1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/memblock.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/iommu.h>
25 #include <linux/rculist.h>
26 #include <linux/sizes.h>
27 
28 #include <asm/sections.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/pci-bridge.h>
32 #include <asm/machdep.h>
33 #include <asm/msi_bitmap.h>
34 #include <asm/ppc-pci.h>
35 #include <asm/opal.h>
36 #include <asm/iommu.h>
37 #include <asm/tce.h>
38 #include <asm/xics.h>
39 #include <asm/debugfs.h>
40 #include <asm/firmware.h>
41 #include <asm/pnv-pci.h>
42 #include <asm/mmzone.h>
43 
44 #include <misc/cxl-base.h>
45 
46 #include "powernv.h"
47 #include "pci.h"
48 #include "../../../../drivers/pci/pci.h"
49 
50 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
51 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
52 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
53 
54 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
55 					      "NPU_OCAPI" };
56 
57 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
58 			    const char *fmt, ...)
59 {
60 	struct va_format vaf;
61 	va_list args;
62 	char pfix[32];
63 
64 	va_start(args, fmt);
65 
66 	vaf.fmt = fmt;
67 	vaf.va = &args;
68 
69 	if (pe->flags & PNV_IODA_PE_DEV)
70 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
71 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
72 		sprintf(pfix, "%04x:%02x     ",
73 			pci_domain_nr(pe->pbus), pe->pbus->number);
74 #ifdef CONFIG_PCI_IOV
75 	else if (pe->flags & PNV_IODA_PE_VF)
76 		sprintf(pfix, "%04x:%02x:%2x.%d",
77 			pci_domain_nr(pe->parent_dev->bus),
78 			(pe->rid & 0xff00) >> 8,
79 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
80 #endif /* CONFIG_PCI_IOV*/
81 
82 	printk("%spci %s: [PE# %.2x] %pV",
83 	       level, pfix, pe->pe_number, &vaf);
84 
85 	va_end(args);
86 }
87 
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89 static bool pci_reset_phbs __read_mostly;
90 
91 static int __init iommu_setup(char *str)
92 {
93 	if (!str)
94 		return -EINVAL;
95 
96 	while (*str) {
97 		if (!strncmp(str, "nobypass", 8)) {
98 			pnv_iommu_bypass_disabled = true;
99 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
100 			break;
101 		}
102 		str += strcspn(str, ",");
103 		if (*str == ',')
104 			str++;
105 	}
106 
107 	return 0;
108 }
109 early_param("iommu", iommu_setup);
110 
111 static int __init pci_reset_phbs_setup(char *str)
112 {
113 	pci_reset_phbs = true;
114 	return 0;
115 }
116 
117 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
118 
119 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
120 {
121 	/*
122 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
123 	 * allocation code sometimes decides to put a 64-bit prefetchable
124 	 * BAR in the 32-bit window, so we have to compare the addresses.
125 	 *
126 	 * For simplicity we only test resource start.
127 	 */
128 	return (r->start >= phb->ioda.m64_base &&
129 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
130 }
131 
132 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
133 {
134 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
135 
136 	return (resource_flags & flags) == flags;
137 }
138 
139 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
140 {
141 	s64 rc;
142 
143 	phb->ioda.pe_array[pe_no].phb = phb;
144 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
145 
146 	/*
147 	 * Clear the PE frozen state as it might be put into frozen state
148 	 * in the last PCI remove path. It's not harmful to do so when the
149 	 * PE is already in unfrozen state.
150 	 */
151 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
152 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
153 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
154 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
155 			__func__, rc, phb->hose->global_number, pe_no);
156 
157 	return &phb->ioda.pe_array[pe_no];
158 }
159 
160 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
161 {
162 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
163 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
164 			__func__, pe_no, phb->hose->global_number);
165 		return;
166 	}
167 
168 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
169 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
170 			 __func__, pe_no, phb->hose->global_number);
171 
172 	pnv_ioda_init_pe(phb, pe_no);
173 }
174 
175 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
176 {
177 	long pe;
178 
179 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
180 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
181 			return pnv_ioda_init_pe(phb, pe);
182 	}
183 
184 	return NULL;
185 }
186 
187 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
188 {
189 	struct pnv_phb *phb = pe->phb;
190 	unsigned int pe_num = pe->pe_number;
191 
192 	WARN_ON(pe->pdev);
193 
194 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
195 	clear_bit(pe_num, phb->ioda.pe_alloc);
196 }
197 
198 /* The default M64 BAR is shared by all PEs */
199 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
200 {
201 	const char *desc;
202 	struct resource *r;
203 	s64 rc;
204 
205 	/* Configure the default M64 BAR */
206 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
207 					 OPAL_M64_WINDOW_TYPE,
208 					 phb->ioda.m64_bar_idx,
209 					 phb->ioda.m64_base,
210 					 0, /* unused */
211 					 phb->ioda.m64_size);
212 	if (rc != OPAL_SUCCESS) {
213 		desc = "configuring";
214 		goto fail;
215 	}
216 
217 	/* Enable the default M64 BAR */
218 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
219 				      OPAL_M64_WINDOW_TYPE,
220 				      phb->ioda.m64_bar_idx,
221 				      OPAL_ENABLE_M64_SPLIT);
222 	if (rc != OPAL_SUCCESS) {
223 		desc = "enabling";
224 		goto fail;
225 	}
226 
227 	/*
228 	 * Exclude the segments for reserved and root bus PE, which
229 	 * are first or last two PEs.
230 	 */
231 	r = &phb->hose->mem_resources[1];
232 	if (phb->ioda.reserved_pe_idx == 0)
233 		r->start += (2 * phb->ioda.m64_segsize);
234 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
235 		r->end -= (2 * phb->ioda.m64_segsize);
236 	else
237 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
238 			phb->ioda.reserved_pe_idx);
239 
240 	return 0;
241 
242 fail:
243 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
244 		rc, desc, phb->ioda.m64_bar_idx);
245 	opal_pci_phb_mmio_enable(phb->opal_id,
246 				 OPAL_M64_WINDOW_TYPE,
247 				 phb->ioda.m64_bar_idx,
248 				 OPAL_DISABLE_M64);
249 	return -EIO;
250 }
251 
252 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
253 					 unsigned long *pe_bitmap)
254 {
255 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
256 	struct pnv_phb *phb = hose->private_data;
257 	struct resource *r;
258 	resource_size_t base, sgsz, start, end;
259 	int segno, i;
260 
261 	base = phb->ioda.m64_base;
262 	sgsz = phb->ioda.m64_segsize;
263 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
264 		r = &pdev->resource[i];
265 		if (!r->parent || !pnv_pci_is_m64(phb, r))
266 			continue;
267 
268 		start = _ALIGN_DOWN(r->start - base, sgsz);
269 		end = _ALIGN_UP(r->end - base, sgsz);
270 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
271 			if (pe_bitmap)
272 				set_bit(segno, pe_bitmap);
273 			else
274 				pnv_ioda_reserve_pe(phb, segno);
275 		}
276 	}
277 }
278 
279 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
280 {
281 	struct resource *r;
282 	int index;
283 
284 	/*
285 	 * There are 16 M64 BARs, each of which has 8 segments. So
286 	 * there are as many M64 segments as the maximum number of
287 	 * PEs, which is 128.
288 	 */
289 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
290 		unsigned long base, segsz = phb->ioda.m64_segsize;
291 		int64_t rc;
292 
293 		base = phb->ioda.m64_base +
294 		       index * PNV_IODA1_M64_SEGS * segsz;
295 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
296 				OPAL_M64_WINDOW_TYPE, index, base, 0,
297 				PNV_IODA1_M64_SEGS * segsz);
298 		if (rc != OPAL_SUCCESS) {
299 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
300 				rc, phb->hose->global_number, index);
301 			goto fail;
302 		}
303 
304 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
305 				OPAL_M64_WINDOW_TYPE, index,
306 				OPAL_ENABLE_M64_SPLIT);
307 		if (rc != OPAL_SUCCESS) {
308 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
309 				rc, phb->hose->global_number, index);
310 			goto fail;
311 		}
312 	}
313 
314 	/*
315 	 * Exclude the segments for reserved and root bus PE, which
316 	 * are first or last two PEs.
317 	 */
318 	r = &phb->hose->mem_resources[1];
319 	if (phb->ioda.reserved_pe_idx == 0)
320 		r->start += (2 * phb->ioda.m64_segsize);
321 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
322 		r->end -= (2 * phb->ioda.m64_segsize);
323 	else
324 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
325 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
326 
327 	return 0;
328 
329 fail:
330 	for ( ; index >= 0; index--)
331 		opal_pci_phb_mmio_enable(phb->opal_id,
332 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
333 
334 	return -EIO;
335 }
336 
337 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
338 				    unsigned long *pe_bitmap,
339 				    bool all)
340 {
341 	struct pci_dev *pdev;
342 
343 	list_for_each_entry(pdev, &bus->devices, bus_list) {
344 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
345 
346 		if (all && pdev->subordinate)
347 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
348 						pe_bitmap, all);
349 	}
350 }
351 
352 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
353 {
354 	struct pci_controller *hose = pci_bus_to_host(bus);
355 	struct pnv_phb *phb = hose->private_data;
356 	struct pnv_ioda_pe *master_pe, *pe;
357 	unsigned long size, *pe_alloc;
358 	int i;
359 
360 	/* Root bus shouldn't use M64 */
361 	if (pci_is_root_bus(bus))
362 		return NULL;
363 
364 	/* Allocate bitmap */
365 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
366 	pe_alloc = kzalloc(size, GFP_KERNEL);
367 	if (!pe_alloc) {
368 		pr_warn("%s: Out of memory !\n",
369 			__func__);
370 		return NULL;
371 	}
372 
373 	/* Figure out reserved PE numbers by the PE */
374 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
375 
376 	/*
377 	 * the current bus might not own M64 window and that's all
378 	 * contributed by its child buses. For the case, we needn't
379 	 * pick M64 dependent PE#.
380 	 */
381 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
382 		kfree(pe_alloc);
383 		return NULL;
384 	}
385 
386 	/*
387 	 * Figure out the master PE and put all slave PEs to master
388 	 * PE's list to form compound PE.
389 	 */
390 	master_pe = NULL;
391 	i = -1;
392 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
393 		phb->ioda.total_pe_num) {
394 		pe = &phb->ioda.pe_array[i];
395 
396 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
397 		if (!master_pe) {
398 			pe->flags |= PNV_IODA_PE_MASTER;
399 			INIT_LIST_HEAD(&pe->slaves);
400 			master_pe = pe;
401 		} else {
402 			pe->flags |= PNV_IODA_PE_SLAVE;
403 			pe->master = master_pe;
404 			list_add_tail(&pe->list, &master_pe->slaves);
405 		}
406 
407 		/*
408 		 * P7IOC supports M64DT, which helps mapping M64 segment
409 		 * to one particular PE#. However, PHB3 has fixed mapping
410 		 * between M64 segment and PE#. In order to have same logic
411 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
412 		 * segment and PE# on P7IOC.
413 		 */
414 		if (phb->type == PNV_PHB_IODA1) {
415 			int64_t rc;
416 
417 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
418 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
419 					pe->pe_number / PNV_IODA1_M64_SEGS,
420 					pe->pe_number % PNV_IODA1_M64_SEGS);
421 			if (rc != OPAL_SUCCESS)
422 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
423 					__func__, rc, phb->hose->global_number,
424 					pe->pe_number);
425 		}
426 	}
427 
428 	kfree(pe_alloc);
429 	return master_pe;
430 }
431 
432 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
433 {
434 	struct pci_controller *hose = phb->hose;
435 	struct device_node *dn = hose->dn;
436 	struct resource *res;
437 	u32 m64_range[2], i;
438 	const __be32 *r;
439 	u64 pci_addr;
440 
441 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
442 		pr_info("  Not support M64 window\n");
443 		return;
444 	}
445 
446 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
447 		pr_info("  Firmware too old to support M64 window\n");
448 		return;
449 	}
450 
451 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
452 	if (!r) {
453 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
454 			dn);
455 		return;
456 	}
457 
458 	/*
459 	 * Find the available M64 BAR range and pickup the last one for
460 	 * covering the whole 64-bits space. We support only one range.
461 	 */
462 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
463 				       m64_range, 2)) {
464 		/* In absence of the property, assume 0..15 */
465 		m64_range[0] = 0;
466 		m64_range[1] = 16;
467 	}
468 	/* We only support 64 bits in our allocator */
469 	if (m64_range[1] > 63) {
470 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
471 			__func__, m64_range[1], phb->hose->global_number);
472 		m64_range[1] = 63;
473 	}
474 	/* Empty range, no m64 */
475 	if (m64_range[1] <= m64_range[0]) {
476 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
477 			__func__, phb->hose->global_number);
478 		return;
479 	}
480 
481 	/* Configure M64 informations */
482 	res = &hose->mem_resources[1];
483 	res->name = dn->full_name;
484 	res->start = of_translate_address(dn, r + 2);
485 	res->end = res->start + of_read_number(r + 4, 2) - 1;
486 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
487 	pci_addr = of_read_number(r, 2);
488 	hose->mem_offset[1] = res->start - pci_addr;
489 
490 	phb->ioda.m64_size = resource_size(res);
491 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
492 	phb->ioda.m64_base = pci_addr;
493 
494 	/* This lines up nicely with the display from processing OF ranges */
495 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
496 		res->start, res->end, pci_addr, m64_range[0],
497 		m64_range[0] + m64_range[1] - 1);
498 
499 	/* Mark all M64 used up by default */
500 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
501 
502 	/* Use last M64 BAR to cover M64 window */
503 	m64_range[1]--;
504 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
505 
506 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
507 
508 	/* Mark remaining ones free */
509 	for (i = m64_range[0]; i < m64_range[1]; i++)
510 		clear_bit(i, &phb->ioda.m64_bar_alloc);
511 
512 	/*
513 	 * Setup init functions for M64 based on IODA version, IODA3 uses
514 	 * the IODA2 code.
