1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/memblock.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/iommu.h>
25 #include <linux/rculist.h>
26 #include <linux/sizes.h>
27 
28 #include <asm/sections.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/pci-bridge.h>
32 #include <asm/machdep.h>
33 #include <asm/msi_bitmap.h>
34 #include <asm/ppc-pci.h>
35 #include <asm/opal.h>
36 #include <asm/iommu.h>
37 #include <asm/tce.h>
38 #include <asm/xics.h>
39 #include <asm/debugfs.h>
40 #include <asm/firmware.h>
41 #include <asm/pnv-pci.h>
42 #include <asm/mmzone.h>
43 
44 #include <misc/cxl-base.h>
45 
46 #include "powernv.h"
47 #include "pci.h"
48 #include "../../../../drivers/pci/pci.h"
49 
50 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
51 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
52 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
53 
54 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
55 					      "NPU_OCAPI" };
56 
57 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
58 			    const char *fmt, ...)
59 {
60 	struct va_format vaf;
61 	va_list args;
62 	char pfix[32];
63 
64 	va_start(args, fmt);
65 
66 	vaf.fmt = fmt;
67 	vaf.va = &args;
68 
69 	if (pe->flags & PNV_IODA_PE_DEV)
70 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
71 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
72 		sprintf(pfix, "%04x:%02x     ",
73 			pci_domain_nr(pe->pbus), pe->pbus->number);
74 #ifdef CONFIG_PCI_IOV
75 	else if (pe->flags & PNV_IODA_PE_VF)
76 		sprintf(pfix, "%04x:%02x:%2x.%d",
77 			pci_domain_nr(pe->parent_dev->bus),
78 			(pe->rid & 0xff00) >> 8,
79 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
80 #endif /* CONFIG_PCI_IOV*/
81 
82 	printk("%spci %s: [PE# %.2x] %pV",
83 	       level, pfix, pe->pe_number, &vaf);
84 
85 	va_end(args);
86 }
87 
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89 static bool pci_reset_phbs __read_mostly;
90 
91 static int __init iommu_setup(char *str)
92 {
93 	if (!str)
94 		return -EINVAL;
95 
96 	while (*str) {
97 		if (!strncmp(str, "nobypass", 8)) {
98 			pnv_iommu_bypass_disabled = true;
99 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
100 			break;
101 		}
102 		str += strcspn(str, ",");
103 		if (*str == ',')
104 			str++;
105 	}
106 
107 	return 0;
108 }
109 early_param("iommu", iommu_setup);
110 
111 static int __init pci_reset_phbs_setup(char *str)
112 {
113 	pci_reset_phbs = true;
114 	return 0;
115 }
116 
117 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
118 
119 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
120 {
121 	/*
122 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
123 	 * allocation code sometimes decides to put a 64-bit prefetchable
124 	 * BAR in the 32-bit window, so we have to compare the addresses.
125 	 *
126 	 * For simplicity we only test resource start.
127 	 */
128 	return (r->start >= phb->ioda.m64_base &&
129 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
130 }
131 
132 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
133 {
134 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
135 
136 	return (resource_flags & flags) == flags;
137 }
138 
139 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
140 {
141 	s64 rc;
142 
143 	phb->ioda.pe_array[pe_no].phb = phb;
144 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
145 
146 	/*
147 	 * Clear the PE frozen state as it might be put into frozen state
148 	 * in the last PCI remove path. It's not harmful to do so when the
149 	 * PE is already in unfrozen state.
150 	 */
151 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
152 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
153 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
154 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
155 			__func__, rc, phb->hose->global_number, pe_no);
156 
157 	return &phb->ioda.pe_array[pe_no];
158 }
159 
160 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
161 {
162 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
163 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
164 			__func__, pe_no, phb->hose->global_number);
165 		return;
166 	}
167 
168 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
169 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
170 			 __func__, pe_no, phb->hose->global_number);
171 
172 	pnv_ioda_init_pe(phb, pe_no);
173 }
174 
175 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
176 {
177 	long pe;
178 
179 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
180 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
181 			return pnv_ioda_init_pe(phb, pe);
182 	}
183 
184 	return NULL;
185 }
186 
187 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
188 {
189 	struct pnv_phb *phb = pe->phb;
190 	unsigned int pe_num = pe->pe_number;
191 
192 	WARN_ON(pe->pdev);
193 	WARN_ON(pe->npucomp); /* NPUs are not supposed to be freed */
194 	kfree(pe->npucomp);
195 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
196 	clear_bit(pe_num, phb->ioda.pe_alloc);
197 }
198 
199 /* The default M64 BAR is shared by all PEs */
200 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
201 {
202 	const char *desc;
203 	struct resource *r;
204 	s64 rc;
205 
206 	/* Configure the default M64 BAR */
207 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
208 					 OPAL_M64_WINDOW_TYPE,
209 					 phb->ioda.m64_bar_idx,
210 					 phb->ioda.m64_base,
211 					 0, /* unused */
212 					 phb->ioda.m64_size);
213 	if (rc != OPAL_SUCCESS) {
214 		desc = "configuring";
215 		goto fail;
216 	}
217 
218 	/* Enable the default M64 BAR */
219 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
220 				      OPAL_M64_WINDOW_TYPE,
221 				      phb->ioda.m64_bar_idx,
222 				      OPAL_ENABLE_M64_SPLIT);
223 	if (rc != OPAL_SUCCESS) {
224 		desc = "enabling";
225 		goto fail;
226 	}
227 
228 	/*
229 	 * Exclude the segments for reserved and root bus PE, which
230 	 * are first or last two PEs.
231 	 */
232 	r = &phb->hose->mem_resources[1];
233 	if (phb->ioda.reserved_pe_idx == 0)
234 		r->start += (2 * phb->ioda.m64_segsize);
235 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
236 		r->end -= (2 * phb->ioda.m64_segsize);
237 	else
238 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
239 			phb->ioda.reserved_pe_idx);
240 
241 	return 0;
242 
243 fail:
244 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
245 		rc, desc, phb->ioda.m64_bar_idx);
246 	opal_pci_phb_mmio_enable(phb->opal_id,
247 				 OPAL_M64_WINDOW_TYPE,
248 				 phb->ioda.m64_bar_idx,
249 				 OPAL_DISABLE_M64);
250 	return -EIO;
251 }
252 
253 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
254 					 unsigned long *pe_bitmap)
255 {
256 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
257 	struct pnv_phb *phb = hose->private_data;
258 	struct resource *r;
259 	resource_size_t base, sgsz, start, end;
260 	int segno, i;
261 
262 	base = phb->ioda.m64_base;
263 	sgsz = phb->ioda.m64_segsize;
264 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
265 		r = &pdev->resource[i];
266 		if (!r->parent || !pnv_pci_is_m64(phb, r))
267 			continue;
268 
269 		start = _ALIGN_DOWN(r->start - base, sgsz);
270 		end = _ALIGN_UP(r->end - base, sgsz);
271 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
272 			if (pe_bitmap)
273 				set_bit(segno, pe_bitmap);
274 			else
275 				pnv_ioda_reserve_pe(phb, segno);
276 		}
277 	}
278 }
279 
280 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
281 {
282 	struct resource *r;
283 	int index;
284 
285 	/*
286 	 * There are 16 M64 BARs, each of which has 8 segments. So
287 	 * there are as many M64 segments as the maximum number of
288 	 * PEs, which is 128.
289 	 */
290 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
291 		unsigned long base, segsz = phb->ioda.m64_segsize;
292 		int64_t rc;
293 
294 		base = phb->ioda.m64_base +
295 		       index * PNV_IODA1_M64_SEGS * segsz;
296 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
297 				OPAL_M64_WINDOW_TYPE, index, base, 0,
298 				PNV_IODA1_M64_SEGS * segsz);
299 		if (rc != OPAL_SUCCESS) {
300 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
301 				rc, phb->hose->global_number, index);
302 			goto fail;
303 		}
304 
305 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
306 				OPAL_M64_WINDOW_TYPE, index,
307 				OPAL_ENABLE_M64_SPLIT);
308 		if (rc != OPAL_SUCCESS) {
309 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
310 				rc, phb->hose->global_number, index);
311 			goto fail;
312 		}
313 	}
314 
315 	/*
316 	 * Exclude the segments for reserved and root bus PE, which
317 	 * are first or last two PEs.
318 	 */
319 	r = &phb->hose->mem_resources[1];
320 	if (phb->ioda.reserved_pe_idx == 0)
321 		r->start += (2 * phb->ioda.m64_segsize);
322 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
323 		r->end -= (2 * phb->ioda.m64_segsize);
324 	else
325 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
326 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
327 
328 	return 0;
329 
330 fail:
331 	for ( ; index >= 0; index--)
332 		opal_pci_phb_mmio_enable(phb->opal_id,
333 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
334 
335 	return -EIO;
336 }
337 
338 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
339 				    unsigned long *pe_bitmap,
340 				    bool all)
341 {
342 	struct pci_dev *pdev;
343 
344 	list_for_each_entry(pdev, &bus->devices, bus_list) {
345 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
346 
347 		if (all && pdev->subordinate)
348 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
349 						pe_bitmap, all);
350 	}
351 }
352 
353 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
354 {
355 	struct pci_controller *hose = pci_bus_to_host(bus);
356 	struct pnv_phb *phb = hose->private_data;
357 	struct pnv_ioda_pe *master_pe, *pe;
358 	unsigned long size, *pe_alloc;
359 	int i;
360 
361 	/* Root bus shouldn't use M64 */
362 	if (pci_is_root_bus(bus))
363 		return NULL;
364 
365 	/* Allocate bitmap */
366 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
367 	pe_alloc = kzalloc(size, GFP_KERNEL);
368 	if (!pe_alloc) {
369 		pr_warn("%s: Out of memory !\n",
370 			__func__);
371 		return NULL;
372 	}
373 
374 	/* Figure out reserved PE numbers by the PE */
375 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
376 
377 	/*
378 	 * the current bus might not own M64 window and that's all
379 	 * contributed by its child buses. For the case, we needn't
380 	 * pick M64 dependent PE#.
381 	 */
382 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
383 		kfree(pe_alloc);
384 		return NULL;
385 	}
386 
387 	/*
388 	 * Figure out the master PE and put all slave PEs to master
389 	 * PE's list to form compound PE.
390 	 */
391 	master_pe = NULL;
392 	i = -1;
393 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
394 		phb->ioda.total_pe_num) {
395 		pe = &phb->ioda.pe_array[i];
396 
397 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
398 		if (!master_pe) {
399 			pe->flags |= PNV_IODA_PE_MASTER;
400 			INIT_LIST_HEAD(&pe->slaves);
401 			master_pe = pe;
402 		} else {
403 			pe->flags |= PNV_IODA_PE_SLAVE;
404 			pe->master = master_pe;
405 			list_add_tail(&pe->list, &master_pe->slaves);
406 		}
407 
408 		/*
409 		 * P7IOC supports M64DT, which helps mapping M64 segment
410 		 * to one particular PE#. However, PHB3 has fixed mapping
411 		 * between M64 segment and PE#. In order to have same logic
412 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
413 		 * segment and PE# on P7IOC.
414 		 */
415 		if (phb->type == PNV_PHB_IODA1) {
416 			int64_t rc;
417 
418 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
419 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
420 					pe->pe_number / PNV_IODA1_M64_SEGS,
421 					pe->pe_number % PNV_IODA1_M64_SEGS);
422 			if (rc != OPAL_SUCCESS)
423 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
424 					__func__, rc, phb->hose->global_number,
425 					pe->pe_number);
426 		}
427 	}
428 
429 	kfree(pe_alloc);
430 	return master_pe;
431 }
432 
433 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
434 {
435 	struct pci_controller *hose = phb->hose;
436 	struct device_node *dn = hose->dn;
437 	struct resource *res;
438 	u32 m64_range[2], i;
439 	const __be32 *r;
440 	u64 pci_addr;
441 
442 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
443 		pr_info("  Not support M64 window\n");
444 		return;
445 	}
446 
447 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
448 		pr_info("  Firmware too old to support M64 window\n");
449 		return;
450 	}
451 
452 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
453 	if (!r) {
454 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
455 			dn);
456 		return;
457 	}
458 
459 	/*
460 	 * Find the available M64 BAR range and pickup the last one for
461 	 * covering the whole 64-bits space. We support only one range.
462 	 */
463 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
464 				       m64_range, 2)) {
465 		/* In absence of the property, assume 0..15 */
466 		m64_range[0] = 0;
467 		m64_range[1] = 16;
468 	}
469 	/* We only support 64 bits in our allocator */
470 	if (m64_range[1] > 63) {
471 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
472 			__func__, m64_range[1], phb->hose->global_number);
473 		m64_range[1] = 63;
474 	}
475 	/* Empty range, no m64 */
476 	if (m64_range[1] <= m64_range[0]) {
477 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
478 			__func__, phb->hose->global_number);
479 		return;
480 	}
481 
482 	/* Configure M64 informations */
483 	res = &hose->mem_resources[1];
484 	res->name = dn->full_name;
485 	res->start = of_translate_address(dn, r + 2);
486 	res->end = res->start + of_read_number(r + 4, 2) - 1;
487 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
488 	pci_addr = of_read_number(r, 2);
489 	hose->mem_offset[1] = res->start - pci_addr;
490 
491 	phb->ioda.m64_size = resource_size(res);
492 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
493 	phb->ioda.m64_base = pci_addr;
494 
495 	/* This lines up nicely with the display from processing OF ranges */
496 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
497 		res->start, res->end, pci_addr, m64_range[0],
498 		m64_range[0] + m64_range[1] - 1);
499 
500 	/* Mark all M64 used up by default */
501 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
502 
503 	/* Use last M64 BAR to cover M64 window */
504 	m64_range[1]--;
505 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
506 
507 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
508 
509 	/* Mark remaining ones free */
510 	for (i = m64_range[0]; i < m64_range[1]; i++)
511 		clear_bit(i, &phb->ioda.m64_bar_alloc);
512 
513 	/*
514 	 * Setup init functions for M64 based on IODA version, IODA3 uses
515 	 * the IODA2 code.
