1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Support PCI/PCIe on PowerNV platforms 4 * 5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 6 */ 7 8 #undef DEBUG 9 10 #include <linux/kernel.h> 11 #include <linux/pci.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/string.h> 15 #include <linux/init.h> 16 #include <linux/memblock.h> 17 #include <linux/irq.h> 18 #include <linux/io.h> 19 #include <linux/msi.h> 20 #include <linux/iommu.h> 21 #include <linux/rculist.h> 22 #include <linux/sizes.h> 23 24 #include <asm/sections.h> 25 #include <asm/io.h> 26 #include <asm/prom.h> 27 #include <asm/pci-bridge.h> 28 #include <asm/machdep.h> 29 #include <asm/msi_bitmap.h> 30 #include <asm/ppc-pci.h> 31 #include <asm/opal.h> 32 #include <asm/iommu.h> 33 #include <asm/tce.h> 34 #include <asm/xics.h> 35 #include <asm/debugfs.h> 36 #include <asm/firmware.h> 37 #include <asm/pnv-pci.h> 38 #include <asm/mmzone.h> 39 40 #include <misc/cxl-base.h> 41 42 #include "powernv.h" 43 #include "pci.h" 44 #include "../../../../drivers/pci/pci.h" 45 46 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ 47 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ 48 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 49 50 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK", 51 "NPU_OCAPI" }; 52 53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable); 54 55 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, 56 const char *fmt, ...) 57 { 58 struct va_format vaf; 59 va_list args; 60 char pfix[32]; 61 62 va_start(args, fmt); 63 64 vaf.fmt = fmt; 65 vaf.va = &args; 66 67 if (pe->flags & PNV_IODA_PE_DEV) 68 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); 69 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 70 sprintf(pfix, "%04x:%02x ", 71 pci_domain_nr(pe->pbus), pe->pbus->number); 72 #ifdef CONFIG_PCI_IOV 73 else if (pe->flags & PNV_IODA_PE_VF) 74 sprintf(pfix, "%04x:%02x:%2x.%d", 75 pci_domain_nr(pe->parent_dev->bus), 76 (pe->rid & 0xff00) >> 8, 77 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); 78 #endif /* CONFIG_PCI_IOV*/ 79 80 printk("%spci %s: [PE# %.2x] %pV", 81 level, pfix, pe->pe_number, &vaf); 82 83 va_end(args); 84 } 85 86 static bool pnv_iommu_bypass_disabled __read_mostly; 87 static bool pci_reset_phbs __read_mostly; 88 89 static int __init iommu_setup(char *str) 90 { 91 if (!str) 92 return -EINVAL; 93 94 while (*str) { 95 if (!strncmp(str, "nobypass", 8)) { 96 pnv_iommu_bypass_disabled = true; 97 pr_info("PowerNV: IOMMU bypass window disabled.\n"); 98 break; 99 } 100 str += strcspn(str, ","); 101 if (*str == ',') 102 str++; 103 } 104 105 return 0; 106 } 107 early_param("iommu", iommu_setup); 108 109 static int __init pci_reset_phbs_setup(char *str) 110 { 111 pci_reset_phbs = true; 112 return 0; 113 } 114 115 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup); 116 117 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r) 118 { 119 /* 120 * WARNING: We cannot rely on the resource flags. The Linux PCI 121 * allocation code sometimes decides to put a 64-bit prefetchable 122 * BAR in the 32-bit window, so we have to compare the addresses. 123 * 124 * For simplicity we only test resource start. 125 */ 126 return (r->start >= phb->ioda.m64_base && 127 r->start < (phb->ioda.m64_base + phb->ioda.m64_size)); 128 } 129 130 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags) 131 { 132 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 133 134 return (resource_flags & flags) == flags; 135 } 136 137 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) 138 { 139 s64 rc; 140 141 phb->ioda.pe_array[pe_no].phb = phb; 142 phb->ioda.pe_array[pe_no].pe_number = pe_no; 143 144 /* 145 * Clear the PE frozen state as it might be put into frozen state 146 * in the last PCI remove path. It's not harmful to do so when the 147 * PE is already in unfrozen state. 148 */ 149 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, 150 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 151 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 152 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n", 153 __func__, rc, phb->hose->global_number, pe_no); 154 155 return &phb->ioda.pe_array[pe_no]; 156 } 157 158 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) 159 { 160 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { 161 pr_warn("%s: Invalid PE %x on PHB#%x\n", 162 __func__, pe_no, phb->hose->global_number); 163 return; 164 } 165 166 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) 167 pr_debug("%s: PE %x was reserved on PHB#%x\n", 168 __func__, pe_no, phb->hose->global_number); 169 170 pnv_ioda_init_pe(phb, pe_no); 171 } 172 173 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb) 174 { 175 long pe; 176 177 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { 178 if (!test_and_set_bit(pe, phb->ioda.pe_alloc)) 179 return pnv_ioda_init_pe(phb, pe); 180 } 181 182 return NULL; 183 } 184 185 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) 186 { 187 struct pnv_phb *phb = pe->phb; 188 unsigned int pe_num = pe->pe_number; 189 190 WARN_ON(pe->pdev); 191 WARN_ON(pe->npucomp); /* NPUs are not supposed to be freed */ 192 kfree(pe->npucomp); 193 memset(pe, 0, sizeof(struct pnv_ioda_pe)); 194 clear_bit(pe_num, phb->ioda.pe_alloc); 195 } 196 197 /* The default M64 BAR is shared by all PEs */ 198 static int pnv_ioda2_init_m64(struct pnv_phb *phb) 199 { 200 const char *desc; 201 struct resource *r; 202 s64 rc; 203 204 /* Configure the default M64 BAR */ 205 rc = opal_pci_set_phb_mem_window(phb->opal_id, 206 OPAL_M64_WINDOW_TYPE, 207 phb->ioda.m64_bar_idx, 208 phb->ioda.m64_base, 209 0, /* unused */ 210 phb->ioda.m64_size); 211 if (rc != OPAL_SUCCESS) { 212 desc = "configuring"; 213 goto fail; 214 } 215 216 /* Enable the default M64 BAR */ 217 rc = opal_pci_phb_mmio_enable(phb->opal_id, 218 OPAL_M64_WINDOW_TYPE, 219 phb->ioda.m64_bar_idx, 220 OPAL_ENABLE_M64_SPLIT); 221 if (rc != OPAL_SUCCESS) { 222 desc = "enabling"; 223 goto fail; 224 } 225 226 /* 227 * Exclude the segments for reserved and root bus PE, which 228 * are first or last two PEs. 229 */ 230 r = &phb->hose->mem_resources[1]; 231 if (phb->ioda.reserved_pe_idx == 0) 232 r->start += (2 * phb->ioda.m64_segsize); 233 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 234 r->end -= (2 * phb->ioda.m64_segsize); 235 else 236 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n", 237 phb->ioda.reserved_pe_idx); 238 239 return 0; 240 241 fail: 242 pr_warn(" Failure %lld %s M64 BAR#%d\n", 243 rc, desc, phb->ioda.m64_bar_idx); 244 opal_pci_phb_mmio_enable(phb->opal_id, 245 OPAL_M64_WINDOW_TYPE, 246 phb->ioda.m64_bar_idx, 247 OPAL_DISABLE_M64); 248 return -EIO; 249 } 250 251 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, 252 unsigned long *pe_bitmap) 253 { 254 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 255 struct pnv_phb *phb = hose->private_data; 256 struct resource *r; 257 resource_size_t base, sgsz, start, end; 258 int segno, i; 259 260 base = phb->ioda.m64_base; 261 sgsz = phb->ioda.m64_segsize; 262 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 263 r = &pdev->resource[i]; 264 if (!r->parent || !pnv_pci_is_m64(phb, r)) 265 continue; 266 267 start = _ALIGN_DOWN(r->start - base, sgsz); 268 end = _ALIGN_UP(r->end - base, sgsz); 269 for (segno = start / sgsz; segno < end / sgsz; segno++) { 270 if (pe_bitmap) 271 set_bit(segno, pe_bitmap); 272 else 273 pnv_ioda_reserve_pe(phb, segno); 274 } 275 } 276 } 277 278 static int pnv_ioda1_init_m64(struct pnv_phb *phb) 279 { 280 struct resource *r; 281 int index; 282 283 /* 284 * There are 16 M64 BARs, each of which has 8 segments. So 285 * there are as many M64 segments as the maximum number of 286 * PEs, which is 128. 287 */ 288 for (index = 0; index < PNV_IODA1_M64_NUM; index++) { 289 unsigned long base, segsz = phb->ioda.m64_segsize; 290 int64_t rc; 291 292 base = phb->ioda.m64_base + 293 index * PNV_IODA1_M64_SEGS * segsz; 294 rc = opal_pci_set_phb_mem_window(phb->opal_id, 295 OPAL_M64_WINDOW_TYPE, index, base, 0, 296 PNV_IODA1_M64_SEGS * segsz); 297 if (rc != OPAL_SUCCESS) { 298 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n", 299 rc, phb->hose->global_number, index); 300 goto fail; 301 } 302 303 rc = opal_pci_phb_mmio_enable(phb->opal_id, 304 OPAL_M64_WINDOW_TYPE, index, 305 OPAL_ENABLE_M64_SPLIT); 306 if (rc != OPAL_SUCCESS) { 307 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n", 308 rc, phb->hose->global_number, index); 309 goto fail; 310 } 311 } 312 313 /* 314 * Exclude the segments for reserved and root bus PE, which 315 * are first or last two PEs. 316 */ 317 r = &phb->hose->mem_resources[1]; 318 if (phb->ioda.reserved_pe_idx == 0) 319 r->start += (2 * phb->ioda.m64_segsize); 320 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 321 r->end -= (2 * phb->ioda.m64_segsize); 322 else 323 WARN(1, "Wrong reserved PE#%x on PHB#%x\n", 324 phb->ioda.reserved_pe_idx, phb->hose->global_number); 325 326 return 0; 327 328 fail: 329 for ( ; index >= 0; index--) 330 opal_pci_phb_mmio_enable(phb->opal_id, 331 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); 332 333 return -EIO; 334 } 335 336 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, 337 unsigned long *pe_bitmap, 338 bool all) 339 { 340 struct pci_dev *pdev; 341 342 list_for_each_entry(pdev, &bus->devices, bus_list) { 343 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); 344 345 if (all && pdev->subordinate) 346 pnv_ioda_reserve_m64_pe(pdev->subordinate, 347 pe_bitmap, all); 348 } 349 } 350 351 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) 352 { 353 struct pci_controller *hose = pci_bus_to_host(bus); 354 struct pnv_phb *phb = hose->private_data; 355 struct pnv_ioda_pe *master_pe, *pe; 356 unsigned long size, *pe_alloc; 357 int i; 358 359 /* Root bus shouldn't use M64 */ 360 if (pci_is_root_bus(bus)) 361 return NULL; 362 363 /* Allocate bitmap */ 364 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); 365 pe_alloc = kzalloc(size, GFP_KERNEL); 366 if (!pe_alloc) { 367 pr_warn("%s: Out of memory !