1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/delay.h>
17 #include <linux/string.h>
18 #include <linux/init.h>
19 #include <linux/bootmem.h>
20 #include <linux/irq.h>
21 #include <linux/io.h>
22 #include <linux/msi.h>
23 
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/prom.h>
27 #include <asm/pci-bridge.h>
28 #include <asm/machdep.h>
29 #include <asm/ppc-pci.h>
30 #include <asm/opal.h>
31 #include <asm/iommu.h>
32 #include <asm/tce.h>
33 
34 #include "powernv.h"
35 #include "pci.h"
36 
37 struct resource_wrap {
38 	struct list_head	link;
39 	resource_size_t		size;
40 	resource_size_t		align;
41 	struct pci_dev		*dev;	/* Set if it's a device */
42 	struct pci_bus		*bus;	/* Set if it's a bridge */
43 };
44 
45 static int __pe_printk(const char *level, const struct pnv_ioda_pe *pe,
46 		       struct va_format *vaf)
47 {
48 	char pfix[32];
49 
50 	if (pe->pdev)
51 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
52 	else
53 		sprintf(pfix, "%04x:%02x     ",
54 			pci_domain_nr(pe->pbus), pe->pbus->number);
55 	return printk("pci %s%s: [PE# %.3d] %pV", level, pfix, pe->pe_number, vaf);
56 }
57 
58 #define define_pe_printk_level(func, kern_level)		\
59 static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...)	\
60 {								\
61 	struct va_format vaf;					\
62 	va_list args;						\
63 	int r;							\
64 								\
65 	va_start(args, fmt);					\
66 								\
67 	vaf.fmt = fmt;						\
68 	vaf.va = &args;						\
69 								\
70 	r = __pe_printk(kern_level, pe, &vaf);			\
71 	va_end(args);						\
72 								\
73 	return r;						\
74 }								\
75 
76 define_pe_printk_level(pe_err, KERN_ERR);
77 define_pe_printk_level(pe_warn, KERN_WARNING);
78 define_pe_printk_level(pe_info, KERN_INFO);
79 
80 
81 /* Calculate resource usage & alignment requirement of a single
82  * device. This will also assign all resources within the device
83  * for a given type starting at 0 for the biggest one and then
84  * assigning in decreasing order of size.
85  */
86 static void __devinit pnv_ioda_calc_dev(struct pci_dev *dev, unsigned int flags,
87 					resource_size_t *size,
88 					resource_size_t *align)
89 {
90 	resource_size_t start;
91 	struct resource *r;
92 	int i;
93 
94 	pr_devel("  -> CDR %s\n", pci_name(dev));
95 
96 	*size = *align = 0;
97 
98 	/* Clear the resources out and mark them all unset */
99 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
100 		r = &dev->resource[i];
101 		if (!(r->flags & flags))
102 		    continue;
103 		if (r->start) {
104 			r->end -= r->start;
105 			r->start = 0;
106 		}
107 		r->flags |= IORESOURCE_UNSET;
108 	}
109 
110 	/* We currently keep all memory resources together, we
111 	 * will handle prefetch & 64-bit separately in the future
112 	 * but for now we stick everybody in M32
113 	 */
114 	start = 0;
115 	for (;;) {
116 		resource_size_t max_size = 0;
117 		int max_no = -1;
118 
119 		/* Find next biggest resource */
120 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
121 			r = &dev->resource[i];
122 			if (!(r->flags & IORESOURCE_UNSET) ||
123 			    !(r->flags & flags))
124 				continue;
125 			if (resource_size(r) > max_size) {
126 				max_size = resource_size(r);
127 				max_no = i;
128 			}
129 		}
130 		if (max_no < 0)
131 			break;
132 		r = &dev->resource[max_no];
133 		if (max_size > *align)
134 			*align = max_size;
135 		*size += max_size;
136 		r->start = start;
137 		start += max_size;
138 		r->end = r->start + max_size - 1;
139 		r->flags &= ~IORESOURCE_UNSET;
140 		pr_devel("  ->     R%d %016llx..%016llx\n",
141 			 max_no, r->start, r->end);
142 	}
143 	pr_devel("  <- CDR %s size=%llx align=%llx\n",
144 		 pci_name(dev), *size, *align);
145 }
146 
147 /* Allocate a resource "wrap" for a given device or bridge and
148  * insert it at the right position in the sorted list
149  */
150 static void __devinit pnv_ioda_add_wrap(struct list_head *list,
151 					struct pci_bus *bus,
152 					struct pci_dev *dev,
153 					resource_size_t size,
154 					resource_size_t align)
155 {
156 	struct resource_wrap *w1, *w = kzalloc(sizeof(*w), GFP_KERNEL);
157 
158 	w->size = size;
159 	w->align = align;
160 	w->dev = dev;
161 	w->bus = bus;
162 
163 	list_for_each_entry(w1, list, link) {
164 		if (w1->align < align) {
165 			list_add_tail(&w->link, &w1->link);
166 			return;
167 		}
168 	}
169 	list_add_tail(&w->link, list);
170 }
171 
172 /* Offset device resources of a given type */
173 static void __devinit pnv_ioda_offset_dev(struct pci_dev *dev,
174 					  unsigned int flags,
175 					  resource_size_t offset)
176 {
177 	struct resource *r;
178 	int i;
179 
180 	pr_devel("  -> ODR %s [%x] +%016llx\n", pci_name(dev), flags, offset);
181 
182 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
183 		r = &dev->resource[i];
184 		if (r->flags & flags) {
185 			dev->resource[i].start += offset;
