 	 * To achieve this we assign PEs such that NPUs linking the
1201 	 * same GPU get assigned the same PE.
1202 	 */
1203 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1204 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1205 		pe = &phb->ioda.pe_array[pe_num];
1206 		if (!pe->pdev)
1207 			continue;
1208 
1209 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1210 			/*
1211 			 * This device has the same peer GPU so should
1212 			 * be assigned the same PE as the existing
1213 			 * peer NPU.
1214 			 */
1215 			dev_info(&npu_pdev->dev,
1216 				"Associating to existing PE %x\n", pe_num);
1217 			pci_dev_get(npu_pdev);
1218 			npu_pdn = pci_get_pdn(npu_pdev);
1219 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1220 			npu_pdn->pcidev = npu_pdev;
1221 			npu_pdn->pe_number = pe_num;
1222 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1223 
1224 			/* Map the PE to this link */
1225 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1226 					OpalPciBusAll,
1227 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1228 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1229 					OPAL_MAP_PE);
1230 			WARN_ON(rc != OPAL_SUCCESS);
1231 			found_pe = true;
1232 			break;
1233 		}
1234 	}
1235 
1236 	if (!found_pe)
1237 		/*
1238 		 * Could not find an existing PE so allocate a new
1239 		 * one.
1240 		 */
1241 		return pnv_ioda_setup_dev_PE(npu_pdev);
1242 	else
1243 		return pe;
1244 }
1245 
1246 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1247 {
1248 	struct pci_dev *pdev;
1249 
1250 	list_for_each_entry(pdev, &bus->devices, bus_list)
1251 		pnv_ioda_setup_npu_PE(pdev);
1252 }
1253 
1254 static void pnv_pci_ioda_setup_PEs(void)
1255 {
1256 	struct pci_controller *hose, *tmp;
1257 	struct pnv_phb *phb;
1258 
1259 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1260 		phb = hose->private_data;
1261 		if (phb->type == PNV_PHB_NPU) {
1262 			/* PE#0 is needed for error reporting */
1263 			pnv_ioda_reserve_pe(phb, 0);
1264 			pnv_ioda_setup_npu_PEs(hose->bus);
1265 		}
1266 	}
1267 }
1268 
1269 #ifdef CONFIG_PCI_IOV
1270 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1271 {
1272 	struct pci_bus        *bus;
1273 	struct pci_controller *hose;
1274 	struct pnv_phb        *phb;
1275 	struct pci_dn         *pdn;
1276 	int                    i, j;
1277 	int                    m64_bars;
1278 
1279 	bus = pdev->bus;
1280 	hose = pci_bus_to_host(bus);
1281 	phb = hose->private_data;
1282 	pdn = pci_get_pdn(pdev);
1283 
1284 	if (pdn->m64_single_mode)
1285 		m64_bars = num_vfs;
1286 	else
1287 		m64_bars = 1;
1288 
1289 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1290 		for (j = 0; j < m64_bars; j++) {
1291 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1292 				continue;
1293 			opal_pci_phb_mmio_enable(phb->opal_id,
1294 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1295 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1296 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1297 		}
1298 
1299 	kfree(pdn->m64_map);
1300 	return 0;
1301 }
1302 
1303 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1304 {
1305 	struct pci_bus        *bus;
1306 	struct pci_controller *hose;
1307 	struct pnv_phb        *phb;
1308 	struct pci_dn         *pdn;
1309 	unsigned int           win;
1310 	struct resource       *res;
1311 	int                    i, j;
1312 	int64_t                rc;
1313 	int                    total_vfs;
1314 	resource_size_t        size, start;
1315 	int                    pe_num;
1316 	int                    m64_bars;
1317 
1318 	bus = pdev->bus;
1319 	hose = pci_bus_to_host(bus);
1320 	phb = hose->private_data;
1321 	pdn = pci_get_pdn(pdev);
1322 	total_vfs = pci_sriov_get_totalvfs(pdev);
1323 
1324 	if (pdn->m64_single_mode)
1325 		m64_bars = num_vfs;
1326 	else
1327 		m64_bars = 1;
1328 
1329 	pdn->m64_map = kmalloc_array(m64_bars,
1330 				     sizeof(*pdn->m64_map),
1331 				     GFP_KERNEL);
1332 	if (!pdn->m64_map)
1333 		return -ENOMEM;
1334 	/* Initialize the m64_map to IODA_INVALID_M64 */
1335 	for (i = 0; i < m64_bars ; i++)
1336 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1337 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1338 
1339 
1340 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1341 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1342 		if (!res->flags || !res->parent)
1343 			continue;
1344 
1345 		for (j = 0; j < m64_bars; j++) {
1346 			do {
1347 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1348 						phb->ioda.m64_bar_idx + 1, 0);
1349 
1350 				if (win >= phb->ioda.m64_bar_idx + 1)
1351 					goto m64_failed;
1352 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1353 
1354 			pdn->m64_map[j][i] = win;
1355 
1356 			if (pdn->m64_single_mode) {
1357 				size = pci_iov_resource_size(pdev,
1358 							PCI_IOV_RESOURCES + i);
1359 				start = res->start + size * j;
1360 			} else {
1361 				size = resource_size(res);
1362 				start = res->start;
1363 			}
1364 
1365 			/* Map the M64 here */
1366 			if (pdn->m64_single_mode) {
1367 				pe_num = pdn->pe_num_map[j];
1368 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1369 						pe_num, OPAL_M64_WINDOW_TYPE,
1370 						pdn->m64_map[j][i], 0);
1371 			}
1372 
1373 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1374 						 OPAL_M64_WINDOW_TYPE,
1375 						 pdn->m64_map[j][i],
1376 						 start,
1377 						 0, /* unused */
1378 						 size);
1379 
1380 
1381 			if (rc != OPAL_SUCCESS) {
1382 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1383 					win, rc);
1384 				goto m64_failed;
1385 			}
1386 
1387 			if (pdn->m64_single_mode)
1388 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1389 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1390 			else
1391 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1392 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1393 
1394 			if (rc != OPAL_SUCCESS) {
1395 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1396 					win, rc);
1397 				goto m64_failed;
1398 			}
1399 		}
1400 	}
1401 	return 0;
1402 
1403 m64_failed:
1404 	pnv_pci_vf_release_m64(pdev, num_vfs);
1405 	return -EBUSY;
1406 }
1407 
1408 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1409 		int num);
1410 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1411 
1412 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1413 {
1414 	struct iommu_table    *tbl;
1415 	int64_t               rc;
1416 
1417 	tbl = pe->table_group.tables[0];
1418 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1419 	if (rc)
1420 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1421 
1422 	pnv_pci_ioda2_set_bypass(pe, false);
1423 	if (pe->table_group.group) {
1424 		iommu_group_put(pe->table_group.group);
1425 		BUG_ON(pe->table_group.group);
1426 	}
1427 	pnv_pci_ioda2_table_free_pages(tbl);
1428 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1429 }
1430 
1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1432 {
1433 	struct pci_bus        *bus;
1434 	struct pci_controller *hose;
1435 	struct pnv_phb        *phb;
1436 	struct pnv_ioda_pe    *pe, *pe_n;
1437 	struct pci_dn         *pdn;
1438 
1439 	bus = pdev->bus;
1440 	hose = pci_bus_to_host(bus);
1441 	phb = hose->private_data;
1442 	pdn = pci_get_pdn(pdev);
1443 
1444 	if (!pdev->is_physfn)
1445 		return;
1446 
1447 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1448 		if (pe->parent_dev != pdev)
1449 			continue;
1450 
1451 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1452 
1453 		/* Remove from list */
1454 		mutex_lock(&phb->ioda.pe_list_mutex);
1455 		list_del(&pe->list);
1456 		mutex_unlock(&phb->ioda.pe_list_mutex);
1457 
1458 		pnv_ioda_deconfigure_pe(phb, pe);
1459 
1460 		pnv_ioda_free_pe(pe);
1461 	}
1462 }
1463 
1464 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1465 {
1466 	struct pci_bus        *bus;
1467 	struct pci_controller *hose;
1468 	struct pnv_phb        *phb;
1469 	struct pnv_ioda_pe    *pe;
1470 	struct pci_dn         *pdn;
1471 	u16                    num_vfs, i;
1472 
1473 	bus = pdev->bus;
1474 	hose = pci_bus_to_host(bus);
1475 	phb = hose->private_data;
1476 	pdn = pci_get_pdn(pdev);
1477 	num_vfs = pdn->num_vfs;
1478 
1479 	/* Release VF PEs */
1480 	pnv_ioda_release_vf_PE(pdev);
1481 
1482 	if (phb->type == PNV_PHB_IODA2) {
1483 		if (!pdn->m64_single_mode)
1484 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1485 
1486 		/* Release M64 windows */
1487 		pnv_pci_vf_release_m64(pdev, num_vfs);
1488 
1489 		/* Release PE numbers */
1490 		if (pdn->m64_single_mode) {
1491 			for (i = 0; i < num_vfs; i++) {
1492 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1493 					continue;
1494 
1495 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1496 				pnv_ioda_free_pe(pe);
1497 			}
1498 		} else
1499 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1500 		/* Releasing pe_num_map */
1501 		kfree(pdn->pe_num_map);
1502 	}
1503 }
1504 
1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1506 				       struct pnv_ioda_pe *pe);
1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509 	struct pci_bus        *bus;
1510 	struct pci_controller *hose;
1511 	struct pnv_phb        *phb;
1512 	struct pnv_ioda_pe    *pe;
1513 	int                    pe_num;
1514 	u16                    vf_index;
1515 	struct pci_dn         *pdn;
1516 
1517 	bus = pdev->bus;
1518 	hose = pci_bus_to_host(bus);
1519 	phb = hose->private_data;
1520 	pdn = pci_get_pdn(pdev);
1521 
1522 	if (!pdev->is_physfn)
1523 		return;
1524 
1525 	/* Reserve PE for each VF */
1526 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1527 		if (pdn->m64_single_mode)
1528 			pe_num = pdn->pe_num_map[vf_index];
1529 		else
1530 			pe_num = *pdn->pe_num_map + vf_index;
1531 
1532 		pe = &phb->ioda.pe_array[pe_num];
1533 		pe->pe_number = pe_num;
1534 		pe->phb = phb;
1535 		pe->flags = PNV_IODA_PE_VF;
1536 		pe->pbus = NULL;
1537 		pe->parent_dev = pdev;
1538 		pe->mve_number = -1;
1539 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1540 			   pci_iov_virtfn_devfn(pdev, vf_index);
1541 
1542 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1543 			hose->global_number, pdev->bus->number,
1544 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1545 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1546 
1547 		if (pnv_ioda_configure_pe(phb, pe)) {
1548 			/* XXX What do we do here ? */
1549 			pnv_ioda_free_pe(pe);
1550 			pe->pdev = NULL;
1551 			continue;
1552 		}
1553 
1554 		/* Put PE to the list */
1555 		mutex_lock(&phb->ioda.pe_list_mutex);
1556 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1557 		mutex_unlock(&phb->ioda.pe_list_mutex);
1558 
1559 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1560 	}
1561 }
1562 
1563 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1564 {
1565 	struct pci_bus        *bus;
1566 	struct pci_controller *hose;
1567 	struct pnv_phb        *phb;
1568 	struct pnv_ioda_pe    *pe;
1569 	struct pci_dn         *pdn;
1570 	int                    ret;
1571 	u16                    i;
1572 
1573 	bus = pdev->bus;
1574 	hose = pci_bus_to_host(bus);
1575 	phb = hose->private_data;
1576 	pdn = pci_get_pdn(pdev);
1577 
1578 	if (phb->type == PNV_PHB_IODA2) {
1579 		if (!pdn->vfs_expanded) {
1580 			dev_info(&pdev->dev, "don't support this SRIOV device"
1581 				" with non 64bit-prefetchable IOV BAR\n");
1582 			return -ENOSPC;
1583 		}
1584 
1585 		/*
1586 		 * When M64 BARs functions in Single PE mode, the number of VFs
1587 		 * could be enabled must be less than the number of M64 BARs.
