1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/opal.h>
35 #include <asm/iommu.h>
36 #include <asm/tce.h>
37 #include <asm/xics.h>
38 #include <asm/debug.h>
39 
40 #include "powernv.h"
41 #include "pci.h"
42 
43 #define define_pe_printk_level(func, kern_level)		\
44 static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...)	\
45 {								\
46 	struct va_format vaf;					\
47 	va_list args;						\
48 	char pfix[32];						\
49 	int r;							\
50 								\
51 	va_start(args, fmt);					\
52 								\
53 	vaf.fmt = fmt;						\
54 	vaf.va = &args;						\
55 								\
56 	if (pe->pdev)						\
57 		strlcpy(pfix, dev_name(&pe->pdev->dev),		\
58 			sizeof(pfix));				\
59 	else							\
60 		sprintf(pfix, "%04x:%02x     ",			\
61 			pci_domain_nr(pe->pbus),		\
62 			pe->pbus->number);			\
63 	r = printk(kern_level "pci %s: [PE# %.3d] %pV",		\
64 		   pfix, pe->pe_number, &vaf);			\
65 								\
66 	va_end(args);						\
67 								\
68 	return r;						\
69 }								\
70 
71 define_pe_printk_level(pe_err, KERN_ERR);
72 define_pe_printk_level(pe_warn, KERN_WARNING);
73 define_pe_printk_level(pe_info, KERN_INFO);
74 
75 /*
76  * stdcix is only supposed to be used in hypervisor real mode as per
77  * the architecture spec
78  */
79 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
80 {
81 	__asm__ __volatile__("stdcix %0,0,%1"
82 		: : "r" (val), "r" (paddr) : "memory");
83 }
84 
85 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
86 {
87 	unsigned long pe;
88 
89 	do {
90 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
91 					phb->ioda.total_pe, 0);
92 		if (pe >= phb->ioda.total_pe)
93 			return IODA_INVALID_PE;
94 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
95 
96 	phb->ioda.pe_array[pe].phb = phb;
97 	phb->ioda.pe_array[pe].pe_number = pe;
98 	return pe;
99 }
100 
101 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
102 {
103 	WARN_ON(phb->ioda.pe_array[pe].pdev);
104 
105 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
106 	clear_bit(pe, phb->ioda.pe_alloc);
107 }
108 
109 /* Currently those 2 are only used when MSIs are enabled, this will change
110  * but in the meantime, we need to protect them to avoid warnings
111  */
112 #ifdef CONFIG_PCI_MSI
113 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
114 {
115 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
116 	struct pnv_phb *phb = hose->private_data;
117 	struct pci_dn *pdn = pci_get_pdn(dev);
118 
119 	if (!pdn)
120 		return NULL;
121 	if (pdn->pe_number == IODA_INVALID_PE)
122 		return NULL;
123 	return &phb->ioda.pe_array[pdn->pe_number];
124 }
125 #endif /* CONFIG_PCI_MSI */
126 
127 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
128 {
129 	struct pci_dev *parent;
130 	uint8_t bcomp, dcomp, fcomp;
131 	long rc, rid_end, rid;
132 
133 	/* Bus validation ? */
134 	if (pe->pbus) {
135 		int count;
136 
137 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
138 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
139 		parent = pe->pbus->self;
140 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
141 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
142 		else
143 			count = 1;
144 
145 		switch(count) {
146 		case  1: bcomp = OpalPciBusAll;		break;
147 		case  2: bcomp = OpalPciBus7Bits;	break;
148 		case  4: bcomp = OpalPciBus6Bits;	break;
149 		case  8: bcomp = OpalPciBus5Bits;	break;
150 		case 16: bcomp = OpalPciBus4Bits;	break;
151 		case 32: bcomp = OpalPciBus3Bits;	break;
152 		default:
153 			pr_err("%s: Number of subordinate busses %d"
154 			       " unsupported\n",
155 			       pci_name(pe->pbus->self), count);
156 			/* Do an exact match only */
157 			bcomp = OpalPciBusAll;
158 		}
159 		rid_end = pe->rid + (count << 8);
160 	} else {
161 		parent = pe->pdev->bus->self;
162 		bcomp = OpalPciBusAll;
163 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
164 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
165 		rid_end = pe->rid + 1;
166 	}
167 
168 	/*
169 	 * Associate PE in PELT. We need add the PE into the
170 	 * corresponding PELT-V as well. Otherwise, the error
171 	 * originated from the PE might contribute to other
172 	 * PEs.