\n", 368 __func__); 369 return NULL; 370 } 371 372 /* Figure out reserved PE numbers by the PE */ 373 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); 374 375 /* 376 * the current bus might not own M64 window and that's all 377 * contributed by its child buses. For the case, we needn't 378 * pick M64 dependent PE#. 379 */ 380 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { 381 kfree(pe_alloc); 382 return NULL; 383 } 384 385 /* 386 * Figure out the master PE and put all slave PEs to master 387 * PE's list to form compound PE. 388 */ 389 master_pe = NULL; 390 i = -1; 391 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < 392 phb->ioda.total_pe_num) { 393 pe = &phb->ioda.pe_array[i]; 394 395 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; 396 if (!master_pe) { 397 pe->flags |= PNV_IODA_PE_MASTER; 398 INIT_LIST_HEAD(&pe->slaves); 399 master_pe = pe; 400 } else { 401 pe->flags |= PNV_IODA_PE_SLAVE; 402 pe->master = master_pe; 403 list_add_tail(&pe->list, &master_pe->slaves); 404 } 405 406 /* 407 * P7IOC supports M64DT, which helps mapping M64 segment 408 * to one particular PE#. However, PHB3 has fixed mapping 409 * between M64 segment and PE#. In order to have same logic 410 * for P7IOC and PHB3, we enforce fixed mapping between M64 411 * segment and PE# on P7IOC. 412 */ 413 if (phb->type == PNV_PHB_IODA1) { 414 int64_t rc; 415 416 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 417 pe->pe_number, OPAL_M64_WINDOW_TYPE, 418 pe->pe_number / PNV_IODA1_M64_SEGS, 419 pe->pe_number % PNV_IODA1_M64_SEGS); 420 if (rc != OPAL_SUCCESS) 421 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n", 422 __func__, rc, phb->hose->global_number, 423 pe->pe_number); 424 } 425 } 426 427 kfree(pe_alloc); 428 return master_pe; 429 } 430 431 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) 432 { 433 struct pci_controller *hose = phb->hose; 434 struct device_node *dn = hose->dn; 435 struct resource *res; 436 u32 m64_range[2], i; 437 const __be32 *r; 438 u64 pci_addr; 439 440 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { 441 pr_info(" Not support M64 window\n"); 442 return; 443 } 444 445 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 446 pr_info(" Firmware too old to support M64 window\n"); 447 return; 448 } 449 450 r = of_get_property(dn, "ibm,opal-m64-window", NULL); 451 if (!r) { 452 pr_info(" No <ibm,opal-m64-window> on %pOF\n", 453 dn); 454 return; 455 } 456 457 /* 458 * Find the available M64 BAR range and pickup the last one for 459 * covering the whole 64-bits space. We support only one range. 460 */ 461 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", 462 m64_range, 2)) { 463 /* In absence of the property, assume 0..15 */ 464 m64_range[0] = 0; 465 m64_range[1] = 16; 466 } 467 /* We only support 64 bits in our allocator */ 468 if (m64_range[1] > 63) { 469 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", 470 __func__, m64_range[1], phb->hose->global_number); 471 m64_range[1] = 63; 472 } 473 /* Empty range, no m64 */ 474 if (m64_range[1] <= m64_range[0]) { 475 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", 476 __func__, phb->hose->global_number); 477 return; 478 } 479 480 /* Configure M64 informations */ 481 res = &hose->mem_resources[1]; 482 res->name = dn->full_name; 483 res->start = of_translate_address(dn, r + 2); 484 res->end = res->start + of_read_number(r + 4, 2) - 1; 485 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 486 pci_addr = of_read_number(r, 2); 487 hose->mem_offset[1] = res->start - pci_addr; 488 489 phb->ioda.m64_size = resource_size(res); 490 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; 491 phb->ioda.m64_base = pci_addr; 492 493 /* This lines up nicely with the display from processing OF ranges */ 494 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", 495 res->start, res->end, pci_addr, m64_range[0], 496 m64_range[0] + m64_range[1] - 1); 497 498 /* Mark all M64 used up by default */ 499 phb->ioda.m64_bar_alloc = (unsigned long)-1; 500 501 /* Use last M64 BAR to cover M64 window */ 502 m64_range[1]--; 503 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; 504 505 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); 506 507 /* Mark remaining ones free */ 508 for (i = m64_range[0]; i < m64_range[1]; i++) 509 clear_bit(i, &phb->ioda.m64_bar_alloc); 510 511 /* 512 * Setup init functions for M64 based on IODA version, IODA3 uses 513 * the IODA2 code. 514 */ 515 if (phb->type == PNV_PHB_IODA1) 516 phb->init_m64 = pnv_ioda1_init_m64; 517 else 518 phb->init_m64 = pnv_ioda2_init_m64; 519 } 520 521 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) 522 { 523 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; 524 struct pnv_ioda_pe *slave; 525 s64 rc; 526 527 /* Fetch master PE */ 528 if (pe->flags & PNV_IODA_PE_SLAVE) { 529 pe = pe->master; 530 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) 531 return; 532 533 pe_no = pe->pe_number; 534 } 535 536 /* Freeze master PE */ 537 rc = opal_pci_eeh_freeze_set(phb->opal_id, 538 pe_no, 539 OPAL_EEH_ACTION_SET_FREEZE_ALL); 540 if (rc != OPAL_SUCCESS) { 541 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 542 __func__, rc, phb->hose->global_number, pe_no); 543 return; 544 } 545 546 /* Freeze slave PEs */ 547 if (!(pe->flags & PNV_IODA_PE_MASTER)) 548 return; 549 550 list_for_each_entry(slave, &pe->slaves, list) { 551 rc = opal_pci_eeh_freeze_set(phb->opal_id, 552 slave->pe_number, 553 OPAL_EEH_ACTION_SET_FREEZE_ALL); 554 if (rc != OPAL_SUCCESS) 555 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 556 __func__, rc, phb->hose->global_number, 557 slave->pe_number); 558 } 559 } 560 561 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) 562 { 563 struct pnv_ioda_pe *pe, *slave; 564 s64 rc; 565 566 /* Find master PE */ 567 pe = &phb->ioda.pe_array[pe_no]; 568 if (pe->flags & PNV_IODA_PE_SLAVE) { 569 pe = pe->master; 570 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 571 pe_no = pe->pe_number; 572 } 573 574 /* Clear frozen state for master PE */ 575 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); 576 if (rc != OPAL_SUCCESS) { 577 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 578 __func__, rc, opt, phb->hose->global_number, pe_no); 579 return -EIO; 580 } 581 582 if (!(pe->flags & PNV_IODA_PE_MASTER)) 583 return 0; 584 585 /* Clear frozen state for slave PEs */ 586 list_for_each_entry(slave, &pe->slaves, list) { 587 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 588 slave->pe_number, 589 opt); 590 if (rc != OPAL_SUCCESS) { 591 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 592 __func__, rc, opt, phb->hose->global_number, 593 slave->pe_number); 594 return -EIO; 595 } 596 } 597 598 return 0; 599 } 600 601 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) 602 { 603 struct pnv_ioda_pe *slave, *pe; 604 u8 fstate = 0, state; 605 __be16 pcierr = 0; 606 s64 rc; 607 608 /* Sanity check on PE number */ 609 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) 610 return OPAL_EEH_STOPPED_PERM_UNAVAIL; 611 612 /* 613 * Fetch the master PE and the PE instance might be 614 * not initialized yet. 615 */ 616 pe = &phb->ioda.pe_array[pe_no]; 617 if (pe->flags & PNV_IODA_PE_SLAVE) { 618 pe = pe->master; 619 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 620 pe_no = pe->pe_number; 621 } 622 623 /* Check the master PE */ 624 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, 625 &state, &pcierr, NULL); 626 if (rc != OPAL_SUCCESS) { 627 pr_warn("%s: Failure %lld getting " 628 "PHB#%x-PE#%x state\n", 629 __func__, rc, 630 phb->hose->global_number, pe_no); 631 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 632 } 633 634 /* Check the slave PE */ 635 if (!(pe->flags & PNV_IODA_PE_MASTER)) 636 return state; 637 638 list_for_each_entry(slave, &pe->slaves, list) { 639 rc = opal_pci_eeh_freeze_status(phb->opal_id, 640 slave->pe_number, 641 &fstate, 642 &pcierr, 643 NULL); 644 if (rc != OPAL_SUCCESS) { 645 pr_warn("%s: Failure %lld getting " 646 "PHB#%x-PE#%x state\n", 647 __func__, rc, 648 phb->hose->global_number, slave->pe_number); 649 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 650 } 651 652 /* 653 * Override the result based on the ascending 654 * priority. 655 */ 656 if (fstate > state) 657 state = fstate; 658 } 659 660 return state; 661 } 662 663 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) 664 { 665 struct pci_controller *hose = pci_bus_to_host(dev->bus); 666 struct pnv_phb *phb = hose->private_data; 667 struct pci_dn *pdn = pci_get_pdn(dev); 668 669 if (!pdn) 670 return NULL; 671 if (pdn->pe_number == IODA_INVALID_PE) 672 return NULL; 673 return &phb->ioda.pe_array[pdn->pe_number]; 674 } 675 676 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, 677 struct pnv_ioda_pe *parent, 678 struct pnv_ioda_pe *child, 679 bool is_add) 680 { 681 const char *desc = is_add ? "adding" : "removing"; 682 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : 683 OPAL_REMOVE_PE_FROM_DOMAIN; 684 struct pnv_ioda_pe *slave; 685 long rc; 686 687 /* Parent PE affects child PE */ 688 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 689 child->pe_number, op); 690 if (rc != OPAL_SUCCESS) { 691 pe_warn(child, "OPAL error %ld %s to parent PELTV\n", 692 rc, desc); 693 return -ENXIO; 694 } 695 696 if (!