1588 		 */
1589 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1590 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1591 			return -EBUSY;
1592 		}
1593 
1594 		/* Allocating pe_num_map */
1595 		if (pdn->m64_single_mode)
1596 			pdn->pe_num_map = kmalloc_array(num_vfs,
1597 							sizeof(*pdn->pe_num_map),
1598 							GFP_KERNEL);
1599 		else
1600 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1601 
1602 		if (!pdn->pe_num_map)
1603 			return -ENOMEM;
1604 
1605 		if (pdn->m64_single_mode)
1606 			for (i = 0; i < num_vfs; i++)
1607 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1608 
1609 		/* Calculate available PE for required VFs */
1610 		if (pdn->m64_single_mode) {
1611 			for (i = 0; i < num_vfs; i++) {
1612 				pe = pnv_ioda_alloc_pe(phb);
1613 				if (!pe) {
1614 					ret = -EBUSY;
1615 					goto m64_failed;
1616 				}
1617 
1618 				pdn->pe_num_map[i] = pe->pe_number;
1619 			}
1620 		} else {
1621 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1622 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1623 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1624 				0, num_vfs, 0);
1625 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1626 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1627 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1628 				kfree(pdn->pe_num_map);
1629 				return -EBUSY;
1630 			}
1631 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1632 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1633 		}
1634 		pdn->num_vfs = num_vfs;
1635 
1636 		/* Assign M64 window accordingly */
1637 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1638 		if (ret) {
1639 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1640 			goto m64_failed;
1641 		}
1642 
1643 		/*
1644 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1645 		 * the IOV BAR according to the PE# allocated to the VFs.
1646 		 * Otherwise, the PE# for the VF will conflict with others.
1647 		 */
1648 		if (!pdn->m64_single_mode) {
1649 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1650 			if (ret)
1651 				goto m64_failed;
1652 		}
1653 	}
1654 
1655 	/* Setup VF PEs */
1656 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1657 
1658 	return 0;
1659 
1660 m64_failed:
1661 	if (pdn->m64_single_mode) {
1662 		for (i = 0; i < num_vfs; i++) {
1663 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1664 				continue;
1665 
1666 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1667 			pnv_ioda_free_pe(pe);
1668 		}
1669 	} else
1670 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1671 
1672 	/* Releasing pe_num_map */
1673 	kfree(pdn->pe_num_map);
1674 
1675 	return ret;
1676 }
1677 
1678 int pcibios_sriov_disable(struct pci_dev *pdev)
1679 {
1680 	pnv_pci_sriov_disable(pdev);
1681 
1682 	/* Release PCI data */
1683 	remove_dev_pci_data(pdev);
1684 	return 0;
1685 }
1686 
1687 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1688 {
1689 	/* Allocate PCI data */
1690 	add_dev_pci_data(pdev);
1691 
1692 	return pnv_pci_sriov_enable(pdev, num_vfs);
1693 }
1694 #endif /* CONFIG_PCI_IOV */
1695 
1696 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1697 {
1698 	struct pci_dn *pdn = pci_get_pdn(pdev);
1699 	struct pnv_ioda_pe *pe;
1700 
1701 	/*
1702 	 * The function can be called while the PE#
1703 	 * hasn't been assigned. Do nothing for the
1704 	 * case.
1705 	 */
1706 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1707 		return;
1708 
1709 	pe = &phb->ioda.pe_array[pdn->pe_number];
1710 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1711 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1712 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1713 	/*
1714 	 * Note: iommu_add_device() will fail here as
1715 	 * for physical PE: the device is already added by now;
1716 	 * for virtual PE: sysfs entries are not ready yet and
1717 	 * tce_iommu_bus_notifier will add the device to a group later.
1718 	 */
1719 }
1720 
1721 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1722 {
1723 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1724 	struct pnv_phb *phb = hose->private_data;
1725 	struct pci_dn *pdn = pci_get_pdn(pdev);
1726 	struct pnv_ioda_pe *pe;
1727 	uint64_t top;
1728 	bool bypass = false;
1729 
1730 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1731 		return -ENODEV;;
1732 
1733 	pe = &phb->ioda.pe_array[pdn->pe_number];
1734 	if (pe->tce_bypass_enabled) {
1735 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1736 		bypass = (dma_mask >= top);
1737 	}
1738 
1739 	if (bypass) {
1740 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1741 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1742 	} else {
1743 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1744 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1745 	}
1746 	*pdev->dev.dma_mask = dma_mask;
1747 
1748 	/* Update peer npu devices */
1749 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1750 
1751 	return 0;
1752 }
1753 
1754 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1755 {
1756 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1757 	struct pnv_phb *phb = hose->private_data;
1758 	struct pci_dn *pdn = pci_get_pdn(pdev);
1759 	struct pnv_ioda_pe *pe;
1760 	u64 end, mask;
1761 
1762 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1763 		return 0;
1764 
1765 	pe = &phb->ioda.pe_array[pdn->pe_number];
1766 	if (!pe->tce_bypass_enabled)
1767 		return __dma_get_required_mask(&pdev->dev);
1768 
1769 
1770 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1771 	mask = 1ULL << (fls64(end) - 1);
1772 	mask += mask - 1;
1773 
1774 	return mask;
1775 }
1776 
1777 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1778 				   struct pci_bus *bus,
1779 				   bool add_to_group)
1780 {
1781 	struct pci_dev *dev;
1782 
1783 	list_for_each_entry(dev, &bus->devices, bus_list) {
1784 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1785 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1786 		if (add_to_group)
1787 			iommu_add_device(&dev->dev);
1788 
1789 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1790 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1791 					add_to_group);
1792 	}
1793 }
1794 
1795 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1796 						     bool real_mode)
1797 {
1798 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1799 		(phb->regs + 0x210);
1800 }
1801 
1802 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1803 		unsigned long index, unsigned long npages, bool rm)
1804 {
1805 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1806 			&tbl->it_group_list, struct iommu_table_group_link,
1807 			next);
1808 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1809 			struct pnv_ioda_pe, table_group);
1810 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1811 	unsigned long start, end, inc;
1812 
1813 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1814 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1815 			npages - 1);
1816 
1817 	/* p7ioc-style invalidation, 2 TCEs per write */
1818 	start |= (1ull << 63);
1819 	end |= (1ull << 63);
1820 	inc = 16;
1821         end |= inc - 1;	/* round up end to be different than start */
1822 
1823         mb(); /* Ensure above stores are visible */
1824         while (start <= end) {
1825 		if (rm)
1826 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1827 		else
1828 			__raw_writeq(cpu_to_be64(start), invalidate);
1829                 start += inc;
1830         }
1831 
1832 	/*
1833 	 * The iommu layer will do another mb() for us on build()
1834 	 * and we don't care on free()
1835 	 */
1836 }
1837 
1838 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1839 		long npages, unsigned long uaddr,
1840 		enum dma_data_direction direction,
1841 		unsigned long attrs)
1842 {
1843 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1844 			attrs);
1845 
1846 	if (!ret)
1847 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1848 
1849 	return ret;
1850 }
1851 
1852 #ifdef CONFIG_IOMMU_API
1853 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1854 		unsigned long *hpa, enum dma_data_direction *direction)
1855 {
1856 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1857 
1858 	if (!ret)
1859 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1860 
1861 	return ret;
1862 }
1863 #endif
1864 
1865 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1866 		long npages)
1867 {
1868 	pnv_tce_free(tbl, index, npages);
1869 
1870 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1871 }
1872 
1873 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1874 	.set = pnv_ioda1_tce_build,
1875 #ifdef CONFIG_IOMMU_API
1876 	.exchange = pnv_ioda1_tce_xchg,
1877 #endif
1878 	.clear = pnv_ioda1_tce_free,
1879 	.get = pnv_tce_get,
1880 };
1881 
1882 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1883 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1884 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1885 
1886 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1887 {
1888 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1889 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1890 
1891 	mb(); /* Ensure previous TCE table stores are visible */
1892 	if (rm)
1893 		__raw_rm_writeq(cpu_to_be64(val), invalidate);
1894 	else
1895 		__raw_writeq(cpu_to_be64(val), invalidate);
1896 }
1897 
1898 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1899 {
1900 	/* 01xb - invalidate TCEs that match the specified PE# */
1901 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1902 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1903 
1904 	mb(); /* Ensure above stores are visible */
1905 	__raw_writeq(cpu_to_be64(val), invalidate);
1906 }
1907 
1908 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1909 					unsigned shift, unsigned long index,
1910 					unsigned long npages)
1911 {
1912 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1913 	unsigned long start, end, inc;
1914 
1915 	/* We'll invalidate DMA address in PE scope */
1916 	start = PHB3_TCE_KILL_INVAL_ONE;
1917 	start |= (pe->pe_number & 0xFF);
1918 	end = start;
1919 
1920 	/* Figure out the start, end and step */
1921 	start |= (index << shift);
1922 	end |= ((index + npages - 1) << shift);
1923 	inc = (0x1ull << shift);
1924 	mb();
1925 
1926 	while (start <= end) {
1927 		if (rm)
1928 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1929 		else
1930 			__raw_writeq(cpu_to_be64(start), invalidate);
1931 		start += inc;
1932 	}
1933 }
1934 
1935 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1936 {
1937 	struct pnv_phb *phb = pe->phb;
1938 
1939 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1940 		pnv_pci_phb3_tce_invalidate_pe(pe);
1941 	else
1942 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1943 				  pe->pe_number, 0, 0, 0);
1944 }
1945 
1946 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1947 		unsigned long index, unsigned long npages, bool rm)
1948 {
1949 	struct iommu_table_group_link *tgl;
1950 
1951 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1952 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1953 				struct pnv_ioda_pe, table_group);
1954 		struct pnv_phb *phb = pe->phb;
1955 		unsigned int shift = tbl->it_page_shift;
1956 
1957 		/*
1958 		 * NVLink1 can use the TCE kill register directly as
1959 		 * it's the same as PHB3. NVLink2 is different and
1960 		 * should go via the OPAL call.