173 	 */
174 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
175 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
176 	if (rc) {
177 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
178 		return -ENXIO;
179 	}
180 
181 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
182 				pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
183 	if (rc)
184 		pe_warn(pe, "OPAL error %d adding self to PELTV\n", rc);
185 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
186 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
187 
188 	/* Add to all parents PELT-V */
189 	while (parent) {
190 		struct pci_dn *pdn = pci_get_pdn(parent);
191 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
192 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
193 						pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
194 			/* XXX What to do in case of error ? */
195 		}
196 		parent = parent->bus->self;
197 	}
198 	/* Setup reverse map */
199 	for (rid = pe->rid; rid < rid_end; rid++)
200 		phb->ioda.pe_rmap[rid] = pe->pe_number;
201 
202 	/* Setup one MVTs on IODA1 */
203 	if (phb->type == PNV_PHB_IODA1) {
204 		pe->mve_number = pe->pe_number;
205 		rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
206 				      pe->pe_number);
207 		if (rc) {
208 			pe_err(pe, "OPAL error %ld setting up MVE %d\n",
209 			       rc, pe->mve_number);
210 			pe->mve_number = -1;
211 		} else {
212 			rc = opal_pci_set_mve_enable(phb->opal_id,
213 						     pe->mve_number, OPAL_ENABLE_MVE);
214 			if (rc) {
215 				pe_err(pe, "OPAL error %ld enabling MVE %d\n",
216 				       rc, pe->mve_number);
217 				pe->mve_number = -1;
218 			}
219 		}
220 	} else if (phb->type == PNV_PHB_IODA2)
221 		pe->mve_number = 0;
222 
223 	return 0;
224 }
225 
226 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
227 				       struct pnv_ioda_pe *pe)
228 {
229 	struct pnv_ioda_pe *lpe;
230 
231 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
232 		if (lpe->dma_weight < pe->dma_weight) {
233 			list_add_tail(&pe->dma_link, &lpe->dma_link);
234 			return;
235 		}
236 	}
237 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
238 }
239 
240 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
241 {
242 	/* This is quite simplistic. The "base" weight of a device
243 	 * is 10. 0 means no DMA is to be accounted for it.
244 	 */
245 
246 	/* If it's a bridge, no DMA */
247 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
248 		return 0;
249 
250 	/* Reduce the weight of slow USB controllers */
251 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
252 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
253 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
254 		return 3;
255 
256 	/* Increase the weight of RAID (includes Obsidian) */
257 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
258 		return 15;
259 
260 	/* Default */
261 	return 10;
262 }
263 
264 #if 0
265 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
266 {
267 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
268 	struct pnv_phb *phb = hose->private_data;
269 	struct pci_dn *pdn = pci_get_pdn(dev);
270 	struct pnv_ioda_pe *pe;
271 	int pe_num;
272 
273 	if (!pdn) {
274 		pr_err("%s: Device tree node not associated properly\n",
275 			   pci_name(dev));
276 		return NULL;
277 	}
278 	if (pdn->pe_number != IODA_INVALID_PE)
279 		return NULL;
280 
281 	/* PE#0 has been pre-set */
282 	if (dev->bus->number == 0)
283 		pe_num = 0;
284 	else
285 		pe_num = pnv_ioda_alloc_pe(phb);
286 	if (pe_num == IODA_INVALID_PE) {
287 		pr_warning("%s: Not enough PE# available, disabling device\n",
288 			   pci_name(dev));
289 		return NULL;
290 	}
291 
292 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
293 	 * pointer in the PE data structure, both should be destroyed at the
294 	 * same time. However, this needs to be looked at more closely again
295 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
296 	 *
297 	 * At some point we want to remove the PDN completely anyways
298 	 */
299 	pe = &phb->ioda.pe_array[pe_num];
300 	pci_dev_get(dev);
301 	pdn->pcidev = dev;
302 	pdn->pe_number = pe_num;
303 	pe->pdev = dev;
304 	pe->pbus = NULL;
305 	pe->tce32_seg = -1;
306 	pe->mve_number = -1;
307 	pe->rid = dev->bus->number << 8 | pdn->devfn;
308 
309 	pe_info(pe, "Associated device to PE\n");
310 
311 	if (pnv_ioda_configure_pe(phb, pe)) {
312 		/* XXX What do we do here ? */
313 		if (pe_num)
314 			pnv_ioda_free_pe(phb, pe_num);
315 		pdn->pe_number = IODA_INVALID_PE;
316 		pe->pdev = NULL;
317 		pci_dev_put(dev);
318 		return NULL;
319 	}
320 
321 	/* Assign a DMA weight to the device */
322 	pe->dma_weight = pnv_ioda_dma_weight(dev);
323 	if (pe->dma_weight != 0) {
324 		phb->ioda.dma_weight += pe->dma_weight;
325 		phb->ioda.dma_pe_count++;
326 	}
327 
328 	/* Link the PE */
329 	pnv_ioda_link_pe_by_weight(phb, pe);
330 
331 	return pe;
332 }
333 #endif /* Useful for SRIOV case */
334 
335 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
336 {
337 	struct pci_dev *dev;
338 
339 	list_for_each_entry(dev, &bus->devices, bus_list) {
340 		struct pci_dn *pdn = pci_get_pdn(dev);
341 
342 		if (pdn == NULL) {
343 			pr_warn("%s: No device node associated with device !\n",
344 				pci_name(dev));
345 			continue;
346 		}
347 		pdn->pcidev = dev;
348 		pdn->pe_number = pe->pe_number;
349 		pe->dma_weight += pnv_ioda_dma_weight(dev);
350 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
351 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
352 	}
353 }
354 
355 /*
356  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
357  * single PCI bus. Another one that contains the primary PCI bus and its
358  * subordinate PCI devices and buses. The second type of PE is normally
359  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
360  */
361 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
362 {