516 	 */
517 	if (phb->type == PNV_PHB_IODA1)
518 		phb->init_m64 = pnv_ioda1_init_m64;
519 	else
520 		phb->init_m64 = pnv_ioda2_init_m64;
521 }
522 
523 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
524 {
525 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
526 	struct pnv_ioda_pe *slave;
527 	s64 rc;
528 
529 	/* Fetch master PE */
530 	if (pe->flags & PNV_IODA_PE_SLAVE) {
531 		pe = pe->master;
532 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
533 			return;
534 
535 		pe_no = pe->pe_number;
536 	}
537 
538 	/* Freeze master PE */
539 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
540 				     pe_no,
541 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
542 	if (rc != OPAL_SUCCESS) {
543 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
544 			__func__, rc, phb->hose->global_number, pe_no);
545 		return;
546 	}
547 
548 	/* Freeze slave PEs */
549 	if (!(pe->flags & PNV_IODA_PE_MASTER))
550 		return;
551 
552 	list_for_each_entry(slave, &pe->slaves, list) {
553 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
554 					     slave->pe_number,
555 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
556 		if (rc != OPAL_SUCCESS)
557 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
558 				__func__, rc, phb->hose->global_number,
559 				slave->pe_number);
560 	}
561 }
562 
563 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
564 {
565 	struct pnv_ioda_pe *pe, *slave;
566 	s64 rc;
567 
568 	/* Find master PE */
569 	pe = &phb->ioda.pe_array[pe_no];
570 	if (pe->flags & PNV_IODA_PE_SLAVE) {
571 		pe = pe->master;
572 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
573 		pe_no = pe->pe_number;
574 	}
575 
576 	/* Clear frozen state for master PE */
577 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
578 	if (rc != OPAL_SUCCESS) {
579 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
580 			__func__, rc, opt, phb->hose->global_number, pe_no);
581 		return -EIO;
582 	}
583 
584 	if (!(pe->flags & PNV_IODA_PE_MASTER))
585 		return 0;
586 
587 	/* Clear frozen state for slave PEs */
588 	list_for_each_entry(slave, &pe->slaves, list) {
589 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
590 					     slave->pe_number,
591 					     opt);
592 		if (rc != OPAL_SUCCESS) {
593 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
594 				__func__, rc, opt, phb->hose->global_number,
595 				slave->pe_number);
596 			return -EIO;
597 		}
598 	}
599 
600 	return 0;
601 }
602 
603 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
604 {
605 	struct pnv_ioda_pe *slave, *pe;
606 	u8 fstate = 0, state;
607 	__be16 pcierr = 0;
608 	s64 rc;
609 
610 	/* Sanity check on PE number */
611 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
612 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
613 
614 	/*
615 	 * Fetch the master PE and the PE instance might be
616 	 * not initialized yet.
617 	 */
618 	pe = &phb->ioda.pe_array[pe_no];
619 	if (pe->flags & PNV_IODA_PE_SLAVE) {
620 		pe = pe->master;
621 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
622 		pe_no = pe->pe_number;
623 	}
624 
625 	/* Check the master PE */
626 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
627 					&state, &pcierr, NULL);
628 	if (rc != OPAL_SUCCESS) {
629 		pr_warn("%s: Failure %lld getting "
630 			"PHB#%x-PE#%x state\n",
631 			__func__, rc,
632 			phb->hose->global_number, pe_no);
633 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
634 	}
635 
636 	/* Check the slave PE */
637 	if (!(pe->flags & PNV_IODA_PE_MASTER))
638 		return state;
639 
640 	list_for_each_entry(slave, &pe->slaves, list) {
641 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
642 						slave->pe_number,
643 						&fstate,
644 						&pcierr,
645 						NULL);
646 		if (rc != OPAL_SUCCESS) {
647 			pr_warn("%s: Failure %lld getting "
648 				"PHB#%x-PE#%x state\n",
649 				__func__, rc,
650 				phb->hose->global_number, slave->pe_number);
651 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
652 		}
653 
654 		/*
655 		 * Override the result based on the ascending
656 		 * priority.
657 		 */
658 		if (fstate > state)
659 			state = fstate;
660 	}
661 
662 	return state;
663 }
664 
665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 {
667 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
668 	struct pnv_phb *phb = hose->private_data;
669 	struct pci_dn *pdn = pci_get_pdn(dev);
670 
671 	if (!pdn)
672 		return NULL;
673 	if (pdn->pe_number == IODA_INVALID_PE)
674 		return NULL;
675 	return &phb->ioda.pe_array[pdn->pe_number];
676 }
677 
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679 				  struct pnv_ioda_pe *parent,
680 				  struct pnv_ioda_pe *child,
681 				  bool is_add)
682 {
683 	const char *desc = is_add ? "adding" : "removing";
684 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685 			      OPAL_REMOVE_PE_FROM_DOMAIN;
686 	struct pnv_ioda_pe *slave;
687 	long rc;
688 
689 	/* Parent PE affects child PE */
690 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691 				child->pe_number, op);
692 	if (rc != OPAL_SUCCESS) {
693 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694 			rc, desc);
695 		return -ENXIO;
696 	}
697 
698 	if (!(child->flags & PNV_IODA_PE_MASTER))
699 		return 0;
700 
701 	/* Compound case: parent PE affects slave PEs */
702 	list_for_each_entry(slave, &child->slaves, list) {
703 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704 					slave->pe_number, op);
705 		if (rc != OPAL_SUCCESS) {
706 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707 				rc, desc);
708 			return -ENXIO;
709 		}
710 	}
711 
712 	return 0;
713 }
714 
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716 			      struct pnv_ioda_pe *pe,
717 			      bool is_add)
718 {
719 	struct pnv_ioda_pe *slave;
720 	struct pci_dev *pdev = NULL;
721 	int ret;
722 
723 	/*
724 	 * Clear PE frozen state. If it's master PE, we need
725 	 * clear slave PE frozen state as well.
726 	 */
727 	if (is_add) {
728 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730 		if (pe->flags & PNV_IODA_PE_MASTER) {
731 			list_for_each_entry(slave, &pe->slaves, list)
732 				opal_pci_eeh_freeze_clear(phb->opal_id,
733 							  slave->pe_number,
734 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735 		}
736 	}
737 
738 	/*
739 	 * Associate PE in PELT. We need add the PE into the
740 	 * corresponding PELT-V as well. Otherwise, the error
741 	 * originated from the PE might contribute to other
742 	 * PEs.
743 	 */
744 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745 	if (ret)
746 		return ret;
747 
748 	/* For compound PEs, any one affects all of them */
749 	if (pe->flags & PNV_IODA_PE_MASTER) {
750 		list_for_each_entry(slave, &pe->slaves, list) {
751 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752 			if (ret)
753 				return ret;
754 		}
755 	}
756 
757 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758 		pdev = pe->pbus->self;
759 	else if (pe->flags & PNV_IODA_PE_DEV)
760 		pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762 	else if (pe->flags & PNV_IODA_PE_VF)
763 		pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765 	while (pdev) {
766 		struct pci_dn *pdn = pci_get_pdn(pdev);
767 		struct pnv_ioda_pe *parent;
768 
769 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 			parent = &phb->ioda.pe_array[pdn->pe_number];
771 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772 			if (ret)
773 				return ret;
774 		}
775 
776 		pdev = pdev->bus->self;
777 	}
778 
779 	return 0;
780 }
781 
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784 	struct pci_dev *parent;
785 	uint8_t bcomp, dcomp, fcomp;
786 	int64_t rc;
787 	long rid_end, rid;
788 
789 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790 	if (pe->pbus) {
791 		int count;
792 
793 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795 		parent = pe->pbus->self;
796 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
797 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798 		else
799 			count = 1;
800 
801 		switch(count) {
802 		case  1: bcomp = OpalPciBusAll;         break;
803 		case  2: bcomp = OpalPciBus7Bits;       break;
804 		case  4: bcomp = OpalPciBus6Bits;       break;
805 		case  8: bcomp = OpalPciBus5Bits;       break;
806 		case 16: bcomp = OpalPciBus4Bits;       break;
807 		case 32: bcomp = OpalPciBus3Bits;       break;
808 		default:
809 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810 			        count);
811 			/* Do an exact match only */
812 			bcomp = OpalPciBusAll;
813 		}
814 		rid_end = pe->rid + (count << 8);
815 	} else {
816 #ifdef CONFIG_PCI_IOV
817 		if (pe->flags & PNV_IODA_PE_VF)
818 			parent = pe->parent_dev;
819 		else
820 #endif
821 			parent = pe->pdev->bus->self;
822 		bcomp = OpalPciBusAll;
823 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825 		rid_end = pe->rid + 1;
826 	}
827 
828 	/* Clear the reverse map */
829 	for (rid = pe->rid; rid < rid_end; rid++)
830 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831 
832 	/* Release from all parents PELT-V */
833 	while (parent) {
834 		struct pci_dn *pdn = pci_get_pdn(parent);
835 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838 			/* XXX What to do in case of error ? */
839 		}
840 		parent = parent->bus->self;
841 	}
842 
843 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845 
846 	/* Disassociate PE in PELT */
847 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849 	if (rc)
850 		pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
851 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853 	if (rc)
854 		pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
855 
856 	pe->pbus = NULL;
857 	pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859 	pe->parent_dev = NULL;
860 #endif
861 
862 	return 0;
863 }
864 
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867 	struct pci_dev *parent;
868 	uint8_t bcomp, dcomp, fcomp;
869 	long rc, rid_end, rid;
870 
871 	/* Bus validation ? */
872 	if (pe->pbus) {
873 		int count;
874 
875 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877 		parent = pe->pbus->self;
878 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
879 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880 		else
881 			count = 1;
882 
883 		switch(count) {
884 		case  1: bcomp = OpalPciBusAll;		break;
885 		case  2: bcomp = OpalPciBus7Bits;	break;
886 		case  4: bcomp = OpalPciBus6Bits;	break;
887 		case  8: bcomp = OpalPciBus5Bits;	break;
888 		case 16: bcomp = OpalPciBus4Bits;	break;
889 		case 32: bcomp = OpalPciBus3Bits;	break;
890 		default:
891 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892 			        count);
893 			/* Do an exact match only */
894 			bcomp = OpalPciBusAll;
895 		}
896 		rid_end = pe->rid + (count << 8);
897 	} else {
898 #ifdef CONFIG_PCI_IOV
899 		if (pe->flags & PNV_IODA_PE_VF)
900 			parent = pe->parent_dev;
901 		else
902 #endif /* CONFIG_PCI_IOV */
903 			parent = pe->pdev->bus->self;
904 		bcomp = OpalPciBusAll;
905 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907 		rid_end = pe->rid + 1;
908 	}
909 
910 	/*
911 	 * Associate PE in PELT. We need add the PE into the
912 	 * corresponding PELT-V as well. Otherwise, the error
913 	 * originated from the PE might contribute to other
914 	 * PEs.
915 	 */
916 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
918 	if (rc) {
919 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920 		return -ENXIO;
921 	}
922 
923 	/*
924 	 * Configure PELTV. NPUs don't have a PELTV table so skip
925 	 * configuration on them.
926 	 */
927 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
928 		pnv_ioda_set_peltv(phb, pe, true);
929 
930 	/* Setup reverse map */
931 	for (rid = pe->rid; rid < rid_end; rid++)
932 		phb->ioda.pe_rmap[rid] = pe->pe_number;
933 
934 	/* Setup one MVTs on IODA1 */
935 	if (phb->type != PNV_PHB_IODA1) {
936 		pe->mve_number = 0;
937 		goto out;
938 	}
939 
940 	pe->mve_number = pe->pe_number;
941 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942 	if (rc != OPAL_SUCCESS) {
943 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944 		       rc, pe->mve_number);
945 		pe->mve_number = -1;
946 	} else {
947 		rc = opal_pci_set_mve_enable(phb->opal_id,
948 					     pe->mve_number, OPAL_ENABLE_MVE);
949 		if (rc) {
950 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951 			       rc, pe->mve_number);
952 			pe->mve_number = -1;
953 		}
954 	}
955 
956 out:
957 	return 0;
958 }
959 
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963 	struct pci_dn *pdn = pci_get_pdn(dev);
964 	int i;
965 	struct resource *res, res2;
966 	resource_size_t size;
967 	u16 num_vfs;
968 
969 	if (!dev->is_physfn)
970 		return -EINVAL;
971 
972 	/*
973 	 * "offset" is in VFs.  The M64 windows are sized so that when they
974 	 * are segmented, each segment is the same size as the IOV BAR.
975 	 * Each segment is in a separate PE, and the high order bits of the
976 	 * address are the PE number.  Therefore, each VF's BAR is in a
977 	 * separate PE, and changing the IOV BAR start address changes the
978 	 * range of PEs the VFs are in.
979 	 */
980 	num_vfs = pdn->num_vfs;
981 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982 		res = &dev->resource[i + PCI_IOV_RESOURCES];
983 		if (!res->flags || !res->parent)
984 			continue;
985 
986 		/*
987 		 * The actual IOV BAR range is determined by the start address
988 		 * and the actual size for num_vfs VFs BAR.  This check is to
989 		 * make sure that after shifting, the range will not overlap
990 		 * with another device.
991 		 */
992 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993 		res2.flags = res->flags;
994 		res2.start = res->start + (size * offset);
995 		res2.end = res2.start + (size * num_vfs) - 1;
996 
997 		if (res2.end > res->end) {
998 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999 				i, &res2, res, num_vfs, offset);
1000 			return -EBUSY;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * Since M64 BAR shares segments among all possible 256 PEs,
1006 	 * we have to shift the beginning of PF IOV BAR to make it start from
1007 	 * the segment which belongs to the PE number assigned to the first VF.
1008 	 * This creates a "hole" in the /proc/iomem which could be used for
1009 	 * allocating other resources so we reserve this area below and
1010 	 * release when IOV is released.