1961 		 */
1962 		if (phb->model == PNV_PHB_MODEL_NPU) {
1963 			/*
1964 			 * The NVLink hardware does not support TCE kill
1965 			 * per TCE entry so we have to invalidate
1966 			 * the entire cache for it.
1967 			 */
1968 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1969 			continue;
1970 		}
1971 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1972 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1973 						    index, npages);
1974 		else
1975 			opal_pci_tce_kill(phb->opal_id,
1976 					  OPAL_PCI_TCE_KILL_PAGES,
1977 					  pe->pe_number, 1u << shift,
1978 					  index << shift, npages);
1979 	}
1980 }
1981 
1982 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1983 		long npages, unsigned long uaddr,
1984 		enum dma_data_direction direction,
1985 		unsigned long attrs)
1986 {
1987 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1988 			attrs);
1989 
1990 	if (!ret)
1991 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1992 
1993 	return ret;
1994 }
1995 
1996 #ifdef CONFIG_IOMMU_API
1997 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1998 		unsigned long *hpa, enum dma_data_direction *direction)
1999 {
2000 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2001 
2002 	if (!ret)
2003 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2004 
2005 	return ret;
2006 }
2007 #endif
2008 
2009 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2010 		long npages)
2011 {
2012 	pnv_tce_free(tbl, index, npages);
2013 
2014 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2015 }
2016 
2017 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2018 {
2019 	pnv_pci_ioda2_table_free_pages(tbl);
2020 	iommu_free_table(tbl, "pnv");
2021 }
2022 
2023 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2024 	.set = pnv_ioda2_tce_build,
2025 #ifdef CONFIG_IOMMU_API
2026 	.exchange = pnv_ioda2_tce_xchg,
2027 #endif
2028 	.clear = pnv_ioda2_tce_free,
2029 	.get = pnv_tce_get,
2030 	.free = pnv_ioda2_table_free,
2031 };
2032 
2033 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2034 {
2035 	unsigned int *weight = (unsigned int *)data;
2036 
2037 	/* This is quite simplistic. The "base" weight of a device
2038 	 * is 10. 0 means no DMA is to be accounted for it.
2039 	 */
2040 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2041 		return 0;
2042 
2043 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2044 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2045 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2046 		*weight += 3;
2047 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2048 		*weight += 15;
2049 	else
2050 		*weight += 10;
2051 
2052 	return 0;
2053 }
2054 
2055 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2056 {
2057 	unsigned int weight = 0;
2058 
2059 	/* SRIOV VF has same DMA32 weight as its PF */
2060 #ifdef CONFIG_PCI_IOV
2061 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2062 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2063 		return weight;
2064 	}
2065 #endif
2066 
2067 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2068 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2069 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2070 		struct pci_dev *pdev;
2071 
2072 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2073 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2074 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2075 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2076 	}
2077 
2078 	return weight;
2079 }
2080 
2081 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2082 				       struct pnv_ioda_pe *pe)
2083 {
2084 
2085 	struct page *tce_mem = NULL;
2086 	struct iommu_table *tbl;
2087 	unsigned int weight, total_weight = 0;
2088 	unsigned int tce32_segsz, base, segs, avail, i;
2089 	int64_t rc;
2090 	void *addr;
2091 
2092 	/* XXX FIXME: Handle 64-bit only DMA devices */
2093 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2094 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2095 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2096 	if (!weight)
2097 		return;
2098 
2099 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2100 		     &total_weight);
2101 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2102 	if (!segs)
2103 		segs = 1;
2104 
2105 	/*
2106 	 * Allocate contiguous DMA32 segments. We begin with the expected
2107 	 * number of segments. With one more attempt, the number of DMA32
2108 	 * segments to be allocated is decreased by one until one segment
2109 	 * is allocated successfully.
2110 	 */
2111 	do {
2112 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2113 			for (avail = 0, i = base; i < base + segs; i++) {
2114 				if (phb->ioda.dma32_segmap[i] ==
2115 				    IODA_INVALID_PE)
2116 					avail++;
2117 			}
2118 
2119 			if (avail == segs)
2120 				goto found;
2121 		}
2122 	} while (--segs);
2123 
2124 	if (!segs) {
2125 		pe_warn(pe, "No available DMA32 segments\n");
2126 		return;
2127 	}
2128 
2129 found:
2130 	tbl = pnv_pci_table_alloc(phb->hose->node);
2131 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2132 			pe->pe_number);
2133 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2134 
2135 	/* Grab a 32-bit TCE table */
2136 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2137 		weight, total_weight, base, segs);
2138 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2139 		base * PNV_IODA1_DMA32_SEGSIZE,
2140 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2141 
2142 	/* XXX Currently, we allocate one big contiguous table for the
2143 	 * TCEs. We only really need one chunk per 256M of TCE space
2144 	 * (ie per segment) but that's an optimization for later, it
2145 	 * requires some added smarts with our get/put_tce implementation
2146 	 *
2147 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2148 	 * bytes
2149 	 */
2150 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2151 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2152 				   get_order(tce32_segsz * segs));
2153 	if (!tce_mem) {
2154 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2155 		goto fail;
2156 	}
2157 	addr = page_address(tce_mem);
2158 	memset(addr, 0, tce32_segsz * segs);
2159 
2160 	/* Configure HW */
2161 	for (i = 0; i < segs; i++) {
2162 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2163 					      pe->pe_number,
2164 					      base + i, 1,
2165 					      __pa(addr) + tce32_segsz * i,
2166 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2167 		if (rc) {
2168 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2169 			       " err %ld\n", rc);
2170 			goto fail;
2171 		}
2172 	}
2173 
2174 	/* Setup DMA32 segment mapping */
2175 	for (i = base; i < base + segs; i++)
2176 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2177 
2178 	/* Setup linux iommu table */
2179 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2180 				  base * PNV_IODA1_DMA32_SEGSIZE,
2181 				  IOMMU_PAGE_SHIFT_4K);
2182 
2183 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2184 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2185 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2186 	iommu_init_table(tbl, phb->hose->node);
2187 
2188 	if (pe->flags & PNV_IODA_PE_DEV) {
2189 		/*
2190 		 * Setting table base here only for carrying iommu_group
2191 		 * further down to let iommu_add_device() do the job.
2192 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2193 		 */
2194 		set_iommu_table_base(&pe->pdev->dev, tbl);
2195 		iommu_add_device(&pe->pdev->dev);
2196 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2197 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2198 
2199 	return;
2200  fail:
2201 	/* XXX Failure: Try to fallback to 64-bit only ? */
2202 	if (tce_mem)
2203 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2204 	if (tbl) {
2205 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2206 		iommu_free_table(tbl, "pnv");
2207 	}
2208 }
2209 
2210 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2211 		int num, struct iommu_table *tbl)
2212 {
2213 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2214 			table_group);
2215 	struct pnv_phb *phb = pe->phb;
2216 	int64_t rc;
2217 	const unsigned long size = tbl->it_indirect_levels ?
2218 			tbl->it_level_size : tbl->it_size;
2219 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2220 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2221 
2222 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2223 			start_addr, start_addr + win_size - 1,
2224 			IOMMU_PAGE_SIZE(tbl));
2225 
2226 	/*
2227 	 * Map TCE table through TVT. The TVE index is the PE number
2228 	 * shifted by 1 bit for 32-bits DMA space.