(child->flags & PNV_IODA_PE_MASTER)) 697 return 0; 698 699 /* Compound case: parent PE affects slave PEs */ 700 list_for_each_entry(slave, &child->slaves, list) { 701 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 702 slave->pe_number, op); 703 if (rc != OPAL_SUCCESS) { 704 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", 705 rc, desc); 706 return -ENXIO; 707 } 708 } 709 710 return 0; 711 } 712 713 static int pnv_ioda_set_peltv(struct pnv_phb *phb, 714 struct pnv_ioda_pe *pe, 715 bool is_add) 716 { 717 struct pnv_ioda_pe *slave; 718 struct pci_dev *pdev = NULL; 719 int ret; 720 721 /* 722 * Clear PE frozen state. If it's master PE, we need 723 * clear slave PE frozen state as well. 724 */ 725 if (is_add) { 726 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 727 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 728 if (pe->flags & PNV_IODA_PE_MASTER) { 729 list_for_each_entry(slave, &pe->slaves, list) 730 opal_pci_eeh_freeze_clear(phb->opal_id, 731 slave->pe_number, 732 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 733 } 734 } 735 736 /* 737 * Associate PE in PELT. We need add the PE into the 738 * corresponding PELT-V as well. Otherwise, the error 739 * originated from the PE might contribute to other 740 * PEs. 741 */ 742 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); 743 if (ret) 744 return ret; 745 746 /* For compound PEs, any one affects all of them */ 747 if (pe->flags & PNV_IODA_PE_MASTER) { 748 list_for_each_entry(slave, &pe->slaves, list) { 749 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); 750 if (ret) 751 return ret; 752 } 753 } 754 755 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) 756 pdev = pe->pbus->self; 757 else if (pe->flags & PNV_IODA_PE_DEV) 758 pdev = pe->pdev->bus->self; 759 #ifdef CONFIG_PCI_IOV 760 else if (pe->flags & PNV_IODA_PE_VF) 761 pdev = pe->parent_dev; 762 #endif /* CONFIG_PCI_IOV */ 763 while (pdev) { 764 struct pci_dn *pdn = pci_get_pdn(pdev); 765 struct pnv_ioda_pe *parent; 766 767 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 768 parent = &phb->ioda.pe_array[pdn->pe_number]; 769 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); 770 if (ret) 771 return ret; 772 } 773 774 pdev = pdev->bus->self; 775 } 776 777 return 0; 778 } 779 780 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 781 { 782 struct pci_dev *parent; 783 uint8_t bcomp, dcomp, fcomp; 784 int64_t rc; 785 long rid_end, rid; 786 787 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ 788 if (pe->pbus) { 789 int count; 790 791 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 792 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 793 parent = pe->pbus->self; 794 if (pe->flags & PNV_IODA_PE_BUS_ALL) 795 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 796 else 797 count = 1; 798 799 switch(count) { 800 case 1: bcomp = OpalPciBusAll; break; 801 case 2: bcomp = OpalPciBus7Bits; break; 802 case 4: bcomp = OpalPciBus6Bits; break; 803 case 8: bcomp = OpalPciBus5Bits; break; 804 case 16: bcomp = OpalPciBus4Bits; break; 805 case 32: bcomp = OpalPciBus3Bits; break; 806 default: 807 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 808 count); 809 /* Do an exact match only */ 810 bcomp = OpalPciBusAll; 811 } 812 rid_end = pe->rid + (count << 8); 813 } else { 814 #ifdef CONFIG_PCI_IOV 815 if (pe->flags & PNV_IODA_PE_VF) 816 parent = pe->parent_dev; 817 else 818 #endif 819 parent = pe->pdev->bus->self; 820 bcomp = OpalPciBusAll; 821 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 822 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 823 rid_end = pe->rid + 1; 824 } 825 826 /* Clear the reverse map */ 827 for (rid = pe->rid; rid < rid_end; rid++) 828 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; 829 830 /* Release from all parents PELT-V */ 831 while (parent) { 832 struct pci_dn *pdn = pci_get_pdn(parent); 833 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 834 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, 835 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 836 /* XXX What to do in case of error ? */ 837 } 838 parent = parent->bus->self; 839 } 840 841 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 842 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 843 844 /* Disassociate PE in PELT */ 845 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, 846 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 847 if (rc) 848 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc); 849 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 850 bcomp, dcomp, fcomp, OPAL_UNMAP_PE); 851 if (rc) 852 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc); 853 854 pe->pbus = NULL; 855 pe->pdev = NULL; 856 #ifdef CONFIG_PCI_IOV 857 pe->parent_dev = NULL; 858 #endif 859 860 return 0; 861 } 862 863 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 864 { 865 struct pci_dev *parent; 866 uint8_t bcomp, dcomp, fcomp; 867 long rc, rid_end, rid; 868 869 /* Bus validation ? */ 870 if (pe->pbus) { 871 int count; 872 873 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 874 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 875 parent = pe->pbus->self; 876 if (pe->flags & PNV_IODA_PE_BUS_ALL) 877 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 878 else 879 count = 1; 880 881 switch(count) { 882 case 1: bcomp = OpalPciBusAll; break; 883 case 2: bcomp = OpalPciBus7Bits; break; 884 case 4: bcomp = OpalPciBus6Bits; break; 885 case 8: bcomp = OpalPciBus5Bits; break; 886 case 16: bcomp = OpalPciBus4Bits; break; 887 case 32: bcomp = OpalPciBus3Bits; break; 888 default: 889 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 890 count); 891 /* Do an exact match only */ 892 bcomp = OpalPciBusAll; 893 } 894 rid_end = pe->rid + (count << 8); 895 } else { 896 #ifdef CONFIG_PCI_IOV 897 if (pe->flags & PNV_IODA_PE_VF) 898 parent = pe->parent_dev; 899 else 900 #endif /* CONFIG_PCI_IOV */ 901 parent = pe->pdev->bus->self; 902 bcomp = OpalPciBusAll; 903 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 904 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 905 rid_end = pe->rid + 1; 906 } 907 908 /* 909 * Associate PE in PELT. We need add the PE into the 910 * corresponding PELT-V as well. Otherwise, the error 911 * originated from the PE might contribute to other 912 * PEs. 913 */ 914 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 915 bcomp, dcomp, fcomp, OPAL_MAP_PE); 916 if (rc) { 917 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 918 return -ENXIO; 919 } 920 921 /* 922 * Configure PELTV. NPUs don't have a PELTV table so skip 923 * configuration on them. 924 */ 925 if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI) 926 pnv_ioda_set_peltv(phb, pe, true); 927 928 /* Setup reverse map */ 929 for (rid = pe->rid; rid < rid_end; rid++) 930 phb->ioda.pe_rmap[rid] = pe->pe_number; 931 932 /* Setup one MVTs on IODA1 */ 933 if (phb->type != PNV_PHB_IODA1) { 934 pe->mve_number = 0; 935 goto out; 936 } 937 938 pe->mve_number = pe->pe_number; 939 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); 940 if (rc != OPAL_SUCCESS) { 941 pe_err(pe, "OPAL error %ld setting up MVE %x\n", 942 rc, pe->mve_number); 943 pe->mve_number = -1; 944 } else { 945 rc = opal_pci_set_mve_enable(phb->opal_id, 946 pe->mve_number, OPAL_ENABLE_MVE); 947 if (rc) { 948 pe_err(pe, "OPAL error %ld enabling MVE %x\n", 949 rc, pe->mve_number); 950 pe->mve_number = -1; 951 } 952 } 953 954 out: 955 return 0; 956 } 957 958 #ifdef CONFIG_PCI_IOV 959 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) 960 { 961 struct pci_dn *pdn = pci_get_pdn(dev); 962 int i; 963 struct resource *res, res2; 964 resource_size_t size; 965 u16 num_vfs; 966 967 if (!dev->is_physfn) 968 return -EINVAL; 969 970 /* 971 * "offset" is in VFs. The M64 windows are sized so that when they 972 * are segmented, each segment is the same size as the IOV BAR. 973 * Each segment is in a separate PE, and the high order bits of the 974 * address are the PE number. Therefore, each VF's BAR is in a 975 * separate PE, and changing the IOV BAR start address changes the 976 * range of PEs the VFs are in. 977 */ 978 num_vfs = pdn->num_vfs; 979 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 980 res = &dev->resource[i + PCI_IOV_RESOURCES]; 981 if (!res->flags || !res->parent) 982 continue; 983 984 /* 985 * The actual IOV BAR range is determined by the start address 986 * and the actual size for num_vfs VFs BAR. This check is to 987 * make sure that after shifting, the range will not overlap 988 * with another device. 989 */ 990 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 991 res2.flags = res->flags; 992 res2.start = res->start + (size * offset); 993 res2.end = res2.start + (size * num_vfs) - 1; 994 995 if (res2.end > res->end) { 996 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", 997 i, &res2, res, num_vfs, offset); 998 return -EBUSY; 999 } 1000 } 1001 1002 /* 1003 * Since M64 BAR shares segments among all possible 256 PEs, 1004 * we have to shift the beginning of PF IOV BAR to make it start from 1005 * the segment which belongs to the PE number assigned to the first VF. 1006 * This creates a "hole" in the /proc/iomem which could be used for 1007 * allocating other resources so we reserve this area below and 1008 * release when IOV is released. 