363 	struct pci_controller *hose = pci_bus_to_host(bus);
364 	struct pnv_phb *phb = hose->private_data;
365 	struct pnv_ioda_pe *pe;
366 	int pe_num;
367 
368 	pe_num = pnv_ioda_alloc_pe(phb);
369 	if (pe_num == IODA_INVALID_PE) {
370 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
371 			__func__, pci_domain_nr(bus), bus->number);
372 		return;
373 	}
374 
375 	pe = &phb->ioda.pe_array[pe_num];
376 	pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
377 	pe->pbus = bus;
378 	pe->pdev = NULL;
379 	pe->tce32_seg = -1;
380 	pe->mve_number = -1;
381 	pe->rid = bus->busn_res.start << 8;
382 	pe->dma_weight = 0;
383 
384 	if (all)
385 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
386 			bus->busn_res.start, bus->busn_res.end, pe_num);
387 	else
388 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
389 			bus->busn_res.start, pe_num);
390 
391 	if (pnv_ioda_configure_pe(phb, pe)) {
392 		/* XXX What do we do here ? */
393 		if (pe_num)
394 			pnv_ioda_free_pe(phb, pe_num);
395 		pe->pbus = NULL;
396 		return;
397 	}
398 
399 	/* Associate it with all child devices */
400 	pnv_ioda_setup_same_PE(bus, pe);
401 
402 	/* Put PE to the list */
403 	list_add_tail(&pe->list, &phb->ioda.pe_list);
404 
405 	/* Account for one DMA PE if at least one DMA capable device exist
406 	 * below the bridge
407 	 */
408 	if (pe->dma_weight != 0) {
409 		phb->ioda.dma_weight += pe->dma_weight;
410 		phb->ioda.dma_pe_count++;
411 	}
412 
413 	/* Link the PE */
414 	pnv_ioda_link_pe_by_weight(phb, pe);
415 }
416 
417 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
418 {
419 	struct pci_dev *dev;
420 
421 	pnv_ioda_setup_bus_PE(bus, 0);
422 
423 	list_for_each_entry(dev, &bus->devices, bus_list) {
424 		if (dev->subordinate) {
425 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
426 				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
427 			else
428 				pnv_ioda_setup_PEs(dev->subordinate);
429 		}
430 	}
431 }
432 
433 /*
434  * Configure PEs so that the downstream PCI buses and devices
435  * could have their associated PE#. Unfortunately, we didn't
436  * figure out the way to identify the PLX bridge yet. So we
437  * simply put the PCI bus and the subordinate behind the root
438  * port to PE# here. The game rule here is expected to be changed
439  * as soon as we can detected PLX bridge correctly.
440  */
441 static void pnv_pci_ioda_setup_PEs(void)
442 {
443 	struct pci_controller *hose, *tmp;
444 
445 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
446 		pnv_ioda_setup_PEs(hose->bus);
447 	}
448 }
449 
450 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
451 {
452 	struct pci_dn *pdn = pci_get_pdn(pdev);
453 	struct pnv_ioda_pe *pe;
454 
455 	/*
456 	 * The function can be called while the PE#
457 	 * hasn't been assigned. Do nothing for the
458 	 * case.
459 	 */
460 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
461 		return;
462 
463 	pe = &phb->ioda.pe_array[pdn->pe_number];
464 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
465 	set_iommu_table_base(&pdev->dev, &pe->tce32_table);
466 }
467 
468 static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
469 				     struct pci_dev *pdev, u64 dma_mask)
470 {
471 	struct pci_dn *pdn = pci_get_pdn(pdev);
472 	struct pnv_ioda_pe *pe;
473 	uint64_t top;
474 	bool bypass = false;
475 
476 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
477 		return -ENODEV;;
478 
479 	pe = &phb->ioda.pe_array[pdn->pe_number];
480 	if (pe->tce_bypass_enabled) {
481 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
482 		bypass = (dma_mask >= top);
483 	}
484 
485 	if (bypass) {
486 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
487 		set_dma_ops(&pdev->dev, &dma_direct_ops);
488 		set_dma_offset(&pdev->dev, pe->tce_bypass_base);
489 	} else {
490 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
491 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
492 		set_iommu_table_base(&pdev->dev, &pe->tce32_table);
493 	}
494 	return 0;
495 }
496 
497 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
498 {
499 	struct pci_dev *dev;
500 
501 	list_for_each_entry(dev, &bus->devices, bus_list) {
502 		set_iommu_table_base_and_group(&dev->dev, &pe->tce32_table);
503 		if (dev->subordinate)
504 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
505 	}
506 }
507 
508 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
509 					 struct iommu_table *tbl,
510 					 __be64 *startp, __be64 *endp, bool rm)
511 {
512 	__be64 __iomem *invalidate = rm ?
513 		(__be64 __iomem *)pe->tce_inval_reg_phys :
514 		(__be64 __iomem *)tbl->it_index;
515 	unsigned long start, end, inc;
516 
517 	start = __pa(startp);
518 	end = __pa(endp);
519 
520 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
521 	if (tbl->it_busno) {
522 		start <<= 12;
523 		end <<= 12;
524 		inc = 128 << 12;
525 		start |= tbl->it_busno;
526 		end |= tbl->it_busno;
527 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
528 		/* p7ioc-style invalidation, 2 TCEs per write */
529 		start |= (1ull << 63);
530 		end |= (1ull << 63);
531 		inc = 16;
532         } else {
533 		/* Default (older HW) */
534                 inc = 128;
535 	}
536 
537         end |= inc - 1;	/* round up end to be different than start */
538 
539         mb(); /* Ensure above stores are visible */
540         while (start <= end) {
541 		if (rm)
542 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
543 		else
544 			__raw_writeq(cpu_to_be64(start), invalidate);
545                 start += inc;
546         }
547 
548 	/*
549 	 * The iommu layer will do another mb() for us on build()
550 	 * and we don't care on free()
551 	 */
552 }
553 
554 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
555 					 struct iommu_table *tbl,
556 					 __be64 *startp, __be64 *endp, bool rm)
557 {
558 	unsigned long start, end, inc;
559 	__be64 __iomem *invalidate = rm ?