2229 	 */
2230 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2231 			pe->pe_number,
2232 			(pe->pe_number << 1) + num,
2233 			tbl->it_indirect_levels + 1,
2234 			__pa(tbl->it_base),
2235 			size << 3,
2236 			IOMMU_PAGE_SIZE(tbl));
2237 	if (rc) {
2238 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2239 		return rc;
2240 	}
2241 
2242 	pnv_pci_link_table_and_group(phb->hose->node, num,
2243 			tbl, &pe->table_group);
2244 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2245 
2246 	return 0;
2247 }
2248 
2249 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2250 {
2251 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2252 	int64_t rc;
2253 
2254 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2255 	if (enable) {
2256 		phys_addr_t top = memblock_end_of_DRAM();
2257 
2258 		top = roundup_pow_of_two(top);
2259 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2260 						     pe->pe_number,
2261 						     window_id,
2262 						     pe->tce_bypass_base,
2263 						     top);
2264 	} else {
2265 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2266 						     pe->pe_number,
2267 						     window_id,
2268 						     pe->tce_bypass_base,
2269 						     0);
2270 	}
2271 	if (rc)
2272 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2273 	else
2274 		pe->tce_bypass_enabled = enable;
2275 }
2276 
2277 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2278 		__u32 page_shift, __u64 window_size, __u32 levels,
2279 		struct iommu_table *tbl);
2280 
2281 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2282 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2283 		struct iommu_table **ptbl)
2284 {
2285 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2286 			table_group);
2287 	int nid = pe->phb->hose->node;
2288 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2289 	long ret;
2290 	struct iommu_table *tbl;
2291 
2292 	tbl = pnv_pci_table_alloc(nid);
2293 	if (!tbl)
2294 		return -ENOMEM;
2295 
2296 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2297 			bus_offset, page_shift, window_size,
2298 			levels, tbl);
2299 	if (ret) {
2300 		iommu_free_table(tbl, "pnv");
2301 		return ret;
2302 	}
2303 
2304 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2305 
2306 	*ptbl = tbl;
2307 
2308 	return 0;
2309 }
2310 
2311 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2312 {
2313 	struct iommu_table *tbl = NULL;
2314 	long rc;
2315 
2316 	/*
2317 	 * crashkernel= specifies the kdump kernel's maximum memory at
2318 	 * some offset and there is no guaranteed the result is a power
2319 	 * of 2, which will cause errors later.
2320 	 */
2321 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2322 
2323 	/*
2324 	 * In memory constrained environments, e.g. kdump kernel, the
2325 	 * DMA window can be larger than available memory, which will
2326 	 * cause errors later.
2327 	 */
2328 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2329 
2330 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2331 			IOMMU_PAGE_SHIFT_4K,
2332 			window_size,
2333 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2334 	if (rc) {
2335 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2336 				rc);
2337 		return rc;
2338 	}
2339 
2340 	iommu_init_table(tbl, pe->phb->hose->node);
2341 
2342 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2343 	if (rc) {
2344 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2345 				rc);
2346 		pnv_ioda2_table_free(tbl);
2347 		return rc;
2348 	}
2349 
2350 	if (!pnv_iommu_bypass_disabled)
2351 		pnv_pci_ioda2_set_bypass(pe, true);
2352 
2353 	/*
2354 	 * Setting table base here only for carrying iommu_group
2355 	 * further down to let iommu_add_device() do the job.
2356 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2357 	 */
2358 	if (pe->flags & PNV_IODA_PE_DEV)
2359 		set_iommu_table_base(&pe->pdev->dev, tbl);
2360 
2361 	return 0;
2362 }
2363 
2364 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2365 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2366 		int num)
2367 {
2368 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2369 			table_group);
2370 	struct pnv_phb *phb = pe->phb;
2371 	long ret;
2372 
2373 	pe_info(pe, "Removing DMA window #%d\n", num);
2374 
2375 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2376 			(pe->pe_number << 1) + num,
2377 			0/* levels */, 0/* table address */,
2378 			0/* table size */, 0/* page size */);
2379 	if (ret)
2380 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2381 	else
2382 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2383 
2384 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2385 
2386 	return ret;
2387 }
2388 #endif
2389 
2390 #ifdef CONFIG_IOMMU_API
2391 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2392 		__u64 window_size, __u32 levels)
2393 {
2394 	unsigned long bytes = 0;
2395 	const unsigned window_shift = ilog2(window_size);
2396 	unsigned entries_shift = window_shift - page_shift;
2397 	unsigned table_shift = entries_shift + 3;
2398 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2399 	unsigned long direct_table_size;
2400 
2401 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2402 			(window_size > memory_hotplug_max()) ||
2403 			!is_power_of_2(window_size))
2404 		return 0;
2405 
2406 	/* Calculate a direct table size from window_size and levels */
2407 	entries_shift = (entries_shift + levels - 1) / levels;
2408 	table_shift = entries_shift + 3;
2409 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2410 	direct_table_size =  1UL << table_shift;
2411 
2412 	for ( ; levels; --levels) {
2413 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2414 
2415 		tce_table_size /= direct_table_size;
2416 		tce_table_size <<= 3;
2417 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2418 	}
2419 
2420 	return bytes;
2421 }
2422 
2423 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2424 {
2425 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2426 						table_group);
2427 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2428 	struct iommu_table *tbl = pe->table_group.tables[0];
2429 
2430 	pnv_pci_ioda2_set_bypass(pe, false);
2431 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2432 	if (pe->pbus)
2433 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2434 	pnv_ioda2_table_free(tbl);
2435 }
2436 
2437 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2438 {
2439 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2440 						table_group);
2441 
2442 	pnv_pci_ioda2_setup_default_config(pe);
2443 	if (pe->pbus)
2444 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2445 }
2446 
2447 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2448 	.get_table_size = pnv_pci_ioda2_get_table_size,
2449 	.create_table = pnv_pci_ioda2_create_table,
2450 	.set_window = pnv_pci_ioda2_set_window,
2451 	.unset_window = pnv_pci_ioda2_unset_window,
2452 	.take_ownership = pnv_ioda2_take_ownership,
2453 	.release_ownership = pnv_ioda2_release_ownership,
2454 };
2455 
2456 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2457 {
2458 	struct pci_controller *hose;
2459 	struct pnv_phb *phb;
2460 	struct pnv_ioda_pe **ptmppe = opaque;
2461 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2462 	struct pci_dn *pdn = pci_get_pdn(pdev);
2463 
2464 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2465 		return 0;
2466 
2467 	hose = pci_bus_to_host(pdev->bus);
2468 	phb = hose->private_data;
2469 	if (phb->type != PNV_PHB_NPU)
2470 		return 0;
2471 
2472 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2473 
2474 	return 1;
2475 }
2476 
2477 /*
2478  * This returns PE of associated NPU.
2479  * This assumes that NPU is in the same IOMMU group with GPU and there is
2480  * no other PEs.
2481  */
2482 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2483 		struct iommu_table_group *table_group)
2484 {
2485 	struct pnv_ioda_pe *npe = NULL;
2486 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2487 			gpe_table_group_to_npe_cb);
2488 
2489 	BUG_ON(!ret || !npe);
2490 
2491 	return npe;
2492 }
2493 
2494 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2495 		int num, struct iommu_table *tbl)
2496 {
2497 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2498 
2499 	if (ret)
2500 		return ret;
2501 
2502 	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2503 	if (ret)
2504 		pnv_pci_ioda2_unset_window(table_group, num);
2505 
2506 	return ret;
2507 }
2508 
2509 static long pnv_pci_ioda2_npu_unset_window(
2510 		struct iommu_table_group *table_group,
2511 		int num)
2512 {
2513 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2514 
2515 	if (ret)
2516 		return ret;
2517 
2518 	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2519 }
2520 
2521 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2522 {
2523 	/*
2524 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2525 	 * the iommu_table if 32bit DMA is enabled.
2526 	 */
2527 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2528 	pnv_ioda2_take_ownership(table_group);
2529 }
2530 
2531 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2532 	.get_table_size = pnv_pci_ioda2_get_table_size,
2533 	.create_table = pnv_pci_ioda2_create_table,
2534 	.set_window = pnv_pci_ioda2_npu_set_window,
2535 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2536 	.take_ownership = pnv_ioda2_npu_take_ownership,
2537 	.release_ownership = pnv_ioda2_release_ownership,
2538 };
2539 
2540 static void pnv_pci_ioda_setup_iommu_api(void)
2541 {
2542 	struct pci_controller *hose, *tmp;
2543 	struct pnv_phb *phb;
2544 	struct pnv_ioda_pe *pe, *gpe;
2545 
2546 	/*
2547 	 * Now we have all PHBs discovered, time to add NPU devices to
2548 	 * the corresponding IOMMU groups.