515 	 */
516 	if (phb->type == PNV_PHB_IODA1)
517 		phb->init_m64 = pnv_ioda1_init_m64;
518 	else
519 		phb->init_m64 = pnv_ioda2_init_m64;
520 }
521 
522 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
523 {
524 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
525 	struct pnv_ioda_pe *slave;
526 	s64 rc;
527 
528 	/* Fetch master PE */
529 	if (pe->flags & PNV_IODA_PE_SLAVE) {
530 		pe = pe->master;
531 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
532 			return;
533 
534 		pe_no = pe->pe_number;
535 	}
536 
537 	/* Freeze master PE */
538 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
539 				     pe_no,
540 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
541 	if (rc != OPAL_SUCCESS) {
542 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
543 			__func__, rc, phb->hose->global_number, pe_no);
544 		return;
545 	}
546 
547 	/* Freeze slave PEs */
548 	if (!(pe->flags & PNV_IODA_PE_MASTER))
549 		return;
550 
551 	list_for_each_entry(slave, &pe->slaves, list) {
552 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
553 					     slave->pe_number,
554 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
555 		if (rc != OPAL_SUCCESS)
556 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
557 				__func__, rc, phb->hose->global_number,
558 				slave->pe_number);
559 	}
560 }
561 
562 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
563 {
564 	struct pnv_ioda_pe *pe, *slave;
565 	s64 rc;
566 
567 	/* Find master PE */
568 	pe = &phb->ioda.pe_array[pe_no];
569 	if (pe->flags & PNV_IODA_PE_SLAVE) {
570 		pe = pe->master;
571 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
572 		pe_no = pe->pe_number;
573 	}
574 
575 	/* Clear frozen state for master PE */
576 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
577 	if (rc != OPAL_SUCCESS) {
578 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
579 			__func__, rc, opt, phb->hose->global_number, pe_no);
580 		return -EIO;
581 	}
582 
583 	if (!(pe->flags & PNV_IODA_PE_MASTER))
584 		return 0;
585 
586 	/* Clear frozen state for slave PEs */
587 	list_for_each_entry(slave, &pe->slaves, list) {
588 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
589 					     slave->pe_number,
590 					     opt);
591 		if (rc != OPAL_SUCCESS) {
592 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
593 				__func__, rc, opt, phb->hose->global_number,
594 				slave->pe_number);
595 			return -EIO;
596 		}
597 	}
598 
599 	return 0;
600 }
601 
602 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
603 {
604 	struct pnv_ioda_pe *slave, *pe;
605 	u8 fstate = 0, state;
606 	__be16 pcierr = 0;
607 	s64 rc;
608 
609 	/* Sanity check on PE number */
610 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
611 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
612 
613 	/*
614 	 * Fetch the master PE and the PE instance might be
615 	 * not initialized yet.
616 	 */
617 	pe = &phb->ioda.pe_array[pe_no];
618 	if (pe->flags & PNV_IODA_PE_SLAVE) {
619 		pe = pe->master;
620 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
621 		pe_no = pe->pe_number;
622 	}
623 
624 	/* Check the master PE */
625 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
626 					&state, &pcierr, NULL);
627 	if (rc != OPAL_SUCCESS) {
628 		pr_warn("%s: Failure %lld getting "
629 			"PHB#%x-PE#%x state\n",
630 			__func__, rc,
631 			phb->hose->global_number, pe_no);
632 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
633 	}
634 
635 	/* Check the slave PE */
636 	if (!(pe->flags & PNV_IODA_PE_MASTER))
637 		return state;
638 
639 	list_for_each_entry(slave, &pe->slaves, list) {
640 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
641 						slave->pe_number,
642 						&fstate,
643 						&pcierr,
644 						NULL);
645 		if (rc != OPAL_SUCCESS) {
646 			pr_warn("%s: Failure %lld getting "
647 				"PHB#%x-PE#%x state\n",
648 				__func__, rc,
649 				phb->hose->global_number, slave->pe_number);
650 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
651 		}
652 
653 		/*
654 		 * Override the result based on the ascending
655 		 * priority.
656 		 */
657 		if (fstate > state)
658 			state = fstate;
659 	}
660 
661 	return state;
662 }
663 
664 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
665 {
666 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
667 	struct pnv_phb *phb = hose->private_data;
668 	struct pci_dn *pdn = pci_get_pdn(dev);
669 
670 	if (!pdn)
671 		return NULL;
672 	if (pdn->pe_number == IODA_INVALID_PE)
673 		return NULL;
674 	return &phb->ioda.pe_array[pdn->pe_number];
675 }
676 
677 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
678 				  struct pnv_ioda_pe *parent,
679 				  struct pnv_ioda_pe *child,
680 				  bool is_add)
681 {
682 	const char *desc = is_add ? "adding" : "removing";
683 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
684 			      OPAL_REMOVE_PE_FROM_DOMAIN;
685 	struct pnv_ioda_pe *slave;
686 	long rc;
687 
688 	/* Parent PE affects child PE */
689 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
690 				child->pe_number, op);
691 	if (rc != OPAL_SUCCESS) {
692 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
693 			rc, desc);
694 		return -ENXIO;
695 	}
696 
697 	if (!(child->flags & PNV_IODA_PE_MASTER))
698 		return 0;
699 
700 	/* Compound case: parent PE affects slave PEs */
701 	list_for_each_entry(slave, &child->slaves, list) {
702 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
703 					slave->pe_number, op);
704 		if (rc != OPAL_SUCCESS) {
705 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
706 				rc, desc);
707 			return -ENXIO;
708 		}
709 	}
710 
711 	return 0;
712 }
713 
714 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
715 			      struct pnv_ioda_pe *pe,
716 			      bool is_add)
717 {
718 	struct pnv_ioda_pe *slave;
719 	struct pci_dev *pdev = NULL;
720 	int ret;
721 
722 	/*
723 	 * Clear PE frozen state. If it's master PE, we need
724 	 * clear slave PE frozen state as well.
725 	 */
726 	if (is_add) {
727 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
728 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
729 		if (pe->flags & PNV_IODA_PE_MASTER) {
730 			list_for_each_entry(slave, &pe->slaves, list)
731 				opal_pci_eeh_freeze_clear(phb->opal_id,
732 							  slave->pe_number,
733 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
734 		}
735 	}
736 
737 	/*
738 	 * Associate PE in PELT. We need add the PE into the
739 	 * corresponding PELT-V as well. Otherwise, the error
740 	 * originated from the PE might contribute to other
741 	 * PEs.
742 	 */
743 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
744 	if (ret)
745 		return ret;
746 
747 	/* For compound PEs, any one affects all of them */
748 	if (pe->flags & PNV_IODA_PE_MASTER) {
749 		list_for_each_entry(slave, &pe->slaves, list) {
750 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
751 			if (ret)
752 				return ret;
753 		}
754 	}
755 
756 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
757 		pdev = pe->pbus->self;
758 	else if (pe->flags & PNV_IODA_PE_DEV)
759 		pdev = pe->pdev->bus->self;
760 #ifdef CONFIG_PCI_IOV
761 	else if (pe->flags & PNV_IODA_PE_VF)
762 		pdev = pe->parent_dev;
763 #endif /* CONFIG_PCI_IOV */
764 	while (pdev) {
765 		struct pci_dn *pdn = pci_get_pdn(pdev);
766 		struct pnv_ioda_pe *parent;
767 
768 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
769 			parent = &phb->ioda.pe_array[pdn->pe_number];
770 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
771 			if (ret)
772 				return ret;
773 		}
774 
775 		pdev = pdev->bus->self;
776 	}
777 
778 	return 0;
779 }
780 
781 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
782 {
783 	struct pci_dev *parent;
784 	uint8_t bcomp, dcomp, fcomp;
785 	int64_t rc;
786 	long rid_end, rid;
787 
788 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
789 	if (pe->pbus) {
790 		int count;
791 
792 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
793 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
794 		parent = pe->pbus->self;
795 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
796 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
797 		else
798 			count = 1;
799 
800 		switch(count) {
801 		case  1: bcomp = OpalPciBusAll;         break;
802 		case  2: bcomp = OpalPciBus7Bits;       break;
803 		case  4: bcomp = OpalPciBus6Bits;       break;
804 		case  8: bcomp = OpalPciBus5Bits;       break;
805 		case 16: bcomp = OpalPciBus4Bits;       break;
806 		case 32: bcomp = OpalPciBus3Bits;       break;
807 		default:
808 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
809 			        count);
810 			/* Do an exact match only */
811 			bcomp = OpalPciBusAll;
812 		}
813 		rid_end = pe->rid + (count << 8);
814 	} else {
815 #ifdef CONFIG_PCI_IOV
816 		if (pe->flags & PNV_IODA_PE_VF)
817 			parent = pe->parent_dev;
818 		else
819 #endif
820 			parent = pe->pdev->bus->self;
821 		bcomp = OpalPciBusAll;
822 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
823 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
824 		rid_end = pe->rid + 1;
825 	}
826 
827 	/* Clear the reverse map */
828 	for (rid = pe->rid; rid < rid_end; rid++)
829 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
830 
831 	/* Release from all parents PELT-V */
832 	while (parent) {
833 		struct pci_dn *pdn = pci_get_pdn(parent);
834 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
835 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
836 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
837 			/* XXX What to do in case of error ? */
838 		}
839 		parent = parent->bus->self;
840 	}
841 
842 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
843 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
844 
845 	/* Disassociate PE in PELT */
846 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
847 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
848 	if (rc)
849 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
850 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
851 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
852 	if (rc)
853 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
854 
855 	pe->pbus = NULL;
856 	pe->pdev = NULL;
857 #ifdef CONFIG_PCI_IOV
858 	pe->parent_dev = NULL;
859 #endif
860 
861 	return 0;
862 }
863 
864 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
865 {
866 	struct pci_dev *parent;
867 	uint8_t bcomp, dcomp, fcomp;
868 	long rc, rid_end, rid;
869 
870 	/* Bus validation ? */
871 	if (pe->pbus) {
872 		int count;
873 
874 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
875 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
876 		parent = pe->pbus->self;
877 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
878 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
879 		else
880 			count = 1;
881 
882 		switch(count) {
883 		case  1: bcomp = OpalPciBusAll;		break;
884 		case  2: bcomp = OpalPciBus7Bits;	break;
885 		case  4: bcomp = OpalPciBus6Bits;	break;
886 		case  8: bcomp = OpalPciBus5Bits;	break;
887 		case 16: bcomp = OpalPciBus4Bits;	break;
888 		case 32: bcomp = OpalPciBus3Bits;	break;
889 		default:
890 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
891 			        count);
892 			/* Do an exact match only */
893 			bcomp = OpalPciBusAll;
894 		}
895 		rid_end = pe->rid + (count << 8);
896 	} else {
897 #ifdef CONFIG_PCI_IOV
898 		if (pe->flags & PNV_IODA_PE_VF)
899 			parent = pe->parent_dev;
900 		else
901 #endif /* CONFIG_PCI_IOV */
902 			parent = pe->pdev->bus->self;
903 		bcomp = OpalPciBusAll;
904 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
905 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
906 		rid_end = pe->rid + 1;
907 	}
908 
909 	/*
910 	 * Associate PE in PELT. We need add the PE into the
911 	 * corresponding PELT-V as well. Otherwise, the error
912 	 * originated from the PE might contribute to other
913 	 * PEs.
914 	 */
915 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
916 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
917 	if (rc) {
918 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
919 		return -ENXIO;
920 	}
921 
922 	/*
923 	 * Configure PELTV. NPUs don't have a PELTV table so skip
924 	 * configuration on them.
925 	 */
926 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
927 		pnv_ioda_set_peltv(phb, pe, true);
928 
929 	/* Setup reverse map */
930 	for (rid = pe->rid; rid < rid_end; rid++)
931 		phb->ioda.pe_rmap[rid] = pe->pe_number;
932 
933 	/* Setup one MVTs on IODA1 */
934 	if (phb->type != PNV_PHB_IODA1) {
935 		pe->mve_number = 0;
936 		goto out;
937 	}
938 
939 	pe->mve_number = pe->pe_number;
940 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
941 	if (rc != OPAL_SUCCESS) {
942 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
943 		       rc, pe->mve_number);
944 		pe->mve_number = -1;
945 	} else {
946 		rc = opal_pci_set_mve_enable(phb->opal_id,
947 					     pe->mve_number, OPAL_ENABLE_MVE);
948 		if (rc) {
949 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
950 			       rc, pe->mve_number);
951 			pe->mve_number = -1;
952 		}
953 	}
954 
955 out:
956 	return 0;
957 }
958 
959 #ifdef CONFIG_PCI_IOV
960 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
961 {
962 	struct pci_dn *pdn = pci_get_pdn(dev);
963 	int i;
964 	struct resource *res, res2;
965 	resource_size_t size;
966 	u16 num_vfs;
967 
968 	if (!dev->is_physfn)
969 		return -EINVAL;
970 
971 	/*
972 	 * "offset" is in VFs.  The M64 windows are sized so that when they
973 	 * are segmented, each segment is the same size as the IOV BAR.
974 	 * Each segment is in a separate PE, and the high order bits of the
975 	 * address are the PE number.  Therefore, each VF's BAR is in a
976 	 * separate PE, and changing the IOV BAR start address changes the
977 	 * range of PEs the VFs are in.
978 	 */
979 	num_vfs = pdn->num_vfs;
980 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
981 		res = &dev->resource[i + PCI_IOV_RESOURCES];
982 		if (!res->flags || !res->parent)
983 			continue;
984 
985 		/*
986 		 * The actual IOV BAR range is determined by the start address
987 		 * and the actual size for num_vfs VFs BAR.  This check is to
988 		 * make sure that after shifting, the range will not overlap
989 		 * with another device.
990 		 */
991 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
992 		res2.flags = res->flags;
993 		res2.start = res->start + (size * offset);
994 		res2.end = res2.start + (size * num_vfs) - 1;
995 
996 		if (res2.end > res->end) {
997 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
998 				i, &res2, res, num_vfs, offset);
999 			return -EBUSY;
1000 		}
1001 	}
1002 
1003 	/*
1004 	 * Since M64 BAR shares segments among all possible 256 PEs,
1005 	 * we have to shift the beginning of PF IOV BAR to make it start from
1006 	 * the segment which belongs to the PE number assigned to the first VF.
1007 	 * This creates a "hole" in the /proc/iomem which could be used for
1008 	 * allocating other resources so we reserve this area below and
1009 	 * release when IOV is released.