186 			dev->resource[i].end += offset;
187 		}
188 	}
189 
190 	pr_devel("  <- ODR %s [%x] +%016llx\n", pci_name(dev), flags, offset);
191 }
192 
193 /* Offset bus resources (& all children) of a given type */
194 static void __devinit pnv_ioda_offset_bus(struct pci_bus *bus,
195 					  unsigned int flags,
196 					  resource_size_t offset)
197 {
198 	struct resource *r;
199 	struct pci_dev *dev;
200 	struct pci_bus *cbus;
201 	int i;
202 
203 	pr_devel("  -> OBR %s [%x] +%016llx\n",
204 		 bus->self ? pci_name(bus->self) : "root", flags, offset);
205 
206 	pci_bus_for_each_resource(bus, r, i) {
207 		if (r && (r->flags & flags)) {
208 			r->start += offset;
209 			r->end += offset;
210 		}
211 	}
212 	list_for_each_entry(dev, &bus->devices, bus_list)
213 		pnv_ioda_offset_dev(dev, flags, offset);
214 	list_for_each_entry(cbus, &bus->children, node)
215 		pnv_ioda_offset_bus(cbus, flags, offset);
216 
217 	pr_devel("  <- OBR %s [%x]\n",
218 		 bus->self ? pci_name(bus->self) : "root", flags);
219 }
220 
221 /* This is the guts of our IODA resource allocation. This is called
222  * recursively for each bus in the system. It calculates all the
223  * necessary size and requirements for children and assign them
224  * resources such that:
225  *
226  *   - Each function fits in it's own contiguous set of IO/M32
227  *     segment
228  *
229  *   - All segments behind a P2P bridge are contiguous and obey
230  *     alignment constraints of those bridges
231  */
232 static void __devinit pnv_ioda_calc_bus(struct pci_bus *bus, unsigned int flags,
233 					resource_size_t *size,
234 					resource_size_t *align)
235 {
236 	struct pci_controller *hose = pci_bus_to_host(bus);
237 	struct pnv_phb *phb = hose->private_data;
238 	resource_size_t dev_size, dev_align, start;
239 	resource_size_t min_align, min_balign;
240 	struct pci_dev *cdev;
241 	struct pci_bus *cbus;
242 	struct list_head head;
243 	struct resource_wrap *w;
244 	unsigned int bres;
245 
246 	*size = *align = 0;
247 
248 	pr_devel("-> CBR %s [%x]\n",
249 		 bus->self ? pci_name(bus->self) : "root", flags);
250 
251 	/* Calculate alignment requirements based on the type
252 	 * of resource we are working on
253 	 */
254 	if (flags & IORESOURCE_IO) {
255 		bres = 0;
256 		min_align = phb->ioda.io_segsize;
257 		min_balign = 0x1000;
258 	} else {
259 		bres = 1;
260 		min_align = phb->ioda.m32_segsize;
261 		min_balign = 0x100000;
262 	}
263 
264 	/* Gather all our children resources ordered by alignment */
265 	INIT_LIST_HEAD(&head);
266 
267 	/*   - Busses */
268 	list_for_each_entry(cbus, &bus->children, node) {
269 		pnv_ioda_calc_bus(cbus, flags, &dev_size, &dev_align);
270 		pnv_ioda_add_wrap(&head, cbus, NULL, dev_size, dev_align);
271 	}
272 
273 	/*   - Devices */
274 	list_for_each_entry(cdev, &bus->devices, bus_list) {
275 		pnv_ioda_calc_dev(cdev, flags, &dev_size, &dev_align);
276 		/* Align them to segment size */
277 		if (dev_align < min_align)
278 			dev_align = min_align;
279 		pnv_ioda_add_wrap(&head, NULL, cdev, dev_size, dev_align);
280 	}
281 	if (list_empty(&head))
282 		goto empty;
283 
284 	/* Now we can do two things: assign offsets to them within that
285 	 * level and get our total alignment & size requirements. The
286 	 * assignment algorithm is going to be uber-trivial for now, we
287 	 * can try to be smarter later at filling out holes.
288 	 */
289 	if (bus->self) {
290 		/* No offset for downstream bridges */
291 		start = 0;
292 	} else {
293 		/* Offset from the root */
294 		if (flags & IORESOURCE_IO)
295 			/* Don't hand out IO 0 */
296 			start = hose->io_resource.start + 0x1000;
297 		else
298 			start = hose->mem_resources[0].start;
299 	}
300 	while(!list_empty(&head)) {
301 		w = list_first_entry(&head, struct resource_wrap, link);
302 		list_del(&w->link);
303 		if (w->size) {
304 			if (start) {
305 				start = ALIGN(start, w->align);
306 				if (w->dev)
307 					pnv_ioda_offset_dev(w->dev,flags,start);
308 				else if (w->bus)
309 					pnv_ioda_offset_bus(w->bus,flags,start);
310 			}
311 			if (w->align > *align)
312 				*align = w->align;
313 		}
314 		start += w->size;
315 		kfree(w);
316 	}
317 	*size = start;
318 
319 	/* Align and setup bridge resources */
320 	*align = max_t(resource_size_t, *align,
321 		       max_t(resource_size_t, min_align, min_balign));
322 	*size = ALIGN(*size,
323 		      max_t(resource_size_t, min_align, min_balign));
324  empty:
325 	/* Only setup P2P's, not the PHB itself */
326 	if (bus->self) {
327 		struct resource *res = bus->resource[bres];
328 
329 		if (WARN_ON(res == NULL))
330 			return;
331 
332 		/*
333 		 * FIXME: We should probably export and call
334 		 * pci_bridge_check_ranges() to properly re-initialize
335 		 * the PCI portion of the flags here, and to detect
336 		 * what the bridge actually supports.