2549 	 */
2550 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2551 		phb = hose->private_data;
2552 
2553 		if (phb->type != PNV_PHB_NPU)
2554 			continue;
2555 
2556 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2557 			gpe = pnv_pci_npu_setup_iommu(pe);
2558 			if (gpe)
2559 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2560 		}
2561 	}
2562 }
2563 #else /* !CONFIG_IOMMU_API */
2564 static void pnv_pci_ioda_setup_iommu_api(void) { };
2565 #endif
2566 
2567 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2568 		unsigned levels, unsigned long limit,
2569 		unsigned long *current_offset, unsigned long *total_allocated)
2570 {
2571 	struct page *tce_mem = NULL;
2572 	__be64 *addr, *tmp;
2573 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2574 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2575 	unsigned entries = 1UL << (shift - 3);
2576 	long i;
2577 
2578 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2579 	if (!tce_mem) {
2580 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2581 		return NULL;
2582 	}
2583 	addr = page_address(tce_mem);
2584 	memset(addr, 0, allocated);
2585 	*total_allocated += allocated;
2586 
2587 	--levels;
2588 	if (!levels) {
2589 		*current_offset += allocated;
2590 		return addr;
2591 	}
2592 
2593 	for (i = 0; i < entries; ++i) {
2594 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2595 				levels, limit, current_offset, total_allocated);
2596 		if (!tmp)
2597 			break;
2598 
2599 		addr[i] = cpu_to_be64(__pa(tmp) |
2600 				TCE_PCI_READ | TCE_PCI_WRITE);
2601 
2602 		if (*current_offset >= limit)
2603 			break;
2604 	}
2605 
2606 	return addr;
2607 }
2608 
2609 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2610 		unsigned long size, unsigned level);
2611 
2612 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2613 		__u32 page_shift, __u64 window_size, __u32 levels,
2614 		struct iommu_table *tbl)
2615 {
2616 	void *addr;
2617 	unsigned long offset = 0, level_shift, total_allocated = 0;
2618 	const unsigned window_shift = ilog2(window_size);
2619 	unsigned entries_shift = window_shift - page_shift;
2620 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2621 	const unsigned long tce_table_size = 1UL << table_shift;
2622 
2623 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2624 		return -EINVAL;
2625 
2626 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2627 		return -EINVAL;
2628 
2629 	/* Adjust direct table size from window_size and levels */
2630 	entries_shift = (entries_shift + levels - 1) / levels;
2631 	level_shift = entries_shift + 3;
2632 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2633 
2634 	if ((level_shift - 3) * levels + page_shift >= 60)
2635 		return -EINVAL;
2636 
2637 	/* Allocate TCE table */
2638 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2639 			levels, tce_table_size, &offset, &total_allocated);
2640 
2641 	/* addr==NULL means that the first level allocation failed */
2642 	if (!addr)
2643 		return -ENOMEM;
2644 
2645 	/*
2646 	 * First level was allocated but some lower level failed as
2647 	 * we did not allocate as much as we wanted,
2648 	 * release partially allocated table.
2649 	 */
2650 	if (offset < tce_table_size) {
2651 		pnv_pci_ioda2_table_do_free_pages(addr,
2652 				1ULL << (level_shift - 3), levels - 1);
2653 		return -ENOMEM;
2654 	}
2655 
2656 	/* Setup linux iommu table */
2657 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2658 			page_shift);
2659 	tbl->it_level_size = 1ULL << (level_shift - 3);
2660 	tbl->it_indirect_levels = levels - 1;
2661 	tbl->it_allocated_size = total_allocated;
2662 
2663 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2664 			window_size, tce_table_size, bus_offset);
2665 
2666 	return 0;
2667 }
2668 
2669 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2670 		unsigned long size, unsigned level)
2671 {
2672 	const unsigned long addr_ul = (unsigned long) addr &
2673 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2674 
2675 	if (level) {
2676 		long i;
2677 		u64 *tmp = (u64 *) addr_ul;
2678 
2679 		for (i = 0; i < size; ++i) {
2680 			unsigned long hpa = be64_to_cpu(tmp[i]);
2681 
2682 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2683 				continue;
2684 
2685 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2686 					level - 1);
2687 		}
2688 	}
2689 
2690 	free_pages(addr_ul, get_order(size << 3));
2691 }
2692 
2693 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2694 {
2695 	const unsigned long size = tbl->it_indirect_levels ?
2696 			tbl->it_level_size : tbl->it_size;
2697 
2698 	if (!tbl->it_size)
2699 		return;
2700 
2701 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2702 			tbl->it_indirect_levels);
2703 }
2704 
2705 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2706 				       struct pnv_ioda_pe *pe)
2707 {
2708 	int64_t rc;
2709 
2710 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2711 		return;
2712 
2713 	/* TVE #1 is selected by PCI address bit 59 */
2714 	pe->tce_bypass_base = 1ull << 59;
2715 
2716 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2717 			pe->pe_number);
2718 
2719 	/* The PE will reserve all possible 32-bits space */
2720 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2721 		phb->ioda.m32_pci_base);
2722 
2723 	/* Setup linux iommu table */
2724 	pe->table_group.tce32_start = 0;
2725 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2726 	pe->table_group.max_dynamic_windows_supported =
2727 			IOMMU_TABLE_GROUP_MAX_TABLES;
2728 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2729 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2730 #ifdef CONFIG_IOMMU_API
2731 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2732 #endif
2733 
2734 	rc = pnv_pci_ioda2_setup_default_config(pe);
2735 	if (rc)
2736 		return;
2737 
2738 	if (pe->flags & PNV_IODA_PE_DEV)
2739 		iommu_add_device(&pe->pdev->dev);
2740 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2741 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2742 }
2743 
2744 #ifdef CONFIG_PCI_MSI
2745 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2746 {
2747 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2748 					   ioda.irq_chip);
2749 
2750 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2751 }
2752 
2753 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2754 {
2755 	int64_t rc;
2756 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2757 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2758 
2759 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2760 	WARN_ON_ONCE(rc);
2761 
2762 	icp_native_eoi(d);
2763 }
2764 
2765 
2766 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2767 {
2768 	struct irq_data *idata;
2769 	struct irq_chip *ichip;
2770 
2771 	/* The MSI EOI OPAL call is only needed on PHB3 */
2772 	if (phb->model != PNV_PHB_MODEL_PHB3)
2773 		return;
2774 
2775 	if (!phb->ioda.irq_chip_init) {
2776 		/*
2777 		 * First time we setup an MSI IRQ, we need to setup the
2778 		 * corresponding IRQ chip to route correctly.
2779 		 */
2780 		idata = irq_get_irq_data(virq);
2781 		ichip = irq_data_get_irq_chip(idata);
2782 		phb->ioda.irq_chip_init = 1;
2783 		phb->ioda.irq_chip = *ichip;
2784 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2785 	}
2786 	irq_set_chip(virq, &phb->ioda.irq_chip);
2787 }
2788 
2789 /*
2790  * Returns true iff chip is something that we could call
2791  * pnv_opal_pci_msi_eoi for.
2792  */
2793 bool is_pnv_opal_msi(struct irq_chip *chip)
2794 {
2795 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2796 }
2797 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2798 
2799 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2800 				  unsigned int hwirq, unsigned int virq,
2801 				  unsigned int is_64, struct msi_msg *msg)
2802 {
2803 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2804 	unsigned int xive_num = hwirq - phb->msi_base;
2805 	__be32 data;
2806 	int rc;
2807 
2808 	/* No PE assigned ? bail out ... no MSI for you ! */
2809 	if (pe == NULL)
2810 		return -ENXIO;
2811 
2812 	/* Check if we have an MVE */
2813 	if (pe->mve_number < 0)
2814 		return -ENXIO;
2815 
2816 	/* Force 32-bit MSI on some broken devices */
2817 	if (dev->no_64bit_msi)
2818 		is_64 = 0;
2819 
2820 	/* Assign XIVE to PE */
2821 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2822 	if (rc) {
2823 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2824 			pci_name(dev), rc, xive_num);
2825 		return -EIO;
2826 	}
2827 
2828 	if (is_64) {
2829 		__be64 addr64;
2830 
2831 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2832 				     &addr64, &data);
2833 		if (rc) {
2834 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2835 				pci_name(dev), rc);
2836 			return -EIO;
2837 		}
2838 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2839 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2840 	} else {
2841 		__be32 addr32;
2842 
2843 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2844 				     &addr32, &data);
2845 		if (rc) {
2846 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2847 				pci_name(dev), rc);
2848 			return -EIO;
2849 		}
2850 		msg->address_hi = 0;
2851 		msg->address_lo = be32_to_cpu(addr32);
2852 	}
2853 	msg->data = be32_to_cpu(data);
2854 
2855 	pnv_set_msi_irq_chip(phb, virq);
2856 
2857 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2858 		 " address=%x_%08x data=%x PE# %x\n",
2859 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2860 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2861 
2862 	return 0;
2863 }
2864 
2865 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2866 {
2867 	unsigned int count;
2868 	const __be32 *prop = of_get_property(phb->hose->dn,
2869 					     "ibm,opal-msi-ranges", NULL);
2870 	if (!prop) {
2871 		/* BML Fallback */
2872 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2873 	}
2874 	if (!prop)
2875 		return;
2876 
2877 	phb->msi_base = be32_to_cpup(prop);
2878 	count = be32_to_cpup(prop + 1);
2879 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2880 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2881 		       phb->hose->global_number);
2882 		return;
2883 	}
2884 
2885 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2886 	phb->msi32_support = 1;
2887 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2888 		count, phb->msi_base);
2889 }
2890 #else
2891 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2892 #endif /* CONFIG_PCI_MSI */
2893 
2894 #ifdef CONFIG_PCI_IOV
2895 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2896 {
2897 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2898 	struct pnv_phb *phb = hose->private_data;
2899 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2900 	struct resource *res;
2901 	int i;
2902 	resource_size_t size, total_vf_bar_sz;
2903 	struct pci_dn *pdn;
2904 	int mul, total_vfs;
2905 
2906 	if (!pdev->is_physfn || pdev->is_added)
2907 		return;
2908 
2909 	pdn = pci_get_pdn(pdev);
2910 	pdn->vfs_expanded = 0;
2911 	pdn->m64_single_mode = false;
2912 
2913 	total_vfs = pci_sriov_get_totalvfs(pdev);
2914 	mul = phb->ioda.total_pe_num;
2915 	total_vf_bar_sz = 0;
2916 
2917 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2918 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2919 		if (!res->flags || res->parent)
2920 			continue;
2921 		if (!pnv_pci_is_m64_flags(res->flags)) {
2922 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2923 					" non M64 VF BAR%d: %pR. \n",
2924 				 i, res);
2925 			goto truncate_iov;
2926 		}
2927 
2928 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2929 				i + PCI_IOV_RESOURCES);
2930 
2931 		/*
2932 		 * If bigger than quarter of M64 segment size, just round up
2933 		 * power of two.