560 		(__be64 __iomem *)pe->tce_inval_reg_phys :
561 		(__be64 __iomem *)tbl->it_index;
562 
563 	/* We'll invalidate DMA address in PE scope */
564 	start = 0x2ul << 60;
565 	start |= (pe->pe_number & 0xFF);
566 	end = start;
567 
568 	/* Figure out the start, end and step */
569 	inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
570 	start |= (inc << 12);
571 	inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
572 	end |= (inc << 12);
573 	inc = (0x1ul << 12);
574 	mb();
575 
576 	while (start <= end) {
577 		if (rm)
578 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
579 		else
580 			__raw_writeq(cpu_to_be64(start), invalidate);
581 		start += inc;
582 	}
583 }
584 
585 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
586 				 __be64 *startp, __be64 *endp, bool rm)
587 {
588 	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
589 					      tce32_table);
590 	struct pnv_phb *phb = pe->phb;
591 
592 	if (phb->type == PNV_PHB_IODA1)
593 		pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
594 	else
595 		pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
596 }
597 
598 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
599 				      struct pnv_ioda_pe *pe, unsigned int base,
600 				      unsigned int segs)
601 {
602 
603 	struct page *tce_mem = NULL;
604 	const __be64 *swinvp;
605 	struct iommu_table *tbl;
606 	unsigned int i;
607 	int64_t rc;
608 	void *addr;
609 
610 	/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
611 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
612 
613 	/* XXX FIXME: Handle 64-bit only DMA devices */
614 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
615 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
616 
617 	/* We shouldn't already have a 32-bit DMA associated */
618 	if (WARN_ON(pe->tce32_seg >= 0))
619 		return;
620 
621 	/* Grab a 32-bit TCE table */
622 	pe->tce32_seg = base;
623 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
624 		(base << 28), ((base + segs) << 28) - 1);
625 
626 	/* XXX Currently, we allocate one big contiguous table for the
627 	 * TCEs. We only really need one chunk per 256M of TCE space
628 	 * (ie per segment) but that's an optimization for later, it
629 	 * requires some added smarts with our get/put_tce implementation
630 	 */
631 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
632 				   get_order(TCE32_TABLE_SIZE * segs));
633 	if (!tce_mem) {
634 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
635 		goto fail;
636 	}
637 	addr = page_address(tce_mem);
638 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
639 
640 	/* Configure HW */
641 	for (i = 0; i < segs; i++) {
642 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
643 					      pe->pe_number,
644 					      base + i, 1,
645 					      __pa(addr) + TCE32_TABLE_SIZE * i,
646 					      TCE32_TABLE_SIZE, 0x1000);
647 		if (rc) {
648 			pe_err(pe, " Failed to configure 32-bit TCE table,"
649 			       " err %ld\n", rc);
650 			goto fail;
651 		}
652 	}
653 
654 	/* Setup linux iommu table */
655 	tbl = &pe->tce32_table;
656 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
657 				  base << 28);
658 
659 	/* OPAL variant of P7IOC SW invalidated TCEs */
660 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
661 	if (swinvp) {
662 		/* We need a couple more fields -- an address and a data
663 		 * to or.  Since the bus is only printed out on table free
664 		 * errors, and on the first pass the data will be a relative
665 		 * bus number, print that out instead.
666 		 */
667 		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
668 		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
669 				8);
670 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
671 				 TCE_PCI_SWINV_FREE   |
672 				 TCE_PCI_SWINV_PAIR);
673 	}
674 	iommu_init_table(tbl, phb->hose->node);
675 	iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
676 
677 	if (pe->pdev)
678 		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
679 	else
680 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
681 
682 	return;
683  fail:
684 	/* XXX Failure: Try to fallback to 64-bit only ? */
685 	if (pe->tce32_seg >= 0)
686 		pe->tce32_seg = -1;
687 	if (tce_mem)
688 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
689 }
690 
691 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
692 {
693 	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
694 					      tce32_table);
695 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
696 	int64_t rc;
697 
698 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
699 	if (enable) {
700 		phys_addr_t top = memblock_end_of_DRAM();
701 
702 		top = roundup_pow_of_two(top);
703 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
704 						     pe->pe_number,
705 						     window_id,
706 						     pe->tce_bypass_base,
707 						     top);
708 	} else {
709 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
710 						     pe->pe_number,
711 						     window_id,
712 						     pe->tce_bypass_base,
713 						     0);
714 
715 		/*
716 		 * We might want to reset the DMA ops of all devices on
717 		 * this PE. However in theory, that shouldn't be necessary
718 		 * as this is used for VFIO/KVM pass-through and the device
719 		 * hasn't yet been returned to its kernel driver
720 		 */
721 	}
722 	if (rc)
723 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
724 	else
725 		pe->tce_bypass_enabled = enable;
726 }
727 
728 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
729 					  struct pnv_ioda_pe *pe)
730 {
731 	/* TVE #1 is selected by PCI address bit 59 */
732 	pe->tce_bypass_base = 1ull << 59;
733 
734 	/* Install set_bypass callback for VFIO */
735 	pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;
736 
737 	/* Enable bypass by default */
738 	pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
739 }
740 
741 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
742 				       struct pnv_ioda_pe *pe)
743 {
744 	struct page *tce_mem = NULL;
745 	void *addr;
746 	const __be64 *swinvp;
747 	struct iommu_table *tbl;
748 	unsigned int tce_table_size, end;
749 	int64_t rc;
750 
751 	/* We shouldn't already have a 32-bit DMA associated */
752 	if (WARN_ON(pe->tce32_seg >= 0))
753 		return;
754 
755 	/* The PE will reserve all possible 32-bits space */
756 	pe->tce32_seg = 0;
757 	end = (1 << ilog2(phb->ioda.m32_pci_base));
758 	tce_table_size = (end / 0x1000) * 8;
759 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
760 		end);
761 
762 	/* Allocate TCE table */
763 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
764 				   get_order(tce_table_size));
765 	if (!tce_mem) {
766 		pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
767 		goto fail;
768 	}
769 	addr = page_address(tce_mem);
770 	memset(addr, 0, tce_table_size);
771 
772 	/*
773 	 * Map TCE table through TVT. The TVE index is the PE number
774 	 * shifted by 1 bit for 32-bits DMA space.