337 		 */
338 		res->start = 0;
339 		res->flags = (*size) ? flags : 0;
340 		res->end = (*size) ? (*size - 1) : 0;
341 	}
342 
343 	pr_devel("<- CBR %s [%x] *size=%016llx *align=%016llx\n",
344 		 bus->self ? pci_name(bus->self) : "root", flags,*size,*align);
345 }
346 
347 static struct pci_dn *pnv_ioda_get_pdn(struct pci_dev *dev)
348 {
349 	struct device_node *np;
350 
351 	np = pci_device_to_OF_node(dev);
352 	if (!np)
353 		return NULL;
354 	return PCI_DN(np);
355 }
356 
357 static void __devinit pnv_ioda_setup_pe_segments(struct pci_dev *dev)
358 {
359 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
360 	struct pnv_phb *phb = hose->private_data;
361 	struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
362 	unsigned int pe, i;
363 	resource_size_t pos;
364 	struct resource io_res;
365 	struct resource m32_res;
366 	struct pci_bus_region region;
367 	int rc;
368 
369 	/* Anything not referenced in the device-tree gets PE#0 */
370 	pe = pdn ? pdn->pe_number : 0;
371 
372 	/* Calculate the device min/max */
373 	io_res.start = m32_res.start = (resource_size_t)-1;
374 	io_res.end = m32_res.end = 0;
375 	io_res.flags = IORESOURCE_IO;
376 	m32_res.flags = IORESOURCE_MEM;
377 
378 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
379 		struct resource *r = NULL;
380 		if (dev->resource[i].flags & IORESOURCE_IO)
381 			r = &io_res;
382 		if (dev->resource[i].flags & IORESOURCE_MEM)
383 			r = &m32_res;
384 		if (!r)
385 			continue;
386 		if (dev->resource[i].start < r->start)
387 			r->start = dev->resource[i].start;
388 		if (dev->resource[i].end > r->end)
389 			r->end = dev->resource[i].end;
390 	}
391 
392 	/* Setup IO segments */
393 	if (io_res.start < io_res.end) {
394 		pcibios_resource_to_bus(dev, &region, &io_res);
395 		pos = region.start;
396 		i = pos / phb->ioda.io_segsize;
397 		while(i < phb->ioda.total_pe && pos <= region.end) {
398 			if (phb->ioda.io_segmap[i]) {
399 				pr_err("%s: Trying to use IO seg #%d which is"
400 				       " already used by PE# %d\n",
401 				       pci_name(dev), i,
402 				       phb->ioda.io_segmap[i]);
403 				/* XXX DO SOMETHING TO DISABLE DEVICE ? */
404 				break;
405 			}
406 			phb->ioda.io_segmap[i] = pe;
407 			rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe,
408 							 OPAL_IO_WINDOW_TYPE,
409 							 0, i);
410 			if (rc != OPAL_SUCCESS) {
411 				pr_err("%s: OPAL error %d setting up mapping"
412 				       " for IO seg# %d\n",
413 				       pci_name(dev), rc, i);
414 				/* XXX DO SOMETHING TO DISABLE DEVICE ? */
415 				break;
416 			}
417 			pos += phb->ioda.io_segsize;
418 			i++;
419 		};
420 	}
421 
422 	/* Setup M32 segments */
423 	if (m32_res.start < m32_res.end) {
424 		pcibios_resource_to_bus(dev, &region, &m32_res);
425 		pos = region.start;
426 		i = pos / phb->ioda.m32_segsize;
427 		while(i < phb->ioda.total_pe && pos <= region.end) {
428 			if (phb->ioda.m32_segmap[i]) {
429 				pr_err("%s: Trying to use M32 seg #%d which is"
430 				       " already used by PE# %d\n",
431 				       pci_name(dev), i,
432 				       phb->ioda.m32_segmap[i]);
433 				/* XXX DO SOMETHING TO DISABLE DEVICE ? */
434 				break;
435 			}
436 			phb->ioda.m32_segmap[i] = pe;
437 			rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe,
438 							 OPAL_M32_WINDOW_TYPE,
439 							 0, i);
440 			if (rc != OPAL_SUCCESS) {
441 				pr_err("%s: OPAL error %d setting up mapping"
442 				       " for M32 seg# %d\n",
443 				       pci_name(dev), rc, i);
444 				/* XXX DO SOMETHING TO DISABLE DEVICE ? */
445 				break;
446 			}
447 			pos += phb->ioda.m32_segsize;
448 			i++;
449 		}
450 	}
451 }
452 
453 /* Check if a resource still fits in the total IO or M32 range
454  * for a given PHB
455  */
456 static int __devinit pnv_ioda_resource_fit(struct pci_controller *hose,
457 					   struct resource *r)
458 {
459 	struct resource *bounds;
460 
461 	if (r->flags & IORESOURCE_IO)
462 		bounds = &hose->io_resource;
463 	else if (r->flags & IORESOURCE_MEM)
464 		bounds = &hose->mem_resources[0];
465 	else
466 		return 1;
467 
468 	if (r->start >= bounds->start && r->end <= bounds->end)
469 		return 1;
470 	r->flags = 0;
471 	return 0;
472 }
473 
474 static void __devinit pnv_ioda_update_resources(struct pci_bus *bus)
475 {
476 	struct pci_controller *hose = pci_bus_to_host(bus);
477 	struct pci_bus *cbus;
478 	struct pci_dev *cdev;
479 	unsigned int i;
480 
481 	/* We used to clear all device enables here. However it looks like
482 	 * clearing MEM enable causes Obsidian (IPR SCS) to go bonkers,
483 	 * and shoot fatal errors to the PHB which in turns fences itself
484 	 * and we can't recover from that ... yet. So for now, let's leave
485 	 * the enables as-is and hope for the best.
486 	 */
487 
488 	/* Check if bus resources fit in our IO or M32 range */
489 	for (i = 0; bus->self && (i < 2); i++) {
490 		struct resource *r = bus->resource[i];
491 		if (r && !pnv_ioda_resource_fit(hose, r))
492 			pr_err("%s: Bus %d resource %d disabled, no room\n",
493 			       pci_name(bus->self), bus->number, i);
494 	}
495 
496 	/* Update self if it's not a PHB */
497 	if (bus->self)
498 		pci_setup_bridge(bus);
499 
500 	/* Update child devices */
501 	list_for_each_entry(cdev, &bus->devices, bus_list) {
502 		/* Check if resource fits, if not, disabled it */
503 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
504 			struct resource *r = &cdev->resource[i];
505 			if (!pnv_ioda_resource_fit(hose, r))
506 				pr_err("%s: Resource %d disabled, no room\n",
507 				       pci_name(cdev), i);
508 		}
509 
510 		/* Assign segments */
511 		pnv_ioda_setup_pe_segments(cdev);
512 
513 		/* Update HW BARs */
514 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
515 			pci_update_resource(cdev, i);
516 	}
517 
518 	/* Update child busses */
519 	list_for_each_entry(cbus, &bus->children, node)
520 		pnv_ioda_update_resources(cbus);
521 }
522 
523 static int __devinit pnv_ioda_alloc_pe(struct pnv_phb *phb)
524 {
525 	unsigned long pe;
526 
527 	do {
528 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
529 					phb->ioda.total_pe, 0);
530 		if (pe >= phb->ioda.total_pe)
531 			return IODA_INVALID_PE;
532 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
533 
534 	phb->ioda.pe_array[pe].pe_number = pe;
535 	return pe;
536 }
537 
538 static void __devinit pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
539 {
540 	WARN_ON(phb->ioda.pe_array[pe].pdev);
541 
542 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
543 	clear_bit(pe, phb->ioda.pe_alloc);
544 }
545 
546 /* Currently those 2 are only used when MSIs are enabled, this will change