1010 	 */
1011 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1012 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1013 		if (!res->flags || !res->parent)
1014 			continue;
1015 
1016 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1017 		res2 = *res;
1018 		res->start += size * offset;
1019 
1020 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1021 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1022 			 num_vfs, offset);
1023 
1024 		if (offset < 0) {
1025 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1026 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1027 		}
1028 
1029 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1030 
1031 		if (offset > 0) {
1032 			pdn->holes[i].start = res2.start;
1033 			pdn->holes[i].end = res2.start + size * offset - 1;
1034 			pdn->holes[i].flags = IORESOURCE_BUS;
1035 			pdn->holes[i].name = "pnv_iov_reserved";
1036 			devm_request_resource(&dev->dev, res->parent,
1037 					&pdn->holes[i]);
1038 		}
1039 	}
1040 	return 0;
1041 }
1042 #endif /* CONFIG_PCI_IOV */
1043 
1044 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1045 {
1046 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1047 	struct pnv_phb *phb = hose->private_data;
1048 	struct pci_dn *pdn = pci_get_pdn(dev);
1049 	struct pnv_ioda_pe *pe;
1050 
1051 	if (!pdn) {
1052 		pr_err("%s: Device tree node not associated properly\n",
1053 			   pci_name(dev));
1054 		return NULL;
1055 	}
1056 	if (pdn->pe_number != IODA_INVALID_PE)
1057 		return NULL;
1058 
1059 	pe = pnv_ioda_alloc_pe(phb);
1060 	if (!pe) {
1061 		pr_warn("%s: Not enough PE# available, disabling device\n",
1062 			pci_name(dev));
1063 		return NULL;
1064 	}
1065 
1066 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1067 	 * pointer in the PE data structure, both should be destroyed at the
1068 	 * same time. However, this needs to be looked at more closely again
1069 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1070 	 *
1071 	 * At some point we want to remove the PDN completely anyways
1072 	 */
1073 	pci_dev_get(dev);
1074 	pdn->pe_number = pe->pe_number;
1075 	pe->flags = PNV_IODA_PE_DEV;
1076 	pe->pdev = dev;
1077 	pe->pbus = NULL;
1078 	pe->mve_number = -1;
1079 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1080 
1081 	pe_info(pe, "Associated device to PE\n");
1082 
1083 	if (pnv_ioda_configure_pe(phb, pe)) {
1084 		/* XXX What do we do here ? */
1085 		pnv_ioda_free_pe(pe);
1086 		pdn->pe_number = IODA_INVALID_PE;
1087 		pe->pdev = NULL;
1088 		pci_dev_put(dev);
1089 		return NULL;
1090 	}
1091 
1092 	/* Put PE to the list */
1093 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1094 
1095 	return pe;
1096 }
1097 
1098 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1099 {
1100 	struct pci_dev *dev;
1101 
1102 	list_for_each_entry(dev, &bus->devices, bus_list) {
1103 		struct pci_dn *pdn = pci_get_pdn(dev);
1104 
1105 		if (pdn == NULL) {
1106 			pr_warn("%s: No device node associated with device !\n",
1107 				pci_name(dev));
1108 			continue;
1109 		}
1110 
1111 		/*
1112 		 * In partial hotplug case, the PCI device might be still
1113 		 * associated with the PE and needn't attach it to the PE
1114 		 * again.
1115 		 */
1116 		if (pdn->pe_number != IODA_INVALID_PE)
1117 			continue;
1118 
1119 		pe->device_count++;
1120 		pdn->pe_number = pe->pe_number;
1121 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1122 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1123 	}
1124 }
1125 
1126 /*
1127  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1128  * single PCI bus. Another one that contains the primary PCI bus and its
1129  * subordinate PCI devices and buses. The second type of PE is normally
1130  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1131  */
1132 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1133 {
1134 	struct pci_controller *hose = pci_bus_to_host(bus);
1135 	struct pnv_phb *phb = hose->private_data;
1136 	struct pnv_ioda_pe *pe = NULL;
1137 	unsigned int pe_num;
1138 
1139 	/*
1140 	 * In partial hotplug case, the PE instance might be still alive.
1141 	 * We should reuse it instead of allocating a new one.
1142 	 */
1143 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1144 	if (pe_num != IODA_INVALID_PE) {
1145 		pe = &phb->ioda.pe_array[pe_num];
1146 		pnv_ioda_setup_same_PE(bus, pe);
1147 		return NULL;
1148 	}
1149 
1150 	/* PE number for root bus should have been reserved */
1151 	if (pci_is_root_bus(bus) &&
1152 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1153 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1154 
1155 	/* Check if PE is determined by M64 */
1156 	if (!pe)
1157 		pe = pnv_ioda_pick_m64_pe(bus, all);
1158 
1159 	/* The PE number isn't pinned by M64 */
1160 	if (!pe)
1161 		pe = pnv_ioda_alloc_pe(phb);
1162 
1163 	if (!pe) {
1164 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1165 			__func__, pci_domain_nr(bus), bus->number);
1166 		return NULL;
1167 	}
1168 
1169 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1170 	pe->pbus = bus;
1171 	pe->pdev = NULL;
1172 	pe->mve_number = -1;
1173 	pe->rid = bus->busn_res.start << 8;
1174 
1175 	if (all)
1176 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1177 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1178 	else
1179 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1180 			bus->busn_res.start, pe->pe_number);
1181 
1182 	if (pnv_ioda_configure_pe(phb, pe)) {
1183 		/* XXX What do we do here ? */
1184 		pnv_ioda_free_pe(pe);
1185 		pe->pbus = NULL;
1186 		return NULL;
1187 	}
1188 
1189 	/* Associate it with all child devices */
1190 	pnv_ioda_setup_same_PE(bus, pe);
1191 
1192 	/* Put PE to the list */
1193 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1194 
1195 	return pe;
1196 }
1197 
1198 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1199 {
1200 	int pe_num, found_pe = false, rc;
1201 	long rid;
1202 	struct pnv_ioda_pe *pe;
1203 	struct pci_dev *gpu_pdev;
1204 	struct pci_dn *npu_pdn;
1205 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1206 	struct pnv_phb *phb = hose->private_data;
1207 
1208 	/*
1209 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1210 	 * error handling. This means we only have three PEs remaining
1211 	 * which need to be assigned to four links, implying some
1212 	 * links must share PEs.
1213 	 *
1214 	 * To achieve this we assign PEs such that NPUs linking the
1215 	 * same GPU get assigned the same PE.
1216 	 */
1217 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1218 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1219 		pe = &phb->ioda.pe_array[pe_num];
1220 		if (!pe->pdev)
1221 			continue;
1222 
1223 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1224 			/*
1225 			 * This device has the same peer GPU so should
1226 			 * be assigned the same PE as the existing
1227 			 * peer NPU.
1228 			 */
1229 			dev_info(&npu_pdev->dev,
1230 				"Associating to existing PE %x\n", pe_num);
1231 			pci_dev_get(npu_pdev);
1232 			npu_pdn = pci_get_pdn(npu_pdev);
1233 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1234 			npu_pdn->pe_number = pe_num;
1235 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1236 
1237 			/* Map the PE to this link */
1238 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1239 					OpalPciBusAll,
1240 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1241 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1242 					OPAL_MAP_PE);
1243 			WARN_ON(rc != OPAL_SUCCESS);
1244 			found_pe = true;
1245 			break;
1246 		}
1247 	}
1248 
1249 	if (!found_pe)
1250 		/*
1251 		 * Could not find an existing PE so allocate a new
1252 		 * one.
1253 		 */
1254 		return pnv_ioda_setup_dev_PE(npu_pdev);
1255 	else
1256 		return pe;
1257 }
1258 
1259 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1260 {
1261 	struct pci_dev *pdev;
1262 
1263 	list_for_each_entry(pdev, &bus->devices, bus_list)
1264 		pnv_ioda_setup_npu_PE(pdev);
1265 }
1266 
1267 static void pnv_pci_ioda_setup_PEs(void)
1268 {
1269 	struct pci_controller *hose;
1270 	struct pnv_phb *phb;
1271 	struct pci_bus *bus;
1272 	struct pci_dev *pdev;
1273 	struct pnv_ioda_pe *pe;
1274 
1275 	list_for_each_entry(hose, &hose_list, list_node) {
1276 		phb = hose->private_data;
1277 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1278 			/* PE#0 is needed for error reporting */
1279 			pnv_ioda_reserve_pe(phb, 0);
1280 			pnv_ioda_setup_npu_PEs(hose->bus);
1281 			if (phb->model == PNV_PHB_MODEL_NPU2)
1282 				WARN_ON_ONCE(pnv_npu2_init(hose));
1283 		}
1284 		if (phb->type == PNV_PHB_NPU_OCAPI) {
1285 			bus = hose->bus;
1286 			list_for_each_entry(pdev, &bus->devices, bus_list)
1287 				pnv_ioda_setup_dev_PE(pdev);
1288 		}
1289 	}
1290 	list_for_each_entry(hose, &hose_list, list_node) {
1291 		phb = hose->private_data;
1292 		if (phb->type != PNV_PHB_IODA2)
1293 			continue;
1294 
1295 		list_for_each_entry(pe, &phb->ioda.pe_list, list)
1296 			pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1297 	}
1298 }
1299 
1300 #ifdef CONFIG_PCI_IOV
1301 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1302 {
1303 	struct pci_bus        *bus;
1304 	struct pci_controller *hose;
1305 	struct pnv_phb        *phb;
1306 	struct pci_dn         *pdn;
1307 	int                    i, j;
1308 	int                    m64_bars;
1309 
1310 	bus = pdev->bus;
1311 	hose = pci_bus_to_host(bus);
1312 	phb = hose->private_data;
1313 	pdn = pci_get_pdn(pdev);
1314 
1315 	if (pdn->m64_single_mode)
1316 		m64_bars = num_vfs;
1317 	else
1318 		m64_bars = 1;
1319 
1320 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1321 		for (j = 0; j < m64_bars; j++) {
1322 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1323 				continue;
1324 			opal_pci_phb_mmio_enable(phb->opal_id,
1325 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1326 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1327 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1328 		}
1329 
1330 	kfree(pdn->m64_map);
1331 	return 0;
1332 }
1333 
1334 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1335 {
1336 	struct pci_bus        *bus;
1337 	struct pci_controller *hose;
1338 	struct pnv_phb        *phb;
1339 	struct pci_dn         *pdn;
1340 	unsigned int           win;
1341 	struct resource       *res;
1342 	int                    i, j;
1343 	int64_t                rc;
1344 	int                    total_vfs;
1345 	resource_size_t        size, start;
1346 	int                    pe_num;
1347 	int                    m64_bars;
1348 
1349 	bus = pdev->bus;
1350 	hose = pci_bus_to_host(bus);
1351 	phb = hose->private_data;
1352 	pdn = pci_get_pdn(pdev);
1353 	total_vfs = pci_sriov_get_totalvfs(pdev);
1354 
1355 	if (pdn->m64_single_mode)
1356 		m64_bars = num_vfs;
1357 	else
1358 		m64_bars = 1;
1359 
1360 	pdn->m64_map = kmalloc_array(m64_bars,
1361 				     sizeof(*pdn->m64_map),
1362 				     GFP_KERNEL);
1363 	if (!pdn->m64_map)
1364 		return -ENOMEM;
1365 	/* Initialize the m64_map to IODA_INVALID_M64 */
1366 	for (i = 0; i < m64_bars ; i++)
1367 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1368 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1369 
1370 
1371 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1372 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1373 		if (!res->flags || !res->parent)
1374 			continue;
1375 
1376 		for (j = 0; j < m64_bars; j++) {
1377 			do {
1378 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1379 						phb->ioda.m64_bar_idx + 1, 0);
1380 
1381 				if (win >= phb->ioda.m64_bar_idx + 1)
1382 					goto m64_failed;
1383 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1384 
1385 			pdn->m64_map[j][i] = win;
1386 
1387 			if (pdn->m64_single_mode) {
1388 				size = pci_iov_resource_size(pdev,
1389 							PCI_IOV_RESOURCES + i);
1390 				start = res->start + size * j;
1391 			} else {
1392 				size = resource_size(res);
1393 				start = res->start;
1394 			}
1395 
1396 			/* Map the M64 here */
1397 			if (pdn->m64_single_mode) {
1398 				pe_num = pdn->pe_num_map[j];
1399 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1400 						pe_num, OPAL_M64_WINDOW_TYPE,
1401 						pdn->m64_map[j][i], 0);
1402 			}
1403 
1404 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1405 						 OPAL_M64_WINDOW_TYPE,
1406 						 pdn->m64_map[j][i],
1407 						 start,
1408 						 0, /* unused */
1409 						 size);
1410 
1411 
1412 			if (rc != OPAL_SUCCESS) {
1413 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1414 					win, rc);
1415 				goto m64_failed;
1416 			}
1417 
1418 			if (pdn->m64_single_mode)
1419 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1420 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1421 			else
1422 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1423 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1424 
1425 			if (rc != OPAL_SUCCESS) {
1426 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1427 					win, rc);
1428 				goto m64_failed;
1429 			}
1430 		}
1431 	}
1432 	return 0;
1433 
1434 m64_failed:
1435 	pnv_pci_vf_release_m64(pdev, num_vfs);
1436 	return -EBUSY;
1437 }
1438 
1439 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1440 		int num);
1441 
1442 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1443 {
1444 	struct iommu_table    *tbl;
1445 	int64_t               rc;
1446 
1447 	tbl = pe->table_group.tables[0];
1448 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1449 	if (rc)
1450 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1451 
1452 	pnv_pci_ioda2_set_bypass(pe, false);
1453 	if (pe->table_group.group) {
1454 		iommu_group_put(pe->table_group.group);
1455 		BUG_ON(pe->table_group.group);
1456 	}
1457 	iommu_tce_table_put(tbl);
1458 }
1459 
1460 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1461 {
1462 	struct pci_bus        *bus;
1463 	struct pci_controller *hose;
1464 	struct pnv_phb        *phb;
1465 	struct pnv_ioda_pe    *pe, *pe_n;
1466 	struct pci_dn         *pdn;
1467 
1468 	bus = pdev->bus;
1469 	hose = pci_bus_to_host(bus);
1470 	phb = hose->private_data;
1471 	pdn = pci_get_pdn(pdev);
1472 
1473 	if (!pdev->is_physfn)
1474 		return;
1475 
1476 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1477 		if (pe->parent_dev != pdev)
1478 			continue;
1479 
1480 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1481 
1482 		/* Remove from list */
1483 		mutex_lock(&phb->ioda.pe_list_mutex);
1484 		list_del(&pe->list);
1485 		mutex_unlock(&phb->ioda.pe_list_mutex);
1486 
1487 		pnv_ioda_deconfigure_pe(phb, pe);
1488 
1489 		pnv_ioda_free_pe(pe);
1490 	}
1491 }
1492 
1493 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1494 {
1495 	struct pci_bus        *bus;
1496 	struct pci_controller *hose;
1497 	struct pnv_phb        *phb;
1498 	struct pnv_ioda_pe    *pe;
1499 	struct pci_dn         *pdn;
1500 	u16                    num_vfs, i;
1501 
1502 	bus = pdev->bus;
1503 	hose = pci_bus_to_host(bus);
1504 	phb = hose->private_data;
1505 	pdn = pci_get_pdn(pdev);
1506 	num_vfs = pdn->num_vfs;
1507 
1508 	/* Release VF PEs */
1509 	pnv_ioda_release_vf_PE(pdev);
1510 
1511 	if (phb->type == PNV_PHB_IODA2) {
1512 		if (!pdn->m64_single_mode)
1513 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1514 
1515 		/* Release M64 windows */
1516 		pnv_pci_vf_release_m64(pdev, num_vfs);
1517 
1518 		/* Release PE numbers */
1519 		if (pdn->m64_single_mode) {
1520 			for (i = 0; i < num_vfs; i++) {
1521 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1522 					continue;
1523 
1524 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1525 				pnv_ioda_free_pe(pe);
1526 			}
1527 		} else
1528 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1529 		/* Releasing pe_num_map */
1530 		kfree(pdn->pe_num_map);
1531 	}
1532 }
1533 
1534 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1535 				       struct pnv_ioda_pe *pe);
1536 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1537 {
1538 	struct pci_bus        *bus;
1539 	struct pci_controller *hose;
1540 	struct pnv_phb        *phb;
1541 	struct pnv_ioda_pe    *pe;
1542 	int                    pe_num;
1543 	u16                    vf_index;
1544 	struct pci_dn         *pdn;
1545 
1546 	bus = pdev->bus;
1547 	hose = pci_bus_to_host(bus);
1548 	phb = hose->private_data;
1549 	pdn = pci_get_pdn(pdev);
1550 
1551 	if (!pdev->is_physfn)
1552 		return;
1553 
1554 	/* Reserve PE for each VF */
1555 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1556 		if (pdn->m64_single_mode)
1557 			pe_num = pdn->pe_num_map[vf_index];
1558 		else
1559 			pe_num = *pdn->pe_num_map + vf_index;
1560 
1561 		pe = &phb->ioda.pe_array[pe_num];
1562 		pe->pe_number = pe_num;
1563 		pe->phb = phb;
1564 		pe->flags = PNV_IODA_PE_VF;
1565 		pe->pbus = NULL;
1566 		pe->parent_dev = pdev;
1567 		pe->mve_number = -1;
1568 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1569 			   pci_iov_virtfn_devfn(pdev, vf_index);
1570 
1571 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1572 			hose->global_number, pdev->bus->number,
1573 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1574 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1575 
1576 		if (pnv_ioda_configure_pe(phb, pe)) {
1577 			/* XXX What do we do here ? */
1578 			pnv_ioda_free_pe(pe);
1579 			pe->pdev = NULL;
1580 			continue;
1581 		}
1582 
1583 		/* Put PE to the list */
1584 		mutex_lock(&phb->ioda.pe_list_mutex);
1585 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1586 		mutex_unlock(&phb->ioda.pe_list_mutex);
1587 
1588 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1589 	}
1590 }
1591 
1592 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1593 {
1594 	struct pci_bus        *bus;
1595 	struct pci_controller *hose;
1596 	struct pnv_phb        *phb;
1597 	struct pnv_ioda_pe    *pe;
1598 	struct pci_dn         *pdn;
1599 	int                    ret;
1600 	u16                    i;
1601 
1602 	bus = pdev->bus;
1603 	hose = pci_bus_to_host(bus);
1604 	phb = hose->private_data;
1605 	pdn = pci_get_pdn(pdev);
1606 
1607 	if (phb->type == PNV_PHB_IODA2) {
1608 		if (!pdn->vfs_expanded) {
1609 			dev_info(&pdev->dev, "don't support this SRIOV device"
1610 				" with non 64bit-prefetchable IOV BAR\n");
1611 			return -ENOSPC;
1612 		}
1613 
1614 		/*
1615 		 * When M64 BARs functions in Single PE mode, the number of VFs
1616 		 * could be enabled must be less than the number of M64 BARs.