1009 */ 1010 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1011 res = &dev->resource[i + PCI_IOV_RESOURCES]; 1012 if (!res->flags || !res->parent) 1013 continue; 1014 1015 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 1016 res2 = *res; 1017 res->start += size * offset; 1018 1019 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", 1020 i, &res2, res, (offset > 0) ? "En" : "Dis", 1021 num_vfs, offset); 1022 1023 if (offset < 0) { 1024 devm_release_resource(&dev->dev, &pdn->holes[i]); 1025 memset(&pdn->holes[i], 0, sizeof(pdn->holes[i])); 1026 } 1027 1028 pci_update_resource(dev, i + PCI_IOV_RESOURCES); 1029 1030 if (offset > 0) { 1031 pdn->holes[i].start = res2.start; 1032 pdn->holes[i].end = res2.start + size * offset - 1; 1033 pdn->holes[i].flags = IORESOURCE_BUS; 1034 pdn->holes[i].name = "pnv_iov_reserved"; 1035 devm_request_resource(&dev->dev, res->parent, 1036 &pdn->holes[i]); 1037 } 1038 } 1039 return 0; 1040 } 1041 #endif /* CONFIG_PCI_IOV */ 1042 1043 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) 1044 { 1045 struct pci_controller *hose = pci_bus_to_host(dev->bus); 1046 struct pnv_phb *phb = hose->private_data; 1047 struct pci_dn *pdn = pci_get_pdn(dev); 1048 struct pnv_ioda_pe *pe; 1049 1050 if (!pdn) { 1051 pr_err("%s: Device tree node not associated properly\n", 1052 pci_name(dev)); 1053 return NULL; 1054 } 1055 if (pdn->pe_number != IODA_INVALID_PE) 1056 return NULL; 1057 1058 pe = pnv_ioda_alloc_pe(phb); 1059 if (!pe) { 1060 pr_warn("%s: Not enough PE# available, disabling device\n", 1061 pci_name(dev)); 1062 return NULL; 1063 } 1064 1065 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the 1066 * pointer in the PE data structure, both should be destroyed at the 1067 * same time. However, this needs to be looked at more closely again 1068 * once we actually start removing things (Hotplug, SR-IOV, ...) 1069 * 1070 * At some point we want to remove the PDN completely anyways 1071 */ 1072 pci_dev_get(dev); 1073 pdn->pe_number = pe->pe_number; 1074 pe->flags = PNV_IODA_PE_DEV; 1075 pe->pdev = dev; 1076 pe->pbus = NULL; 1077 pe->mve_number = -1; 1078 pe->rid = dev->bus->number << 8 | pdn->devfn; 1079 1080 pe_info(pe, "Associated device to PE\n"); 1081 1082 if (pnv_ioda_configure_pe(phb, pe)) { 1083 /* XXX What do we do here ? */ 1084 pnv_ioda_free_pe(pe); 1085 pdn->pe_number = IODA_INVALID_PE; 1086 pe->pdev = NULL; 1087 pci_dev_put(dev); 1088 return NULL; 1089 } 1090 1091 /* Put PE to the list */ 1092 list_add_tail(&pe->list, &phb->ioda.pe_list); 1093 1094 return pe; 1095 } 1096 1097 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe) 1098 { 1099 struct pci_dev *dev; 1100 1101 list_for_each_entry(dev, &bus->devices, bus_list) { 1102 struct pci_dn *pdn = pci_get_pdn(dev); 1103 1104 if (pdn == NULL) { 1105 pr_warn("%s: No device node associated with device !\n", 1106 pci_name(dev)); 1107 continue; 1108 } 1109 1110 /* 1111 * In partial hotplug case, the PCI device might be still 1112 * associated with the PE and needn't attach it to the PE 1113 * again. 1114 */ 1115 if (pdn->pe_number != IODA_INVALID_PE) 1116 continue; 1117 1118 pe->device_count++; 1119 pdn->pe_number = pe->pe_number; 1120 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1121 pnv_ioda_setup_same_PE(dev->subordinate, pe); 1122 } 1123 } 1124 1125 /* 1126 * There're 2 types of PCI bus sensitive PEs: One that is compromised of 1127 * single PCI bus. Another one that contains the primary PCI bus and its 1128 * subordinate PCI devices and buses. The second type of PE is normally 1129 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. 1130 */ 1131 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) 1132 { 1133 struct pci_controller *hose = pci_bus_to_host(bus); 1134 struct pnv_phb *phb = hose->private_data; 1135 struct pnv_ioda_pe *pe = NULL; 1136 unsigned int pe_num; 1137 1138 /* 1139 * In partial hotplug case, the PE instance might be still alive. 1140 * We should reuse it instead of allocating a new one. 1141 */ 1142 pe_num = phb->ioda.pe_rmap[bus->number << 8]; 1143 if (pe_num != IODA_INVALID_PE) { 1144 pe = &phb->ioda.pe_array[pe_num]; 1145 pnv_ioda_setup_same_PE(bus, pe); 1146 return NULL; 1147 } 1148 1149 /* PE number for root bus should have been reserved */ 1150 if (pci_is_root_bus(bus) && 1151 phb->ioda.root_pe_idx != IODA_INVALID_PE) 1152 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; 1153 1154 /* Check if PE is determined by M64 */ 1155 if (!pe) 1156 pe = pnv_ioda_pick_m64_pe(bus, all); 1157 1158 /* The PE number isn't pinned by M64 */ 1159 if (!pe) 1160 pe = pnv_ioda_alloc_pe(phb); 1161 1162 if (!pe) { 1163 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n", 1164 __func__, pci_domain_nr(bus), bus->number); 1165 return NULL; 1166 } 1167 1168 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); 1169 pe->pbus = bus; 1170 pe->pdev = NULL; 1171 pe->mve_number = -1; 1172 pe->rid = bus->busn_res.start << 8; 1173 1174 if (all) 1175 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n", 1176 &bus->busn_res.start, &bus->busn_res.end, 1177 pe->pe_number); 1178 else 1179 pe_info(pe, "Secondary bus %pad associated with PE#%x\n", 1180 &bus->busn_res.start, pe->pe_number); 1181 1182 if (pnv_ioda_configure_pe(phb, pe)) { 1183 /* XXX What do we do here ? */ 1184 pnv_ioda_free_pe(pe); 1185 pe->pbus = NULL; 1186 return NULL; 1187 } 1188 1189 /* Associate it with all child devices */ 1190 pnv_ioda_setup_same_PE(bus, pe); 1191 1192 /* Put PE to the list */ 1193 list_add_tail(&pe->list, &phb->ioda.pe_list); 1194 1195 return pe; 1196 } 1197 1198 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev) 1199 { 1200 int pe_num, found_pe = false, rc; 1201 long rid; 1202 struct pnv_ioda_pe *pe; 1203 struct pci_dev *gpu_pdev; 1204 struct pci_dn *npu_pdn; 1205 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus); 1206 struct pnv_phb *phb = hose->private_data; 1207 1208 /* 1209 * Due to a hardware errata PE#0 on the NPU is reserved for 1210 * error handling. This means we only have three PEs remaining 1211 * which need to be assigned to four links, implying some 1212 * links must share PEs. 1213 * 1214 * To achieve this we assign PEs such that NPUs linking the 1215 * same GPU get assigned the same PE. 1216 */ 1217 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev); 1218 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 1219 pe = &phb->ioda.pe_array[pe_num]; 1220 if (!pe->pdev) 1221 continue; 1222 1223 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) { 1224 /* 1225 * This device has the same peer GPU so should 1226 * be assigned the same PE as the existing 1227 * peer NPU. 1228 */ 1229 dev_info(&npu_pdev->dev, 1230 "Associating to existing PE %x\n", pe_num); 1231 pci_dev_get(npu_pdev); 1232 npu_pdn = pci_get_pdn(npu_pdev); 1233 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn; 1234 npu_pdn->pe_number = pe_num; 1235 phb->ioda.pe_rmap[rid] = pe->pe_number; 1236 1237 /* Map the PE to this link */ 1238 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid, 1239 OpalPciBusAll, 1240 OPAL_COMPARE_RID_DEVICE_NUMBER, 1241 OPAL_COMPARE_RID_FUNCTION_NUMBER, 1242 OPAL_MAP_PE); 1243 WARN_ON(rc != OPAL_SUCCESS); 1244 found_pe = true; 1245 break; 1246 } 1247 } 1248 1249 if (!found_pe) 1250 /* 1251 * Could not find an existing PE so allocate a new 1252 * one. 1253 */ 1254 return pnv_ioda_setup_dev_PE(npu_pdev); 1255 else 1256 return pe; 1257 } 1258 1259 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus) 1260 { 1261 struct pci_dev *pdev; 1262 1263 list_for_each_entry(pdev, &bus->devices, bus_list) 1264 pnv_ioda_setup_npu_PE(pdev); 1265 } 1266 1267 static void pnv_pci_ioda_setup_PEs(void) 1268 { 1269 struct pci_controller *hose; 1270 struct pnv_phb *phb; 1271 struct pci_bus *bus; 1272 struct pci_dev *pdev; 1273 struct pnv_ioda_pe *pe; 1274 1275 list_for_each_entry(hose, &hose_list, list_node) { 1276 phb = hose->private_data; 1277 if (phb->type == PNV_PHB_NPU_NVLINK) { 1278 /* PE#0 is needed for error reporting */ 1279 pnv_ioda_reserve_pe(phb, 0); 1280 pnv_ioda_setup_npu_PEs(hose->bus); 1281 if (phb->model == PNV_PHB_MODEL_NPU2) 1282 WARN_ON_ONCE(pnv_npu2_init(hose)); 1283 } 1284 if (phb->type == PNV_PHB_NPU_OCAPI) { 1285 bus = hose->bus; 1286 list_for_each_entry(pdev, &bus->devices, bus_list) 1287 pnv_ioda_setup_dev_PE(pdev); 1288 } 1289 } 1290 list_for_each_entry(hose, &hose_list, list_node) { 1291 phb = hose->private_data; 1292 if (phb->type != PNV_PHB_IODA2) 1293 continue; 1294 1295 list_for_each_entry(pe, &phb->ioda.pe_list, list) 1296 pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV); 1297 } 1298 } 1299 1300 #ifdef CONFIG_PCI_IOV 1301 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) 1302 { 1303 struct pci_bus *bus; 1304 struct pci_controller *hose; 1305 struct pnv_phb *phb; 1306 struct pci_dn *pdn; 1307 int i, j; 1308 int m64_bars; 1309 1310 bus = pdev->bus; 1311 hose = pci_bus_to_host(bus); 1312 phb = hose->private_data; 1313 pdn = pci_get_pdn(pdev); 1314 1315 if (pdn->m64_single_mode) 1316 m64_bars = num_vfs; 1317 else 1318 m64_bars = 1; 1319 1320 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) 1321 for (j = 0; j < m64_bars; j++) { 1322 if (pdn->m64_map[j][i] == IODA_INVALID_M64) 1323 continue; 1324 opal_pci_phb_mmio_enable(phb->opal_id, 1325 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0); 1326 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc); 1327 pdn->m64_map[j][i] = IODA_INVALID_M64; 1328 } 1329 1330 kfree(pdn->m64_map); 1331 return 0; 1332 } 1333 1334 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) 1335 { 1336 struct pci_bus *bus; 1337 struct pci_controller *hose; 1338 struct pnv_phb *phb; 1339 struct pci_dn *pdn; 1340 unsigned int win; 1341 struct resource *res; 1342 int i, j; 1343 int64_t rc; 1344 int total_vfs; 1345 resource_size_t size, start; 1346 int pe_num; 1347 int m64_bars; 1348 1349 bus = pdev->bus; 1350 hose = pci_bus_to_host(bus); 1351 phb = hose->private_data; 1352 pdn = pci_get_pdn(pdev); 1353 total_vfs = pci_sriov_get_totalvfs(pdev); 1354 1355 if (pdn->m64_single_mode) 1356 m64_bars = num_vfs; 1357 else 1358 m64_bars = 1; 1359 1360 pdn->m64_map = kmalloc_array(m64_bars, 1361 sizeof(*pdn->m64_map), 1362 GFP_KERNEL); 1363 if (!pdn->m64_map) 1364 return -ENOMEM; 1365 /* Initialize the m64_map to IODA_INVALID_M64 */ 1366 for (i = 0; i < m64_bars ; i++) 1367 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++) 1368 pdn->m64_map[i][j] = IODA_INVALID_M64; 1369 1370 1371 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1372 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 1373 if (!res->flags || !res->parent) 1374 continue; 1375 1376 for (j = 0; j < m64_bars; j++) { 1377 do { 1378 