1011 	 */
1012 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1013 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1014 		if (!res->flags || !res->parent)
1015 			continue;
1016 
1017 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1018 		res2 = *res;
1019 		res->start += size * offset;
1020 
1021 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1022 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1023 			 num_vfs, offset);
1024 
1025 		if (offset < 0) {
1026 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1027 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1028 		}
1029 
1030 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1031 
1032 		if (offset > 0) {
1033 			pdn->holes[i].start = res2.start;
1034 			pdn->holes[i].end = res2.start + size * offset - 1;
1035 			pdn->holes[i].flags = IORESOURCE_BUS;
1036 			pdn->holes[i].name = "pnv_iov_reserved";
1037 			devm_request_resource(&dev->dev, res->parent,
1038 					&pdn->holes[i]);
1039 		}
1040 	}
1041 	return 0;
1042 }
1043 #endif /* CONFIG_PCI_IOV */
1044 
1045 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1046 {
1047 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1048 	struct pnv_phb *phb = hose->private_data;
1049 	struct pci_dn *pdn = pci_get_pdn(dev);
1050 	struct pnv_ioda_pe *pe;
1051 
1052 	if (!pdn) {
1053 		pr_err("%s: Device tree node not associated properly\n",
1054 			   pci_name(dev));
1055 		return NULL;
1056 	}
1057 	if (pdn->pe_number != IODA_INVALID_PE)
1058 		return NULL;
1059 
1060 	pe = pnv_ioda_alloc_pe(phb);
1061 	if (!pe) {
1062 		pr_warn("%s: Not enough PE# available, disabling device\n",
1063 			pci_name(dev));
1064 		return NULL;
1065 	}
1066 
1067 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1068 	 * pointer in the PE data structure, both should be destroyed at the
1069 	 * same time. However, this needs to be looked at more closely again
1070 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1071 	 *
1072 	 * At some point we want to remove the PDN completely anyways
1073 	 */
1074 	pci_dev_get(dev);
1075 	pdn->pe_number = pe->pe_number;
1076 	pe->flags = PNV_IODA_PE_DEV;
1077 	pe->pdev = dev;
1078 	pe->pbus = NULL;
1079 	pe->mve_number = -1;
1080 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1081 
1082 	pe_info(pe, "Associated device to PE\n");
1083 
1084 	if (pnv_ioda_configure_pe(phb, pe)) {
1085 		/* XXX What do we do here ? */
1086 		pnv_ioda_free_pe(pe);
1087 		pdn->pe_number = IODA_INVALID_PE;
1088 		pe->pdev = NULL;
1089 		pci_dev_put(dev);
1090 		return NULL;
1091 	}
1092 
1093 	/* Put PE to the list */
1094 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1095 
1096 	return pe;
1097 }
1098 
1099 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1100 {
1101 	struct pci_dev *dev;
1102 
1103 	list_for_each_entry(dev, &bus->devices, bus_list) {
1104 		struct pci_dn *pdn = pci_get_pdn(dev);
1105 
1106 		if (pdn == NULL) {
1107 			pr_warn("%s: No device node associated with device !\n",
1108 				pci_name(dev));
1109 			continue;
1110 		}
1111 
1112 		/*
1113 		 * In partial hotplug case, the PCI device might be still
1114 		 * associated with the PE and needn't attach it to the PE
1115 		 * again.
1116 		 */
1117 		if (pdn->pe_number != IODA_INVALID_PE)
1118 			continue;
1119 
1120 		pe->device_count++;
1121 		pdn->pe_number = pe->pe_number;
1122 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1123 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1124 	}
1125 }
1126 
1127 /*
1128  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1129  * single PCI bus. Another one that contains the primary PCI bus and its
1130  * subordinate PCI devices and buses. The second type of PE is normally
1131  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1132  */
1133 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1134 {
1135 	struct pci_controller *hose = pci_bus_to_host(bus);
1136 	struct pnv_phb *phb = hose->private_data;
1137 	struct pnv_ioda_pe *pe = NULL;
1138 	unsigned int pe_num;
1139 
1140 	/*
1141 	 * In partial hotplug case, the PE instance might be still alive.
1142 	 * We should reuse it instead of allocating a new one.
1143 	 */
1144 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1145 	if (pe_num != IODA_INVALID_PE) {
1146 		pe = &phb->ioda.pe_array[pe_num];
1147 		pnv_ioda_setup_same_PE(bus, pe);
1148 		return NULL;
1149 	}
1150 
1151 	/* PE number for root bus should have been reserved */
1152 	if (pci_is_root_bus(bus) &&
1153 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1154 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1155 
1156 	/* Check if PE is determined by M64 */
1157 	if (!pe)
1158 		pe = pnv_ioda_pick_m64_pe(bus, all);
1159 
1160 	/* The PE number isn't pinned by M64 */
1161 	if (!pe)
1162 		pe = pnv_ioda_alloc_pe(phb);
1163 
1164 	if (!pe) {
1165 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1166 			__func__, pci_domain_nr(bus), bus->number);
1167 		return NULL;
1168 	}
1169 
1170 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1171 	pe->pbus = bus;
1172 	pe->pdev = NULL;
1173 	pe->mve_number = -1;
1174 	pe->rid = bus->busn_res.start << 8;
1175 
1176 	if (all)
1177 		pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1178 			&bus->busn_res.start, &bus->busn_res.end,
1179 			pe->pe_number);
1180 	else
1181 		pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1182 			&bus->busn_res.start, pe->pe_number);
1183 
1184 	if (pnv_ioda_configure_pe(phb, pe)) {
1185 		/* XXX What do we do here ? */
1186 		pnv_ioda_free_pe(pe);
1187 		pe->pbus = NULL;
1188 		return NULL;
1189 	}
1190 
1191 	/* Associate it with all child devices */
1192 	pnv_ioda_setup_same_PE(bus, pe);
1193 
1194 	/* Put PE to the list */
1195 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1196 
1197 	return pe;
1198 }
1199 
1200 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1201 {
1202 	int pe_num, found_pe = false, rc;
1203 	long rid;
1204 	struct pnv_ioda_pe *pe;
1205 	struct pci_dev *gpu_pdev;
1206 	struct pci_dn *npu_pdn;
1207 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1208 	struct pnv_phb *phb = hose->private_data;
1209 
1210 	/*
1211 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1212 	 * error handling. This means we only have three PEs remaining
1213 	 * which need to be assigned to four links, implying some
1214 	 * links must share PEs.
1215 	 *
1216 	 * To achieve this we assign PEs such that NPUs linking the
1217 	 * same GPU get assigned the same PE.
1218 	 */
1219 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1220 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1221 		pe = &phb->ioda.pe_array[pe_num];
1222 		if (!pe->pdev)
1223 			continue;
1224 
1225 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1226 			/*
1227 			 * This device has the same peer GPU so should
1228 			 * be assigned the same PE as the existing
1229 			 * peer NPU.
1230 			 */
1231 			dev_info(&npu_pdev->dev,
1232 				"Associating to existing PE %x\n", pe_num);
1233 			pci_dev_get(npu_pdev);
1234 			npu_pdn = pci_get_pdn(npu_pdev);
1235 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1236 			npu_pdn->pe_number = pe_num;
1237 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1238 
1239 			/* Map the PE to this link */
1240 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1241 					OpalPciBusAll,
1242 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1243 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1244 					OPAL_MAP_PE);
1245 			WARN_ON(rc != OPAL_SUCCESS);
1246 			found_pe = true;
1247 			break;
1248 		}
1249 	}
1250 
1251 	if (!found_pe)
1252 		/*
1253 		 * Could not find an existing PE so allocate a new
1254 		 * one.
1255 		 */
1256 		return pnv_ioda_setup_dev_PE(npu_pdev);
1257 	else
1258 		return pe;
1259 }
1260 
1261 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1262 {
1263 	struct pci_dev *pdev;
1264 
1265 	list_for_each_entry(pdev, &bus->devices, bus_list)
1266 		pnv_ioda_setup_npu_PE(pdev);
1267 }
1268 
1269 static void pnv_pci_ioda_setup_PEs(void)
1270 {
1271 	struct pci_controller *hose;
1272 	struct pnv_phb *phb;
1273 	struct pci_bus *bus;
1274 	struct pci_dev *pdev;
1275 	struct pnv_ioda_pe *pe;
1276 
1277 	list_for_each_entry(hose, &hose_list, list_node) {
1278 		phb = hose->private_data;
1279 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1280 			/* PE#0 is needed for error reporting */
1281 			pnv_ioda_reserve_pe(phb, 0);
1282 			pnv_ioda_setup_npu_PEs(hose->bus);
1283 			if (phb->model == PNV_PHB_MODEL_NPU2)
1284 				WARN_ON_ONCE(pnv_npu2_init(hose));
1285 		}
1286 		if (phb->type == PNV_PHB_NPU_OCAPI) {
1287 			bus = hose->bus;
1288 			list_for_each_entry(pdev, &bus->devices, bus_list)
1289 				pnv_ioda_setup_dev_PE(pdev);
1290 		}
1291 	}
1292 	list_for_each_entry(hose, &hose_list, list_node) {
1293 		phb = hose->private_data;
1294 		if (phb->type != PNV_PHB_IODA2)
1295 			continue;
1296 
1297 		list_for_each_entry(pe, &phb->ioda.pe_list, list)
1298 			pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1299 	}
1300 }
1301 
1302 #ifdef CONFIG_PCI_IOV
1303 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1304 {
1305 	struct pci_bus        *bus;
1306 	struct pci_controller *hose;
1307 	struct pnv_phb        *phb;
1308 	struct pci_dn         *pdn;
1309 	int                    i, j;
1310 	int                    m64_bars;
1311 
1312 	bus = pdev->bus;
1313 	hose = pci_bus_to_host(bus);
1314 	phb = hose->private_data;
1315 	pdn = pci_get_pdn(pdev);
1316 
1317 	if (pdn->m64_single_mode)
1318 		m64_bars = num_vfs;
1319 	else
1320 		m64_bars = 1;
1321 
1322 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1323 		for (j = 0; j < m64_bars; j++) {
1324 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1325 				continue;
1326 			opal_pci_phb_mmio_enable(phb->opal_id,
1327 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1328 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1329 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1330 		}
1331 
1332 	kfree(pdn->m64_map);
1333 	return 0;
1334 }
1335 
1336 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1337 {
1338 	struct pci_bus        *bus;
1339 	struct pci_controller *hose;
1340 	struct pnv_phb        *phb;
1341 	struct pci_dn         *pdn;
1342 	unsigned int           win;
1343 	struct resource       *res;
1344 	int                    i, j;
1345 	int64_t                rc;
1346 	int                    total_vfs;
1347 	resource_size_t        size, start;
1348 	int                    pe_num;
1349 	int                    m64_bars;
1350 
1351 	bus = pdev->bus;
1352 	hose = pci_bus_to_host(bus);
1353 	phb = hose->private_data;
1354 	pdn = pci_get_pdn(pdev);
1355 	total_vfs = pci_sriov_get_totalvfs(pdev);
1356 
1357 	if (pdn->m64_single_mode)
1358 		m64_bars = num_vfs;
1359 	else
1360 		m64_bars = 1;
1361 
1362 	pdn->m64_map = kmalloc_array(m64_bars,
1363 				     sizeof(*pdn->m64_map),
1364 				     GFP_KERNEL);
1365 	if (!pdn->m64_map)
1366 		return -ENOMEM;
1367 	/* Initialize the m64_map to IODA_INVALID_M64 */
1368 	for (i = 0; i < m64_bars ; i++)
1369 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1370 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1371 
1372 
1373 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1374 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1375 		if (!res->flags || !res->parent)
1376 			continue;
1377 
1378 		for (j = 0; j < m64_bars; j++) {
1379 			do {
1380 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1381 						phb->ioda.m64_bar_idx + 1, 0);
1382 
1383 				if (win >= phb->ioda.m64_bar_idx + 1)
1384 					goto m64_failed;
1385 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1386 
1387 			pdn->m64_map[j][i] = win;
1388 
1389 			if (pdn->m64_single_mode) {
1390 				size = pci_iov_resource_size(pdev,
1391 							PCI_IOV_RESOURCES + i);
1392 				start = res->start + size * j;
1393 			} else {
1394 				size = resource_size(res);
1395 				start = res->start;
1396 			}
1397 
1398 			/* Map the M64 here */
1399 			if (pdn->m64_single_mode) {
1400 				pe_num = pdn->pe_num_map[j];
1401 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1402 						pe_num, OPAL_M64_WINDOW_TYPE,
1403 						pdn->m64_map[j][i], 0);
1404 			}
1405 
1406 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1407 						 OPAL_M64_WINDOW_TYPE,
1408 						 pdn->m64_map[j][i],
1409 						 start,
1410 						 0, /* unused */
1411 						 size);
1412 
1413 
1414 			if (rc != OPAL_SUCCESS) {
1415 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1416 					win, rc);
1417 				goto m64_failed;
1418 			}
1419 
1420 			if (pdn->m64_single_mode)
1421 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1422 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1423 			else
1424 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1425 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1426 
1427 			if (rc != OPAL_SUCCESS) {
1428 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1429 					win, rc);
1430 				goto m64_failed;
1431 			}
1432 		}
1433 	}
1434 	return 0;
1435 
1436 m64_failed:
1437 	pnv_pci_vf_release_m64(pdev, num_vfs);
1438 	return -EBUSY;
1439 }
1440 
1441 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1442 		int num);
1443 
1444 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1445 {
1446 	struct iommu_table    *tbl;
1447 	int64_t               rc;
1448 
1449 	tbl = pe->table_group.tables[0];
1450 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1451 	if (rc)
1452 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
1453 
1454 	pnv_pci_ioda2_set_bypass(pe, false);
1455 	if (pe->table_group.group) {
1456 		iommu_group_put(pe->table_group.group);
1457 		BUG_ON(pe->table_group.group);
1458 	}
1459 	iommu_tce_table_put(tbl);
1460 }
1461 
1462 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1463 {
1464 	struct pci_bus        *bus;
1465 	struct pci_controller *hose;
1466 	struct pnv_phb        *phb;
1467 	struct pnv_ioda_pe    *pe, *pe_n;
1468 	struct pci_dn         *pdn;
1469 
1470 	bus = pdev->bus;
1471 	hose = pci_bus_to_host(bus);
1472 	phb = hose->private_data;
1473 	pdn = pci_get_pdn(pdev);
1474 
1475 	if (!pdev->is_physfn)
1476 		return;
1477 
1478 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1479 		if (pe->parent_dev != pdev)
1480 			continue;
1481 
1482 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1483 
1484 		/* Remove from list */
1485 		mutex_lock(&phb->ioda.pe_list_mutex);
1486 		list_del(&pe->list);
1487 		mutex_unlock(&phb->ioda.pe_list_mutex);
1488 
1489 		pnv_ioda_deconfigure_pe(phb, pe);
1490 
1491 		pnv_ioda_free_pe(pe);
1492 	}
1493 }
1494 
1495 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1496 {
1497 	struct pci_bus        *bus;
1498 	struct pci_controller *hose;
1499 	struct pnv_phb        *phb;
1500 	struct pnv_ioda_pe    *pe;
1501 	struct pci_dn         *pdn;
1502 	u16                    num_vfs, i;
1503 
1504 	bus = pdev->bus;
1505 	hose = pci_bus_to_host(bus);
1506 	phb = hose->private_data;
1507 	pdn = pci_get_pdn(pdev);
1508 	num_vfs = pdn->num_vfs;
1509 
1510 	/* Release VF PEs */
1511 	pnv_ioda_release_vf_PE(pdev);
1512 
1513 	if (phb->type == PNV_PHB_IODA2) {
1514 		if (!pdn->m64_single_mode)
1515 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1516 
1517 		/* Release M64 windows */
1518 		pnv_pci_vf_release_m64(pdev, num_vfs);
1519 
1520 		/* Release PE numbers */
1521 		if (pdn->m64_single_mode) {
1522 			for (i = 0; i < num_vfs; i++) {
1523 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1524 					continue;
1525 
1526 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1527 				pnv_ioda_free_pe(pe);
1528 			}
1529 		} else
1530 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1531 		/* Releasing pe_num_map */
1532 		kfree(pdn->pe_num_map);
1533 	}
1534 }
1535 
1536 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1537 				       struct pnv_ioda_pe *pe);
1538 #ifdef CONFIG_IOMMU_API
1539 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
1540 		struct iommu_table_group *table_group, struct pci_bus *bus);
1541 
1542 #endif
1543 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1544 {
1545 	struct pci_bus        *bus;
1546 	struct pci_controller *hose;
1547 	struct pnv_phb        *phb;