1617 		 */
1618 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1619 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1620 			return -EBUSY;
1621 		}
1622 
1623 		/* Allocating pe_num_map */
1624 		if (pdn->m64_single_mode)
1625 			pdn->pe_num_map = kmalloc_array(num_vfs,
1626 							sizeof(*pdn->pe_num_map),
1627 							GFP_KERNEL);
1628 		else
1629 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1630 
1631 		if (!pdn->pe_num_map)
1632 			return -ENOMEM;
1633 
1634 		if (pdn->m64_single_mode)
1635 			for (i = 0; i < num_vfs; i++)
1636 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1637 
1638 		/* Calculate available PE for required VFs */
1639 		if (pdn->m64_single_mode) {
1640 			for (i = 0; i < num_vfs; i++) {
1641 				pe = pnv_ioda_alloc_pe(phb);
1642 				if (!pe) {
1643 					ret = -EBUSY;
1644 					goto m64_failed;
1645 				}
1646 
1647 				pdn->pe_num_map[i] = pe->pe_number;
1648 			}
1649 		} else {
1650 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1651 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1652 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1653 				0, num_vfs, 0);
1654 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1655 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1656 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1657 				kfree(pdn->pe_num_map);
1658 				return -EBUSY;
1659 			}
1660 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1661 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1662 		}
1663 		pdn->num_vfs = num_vfs;
1664 
1665 		/* Assign M64 window accordingly */
1666 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1667 		if (ret) {
1668 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1669 			goto m64_failed;
1670 		}
1671 
1672 		/*
1673 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1674 		 * the IOV BAR according to the PE# allocated to the VFs.
1675 		 * Otherwise, the PE# for the VF will conflict with others.
1676 		 */
1677 		if (!pdn->m64_single_mode) {
1678 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1679 			if (ret)
1680 				goto m64_failed;
1681 		}
1682 	}
1683 
1684 	/* Setup VF PEs */
1685 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1686 
1687 	return 0;
1688 
1689 m64_failed:
1690 	if (pdn->m64_single_mode) {
1691 		for (i = 0; i < num_vfs; i++) {
1692 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1693 				continue;
1694 
1695 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1696 			pnv_ioda_free_pe(pe);
1697 		}
1698 	} else
1699 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1700 
1701 	/* Releasing pe_num_map */
1702 	kfree(pdn->pe_num_map);
1703 
1704 	return ret;
1705 }
1706 
1707 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1708 {
1709 	pnv_pci_sriov_disable(pdev);
1710 
1711 	/* Release PCI data */
1712 	remove_dev_pci_data(pdev);
1713 	return 0;
1714 }
1715 
1716 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1717 {
1718 	/* Allocate PCI data */
1719 	add_dev_pci_data(pdev);
1720 
1721 	return pnv_pci_sriov_enable(pdev, num_vfs);
1722 }
1723 #endif /* CONFIG_PCI_IOV */
1724 
1725 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1726 {
1727 	struct pci_dn *pdn = pci_get_pdn(pdev);
1728 	struct pnv_ioda_pe *pe;
1729 
1730 	/*
1731 	 * The function can be called while the PE#
1732 	 * hasn't been assigned. Do nothing for the
1733 	 * case.
1734 	 */
1735 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1736 		return;
1737 
1738 	pe = &phb->ioda.pe_array[pdn->pe_number];
1739 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1740 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1741 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1742 	/*
1743 	 * Note: iommu_add_device() will fail here as
1744 	 * for physical PE: the device is already added by now;
1745 	 * for virtual PE: sysfs entries are not ready yet and
1746 	 * tce_iommu_bus_notifier will add the device to a group later.
1747 	 */
1748 }
1749 
1750 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1751 {
1752 	unsigned short vendor = 0;
1753 	struct pci_dev *pdev;
1754 
1755 	if (pe->device_count == 1)
1756 		return true;
1757 
1758 	/* pe->pdev should be set if it's a single device, pe->pbus if not */
1759 	if (!pe->pbus)
1760 		return true;
1761 
1762 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1763 		if (!vendor) {
1764 			vendor = pdev->vendor;
1765 			continue;
1766 		}
1767 
1768 		if (pdev->vendor != vendor)
1769 			return false;
1770 	}
1771 
1772 	return true;
1773 }
1774 
1775 /*
1776  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1777  *
1778  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1779  * Devices can only access more than that if bit 59 of the PCI address is set
1780  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1781  * Many PCI devices are not capable of addressing that many bits, and as a
1782  * result are limited to the 4GB of virtual memory made available to 32-bit
1783  * devices in TVE#0.
1784  *
1785  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1786  * devices by configuring the virtual memory past the first 4GB inaccessible
1787  * by 64-bit DMAs.  This should only be used by devices that want more than
1788  * 4GB, and only on PEs that have no 32-bit devices.
1789  *
1790  * Currently this will only work on PHB3 (POWER8).
1791  */
1792 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1793 {
1794 	u64 window_size, table_size, tce_count, addr;
1795 	struct page *table_pages;
1796 	u64 tce_order = 28; /* 256MB TCEs */
1797 	__be64 *tces;
1798 	s64 rc;
1799 
1800 	/*
1801 	 * Window size needs to be a power of two, but needs to account for
1802 	 * shifting memory by the 4GB offset required to skip 32bit space.
1803 	 */
1804 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1805 	tce_count = window_size >> tce_order;
1806 	table_size = tce_count << 3;
1807 
1808 	if (table_size < PAGE_SIZE)
1809 		table_size = PAGE_SIZE;
1810 
1811 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1812 				       get_order(table_size));
1813 	if (!table_pages)
1814 		goto err;
1815 
1816 	tces = page_address(table_pages);
1817 	if (!tces)
1818 		goto err;
1819 
1820 	memset(tces, 0, table_size);
1821 
1822 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1823 		tces[(addr + (1ULL << 32)) >> tce_order] =
1824 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1825 	}
1826 
1827 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1828 					pe->pe_number,
1829 					/* reconfigure window 0 */
1830 					(pe->pe_number << 1) + 0,
1831 					1,
1832 					__pa(tces),
1833 					table_size,
1834 					1 << tce_order);
1835 	if (rc == OPAL_SUCCESS) {
1836 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1837 		return 0;
1838 	}
1839 err:
1840 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1841 	return -EIO;
1842 }
1843 
1844 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1845 {
1846 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1847 	struct pnv_phb *phb = hose->private_data;
1848 	struct pci_dn *pdn = pci_get_pdn(pdev);
1849 	struct pnv_ioda_pe *pe;
1850 	uint64_t top;
1851 	bool bypass = false;
1852 	s64 rc;
1853 
1854 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1855 		return -ENODEV;
1856 
1857 	pe = &phb->ioda.pe_array[pdn->pe_number];
1858 	if (pe->tce_bypass_enabled) {
1859 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1860 		bypass = (dma_mask >= top);
1861 	}
1862 
1863 	if (bypass) {
1864 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1865 		set_dma_ops(&pdev->dev, &dma_nommu_ops);
1866 	} else {
1867 		/*
1868 		 * If the device can't set the TCE bypass bit but still wants
1869 		 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1870 		 * bypass the 32-bit region and be usable for 64-bit DMAs.
1871 		 * The device needs to be able to address all of this space.
1872 		 */
1873 		if (dma_mask >> 32 &&
1874 		    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1875 		    pnv_pci_ioda_pe_single_vendor(pe) &&
1876 		    phb->model == PNV_PHB_MODEL_PHB3) {
1877 			/* Configure the bypass mode */
1878 			rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1879 			if (rc)
1880 				return rc;
1881 			/* 4GB offset bypasses 32-bit space */
1882 			set_dma_offset(&pdev->dev, (1ULL << 32));
1883 			set_dma_ops(&pdev->dev, &dma_nommu_ops);
1884 		} else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1885 			/*
1886 			 * Fail the request if a DMA mask between 32 and 64 bits
1887 			 * was requested but couldn't be fulfilled. Ideally we
1888 			 * would do this for 64-bits but historically we have
1889 			 * always fallen back to 32-bits.
1890 			 */
1891 			return -ENOMEM;
1892 		} else {
1893 			dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1894 			set_dma_ops(&pdev->dev, &dma_iommu_ops);
1895 		}
1896 	}
1897 	*pdev->dev.dma_mask = dma_mask;
1898 
1899 	/* Update peer npu devices */
1900 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1901 
1902 	return 0;
1903 }
1904 
1905 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1906 {
1907 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1908 	struct pnv_phb *phb = hose->private_data;
1909 	struct pci_dn *pdn = pci_get_pdn(pdev);
1910 	struct pnv_ioda_pe *pe;
1911 	u64 end, mask;
1912 
1913 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1914 		return 0;
1915 
1916 	pe = &phb->ioda.pe_array[pdn->pe_number];
1917 	if (!pe->tce_bypass_enabled)
1918 		return __dma_get_required_mask(&pdev->dev);
1919 
1920 
1921 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1922 	mask = 1ULL << (fls64(end) - 1);
1923 	mask += mask - 1;
1924 
1925 	return mask;
1926 }
1927 
1928 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1929 				   struct pci_bus *bus,
1930 				   bool add_to_group)
1931 {
1932 	struct pci_dev *dev;
1933 
1934 	list_for_each_entry(dev, &bus->devices, bus_list) {
1935 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1936 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1937 		if (add_to_group)
1938 			iommu_add_device(&dev->dev);
1939 
1940 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1941 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1942 					add_to_group);
1943 	}
1944 }
1945 
1946 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1947 						     bool real_mode)
1948 {
1949 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1950 		(phb->regs + 0x210);
1951 }
1952 
1953 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1954 		unsigned long index, unsigned long npages, bool rm)
1955 {
1956 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1957 			&tbl->it_group_list, struct iommu_table_group_link,
1958 			next);
1959 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1960 			struct pnv_ioda_pe, table_group);
1961 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1962 	unsigned long start, end, inc;
1963 
1964 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1965 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1966 			npages - 1);
1967 
1968 	/* p7ioc-style invalidation, 2 TCEs per write */
1969 	start |= (1ull << 63);
1970 	end |= (1ull << 63);
1971 	inc = 16;
1972         end |= inc - 1;	/* round up end to be different than start */
1973 
1974         mb(); /* Ensure above stores are visible */
1975         while (start <= end) {
1976 		if (rm)
1977 			__raw_rm_writeq_be(start, invalidate);
1978 		else
1979 			__raw_writeq_be(start, invalidate);
1980 
1981                 start += inc;
1982         }
1983 
1984 	/*
1985 	 * The iommu layer will do another mb() for us on build()
1986 	 * and we don't care on free()
1987 	 */
1988 }
1989 
1990 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1991 		long npages, unsigned long uaddr,
1992 		enum dma_data_direction direction,
1993 		unsigned long attrs)
1994 {
1995 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1996 			attrs);
1997 
1998 	if (!ret)
1999 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2000 
2001 	return ret;
2002 }
2003 
2004 #ifdef CONFIG_IOMMU_API
2005 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
2006 		unsigned long *hpa, enum dma_data_direction *direction)
2007 {
2008 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2009 
2010 	if (!ret)
2011 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
2012 
2013 	return ret;
2014 }
2015 
2016 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2017 		unsigned long *hpa, enum dma_data_direction *direction)
2018 {
2019 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2020 
2021 	if (!ret)
2022 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2023 
2024 	return ret;
2025 }
2026 #endif
2027 
2028 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2029 		long npages)
2030 {
2031 	pnv_tce_free(tbl, index, npages);
2032 
2033 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2034 }
2035 
2036 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2037 	.set = pnv_ioda1_tce_build,
2038 #ifdef CONFIG_IOMMU_API
2039 	.exchange = pnv_ioda1_tce_xchg,
2040 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
2041 	.useraddrptr = pnv_tce_useraddrptr,
2042 #endif
2043 	.clear = pnv_ioda1_tce_free,
2044 	.get = pnv_tce_get,
2045 };
2046 
2047 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
2048 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
2049 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
2050 
2051 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2052 {
2053 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2054 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2055 
2056 	mb(); /* Ensure previous TCE table stores are visible */
2057 	if (rm)
2058 		__raw_rm_writeq_be(val, invalidate);
2059 	else
2060 		__raw_writeq_be(val, invalidate);
2061 }
2062 
2063 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2064 {
2065 	/* 01xb - invalidate TCEs that match the specified PE# */
2066 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2067 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2068 
2069 	mb(); /* Ensure above stores are visible */
2070 	__raw_writeq_be(val, invalidate);
2071 }
2072 
2073 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2074 					unsigned shift, unsigned long index,
2075 					unsigned long npages)
2076 {
2077 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2078 	unsigned long start, end, inc;
2079 
2080 	/* We'll invalidate DMA address in PE scope */
2081 	start = PHB3_TCE_KILL_INVAL_ONE;
2082 	start |= (pe->pe_number & 0xFF);
2083 	end = start;
2084 
2085 	/* Figure out the start, end and step */
2086 	start |= (index << shift);
2087 	end |= ((index + npages - 1) << shift);
2088 	inc = (0x1ull << shift);
2089 	mb();
2090 
2091 	while (start <= end) {
2092 		if (rm)
2093 			__raw_rm_writeq_be(start, invalidate);
2094 		else
2095 			__raw_writeq_be(start, invalidate);
2096 		start += inc;
2097 	}
2098 }
2099 
2100 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2101 {
2102 	struct pnv_phb *phb = pe->phb;
2103 
2104 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2105 		pnv_pci_phb3_tce_invalidate_pe(pe);
2106 	else
2107 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2108 				  pe->pe_number, 0, 0, 0);
2109 }
2110 
2111 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2112 		unsigned long index, unsigned long npages, bool rm)
2113 {
2114 	struct iommu_table_group_link *tgl;
2115 
2116 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2117 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2118 				struct pnv_ioda_pe, table_group);
2119 		struct pnv_phb *phb = pe->phb;
2120 		unsigned int shift = tbl->it_page_shift;
2121 
2122 		/*
2123 		 * NVLink1 can use the TCE kill register directly as
2124 		 * it's the same as PHB3. NVLink2 is different and
2125 		 * should go via the OPAL call.