547  * but in the meantime, we need to protect them to avoid warnings
548  */
549 #ifdef CONFIG_PCI_MSI
550 static struct pnv_ioda_pe * __devinit pnv_ioda_get_pe(struct pci_dev *dev)
551 {
552 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
553 	struct pnv_phb *phb = hose->private_data;
554 	struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
555 
556 	if (!pdn)
557 		return NULL;
558 	if (pdn->pe_number == IODA_INVALID_PE)
559 		return NULL;
560 	return &phb->ioda.pe_array[pdn->pe_number];
561 }
562 #endif /* CONFIG_PCI_MSI */
563 
564 static int __devinit pnv_ioda_configure_pe(struct pnv_phb *phb,
565 					   struct pnv_ioda_pe *pe)
566 {
567 	struct pci_dev *parent;
568 	uint8_t bcomp, dcomp, fcomp;
569 	long rc, rid_end, rid;
570 
571 	/* Bus validation ? */
572 	if (pe->pbus) {
573 		int count;
574 
575 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
576 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
577 		parent = pe->pbus->self;
578 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
579 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
580 		else
581 			count = 1;
582 
583 		switch(count) {
584 		case  1: bcomp = OpalPciBusAll;		break;
585 		case  2: bcomp = OpalPciBus7Bits;	break;
586 		case  4: bcomp = OpalPciBus6Bits;	break;
587 		case  8: bcomp = OpalPciBus5Bits;	break;
588 		case 16: bcomp = OpalPciBus4Bits;	break;
589 		case 32: bcomp = OpalPciBus3Bits;	break;
590 		default:
591 			pr_err("%s: Number of subordinate busses %d"
592 			       " unsupported\n",
593 			       pci_name(pe->pbus->self), count);
594 			/* Do an exact match only */
595 			bcomp = OpalPciBusAll;
596 		}
597 		rid_end = pe->rid + (count << 8);
598 	} else {
599 		parent = pe->pdev->bus->self;
600 		bcomp = OpalPciBusAll;
601 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
602 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
603 		rid_end = pe->rid + 1;
604 	}
605 
606 	/* Associate PE in PELT */
607 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
608 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
609 	if (rc) {
610 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
611 		return -ENXIO;
612 	}
613 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
614 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
615 
616 	/* Add to all parents PELT-V */
617 	while (parent) {
618 		struct pci_dn *pdn = pnv_ioda_get_pdn(parent);
619 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
620 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
621 						pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
622 			/* XXX What to do in case of error ? */
623 		}
624 		parent = parent->bus->self;
625 	}
626 	/* Setup reverse map */
627 	for (rid = pe->rid; rid < rid_end; rid++)
628 		phb->ioda.pe_rmap[rid] = pe->pe_number;
629 
630 	/* Setup one MVTs on IODA1 */
631 	if (phb->type == PNV_PHB_IODA1) {
632 		pe->mve_number = pe->pe_number;
633 		rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
634 				      pe->pe_number);
635 		if (rc) {
636 			pe_err(pe, "OPAL error %ld setting up MVE %d\n",
637 			       rc, pe->mve_number);
638 			pe->mve_number = -1;
639 		} else {
640 			rc = opal_pci_set_mve_enable(phb->opal_id,
641 						     pe->mve_number, OPAL_ENABLE_MVE);
642 			if (rc) {
643 				pe_err(pe, "OPAL error %ld enabling MVE %d\n",
644 				       rc, pe->mve_number);
645 				pe->mve_number = -1;
646 			}
647 		}
648 	} else if (phb->type == PNV_PHB_IODA2)
649 		pe->mve_number = 0;
650 
651 	return 0;
652 }
653 
654 static void __devinit pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
655 						 struct pnv_ioda_pe *pe)
656 {
657 	struct pnv_ioda_pe *lpe;
658 
659 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
660 		if (lpe->dma_weight < pe->dma_weight) {
661 			list_add_tail(&pe->dma_link, &lpe->dma_link);
662 			return;
663 		}
664 	}
665 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
666 }
667 
668 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
669 {
670 	/* This is quite simplistic. The "base" weight of a device
671 	 * is 10. 0 means no DMA is to be accounted for it.
672 	 */
673 
674 	/* If it's a bridge, no DMA */
675 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
676 		return 0;
677 
678 	/* Reduce the weight of slow USB controllers */
679 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
680 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
681 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
682 		return 3;
683 
684 	/* Increase the weight of RAID (includes Obsidian) */
685 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
686 		return 15;
687 
688 	/* Default */
689 	return 10;
690 }
691 
692 #if 0
693 static struct pnv_ioda_pe * __devinit pnv_ioda_setup_dev_PE(struct pci_dev *dev)
694 {
695 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
696 	struct pnv_phb *phb = hose->private_data;
697 	struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
698 	struct pnv_ioda_pe *pe;
699 	int pe_num;
700 
701 	if (!pdn) {
702 		pr_err("%s: Device tree node not associated properly\n",
703 			   pci_name(dev));
704 		return NULL;
705 	}
706 	if (pdn->pe_number != IODA_INVALID_PE)
707 		return NULL;
708 
709 	/* PE#0 has been pre-set */
710 	if (dev->bus->number == 0)
711 		pe_num = 0;
712 	else
713 		pe_num = pnv_ioda_alloc_pe(phb);
714 	if (pe_num == IODA_INVALID_PE) {
715 		pr_warning("%s: Not enough PE# available, disabling device\n",
716 			   pci_name(dev));
717 		return NULL;
718 	}
719 
720 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
721 	 * pointer in the PE data structure, both should be destroyed at the
722 	 * same time. However, this needs to be looked at more closely again
723 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
724 	 *
725 	 * At some point we want to remove the PDN completely anyways
726 	 */
727 	pe = &phb->ioda.pe_array[pe_num];
728 	pci_dev_get(dev);
729 	pdn->pcidev = dev;
730 	pdn->pe_number = pe_num;
731 	pe->pdev = dev;
732 	pe->pbus = NULL;
733 	pe->tce32_seg = -1;
734 	pe->mve_number = -1;
735 	pe->rid = dev->bus->number << 8 | pdn->devfn;
736 
737 	pe_info(pe, "Associated device to PE\n");
738 
739 	if (pnv_ioda_configure_pe(phb, pe)) {
740 		/* XXX What do we do here ? */
741 		if (pe_num)
742 			pnv_ioda_free_pe(phb, pe_num);
743 		pdn->pe_number = IODA_INVALID_PE;
744 		pe->pdev = NULL;
745 		pci_dev_put(dev);
746 		return NULL;
747 	}
748 
749 	/* Assign a DMA weight to the device */
750 	pe->dma_weight = pnv_ioda_dma_weight(dev);
751 	if (pe->dma_weight != 0) {
752 		phb->ioda.dma_weight += pe->dma_weight;
753 		phb->ioda.dma_pe_count++;
754 	}
755 
756 	/* Link the PE */
757 	pnv_ioda_link_pe_by_weight(phb, pe);
758 