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, 1379 phb->ioda.m64_bar_idx + 1, 0); 1380 1381 if (win >= phb->ioda.m64_bar_idx + 1) 1382 goto m64_failed; 1383 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); 1384 1385 pdn->m64_map[j][i] = win; 1386 1387 if (pdn->m64_single_mode) { 1388 size = pci_iov_resource_size(pdev, 1389 PCI_IOV_RESOURCES + i); 1390 start = res->start + size * j; 1391 } else { 1392 size = resource_size(res); 1393 start = res->start; 1394 } 1395 1396 /* Map the M64 here */ 1397 if (pdn->m64_single_mode) { 1398 pe_num = pdn->pe_num_map[j]; 1399 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 1400 pe_num, OPAL_M64_WINDOW_TYPE, 1401 pdn->m64_map[j][i], 0); 1402 } 1403 1404 rc = opal_pci_set_phb_mem_window(phb->opal_id, 1405 OPAL_M64_WINDOW_TYPE, 1406 pdn->m64_map[j][i], 1407 start, 1408 0, /* unused */ 1409 size); 1410 1411 1412 if (rc != OPAL_SUCCESS) { 1413 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n", 1414 win, rc); 1415 goto m64_failed; 1416 } 1417 1418 if (pdn->m64_single_mode) 1419 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1420 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2); 1421 else 1422 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1423 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1); 1424 1425 if (rc != OPAL_SUCCESS) { 1426 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n", 1427 win, rc); 1428 goto m64_failed; 1429 } 1430 } 1431 } 1432 return 0; 1433 1434 m64_failed: 1435 pnv_pci_vf_release_m64(pdev, num_vfs); 1436 return -EBUSY; 1437 } 1438 1439 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 1440 int num); 1441 1442 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe) 1443 { 1444 struct iommu_table *tbl; 1445 int64_t rc; 1446 1447 tbl = pe->table_group.tables[0]; 1448 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 1449 if (rc) 1450 pe_warn(pe, "OPAL error %lld release DMA window\n", rc); 1451 1452 pnv_pci_ioda2_set_bypass(pe, false); 1453 if (pe->table_group.group) { 1454 iommu_group_put(pe->table_group.group); 1455 BUG_ON(pe->table_group.group); 1456 } 1457 iommu_tce_table_put(tbl); 1458 } 1459 1460 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev) 1461 { 1462 struct pci_bus *bus; 1463 struct pci_controller *hose; 1464 struct pnv_phb *phb; 1465 struct pnv_ioda_pe *pe, *pe_n; 1466 struct pci_dn *pdn; 1467 1468 bus = pdev->bus; 1469 hose = pci_bus_to_host(bus); 1470 phb = hose->private_data; 1471 pdn = pci_get_pdn(pdev); 1472 1473 if (!pdev->is_physfn) 1474 return; 1475 1476 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { 1477 if (pe->parent_dev != pdev) 1478 continue; 1479 1480 pnv_pci_ioda2_release_dma_pe(pdev, pe); 1481 1482 /* Remove from list */ 1483 mutex_lock(&phb->ioda.pe_list_mutex); 1484 list_del(&pe->list); 1485 mutex_unlock(&phb->ioda.pe_list_mutex); 1486 1487 pnv_ioda_deconfigure_pe(phb, pe); 1488 1489 pnv_ioda_free_pe(pe); 1490 } 1491 } 1492 1493 void pnv_pci_sriov_disable(struct pci_dev *pdev) 1494 { 1495 struct pci_bus *bus; 1496 struct pci_controller *hose; 1497 struct pnv_phb *phb; 1498 struct pnv_ioda_pe *pe; 1499 struct pci_dn *pdn; 1500 u16 num_vfs, i; 1501 1502 bus = pdev->bus; 1503 hose = pci_bus_to_host(bus); 1504 phb = hose->private_data; 1505 pdn = pci_get_pdn(pdev); 1506 num_vfs = pdn->num_vfs; 1507 1508 /* Release VF PEs */ 1509 pnv_ioda_release_vf_PE(pdev); 1510 1511 if (phb->type == PNV_PHB_IODA2) { 1512 if (!pdn->m64_single_mode) 1513 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map); 1514 1515 /* Release M64 windows */ 1516 pnv_pci_vf_release_m64(pdev, num_vfs); 1517 1518 /* Release PE numbers */ 1519 if (pdn->m64_single_mode) { 1520 for (i = 0; i < num_vfs; i++) { 1521 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1522 continue; 1523 1524 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1525 pnv_ioda_free_pe(pe); 1526 } 1527 } else 1528 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1529 /* Releasing pe_num_map */ 1530 kfree(pdn->pe_num_map); 1531 } 1532 } 1533 1534 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 1535 struct pnv_ioda_pe *pe); 1536 #ifdef CONFIG_IOMMU_API 1537 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe, 1538 struct iommu_table_group *table_group, struct pci_bus *bus); 1539 1540 #endif 1541 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) 1542 { 1543 struct pci_bus *bus; 1544 struct pci_controller *hose; 1545 struct pnv_phb *phb; 1546 struct pnv_ioda_pe *pe; 1547 int pe_num; 1548 u16 vf_index; 1549 struct pci_dn *pdn; 1550 1551 bus = pdev->bus; 1552 hose = pci_bus_to_host(bus); 1553 phb = hose->private_data; 1554 pdn = pci_get_pdn(pdev); 1555 1556 if (!pdev->is_physfn) 1557 return; 1558 1559 /* Reserve PE for each VF */ 1560 for (vf_index = 0; vf_index < num_vfs; vf_index++) { 1561 if (pdn->m64_single_mode) 1562 pe_num = pdn->pe_num_map[vf_index]; 1563 else 1564 pe_num = *pdn->pe_num_map + vf_index; 1565 1566 pe = &phb->ioda.pe_array[pe_num]; 1567 pe->pe_number = pe_num; 1568 pe->phb = phb; 1569 pe->flags = PNV_IODA_PE_VF; 1570 pe->pbus = NULL; 1571 pe->parent_dev = pdev; 1572 pe->mve_number = -1; 1573 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) | 1574 pci_iov_virtfn_devfn(pdev, vf_index); 1575 1576 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n", 1577 hose->global_number, pdev->bus->number, 1578 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)), 1579 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num); 1580 1581 if (pnv_ioda_configure_pe(phb, pe)) { 1582 /* XXX What do we do here ? */ 1583 pnv_ioda_free_pe(pe); 1584 pe->pdev = NULL; 1585 continue; 1586 } 1587 1588 /* Put PE to the list */ 1589 mutex_lock(&phb->ioda.pe_list_mutex); 1590 list_add_tail(&pe->list, &phb->ioda.pe_list); 1591 mutex_unlock(&phb->ioda.pe_list_mutex); 1592 1593 pnv_pci_ioda2_setup_dma_pe(phb, pe); 1594 #ifdef CONFIG_IOMMU_API 1595 iommu_register_group(&pe->table_group, 1596 pe->phb->hose->global_number, pe->pe_number); 1597 pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL); 1598 #endif 1599 } 1600 } 1601 1602 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1603 { 1604 struct pci_bus *bus; 1605 struct pci_controller *hose; 1606 struct pnv_phb *phb; 1607 struct pnv_ioda_pe *pe; 1608 struct pci_dn *pdn; 1609 int ret; 1610 u16 i; 1611 1612 bus = pdev->bus; 1613 hose = pci_bus_to_host(bus); 1614 phb = hose->private_data; 1615 pdn = pci_get_pdn(pdev); 1616 1617 if (phb->type == PNV_PHB_IODA2) { 1618 if (!pdn->vfs_expanded) { 1619 dev_info(&pdev->dev, "don't support this SRIOV device" 1620 " with non 64bit-prefetchable IOV BAR\n"); 1621 return -ENOSPC; 1622 } 1623 1624 /* 1625 * When M64 BARs functions in Single PE mode, the number of VFs 1626 * could be enabled must be less than the number of M64 BARs. 1627 */ 1628 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) { 1629 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n"); 1630 return -EBUSY; 1631 } 1632 1633 /* Allocating pe_num_map */ 1634 if (pdn->m64_single_mode) 1635 pdn->pe_num_map = kmalloc_array(num_vfs, 1636 sizeof(*pdn->pe_num_map), 1637 GFP_KERNEL); 1638 else 1639 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL); 1640 1641 if (!pdn->pe_num_map) 1642 return -ENOMEM; 1643 1644 if (pdn->m64_single_mode) 1645 for (i = 0; i < num_vfs; i++) 1646 pdn->pe_num_map[i] = IODA_INVALID_PE; 1647 1648 /* Calculate available PE for required VFs */ 1649 if (pdn->m64_single_mode) { 1650 for (i = 0; i < num_vfs; i++) { 1651 pe = pnv_ioda_alloc_pe(phb); 1652 if (!pe) { 1653 ret = -EBUSY; 1654 goto m64_failed; 1655 } 1656 1657 pdn->pe_num_map[i] = pe->pe_number; 1658 } 1659 } else { 1660 mutex_lock(&phb->ioda.pe_alloc_mutex); 1661 *pdn->pe_num_map = bitmap_find_next_zero_area( 1662 phb->ioda.pe_alloc, phb->ioda.total_pe_num, 1663 0, num_vfs, 0); 1664 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) { 1665 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1666 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs); 1667 kfree(pdn->pe_num_map); 1668 return -EBUSY; 1669 } 1670 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1671 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1672 } 1673 pdn->num_vfs = num_vfs; 1674 1675 /* Assign M64 window accordingly */ 1676 ret = pnv_pci_vf_assign_m64(pdev, num_vfs); 1677 if (ret) { 1678 dev_info(&pdev->dev, "Not enough M64 window resources\n"); 1679 goto m64_failed; 1680 } 1681 1682 /* 1683 * When using one M64 BAR to map one IOV BAR, we need to shift 1684 * the IOV BAR according to the PE# allocated to the VFs. 1685 * Otherwise, the PE# for the VF will conflict with others. 1686 */ 1687 if (!pdn->m64_single_mode) { 1688 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map); 1689 if (ret) 1690 goto m64_failed; 1691 } 1692 } 1693 1694 /* Setup VF PEs */ 1695 pnv_ioda_setup_vf_PE(pdev, num_vfs); 1696 1697 return 0; 1698 1699 m64_failed: 1700 if (pdn->m64_single_mode) { 1701 for (i = 0; i < num_vfs; i++) { 1702 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1703 continue; 1704 1705 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1706 pnv_ioda_free_pe(pe); 1707 } 1708 } else 1709 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1710 1711 /* Releasing pe_num_map */ 1712 kfree(pdn->pe_num_map); 1713 1714 return ret; 1715 } 1716 1717 int pnv_pcibios_sriov_disable(struct pci_dev *pdev) 1718 { 1719 pnv_pci_sriov_disable(pdev); 1720 1721 /* Release PCI data */ 1722 remove_dev_pci_data(pdev); 1723 return 0; 1724 } 1725 1726 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1727 { 1728 /* Allocate PCI data */ 1729 add_dev_pci_data(pdev); 1730 1731 return pnv_pci_sriov_enable(pdev, num_vfs); 1732 } 1733 #endif /* CONFIG_PCI_IOV */ 1734 1735 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev) 1736 { 1737 struct pci_dn *pdn = pci_get_pdn(pdev); 1738 struct pnv_ioda_pe *pe; 1739 1740 /* 1741 * The function can be called while the PE# 1742 * hasn't been assigned. Do nothing for the 1743 * case. 1744 */ 1745 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 1746 return; 1747 1748 pe = &phb->ioda.pe_array[pdn->pe_number]; 1749 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); 1750 pdev->dev.archdata.dma_offset = pe->tce_bypass_base; 1751 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); 1752 /* 1753 * Note: iommu_add_device() will fail here as 1754 * for physical PE: the device is already added by now; 1755 * for virtual PE: sysfs entries are not ready yet and 1756 * tce_iommu_bus_notifier will add the device to a group later. 