2126 		 */
2127 		if (phb->model == PNV_PHB_MODEL_NPU) {
2128 			/*
2129 			 * The NVLink hardware does not support TCE kill
2130 			 * per TCE entry so we have to invalidate
2131 			 * the entire cache for it.
2132 			 */
2133 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2134 			continue;
2135 		}
2136 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2137 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2138 						    index, npages);
2139 		else
2140 			opal_pci_tce_kill(phb->opal_id,
2141 					  OPAL_PCI_TCE_KILL_PAGES,
2142 					  pe->pe_number, 1u << shift,
2143 					  index << shift, npages);
2144 	}
2145 }
2146 
2147 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2148 {
2149 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2150 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2151 	else
2152 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2153 }
2154 
2155 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2156 		long npages, unsigned long uaddr,
2157 		enum dma_data_direction direction,
2158 		unsigned long attrs)
2159 {
2160 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2161 			attrs);
2162 
2163 	if (!ret)
2164 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2165 
2166 	return ret;
2167 }
2168 
2169 #ifdef CONFIG_IOMMU_API
2170 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2171 		unsigned long *hpa, enum dma_data_direction *direction)
2172 {
2173 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2174 
2175 	if (!ret)
2176 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2177 
2178 	return ret;
2179 }
2180 
2181 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2182 		unsigned long *hpa, enum dma_data_direction *direction)
2183 {
2184 	long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2185 
2186 	if (!ret)
2187 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2188 
2189 	return ret;
2190 }
2191 #endif
2192 
2193 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2194 		long npages)
2195 {
2196 	pnv_tce_free(tbl, index, npages);
2197 
2198 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2199 }
2200 
2201 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2202 	.set = pnv_ioda2_tce_build,
2203 #ifdef CONFIG_IOMMU_API
2204 	.exchange = pnv_ioda2_tce_xchg,
2205 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2206 	.useraddrptr = pnv_tce_useraddrptr,
2207 #endif
2208 	.clear = pnv_ioda2_tce_free,
2209 	.get = pnv_tce_get,
2210 	.free = pnv_pci_ioda2_table_free_pages,
2211 };
2212 
2213 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2214 {
2215 	unsigned int *weight = (unsigned int *)data;
2216 
2217 	/* This is quite simplistic. The "base" weight of a device
2218 	 * is 10. 0 means no DMA is to be accounted for it.
2219 	 */
2220 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2221 		return 0;
2222 
2223 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2224 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2225 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2226 		*weight += 3;
2227 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2228 		*weight += 15;
2229 	else
2230 		*weight += 10;
2231 
2232 	return 0;
2233 }
2234 
2235 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2236 {
2237 	unsigned int weight = 0;
2238 
2239 	/* SRIOV VF has same DMA32 weight as its PF */
2240 #ifdef CONFIG_PCI_IOV
2241 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2242 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2243 		return weight;
2244 	}
2245 #endif
2246 
2247 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2248 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2249 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2250 		struct pci_dev *pdev;
2251 
2252 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2253 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2254 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2255 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2256 	}
2257 
2258 	return weight;
2259 }
2260 
2261 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2262 				       struct pnv_ioda_pe *pe)
2263 {
2264 
2265 	struct page *tce_mem = NULL;
2266 	struct iommu_table *tbl;
2267 	unsigned int weight, total_weight = 0;
2268 	unsigned int tce32_segsz, base, segs, avail, i;
2269 	int64_t rc;
2270 	void *addr;
2271 
2272 	/* XXX FIXME: Handle 64-bit only DMA devices */
2273 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2274 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2275 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2276 	if (!weight)
2277 		return;
2278 
2279 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2280 		     &total_weight);
2281 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2282 	if (!segs)
2283 		segs = 1;
2284 
2285 	/*
2286 	 * Allocate contiguous DMA32 segments. We begin with the expected
2287 	 * number of segments. With one more attempt, the number of DMA32
2288 	 * segments to be allocated is decreased by one until one segment
2289 	 * is allocated successfully.
2290 	 */
2291 	do {
2292 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2293 			for (avail = 0, i = base; i < base + segs; i++) {
2294 				if (phb->ioda.dma32_segmap[i] ==
2295 				    IODA_INVALID_PE)
2296 					avail++;
2297 			}
2298 
2299 			if (avail == segs)
2300 				goto found;
2301 		}
2302 	} while (--segs);
2303 
2304 	if (!segs) {
2305 		pe_warn(pe, "No available DMA32 segments\n");
2306 		return;
2307 	}
2308 
2309 found:
2310 	tbl = pnv_pci_table_alloc(phb->hose->node);
2311 	if (WARN_ON(!tbl))
2312 		return;
2313 
2314 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2315 			pe->pe_number);
2316 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2317 
2318 	/* Grab a 32-bit TCE table */
2319 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2320 		weight, total_weight, base, segs);
2321 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2322 		base * PNV_IODA1_DMA32_SEGSIZE,
2323 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2324 
2325 	/* XXX Currently, we allocate one big contiguous table for the
2326 	 * TCEs. We only really need one chunk per 256M of TCE space
2327 	 * (ie per segment) but that's an optimization for later, it
2328 	 * requires some added smarts with our get/put_tce implementation
2329 	 *
2330 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2331 	 * bytes
2332 	 */
2333 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2334 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2335 				   get_order(tce32_segsz * segs));
2336 	if (!tce_mem) {
2337 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2338 		goto fail;
2339 	}
2340 	addr = page_address(tce_mem);
2341 	memset(addr, 0, tce32_segsz * segs);
2342 
2343 	/* Configure HW */
2344 	for (i = 0; i < segs; i++) {
2345 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2346 					      pe->pe_number,
2347 					      base + i, 1,
2348 					      __pa(addr) + tce32_segsz * i,
2349 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2350 		if (rc) {
2351 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2352 			       " err %ld\n", rc);
2353 			goto fail;
2354 		}
2355 	}
2356 
2357 	/* Setup DMA32 segment mapping */
2358 	for (i = base; i < base + segs; i++)
2359 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2360 
2361 	/* Setup linux iommu table */
2362 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2363 				  base * PNV_IODA1_DMA32_SEGSIZE,
2364 				  IOMMU_PAGE_SHIFT_4K);
2365 
2366 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2367 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2368 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2369 	iommu_init_table(tbl, phb->hose->node);
2370 
2371 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2372 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2373 
2374 	return;
2375  fail:
2376 	/* XXX Failure: Try to fallback to 64-bit only ? */
2377 	if (tce_mem)
2378 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2379 	if (tbl) {
2380 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2381 		iommu_tce_table_put(tbl);
2382 	}
2383 }
2384 
2385 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2386 		int num, struct iommu_table *tbl)
2387 {
2388 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2389 			table_group);
2390 	struct pnv_phb *phb = pe->phb;
2391 	int64_t rc;
2392 	const unsigned long size = tbl->it_indirect_levels ?
2393 			tbl->it_level_size : tbl->it_size;
2394 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2395 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2396 
2397 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2398 			start_addr, start_addr + win_size - 1,
2399 			IOMMU_PAGE_SIZE(tbl));
2400 
2401 	/*
2402 	 * Map TCE table through TVT. The TVE index is the PE number
2403 	 * shifted by 1 bit for 32-bits DMA space.
2404 	 */
2405 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2406 			pe->pe_number,
2407 			(pe->pe_number << 1) + num,
2408 			tbl->it_indirect_levels + 1,
2409 			__pa(tbl->it_base),
2410 			size << 3,
2411 			IOMMU_PAGE_SIZE(tbl));
2412 	if (rc) {
2413 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2414 		return rc;
2415 	}
2416 
2417 	pnv_pci_link_table_and_group(phb->hose->node, num,
2418 			tbl, &pe->table_group);
2419 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2420 
2421 	return 0;
2422 }
2423 
2424 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2425 {
2426 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2427 	int64_t rc;
2428 
2429 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2430 	if (enable) {
2431 		phys_addr_t top = memblock_end_of_DRAM();
2432 
2433 		top = roundup_pow_of_two(top);
2434 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2435 						     pe->pe_number,
2436 						     window_id,
2437 						     pe->tce_bypass_base,
2438 						     top);
2439 	} else {
2440 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2441 						     pe->pe_number,
2442 						     window_id,
2443 						     pe->tce_bypass_base,
2444 						     0);
2445 	}
2446 	if (rc)
2447 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2448 	else
2449 		pe->tce_bypass_enabled = enable;
2450 }
2451 
2452 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2453 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2454 		bool alloc_userspace_copy, struct iommu_table **ptbl)
2455 {
2456 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2457 			table_group);
2458 	int nid = pe->phb->hose->node;
2459 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2460 	long ret;
2461 	struct iommu_table *tbl;
2462 
2463 	tbl = pnv_pci_table_alloc(nid);
2464 	if (!tbl)
2465 		return -ENOMEM;
2466 
2467 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2468 
2469 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2470 			bus_offset, page_shift, window_size,
2471 			levels, alloc_userspace_copy, tbl);
2472 	if (ret) {
2473 		iommu_tce_table_put(tbl);
2474 		return ret;
2475 	}
2476 
2477 	*ptbl = tbl;
2478 
2479 	return 0;
2480 }
2481 
2482 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2483 {
2484 	struct iommu_table *tbl = NULL;
2485 	long rc;
2486 
2487 	/*
2488 	 * crashkernel= specifies the kdump kernel's maximum memory at
2489 	 * some offset and there is no guaranteed the result is a power
2490 	 * of 2, which will cause errors later.
2491 	 */
2492 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2493 
2494 	/*
2495 	 * In memory constrained environments, e.g. kdump kernel, the
2496 	 * DMA window can be larger than available memory, which will
2497 	 * cause errors later.
2498 	 */
2499 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2500 
2501 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2502 			IOMMU_PAGE_SHIFT_4K,
2503 			window_size,
2504 			POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl);
2505 	if (rc) {
2506 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2507 				rc);
2508 		return rc;
2509 	}
2510 
2511 	iommu_init_table(tbl, pe->phb->hose->node);
2512 
2513 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2514 	if (rc) {
2515 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2516 				rc);
2517 		iommu_tce_table_put(tbl);
2518 		return rc;
2519 	}
2520 
2521 	if (!pnv_iommu_bypass_disabled)
2522 		pnv_pci_ioda2_set_bypass(pe, true);
2523 
2524 	/*
2525 	 * Setting table base here only for carrying iommu_group
2526 	 * further down to let iommu_add_device() do the job.