2934 		 *
2935 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2936 		 * with other devices, IOV BAR size is expanded to be
2937 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2938 		 * segment size , the expanded size would equal to half of the
2939 		 * whole M64 space size, which will exhaust the M64 Space and
2940 		 * limit the system flexibility.  This is a design decision to
2941 		 * set the boundary to quarter of the M64 segment size.
2942 		 */
2943 		if (total_vf_bar_sz > gate) {
2944 			mul = roundup_pow_of_two(total_vfs);
2945 			dev_info(&pdev->dev,
2946 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2947 				total_vf_bar_sz, gate, mul);
2948 			pdn->m64_single_mode = true;
2949 			break;
2950 		}
2951 	}
2952 
2953 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2954 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2955 		if (!res->flags || res->parent)
2956 			continue;
2957 
2958 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2959 		/*
2960 		 * On PHB3, the minimum size alignment of M64 BAR in single
2961 		 * mode is 32MB.
2962 		 */
2963 		if (pdn->m64_single_mode && (size < SZ_32M))
2964 			goto truncate_iov;
2965 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2966 		res->end = res->start + size * mul - 1;
2967 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2968 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2969 			 i, res, mul);
2970 	}
2971 	pdn->vfs_expanded = mul;
2972 
2973 	return;
2974 
2975 truncate_iov:
2976 	/* To save MMIO space, IOV BAR is truncated. */
2977 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2978 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2979 		res->flags = 0;
2980 		res->end = res->start - 1;
2981 	}
2982 }
2983 #endif /* CONFIG_PCI_IOV */
2984 
2985 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2986 				  struct resource *res)
2987 {
2988 	struct pnv_phb *phb = pe->phb;
2989 	struct pci_bus_region region;
2990 	int index;
2991 	int64_t rc;
2992 
2993 	if (!res || !res->flags || res->start > res->end)
2994 		return;
2995 
2996 	if (res->flags & IORESOURCE_IO) {
2997 		region.start = res->start - phb->ioda.io_pci_base;
2998 		region.end   = res->end - phb->ioda.io_pci_base;
2999 		index = region.start / phb->ioda.io_segsize;
3000 
3001 		while (index < phb->ioda.total_pe_num &&
3002 		       region.start <= region.end) {
3003 			phb->ioda.io_segmap[index] = pe->pe_number;
3004 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3005 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3006 			if (rc != OPAL_SUCCESS) {
3007 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3008 				       __func__, rc, index, pe->pe_number);
3009 				break;
3010 			}
3011 
3012 			region.start += phb->ioda.io_segsize;
3013 			index++;
3014 		}
3015 	} else if ((res->flags & IORESOURCE_MEM) &&
3016 		   !pnv_pci_is_m64(phb, res)) {
3017 		region.start = res->start -
3018 			       phb->hose->mem_offset[0] -
3019 			       phb->ioda.m32_pci_base;
3020 		region.end   = res->end -
3021 			       phb->hose->mem_offset[0] -
3022 			       phb->ioda.m32_pci_base;
3023 		index = region.start / phb->ioda.m32_segsize;
3024 
3025 		while (index < phb->ioda.total_pe_num &&
3026 		       region.start <= region.end) {
3027 			phb->ioda.m32_segmap[index] = pe->pe_number;
3028 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3029 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3030 			if (rc != OPAL_SUCCESS) {
3031 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3032 				       __func__, rc, index, pe->pe_number);
3033 				break;
3034 			}
3035 
3036 			region.start += phb->ioda.m32_segsize;
3037 			index++;
3038 		}
3039 	}
3040 }
3041 
3042 /*
3043  * This function is supposed to be called on basis of PE from top
3044  * to bottom style. So the the I/O or MMIO segment assigned to
3045  * parent PE could be overridden by its child PEs if necessary.
3046  */
3047 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3048 {
3049 	struct pci_dev *pdev;
3050 	int i;
3051 
3052 	/*
3053 	 * NOTE: We only care PCI bus based PE for now. For PCI
3054 	 * device based PE, for example SRIOV sensitive VF should
3055 	 * be figured out later.
3056 	 */
3057 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3058 
3059 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3060 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3061 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3062 
3063 		/*
3064 		 * If the PE contains all subordinate PCI buses, the
3065 		 * windows of the child bridges should be mapped to
3066 		 * the PE as well.
3067 		 */
3068 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3069 			continue;
3070 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3071 			pnv_ioda_setup_pe_res(pe,
3072 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3073 	}
3074 }
3075 
3076 #ifdef CONFIG_DEBUG_FS
3077 static int pnv_pci_diag_data_set(void *data, u64 val)
3078 {
3079 	struct pci_controller *hose;
3080 	struct pnv_phb *phb;
3081 	s64 ret;
3082 
3083 	if (val != 1ULL)
3084 		return -EINVAL;
3085 
3086 	hose = (struct pci_controller *)data;
3087 	if (!hose || !hose->private_data)
3088 		return -ENODEV;
3089 
3090 	phb = hose->private_data;
3091 
3092 	/* Retrieve the diag data from firmware */
3093 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
3094 					  PNV_PCI_DIAG_BUF_SIZE);
3095 	if (ret != OPAL_SUCCESS)
3096 		return -EIO;
3097 
3098 	/* Print the diag data to the kernel log */
3099 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob);
3100 	return 0;
3101 }
3102 
3103 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3104 			pnv_pci_diag_data_set, "%llu\n");
3105 
3106 #endif /* CONFIG_DEBUG_FS */
3107 
3108 static void pnv_pci_ioda_create_dbgfs(void)
3109 {
3110 #ifdef CONFIG_DEBUG_FS
3111 	struct pci_controller *hose, *tmp;
3112 	struct pnv_phb *phb;
3113 	char name[16];
3114 
3115 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3116 		phb = hose->private_data;
3117 
3118 		/* Notify initialization of PHB done */
3119 		phb->initialized = 1;
3120 
3121 		sprintf(name, "PCI%04x", hose->global_number);
3122 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3123 		if (!phb->dbgfs) {
3124 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3125 				__func__, hose->global_number);
3126 			continue;
3127 		}
3128 
3129 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3130 				    &pnv_pci_diag_data_fops);
3131 	}
3132 #endif /* CONFIG_DEBUG_FS */
3133 }
3134 
3135 static void pnv_pci_ioda_fixup(void)
3136 {
3137 	pnv_pci_ioda_setup_PEs();
3138 	pnv_pci_ioda_setup_iommu_api();
3139 	pnv_pci_ioda_create_dbgfs();
3140 
3141 #ifdef CONFIG_EEH
3142 	eeh_init();
3143 	eeh_addr_cache_build();
3144 #endif
3145 }
3146 
3147 /*
3148  * Returns the alignment for I/O or memory windows for P2P
3149  * bridges. That actually depends on how PEs are segmented.
3150  * For now, we return I/O or M32 segment size for PE sensitive
3151  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3152  * 1MiB for memory) will be returned.
3153  *
3154  * The current PCI bus might be put into one PE, which was
3155  * create against the parent PCI bridge. For that case, we
3156  * needn't enlarge the alignment so that we can save some
3157  * resources.
3158  */
3159 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3160 						unsigned long type)
3161 {
3162 	struct pci_dev *bridge;
3163 	struct pci_controller *hose = pci_bus_to_host(bus);
3164 	struct pnv_phb *phb = hose->private_data;
3165 	int num_pci_bridges = 0;
3166 
3167 	bridge = bus->self;
3168 	while (bridge) {
3169 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3170 			num_pci_bridges++;
3171 			if (num_pci_bridges >= 2)
3172 				return 1;
3173 		}
3174 
3175 		bridge = bridge->bus->self;
3176 	}
3177 
3178 	/*
3179 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3180 	 * alignment for any 64-bit resource, PCIe doesn't care and
3181 	 * bridges only do 64-bit prefetchable anyway.
3182 	 */
3183 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3184 		return phb->ioda.m64_segsize;
3185 	if (type & IORESOURCE_MEM)
3186 		return phb->ioda.m32_segsize;
3187 
3188 	return phb->ioda.io_segsize;
3189 }
3190 
3191 /*
3192  * We are updating root port or the upstream port of the
3193  * bridge behind the root port with PHB's windows in order
3194  * to accommodate the changes on required resources during
3195  * PCI (slot) hotplug, which is connected to either root
3196  * port or the downstream ports of PCIe switch behind the
3197  * root port.
3198  */
3199 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3200 					   unsigned long type)
3201 {
3202 	struct pci_controller *hose = pci_bus_to_host(bus);
3203 	struct pnv_phb *phb = hose->private_data;
3204 	struct pci_dev *bridge = bus->self;
3205 	struct resource *r, *w;
3206 	bool msi_region = false;
3207 	int i;
3208 
3209 	/* Check if we need apply fixup to the bridge's windows */
3210 	if (!pci_is_root_bus(bridge->bus) &&
3211 	    !pci_is_root_bus(bridge->bus->self->bus))
3212 		return;
3213 
3214 	/* Fixup the resources */
3215 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3216 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3217 		if (!r->flags || !r->parent)
3218 			continue;
3219 
3220 		w = NULL;
3221 		if (r->flags & type & IORESOURCE_IO)
3222 			w = &hose->io_resource;
3223 		else if (pnv_pci_is_m64(phb, r) &&
3224 			 (type & IORESOURCE_PREFETCH) &&
3225 			 phb->ioda.m64_segsize)
3226 			w = &hose->mem_resources[1];
3227 		else if (r->flags & type & IORESOURCE_MEM) {
3228 			w = &hose->mem_resources[0];
3229 			msi_region = true;
3230 		}
3231 
3232 		r->start = w->start;
3233 		r->end = w->end;
3234 
3235 		/* The 64KB 32-bits MSI region shouldn't be included in
3236 		 * the 32-bits bridge window. Otherwise, we can see strange
3237 		 * issues. One of them is EEH error observed on Garrison.
3238 		 *
3239 		 * Exclude top 1MB region which is the minimal alignment of
3240 		 * 32-bits bridge window.