1548 	struct pnv_ioda_pe    *pe;
1549 	int                    pe_num;
1550 	u16                    vf_index;
1551 	struct pci_dn         *pdn;
1552 
1553 	bus = pdev->bus;
1554 	hose = pci_bus_to_host(bus);
1555 	phb = hose->private_data;
1556 	pdn = pci_get_pdn(pdev);
1557 
1558 	if (!pdev->is_physfn)
1559 		return;
1560 
1561 	/* Reserve PE for each VF */
1562 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1563 		if (pdn->m64_single_mode)
1564 			pe_num = pdn->pe_num_map[vf_index];
1565 		else
1566 			pe_num = *pdn->pe_num_map + vf_index;
1567 
1568 		pe = &phb->ioda.pe_array[pe_num];
1569 		pe->pe_number = pe_num;
1570 		pe->phb = phb;
1571 		pe->flags = PNV_IODA_PE_VF;
1572 		pe->pbus = NULL;
1573 		pe->parent_dev = pdev;
1574 		pe->mve_number = -1;
1575 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1576 			   pci_iov_virtfn_devfn(pdev, vf_index);
1577 
1578 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1579 			hose->global_number, pdev->bus->number,
1580 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1581 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1582 
1583 		if (pnv_ioda_configure_pe(phb, pe)) {
1584 			/* XXX What do we do here ? */
1585 			pnv_ioda_free_pe(pe);
1586 			pe->pdev = NULL;
1587 			continue;
1588 		}
1589 
1590 		/* Put PE to the list */
1591 		mutex_lock(&phb->ioda.pe_list_mutex);
1592 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1593 		mutex_unlock(&phb->ioda.pe_list_mutex);
1594 
1595 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1596 #ifdef CONFIG_IOMMU_API
1597 		iommu_register_group(&pe->table_group,
1598 				pe->phb->hose->global_number, pe->pe_number);
1599 		pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL);
1600 #endif
1601 	}
1602 }
1603 
1604 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1605 {
1606 	struct pci_bus        *bus;
1607 	struct pci_controller *hose;
1608 	struct pnv_phb        *phb;
1609 	struct pnv_ioda_pe    *pe;
1610 	struct pci_dn         *pdn;
1611 	int                    ret;
1612 	u16                    i;
1613 
1614 	bus = pdev->bus;
1615 	hose = pci_bus_to_host(bus);
1616 	phb = hose->private_data;
1617 	pdn = pci_get_pdn(pdev);
1618 
1619 	if (phb->type == PNV_PHB_IODA2) {
1620 		if (!pdn->vfs_expanded) {
1621 			dev_info(&pdev->dev, "don't support this SRIOV device"
1622 				" with non 64bit-prefetchable IOV BAR\n");
1623 			return -ENOSPC;
1624 		}
1625 
1626 		/*
1627 		 * When M64 BARs functions in Single PE mode, the number of VFs
1628 		 * could be enabled must be less than the number of M64 BARs.
1629 		 */
1630 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1631 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1632 			return -EBUSY;
1633 		}
1634 
1635 		/* Allocating pe_num_map */
1636 		if (pdn->m64_single_mode)
1637 			pdn->pe_num_map = kmalloc_array(num_vfs,
1638 							sizeof(*pdn->pe_num_map),
1639 							GFP_KERNEL);
1640 		else
1641 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1642 
1643 		if (!pdn->pe_num_map)
1644 			return -ENOMEM;
1645 
1646 		if (pdn->m64_single_mode)
1647 			for (i = 0; i < num_vfs; i++)
1648 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1649 
1650 		/* Calculate available PE for required VFs */
1651 		if (pdn->m64_single_mode) {
1652 			for (i = 0; i < num_vfs; i++) {
1653 				pe = pnv_ioda_alloc_pe(phb);
1654 				if (!pe) {
1655 					ret = -EBUSY;
1656 					goto m64_failed;
1657 				}
1658 
1659 				pdn->pe_num_map[i] = pe->pe_number;
1660 			}
1661 		} else {
1662 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1663 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1664 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1665 				0, num_vfs, 0);
1666 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1667 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1668 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1669 				kfree(pdn->pe_num_map);
1670 				return -EBUSY;
1671 			}
1672 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1673 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1674 		}
1675 		pdn->num_vfs = num_vfs;
1676 
1677 		/* Assign M64 window accordingly */
1678 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1679 		if (ret) {
1680 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1681 			goto m64_failed;
1682 		}
1683 
1684 		/*
1685 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1686 		 * the IOV BAR according to the PE# allocated to the VFs.
1687 		 * Otherwise, the PE# for the VF will conflict with others.
1688 		 */
1689 		if (!pdn->m64_single_mode) {
1690 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1691 			if (ret)
1692 				goto m64_failed;
1693 		}
1694 	}
1695 
1696 	/* Setup VF PEs */
1697 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1698 
1699 	return 0;
1700 
1701 m64_failed:
1702 	if (pdn->m64_single_mode) {
1703 		for (i = 0; i < num_vfs; i++) {
1704 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1705 				continue;
1706 
1707 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1708 			pnv_ioda_free_pe(pe);
1709 		}
1710 	} else
1711 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1712 
1713 	/* Releasing pe_num_map */
1714 	kfree(pdn->pe_num_map);
1715 
1716 	return ret;
1717 }
1718 
1719 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1720 {
1721 	pnv_pci_sriov_disable(pdev);
1722 
1723 	/* Release PCI data */
1724 	remove_dev_pci_data(pdev);
1725 	return 0;
1726 }
1727 
1728 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1729 {
1730 	/* Allocate PCI data */
1731 	add_dev_pci_data(pdev);
1732 
1733 	return pnv_pci_sriov_enable(pdev, num_vfs);
1734 }
1735 #endif /* CONFIG_PCI_IOV */
1736 
1737 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1738 {
1739 	struct pci_dn *pdn = pci_get_pdn(pdev);
1740 	struct pnv_ioda_pe *pe;
1741 
1742 	/*
1743 	 * The function can be called while the PE#
1744 	 * hasn't been assigned. Do nothing for the
1745 	 * case.
1746 	 */
1747 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1748 		return;
1749 
1750 	pe = &phb->ioda.pe_array[pdn->pe_number];
1751 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1752 	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1753 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1754 	/*
1755 	 * Note: iommu_add_device() will fail here as
1756 	 * for physical PE: the device is already added by now;
1757 	 * for virtual PE: sysfs entries are not ready yet and
1758 	 * tce_iommu_bus_notifier will add the device to a group later.
1759 	 */
1760 }
1761 
1762 /*
1763  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1764  *
1765  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1766  * Devices can only access more than that if bit 59 of the PCI address is set
1767  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1768  * Many PCI devices are not capable of addressing that many bits, and as a
1769  * result are limited to the 4GB of virtual memory made available to 32-bit
1770  * devices in TVE#0.
1771  *
1772  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1773  * devices by configuring the virtual memory past the first 4GB inaccessible
1774  * by 64-bit DMAs.  This should only be used by devices that want more than
1775  * 4GB, and only on PEs that have no 32-bit devices.
1776  *
1777  * Currently this will only work on PHB3 (POWER8).
1778  */
1779 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1780 {
1781 	u64 window_size, table_size, tce_count, addr;
1782 	struct page *table_pages;
1783 	u64 tce_order = 28; /* 256MB TCEs */
1784 	__be64 *tces;
1785 	s64 rc;
1786 
1787 	/*
1788 	 * Window size needs to be a power of two, but needs to account for
1789 	 * shifting memory by the 4GB offset required to skip 32bit space.
1790 	 */
1791 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1792 	tce_count = window_size >> tce_order;
1793 	table_size = tce_count << 3;
1794 
1795 	if (table_size < PAGE_SIZE)
1796 		table_size = PAGE_SIZE;
1797 
1798 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1799 				       get_order(table_size));
1800 	if (!table_pages)
1801 		goto err;
1802 
1803 	tces = page_address(table_pages);
1804 	if (!tces)
1805 		goto err;
1806 
1807 	memset(tces, 0, table_size);
1808 
1809 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1810 		tces[(addr + (1ULL << 32)) >> tce_order] =
1811 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1812 	}
1813 
1814 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1815 					pe->pe_number,
1816 					/* reconfigure window 0 */
1817 					(pe->pe_number << 1) + 0,
1818 					1,
1819 					__pa(tces),
1820 					table_size,
1821 					1 << tce_order);
1822 	if (rc == OPAL_SUCCESS) {
1823 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1824 		return 0;
1825 	}
1826 err:
1827 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1828 	return -EIO;
1829 }
1830 
1831 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1832 		u64 dma_mask)
1833 {
1834 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1835 	struct pnv_phb *phb = hose->private_data;
1836 	struct pci_dn *pdn = pci_get_pdn(pdev);
1837 	struct pnv_ioda_pe *pe;
1838 
1839 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1840 		return false;
1841 
1842 	pe = &phb->ioda.pe_array[pdn->pe_number];
1843 	if (pe->tce_bypass_enabled) {
1844 		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1845 		if (dma_mask >= top)
1846 			return true;
1847 	}
1848 
1849 	/*
1850 	 * If the device can't set the TCE bypass bit but still wants
1851 	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1852 	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1853 	 * The device needs to be able to address all of this space.
1854 	 */
1855 	if (dma_mask >> 32 &&
1856 	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1857 	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1858 	    (pe->device_count == 1 || !pe->pbus) &&
1859 	    phb->model == PNV_PHB_MODEL_PHB3) {
1860 		/* Configure the bypass mode */
1861 		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1862 		if (rc)
1863 			return false;
1864 		/* 4GB offset bypasses 32-bit space */
1865 		pdev->dev.archdata.dma_offset = (1ULL << 32);
1866 		return true;
1867 	}
1868 
1869 	return false;
1870 }
1871 
1872 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1873 {
1874 	struct pci_dev *dev;
1875 
1876 	list_for_each_entry(dev, &bus->devices, bus_list) {
1877 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1878 		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1879 
1880 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1881 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1882 	}
1883 }
1884 
1885 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1886 						     bool real_mode)
1887 {
1888 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1889 		(phb->regs + 0x210);
1890 }
1891 
1892 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1893 		unsigned long index, unsigned long npages, bool rm)
1894 {
1895 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1896 			&tbl->it_group_list, struct iommu_table_group_link,
1897 			next);
1898 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1899 			struct pnv_ioda_pe, table_group);
1900 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1901 	unsigned long start, end, inc;
1902 
1903 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1904 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1905 			npages - 1);
1906 
1907 	/* p7ioc-style invalidation, 2 TCEs per write */
1908 	start |= (1ull << 63);
1909 	end |= (1ull << 63);
1910 	inc = 16;
1911         end |= inc - 1;	/* round up end to be different than start */
1912 
1913         mb(); /* Ensure above stores are visible */
1914         while (start <= end) {
1915 		if (rm)
1916 			__raw_rm_writeq_be(start, invalidate);
1917 		else
1918 			__raw_writeq_be(start, invalidate);
1919 
1920                 start += inc;
1921         }
1922 
1923 	/*
1924 	 * The iommu layer will do another mb() for us on build()
1925 	 * and we don't care on free()
1926 	 */
1927 }
1928 
1929 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1930 		long npages, unsigned long uaddr,
1931 		enum dma_data_direction direction,
1932 		unsigned long attrs)
1933 {
1934 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1935 			attrs);
1936 
1937 	if (!ret)
1938 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1939 
1940 	return ret;
1941 }
1942 
1943 #ifdef CONFIG_IOMMU_API
1944 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1945 		unsigned long *hpa, enum dma_data_direction *direction)
1946 {
1947 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
1948 
1949 	if (!ret)
1950 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1951 
1952 	return ret;
1953 }
1954 
1955 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
1956 		unsigned long *hpa, enum dma_data_direction *direction)
1957 {
1958 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
1959 
1960 	if (!ret)
1961 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
1962 
1963 	return ret;
1964 }
1965 #endif
1966 
1967 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1968 		long npages)
1969 {
1970 	pnv_tce_free(tbl, index, npages);
1971 
1972 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1973 }
1974 
1975 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1976 	.set = pnv_ioda1_tce_build,
1977 #ifdef CONFIG_IOMMU_API
1978 	.exchange = pnv_ioda1_tce_xchg,
1979 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
1980 	.useraddrptr = pnv_tce_useraddrptr,
1981 #endif
1982 	.clear = pnv_ioda1_tce_free,
1983 	.get = pnv_tce_get,
1984 };
1985 
1986 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1987 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1988 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1989 
1990 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1991 {
1992 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1993 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1994 
1995 	mb(); /* Ensure previous TCE table stores are visible */
1996 	if (rm)
1997 		__raw_rm_writeq_be(val, invalidate);
1998 	else
1999 		__raw_writeq_be(val, invalidate);
2000 }
2001 
2002 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2003 {
2004 	/* 01xb - invalidate TCEs that match the specified PE# */
2005 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2006 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2007 
2008 	mb(); /* Ensure above stores are visible */
2009 	__raw_writeq_be(val, invalidate);
2010 }
2011 
2012 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2013 					unsigned shift, unsigned long index,
2014 					unsigned long npages)
2015 {
2016 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2017 	unsigned long start, end, inc;
2018 
2019 	/* We'll invalidate DMA address in PE scope */
2020 	start = PHB3_TCE_KILL_INVAL_ONE;
2021 	start |= (pe->pe_number & 0xFF);
2022 	end = start;
2023 
2024 	/* Figure out the start, end and step */
2025 	start |= (index << shift);
2026 	end |= ((index + npages - 1) << shift);
2027 	inc = (0x1ull << shift);
2028 	mb();
2029 
2030 	while (start <= end) {
2031 		if (rm)
2032 			__raw_rm_writeq_be(start, invalidate);
2033 		else
2034 			__raw_writeq_be(start, invalidate);
2035 		start += inc;
2036 	}
2037 }
2038 
2039 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2040 {
2041 	struct pnv_phb *phb = pe->phb;
2042 
2043 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2044 		pnv_pci_phb3_tce_invalidate_pe(pe);
2045 	else
2046 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2047 				  pe->pe_number, 0, 0, 0);
2048 }
2049 
2050 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2051 		unsigned long index, unsigned long npages, bool rm)
2052 {
2053 	struct iommu_table_group_link *tgl;
2054 
2055 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2056 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2057 				struct pnv_ioda_pe, table_group);
2058 		struct pnv_phb *phb = pe->phb;
2059 		unsigned int shift = tbl->it_page_shift;
2060 
2061 		/*
2062 		 * NVLink1 can use the TCE kill register directly as
2063 		 * it's the same as PHB3. NVLink2 is different and
2064 		 * should go via the OPAL call.