1757 */ 1758 } 1759 1760 /* 1761 * Reconfigure TVE#0 to be usable as 64-bit DMA space. 1762 * 1763 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses. 1764 * Devices can only access more than that if bit 59 of the PCI address is set 1765 * by hardware, which indicates TVE#1 should be used instead of TVE#0. 1766 * Many PCI devices are not capable of addressing that many bits, and as a 1767 * result are limited to the 4GB of virtual memory made available to 32-bit 1768 * devices in TVE#0. 1769 * 1770 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit 1771 * devices by configuring the virtual memory past the first 4GB inaccessible 1772 * by 64-bit DMAs. This should only be used by devices that want more than 1773 * 4GB, and only on PEs that have no 32-bit devices. 1774 * 1775 * Currently this will only work on PHB3 (POWER8). 1776 */ 1777 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe) 1778 { 1779 u64 window_size, table_size, tce_count, addr; 1780 struct page *table_pages; 1781 u64 tce_order = 28; /* 256MB TCEs */ 1782 __be64 *tces; 1783 s64 rc; 1784 1785 /* 1786 * Window size needs to be a power of two, but needs to account for 1787 * shifting memory by the 4GB offset required to skip 32bit space. 1788 */ 1789 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32)); 1790 tce_count = window_size >> tce_order; 1791 table_size = tce_count << 3; 1792 1793 if (table_size < PAGE_SIZE) 1794 table_size = PAGE_SIZE; 1795 1796 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL, 1797 get_order(table_size)); 1798 if (!table_pages) 1799 goto err; 1800 1801 tces = page_address(table_pages); 1802 if (!tces) 1803 goto err; 1804 1805 memset(tces, 0, table_size); 1806 1807 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) { 1808 tces[(addr + (1ULL << 32)) >> tce_order] = 1809 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE); 1810 } 1811 1812 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id, 1813 pe->pe_number, 1814 /* reconfigure window 0 */ 1815 (pe->pe_number << 1) + 0, 1816 1, 1817 __pa(tces), 1818 table_size, 1819 1 << tce_order); 1820 if (rc == OPAL_SUCCESS) { 1821 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n"); 1822 return 0; 1823 } 1824 err: 1825 pe_err(pe, "Error configuring 64-bit DMA bypass\n"); 1826 return -EIO; 1827 } 1828 1829 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev, 1830 u64 dma_mask) 1831 { 1832 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1833 struct pnv_phb *phb = hose->private_data; 1834 struct pci_dn *pdn = pci_get_pdn(pdev); 1835 struct pnv_ioda_pe *pe; 1836 1837 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1838 return false; 1839 1840 pe = &phb->ioda.pe_array[pdn->pe_number]; 1841 if (pe->tce_bypass_enabled) { 1842 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; 1843 if (dma_mask >= top) 1844 return true; 1845 } 1846 1847 /* 1848 * If the device can't set the TCE bypass bit but still wants 1849 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to 1850 * bypass the 32-bit region and be usable for 64-bit DMAs. 1851 * The device needs to be able to address all of this space. 1852 */ 1853 if (dma_mask >> 32 && 1854 dma_mask > (memory_hotplug_max() + (1ULL << 32)) && 1855 /* pe->pdev should be set if it's a single device, pe->pbus if not */ 1856 (pe->device_count == 1 || !pe->pbus) && 1857 phb->model == PNV_PHB_MODEL_PHB3) { 1858 /* Configure the bypass mode */ 1859 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe); 1860 if (rc) 1861 return false; 1862 /* 4GB offset bypasses 32-bit space */ 1863 pdev->dev.archdata.dma_offset = (1ULL << 32); 1864 return true; 1865 } 1866 1867 return false; 1868 } 1869 1870 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus) 1871 { 1872 struct pci_dev *dev; 1873 1874 list_for_each_entry(dev, &bus->devices, bus_list) { 1875 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); 1876 dev->dev.archdata.dma_offset = pe->tce_bypass_base; 1877 1878 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1879 pnv_ioda_setup_bus_dma(pe, dev->subordinate); 1880 } 1881 } 1882 1883 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, 1884 bool real_mode) 1885 { 1886 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : 1887 (phb->regs + 0x210); 1888 } 1889 1890 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, 1891 unsigned long index, unsigned long npages, bool rm) 1892 { 1893 struct iommu_table_group_link *tgl = list_first_entry_or_null( 1894 &tbl->it_group_list, struct iommu_table_group_link, 1895 next); 1896 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1897 struct pnv_ioda_pe, table_group); 1898 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1899 unsigned long start, end, inc; 1900 1901 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); 1902 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + 1903 npages - 1); 1904 1905 /* p7ioc-style invalidation, 2 TCEs per write */ 1906 start |= (1ull << 63); 1907 end |= (1ull << 63); 1908 inc = 16; 1909 end |= inc - 1; /* round up end to be different than start */ 1910 1911 mb(); /* Ensure above stores are visible */ 1912 while (start <= end) { 1913 if (rm) 1914 __raw_rm_writeq_be(start, invalidate); 1915 else 1916 __raw_writeq_be(start, invalidate); 1917 1918 start += inc; 1919 } 1920 1921 /* 1922 * The iommu layer will do another mb() for us on build() 1923 * and we don't care on free() 1924 */ 1925 } 1926 1927 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, 1928 long npages, unsigned long uaddr, 1929 enum dma_data_direction direction, 1930 unsigned long attrs) 1931 { 1932 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1933 attrs); 1934 1935 if (!ret) 1936 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1937 1938 return ret; 1939 } 1940 1941 #ifdef CONFIG_IOMMU_API 1942 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index, 1943 unsigned long *hpa, enum dma_data_direction *direction) 1944 { 1945 long ret = pnv_tce_xchg(tbl, index, hpa, direction, true); 1946 1947 if (!ret) 1948 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false); 1949 1950 return ret; 1951 } 1952 1953 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index, 1954 unsigned long *hpa, enum dma_data_direction *direction) 1955 { 1956 long ret = pnv_tce_xchg(tbl, index, hpa, direction, false); 1957 1958 if (!ret) 1959 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true); 1960 1961 return ret; 1962 } 1963 #endif 1964 1965 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, 1966 long npages) 1967 { 1968 pnv_tce_free(tbl, index, npages); 1969 1970 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1971 } 1972 1973 static struct iommu_table_ops pnv_ioda1_iommu_ops = { 1974 .set = pnv_ioda1_tce_build, 1975 #ifdef CONFIG_IOMMU_API 1976 .exchange = pnv_ioda1_tce_xchg, 1977 .exchange_rm = pnv_ioda1_tce_xchg_rm, 1978 .useraddrptr = pnv_tce_useraddrptr, 1979 #endif 1980 .clear = pnv_ioda1_tce_free, 1981 .get = pnv_tce_get, 1982 }; 1983 1984 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) 1985 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) 1986 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) 1987 1988 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 1989 { 1990 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm); 1991 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL; 1992 1993 mb(); /* Ensure previous TCE table stores are visible */ 1994 if (rm) 1995 __raw_rm_writeq_be(val, invalidate); 1996 else 1997 __raw_writeq_be(val, invalidate); 1998 } 1999 2000 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) 2001 { 2002 /* 01xb - invalidate TCEs that match the specified PE# */ 2003 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); 2004 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); 2005 2006 mb(); /* Ensure above stores are visible */ 2007 __raw_writeq_be(val, invalidate); 2008 } 2009 2010 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, 2011 unsigned shift, unsigned long index, 2012 unsigned long npages) 2013 { 2014 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 2015 unsigned long start, end, inc; 2016 2017 /* We'll invalidate DMA address in PE scope */ 2018 start = PHB3_TCE_KILL_INVAL_ONE; 2019 start |= (pe->pe_number & 0xFF); 2020 end = start; 2021 2022 /* Figure out the start, end and step */ 2023 start |= (index << shift); 2024 end |= ((index + npages - 1) << shift); 2025 inc = (0x1ull << shift); 2026 mb(); 2027 2028 while (start <= end) { 2029 if (rm) 2030 __raw_rm_writeq_be(start, invalidate); 2031 else 2032 __raw_writeq_be(start, invalidate); 2033 start += inc; 2034 } 2035 } 2036 2037 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) 2038 { 2039 struct pnv_phb *phb = pe->phb; 2040 2041 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 2042 pnv_pci_phb3_tce_invalidate_pe(pe); 2043 else 2044 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, 2045 pe->pe_number, 0, 0, 0); 2046 } 2047 2048 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, 2049 unsigned long index, unsigned long npages, bool rm) 2050 { 2051 struct iommu_table_group_link *tgl; 2052 2053 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) { 2054 