759 	return pe;
760 }
761 #endif /* Useful for SRIOV case */
762 
763 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
764 {
765 	struct pci_dev *dev;
766 
767 	list_for_each_entry(dev, &bus->devices, bus_list) {
768 		struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
769 
770 		if (pdn == NULL) {
771 			pr_warn("%s: No device node associated with device !\n",
772 				pci_name(dev));
773 			continue;
774 		}
775 		pci_dev_get(dev);
776 		pdn->pcidev = dev;
777 		pdn->pe_number = pe->pe_number;
778 		pe->dma_weight += pnv_ioda_dma_weight(dev);
779 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
780 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
781 	}
782 }
783 
784 /*
785  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
786  * single PCI bus. Another one that contains the primary PCI bus and its
787  * subordinate PCI devices and buses. The second type of PE is normally
788  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
789  */
790 static void __devinit pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
791 {
792 	struct pci_controller *hose = pci_bus_to_host(bus);
793 	struct pnv_phb *phb = hose->private_data;
794 	struct pnv_ioda_pe *pe;
795 	int pe_num;
796 
797 	pe_num = pnv_ioda_alloc_pe(phb);
798 	if (pe_num == IODA_INVALID_PE) {
799 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
800 			__func__, pci_domain_nr(bus), bus->number);
801 		return;
802 	}
803 
804 	pe = &phb->ioda.pe_array[pe_num];
805 	pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
806 	pe->pbus = bus;
807 	pe->pdev = NULL;
808 	pe->tce32_seg = -1;
809 	pe->mve_number = -1;
810 	pe->rid = bus->busn_res.start << 8;
811 	pe->dma_weight = 0;
812 
813 	if (all)
814 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
815 			bus->busn_res.start, bus->busn_res.end, pe_num);
816 	else
817 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
818 			bus->busn_res.start, pe_num);
819 
820 	if (pnv_ioda_configure_pe(phb, pe)) {
821 		/* XXX What do we do here ? */
822 		if (pe_num)
823 			pnv_ioda_free_pe(phb, pe_num);
824 		pe->pbus = NULL;
825 		return;
826 	}
827 
828 	/* Associate it with all child devices */
829 	pnv_ioda_setup_same_PE(bus, pe);
830 
831 	/* Put PE to the list */
832 	list_add_tail(&pe->list, &phb->ioda.pe_list);
833 
834 	/* Account for one DMA PE if at least one DMA capable device exist
835 	 * below the bridge
836 	 */
837 	if (pe->dma_weight != 0) {
838 		phb->ioda.dma_weight += pe->dma_weight;
839 		phb->ioda.dma_pe_count++;
840 	}
841 
842 	/* Link the PE */
843 	pnv_ioda_link_pe_by_weight(phb, pe);
844 }
845 
846 static void __devinit pnv_ioda_setup_PEs(struct pci_bus *bus)
847 {
848 	struct pci_dev *dev;
849 
850 	pnv_ioda_setup_bus_PE(bus, 0);
851 
852 	list_for_each_entry(dev, &bus->devices, bus_list) {
853 		if (dev->subordinate) {
854 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
855 				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
856 			else
857 				pnv_ioda_setup_PEs(dev->subordinate);
858 		}
859 	}
860 }
861 
862 /*
863  * Configure PEs so that the downstream PCI buses and devices
864  * could have their associated PE#. Unfortunately, we didn't
865  * figure out the way to identify the PLX bridge yet. So we
866  * simply put the PCI bus and the subordinate behind the root
867  * port to PE# here. The game rule here is expected to be changed
868  * as soon as we can detected PLX bridge correctly.
869  */
870 static void __devinit pnv_pci_ioda_setup_PEs(void)
871 {
872 	struct pci_controller *hose, *tmp;
873 
874 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
875 		pnv_ioda_setup_PEs(hose->bus);
876 	}
877 }
878 
879 static void __devinit pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb,
880 						 struct pci_dev *dev)
881 {
882 	/* We delay DMA setup after we have assigned all PE# */
883 }
884 
885 static void __devinit pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
886 					     struct pci_bus *bus)
887 {
888 	struct pci_dev *dev;
889 
890 	list_for_each_entry(dev, &bus->devices, bus_list) {
891 		set_iommu_table_base(&dev->dev, &pe->tce32_table);
892 		if (dev->subordinate)
893 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
894 	}
895 }
896 
897 static void __devinit pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
898 						struct pnv_ioda_pe *pe,
899 						unsigned int base,
900 						unsigned int segs)
901 {
902 
903 	struct page *tce_mem = NULL;
904 	const __be64 *swinvp;
905 	struct iommu_table *tbl;
906 	unsigned int i;
907 	int64_t rc;
908 	void *addr;
909 
910 	/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
911 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
912 
913 	/* XXX FIXME: Handle 64-bit only DMA devices */
914 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
915 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
916 
917 	/* We shouldn't already have a 32-bit DMA associated */
918 	if (WARN_ON(pe->tce32_seg >= 0))
919 		return;
920 
921 	/* Grab a 32-bit TCE table */
922 	pe->tce32_seg = base;
923 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
924 		(base << 28), ((base + segs) << 28) - 1);
925 
926 	/* XXX Currently, we allocate one big contiguous table for the
927 	 * TCEs. We only really need one chunk per 256M of TCE space
928 	 * (ie per segment) but that's an optimization for later, it
929 	 * requires some added smarts with our get/put_tce implementation
930 	 */
931 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
932 				   get_order(TCE32_TABLE_SIZE * segs));
933 	if (!tce_mem) {
934 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
935 		goto fail;
936 	}
937 	addr = page_address(tce_mem);
938 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
939 
940 	/* Configure HW */
941 	for (i = 0; i < segs; i++) {
942 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
943 					      pe->pe_number,
944 					      base + i, 1,
945 					      __pa(addr) + TCE32_TABLE_SIZE * i,
946 					      TCE32_TABLE_SIZE, 0x1000);
947 		if (rc) {
948 			pe_err(pe, " Failed to configure 32-bit TCE table,"
949 			       " err %ld\n", rc);
950 			goto fail;
951 		}
952 	}
953 
954 	/* Setup linux iommu table */
955 	tbl = &pe->tce32_table;
956 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
957 				  base << 28);
958 
959 	/* OPAL variant of P7IOC SW invalidated TCEs */
960 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
961 	if (swinvp) {
962 		/* We need a couple more fields -- an address and a data
963 		 * to or.  Since the bus is only printed out on table free
964 		 * errors, and on the first pass the data will be a relative
965 		 * bus number, print that out instead.