2065 		 */
2066 		if (phb->model == PNV_PHB_MODEL_NPU) {
2067 			/*
2068 			 * The NVLink hardware does not support TCE kill
2069 			 * per TCE entry so we have to invalidate
2070 			 * the entire cache for it.
2071 			 */
2072 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2073 			continue;
2074 		}
2075 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2076 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2077 						    index, npages);
2078 		else
2079 			opal_pci_tce_kill(phb->opal_id,
2080 					  OPAL_PCI_TCE_KILL_PAGES,
2081 					  pe->pe_number, 1u << shift,
2082 					  index << shift, npages);
2083 	}
2084 }
2085 
2086 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2087 {
2088 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2089 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2090 	else
2091 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2092 }
2093 
2094 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2095 		long npages, unsigned long uaddr,
2096 		enum dma_data_direction direction,
2097 		unsigned long attrs)
2098 {
2099 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2100 			attrs);
2101 
2102 	if (!ret)
2103 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2104 
2105 	return ret;
2106 }
2107 
2108 #ifdef CONFIG_IOMMU_API
2109 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2110 		unsigned long *hpa, enum dma_data_direction *direction)
2111 {
2112 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2113 
2114 	if (!ret)
2115 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2116 
2117 	return ret;
2118 }
2119 
2120 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2121 		unsigned long *hpa, enum dma_data_direction *direction)
2122 {
2123 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2124 
2125 	if (!ret)
2126 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2127 
2128 	return ret;
2129 }
2130 #endif
2131 
2132 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2133 		long npages)
2134 {
2135 	pnv_tce_free(tbl, index, npages);
2136 
2137 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2138 }
2139 
2140 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2141 	.set = pnv_ioda2_tce_build,
2142 #ifdef CONFIG_IOMMU_API
2143 	.exchange = pnv_ioda2_tce_xchg,
2144 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2145 	.useraddrptr = pnv_tce_useraddrptr,
2146 #endif
2147 	.clear = pnv_ioda2_tce_free,
2148 	.get = pnv_tce_get,
2149 	.free = pnv_pci_ioda2_table_free_pages,
2150 };
2151 
2152 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2153 {
2154 	unsigned int *weight = (unsigned int *)data;
2155 
2156 	/* This is quite simplistic. The "base" weight of a device
2157 	 * is 10. 0 means no DMA is to be accounted for it.
2158 	 */
2159 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2160 		return 0;
2161 
2162 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2163 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2164 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2165 		*weight += 3;
2166 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2167 		*weight += 15;
2168 	else
2169 		*weight += 10;
2170 
2171 	return 0;
2172 }
2173 
2174 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2175 {
2176 	unsigned int weight = 0;
2177 
2178 	/* SRIOV VF has same DMA32 weight as its PF */
2179 #ifdef CONFIG_PCI_IOV
2180 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2181 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2182 		return weight;
2183 	}
2184 #endif
2185 
2186 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2187 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2188 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2189 		struct pci_dev *pdev;
2190 
2191 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2192 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2193 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2194 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2195 	}
2196 
2197 	return weight;
2198 }
2199 
2200 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2201 				       struct pnv_ioda_pe *pe)
2202 {
2203 
2204 	struct page *tce_mem = NULL;
2205 	struct iommu_table *tbl;
2206 	unsigned int weight, total_weight = 0;
2207 	unsigned int tce32_segsz, base, segs, avail, i;
2208 	int64_t rc;
2209 	void *addr;
2210 
2211 	/* XXX FIXME: Handle 64-bit only DMA devices */
2212 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2213 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2214 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2215 	if (!weight)
2216 		return;
2217 
2218 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2219 		     &total_weight);
2220 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2221 	if (!segs)
2222 		segs = 1;
2223 
2224 	/*
2225 	 * Allocate contiguous DMA32 segments. We begin with the expected
2226 	 * number of segments. With one more attempt, the number of DMA32
2227 	 * segments to be allocated is decreased by one until one segment
2228 	 * is allocated successfully.
2229 	 */
2230 	do {
2231 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2232 			for (avail = 0, i = base; i < base + segs; i++) {
2233 				if (phb->ioda.dma32_segmap[i] ==
2234 				    IODA_INVALID_PE)
2235 					avail++;
2236 			}
2237 
2238 			if (avail == segs)
2239 				goto found;
2240 		}
2241 	} while (--segs);
2242 
2243 	if (!segs) {
2244 		pe_warn(pe, "No available DMA32 segments\n");
2245 		return;
2246 	}
2247 
2248 found:
2249 	tbl = pnv_pci_table_alloc(phb->hose->node);
2250 	if (WARN_ON(!tbl))
2251 		return;
2252 
2253 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2254 			pe->pe_number);
2255 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2256 
2257 	/* Grab a 32-bit TCE table */
2258 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2259 		weight, total_weight, base, segs);
2260 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2261 		base * PNV_IODA1_DMA32_SEGSIZE,
2262 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2263 
2264 	/* XXX Currently, we allocate one big contiguous table for the
2265 	 * TCEs. We only really need one chunk per 256M of TCE space
2266 	 * (ie per segment) but that's an optimization for later, it
2267 	 * requires some added smarts with our get/put_tce implementation
2268 	 *
2269 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2270 	 * bytes
2271 	 */
2272 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2273 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2274 				   get_order(tce32_segsz * segs));
2275 	if (!tce_mem) {
2276 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2277 		goto fail;
2278 	}
2279 	addr = page_address(tce_mem);
2280 	memset(addr, 0, tce32_segsz * segs);
2281 
2282 	/* Configure HW */
2283 	for (i = 0; i < segs; i++) {
2284 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2285 					      pe->pe_number,
2286 					      base + i, 1,
2287 					      __pa(addr) + tce32_segsz * i,
2288 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2289 		if (rc) {
2290 			pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
2291 			       rc);
2292 			goto fail;
2293 		}
2294 	}
2295 
2296 	/* Setup DMA32 segment mapping */
2297 	for (i = base; i < base + segs; i++)
2298 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2299 
2300 	/* Setup linux iommu table */
2301 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2302 				  base * PNV_IODA1_DMA32_SEGSIZE,
2303 				  IOMMU_PAGE_SHIFT_4K);
2304 
2305 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2306 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2307 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2308 	iommu_init_table(tbl, phb->hose->node);
2309 
2310 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2311 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2312 
2313 	return;
2314  fail:
2315 	/* XXX Failure: Try to fallback to 64-bit only ? */
2316 	if (tce_mem)
2317 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2318 	if (tbl) {
2319 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2320 		iommu_tce_table_put(tbl);
2321 	}
2322 }
2323 
2324 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2325 		int num, struct iommu_table *tbl)
2326 {
2327 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2328 			table_group);
2329 	struct pnv_phb *phb = pe->phb;
2330 	int64_t rc;
2331 	const unsigned long size = tbl->it_indirect_levels ?
2332 			tbl->it_level_size : tbl->it_size;
2333 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2334 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2335 
2336 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
2337 		num, start_addr, start_addr + win_size - 1,
2338 		IOMMU_PAGE_SIZE(tbl));
2339 
2340 	/*
2341 	 * Map TCE table through TVT. The TVE index is the PE number
2342 	 * shifted by 1 bit for 32-bits DMA space.
2343 	 */
2344 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2345 			pe->pe_number,
2346 			(pe->pe_number << 1) + num,
2347 			tbl->it_indirect_levels + 1,
2348 			__pa(tbl->it_base),
2349 			size << 3,
2350 			IOMMU_PAGE_SIZE(tbl));
2351 	if (rc) {
2352 		pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
2353 		return rc;
2354 	}
2355 
2356 	pnv_pci_link_table_and_group(phb->hose->node, num,
2357 			tbl, &pe->table_group);
2358 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2359 
2360 	return 0;
2361 }
2362 
2363 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2364 {
2365 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2366 	int64_t rc;
2367 
2368 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2369 	if (enable) {
2370 		phys_addr_t top = memblock_end_of_DRAM();
2371 
2372 		top = roundup_pow_of_two(top);
2373 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2374 						     pe->pe_number,
2375 						     window_id,
2376 						     pe->tce_bypass_base,
2377 						     top);
2378 	} else {
2379 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2380 						     pe->pe_number,
2381 						     window_id,
2382 						     pe->tce_bypass_base,
2383 						     0);
2384 	}
2385 	if (rc)
2386 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2387 	else
2388 		pe->tce_bypass_enabled = enable;
2389 }
2390 
2391 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2392 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2393 		bool alloc_userspace_copy, struct iommu_table **ptbl)
2394 {
2395 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2396 			table_group);
2397 	int nid = pe->phb->hose->node;
2398 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2399 	long ret;
2400 	struct iommu_table *tbl;
2401 
2402 	tbl = pnv_pci_table_alloc(nid);
2403 	if (!tbl)
2404 		return -ENOMEM;
2405 
2406 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2407 
2408 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2409 			bus_offset, page_shift, window_size,
2410 			levels, alloc_userspace_copy, tbl);
2411 	if (ret) {
2412 		iommu_tce_table_put(tbl);
2413 		return ret;
2414 	}
2415 
2416 	*ptbl = tbl;
2417 
2418 	return 0;
2419 }
2420 
2421 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2422 {
2423 	struct iommu_table *tbl = NULL;
2424 	long rc;
2425 
2426 	/*
2427 	 * crashkernel= specifies the kdump kernel's maximum memory at
2428 	 * some offset and there is no guaranteed the result is a power
2429 	 * of 2, which will cause errors later.
2430 	 */
2431 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2432 
2433 	/*
2434 	 * In memory constrained environments, e.g. kdump kernel, the
2435 	 * DMA window can be larger than available memory, which will
2436 	 * cause errors later.