775 	 */
776 	rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
777 					pe->pe_number << 1, 1, __pa(addr),
778 					tce_table_size, 0x1000);
779 	if (rc) {
780 		pe_err(pe, "Failed to configure 32-bit TCE table,"
781 		       " err %ld\n", rc);
782 		goto fail;
783 	}
784 
785 	/* Setup linux iommu table */
786 	tbl = &pe->tce32_table;
787 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0);
788 
789 	/* OPAL variant of PHB3 invalidated TCEs */
790 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
791 	if (swinvp) {
792 		/* We need a couple more fields -- an address and a data
793 		 * to or.  Since the bus is only printed out on table free
794 		 * errors, and on the first pass the data will be a relative
795 		 * bus number, print that out instead.
796 		 */
797 		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
798 		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
799 				8);
800 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
801 	}
802 	iommu_init_table(tbl, phb->hose->node);
803 	iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
804 
805 	if (pe->pdev)
806 		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
807 	else
808 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
809 
810 	/* Also create a bypass window */
811 	pnv_pci_ioda2_setup_bypass_pe(phb, pe);
812 	return;
813 fail:
814 	if (pe->tce32_seg >= 0)
815 		pe->tce32_seg = -1;
816 	if (tce_mem)
817 		__free_pages(tce_mem, get_order(tce_table_size));
818 }
819 
820 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
821 {
822 	struct pci_controller *hose = phb->hose;
823 	unsigned int residual, remaining, segs, tw, base;
824 	struct pnv_ioda_pe *pe;
825 
826 	/* If we have more PE# than segments available, hand out one
827 	 * per PE until we run out and let the rest fail. If not,
828 	 * then we assign at least one segment per PE, plus more based
829 	 * on the amount of devices under that PE
830 	 */
831 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
832 		residual = 0;
833 	else
834 		residual = phb->ioda.tce32_count -
835 			phb->ioda.dma_pe_count;
836 
837 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
838 		hose->global_number, phb->ioda.tce32_count);
839 	pr_info("PCI: %d PE# for a total weight of %d\n",
840 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
841 
842 	/* Walk our PE list and configure their DMA segments, hand them
843 	 * out one base segment plus any residual segments based on
844 	 * weight
845 	 */
846 	remaining = phb->ioda.tce32_count;
847 	tw = phb->ioda.dma_weight;
848 	base = 0;
849 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
850 		if (!pe->dma_weight)
851 			continue;
852 		if (!remaining) {
853 			pe_warn(pe, "No DMA32 resources available\n");
854 			continue;
855 		}
856 		segs = 1;
857 		if (residual) {
858 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
859 			if (segs > remaining)
860 				segs = remaining;
861 		}
862 
863 		/*
864 		 * For IODA2 compliant PHB3, we needn't care about the weight.
865 		 * The all available 32-bits DMA space will be assigned to
866 		 * the specific PE.
867 		 */
868 		if (phb->type == PNV_PHB_IODA1) {
869 			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
870 				pe->dma_weight, segs);
871 			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
872 		} else {
873 			pe_info(pe, "Assign DMA32 space\n");
874 			segs = 0;
875 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
876 		}
877 
878 		remaining -= segs;
879 		base += segs;
880 	}
881 }
882 
883 #ifdef CONFIG_PCI_MSI
884 static void pnv_ioda2_msi_eoi(struct irq_data *d)
885 {
886 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
887 	struct irq_chip *chip = irq_data_get_irq_chip(d);
888 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
889 					   ioda.irq_chip);
890 	int64_t rc;
891 
892 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
893 	WARN_ON_ONCE(rc);
894 
895 	icp_native_eoi(d);
896 }
897 
898 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
899 				  unsigned int hwirq, unsigned int virq,
900 				  unsigned int is_64, struct msi_msg *msg)
901 {
902 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
903 	struct pci_dn *pdn = pci_get_pdn(dev);
904 	struct irq_data *idata;
905 	struct irq_chip *ichip;
906 	unsigned int xive_num = hwirq - phb->msi_base;
907 	__be32 data;
908 	int rc;
909 
910 	/* No PE assigned ? bail out ... no MSI for you ! */
911 	if (pe == NULL)
912 		return -ENXIO;
913 
914 	/* Check if we have an MVE */
915 	if (pe->mve_number < 0)
916 		return -ENXIO;
917 
918 	/* Force 32-bit MSI on some broken devices */
919 	if (pdn && pdn->force_32bit_msi)
920 		is_64 = 0;
921 
922 	/* Assign XIVE to PE */
923 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
924 	if (rc) {
925 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
926 			pci_name(dev), rc, xive_num);
927 		return -EIO;
928 	}
929 
930 	if (is_64) {
931 		__be64 addr64;
932 
933 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
934 				     &addr64, &data);
935 		if (rc) {
936 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
937 				pci_name(dev), rc);
938 			return -EIO;
939 		}
940 		msg->address_hi = be64_to_cpu(addr64) >> 32;
941 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
942 	} else {
943 		__be32 addr32;
944 
945 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
946 				     &addr32, &data);
947 		if (rc) {
948 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
949 				pci_name(dev), rc);
950 			return -EIO;
951 		}
952 		msg->address_hi = 0;
953 		msg->address_lo = be32_to_cpu(addr32);
954 	}
955 	msg->data = be32_to_cpu(data);
956 
957 	/*
958 	 * Change the IRQ chip for the MSI interrupts on PHB3.