966 		 */
967 		tbl->it_busno = 0;
968 		tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
969 		tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE
970 			| TCE_PCI_SWINV_PAIR;
971 	}
972 	iommu_init_table(tbl, phb->hose->node);
973 
974 	if (pe->pdev)
975 		set_iommu_table_base(&pe->pdev->dev, tbl);
976 	else
977 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
978 
979 	return;
980  fail:
981 	/* XXX Failure: Try to fallback to 64-bit only ? */
982 	if (pe->tce32_seg >= 0)
983 		pe->tce32_seg = -1;
984 	if (tce_mem)
985 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
986 }
987 
988 static void __devinit pnv_ioda_setup_dma(struct pnv_phb *phb)
989 {
990 	struct pci_controller *hose = phb->hose;
991 	unsigned int residual, remaining, segs, tw, base;
992 	struct pnv_ioda_pe *pe;
993 
994 	/* If we have more PE# than segments available, hand out one
995 	 * per PE until we run out and let the rest fail. If not,
996 	 * then we assign at least one segment per PE, plus more based
997 	 * on the amount of devices under that PE
998 	 */
999 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
1000 		residual = 0;
1001 	else
1002 		residual = phb->ioda.tce32_count -
1003 			phb->ioda.dma_pe_count;
1004 
1005 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
1006 		hose->global_number, phb->ioda.tce32_count);
1007 	pr_info("PCI: %d PE# for a total weight of %d\n",
1008 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
1009 
1010 	/* Walk our PE list and configure their DMA segments, hand them
1011 	 * out one base segment plus any residual segments based on
1012 	 * weight
1013 	 */
1014 	remaining = phb->ioda.tce32_count;
1015 	tw = phb->ioda.dma_weight;
1016 	base = 0;
1017 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
1018 		if (!pe->dma_weight)
1019 			continue;
1020 		if (!remaining) {
1021 			pe_warn(pe, "No DMA32 resources available\n");
1022 			continue;
1023 		}
1024 		segs = 1;
1025 		if (residual) {
1026 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
1027 			if (segs > remaining)
1028 				segs = remaining;
1029 		}
1030 		pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
1031 			pe->dma_weight, segs);
1032 		pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
1033 		remaining -= segs;
1034 		base += segs;
1035 	}
1036 }
1037 
1038 #ifdef CONFIG_PCI_MSI
1039 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1040 				  unsigned int hwirq, unsigned int is_64,
1041 				  struct msi_msg *msg)
1042 {
1043 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1044 	unsigned int xive_num = hwirq - phb->msi_base;
1045 	uint64_t addr64;
1046 	uint32_t addr32, data;
1047 	int rc;
1048 
1049 	/* No PE assigned ? bail out ... no MSI for you ! */
1050 	if (pe == NULL)
1051 		return -ENXIO;
1052 
1053 	/* Check if we have an MVE */
1054 	if (pe->mve_number < 0)
1055 		return -ENXIO;
1056 
1057 	/* Assign XIVE to PE */
1058 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1059 	if (rc) {
1060 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1061 			pci_name(dev), rc, xive_num);
1062 		return -EIO;
1063 	}
1064 
1065 	if (is_64) {
1066 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1067 				     &addr64, &data);
1068 		if (rc) {
1069 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1070 				pci_name(dev), rc);
1071 			return -EIO;
1072 		}
1073 		msg->address_hi = addr64 >> 32;
1074 		msg->address_lo = addr64 & 0xfffffffful;
1075 	} else {
1076 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1077 				     &addr32, &data);
1078 		if (rc) {
1079 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1080 				pci_name(dev), rc);
1081 			return -EIO;
1082 		}
1083 		msg->address_hi = 0;
1084 		msg->address_lo = addr32;
1085 	}
1086 	msg->data = data;
1087 
1088 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
1089 		 " address=%x_%08x data=%x PE# %d\n",
1090 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
1091 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
1092 
1093 	return 0;
1094 }
1095 
1096 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1097 {
1098 	unsigned int bmap_size;
1099 	const __be32 *prop = of_get_property(phb->hose->dn,
1100 					     "ibm,opal-msi-ranges", NULL);
1101 	if (!prop) {
1102 		/* BML Fallback */
1103 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1104 	}
1105 	if (!prop)
1106 		return;
1107 
1108 	phb->msi_base = be32_to_cpup(prop);
1109 	phb->msi_count = be32_to_cpup(prop + 1);
1110 	bmap_size = BITS_TO_LONGS(phb->msi_count) * sizeof(unsigned long);
1111 	phb->msi_map = zalloc_maybe_bootmem(bmap_size, GFP_KERNEL);
1112 	if (!phb->msi_map) {
1113 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1114 		       phb->hose->global_number);
1115 		return;
1116 	}
1117 	phb->msi_setup = pnv_pci_ioda_msi_setup;
1118 	phb->msi32_support = 1;
1119 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1120 		phb->msi_count, phb->msi_base);
1121 }
1122 #else
1123 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1124 #endif /* CONFIG_PCI_MSI */
1125 
1126 /* This is the starting point of our IODA specific resource
1127  * allocation process
1128  */
1129 static void __devinit pnv_pci_ioda_fixup_phb(struct pci_controller *hose)
1130 {
1131 	resource_size_t size, align;
1132 	struct pci_bus *child;
1133 
1134 	/* Associate PEs per functions */
1135 	pnv_ioda_setup_PEs(hose->bus);
1136 
1137 	/* Calculate all resources */
1138 	pnv_ioda_calc_bus(hose->bus, IORESOURCE_IO, &size, &align);
1139 	pnv_ioda_calc_bus(hose->bus, IORESOURCE_MEM, &size, &align);
1140 
1141 	/* Apply then to HW */
1142 	pnv_ioda_update_resources(hose->bus);
1143 
1144 	/* Setup DMA */
1145 	pnv_ioda_setup_dma(hose->private_data);
1146 
1147 	/* Configure PCI Express settings */
1148 	list_for_each_entry(child, &hose->bus->children, node) {
1149 		struct pci_dev *self = child->self;
1150 		if (!self)
1151 			continue;
1152 		pcie_bus_configure_settings(child, self->pcie_mpss);
1153 	}
1154 }
1155 
1156 /*
1157  * This function is supposed to be called on basis of PE from top
1158  * to bottom style. So the the I/O or MMIO segment assigned to
1159  * parent PE could be overrided by its child PEs if necessary.