2437 	 */
2438 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2439 
2440 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2441 			IOMMU_PAGE_SHIFT_4K,
2442 			window_size,
2443 			POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl);
2444 	if (rc) {
2445 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2446 				rc);
2447 		return rc;
2448 	}
2449 
2450 	iommu_init_table(tbl, pe->phb->hose->node);
2451 
2452 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2453 	if (rc) {
2454 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2455 				rc);
2456 		iommu_tce_table_put(tbl);
2457 		return rc;
2458 	}
2459 
2460 	if (!pnv_iommu_bypass_disabled)
2461 		pnv_pci_ioda2_set_bypass(pe, true);
2462 
2463 	return 0;
2464 }
2465 
2466 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2467 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2468 		int num)
2469 {
2470 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2471 			table_group);
2472 	struct pnv_phb *phb = pe->phb;
2473 	long ret;
2474 
2475 	pe_info(pe, "Removing DMA window #%d\n", num);
2476 
2477 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2478 			(pe->pe_number << 1) + num,
2479 			0/* levels */, 0/* table address */,
2480 			0/* table size */, 0/* page size */);
2481 	if (ret)
2482 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2483 	else
2484 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2485 
2486 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2487 
2488 	return ret;
2489 }
2490 #endif
2491 
2492 #ifdef CONFIG_IOMMU_API
2493 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2494 		__u64 window_size, __u32 levels)
2495 {
2496 	unsigned long bytes = 0;
2497 	const unsigned window_shift = ilog2(window_size);
2498 	unsigned entries_shift = window_shift - page_shift;
2499 	unsigned table_shift = entries_shift + 3;
2500 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2501 	unsigned long direct_table_size;
2502 
2503 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2504 			!is_power_of_2(window_size))
2505 		return 0;
2506 
2507 	/* Calculate a direct table size from window_size and levels */
2508 	entries_shift = (entries_shift + levels - 1) / levels;
2509 	table_shift = entries_shift + 3;
2510 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2511 	direct_table_size =  1UL << table_shift;
2512 
2513 	for ( ; levels; --levels) {
2514 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2515 
2516 		tce_table_size /= direct_table_size;
2517 		tce_table_size <<= 3;
2518 		tce_table_size = max_t(unsigned long,
2519 				tce_table_size, direct_table_size);
2520 	}
2521 
2522 	return bytes + bytes; /* one for HW table, one for userspace copy */
2523 }
2524 
2525 static long pnv_pci_ioda2_create_table_userspace(
2526 		struct iommu_table_group *table_group,
2527 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2528 		struct iommu_table **ptbl)
2529 {
2530 	long ret = pnv_pci_ioda2_create_table(table_group,
2531 			num, page_shift, window_size, levels, true, ptbl);
2532 
2533 	if (!ret)
2534 		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2535 				page_shift, window_size, levels);
2536 	return ret;
2537 }
2538 
2539 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2540 {
2541 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2542 						table_group);
2543 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2544 	struct iommu_table *tbl = pe->table_group.tables[0];
2545 
2546 	pnv_pci_ioda2_set_bypass(pe, false);
2547 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2548 	if (pe->pbus)
2549 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2550 	iommu_tce_table_put(tbl);
2551 }
2552 
2553 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2554 {
2555 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2556 						table_group);
2557 
2558 	pnv_pci_ioda2_setup_default_config(pe);
2559 	if (pe->pbus)
2560 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2561 }
2562 
2563 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2564 	.get_table_size = pnv_pci_ioda2_get_table_size,
2565 	.create_table = pnv_pci_ioda2_create_table_userspace,
2566 	.set_window = pnv_pci_ioda2_set_window,
2567 	.unset_window = pnv_pci_ioda2_unset_window,
2568 	.take_ownership = pnv_ioda2_take_ownership,
2569 	.release_ownership = pnv_ioda2_release_ownership,
2570 };
2571 
2572 static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe,
2573 		struct iommu_table_group *table_group,
2574 		struct pci_bus *bus)
2575 {
2576 	struct pci_dev *dev;
2577 
2578 	list_for_each_entry(dev, &bus->devices, bus_list) {
2579 		iommu_add_device(table_group, &dev->dev);
2580 
2581 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2582 			pnv_ioda_setup_bus_iommu_group_add_devices(pe,
2583 					table_group, dev->subordinate);
2584 	}
2585 }
2586 
2587 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
2588 		struct iommu_table_group *table_group, struct pci_bus *bus)
2589 {
2590 
2591 	if (pe->flags & PNV_IODA_PE_DEV)
2592 		iommu_add_device(table_group, &pe->pdev->dev);
2593 
2594 	if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus)
2595 		pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group,
2596 				bus);
2597 }
2598 
2599 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
2600 
2601 static void pnv_pci_ioda_setup_iommu_api(void)
2602 {
2603 	struct pci_controller *hose;
2604 	struct pnv_phb *phb;
2605 	struct pnv_ioda_pe *pe;
2606 
2607 	/*
2608 	 * There are 4 types of PEs:
2609 	 * - PNV_IODA_PE_BUS: a downstream port with an adapter,
2610 	 *   created from pnv_pci_setup_bridge();
2611 	 * - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it,
2612 	 *   created from pnv_pci_setup_bridge();
2613 	 * - PNV_IODA_PE_VF: a SRIOV virtual function,
2614 	 *   created from pnv_pcibios_sriov_enable();
2615 	 * - PNV_IODA_PE_DEV: an NPU or OCAPI device,
2616 	 *   created from pnv_pci_ioda_fixup().
2617 	 *
2618 	 * Normally a PE is represented by an IOMMU group, however for
2619 	 * devices with side channels the groups need to be more strict.
2620 	 */
2621 	list_for_each_entry(hose, &hose_list, list_node) {
2622 		phb = hose->private_data;
2623 
2624 		if (phb->type == PNV_PHB_NPU_NVLINK ||
2625 		    phb->type == PNV_PHB_NPU_OCAPI)
2626 			continue;
2627 
2628 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2629 			struct iommu_table_group *table_group;
2630 
2631 			table_group = pnv_try_setup_npu_table_group(pe);
2632 			if (!table_group) {
2633 				if (!pnv_pci_ioda_pe_dma_weight(pe))
2634 					continue;
2635 
2636 				table_group = &pe->table_group;
2637 				iommu_register_group(&pe->table_group,
2638 						pe->phb->hose->global_number,
2639 						pe->pe_number);
2640 			}
2641 			pnv_ioda_setup_bus_iommu_group(pe, table_group,
2642 					pe->pbus);
2643 		}
2644 	}
2645 
2646 	/*
2647 	 * Now we have all PHBs discovered, time to add NPU devices to
2648 	 * the corresponding IOMMU groups.
2649 	 */
2650 	list_for_each_entry(hose, &hose_list, list_node) {
2651 		unsigned long  pgsizes;
2652 
2653 		phb = hose->private_data;
2654 
2655 		if (phb->type != PNV_PHB_NPU_NVLINK)
2656 			continue;
2657 
2658 		pgsizes = pnv_ioda_parse_tce_sizes(phb);
2659 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2660 			/*
2661 			 * IODA2 bridges get this set up from
2662 			 * pci_controller_ops::setup_bridge but NPU bridges
2663 			 * do not have this hook defined so we do it here.
2664 			 */
2665 			pe->table_group.pgsizes = pgsizes;
2666 			pnv_npu_compound_attach(pe);
2667 		}
2668 	}
2669 }
2670 #else /* !CONFIG_IOMMU_API */
2671 static void pnv_pci_ioda_setup_iommu_api(void) { };
2672 #endif
2673 
2674 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2675 {
2676 	struct pci_controller *hose = phb->hose;
2677 	struct device_node *dn = hose->dn;
2678 	unsigned long mask = 0;
2679 	int i, rc, count;
2680 	u32 val;
2681 
2682 	count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2683 	if (count <= 0) {
2684 		mask = SZ_4K | SZ_64K;
2685 		/* Add 16M for POWER8 by default */
2686 		if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2687 				!cpu_has_feature(CPU_FTR_ARCH_300))
2688 			mask |= SZ_16M | SZ_256M;
2689 		return mask;
2690 	}
2691 
2692 	for (i = 0; i < count; i++) {
2693 		rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2694 						i, &val);
2695 		if (rc == 0)
2696 			mask |= 1ULL << val;
2697 	}
2698 
2699 	return mask;
2700 }
2701 
2702 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2703 				       struct pnv_ioda_pe *pe)
2704 {
2705 	int64_t rc;
2706 
2707 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2708 		return;
2709 
2710 	/* TVE #1 is selected by PCI address bit 59 */
2711 	pe->tce_bypass_base = 1ull << 59;
2712 
2713 	/* The PE will reserve all possible 32-bits space */
2714 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2715 		phb->ioda.m32_pci_base);
2716 
2717 	/* Setup linux iommu table */
2718 	pe->table_group.tce32_start = 0;
2719 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2720 	pe->table_group.max_dynamic_windows_supported =
2721 			IOMMU_TABLE_GROUP_MAX_TABLES;
2722 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2723 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2724 #ifdef CONFIG_IOMMU_API
2725 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2726 #endif
2727 
2728 	rc = pnv_pci_ioda2_setup_default_config(pe);
2729 	if (rc)
2730 		return;
2731 
2732 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2733 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2734 }
2735 
2736 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2737 {
2738 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2739 					   ioda.irq_chip);
2740 
2741 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2742 }
2743 
2744 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2745 {
2746 	int64_t rc;
2747 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2748 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2749 
2750 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2751 	WARN_ON_ONCE(rc);
2752 
2753 	icp_native_eoi(d);
2754 }
2755 
2756 
2757 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2758 {
2759 	struct irq_data *idata;
2760 	struct irq_chip *ichip;
2761 
2762 	/* The MSI EOI OPAL call is only needed on PHB3 */
2763 	if (phb->model != PNV_PHB_MODEL_PHB3)
2764 		return;
2765 
2766 	if (!phb->ioda.irq_chip_init) {
2767 		/*
2768 		 * First time we setup an MSI IRQ, we need to setup the
2769 		 * corresponding IRQ chip to route correctly.
2770 		 */
2771 		idata = irq_get_irq_data(virq);
2772 		ichip = irq_data_get_irq_chip(idata);
2773 		phb->ioda.irq_chip_init = 1;
2774 		phb->ioda.irq_chip = *ichip;
2775 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2776 	}
2777 	irq_set_chip(virq, &phb->ioda.irq_chip);
2778 }
2779 
2780 /*
2781  * Returns true iff chip is something that we could call
2782  * pnv_opal_pci_msi_eoi for.
2783  */
2784 bool is_pnv_opal_msi(struct irq_chip *chip)
2785 {
2786 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2787 }
2788 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2789 
2790 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2791 				  unsigned int hwirq, unsigned int virq,
2792 				  unsigned int is_64, struct msi_msg *msg)
2793 {
2794 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2795 	unsigned int xive_num = hwirq - phb->msi_base;
2796 	__be32 data;
2797 	int rc;
2798 
2799 	/* No PE assigned ? bail out ... no MSI for you ! */
2800 	if (pe == NULL)
2801 		return -ENXIO;
2802 
2803 	/* Check if we have an MVE */
2804 	if (pe->mve_number < 0)
2805 		return -ENXIO;
2806 
2807 	/* Force 32-bit MSI on some broken devices */
2808 	if (dev->no_64bit_msi)
2809 		is_64 = 0;
2810 
2811 	/* Assign XIVE to PE */
2812 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2813 	if (rc) {
2814 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2815 			pci_name(dev), rc, xive_num);
2816 		return -EIO;
2817 	}
2818 
2819 	if (is_64) {
2820 		__be64 addr64;
2821 
2822 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2823 				     &addr64, &data);
2824 		if (rc) {
2825 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2826 				pci_name(dev), rc);
2827 			return -EIO;
2828 		}
2829 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2830 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2831 	} else {
2832 		__be32 addr32;
2833 
2834 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2835 				     &addr32, &data);
2836 		if (rc) {
2837 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2838 				pci_name(dev), rc);
2839 			return -EIO;
2840 		}
2841 		msg->address_hi = 0;
2842 		msg->address_lo = be32_to_cpu(addr32);
2843 	}
2844 	msg->data = be32_to_cpu(data);
2845 
2846 	pnv_set_msi_irq_chip(phb, virq);
2847 
2848 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2849 		 " address=%x_%08x data=%x PE# %x\n",
2850 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2851 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2852 
2853 	return 0;
2854 }
2855 
2856 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2857 {
2858 	unsigned int count;
2859 	const __be32 *prop = of_get_property(phb->hose->dn,
2860 					     "ibm,opal-msi-ranges", NULL);
2861 	if (!prop) {
2862 		/* BML Fallback */
2863 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2864 	}
2865 	if (!prop)
2866 		return;
2867 
2868 	phb->msi_base = be32_to_cpup(prop);
2869 	count = be32_to_cpup(prop + 1);
2870 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2871 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2872 		       phb->hose->global_number);
2873 		return;
2874 	}
2875 
2876 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2877 	phb->msi32_support = 1;
2878 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2879 		count, phb->msi_base);
2880 }
2881 
2882 #ifdef CONFIG_PCI_IOV
2883 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2884 {
2885 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2886 	struct pnv_phb *phb = hose->private_data;
2887 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2888 	struct resource *res;
2889 	int i;
2890 	resource_size_t size, total_vf_bar_sz;
2891 	struct pci_dn *pdn;
2892 	int mul, total_vfs;
2893 
2894 	if (!pdev->is_physfn || pci_dev_is_added(pdev))
2895 		return;
2896 
2897 	pdn = pci_get_pdn(pdev);
2898 	pdn->vfs_expanded = 0;
2899 	pdn->m64_single_mode = false;
2900 
2901 	total_vfs = pci_sriov_get_totalvfs(pdev);
2902 	mul = phb->ioda.total_pe_num;
2903 	total_vf_bar_sz = 0;
2904 
2905 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2906 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2907 		if (!res->flags || res->parent)
2908 			continue;
2909 		if (!pnv_pci_is_m64_flags(res->flags)) {
2910 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2911 					" non M64 VF BAR%d: %pR. \n",
2912 				 i, res);
2913 			goto truncate_iov;
2914 		}
2915 
2916 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2917 				i + PCI_IOV_RESOURCES);
2918 
2919 		/*
2920 		 * If bigger than quarter of M64 segment size, just round up
2921 		 * power of two.
2922 		 *
2923 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2924 		 * with other devices, IOV BAR size is expanded to be
2925 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2926 		 * segment size , the expanded size would equal to half of the
2927 		 * whole M64 space size, which will exhaust the M64 Space and
2928 		 * limit the system flexibility.  This is a design decision to
2929 		 * set the boundary to quarter of the M64 segment size.
2930 		 */
2931 		if (total_vf_bar_sz > gate) {
2932 			mul = roundup_pow_of_two(total_vfs);
2933 			dev_info(&pdev->dev,
2934 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2935 				total_vf_bar_sz, gate, mul);
2936 			pdn->m64_single_mode = true;
2937 			break;
2938 		}
2939 	}
2940 
2941 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2942 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2943 		if (!res->flags || res->parent)
2944 			continue;
2945 
2946 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2947 		/*
2948 		 * On PHB3, the minimum size alignment of M64 BAR in single
2949 		 * mode is 32MB.
2950 		 */
2951 		if (pdn->m64_single_mode && (size < SZ_32M))
2952 			goto truncate_iov;
2953 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2954 		res->end = res->start + size * mul - 1;
2955 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2956 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2957 			 i, res, mul);
2958 	}
2959 	pdn->vfs_expanded = mul;
2960 
2961 	return;
2962 
2963 truncate_iov:
2964 	/* To save MMIO space, IOV BAR is truncated. */
2965 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2966 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2967 		res->flags = 0;
2968 		res->end = res->start - 1;
2969 	}
2970 }
2971 #endif /* CONFIG_PCI_IOV */
2972 
2973 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2974 				  struct resource *res)
2975 {
2976 	struct pnv_phb *phb = pe->phb;
2977 	struct pci_bus_region region;
2978 	int index;
2979 	int64_t rc;
2980 
2981 	if (!res || !res->flags || res->start > res->end)
2982 		return;
2983 
2984 	if (res->flags & IORESOURCE_IO) {
2985 		region.start = res->start - phb->ioda.io_pci_base;
2986 		region.end   = res->end - phb->ioda.io_pci_base;
2987 		index = region.start / phb->ioda.io_segsize;
2988 
2989 		while (index < phb->ioda.total_pe_num &&
2990 		       region.start <= region.end) {
2991 			phb->ioda.io_segmap[index] = pe->pe_number;
2992 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2993 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2994 			if (rc != OPAL_SUCCESS) {
2995 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2996 				       __func__, rc, index, pe->pe_number);
2997 				break;
2998 			}
2999 
3000 			region.start += phb->ioda.io_segsize;
3001 			index++;
3002 		}
3003 	} else if ((res->flags & IORESOURCE_MEM) &&
3004 		   !pnv_pci_is_m64(phb, res)) {
3005 		region.start = res->start -
3006 			       phb->hose->mem_offset[0] -
3007 			       phb->ioda.m32_pci_base;
3008 		region.end   = res->end -
3009 			       phb->hose->mem_offset[0] -
3010 			       phb->ioda.m32_pci_base;
3011 		index = region.start / phb->ioda.m32_segsize;
3012 
3013 		while (index < phb->ioda.total_pe_num &&
3014 		       region.start <= region.end) {
3015 			phb->ioda.m32_segmap[index] = pe->pe_number;
3016 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3017 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3018 			if (rc != OPAL_SUCCESS) {
3019 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3020 				       __func__, rc, index, pe->pe_number);
3021 				break;
3022 			}
3023 
3024 			region.start += phb->ioda.m32_segsize;
3025 			index++;
3026 		}
3027 	}
3028 }
3029 
3030 /*
3031  * This function is supposed to be called on basis of PE from top
3032  * to bottom style. So the the I/O or MMIO segment assigned to
3033  * parent PE could be overridden by its child PEs if necessary.