959 	 * The corresponding IRQ chip should be populated for
960 	 * the first time.
961 	 */
962 	if (phb->type == PNV_PHB_IODA2) {
963 		if (!phb->ioda.irq_chip_init) {
964 			idata = irq_get_irq_data(virq);
965 			ichip = irq_data_get_irq_chip(idata);
966 			phb->ioda.irq_chip_init = 1;
967 			phb->ioda.irq_chip = *ichip;
968 			phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
969 		}
970 
971 		irq_set_chip(virq, &phb->ioda.irq_chip);
972 	}
973 
974 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
975 		 " address=%x_%08x data=%x PE# %d\n",
976 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
977 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
978 
979 	return 0;
980 }
981 
982 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
983 {
984 	unsigned int count;
985 	const __be32 *prop = of_get_property(phb->hose->dn,
986 					     "ibm,opal-msi-ranges", NULL);
987 	if (!prop) {
988 		/* BML Fallback */
989 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
990 	}
991 	if (!prop)
992 		return;
993 
994 	phb->msi_base = be32_to_cpup(prop);
995 	count = be32_to_cpup(prop + 1);
996 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
997 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
998 		       phb->hose->global_number);
999 		return;
1000 	}
1001 
1002 	phb->msi_setup = pnv_pci_ioda_msi_setup;
1003 	phb->msi32_support = 1;
1004 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1005 		count, phb->msi_base);
1006 }
1007 #else
1008 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1009 #endif /* CONFIG_PCI_MSI */
1010 
1011 /*
1012  * This function is supposed to be called on basis of PE from top
1013  * to bottom style. So the the I/O or MMIO segment assigned to
1014  * parent PE could be overrided by its child PEs if necessary.
1015  */
1016 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1017 				  struct pnv_ioda_pe *pe)
1018 {
1019 	struct pnv_phb *phb = hose->private_data;
1020 	struct pci_bus_region region;
1021 	struct resource *res;
1022 	int i, index;
1023 	int rc;
1024 
1025 	/*
1026 	 * NOTE: We only care PCI bus based PE for now. For PCI
1027 	 * device based PE, for example SRIOV sensitive VF should
1028 	 * be figured out later.
1029 	 */
1030 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1031 
1032 	pci_bus_for_each_resource(pe->pbus, res, i) {
1033 		if (!res || !res->flags ||
1034 		    res->start > res->end)
1035 			continue;
1036 
1037 		if (res->flags & IORESOURCE_IO) {
1038 			region.start = res->start - phb->ioda.io_pci_base;
1039 			region.end   = res->end - phb->ioda.io_pci_base;
1040 			index = region.start / phb->ioda.io_segsize;
1041 
1042 			while (index < phb->ioda.total_pe &&
1043 			       region.start <= region.end) {
1044 				phb->ioda.io_segmap[index] = pe->pe_number;
1045 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1046 					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1047 				if (rc != OPAL_SUCCESS) {
1048 					pr_err("%s: OPAL error %d when mapping IO "
1049 					       "segment #%d to PE#%d\n",
1050 					       __func__, rc, index, pe->pe_number);
1051 					break;
1052 				}
1053 
1054 				region.start += phb->ioda.io_segsize;
1055 				index++;
1056 			}
1057 		} else if (res->flags & IORESOURCE_MEM) {
1058 			/* WARNING: Assumes M32 is mem region 0 in PHB. We need to
1059 			 * harden that algorithm when we start supporting M64
1060 			 */
1061 			region.start = res->start -
1062 				       hose->mem_offset[0] -
1063 				       phb->ioda.m32_pci_base;
1064 			region.end   = res->end -
1065 				       hose->mem_offset[0] -
1066 				       phb->ioda.m32_pci_base;
1067 			index = region.start / phb->ioda.m32_segsize;
1068 
1069 			while (index < phb->ioda.total_pe &&
1070 			       region.start <= region.end) {
1071 				phb->ioda.m32_segmap[index] = pe->pe_number;
1072 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1073 					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1074 				if (rc != OPAL_SUCCESS) {
1075 					pr_err("%s: OPAL error %d when mapping M32 "
1076 					       "segment#%d to PE#%d",
1077 					       __func__, rc, index, pe->pe_number);
1078 					break;
1079 				}
1080 
1081 				region.start += phb->ioda.m32_segsize;
1082 				index++;
1083 			}
1084 		}
1085 	}
1086 }
1087 
1088 static void pnv_pci_ioda_setup_seg(void)
1089 {
1090 	struct pci_controller *tmp, *hose;
1091 	struct pnv_phb *phb;
1092 	struct pnv_ioda_pe *pe;
1093 
1094 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1095 		phb = hose->private_data;
1096 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1097 			pnv_ioda_setup_pe_seg(hose, pe);
1098 		}
1099 	}
1100 }
1101 
1102 static void pnv_pci_ioda_setup_DMA(void)
1103 {
1104 	struct pci_controller *hose, *tmp;
1105 	struct pnv_phb *phb;
1106 
1107 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1108 		pnv_ioda_setup_dma(hose->private_data);
1109 
1110 		/* Mark the PHB initialization done */
1111 		phb = hose->private_data;
1112 		phb->initialized = 1;
1113 	}
1114 }
1115 
1116 static void pnv_pci_ioda_create_dbgfs(void)
1117 {
1118 #ifdef CONFIG_DEBUG_FS
1119 	struct pci_controller *hose, *tmp;
1120 	struct pnv_phb *phb;
1121 	char name[16];
1122 