3241 		 */
3242 		if (msi_region) {
3243 			r->end += 0x10000;
3244 			r->end -= 0x100000;
3245 		}
3246 	}
3247 }
3248 
3249 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3250 {
3251 	struct pci_controller *hose = pci_bus_to_host(bus);
3252 	struct pnv_phb *phb = hose->private_data;
3253 	struct pci_dev *bridge = bus->self;
3254 	struct pnv_ioda_pe *pe;
3255 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3256 
3257 	/* Extend bridge's windows if necessary */
3258 	pnv_pci_fixup_bridge_resources(bus, type);
3259 
3260 	/* The PE for root bus should be realized before any one else */
3261 	if (!phb->ioda.root_pe_populated) {
3262 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3263 		if (pe) {
3264 			phb->ioda.root_pe_idx = pe->pe_number;
3265 			phb->ioda.root_pe_populated = true;
3266 		}
3267 	}
3268 
3269 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3270 	if (list_empty(&bus->devices))
3271 		return;
3272 
3273 	/* Reserve PEs according to used M64 resources */
3274 	if (phb->reserve_m64_pe)
3275 		phb->reserve_m64_pe(bus, NULL, all);
3276 
3277 	/*
3278 	 * Assign PE. We might run here because of partial hotplug.
3279 	 * For the case, we just pick up the existing PE and should
3280 	 * not allocate resources again.
3281 	 */
3282 	pe = pnv_ioda_setup_bus_PE(bus, all);
3283 	if (!pe)
3284 		return;
3285 
3286 	pnv_ioda_setup_pe_seg(pe);
3287 	switch (phb->type) {
3288 	case PNV_PHB_IODA1:
3289 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3290 		break;
3291 	case PNV_PHB_IODA2:
3292 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3293 		break;
3294 	default:
3295 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3296 			__func__, phb->hose->global_number, phb->type);
3297 	}
3298 }
3299 
3300 #ifdef CONFIG_PCI_IOV
3301 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3302 						      int resno)
3303 {
3304 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3305 	struct pnv_phb *phb = hose->private_data;
3306 	struct pci_dn *pdn = pci_get_pdn(pdev);
3307 	resource_size_t align;
3308 
3309 	/*
3310 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3311 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3312 	 * BAR should be size aligned.
3313 	 *
3314 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3315 	 * powernv-specific hardware restriction is gone. But if just use the
3316 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3317 	 * in one segment of M64 #15, which introduces the PE conflict between
3318 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3319 	 * m64_segsize.
3320 	 *
3321 	 * This function returns the total IOV BAR size if M64 BAR is in
3322 	 * Shared PE mode or just VF BAR size if not.
3323 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3324 	 * M64 segment size if IOV BAR size is less.
3325 	 */
3326 	align = pci_iov_resource_size(pdev, resno);
3327 	if (!pdn->vfs_expanded)
3328 		return align;
3329 	if (pdn->m64_single_mode)
3330 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3331 
3332 	return pdn->vfs_expanded * align;
3333 }
3334 #endif /* CONFIG_PCI_IOV */
3335 
3336 /* Prevent enabling devices for which we couldn't properly
3337  * assign a PE
3338  */
3339 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3340 {
3341 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3342 	struct pnv_phb *phb = hose->private_data;
3343 	struct pci_dn *pdn;
3344 
3345 	/* The function is probably called while the PEs have
3346 	 * not be created yet. For example, resource reassignment
3347 	 * during PCI probe period. We just skip the check if
3348 	 * PEs isn't ready.
3349 	 */
3350 	if (!phb->initialized)
3351 		return true;
3352 
3353 	pdn = pci_get_pdn(dev);
3354 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3355 		return false;
3356 
3357 	return true;
3358 }
3359 
3360 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3361 				       int num)
3362 {
3363 	struct pnv_ioda_pe *pe = container_of(table_group,
3364 					      struct pnv_ioda_pe, table_group);
3365 	struct pnv_phb *phb = pe->phb;
3366 	unsigned int idx;
3367 	long rc;
3368 
3369 	pe_info(pe, "Removing DMA window #%d\n", num);
3370 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3371 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3372 			continue;
3373 
3374 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3375 						idx, 0, 0ul, 0ul, 0ul);
3376 		if (rc != OPAL_SUCCESS) {
3377 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3378 				rc, idx);
3379 			return rc;
3380 		}
3381 
3382 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3383 	}
3384 
3385 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3386 	return OPAL_SUCCESS;
3387 }
3388 
3389 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3390 {
3391 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3392 	struct iommu_table *tbl = pe->table_group.tables[0];
3393 	int64_t rc;
3394 
3395 	if (!weight)
3396 		return;
3397 
3398 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3399 	if (rc != OPAL_SUCCESS)
3400 		return;
3401 
3402 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3403 	if (pe->table_group.group) {
3404 		iommu_group_put(pe->table_group.group);
3405 		WARN_ON(pe->table_group.group);
3406 	}
3407 
3408 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3409 	iommu_free_table(tbl, "pnv");
3410 }
3411 
3412 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3413 {
3414 	struct iommu_table *tbl = pe->table_group.tables[0];
3415 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3416 #ifdef CONFIG_IOMMU_API
3417 	int64_t rc;
3418 #endif
3419 
3420 	if (!weight)
3421 		return;
3422 
3423 #ifdef CONFIG_IOMMU_API
3424 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3425 	if (rc)
3426 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3427 #endif
3428 
3429 	pnv_pci_ioda2_set_bypass(pe, false);
3430 	if (pe->table_group.group) {
3431 		iommu_group_put(pe->table_group.group);
3432 		WARN_ON(pe->table_group.group);
3433 	}
3434 
3435 	pnv_pci_ioda2_table_free_pages(tbl);
3436 	iommu_free_table(tbl, "pnv");
3437 }
3438 
3439 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3440 				 unsigned short win,
3441 				 unsigned int *map)
3442 {
3443 	struct pnv_phb *phb = pe->phb;
3444 	int idx;
3445 	int64_t rc;
3446 
3447 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3448 		if (map[idx] != pe->pe_number)
3449 			continue;
3450 
3451 		if (win == OPAL_M64_WINDOW_TYPE)
3452 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3453 					phb->ioda.reserved_pe_idx, win,
3454 					idx / PNV_IODA1_M64_SEGS,
3455 					idx % PNV_IODA1_M64_SEGS);
3456 		else
3457 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3458 					phb->ioda.reserved_pe_idx, win, 0, idx);
3459 
3460 		if (rc != OPAL_SUCCESS)
3461 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3462 				rc, win, idx);
3463 
3464 		map[idx] = IODA_INVALID_PE;
3465 	}
3466 }
3467 
3468 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3469 {
3470 	struct pnv_phb *phb = pe->phb;
3471 
3472 	if (phb->type == PNV_PHB_IODA1) {
3473 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3474 				     phb->ioda.io_segmap);
3475 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3476 				     phb->ioda.m32_segmap);
3477 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3478 				     phb->ioda.m64_segmap);
3479 	} else if (phb->type == PNV_PHB_IODA2) {
3480 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3481 				     phb->ioda.m32_segmap);
3482 	}
3483 }
3484 
3485 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3486 {
3487 	struct pnv_phb *phb = pe->phb;
3488 	struct pnv_ioda_pe *slave, *tmp;
3489 
3490 	list_del(&pe->list);
3491 	switch (phb->type) {
3492 	case PNV_PHB_IODA1:
3493 		pnv_pci_ioda1_release_pe_dma(pe);
3494 		break;
3495 	case PNV_PHB_IODA2:
3496 		pnv_pci_ioda2_release_pe_dma(pe);
3497 		break;
3498 	default:
3499 		WARN_ON(1);
3500 	}
3501 
3502 	pnv_ioda_release_pe_seg(pe);
3503 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3504 
3505 	/* Release slave PEs in the compound PE */
3506 	if (pe->flags & PNV_IODA_PE_MASTER) {
3507 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3508 			list_del(&slave->list);
3509 			pnv_ioda_free_pe(slave);
3510 		}
3511 	}
3512 
3513 	/*
3514 	 * The PE for root bus can be removed because of hotplug in EEH
3515 	 * recovery for fenced PHB error. We need to mark the PE dead so
3516 	 * that it can be populated again in PCI hot add path. The PE
3517 	 * shouldn't be destroyed as it's the global reserved resource.
3518 	 */
3519 	if (phb->ioda.root_pe_populated &&
3520 	    phb->ioda.root_pe_idx == pe->pe_number)
3521 		phb->ioda.root_pe_populated = false;
3522 	else
3523 		pnv_ioda_free_pe(pe);
3524 }
3525 
3526 static void pnv_pci_release_device(struct pci_dev *pdev)
3527 {
3528 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3529 	struct pnv_phb *phb = hose->private_data;
3530 	struct pci_dn *pdn = pci_get_pdn(pdev);
3531 	struct pnv_ioda_pe *pe;
3532 
3533 	if (pdev->is_virtfn)
3534 		return;
3535 
3536 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3537 		return;
3538 
3539 	/*
3540 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3541 	 * isn't removed and added afterwards in this scenario. We should
3542 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3543 	 * device count is decreased on removing devices while failing to
3544 	 * be increased on adding devices. It leads to unbalanced PE's device
3545 	 * count and eventually make normal PCI hotplug path broken.