3034  */
3035 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3036 {
3037 	struct pci_dev *pdev;
3038 	int i;
3039 
3040 	/*
3041 	 * NOTE: We only care PCI bus based PE for now. For PCI
3042 	 * device based PE, for example SRIOV sensitive VF should
3043 	 * be figured out later.
3044 	 */
3045 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3046 
3047 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3048 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3049 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3050 
3051 		/*
3052 		 * If the PE contains all subordinate PCI buses, the
3053 		 * windows of the child bridges should be mapped to
3054 		 * the PE as well.
3055 		 */
3056 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3057 			continue;
3058 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3059 			pnv_ioda_setup_pe_res(pe,
3060 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3061 	}
3062 }
3063 
3064 #ifdef CONFIG_DEBUG_FS
3065 static int pnv_pci_diag_data_set(void *data, u64 val)
3066 {
3067 	struct pci_controller *hose;
3068 	struct pnv_phb *phb;
3069 	s64 ret;
3070 
3071 	if (val != 1ULL)
3072 		return -EINVAL;
3073 
3074 	hose = (struct pci_controller *)data;
3075 	if (!hose || !hose->private_data)
3076 		return -ENODEV;
3077 
3078 	phb = hose->private_data;
3079 
3080 	/* Retrieve the diag data from firmware */
3081 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3082 					  phb->diag_data_size);
3083 	if (ret != OPAL_SUCCESS)
3084 		return -EIO;
3085 
3086 	/* Print the diag data to the kernel log */
3087 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3088 	return 0;
3089 }
3090 
3091 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3092 			pnv_pci_diag_data_set, "%llu\n");
3093 
3094 #endif /* CONFIG_DEBUG_FS */
3095 
3096 static void pnv_pci_ioda_create_dbgfs(void)
3097 {
3098 #ifdef CONFIG_DEBUG_FS
3099 	struct pci_controller *hose, *tmp;
3100 	struct pnv_phb *phb;
3101 	char name[16];
3102 
3103 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3104 		phb = hose->private_data;
3105 
3106 		/* Notify initialization of PHB done */
3107 		phb->initialized = 1;
3108 
3109 		sprintf(name, "PCI%04x", hose->global_number);
3110 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3111 		if (!phb->dbgfs) {
3112 			pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3113 				__func__, hose->global_number);
3114 			continue;
3115 		}
3116 
3117 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3118 				    &pnv_pci_diag_data_fops);
3119 	}
3120 #endif /* CONFIG_DEBUG_FS */
3121 }
3122 
3123 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3124 {
3125 	struct pci_dev *dev = bus->self;
3126 	struct pci_bus *child;
3127 
3128 	/* Empty bus ? bail */
3129 	if (list_empty(&bus->devices))
3130 		return;
3131 
3132 	/*
3133 	 * If there's a bridge associated with that bus enable it. This works
3134 	 * around races in the generic code if the enabling is done during
3135 	 * parallel probing. This can be removed once those races have been
3136 	 * fixed.
3137 	 */
3138 	if (dev) {
3139 		int rc = pci_enable_device(dev);
3140 		if (rc)
3141 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
3142 		pci_set_master(dev);
3143 	}
3144 
3145 	/* Perform the same to child busses */
3146 	list_for_each_entry(child, &bus->children, node)
3147 		pnv_pci_enable_bridge(child);
3148 }
3149 
3150 static void pnv_pci_enable_bridges(void)
3151 {
3152 	struct pci_controller *hose;
3153 
3154 	list_for_each_entry(hose, &hose_list, list_node)
3155 		pnv_pci_enable_bridge(hose->bus);
3156 }
3157 
3158 static void pnv_pci_ioda_fixup(void)
3159 {
3160 	pnv_pci_ioda_setup_PEs();
3161 	pnv_pci_ioda_setup_iommu_api();
3162 	pnv_pci_ioda_create_dbgfs();
3163 
3164 	pnv_pci_enable_bridges();
3165 
3166 #ifdef CONFIG_EEH
3167 	pnv_eeh_post_init();
3168 #endif
3169 }
3170 
3171 /*
3172  * Returns the alignment for I/O or memory windows for P2P
3173  * bridges. That actually depends on how PEs are segmented.
3174  * For now, we return I/O or M32 segment size for PE sensitive
3175  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3176  * 1MiB for memory) will be returned.
3177  *
3178  * The current PCI bus might be put into one PE, which was
3179  * create against the parent PCI bridge. For that case, we
3180  * needn't enlarge the alignment so that we can save some
3181  * resources.
3182  */
3183 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3184 						unsigned long type)
3185 {
3186 	struct pci_dev *bridge;
3187 	struct pci_controller *hose = pci_bus_to_host(bus);
3188 	struct pnv_phb *phb = hose->private_data;
3189 	int num_pci_bridges = 0;
3190 
3191 	bridge = bus->self;
3192 	while (bridge) {
3193 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3194 			num_pci_bridges++;
3195 			if (num_pci_bridges >= 2)
3196 				return 1;
3197 		}
3198 
3199 		bridge = bridge->bus->self;
3200 	}
3201 
3202 	/*
3203 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3204 	 * alignment for any 64-bit resource, PCIe doesn't care and
3205 	 * bridges only do 64-bit prefetchable anyway.
3206 	 */
3207 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3208 		return phb->ioda.m64_segsize;
3209 	if (type & IORESOURCE_MEM)
3210 		return phb->ioda.m32_segsize;
3211 
3212 	return phb->ioda.io_segsize;
3213 }
3214 
3215 /*
3216  * We are updating root port or the upstream port of the
3217  * bridge behind the root port with PHB's windows in order
3218  * to accommodate the changes on required resources during
3219  * PCI (slot) hotplug, which is connected to either root
3220  * port or the downstream ports of PCIe switch behind the
3221  * root port.
3222  */
3223 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3224 					   unsigned long type)
3225 {
3226 	struct pci_controller *hose = pci_bus_to_host(bus);
3227 	struct pnv_phb *phb = hose->private_data;
3228 	struct pci_dev *bridge = bus->self;
3229 	struct resource *r, *w;
3230 	bool msi_region = false;
3231 	int i;
3232 
3233 	/* Check if we need apply fixup to the bridge's windows */
3234 	if (!pci_is_root_bus(bridge->bus) &&
3235 	    !pci_is_root_bus(bridge->bus->self->bus))
3236 		return;
3237 
3238 	/* Fixup the resources */
3239 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3240 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3241 		if (!r->flags || !r->parent)
3242 			continue;
3243 
3244 		w = NULL;
3245 		if (r->flags & type & IORESOURCE_IO)
3246 			w = &hose->io_resource;
3247 		else if (pnv_pci_is_m64(phb, r) &&
3248 			 (type & IORESOURCE_PREFETCH) &&
3249 			 phb->ioda.m64_segsize)
3250 			w = &hose->mem_resources[1];
3251 		else if (r->flags & type & IORESOURCE_MEM) {
3252 			w = &hose->mem_resources[0];
3253 			msi_region = true;
3254 		}
3255 
3256 		r->start = w->start;
3257 		r->end = w->end;
3258 
3259 		/* The 64KB 32-bits MSI region shouldn't be included in
3260 		 * the 32-bits bridge window. Otherwise, we can see strange
3261 		 * issues. One of them is EEH error observed on Garrison.
3262 		 *
3263 		 * Exclude top 1MB region which is the minimal alignment of
3264 		 * 32-bits bridge window.
3265 		 */
3266 		if (msi_region) {
3267 			r->end += 0x10000;
3268 			r->end -= 0x100000;
3269 		}
3270 	}
3271 }
3272 
3273 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3274 {
3275 	struct pci_controller *hose = pci_bus_to_host(bus);
3276 	struct pnv_phb *phb = hose->private_data;
3277 	struct pci_dev *bridge = bus->self;
3278 	struct pnv_ioda_pe *pe;
3279 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3280 
3281 	/* Extend bridge's windows if necessary */
3282 	pnv_pci_fixup_bridge_resources(bus, type);
3283 
3284 	/* The PE for root bus should be realized before any one else */
3285 	if (!phb->ioda.root_pe_populated) {
3286 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3287 		if (pe) {
3288 			phb->ioda.root_pe_idx = pe->pe_number;
3289 			phb->ioda.root_pe_populated = true;
3290 		}
3291 	}
3292 
3293 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3294 	if (list_empty(&bus->devices))
3295 		return;
3296 
3297 	/* Reserve PEs according to used M64 resources */
3298 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
3299 
3300 	/*
3301 	 * Assign PE. We might run here because of partial hotplug.
3302 	 * For the case, we just pick up the existing PE and should
3303 	 * not allocate resources again.
3304 	 */
3305 	pe = pnv_ioda_setup_bus_PE(bus, all);
3306 	if (!pe)
3307 		return;
3308 
3309 	pnv_ioda_setup_pe_seg(pe);
3310 	switch (phb->type) {
3311 	case PNV_PHB_IODA1:
3312 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3313 		break;
3314 	case PNV_PHB_IODA2:
3315 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3316 		break;
3317 	default:
3318 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3319 			__func__, phb->hose->global_number, phb->type);
3320 	}
3321 }
3322 
3323 static resource_size_t pnv_pci_default_alignment(void)
3324 {
3325 	return PAGE_SIZE;
3326 }
3327 
3328 #ifdef CONFIG_PCI_IOV
3329 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3330 						      int resno)
3331 {
3332 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3333 	struct pnv_phb *phb = hose->private_data;
3334 	struct pci_dn *pdn = pci_get_pdn(pdev);
3335 	resource_size_t align;
3336 
3337 	/*
3338 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3339 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3340 	 * BAR should be size aligned.
3341 	 *
3342 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3343 	 * powernv-specific hardware restriction is gone. But if just use the
3344 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3345 	 * in one segment of M64 #15, which introduces the PE conflict between
3346 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3347 	 * m64_segsize.
3348 	 *
3349 	 * This function returns the total IOV BAR size if M64 BAR is in
3350 	 * Shared PE mode or just VF BAR size if not.
3351 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3352 	 * M64 segment size if IOV BAR size is less.
3353 	 */
3354 	align = pci_iov_resource_size(pdev, resno);
3355 	if (!pdn->vfs_expanded)
3356 		return align;
3357 	if (pdn->m64_single_mode)
3358 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3359 
3360 	return pdn->vfs_expanded * align;
3361 }
3362 #endif /* CONFIG_PCI_IOV */
3363 
3364 /* Prevent enabling devices for which we couldn't properly
3365  * assign a PE
3366  */
3367 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3368 {
3369 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3370 	struct pnv_phb *phb = hose->private_data;
3371 	struct pci_dn *pdn;
3372 
3373 	/* The function is probably called while the PEs have
3374 	 * not be created yet. For example, resource reassignment
3375 	 * during PCI probe period. We just skip the check if
3376 	 * PEs isn't ready.
3377 	 */
3378 	if (!phb->initialized)
3379 		return true;
3380 
3381 	pdn = pci_get_pdn(dev);
3382 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3383 		return false;
3384 
3385 	return true;
3386 }
3387 
3388 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3389 				       int num)
3390 {
3391 	struct pnv_ioda_pe *pe = container_of(table_group,
3392 					      struct pnv_ioda_pe, table_group);
3393 	struct pnv_phb *phb = pe->phb;
3394 	unsigned int idx;
3395 	long rc;
3396 
3397 	pe_info(pe, "Removing DMA window #%d\n", num);
3398 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3399 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3400 			continue;
3401 
3402 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3403 						idx, 0, 0ul, 0ul, 0ul);
3404 		if (rc != OPAL_SUCCESS) {
3405 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3406 				rc, idx);
3407 			return rc;
3408 		}
3409 
3410 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3411 	}
3412 
3413 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3414 	return OPAL_SUCCESS;
3415 }
3416 
3417 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3418 {
3419 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3420 	struct iommu_table *tbl = pe->table_group.tables[0];
3421 	int64_t rc;
3422 
3423 	if (!weight)
3424 		return;
3425 
3426 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3427 	if (rc != OPAL_SUCCESS)
3428 		return;
3429 
3430 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3431 	if (pe->table_group.group) {
3432 		iommu_group_put(pe->table_group.group);
3433 		WARN_ON(pe->table_group.group);
3434 	}
3435 
3436 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3437 	iommu_tce_table_put(tbl);
3438 }
3439 
3440 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3441 {
3442 	struct iommu_table *tbl = pe->table_group.tables[0];
3443 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3444 #ifdef CONFIG_IOMMU_API
3445 	int64_t rc;
3446 #endif
3447 
3448 	if (!weight)
3449 		return;
3450 
3451 #ifdef CONFIG_IOMMU_API
3452 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3453 	if (rc)
3454 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
3455 #endif
3456 
3457 	pnv_pci_ioda2_set_bypass(pe, false);
3458 	if (pe->table_group.group) {
3459 		iommu_group_put(pe->table_group.group);
3460 		WARN_ON(pe->table_group.group);
3461 	}
3462 
3463 	iommu_tce_table_put(tbl);
3464 }
3465 
3466 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3467 				 unsigned short win,
3468 				 unsigned int *map)
3469 {
3470 	struct pnv_phb *phb = pe->phb;
3471 	int idx;
3472 	int64_t rc;
3473 
3474 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3475 		if (map[idx] != pe->pe_number)
3476 			continue;
3477 
3478 		if (win == OPAL_M64_WINDOW_TYPE)
3479 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3480 					phb->ioda.reserved_pe_idx, win,
3481 					idx / PNV_IODA1_M64_SEGS,
3482 					idx % PNV_IODA1_M64_SEGS);
3483 		else
3484 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3485 					phb->ioda.reserved_pe_idx, win, 0, idx);
3486 
3487 		if (rc != OPAL_SUCCESS)
3488 			pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
3489 				rc, win, idx);
3490 
3491 		map[idx] = IODA_INVALID_PE;
3492 	}
3493 }
3494 
3495 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3496 {
3497 	struct pnv_phb *phb = pe->phb;
3498 
3499 	if (phb->type == PNV_PHB_IODA1) {
3500 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3501 				     phb->ioda.io_segmap);
3502 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3503 				     phb->ioda.m32_segmap);
3504 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3505 				     phb->ioda.m64_segmap);
3506 	} else if (phb->type == PNV_PHB_IODA2) {
3507 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3508 				     phb->ioda.m32_segmap);
3509 	}
3510 }
3511 
3512 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3513 {
3514 	struct pnv_phb *phb = pe->phb;
3515 	struct pnv_ioda_pe *slave, *tmp;
3516 
3517 	list_del(&pe->list);
3518 	switch (phb->type) {
3519 	case PNV_PHB_IODA1:
3520 		pnv_pci_ioda1_release_pe_dma(pe);
3521 		break;
3522 	case PNV_PHB_IODA2:
3523 		pnv_pci_ioda2_release_pe_dma(pe);
3524 		break;
3525 	default:
3526 		WARN_ON(1);
3527 	}
3528 
3529 	pnv_ioda_release_pe_seg(pe);
3530 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3531 
3532 	/* Release slave PEs in the compound PE */
3533 	if (pe->flags & PNV_IODA_PE_MASTER) {
3534 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3535 			list_del(&slave->list);
3536 			pnv_ioda_free_pe(slave);
3537 		}
3538 	}
3539 
3540 	/*
3541 	 * The PE for root bus can be removed because of hotplug in EEH
3542 	 * recovery for fenced PHB error. We need to mark the PE dead so
3543 	 * that it can be populated again in PCI hot add path. The PE
3544 	 * shouldn't be destroyed as it's the global reserved resource.