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 2055 struct pnv_ioda_pe, table_group); 2056 struct pnv_phb *phb = pe->phb; 2057 unsigned int shift = tbl->it_page_shift; 2058 2059 /* 2060 * NVLink1 can use the TCE kill register directly as 2061 * it's the same as PHB3. NVLink2 is different and 2062 * should go via the OPAL call. 2063 */ 2064 if (phb->model == PNV_PHB_MODEL_NPU) { 2065 /* 2066 * The NVLink hardware does not support TCE kill 2067 * per TCE entry so we have to invalidate 2068 * the entire cache for it. 2069 */ 2070 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 2071 continue; 2072 } 2073 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 2074 pnv_pci_phb3_tce_invalidate(pe, rm, shift, 2075 index, npages); 2076 else 2077 opal_pci_tce_kill(phb->opal_id, 2078 OPAL_PCI_TCE_KILL_PAGES, 2079 pe->pe_number, 1u << shift, 2080 index << shift, npages); 2081 } 2082 } 2083 2084 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 2085 { 2086 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3) 2087 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 2088 else 2089 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0); 2090 } 2091 2092 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, 2093 long npages, unsigned long uaddr, 2094 enum dma_data_direction direction, 2095 unsigned long attrs) 2096 { 2097 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 2098 attrs); 2099 2100 if (!ret) 2101 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2102 2103 return ret; 2104 } 2105 2106 #ifdef CONFIG_IOMMU_API 2107 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index, 2108 unsigned long *hpa, enum dma_data_direction *direction) 2109 { 2110 long ret = pnv_tce_xchg(tbl, index, hpa, direction, true); 2111 2112 if (!ret) 2113 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false); 2114 2115 return ret; 2116 } 2117 2118 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index, 2119 unsigned long *hpa, enum dma_data_direction *direction) 2120 { 2121 long ret = pnv_tce_xchg(tbl, index, hpa, direction, false); 2122 2123 if (!ret) 2124 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true); 2125 2126 return ret; 2127 } 2128 #endif 2129 2130 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, 2131 long npages) 2132 { 2133 pnv_tce_free(tbl, index, npages); 2134 2135 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 2136 } 2137 2138 static struct iommu_table_ops pnv_ioda2_iommu_ops = { 2139 .set = pnv_ioda2_tce_build, 2140 #ifdef CONFIG_IOMMU_API 2141 .exchange = pnv_ioda2_tce_xchg, 2142 .exchange_rm = pnv_ioda2_tce_xchg_rm, 2143 .useraddrptr = pnv_tce_useraddrptr, 2144 #endif 2145 .clear = pnv_ioda2_tce_free, 2146 .get = pnv_tce_get, 2147 .free = pnv_pci_ioda2_table_free_pages, 2148 }; 2149 2150 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) 2151 { 2152 unsigned int *weight = (unsigned int *)data; 2153 2154 /* This is quite simplistic. The "base" weight of a device 2155 * is 10. 0 means no DMA is to be accounted for it. 2156 */ 2157 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2158 return 0; 2159 2160 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || 2161 dev->class == PCI_CLASS_SERIAL_USB_OHCI || 2162 dev->class == PCI_CLASS_SERIAL_USB_EHCI) 2163 *weight += 3; 2164 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) 2165 *weight += 15; 2166 else 2167 *weight += 10; 2168 2169 return 0; 2170 } 2171 2172 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) 2173 { 2174 unsigned int weight = 0; 2175 2176 /* SRIOV VF has same DMA32 weight as its PF */ 2177 #ifdef CONFIG_PCI_IOV 2178 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { 2179 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); 2180 return weight; 2181 } 2182 #endif 2183 2184 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { 2185 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); 2186 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { 2187 struct pci_dev *pdev; 2188 2189 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) 2190 pnv_pci_ioda_dev_dma_weight(pdev, &weight); 2191 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { 2192 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); 2193 } 2194 2195 return weight; 2196 } 2197 2198 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, 2199 struct pnv_ioda_pe *pe) 2200 { 2201 2202 struct page *tce_mem = NULL; 2203 struct iommu_table *tbl; 2204 unsigned int weight, total_weight = 0; 2205 unsigned int tce32_segsz, base, segs, avail, i; 2206 int64_t rc; 2207 void *addr; 2208 2209 /* XXX FIXME: Handle 64-bit only DMA devices */ 2210 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ 2211 /* XXX FIXME: Allocate multi-level tables on PHB3 */ 2212 weight = pnv_pci_ioda_pe_dma_weight(pe); 2213 if (!weight) 2214 return; 2215 2216 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, 2217 &total_weight); 2218 segs = (weight * phb->ioda.dma32_count) / total_weight; 2219 if (!segs) 2220 segs = 1; 2221 2222 /* 2223 * Allocate contiguous DMA32 segments. We begin with the expected 2224 * number of segments. With one more attempt, the number of DMA32 2225 * segments to be allocated is decreased by one until one segment 2226 * is allocated successfully. 2227 */ 2228 do { 2229 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { 2230 for (avail = 0, i = base; i < base + segs; i++) { 2231 if (phb->ioda.dma32_segmap[i] == 2232 IODA_INVALID_PE) 2233 avail++; 2234 } 2235 2236 if (avail == segs) 2237 goto found; 2238 } 2239 } while (--segs); 2240 2241 if (!segs) { 2242 pe_warn(pe, "No available DMA32 segments\n"); 2243 return; 2244 } 2245 2246 found: 2247 tbl = pnv_pci_table_alloc(phb->hose->node); 2248 if (WARN_ON(!tbl)) 2249 return; 2250 2251 iommu_register_group(&pe->table_group, phb->hose->global_number, 2252 pe->pe_number); 2253 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); 2254 2255 /* Grab a 32-bit TCE table */ 2256 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", 2257 weight, total_weight, base, segs); 2258 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", 2259 base * PNV_IODA1_DMA32_SEGSIZE, 2260 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); 2261 2262 /* XXX Currently, we allocate one big contiguous table for the 2263 * TCEs. We only really need one chunk per 256M of TCE space 2264 * (ie per segment) but that's an optimization for later, it 2265 * requires some added smarts with our get/put_tce implementation 2266 * 2267 * Each TCE page is 4KB in size and each TCE entry occupies 8 2268 * bytes 2269 */ 2270 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); 2271 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, 2272 get_order(tce32_segsz * segs)); 2273 if (!tce_mem) { 2274 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); 2275 goto fail; 2276 } 2277 addr = page_address(tce_mem); 2278 memset(addr, 0, tce32_segsz * segs); 2279 2280 /* Configure HW */ 2281 for (i = 0; i < segs; i++) { 2282 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2283 pe->pe_number, 2284 base + i, 1, 2285 __pa(addr) + tce32_segsz * i, 2286 tce32_segsz, IOMMU_PAGE_SIZE_4K); 2287 if (rc) { 2288 pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n", 2289 rc); 2290 goto fail; 2291 } 2292 } 2293 2294 /* Setup DMA32 segment mapping */ 2295 for (i = base; i < base + segs; i++) 2296 phb->ioda.dma32_segmap[i] = pe->pe_number; 2297 2298 /* Setup linux iommu table */ 2299 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, 2300 base * PNV_IODA1_DMA32_SEGSIZE, 2301 IOMMU_PAGE_SHIFT_4K); 2302 2303 tbl->it_ops = &pnv_ioda1_iommu_ops; 2304 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; 2305 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; 2306 iommu_init_table(tbl, phb->hose->node); 2307 2308 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2309 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2310 2311 return; 2312 fail: 2313 /* XXX Failure: Try to fallback to 64-bit only ? */ 2314 if (tce_mem) 2315 __free_pages(tce_mem, get_order(tce32_segsz * segs)); 2316 if (tbl) { 2317 pnv_pci_unlink_table_and_group(tbl, &pe->table_group); 2318 iommu_tce_table_put(tbl); 2319 } 2320 } 2321 2322 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, 2323 int num, struct iommu_table *tbl) 2324 { 2325 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2326 table_group); 2327 struct pnv_phb *phb = pe->phb; 2328 int64_t rc; 2329 const unsigned long size = tbl->it_indirect_levels ? 2330 tbl->it_level_size : tbl->it_size; 2331 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; 2332 const __u64 win_size = tbl->it_size << tbl->it_page_shift; 2333 2334 pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n", 2335 num, start_addr, start_addr + win_size - 1, 2336 IOMMU_PAGE_SIZE(tbl)); 2337 2338 /* 2339 * Map TCE table through TVT. The TVE index is the PE number 2340 * shifted by 1 bit for 32-bits DMA space. 