2527 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2528 	 */
2529 	if (pe->flags & PNV_IODA_PE_DEV)
2530 		set_iommu_table_base(&pe->pdev->dev, tbl);
2531 
2532 	return 0;
2533 }
2534 
2535 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2536 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2537 		int num)
2538 {
2539 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2540 			table_group);
2541 	struct pnv_phb *phb = pe->phb;
2542 	long ret;
2543 
2544 	pe_info(pe, "Removing DMA window #%d\n", num);
2545 
2546 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2547 			(pe->pe_number << 1) + num,
2548 			0/* levels */, 0/* table address */,
2549 			0/* table size */, 0/* page size */);
2550 	if (ret)
2551 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2552 	else
2553 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2554 
2555 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2556 
2557 	return ret;
2558 }
2559 #endif
2560 
2561 #ifdef CONFIG_IOMMU_API
2562 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2563 		__u64 window_size, __u32 levels)
2564 {
2565 	unsigned long bytes = 0;
2566 	const unsigned window_shift = ilog2(window_size);
2567 	unsigned entries_shift = window_shift - page_shift;
2568 	unsigned table_shift = entries_shift + 3;
2569 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2570 	unsigned long direct_table_size;
2571 
2572 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2573 			!is_power_of_2(window_size))
2574 		return 0;
2575 
2576 	/* Calculate a direct table size from window_size and levels */
2577 	entries_shift = (entries_shift + levels - 1) / levels;
2578 	table_shift = entries_shift + 3;
2579 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2580 	direct_table_size =  1UL << table_shift;
2581 
2582 	for ( ; levels; --levels) {
2583 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2584 
2585 		tce_table_size /= direct_table_size;
2586 		tce_table_size <<= 3;
2587 		tce_table_size = max_t(unsigned long,
2588 				tce_table_size, direct_table_size);
2589 	}
2590 
2591 	return bytes + bytes; /* one for HW table, one for userspace copy */
2592 }
2593 
2594 static long pnv_pci_ioda2_create_table_userspace(
2595 		struct iommu_table_group *table_group,
2596 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2597 		struct iommu_table **ptbl)
2598 {
2599 	return pnv_pci_ioda2_create_table(table_group,
2600 			num, page_shift, window_size, levels, true, ptbl);
2601 }
2602 
2603 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2604 {
2605 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2606 						table_group);
2607 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2608 	struct iommu_table *tbl = pe->table_group.tables[0];
2609 
2610 	pnv_pci_ioda2_set_bypass(pe, false);
2611 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2612 	if (pe->pbus)
2613 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2614 	iommu_tce_table_put(tbl);
2615 }
2616 
2617 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2618 {
2619 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2620 						table_group);
2621 
2622 	pnv_pci_ioda2_setup_default_config(pe);
2623 	if (pe->pbus)
2624 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2625 }
2626 
2627 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2628 	.get_table_size = pnv_pci_ioda2_get_table_size,
2629 	.create_table = pnv_pci_ioda2_create_table_userspace,
2630 	.set_window = pnv_pci_ioda2_set_window,
2631 	.unset_window = pnv_pci_ioda2_unset_window,
2632 	.take_ownership = pnv_ioda2_take_ownership,
2633 	.release_ownership = pnv_ioda2_release_ownership,
2634 };
2635 
2636 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2637 {
2638 	struct pci_controller *hose;
2639 	struct pnv_phb *phb;
2640 	struct pnv_ioda_pe **ptmppe = opaque;
2641 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2642 	struct pci_dn *pdn = pci_get_pdn(pdev);
2643 
2644 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2645 		return 0;
2646 
2647 	hose = pci_bus_to_host(pdev->bus);
2648 	phb = hose->private_data;
2649 	if (phb->type != PNV_PHB_NPU_NVLINK)
2650 		return 0;
2651 
2652 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2653 
2654 	return 1;
2655 }
2656 
2657 /*
2658  * This returns PE of associated NPU.
2659  * This assumes that NPU is in the same IOMMU group with GPU and there is
2660  * no other PEs.
2661  */
2662 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2663 		struct iommu_table_group *table_group)
2664 {
2665 	struct pnv_ioda_pe *npe = NULL;
2666 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2667 			gpe_table_group_to_npe_cb);
2668 
2669 	BUG_ON(!ret || !npe);
2670 
2671 	return npe;
2672 }
2673 
2674 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2675 		int num, struct iommu_table *tbl)
2676 {
2677 	struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2678 	int num2 = (num == 0) ? 1 : 0;
2679 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2680 
2681 	if (ret)
2682 		return ret;
2683 
2684 	if (table_group->tables[num2])
2685 		pnv_npu_unset_window(npe, num2);
2686 
2687 	ret = pnv_npu_set_window(npe, num, tbl);
2688 	if (ret) {
2689 		pnv_pci_ioda2_unset_window(table_group, num);
2690 		if (table_group->tables[num2])
2691 			pnv_npu_set_window(npe, num2,
2692 					table_group->tables[num2]);
2693 	}
2694 
2695 	return ret;
2696 }
2697 
2698 static long pnv_pci_ioda2_npu_unset_window(
2699 		struct iommu_table_group *table_group,
2700 		int num)
2701 {
2702 	struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2703 	int num2 = (num == 0) ? 1 : 0;
2704 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2705 
2706 	if (ret)
2707 		return ret;
2708 
2709 	if (!npe->table_group.tables[num])
2710 		return 0;
2711 
2712 	ret = pnv_npu_unset_window(npe, num);
2713 	if (ret)
2714 		return ret;
2715 
2716 	if (table_group->tables[num2])
2717 		ret = pnv_npu_set_window(npe, num2, table_group->tables[num2]);
2718 
2719 	return ret;
2720 }
2721 
2722 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2723 {
2724 	/*
2725 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2726 	 * the iommu_table if 32bit DMA is enabled.
2727 	 */
2728 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2729 	pnv_ioda2_take_ownership(table_group);
2730 }
2731 
2732 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2733 	.get_table_size = pnv_pci_ioda2_get_table_size,
2734 	.create_table = pnv_pci_ioda2_create_table_userspace,
2735 	.set_window = pnv_pci_ioda2_npu_set_window,
2736 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2737 	.take_ownership = pnv_ioda2_npu_take_ownership,
2738 	.release_ownership = pnv_ioda2_release_ownership,
2739 };
2740 
2741 static void pnv_pci_ioda_setup_iommu_api(void)
2742 {
2743 	struct pci_controller *hose, *tmp;
2744 	struct pnv_phb *phb;
2745 	struct pnv_ioda_pe *pe, *gpe;
2746 
2747 	/*
2748 	 * Now we have all PHBs discovered, time to add NPU devices to
2749 	 * the corresponding IOMMU groups.
2750 	 */
2751 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2752 		phb = hose->private_data;
2753 
2754 		if (phb->type != PNV_PHB_NPU_NVLINK)
2755 			continue;
2756 
2757 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2758 			gpe = pnv_pci_npu_setup_iommu(pe);
2759 			if (gpe)
2760 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2761 		}
2762 	}
2763 }
2764 #else /* !CONFIG_IOMMU_API */
2765 static void pnv_pci_ioda_setup_iommu_api(void) { };
2766 #endif
2767 
2768 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2769 {
2770 	struct pci_controller *hose = phb->hose;
2771 	struct device_node *dn = hose->dn;
2772 	unsigned long mask = 0;
2773 	int i, rc, count;
2774 	u32 val;
2775 
2776 	count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2777 	if (count <= 0) {
2778 		mask = SZ_4K | SZ_64K;
2779 		/* Add 16M for POWER8 by default */
2780 		if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2781 				!cpu_has_feature(CPU_FTR_ARCH_300))
2782 			mask |= SZ_16M | SZ_256M;
2783 		return mask;
2784 	}
2785 
2786 	for (i = 0; i < count; i++) {
2787 		rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2788 						i, &val);
2789 		if (rc == 0)
2790 			mask |= 1ULL << val;
2791 	}
2792 
2793 	return mask;
2794 }
2795 
2796 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2797 				       struct pnv_ioda_pe *pe)
2798 {
2799 	int64_t rc;
2800 
2801 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2802 		return;
2803 
2804 	/* TVE #1 is selected by PCI address bit 59 */
2805 	pe->tce_bypass_base = 1ull << 59;
2806 
2807 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2808 			pe->pe_number);
2809 
2810 	/* The PE will reserve all possible 32-bits space */
2811 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2812 		phb->ioda.m32_pci_base);
2813 
2814 	/* Setup linux iommu table */
2815 	pe->table_group.tce32_start = 0;
2816 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2817 	pe->table_group.max_dynamic_windows_supported =
2818 			IOMMU_TABLE_GROUP_MAX_TABLES;
2819 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2820 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2821 #ifdef CONFIG_IOMMU_API
2822 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2823 #endif
2824 
2825 	rc = pnv_pci_ioda2_setup_default_config(pe);
2826 	if (rc)
2827 		return;
2828 
2829 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2830 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2831 }
2832 
2833 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2834 {
2835 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2836 					   ioda.irq_chip);
2837 
2838 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2839 }
2840 
2841 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2842 {
2843 	int64_t rc;
2844 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2845 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2846 
2847 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2848 	WARN_ON_ONCE(rc);
2849 
2850 	icp_native_eoi(d);
2851 }
2852 
2853 
2854 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2855 {
2856 	struct irq_data *idata;
2857 	struct irq_chip *ichip;
2858 
2859 	/* The MSI EOI OPAL call is only needed on PHB3 */
2860 	if (phb->model != PNV_PHB_MODEL_PHB3)
2861 		return;
2862 
2863 	if (!phb->ioda.irq_chip_init) {
2864 		/*
2865 		 * First time we setup an MSI IRQ, we need to setup the
2866 		 * corresponding IRQ chip to route correctly.
2867 		 */
2868 		idata = irq_get_irq_data(virq);
2869 		ichip = irq_data_get_irq_chip(idata);
2870 		phb->ioda.irq_chip_init = 1;
2871 		phb->ioda.irq_chip = *ichip;
2872 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2873 	}
2874 	irq_set_chip(virq, &phb->ioda.irq_chip);
2875 }
2876 
2877 /*
2878  * Returns true iff chip is something that we could call
2879  * pnv_opal_pci_msi_eoi for.
2880  */
2881 bool is_pnv_opal_msi(struct irq_chip *chip)
2882 {
2883 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2884 }
2885 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2886 
2887 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2888 				  unsigned int hwirq, unsigned int virq,
2889 				  unsigned int is_64, struct msi_msg *msg)
2890 {
2891 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2892 	unsigned int xive_num = hwirq - phb->msi_base;
2893 	__be32 data;
2894 	int rc;
2895 
2896 	/* No PE assigned ? bail out ... no MSI for you ! */
2897 	if (pe == NULL)
2898 		return -ENXIO;
2899 
2900 	/* Check if we have an MVE */
2901 	if (pe->mve_number < 0)
2902 		return -ENXIO;
2903 
2904 	/* Force 32-bit MSI on some broken devices */
2905 	if (dev->no_64bit_msi)
2906 		is_64 = 0;
2907 
2908 	/* Assign XIVE to PE */
2909 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2910 	if (rc) {
2911 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2912 			pci_name(dev), rc, xive_num);
2913 		return -EIO;
2914 	}
2915 
2916 	if (is_64) {
2917 		__be64 addr64;
2918 
2919 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2920 				     &addr64, &data);
2921 		if (rc) {
2922 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2923 				pci_name(dev), rc);
2924 			return -EIO;
2925 		}
2926 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2927 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2928 	} else {
2929 		__be32 addr32;
2930 
2931 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2932 				     &addr32, &data);
2933 		if (rc) {
2934 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2935 				pci_name(dev), rc);
2936 			return -EIO;
2937 		}
2938 		msg->address_hi = 0;
2939 		msg->address_lo = be32_to_cpu(addr32);
2940 	}
2941 	msg->data = be32_to_cpu(data);
2942 
2943 	pnv_set_msi_irq_chip(phb, virq);
2944 
2945 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2946 		 " address=%x_%08x data=%x PE# %x\n",
2947 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2948 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2949 
2950 	return 0;
2951 }
2952 
2953 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2954 {
2955 	unsigned int count;
2956 	const __be32 *prop = of_get_property(phb->hose->dn,
2957 					     "ibm,opal-msi-ranges", NULL);
2958 	if (!prop) {
2959 		/* BML Fallback */
2960 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2961 	}
2962 	if (!prop)
2963 		return;
2964 
2965 	phb->msi_base = be32_to_cpup(prop);
2966 	count = be32_to_cpup(prop + 1);
2967 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2968 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2969 		       phb->hose->global_number);
2970 		return;
2971 	}
2972 
2973 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2974 	phb->msi32_support = 1;
2975 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2976 		count, phb->msi_base);
2977 }
2978 
2979 #ifdef CONFIG_PCI_IOV
2980 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2981 {
2982 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2983 	struct pnv_phb *phb = hose->private_data;
2984 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2985 	struct resource *res;
2986 	int i;
2987 	resource_size_t size, total_vf_bar_sz;
2988 	struct pci_dn *pdn;
2989 	int mul, total_vfs;
2990 
2991 	if (!pdev->is_physfn || pci_dev_is_added(pdev))
2992 		return;
2993 
2994 	pdn = pci_get_pdn(pdev);
2995 	pdn->vfs_expanded = 0;
2996 	pdn->m64_single_mode = false;
2997 
2998 	total_vfs = pci_sriov_get_totalvfs(pdev);
2999 	mul = phb->ioda.total_pe_num;
3000 	total_vf_bar_sz = 0;
3001 
3002 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3003 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3004 		if (!res->flags || res->parent)
3005 			continue;
3006 		if (!pnv_pci_is_m64_flags(res->flags)) {
3007 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
3008 					" non M64 VF BAR%d: %pR. \n",
3009 				 i, res);
3010 			goto truncate_iov;
3011 		}
3012 
3013 		total_vf_bar_sz += pci_iov_resource_size(pdev,
3014 				i + PCI_IOV_RESOURCES);
3015 
3016 		/*
3017 		 * If bigger than quarter of M64 segment size, just round up
3018 		 * power of two.
3019 		 *
3020 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3021 		 * with other devices, IOV BAR size is expanded to be
3022 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3023 		 * segment size , the expanded size would equal to half of the
3024 		 * whole M64 space size, which will exhaust the M64 Space and
3025 		 * limit the system flexibility.  This is a design decision to
3026 		 * set the boundary to quarter of the M64 segment size.
3027 		 */
3028 		if (total_vf_bar_sz > gate) {
3029 			mul = roundup_pow_of_two(total_vfs);
3030 			dev_info(&pdev->dev,
3031 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3032 				total_vf_bar_sz, gate, mul);
3033 			pdn->m64_single_mode = true;
3034 			break;
3035 		}
3036 	}
3037 
3038 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3039 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3040 		if (!res->flags || res->parent)
3041 			continue;
3042 
3043 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3044 		/*
3045 		 * On PHB3, the minimum size alignment of M64 BAR in single
3046 		 * mode is 32MB.