1123 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1124 		phb = hose->private_data;
1125 
1126 		sprintf(name, "PCI%04x", hose->global_number);
1127 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1128 		if (!phb->dbgfs)
1129 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1130 				__func__, hose->global_number);
1131 	}
1132 #endif /* CONFIG_DEBUG_FS */
1133 }
1134 
1135 static void pnv_pci_ioda_fixup(void)
1136 {
1137 	pnv_pci_ioda_setup_PEs();
1138 	pnv_pci_ioda_setup_seg();
1139 	pnv_pci_ioda_setup_DMA();
1140 
1141 	pnv_pci_ioda_create_dbgfs();
1142 
1143 #ifdef CONFIG_EEH
1144 	eeh_probe_mode_set(EEH_PROBE_MODE_DEV);
1145 	eeh_addr_cache_build();
1146 	eeh_init();
1147 #endif
1148 }
1149 
1150 /*
1151  * Returns the alignment for I/O or memory windows for P2P
1152  * bridges. That actually depends on how PEs are segmented.
1153  * For now, we return I/O or M32 segment size for PE sensitive
1154  * P2P bridges. Otherwise, the default values (4KiB for I/O,
1155  * 1MiB for memory) will be returned.
1156  *
1157  * The current PCI bus might be put into one PE, which was
1158  * create against the parent PCI bridge. For that case, we
1159  * needn't enlarge the alignment so that we can save some
1160  * resources.
1161  */
1162 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1163 						unsigned long type)
1164 {
1165 	struct pci_dev *bridge;
1166 	struct pci_controller *hose = pci_bus_to_host(bus);
1167 	struct pnv_phb *phb = hose->private_data;
1168 	int num_pci_bridges = 0;
1169 
1170 	bridge = bus->self;
1171 	while (bridge) {
1172 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1173 			num_pci_bridges++;
1174 			if (num_pci_bridges >= 2)
1175 				return 1;
1176 		}
1177 
1178 		bridge = bridge->bus->self;
1179 	}
1180 
1181 	/* We need support prefetchable memory window later */
1182 	if (type & IORESOURCE_MEM)
1183 		return phb->ioda.m32_segsize;
1184 
1185 	return phb->ioda.io_segsize;
1186 }
1187 
1188 /* Prevent enabling devices for which we couldn't properly
1189  * assign a PE
1190  */
1191 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1192 {
1193 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1194 	struct pnv_phb *phb = hose->private_data;
1195 	struct pci_dn *pdn;
1196 
1197 	/* The function is probably called while the PEs have
1198 	 * not be created yet. For example, resource reassignment
1199 	 * during PCI probe period. We just skip the check if
1200 	 * PEs isn't ready.
1201 	 */
1202 	if (!phb->initialized)
1203 		return 0;
1204 
1205 	pdn = pci_get_pdn(dev);
1206 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1207 		return -EINVAL;
1208 
1209 	return 0;
1210 }
1211 
1212 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1213 			       u32 devfn)
1214 {
1215 	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1216 }
1217 
1218 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1219 {
1220 	opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
1221 		       OPAL_ASSERT_RESET);
1222 }
1223 
1224 void __init pnv_pci_init_ioda_phb(struct device_node *np,
1225 				  u64 hub_id, int ioda_type)
1226 {
1227 	struct pci_controller *hose;
1228 	struct pnv_phb *phb;
1229 	unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1230 	const __be64 *prop64;
1231 	const __be32 *prop32;
1232 	int len;
1233 	u64 phb_id;
1234 	void *aux;
1235 	long rc;
1236 
1237 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1238 
1239 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1240 	if (!prop64) {
1241 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
1242 		return;
1243 	}
1244 	phb_id = be64_to_cpup(prop64);
1245 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
1246 
1247 	phb = alloc_bootmem(sizeof(struct pnv_phb));
1248 	if (!phb) {
1249 		pr_err("  Out of memory !\n");
1250 		return;
1251 	}
1252 
1253 	/* Allocate PCI controller */
1254 	memset(phb, 0, sizeof(struct pnv_phb));
1255 	phb->hose = hose = pcibios_alloc_controller(np);
1256 	if (!phb->hose) {
1257 		pr_err("  Can't allocate PCI controller for %s\n",
1258 		       np->full_name);
1259 		free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
1260 		return;
1261 	}
1262 
1263 	spin_lock_init(&phb->lock);
1264 	prop32 = of_get_property(np, "bus-range", &len);
1265 	if (prop32 && len == 8) {
1266 		hose->first_busno = be32_to_cpu(prop32[0]);
1267 		hose->last_busno = be32_to_cpu(prop32[1]);
1268 	} else {
1269 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
1270 		hose->first_busno = 0;
1271 		hose->last_busno = 0xff;
1272 	}
1273 	hose->private_data = phb;
1274 	phb->hub_id = hub_id;
1275 	phb->opal_id = phb_id;
1276 	phb->type = ioda_type;
1277 
1278 	/* Detect specific models for error handling */
1279 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1280 		phb->model = PNV_PHB_MODEL_P7IOC;
1281 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1282 		phb->model = PNV_PHB_MODEL_PHB3;
1283 	else
1284 		phb->model = PNV_PHB_MODEL_UNKNOWN;
1285 
1286 	/* Parse 32-bit and IO ranges (if any) */
1287 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
1288 
1289 	/* Get registers */
1290 	phb->regs = of_iomap(np, 0);
1291 	if (phb->regs == NULL)
1292 		pr_err("  Failed to map registers !\n");
1293 