1160  */
1161 static void __devinit pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1162 				struct pnv_ioda_pe *pe)
1163 {
1164 	struct pnv_phb *phb = hose->private_data;
1165 	struct pci_bus_region region;
1166 	struct resource *res;
1167 	int i, index;
1168 	int rc;
1169 
1170 	/*
1171 	 * NOTE: We only care PCI bus based PE for now. For PCI
1172 	 * device based PE, for example SRIOV sensitive VF should
1173 	 * be figured out later.
1174 	 */
1175 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1176 
1177 	pci_bus_for_each_resource(pe->pbus, res, i) {
1178 		if (!res || !res->flags ||
1179 		    res->start > res->end)
1180 			continue;
1181 
1182 		if (res->flags & IORESOURCE_IO) {
1183 			region.start = res->start - phb->ioda.io_pci_base;
1184 			region.end   = res->end - phb->ioda.io_pci_base;
1185 			index = region.start / phb->ioda.io_segsize;
1186 
1187 			while (index < phb->ioda.total_pe &&
1188 			       region.start <= region.end) {
1189 				phb->ioda.io_segmap[index] = pe->pe_number;
1190 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1191 					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1192 				if (rc != OPAL_SUCCESS) {
1193 					pr_err("%s: OPAL error %d when mapping IO "
1194 					       "segment #%d to PE#%d\n",
1195 					       __func__, rc, index, pe->pe_number);
1196 					break;
1197 				}
1198 
1199 				region.start += phb->ioda.io_segsize;
1200 				index++;
1201 			}
1202 		} else if (res->flags & IORESOURCE_MEM) {
1203 			region.start = res->start -
1204 				       hose->pci_mem_offset -
1205 				       phb->ioda.m32_pci_base;
1206 			region.end   = res->end -
1207 				       hose->pci_mem_offset -
1208 				       phb->ioda.m32_pci_base;
1209 			index = region.start / phb->ioda.m32_segsize;
1210 
1211 			while (index < phb->ioda.total_pe &&
1212 			       region.start <= region.end) {
1213 				phb->ioda.m32_segmap[index] = pe->pe_number;
1214 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1215 					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1216 				if (rc != OPAL_SUCCESS) {
1217 					pr_err("%s: OPAL error %d when mapping M32 "
1218 					       "segment#%d to PE#%d",
1219 					       __func__, rc, index, pe->pe_number);
1220 					break;
1221 				}
1222 
1223 				region.start += phb->ioda.m32_segsize;
1224 				index++;
1225 			}
1226 		}
1227 	}
1228 }
1229 
1230 static void __devinit pnv_pci_ioda_setup_seg(void)
1231 {
1232 	struct pci_controller *tmp, *hose;
1233 	struct pnv_phb *phb;
1234 	struct pnv_ioda_pe *pe;
1235 
1236 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1237 		phb = hose->private_data;
1238 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1239 			pnv_ioda_setup_pe_seg(hose, pe);
1240 		}
1241 	}
1242 }
1243 
1244 static void __devinit pnv_pci_ioda_fixup(void)
1245 {
1246 	pnv_pci_ioda_setup_PEs();
1247 	pnv_pci_ioda_setup_seg();
1248 }
1249 
1250 /*
1251  * Returns the alignment for I/O or memory windows for P2P
1252  * bridges. That actually depends on how PEs are segmented.
1253  * For now, we return I/O or M32 segment size for PE sensitive
1254  * P2P bridges. Otherwise, the default values (4KiB for I/O,
1255  * 1MiB for memory) will be returned.
1256  *
1257  * The current PCI bus might be put into one PE, which was
1258  * create against the parent PCI bridge. For that case, we
1259  * needn't enlarge the alignment so that we can save some
1260  * resources.
1261  */
1262 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1263 						unsigned long type)
1264 {
1265 	struct pci_dev *bridge;
1266 	struct pci_controller *hose = pci_bus_to_host(bus);
1267 	struct pnv_phb *phb = hose->private_data;
1268 	int num_pci_bridges = 0;
1269 
1270 	bridge = bus->self;
1271 	while (bridge) {
1272 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1273 			num_pci_bridges++;
1274 			if (num_pci_bridges >= 2)
1275 				return 1;
1276 		}
1277 
1278 		bridge = bridge->bus->self;
1279 	}
1280 
1281 	/* We need support prefetchable memory window later */
1282 	if (type & IORESOURCE_MEM)
1283 		return phb->ioda.m32_segsize;
1284 
1285 	return phb->ioda.io_segsize;
1286 }
1287 
1288 /* Prevent enabling devices for which we couldn't properly
1289  * assign a PE
1290  */
1291 static int __devinit pnv_pci_enable_device_hook(struct pci_dev *dev)
1292 {
1293 	struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
1294 
1295 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1296 		return -EINVAL;
1297 	return 0;
1298 }
1299 
1300 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1301 			       u32 devfn)
1302 {
1303 	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1304 }
1305 
1306 void __init pnv_pci_init_ioda1_phb(struct device_node *np)
1307 {
1308 	struct pci_controller *hose;
1309 	static int primary = 1;
1310 	struct pnv_phb *phb;
1311 	unsigned long size, m32map_off, iomap_off, pemap_off;
1312 	const u64 *prop64;
1313 	u64 phb_id;
1314 	void *aux;
1315 	long rc;
1316 
1317 	pr_info(" Initializing IODA OPAL PHB %s\n", np->full_name);
1318 
1319 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1320 	if (!prop64) {
1321 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
1322 		return;
1323 	}
1324 	phb_id = be64_to_cpup(prop64);
1325 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
1326 
1327 	phb = alloc_bootmem(sizeof(struct pnv_phb));
1328 	if (phb) {
1329 		memset(phb, 0, sizeof(struct pnv_phb));
1330 		phb->hose = hose = pcibios_alloc_controller(np);
1331 	}
1332 	if (!phb || !phb->hose) {
1333 		pr_err("PCI: Failed to allocate PCI controller for %s\n",