3047 		 */
3048 		if (pdn->m64_single_mode && (size < SZ_32M))
3049 			goto truncate_iov;
3050 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3051 		res->end = res->start + size * mul - 1;
3052 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3053 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3054 			 i, res, mul);
3055 	}
3056 	pdn->vfs_expanded = mul;
3057 
3058 	return;
3059 
3060 truncate_iov:
3061 	/* To save MMIO space, IOV BAR is truncated. */
3062 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3063 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3064 		res->flags = 0;
3065 		res->end = res->start - 1;
3066 	}
3067 }
3068 #endif /* CONFIG_PCI_IOV */
3069 
3070 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3071 				  struct resource *res)
3072 {
3073 	struct pnv_phb *phb = pe->phb;
3074 	struct pci_bus_region region;
3075 	int index;
3076 	int64_t rc;
3077 
3078 	if (!res || !res->flags || res->start > res->end)
3079 		return;
3080 
3081 	if (res->flags & IORESOURCE_IO) {
3082 		region.start = res->start - phb->ioda.io_pci_base;
3083 		region.end   = res->end - phb->ioda.io_pci_base;
3084 		index = region.start / phb->ioda.io_segsize;
3085 
3086 		while (index < phb->ioda.total_pe_num &&
3087 		       region.start <= region.end) {
3088 			phb->ioda.io_segmap[index] = pe->pe_number;
3089 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3090 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3091 			if (rc != OPAL_SUCCESS) {
3092 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3093 				       __func__, rc, index, pe->pe_number);
3094 				break;
3095 			}
3096 
3097 			region.start += phb->ioda.io_segsize;
3098 			index++;
3099 		}
3100 	} else if ((res->flags & IORESOURCE_MEM) &&
3101 		   !pnv_pci_is_m64(phb, res)) {
3102 		region.start = res->start -
3103 			       phb->hose->mem_offset[0] -
3104 			       phb->ioda.m32_pci_base;
3105 		region.end   = res->end -
3106 			       phb->hose->mem_offset[0] -
3107 			       phb->ioda.m32_pci_base;
3108 		index = region.start / phb->ioda.m32_segsize;
3109 
3110 		while (index < phb->ioda.total_pe_num &&
3111 		       region.start <= region.end) {
3112 			phb->ioda.m32_segmap[index] = pe->pe_number;
3113 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3114 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3115 			if (rc != OPAL_SUCCESS) {
3116 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3117 				       __func__, rc, index, pe->pe_number);
3118 				break;
3119 			}
3120 
3121 			region.start += phb->ioda.m32_segsize;
3122 			index++;
3123 		}
3124 	}
3125 }
3126 
3127 /*
3128  * This function is supposed to be called on basis of PE from top
3129  * to bottom style. So the the I/O or MMIO segment assigned to
3130  * parent PE could be overridden by its child PEs if necessary.
3131  */
3132 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3133 {
3134 	struct pci_dev *pdev;
3135 	int i;
3136 
3137 	/*
3138 	 * NOTE: We only care PCI bus based PE for now. For PCI
3139 	 * device based PE, for example SRIOV sensitive VF should
3140 	 * be figured out later.
3141 	 */
3142 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3143 
3144 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3145 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3146 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3147 
3148 		/*
3149 		 * If the PE contains all subordinate PCI buses, the
3150 		 * windows of the child bridges should be mapped to
3151 		 * the PE as well.
3152 		 */
3153 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3154 			continue;
3155 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3156 			pnv_ioda_setup_pe_res(pe,
3157 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3158 	}
3159 }
3160 
3161 #ifdef CONFIG_DEBUG_FS
3162 static int pnv_pci_diag_data_set(void *data, u64 val)
3163 {
3164 	struct pci_controller *hose;
3165 	struct pnv_phb *phb;
3166 	s64 ret;
3167 
3168 	if (val != 1ULL)
3169 		return -EINVAL;
3170 
3171 	hose = (struct pci_controller *)data;
3172 	if (!hose || !hose->private_data)
3173 		return -ENODEV;
3174 
3175 	phb = hose->private_data;
3176 
3177 	/* Retrieve the diag data from firmware */
3178 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3179 					  phb->diag_data_size);
3180 	if (ret != OPAL_SUCCESS)
3181 		return -EIO;
3182 
3183 	/* Print the diag data to the kernel log */
3184 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3185 	return 0;
3186 }
3187 
3188 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3189 			pnv_pci_diag_data_set, "%llu\n");
3190 
3191 #endif /* CONFIG_DEBUG_FS */
3192 
3193 static void pnv_pci_ioda_create_dbgfs(void)
3194 {
3195 #ifdef CONFIG_DEBUG_FS
3196 	struct pci_controller *hose, *tmp;
3197 	struct pnv_phb *phb;
3198 	char name[16];
3199 
3200 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3201 		phb = hose->private_data;
3202 
3203 		/* Notify initialization of PHB done */
3204 		phb->initialized = 1;
3205 
3206 		sprintf(name, "PCI%04x", hose->global_number);
3207 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3208 		if (!phb->dbgfs) {
3209 			pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3210 				__func__, hose->global_number);
3211 			continue;
3212 		}
3213 
3214 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3215 				    &pnv_pci_diag_data_fops);
3216 	}
3217 #endif /* CONFIG_DEBUG_FS */
3218 }
3219 
3220 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3221 {
3222 	struct pci_dev *dev = bus->self;
3223 	struct pci_bus *child;
3224 
3225 	/* Empty bus ? bail */
3226 	if (list_empty(&bus->devices))
3227 		return;
3228 
3229 	/*
3230 	 * If there's a bridge associated with that bus enable it. This works
3231 	 * around races in the generic code if the enabling is done during
3232 	 * parallel probing. This can be removed once those races have been
3233 	 * fixed.
3234 	 */
3235 	if (dev) {
3236 		int rc = pci_enable_device(dev);
3237 		if (rc)
3238 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
3239 		pci_set_master(dev);
3240 	}
3241 
3242 	/* Perform the same to child busses */
3243 	list_for_each_entry(child, &bus->children, node)
3244 		pnv_pci_enable_bridge(child);
3245 }
3246 
3247 static void pnv_pci_enable_bridges(void)
3248 {
3249 	struct pci_controller *hose;
3250 
3251 	list_for_each_entry(hose, &hose_list, list_node)
3252 		pnv_pci_enable_bridge(hose->bus);
3253 }
3254 
3255 static void pnv_pci_ioda_fixup(void)
3256 {
3257 	pnv_pci_ioda_setup_PEs();
3258 	pnv_pci_ioda_setup_iommu_api();
3259 	pnv_pci_ioda_create_dbgfs();
3260 
3261 	pnv_pci_enable_bridges();
3262 
3263 #ifdef CONFIG_EEH
3264 	pnv_eeh_post_init();
3265 #endif
3266 }
3267 
3268 /*
3269  * Returns the alignment for I/O or memory windows for P2P
3270  * bridges. That actually depends on how PEs are segmented.
3271  * For now, we return I/O or M32 segment size for PE sensitive
3272  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3273  * 1MiB for memory) will be returned.
3274  *
3275  * The current PCI bus might be put into one PE, which was
3276  * create against the parent PCI bridge. For that case, we
3277  * needn't enlarge the alignment so that we can save some
3278  * resources.
3279  */
3280 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3281 						unsigned long type)
3282 {
3283 	struct pci_dev *bridge;
3284 	struct pci_controller *hose = pci_bus_to_host(bus);
3285 	struct pnv_phb *phb = hose->private_data;
3286 	int num_pci_bridges = 0;
3287 
3288 	bridge = bus->self;
3289 	while (bridge) {
3290 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3291 			num_pci_bridges++;
3292 			if (num_pci_bridges >= 2)
3293 				return 1;
3294 		}
3295 
3296 		bridge = bridge->bus->self;
3297 	}
3298 
3299 	/*
3300 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3301 	 * alignment for any 64-bit resource, PCIe doesn't care and
3302 	 * bridges only do 64-bit prefetchable anyway.
3303 	 */
3304 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3305 		return phb->ioda.m64_segsize;
3306 	if (type & IORESOURCE_MEM)
3307 		return phb->ioda.m32_segsize;
3308 
3309 	return phb->ioda.io_segsize;
3310 }
3311 
3312 /*
3313  * We are updating root port or the upstream port of the
3314  * bridge behind the root port with PHB's windows in order
3315  * to accommodate the changes on required resources during
3316  * PCI (slot) hotplug, which is connected to either root
3317  * port or the downstream ports of PCIe switch behind the
3318  * root port.
3319  */
3320 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3321 					   unsigned long type)
3322 {
3323 	struct pci_controller *hose = pci_bus_to_host(bus);
3324 	struct pnv_phb *phb = hose->private_data;
3325 	struct pci_dev *bridge = bus->self;
3326 	struct resource *r, *w;
3327 	bool msi_region = false;
3328 	int i;
3329 
3330 	/* Check if we need apply fixup to the bridge's windows */
3331 	if (!pci_is_root_bus(bridge->bus) &&
3332 	    !pci_is_root_bus(bridge->bus->self->bus))
3333 		return;
3334 
3335 	/* Fixup the resources */
3336 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3337 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3338 		if (!r->flags || !r->parent)
3339 			continue;
3340 
3341 		w = NULL;
3342 		if (r->flags & type & IORESOURCE_IO)
3343 			w = &hose->io_resource;
3344 		else if (pnv_pci_is_m64(phb, r) &&
3345 			 (type & IORESOURCE_PREFETCH) &&
3346 			 phb->ioda.m64_segsize)
3347 			w = &hose->mem_resources[1];
3348 		else if (r->flags & type & IORESOURCE_MEM) {
3349 			w = &hose->mem_resources[0];
3350 			msi_region = true;
3351 		}
3352 
3353 		r->start = w->start;
3354 		r->end = w->end;
3355 
3356 		/* The 64KB 32-bits MSI region shouldn't be included in
3357 		 * the 32-bits bridge window. Otherwise, we can see strange
3358 		 * issues. One of them is EEH error observed on Garrison.
3359 		 *
3360 		 * Exclude top 1MB region which is the minimal alignment of
3361 		 * 32-bits bridge window.
3362 		 */
3363 		if (msi_region) {
3364 			r->end += 0x10000;
3365 			r->end -= 0x100000;
3366 		}
3367 	}
3368 }
3369 
3370 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3371 {
3372 	struct pci_controller *hose = pci_bus_to_host(bus);
3373 	struct pnv_phb *phb = hose->private_data;
3374 	struct pci_dev *bridge = bus->self;
3375 	struct pnv_ioda_pe *pe;
3376 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3377 
3378 	/* Extend bridge's windows if necessary */
3379 	pnv_pci_fixup_bridge_resources(bus, type);
3380 
3381 	/* The PE for root bus should be realized before any one else */
3382 	if (!phb->ioda.root_pe_populated) {
3383 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3384 		if (pe) {
3385 			phb->ioda.root_pe_idx = pe->pe_number;
3386 			phb->ioda.root_pe_populated = true;
3387 		}
3388 	}
3389 
3390 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3391 	if (list_empty(&bus->devices))
3392 		return;
3393 
3394 	/* Reserve PEs according to used M64 resources */
3395 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
3396 
3397 	/*
3398 	 * Assign PE. We might run here because of partial hotplug.
3399 	 * For the case, we just pick up the existing PE and should
3400 	 * not allocate resources again.
3401 	 */
3402 	pe = pnv_ioda_setup_bus_PE(bus, all);
3403 	if (!pe)
3404 		return;
3405 
3406 	pnv_ioda_setup_pe_seg(pe);
3407 	switch (phb->type) {
3408 	case PNV_PHB_IODA1:
3409 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3410 		break;
3411 	case PNV_PHB_IODA2:
3412 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3413 		break;
3414 	default:
3415 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3416 			__func__, phb->hose->global_number, phb->type);
3417 	}
3418 }
3419 
3420 static resource_size_t pnv_pci_default_alignment(void)
3421 {
3422 	return PAGE_SIZE;
3423 }
3424 
3425 #ifdef CONFIG_PCI_IOV
3426 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3427 						      int resno)
3428 {
3429 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3430 	struct pnv_phb *phb = hose->private_data;
3431 	struct pci_dn *pdn = pci_get_pdn(pdev);
3432 	resource_size_t align;
3433 
3434 	/*
3435 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3436 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3437 	 * BAR should be size aligned.
3438 	 *
3439 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3440 	 * powernv-specific hardware restriction is gone. But if just use the
3441 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3442 	 * in one segment of M64 #15, which introduces the PE conflict between
3443 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3444 	 * m64_segsize.
3445 	 *
3446 	 * This function returns the total IOV BAR size if M64 BAR is in
3447 	 * Shared PE mode or just VF BAR size if not.
3448 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3449 	 * M64 segment size if IOV BAR size is less.
3450 	 */
3451 	align = pci_iov_resource_size(pdev, resno);
3452 	if (!pdn->vfs_expanded)
3453 		return align;
3454 	if (pdn->m64_single_mode)
3455 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3456 
3457 	return pdn->vfs_expanded * align;
3458 }
3459 #endif /* CONFIG_PCI_IOV */
3460 
3461 /* Prevent enabling devices for which we couldn't properly
3462  * assign a PE
3463  */
3464 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3465 {
3466 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3467 	struct pnv_phb *phb = hose->private_data;
3468 	struct pci_dn *pdn;
3469 
3470 	/* The function is probably called while the PEs have
3471 	 * not be created yet. For example, resource reassignment
3472 	 * during PCI probe period. We just skip the check if
3473 	 * PEs isn't ready.