3545 	 */
3546 	if (phb->ioda.root_pe_populated &&
3547 	    phb->ioda.root_pe_idx == pe->pe_number)
3548 		phb->ioda.root_pe_populated = false;
3549 	else
3550 		pnv_ioda_free_pe(pe);
3551 }
3552 
3553 static void pnv_pci_release_device(struct pci_dev *pdev)
3554 {
3555 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3556 	struct pnv_phb *phb = hose->private_data;
3557 	struct pci_dn *pdn = pci_get_pdn(pdev);
3558 	struct pnv_ioda_pe *pe;
3559 
3560 	if (pdev->is_virtfn)
3561 		return;
3562 
3563 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3564 		return;
3565 
3566 	/*
3567 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3568 	 * isn't removed and added afterwards in this scenario. We should
3569 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3570 	 * device count is decreased on removing devices while failing to
3571 	 * be increased on adding devices. It leads to unbalanced PE's device
3572 	 * count and eventually make normal PCI hotplug path broken.
3573 	 */
3574 	pe = &phb->ioda.pe_array[pdn->pe_number];
3575 	pdn->pe_number = IODA_INVALID_PE;
3576 
3577 	WARN_ON(--pe->device_count < 0);
3578 	if (pe->device_count == 0)
3579 		pnv_ioda_release_pe(pe);
3580 }
3581 
3582 static void pnv_npu_disable_device(struct pci_dev *pdev)
3583 {
3584 	struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
3585 	struct eeh_pe *eehpe = edev ? edev->pe : NULL;
3586 
3587 	if (eehpe && eeh_ops && eeh_ops->reset)
3588 		eeh_ops->reset(eehpe, EEH_RESET_HOT);
3589 }
3590 
3591 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3592 {
3593 	struct pnv_phb *phb = hose->private_data;
3594 
3595 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3596 		       OPAL_ASSERT_RESET);
3597 }
3598 
3599 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3600 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3601 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3602 	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
3603 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3604 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3605 	.enable_device_hook	= pnv_pci_enable_device_hook,
3606 	.release_device		= pnv_pci_release_device,
3607 	.window_alignment	= pnv_pci_window_alignment,
3608 	.setup_bridge		= pnv_pci_setup_bridge,
3609 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3610 	.shutdown		= pnv_pci_ioda_shutdown,
3611 };
3612 
3613 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3614 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3615 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3616 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3617 	.enable_device_hook	= pnv_pci_enable_device_hook,
3618 	.window_alignment	= pnv_pci_window_alignment,
3619 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3620 	.shutdown		= pnv_pci_ioda_shutdown,
3621 	.disable_device		= pnv_npu_disable_device,
3622 };
3623 
3624 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3625 	.enable_device_hook	= pnv_pci_enable_device_hook,
3626 	.window_alignment	= pnv_pci_window_alignment,
3627 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3628 	.shutdown		= pnv_pci_ioda_shutdown,
3629 };
3630 
3631 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3632 					 u64 hub_id, int ioda_type)
3633 {
3634 	struct pci_controller *hose;
3635 	struct pnv_phb *phb;
3636 	unsigned long size, m64map_off, m32map_off, pemap_off;
3637 	unsigned long iomap_off = 0, dma32map_off = 0;
3638 	struct resource r;
3639 	const __be64 *prop64;
3640 	const __be32 *prop32;
3641 	int len;
3642 	unsigned int segno;
3643 	u64 phb_id;
3644 	void *aux;
3645 	long rc;
3646 
3647 	if (!of_device_is_available(np))
3648 		return;
3649 
3650 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3651 
3652 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3653 	if (!prop64) {
3654 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3655 		return;
3656 	}
3657 	phb_id = be64_to_cpup(prop64);
3658 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3659 
3660 	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3661 	if (!phb)
3662 		panic("%s: Failed to allocate %zu bytes\n", __func__,
3663 		      sizeof(*phb));
3664 
3665 	/* Allocate PCI controller */
3666 	phb->hose = hose = pcibios_alloc_controller(np);
3667 	if (!phb->hose) {
3668 		pr_err("  Can't allocate PCI controller for %pOF\n",
3669 		       np);
3670 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3671 		return;
3672 	}
3673 
3674 	spin_lock_init(&phb->lock);
3675 	prop32 = of_get_property(np, "bus-range", &len);
3676 	if (prop32 && len == 8) {
3677 		hose->first_busno = be32_to_cpu(prop32[0]);
3678 		hose->last_busno = be32_to_cpu(prop32[1]);
3679 	} else {
3680 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3681 		hose->first_busno = 0;
3682 		hose->last_busno = 0xff;
3683 	}
3684 	hose->private_data = phb;
3685 	phb->hub_id = hub_id;
3686 	phb->opal_id = phb_id;
3687 	phb->type = ioda_type;
3688 	mutex_init(&phb->ioda.pe_alloc_mutex);
3689 
3690 	/* Detect specific models for error handling */
3691 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3692 		phb->model = PNV_PHB_MODEL_P7IOC;
3693 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3694 		phb->model = PNV_PHB_MODEL_PHB3;
3695 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3696 		phb->model = PNV_PHB_MODEL_NPU;
3697 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3698 		phb->model = PNV_PHB_MODEL_NPU2;
3699 	else
3700 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3701 
3702 	/* Initialize diagnostic data buffer */
3703 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3704 	if (prop32)
3705 		phb->diag_data_size = be32_to_cpup(prop32);
3706 	else
3707 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3708 
3709 	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3710 	if (!phb->diag_data)
3711 		panic("%s: Failed to allocate %u bytes\n", __func__,
3712 		      phb->diag_data_size);
3713 
3714 	/* Parse 32-bit and IO ranges (if any) */
3715 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3716 
3717 	/* Get registers */
3718 	if (!of_address_to_resource(np, 0, &r)) {
3719 		phb->regs_phys = r.start;
3720 		phb->regs = ioremap(r.start, resource_size(&r));
3721 		if (phb->regs == NULL)
3722 			pr_err("  Failed to map registers !\n");
3723 	}
3724 
3725 	/* Initialize more IODA stuff */
3726 	phb->ioda.total_pe_num = 1;
3727 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3728 	if (prop32)
3729 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3730 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3731 	if (prop32)
3732 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3733 
3734 	/* Invalidate RID to PE# mapping */
3735 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3736 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3737 
3738 	/* Parse 64-bit MMIO range */
3739 	pnv_ioda_parse_m64_window(phb);
3740 
3741 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3742 	/* FW Has already off top 64k of M32 space (MSI space) */
3743 	phb->ioda.m32_size += 0x10000;
3744 
3745 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3746 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3747 	phb->ioda.io_size = hose->pci_io_size;
3748 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3749 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3750 
3751 	/* Calculate how many 32-bit TCE segments we have */
3752 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3753 				PNV_IODA1_DMA32_SEGSIZE;
3754 
3755 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3756 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3757 			sizeof(unsigned long));
3758 	m64map_off = size;
3759 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3760 	m32map_off = size;
3761 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3762 	if (phb->type == PNV_PHB_IODA1) {
3763 		iomap_off = size;
3764 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3765 		dma32map_off = size;
3766 		size += phb->ioda.dma32_count *
3767 			sizeof(phb->ioda.dma32_segmap[0]);
3768 	}
3769 	pemap_off = size;
3770 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3771 	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3772 	if (!aux)
3773 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3774 	phb->ioda.pe_alloc = aux;
3775 	phb->ioda.m64_segmap = aux + m64map_off;
3776 	phb->ioda.m32_segmap = aux + m32map_off;
3777 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3778 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3779 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3780 	}
3781 	if (phb->type == PNV_PHB_IODA1) {
3782 		phb->ioda.io_segmap = aux + iomap_off;
3783 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3784 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3785 
3786 		phb->ioda.dma32_segmap = aux + dma32map_off;
3787 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3788 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3789 	}
3790 	phb->ioda.pe_array = aux + pemap_off;
3791 
3792 	/*
3793 	 * Choose PE number for root bus, which shouldn't have
3794 	 * M64 resources consumed by its child devices. To pick
3795 	 * the PE number adjacent to the reserved one if possible.
3796 	 */
3797 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3798 	if (phb->ioda.reserved_pe_idx == 0) {
3799 		phb->ioda.root_pe_idx = 1;
3800 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3801 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3802 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3803 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3804 	} else {
3805 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3806 	}
3807 
3808 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3809 	mutex_init(&phb->ioda.pe_list_mutex);
3810 
3811 	/* Calculate how many 32-bit TCE segments we have */
3812 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3813 				PNV_IODA1_DMA32_SEGSIZE;
3814 
3815 #if 0 /* We should really do that ... */
3816 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3817 					 window_type,
3818 					 window_num,
3819 					 starting_real_address,
3820 					 starting_pci_address,
3821 					 segment_size);
3822 #endif
3823 
3824 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3825 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3826 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3827 	if (phb->ioda.m64_size)
3828 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3829 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3830 	if (phb->ioda.io_size)
3831 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3832 			phb->ioda.io_size, phb->ioda.io_segsize);
3833 
3834 
3835 	phb->hose->ops = &pnv_pci_ops;
3836 	phb->get_pe_state = pnv_ioda_get_pe_state;
3837 	phb->freeze_pe = pnv_ioda_freeze_pe;
3838 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3839 
3840 	/* Setup MSI support */
3841 	pnv_pci_init_ioda_msis(phb);
3842 
3843 	/*
3844 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3845 	 * to let the PCI core do resource assignment. It's supposed
3846 	 * that the PCI core will do correct I/O and MMIO alignment
3847 	 * for the P2P bridge bars so that each PCI bus (excluding
3848 	 * the child P2P bridges) can form individual PE.
3849 	 */
3850 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3851 
3852 	switch (phb->type) {
3853 	case PNV_PHB_NPU_NVLINK:
3854 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3855 		break;
3856 	case PNV_PHB_NPU_OCAPI:
3857 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3858 		break;
3859 	default:
3860 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3861 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3862 	}
3863 
3864 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3865 
3866 #ifdef CONFIG_PCI_IOV
3867 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3868 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3869 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3870 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3871 #endif
3872 
3873 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3874 
3875 	/* Reset IODA tables to a clean state */
3876 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3877 	if (rc)
3878 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3879 
3880 	/*
3881 	 * If we're running in kdump kernel, the previous kernel never
3882 	 * shutdown PCI devices correctly. We already got IODA table
3883 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3884 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3885 	 * kernel parameter will force this reset too. Additionally,
3886 	 * if the IODA reset above failed then use a bigger hammer.
3887 	 * This can happen if we get a PHB fatal error in very early
3888 	 * boot.
3889 	 */
3890 	if (is_kdump_kernel() || pci_reset_phbs || rc) {
3891 		pr_info("  Issue PHB reset ...\n");
3892 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3893 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3894 	}
3895 
3896 	/* Remove M64 resource if we can't configure it successfully */
3897 	if (!phb->init_m64 || phb->init_m64(phb))
3898 		hose->mem_resources[1].flags = 0;
3899 }
3900 
3901 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3902 {
3903 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3904 }
3905 
3906 void __init pnv_pci_init_npu_phb(struct device_node *np)
3907 {
3908 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3909 }
3910 
3911 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3912 {
3913 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3914 }
3915 
3916 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3917 {
3918 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3919 	struct pnv_phb *phb = hose->private_data;
3920 
3921 	if (!machine_is(powernv))
3922 		return;
3923 
3924 	if (phb->type == PNV_PHB_NPU_OCAPI)
3925 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3926 }
3927 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3928 
3929 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3930 {
3931 	struct device_node *phbn;
3932 	const __be64 *prop64;
3933 	u64 hub_id;
3934 
3935 	pr_info("Probing IODA IO-Hub %pOF\n", np);
3936 
3937 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3938 	if (!prop64) {
3939 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3940 		return;
3941 	}
3942 	hub_id = be64_to_cpup(prop64);
3943 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3944 
3945 	/* Count child PHBs */
3946 	for_each_child_of_node(np, phbn) {
3947 		/* Look for IODA1 PHBs */
3948 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3949 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3950 	}
3951 }
3952