1294 	/* Initialize more IODA stuff */
1295 	phb->ioda.total_pe = 1;
1296 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1297 	if (prop32)
1298 		phb->ioda.total_pe = be32_to_cpup(prop32);
1299 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
1300 	if (prop32)
1301 		phb->ioda.reserved_pe = be32_to_cpup(prop32);
1302 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1303 	/* FW Has already off top 64k of M32 space (MSI space) */
1304 	phb->ioda.m32_size += 0x10000;
1305 
1306 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1307 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
1308 	phb->ioda.io_size = hose->pci_io_size;
1309 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
1310 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
1311 
1312 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
1313 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
1314 	m32map_off = size;
1315 	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
1316 	if (phb->type == PNV_PHB_IODA1) {
1317 		iomap_off = size;
1318 		size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
1319 	}
1320 	pemap_off = size;
1321 	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
1322 	aux = alloc_bootmem(size);
1323 	memset(aux, 0, size);
1324 	phb->ioda.pe_alloc = aux;
1325 	phb->ioda.m32_segmap = aux + m32map_off;
1326 	if (phb->type == PNV_PHB_IODA1)
1327 		phb->ioda.io_segmap = aux + iomap_off;
1328 	phb->ioda.pe_array = aux + pemap_off;
1329 	set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
1330 
1331 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1332 	INIT_LIST_HEAD(&phb->ioda.pe_list);
1333 
1334 	/* Calculate how many 32-bit TCE segments we have */
1335 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
1336 
1337 	/* Clear unusable m64 */
1338 	hose->mem_resources[1].flags = 0;
1339 	hose->mem_resources[1].start = 0;
1340 	hose->mem_resources[1].end = 0;
1341 	hose->mem_resources[2].flags = 0;
1342 	hose->mem_resources[2].start = 0;
1343 	hose->mem_resources[2].end = 0;
1344 
1345 #if 0 /* We should really do that ... */
1346 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
1347 					 window_type,
1348 					 window_num,
1349 					 starting_real_address,
1350 					 starting_pci_address,
1351 					 segment_size);
1352 #endif
1353 
1354 	pr_info("  %d (%d) PE's M32: 0x%x [segment=0x%x]"
1355 		" IO: 0x%x [segment=0x%x]\n",
1356 		phb->ioda.total_pe,
1357 		phb->ioda.reserved_pe,
1358 		phb->ioda.m32_size, phb->ioda.m32_segsize,
1359 		phb->ioda.io_size, phb->ioda.io_segsize);
1360 
1361 	phb->hose->ops = &pnv_pci_ops;
1362 #ifdef CONFIG_EEH
1363 	phb->eeh_ops = &ioda_eeh_ops;
1364 #endif
1365 
1366 	/* Setup RID -> PE mapping function */
1367 	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
1368 
1369 	/* Setup TCEs */
1370 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1371 	phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
1372 
1373 	/* Setup shutdown function for kexec */
1374 	phb->shutdown = pnv_pci_ioda_shutdown;
1375 
1376 	/* Setup MSI support */
1377 	pnv_pci_init_ioda_msis(phb);
1378 
1379 	/*
1380 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
1381 	 * to let the PCI core do resource assignment. It's supposed
1382 	 * that the PCI core will do correct I/O and MMIO alignment
1383 	 * for the P2P bridge bars so that each PCI bus (excluding
1384 	 * the child P2P bridges) can form individual PE.
1385 	 */
1386 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1387 	ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1388 	ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1389 	ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
1390 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
1391 
1392 	/* Reset IODA tables to a clean state */
1393 	rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1394 	if (rc)
1395 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
1396 
1397 	/* If we're running in kdump kerenl, the previous kerenl never
1398 	 * shutdown PCI devices correctly. We already got IODA table
1399 	 * cleaned out. So we have to issue PHB reset to stop all PCI
1400 	 * transactions from previous kerenl.
1401 	 */
1402 	if (is_kdump_kernel()) {
1403 		pr_info("  Issue PHB reset ...\n");
1404 		ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
1405 		ioda_eeh_phb_reset(hose, OPAL_DEASSERT_RESET);
1406 	}
1407 }
1408 
1409 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
1410 {
1411 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
1412 }
1413 
1414 void __init pnv_pci_init_ioda_hub(struct device_node *np)
1415 {
1416 	struct device_node *phbn;
1417 	const __be64 *prop64;
1418 	u64 hub_id;
1419 
1420 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
1421 
1422 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
1423 	if (!prop64) {
1424 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
1425 		return;
1426 	}
1427 	hub_id = be64_to_cpup(prop64);
1428 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
1429 
1430 	/* Count child PHBs */
1431 	for_each_child_of_node(np, phbn) {
1432 		/* Look for IODA1 PHBs */
1433 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1434 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
1435 	}
1436 }
1437