3474 	 */
3475 	if (!phb->initialized)
3476 		return true;
3477 
3478 	pdn = pci_get_pdn(dev);
3479 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3480 		return false;
3481 
3482 	return true;
3483 }
3484 
3485 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3486 				       int num)
3487 {
3488 	struct pnv_ioda_pe *pe = container_of(table_group,
3489 					      struct pnv_ioda_pe, table_group);
3490 	struct pnv_phb *phb = pe->phb;
3491 	unsigned int idx;
3492 	long rc;
3493 
3494 	pe_info(pe, "Removing DMA window #%d\n", num);
3495 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3496 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3497 			continue;
3498 
3499 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3500 						idx, 0, 0ul, 0ul, 0ul);
3501 		if (rc != OPAL_SUCCESS) {
3502 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3503 				rc, idx);
3504 			return rc;
3505 		}
3506 
3507 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3508 	}
3509 
3510 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3511 	return OPAL_SUCCESS;
3512 }
3513 
3514 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3515 {
3516 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3517 	struct iommu_table *tbl = pe->table_group.tables[0];
3518 	int64_t rc;
3519 
3520 	if (!weight)
3521 		return;
3522 
3523 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3524 	if (rc != OPAL_SUCCESS)
3525 		return;
3526 
3527 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3528 	if (pe->table_group.group) {
3529 		iommu_group_put(pe->table_group.group);
3530 		WARN_ON(pe->table_group.group);
3531 	}
3532 
3533 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3534 	iommu_tce_table_put(tbl);
3535 }
3536 
3537 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3538 {
3539 	struct iommu_table *tbl = pe->table_group.tables[0];
3540 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3541 #ifdef CONFIG_IOMMU_API
3542 	int64_t rc;
3543 #endif
3544 
3545 	if (!weight)
3546 		return;
3547 
3548 #ifdef CONFIG_IOMMU_API
3549 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3550 	if (rc)
3551 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3552 #endif
3553 
3554 	pnv_pci_ioda2_set_bypass(pe, false);
3555 	if (pe->table_group.group) {
3556 		iommu_group_put(pe->table_group.group);
3557 		WARN_ON(pe->table_group.group);
3558 	}
3559 
3560 	iommu_tce_table_put(tbl);
3561 }
3562 
3563 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3564 				 unsigned short win,
3565 				 unsigned int *map)
3566 {
3567 	struct pnv_phb *phb = pe->phb;
3568 	int idx;
3569 	int64_t rc;
3570 
3571 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3572 		if (map[idx] != pe->pe_number)
3573 			continue;
3574 
3575 		if (win == OPAL_M64_WINDOW_TYPE)
3576 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3577 					phb->ioda.reserved_pe_idx, win,
3578 					idx / PNV_IODA1_M64_SEGS,
3579 					idx % PNV_IODA1_M64_SEGS);
3580 		else
3581 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3582 					phb->ioda.reserved_pe_idx, win, 0, idx);
3583 
3584 		if (rc != OPAL_SUCCESS)
3585 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3586 				rc, win, idx);
3587 
3588 		map[idx] = IODA_INVALID_PE;
3589 	}
3590 }
3591 
3592 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3593 {
3594 	struct pnv_phb *phb = pe->phb;
3595 
3596 	if (phb->type == PNV_PHB_IODA1) {
3597 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3598 				     phb->ioda.io_segmap);
3599 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3600 				     phb->ioda.m32_segmap);
3601 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3602 				     phb->ioda.m64_segmap);
3603 	} else if (phb->type == PNV_PHB_IODA2) {
3604 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3605 				     phb->ioda.m32_segmap);
3606 	}
3607 }
3608 
3609 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3610 {
3611 	struct pnv_phb *phb = pe->phb;
3612 	struct pnv_ioda_pe *slave, *tmp;
3613 
3614 	list_del(&pe->list);
3615 	switch (phb->type) {
3616 	case PNV_PHB_IODA1:
3617 		pnv_pci_ioda1_release_pe_dma(pe);
3618 		break;
3619 	case PNV_PHB_IODA2:
3620 		pnv_pci_ioda2_release_pe_dma(pe);
3621 		break;
3622 	default:
3623 		WARN_ON(1);
3624 	}
3625 
3626 	pnv_ioda_release_pe_seg(pe);
3627 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3628 
3629 	/* Release slave PEs in the compound PE */
3630 	if (pe->flags & PNV_IODA_PE_MASTER) {
3631 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3632 			list_del(&slave->list);
3633 			pnv_ioda_free_pe(slave);
3634 		}
3635 	}
3636 
3637 	/*
3638 	 * The PE for root bus can be removed because of hotplug in EEH
3639 	 * recovery for fenced PHB error. We need to mark the PE dead so
3640 	 * that it can be populated again in PCI hot add path. The PE
3641 	 * shouldn't be destroyed as it's the global reserved resource.
3642 	 */
3643 	if (phb->ioda.root_pe_populated &&
3644 	    phb->ioda.root_pe_idx == pe->pe_number)
3645 		phb->ioda.root_pe_populated = false;
3646 	else
3647 		pnv_ioda_free_pe(pe);
3648 }
3649 
3650 static void pnv_pci_release_device(struct pci_dev *pdev)
3651 {
3652 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3653 	struct pnv_phb *phb = hose->private_data;
3654 	struct pci_dn *pdn = pci_get_pdn(pdev);
3655 	struct pnv_ioda_pe *pe;
3656 
3657 	if (pdev->is_virtfn)
3658 		return;
3659 
3660 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3661 		return;
3662 
3663 	/*
3664 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3665 	 * isn't removed and added afterwards in this scenario. We should
3666 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3667 	 * device count is decreased on removing devices while failing to
3668 	 * be increased on adding devices. It leads to unbalanced PE's device
3669 	 * count and eventually make normal PCI hotplug path broken.
3670 	 */
3671 	pe = &phb->ioda.pe_array[pdn->pe_number];
3672 	pdn->pe_number = IODA_INVALID_PE;
3673 
3674 	WARN_ON(--pe->device_count < 0);
3675 	if (pe->device_count == 0)
3676 		pnv_ioda_release_pe(pe);
3677 }
3678 
3679 static void pnv_npu_disable_device(struct pci_dev *pdev)
3680 {
3681 	struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
3682 	struct eeh_pe *eehpe = edev ? edev->pe : NULL;
3683 
3684 	if (eehpe && eeh_ops && eeh_ops->reset)
3685 		eeh_ops->reset(eehpe, EEH_RESET_HOT);
3686 }
3687 
3688 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3689 {
3690 	struct pnv_phb *phb = hose->private_data;
3691 
3692 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3693 		       OPAL_ASSERT_RESET);
3694 }
3695 
3696 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3697 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3698 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3699 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3700 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3701 	.enable_device_hook	= pnv_pci_enable_device_hook,
3702 	.release_device		= pnv_pci_release_device,
3703 	.window_alignment	= pnv_pci_window_alignment,
3704 	.setup_bridge		= pnv_pci_setup_bridge,
3705 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3706 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3707 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3708 	.shutdown		= pnv_pci_ioda_shutdown,
3709 };
3710 
3711 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3712 {
3713 	dev_err_once(&npdev->dev,
3714 			"%s operation unsupported for NVLink devices\n",
3715 			__func__);
3716 	return -EPERM;
3717 }
3718 
3719 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3720 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3721 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3722 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3723 	.enable_device_hook	= pnv_pci_enable_device_hook,
3724 	.window_alignment	= pnv_pci_window_alignment,
3725 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3726 	.dma_set_mask		= pnv_npu_dma_set_mask,
3727 	.shutdown		= pnv_pci_ioda_shutdown,
3728 	.disable_device		= pnv_npu_disable_device,
3729 };
3730 
3731 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3732 	.enable_device_hook	= pnv_pci_enable_device_hook,
3733 	.window_alignment	= pnv_pci_window_alignment,
3734 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3735 	.shutdown		= pnv_pci_ioda_shutdown,
3736 };
3737 
3738 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3739 					 u64 hub_id, int ioda_type)
3740 {
3741 	struct pci_controller *hose;
3742 	struct pnv_phb *phb;
3743 	unsigned long size, m64map_off, m32map_off, pemap_off;
3744 	unsigned long iomap_off = 0, dma32map_off = 0;
3745 	struct resource r;
3746 	const __be64 *prop64;
3747 	const __be32 *prop32;
3748 	int len;
3749 	unsigned int segno;
3750 	u64 phb_id;
3751 	void *aux;
3752 	long rc;
3753 
3754 	if (!of_device_is_available(np))
3755 		return;
3756 
3757 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3758 
3759 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3760 	if (!prop64) {
3761 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3762 		return;
3763 	}
3764 	phb_id = be64_to_cpup(prop64);
3765 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3766 
3767 	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3768 
3769 	/* Allocate PCI controller */
3770 	phb->hose = hose = pcibios_alloc_controller(np);
3771 	if (!phb->hose) {
3772 		pr_err("  Can't allocate PCI controller for %pOF\n",
3773 		       np);
3774 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3775 		return;
3776 	}
3777 
3778 	spin_lock_init(&phb->lock);
3779 	prop32 = of_get_property(np, "bus-range", &len);
3780 	if (prop32 && len == 8) {
3781 		hose->first_busno = be32_to_cpu(prop32[0]);
3782 		hose->last_busno = be32_to_cpu(prop32[1]);
3783 	} else {
3784 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3785 		hose->first_busno = 0;
3786 		hose->last_busno = 0xff;
3787 	}
3788 	hose->private_data = phb;
3789 	phb->hub_id = hub_id;
3790 	phb->opal_id = phb_id;
3791 	phb->type = ioda_type;
3792 	mutex_init(&phb->ioda.pe_alloc_mutex);
3793 
3794 	/* Detect specific models for error handling */
3795 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3796 		phb->model = PNV_PHB_MODEL_P7IOC;
3797 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3798 		phb->model = PNV_PHB_MODEL_PHB3;
3799 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3800 		phb->model = PNV_PHB_MODEL_NPU;
3801 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3802 		phb->model = PNV_PHB_MODEL_NPU2;
3803 	else
3804 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3805 
3806 	/* Initialize diagnostic data buffer */
3807 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3808 	if (prop32)
3809 		phb->diag_data_size = be32_to_cpup(prop32);
3810 	else
3811 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3812 
3813 	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3814 
3815 	/* Parse 32-bit and IO ranges (if any) */
3816 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3817 
3818 	/* Get registers */
3819 	if (!of_address_to_resource(np, 0, &r)) {
3820 		phb->regs_phys = r.start;
3821 		phb->regs = ioremap(r.start, resource_size(&r));
3822 		if (phb->regs == NULL)
3823 			pr_err("  Failed to map registers !\n");
3824 	}
3825 
3826 	/* Initialize more IODA stuff */
3827 	phb->ioda.total_pe_num = 1;
3828 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3829 	if (prop32)
3830 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3831 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3832 	if (prop32)
3833 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3834 
3835 	/* Invalidate RID to PE# mapping */
3836 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3837 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3838 
3839 	/* Parse 64-bit MMIO range */
3840 	pnv_ioda_parse_m64_window(phb);
3841 
3842 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3843 	/* FW Has already off top 64k of M32 space (MSI space) */
3844 	phb->ioda.m32_size += 0x10000;
3845 
3846 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3847 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3848 	phb->ioda.io_size = hose->pci_io_size;
3849 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3850 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3851 
3852 	/* Calculate how many 32-bit TCE segments we have */
3853 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3854 				PNV_IODA1_DMA32_SEGSIZE;
3855 
3856 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3857 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3858 			sizeof(unsigned long));
3859 	m64map_off = size;
3860 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3861 	m32map_off = size;
3862 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3863 	if (phb->type == PNV_PHB_IODA1) {
3864 		iomap_off = size;
3865 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3866 		dma32map_off = size;
3867 		size += phb->ioda.dma32_count *
3868 			sizeof(phb->ioda.dma32_segmap[0]);
3869 	}
3870 	pemap_off = size;
3871 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3872 	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3873 	phb->ioda.pe_alloc = aux;
3874 	phb->ioda.m64_segmap = aux + m64map_off;
3875 	phb->ioda.m32_segmap = aux + m32map_off;
3876 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3877 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3878 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3879 	}
3880 	if (phb->type == PNV_PHB_IODA1) {
3881 		phb->ioda.io_segmap = aux + iomap_off;
3882 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3883 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3884 
3885 		phb->ioda.dma32_segmap = aux + dma32map_off;
3886 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3887 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3888 	}
3889 	phb->ioda.pe_array = aux + pemap_off;
3890 
3891 	/*
3892 	 * Choose PE number for root bus, which shouldn't have
3893 	 * M64 resources consumed by its child devices. To pick
3894 	 * the PE number adjacent to the reserved one if possible.
3895 	 */
3896 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3897 	if (phb->ioda.reserved_pe_idx == 0) {
3898 		phb->ioda.root_pe_idx = 1;
3899 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3900 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3901 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3902 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3903 	} else {
3904 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3905 	}
3906 
3907 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3908 	mutex_init(&phb->ioda.pe_list_mutex);
3909 
3910 	/* Calculate how many 32-bit TCE segments we have */
3911 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3912 				PNV_IODA1_DMA32_SEGSIZE;
3913 
3914 #if 0 /* We should really do that ... */
3915 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3916 					 window_type,
3917 					 window_num,
3918 					 starting_real_address,
3919 					 starting_pci_address,
3920 					 segment_size);
3921 #endif
3922 
3923 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3924 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3925 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3926 	if (phb->ioda.m64_size)
3927 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3928 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3929 	if (phb->ioda.io_size)
3930 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3931 			phb->ioda.io_size, phb->ioda.io_segsize);
3932 
3933 
3934 	phb->hose->ops = &pnv_pci_ops;
3935 	phb->get_pe_state = pnv_ioda_get_pe_state;
3936 	phb->freeze_pe = pnv_ioda_freeze_pe;
3937 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3938 
3939 	/* Setup MSI support */
3940 	pnv_pci_init_ioda_msis(phb);
3941 
3942 	/*
3943 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3944 	 * to let the PCI core do resource assignment. It's supposed
3945 	 * that the PCI core will do correct I/O and MMIO alignment
3946 	 * for the P2P bridge bars so that each PCI bus (excluding
3947 	 * the child P2P bridges) can form individual PE.
3948 	 */
3949 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3950 
3951 	switch (phb->type) {
3952 	case PNV_PHB_NPU_NVLINK:
3953 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3954 		break;
3955 	case PNV_PHB_NPU_OCAPI:
3956 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3957 		break;
3958 	default:
3959 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3960 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3961 	}
3962 
3963 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3964 
3965 #ifdef CONFIG_PCI_IOV
3966 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3967 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3968 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3969 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3970 #endif
3971 
3972 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3973 
3974 	/* Reset IODA tables to a clean state */
3975 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3976 	if (rc)
3977 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3978 
3979 	/*
3980 	 * If we're running in kdump kernel, the previous kernel never
3981 	 * shutdown PCI devices correctly. We already got IODA table
3982 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3983 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3984 	 * kernel parameter will force this reset too.
3985 	 */
3986 	if (is_kdump_kernel() || pci_reset_phbs) {
3987 		pr_info("  Issue PHB reset ...\n");
3988 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3989 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3990 	}
3991 
3992 	/* Remove M64 resource if we can't configure it successfully */
3993 	if (!phb->init_m64 || phb->init_m64(phb))
3994 		hose->mem_resources[1].flags = 0;
3995 }
3996 
3997 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3998 {
3999 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4000 }
4001 
4002 void __init pnv_pci_init_npu_phb(struct device_node *np)
4003 {
4004 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
4005 }
4006 
4007 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
4008 {
4009 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
4010 }
4011 
4012 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
4013 {
4014 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
4015 	struct pnv_phb *phb = hose->private_data;
4016 
4017 	if (!machine_is(powernv))
4018 		return;
4019 
4020 	if (phb->type == PNV_PHB_NPU_OCAPI)
4021 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
4022 }
4023 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
4024 
4025 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4026 {
4027 	struct device_node *phbn;
4028 	const __be64 *prop64;
4029 	u64 hub_id;
4030 
4031 	pr_info("Probing IODA IO-Hub %pOF\n", np);
4032 
4033 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4034 	if (!prop64) {
4035 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4036 		return;
4037 	}
4038 	hub_id = be64_to_cpup(prop64);
4039 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4040 
4041 	/* Count child PHBs */
4042 	for_each_child_of_node(np, phbn) {
4043 		/* Look for IODA1 PHBs */
4044 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4045 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4046 	}
4047 }
4048