1334 		       np->full_name);
1335 		return;
1336 	}
1337 
1338 	spin_lock_init(&phb->lock);
1339 	/* XXX Use device-tree */
1340 	hose->first_busno = 0;
1341 	hose->last_busno = 0xff;
1342 	hose->private_data = phb;
1343 	phb->opal_id = phb_id;
1344 	phb->type = PNV_PHB_IODA1;
1345 
1346 	/* Detect specific models for error handling */
1347 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1348 		phb->model = PNV_PHB_MODEL_P7IOC;
1349 	else
1350 		phb->model = PNV_PHB_MODEL_UNKNOWN;
1351 
1352 	/* We parse "ranges" now since we need to deduce the register base
1353 	 * from the IO base
1354 	 */
1355 	pci_process_bridge_OF_ranges(phb->hose, np, primary);
1356 	primary = 0;
1357 
1358 	/* Magic formula from Milton */
1359 	phb->regs = of_iomap(np, 0);
1360 	if (phb->regs == NULL)
1361 		pr_err("  Failed to map registers !\n");
1362 
1363 
1364 	/* XXX This is hack-a-thon. This needs to be changed so that:
1365 	 *  - we obtain stuff like PE# etc... from device-tree
1366 	 *  - we properly re-allocate M32 ourselves
1367 	 *    (the OFW one isn't very good)
1368 	 */
1369 
1370 	/* Initialize more IODA stuff */
1371 	phb->ioda.total_pe = 128;
1372 
1373 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1374 	/* OFW Has already off top 64k of M32 space (MSI space) */
1375 	phb->ioda.m32_size += 0x10000;
1376 
1377 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1378 	phb->ioda.m32_pci_base = hose->mem_resources[0].start -
1379 		hose->pci_mem_offset;
1380 	phb->ioda.io_size = hose->pci_io_size;
1381 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
1382 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
1383 
1384 	/* Allocate aux data & arrays */
1385 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
1386 	m32map_off = size;
1387 	size += phb->ioda.total_pe;
1388 	iomap_off = size;
1389 	size += phb->ioda.total_pe;
1390 	pemap_off = size;
1391 	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
1392 	aux = alloc_bootmem(size);
1393 	memset(aux, 0, size);
1394 	phb->ioda.pe_alloc = aux;
1395 	phb->ioda.m32_segmap = aux + m32map_off;
1396 	phb->ioda.io_segmap = aux + iomap_off;
1397 	phb->ioda.pe_array = aux + pemap_off;
1398 	set_bit(0, phb->ioda.pe_alloc);
1399 
1400 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1401 	INIT_LIST_HEAD(&phb->ioda.pe_list);
1402 
1403 	/* Calculate how many 32-bit TCE segments we have */
1404 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
1405 
1406 	/* Clear unusable m64 */
1407 	hose->mem_resources[1].flags = 0;
1408 	hose->mem_resources[1].start = 0;
1409 	hose->mem_resources[1].end = 0;
1410 	hose->mem_resources[2].flags = 0;
1411 	hose->mem_resources[2].start = 0;
1412 	hose->mem_resources[2].end = 0;
1413 
1414 #if 0
1415 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
1416 					 window_type,
1417 					 window_num,
1418 					 starting_real_address,
1419 					 starting_pci_address,
1420 					 segment_size);
1421 #endif
1422 
1423 	pr_info("  %d PE's M32: 0x%x [segment=0x%x] IO: 0x%x [segment=0x%x]\n",
1424 		phb->ioda.total_pe,
1425 		phb->ioda.m32_size, phb->ioda.m32_segsize,
1426 		phb->ioda.io_size, phb->ioda.io_segsize);
1427 
1428 	if (phb->regs)  {
1429 		pr_devel(" BUID     = 0x%016llx\n", in_be64(phb->regs + 0x100));
1430 		pr_devel(" PHB2_CR  = 0x%016llx\n", in_be64(phb->regs + 0x160));
1431 		pr_devel(" IO_BAR   = 0x%016llx\n", in_be64(phb->regs + 0x170));
1432 		pr_devel(" IO_BAMR  = 0x%016llx\n", in_be64(phb->regs + 0x178));
1433 		pr_devel(" IO_SAR   = 0x%016llx\n", in_be64(phb->regs + 0x180));
1434 		pr_devel(" M32_BAR  = 0x%016llx\n", in_be64(phb->regs + 0x190));
1435 		pr_devel(" M32_BAMR = 0x%016llx\n", in_be64(phb->regs + 0x198));
1436 		pr_devel(" M32_SAR  = 0x%016llx\n", in_be64(phb->regs + 0x1a0));
1437 	}
1438 	phb->hose->ops = &pnv_pci_ops;
1439 
1440 	/* Setup RID -> PE mapping function */
1441 	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
1442 
1443 	/* Setup TCEs */
1444 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1445 
1446 	/* Setup MSI support */
1447 	pnv_pci_init_ioda_msis(phb);
1448 
1449 	/* We set both PCI_PROBE_ONLY and PCI_REASSIGN_ALL_RSRC. This is an
1450 	 * odd combination which essentially means that we skip all resource
1451 	 * fixups and assignments in the generic code, and do it all
1452 	 * ourselves here
1453 	 */
1454 	ppc_md.pcibios_fixup_phb = pnv_pci_ioda_fixup_phb;
1455 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1456 	ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1457 	ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1458 	pci_add_flags(PCI_PROBE_ONLY | PCI_REASSIGN_ALL_RSRC);
1459 
1460 	/* Reset IODA tables to a clean state */
1461 	rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1462 	if (rc)
1463 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
1464 	opal_pci_set_pe(phb_id, 0, 0, 7, 1, 1 , OPAL_MAP_PE);
1465 }
1466 
1467 void __init pnv_pci_init_ioda_hub(struct device_node *np)
1468 {
1469 	struct device_node *phbn;
1470 	const u64 *prop64;
1471 	u64 hub_id;
1472 
1473 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
1474 
1475 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
1476 	if (!prop64) {
1477 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
1478 		return;
1479 	}
1480 	hub_id = be64_to_cpup(prop64);
1481 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
1482 
1483 	/* Count child PHBs */
1484 	for_each_child_of_node(np, phbn) {
1485 		/* Look for IODA1 PHBs */
1486 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1487 			pnv_pci_init_ioda1_phb(phbn);
1488 	}
1489 }
1490