3546 	 */
3547 	pe = &phb->ioda.pe_array[pdn->pe_number];
3548 	pdn->pe_number = IODA_INVALID_PE;
3549 
3550 	WARN_ON(--pe->device_count < 0);
3551 	if (pe->device_count == 0)
3552 		pnv_ioda_release_pe(pe);
3553 }
3554 
3555 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3556 {
3557 	struct pnv_phb *phb = hose->private_data;
3558 
3559 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3560 		       OPAL_ASSERT_RESET);
3561 }
3562 
3563 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3564 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3565 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3566 #ifdef CONFIG_PCI_MSI
3567 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3568 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3569 #endif
3570 	.enable_device_hook	= pnv_pci_enable_device_hook,
3571 	.release_device		= pnv_pci_release_device,
3572 	.window_alignment	= pnv_pci_window_alignment,
3573 	.setup_bridge		= pnv_pci_setup_bridge,
3574 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3575 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3576 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3577 	.shutdown		= pnv_pci_ioda_shutdown,
3578 };
3579 
3580 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3581 {
3582 	dev_err_once(&npdev->dev,
3583 			"%s operation unsupported for NVLink devices\n",
3584 			__func__);
3585 	return -EPERM;
3586 }
3587 
3588 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3589 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3590 #ifdef CONFIG_PCI_MSI
3591 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3592 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3593 #endif
3594 	.enable_device_hook	= pnv_pci_enable_device_hook,
3595 	.window_alignment	= pnv_pci_window_alignment,
3596 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3597 	.dma_set_mask		= pnv_npu_dma_set_mask,
3598 	.shutdown		= pnv_pci_ioda_shutdown,
3599 };
3600 
3601 #ifdef CONFIG_CXL_BASE
3602 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3603 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3604 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3605 #ifdef CONFIG_PCI_MSI
3606 	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
3607 	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
3608 #endif
3609 	.enable_device_hook	= pnv_cxl_enable_device_hook,
3610 	.disable_device		= pnv_cxl_disable_device,
3611 	.release_device		= pnv_pci_release_device,
3612 	.window_alignment	= pnv_pci_window_alignment,
3613 	.setup_bridge		= pnv_pci_setup_bridge,
3614 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3615 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3616 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3617 	.shutdown		= pnv_pci_ioda_shutdown,
3618 };
3619 #endif
3620 
3621 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3622 					 u64 hub_id, int ioda_type)
3623 {
3624 	struct pci_controller *hose;
3625 	struct pnv_phb *phb;
3626 	unsigned long size, m64map_off, m32map_off, pemap_off;
3627 	unsigned long iomap_off = 0, dma32map_off = 0;
3628 	struct resource r;
3629 	const __be64 *prop64;
3630 	const __be32 *prop32;
3631 	int len;
3632 	unsigned int segno;
3633 	u64 phb_id;
3634 	void *aux;
3635 	long rc;
3636 
3637 	if (!of_device_is_available(np))
3638 		return;
3639 
3640 	pr_info("Initializing %s PHB (%s)\n",
3641 		pnv_phb_names[ioda_type], of_node_full_name(np));
3642 
3643 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3644 	if (!prop64) {
3645 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3646 		return;
3647 	}
3648 	phb_id = be64_to_cpup(prop64);
3649 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3650 
3651 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3652 
3653 	/* Allocate PCI controller */
3654 	phb->hose = hose = pcibios_alloc_controller(np);
3655 	if (!phb->hose) {
3656 		pr_err("  Can't allocate PCI controller for %s\n",
3657 		       np->full_name);
3658 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3659 		return;
3660 	}
3661 
3662 	spin_lock_init(&phb->lock);
3663 	prop32 = of_get_property(np, "bus-range", &len);
3664 	if (prop32 && len == 8) {
3665 		hose->first_busno = be32_to_cpu(prop32[0]);
3666 		hose->last_busno = be32_to_cpu(prop32[1]);
3667 	} else {
3668 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3669 		hose->first_busno = 0;
3670 		hose->last_busno = 0xff;
3671 	}
3672 	hose->private_data = phb;
3673 	phb->hub_id = hub_id;
3674 	phb->opal_id = phb_id;
3675 	phb->type = ioda_type;
3676 	mutex_init(&phb->ioda.pe_alloc_mutex);
3677 
3678 	/* Detect specific models for error handling */
3679 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3680 		phb->model = PNV_PHB_MODEL_P7IOC;
3681 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3682 		phb->model = PNV_PHB_MODEL_PHB3;
3683 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3684 		phb->model = PNV_PHB_MODEL_NPU;
3685 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3686 		phb->model = PNV_PHB_MODEL_NPU2;
3687 	else
3688 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3689 
3690 	/* Parse 32-bit and IO ranges (if any) */
3691 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3692 
3693 	/* Get registers */
3694 	if (!of_address_to_resource(np, 0, &r)) {
3695 		phb->regs_phys = r.start;
3696 		phb->regs = ioremap(r.start, resource_size(&r));
3697 		if (phb->regs == NULL)
3698 			pr_err("  Failed to map registers !\n");
3699 	}
3700 
3701 	/* Initialize more IODA stuff */
3702 	phb->ioda.total_pe_num = 1;
3703 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3704 	if (prop32)
3705 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3706 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3707 	if (prop32)
3708 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3709 
3710 	/* Invalidate RID to PE# mapping */
3711 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3712 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3713 
3714 	/* Parse 64-bit MMIO range */
3715 	pnv_ioda_parse_m64_window(phb);
3716 
3717 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3718 	/* FW Has already off top 64k of M32 space (MSI space) */
3719 	phb->ioda.m32_size += 0x10000;
3720 
3721 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3722 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3723 	phb->ioda.io_size = hose->pci_io_size;
3724 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3725 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3726 
3727 	/* Calculate how many 32-bit TCE segments we have */
3728 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3729 				PNV_IODA1_DMA32_SEGSIZE;
3730 
3731 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3732 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3733 			sizeof(unsigned long));
3734 	m64map_off = size;
3735 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3736 	m32map_off = size;
3737 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3738 	if (phb->type == PNV_PHB_IODA1) {
3739 		iomap_off = size;
3740 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3741 		dma32map_off = size;
3742 		size += phb->ioda.dma32_count *
3743 			sizeof(phb->ioda.dma32_segmap[0]);
3744 	}
3745 	pemap_off = size;
3746 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3747 	aux = memblock_virt_alloc(size, 0);
3748 	phb->ioda.pe_alloc = aux;
3749 	phb->ioda.m64_segmap = aux + m64map_off;
3750 	phb->ioda.m32_segmap = aux + m32map_off;
3751 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3752 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3753 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3754 	}
3755 	if (phb->type == PNV_PHB_IODA1) {
3756 		phb->ioda.io_segmap = aux + iomap_off;
3757 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3758 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3759 
3760 		phb->ioda.dma32_segmap = aux + dma32map_off;
3761 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3762 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3763 	}
3764 	phb->ioda.pe_array = aux + pemap_off;
3765 
3766 	/*
3767 	 * Choose PE number for root bus, which shouldn't have
3768 	 * M64 resources consumed by its child devices. To pick
3769 	 * the PE number adjacent to the reserved one if possible.
3770 	 */
3771 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3772 	if (phb->ioda.reserved_pe_idx == 0) {
3773 		phb->ioda.root_pe_idx = 1;
3774 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3775 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3776 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3777 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3778 	} else {
3779 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3780 	}
3781 
3782 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3783 	mutex_init(&phb->ioda.pe_list_mutex);
3784 
3785 	/* Calculate how many 32-bit TCE segments we have */
3786 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3787 				PNV_IODA1_DMA32_SEGSIZE;
3788 
3789 #if 0 /* We should really do that ... */
3790 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3791 					 window_type,
3792 					 window_num,
3793 					 starting_real_address,
3794 					 starting_pci_address,
3795 					 segment_size);
3796 #endif
3797 
3798 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3799 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3800 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3801 	if (phb->ioda.m64_size)
3802 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3803 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3804 	if (phb->ioda.io_size)
3805 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3806 			phb->ioda.io_size, phb->ioda.io_segsize);
3807 
3808 
3809 	phb->hose->ops = &pnv_pci_ops;
3810 	phb->get_pe_state = pnv_ioda_get_pe_state;
3811 	phb->freeze_pe = pnv_ioda_freeze_pe;
3812 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3813 
3814 	/* Setup MSI support */
3815 	pnv_pci_init_ioda_msis(phb);
3816 
3817 	/*
3818 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3819 	 * to let the PCI core do resource assignment. It's supposed
3820 	 * that the PCI core will do correct I/O and MMIO alignment
3821 	 * for the P2P bridge bars so that each PCI bus (excluding
3822 	 * the child P2P bridges) can form individual PE.
3823 	 */
3824 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3825 
3826 	if (phb->type == PNV_PHB_NPU) {
3827 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3828 	} else {
3829 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3830 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3831 	}
3832 
3833 #ifdef CONFIG_PCI_IOV
3834 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3835 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3836 #endif
3837 
3838 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3839 
3840 	/* Reset IODA tables to a clean state */
3841 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3842 	if (rc)
3843 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3844 
3845 	/*
3846 	 * If we're running in kdump kernel, the previous kernel never
3847 	 * shutdown PCI devices correctly. We already got IODA table
3848 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3849 	 * transactions from previous kernel.
3850 	 */
3851 	if (is_kdump_kernel()) {
3852 		pr_info("  Issue PHB reset ...\n");
3853 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3854 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3855 	}
3856 
3857 	/* Remove M64 resource if we can't configure it successfully */
3858 	if (!phb->init_m64 || phb->init_m64(phb))
3859 		hose->mem_resources[1].flags = 0;
3860 }
3861 
3862 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3863 {
3864 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3865 }
3866 
3867 void __init pnv_pci_init_npu_phb(struct device_node *np)
3868 {
3869 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3870 }
3871 
3872 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3873 {
3874 	struct device_node *phbn;
3875 	const __be64 *prop64;
3876 	u64 hub_id;
3877 
3878 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3879 
3880 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3881 	if (!prop64) {
3882 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3883 		return;
3884 	}
3885 	hub_id = be64_to_cpup(prop64);
3886 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3887 
3888 	/* Count child PHBs */
3889 	for_each_child_of_node(np, phbn) {
3890 		/* Look for IODA1 PHBs */
3891 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3892 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3893 	}
3894 }
3895