2341 */ 2342 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2343 pe->pe_number, 2344 (pe->pe_number << 1) + num, 2345 tbl->it_indirect_levels + 1, 2346 __pa(tbl->it_base), 2347 size << 3, 2348 IOMMU_PAGE_SIZE(tbl)); 2349 if (rc) { 2350 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc); 2351 return rc; 2352 } 2353 2354 pnv_pci_link_table_and_group(phb->hose->node, num, 2355 tbl, &pe->table_group); 2356 pnv_pci_ioda2_tce_invalidate_pe(pe); 2357 2358 return 0; 2359 } 2360 2361 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) 2362 { 2363 uint16_t window_id = (pe->pe_number << 1 ) + 1; 2364 int64_t rc; 2365 2366 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); 2367 if (enable) { 2368 phys_addr_t top = memblock_end_of_DRAM(); 2369 2370 top = roundup_pow_of_two(top); 2371 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2372 pe->pe_number, 2373 window_id, 2374 pe->tce_bypass_base, 2375 top); 2376 } else { 2377 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2378 pe->pe_number, 2379 window_id, 2380 pe->tce_bypass_base, 2381 0); 2382 } 2383 if (rc) 2384 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); 2385 else 2386 pe->tce_bypass_enabled = enable; 2387 } 2388 2389 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, 2390 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2391 bool alloc_userspace_copy, struct iommu_table **ptbl) 2392 { 2393 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2394 table_group); 2395 int nid = pe->phb->hose->node; 2396 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; 2397 long ret; 2398 struct iommu_table *tbl; 2399 2400 tbl = pnv_pci_table_alloc(nid); 2401 if (!tbl) 2402 return -ENOMEM; 2403 2404 tbl->it_ops = &pnv_ioda2_iommu_ops; 2405 2406 ret = pnv_pci_ioda2_table_alloc_pages(nid, 2407 bus_offset, page_shift, window_size, 2408 levels, alloc_userspace_copy, tbl); 2409 if (ret) { 2410 iommu_tce_table_put(tbl); 2411 return ret; 2412 } 2413 2414 *ptbl = tbl; 2415 2416 return 0; 2417 } 2418 2419 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) 2420 { 2421 struct iommu_table *tbl = NULL; 2422 long rc; 2423 2424 /* 2425 * crashkernel= specifies the kdump kernel's maximum memory at 2426 * some offset and there is no guaranteed the result is a power 2427 * of 2, which will cause errors later. 2428 */ 2429 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); 2430 2431 /* 2432 * In memory constrained environments, e.g. kdump kernel, the 2433 * DMA window can be larger than available memory, which will 2434 * cause errors later. 2435 */ 2436 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory); 2437 2438 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, 2439 IOMMU_PAGE_SHIFT_4K, 2440 window_size, 2441 POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl); 2442 if (rc) { 2443 pe_err(pe, "Failed to create 32-bit TCE table, err %ld", 2444 rc); 2445 return rc; 2446 } 2447 2448 iommu_init_table(tbl, pe->phb->hose->node); 2449 2450 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); 2451 if (rc) { 2452 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", 2453 rc); 2454 iommu_tce_table_put(tbl); 2455 return rc; 2456 } 2457 2458 if (!pnv_iommu_bypass_disabled) 2459 pnv_pci_ioda2_set_bypass(pe, true); 2460 2461 /* 2462 * Set table base for the case of IOMMU DMA use. Usually this is done 2463 * from dma_dev_setup() which is not called when a device is returned 2464 * from VFIO so do it here. 2465 */ 2466 if (pe->pdev) 2467 set_iommu_table_base(&pe->pdev->dev, tbl); 2468 2469 return 0; 2470 } 2471 2472 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV) 2473 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 2474 int num) 2475 { 2476 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2477 table_group); 2478 struct pnv_phb *phb = pe->phb; 2479 long ret; 2480 2481 pe_info(pe, "Removing DMA window #%d\n", num); 2482 2483 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 2484 (pe->pe_number << 1) + num, 2485 0/* levels */, 0/* table address */, 2486 0/* table size */, 0/* page size */); 2487 if (ret) 2488 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); 2489 else 2490 pnv_pci_ioda2_tce_invalidate_pe(pe); 2491 2492 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 2493 2494 return ret; 2495 } 2496 #endif 2497 2498 #ifdef CONFIG_IOMMU_API 2499 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, 2500 __u64 window_size, __u32 levels) 2501 { 2502 unsigned long bytes = 0; 2503 const unsigned window_shift = ilog2(window_size); 2504 unsigned entries_shift = window_shift - page_shift; 2505 unsigned table_shift = entries_shift + 3; 2506 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); 2507 unsigned long direct_table_size; 2508 2509 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || 2510 !is_power_of_2(window_size)) 2511 return 0; 2512 2513 /* Calculate a direct table size from window_size and levels */ 2514 entries_shift = (entries_shift + levels - 1) / levels; 2515 table_shift = entries_shift + 3; 2516 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); 2517 direct_table_size = 1UL << table_shift; 2518 2519 for ( ; levels; --levels) { 2520 bytes += _ALIGN_UP(tce_table_size, direct_table_size); 2521 2522 tce_table_size /= direct_table_size; 2523 tce_table_size <<= 3; 2524 tce_table_size = max_t(unsigned long, 2525 tce_table_size, direct_table_size); 2526 } 2527 2528 return bytes + bytes; /* one for HW table, one for userspace copy */ 2529 } 2530 2531 static long pnv_pci_ioda2_create_table_userspace( 2532 struct iommu_table_group *table_group, 2533 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2534 struct iommu_table **ptbl) 2535 { 2536 long ret = pnv_pci_ioda2_create_table(table_group, 2537 num, page_shift, window_size, levels, true, ptbl); 2538 2539 if (!ret) 2540 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size( 2541 page_shift, window_size, levels); 2542 return ret; 2543 } 2544 2545 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) 2546 { 2547 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2548 table_group); 2549 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ 2550 struct iommu_table *tbl = pe->table_group.tables[0]; 2551 2552 pnv_pci_ioda2_set_bypass(pe, false); 2553 pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2554 if (pe->pbus) 2555 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2556 else if (pe->pdev) 2557 set_iommu_table_base(&pe->pdev->dev, NULL); 2558 iommu_tce_table_put(tbl); 2559 } 2560 2561 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) 2562 { 2563 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2564 table_group); 2565 2566 pnv_pci_ioda2_setup_default_config(pe); 2567 if (pe->pbus) 2568 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2569 } 2570 2571 static struct iommu_table_group_ops pnv_pci_ioda2_ops = { 2572 .get_table_size = pnv_pci_ioda2_get_table_size, 2573 .create_table = pnv_pci_ioda2_create_table_userspace, 2574 .set_window = pnv_pci_ioda2_set_window, 2575 .unset_window = pnv_pci_ioda2_unset_window, 2576 .take_ownership = pnv_ioda2_take_ownership, 2577 .release_ownership = pnv_ioda2_release_ownership, 2578 }; 2579 2580 static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe, 2581 struct iommu_table_group *table_group, 2582 struct pci_bus *bus) 2583 { 2584 struct pci_dev *dev; 2585 2586 list_for_each_entry(dev, &bus->devices, bus_list) { 2587 iommu_add_device(table_group, &dev->dev); 2588 2589 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 2590 pnv_ioda_setup_bus_iommu_group_add_devices(pe, 2591 table_group, dev->subordinate); 2592 } 2593 } 2594 2595 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe, 2596 struct iommu_table_group *table_group, struct pci_bus *bus) 2597 { 2598 2599 if (pe->flags & PNV_IODA_PE_DEV) 2600 iommu_add_device(table_group, &pe->pdev->dev); 2601 2602 if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus) 2603 pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group, 2604 bus); 2605 } 2606 2607 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb); 2608 2609 static void pnv_pci_ioda_setup_iommu_api(void) 2610 { 2611 struct pci_controller *hose; 2612 struct pnv_phb *phb; 2613 struct pnv_ioda_pe *pe; 2614 2615 /* 2616 * There are 4 types of PEs: 2617 * - PNV_IODA_PE_BUS: a downstream port with an adapter, 2618 * created from pnv_pci_setup_bridge(); 2619 * - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it, 2620 * created from pnv_pci_setup_bridge(); 2621 * - PNV_IODA_PE_VF: a SRIOV virtual function, 2622 * created from pnv_pcibios_sriov_enable(); 2623 * - PNV_IODA_PE_DEV: an NPU or OCAPI device, 2624 * created from pnv_pci_ioda_fixup(). 2625 * 2626 * Normally a PE is represented by an IOMMU group, however for 2627 * devices with side channels the groups need to be more strict. 2628 */ 2629 list_for_each_entry(hose, &hose_list, list_node) { 2630 phb = hose->private_data; 2631 2632 if (phb->type == PNV_PHB_NPU_NVLINK || 2633 phb->type == PNV_PHB_NPU_OCAPI) 2634 continue; 2635 2636 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2637 struct iommu_table_group *table_group; 2638 2639 table_group = pnv_try_setup_npu_table_group(pe); 2640 if (!table_group) { 2641 if (!pnv_pci_ioda_pe_dma_weight(pe)) 2642 continue; 2643 2644 table_group = &pe->table_group; 2645 iommu_register_group(&pe->table_group, 2646 pe->phb->hose->global_number, 2647 pe->pe_number); 2648 } 2649 pnv_ioda_setup_bus_iommu_group(pe, table_group, 2650 pe->pbus); 2651 } 2652 } 2653 2654 /* 2655 * Now we have all PHBs discovered, time to add NPU devices to 2656 * the corresponding IOMMU groups. 2657 */ 2658 list_for_each_entry(hose, &hose_list, list_node) { 2659 unsigned long pgsizes; 2660 2661 phb = hose->private_data; 2662 2663 if (phb->type != PNV_PHB_NPU_NVLINK) 2664 continue; 2665 2666 pgsizes = pnv_ioda_parse_tce_sizes(phb); 2667 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2668 /* 2669 * IODA2 bridges get this set up from 2670 * pci_controller_ops::setup_bridge but NPU bridges 2671 * do not have this hook defined so we do it here. 2672 */ 2673 pe->table_group.pgsizes = pgsizes; 2674 pnv_npu_compound_attach(pe); 2675 } 2676 } 2677 } 2678 #else /* !CONFIG_IOMMU_API */ 2679 static void pnv_pci_ioda_setup_iommu_api(void) { }; 2680 #endif 2681 2682 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb) 2683 { 2684 struct pci_controller *hose = phb->hose; 2685 struct device_node *dn = hose->dn; 2686 unsigned long mask = 0; 2687 int i, rc, count; 2688 u32 val; 2689 2690 count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes"); 2691 if (count <= 0) { 2692 mask = SZ_4K | SZ_64K; 2693 /* Add 16M for POWER8 by default */ 2694 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 2695 !cpu_has_feature(CPU_FTR_ARCH_300)) 2696 mask |= SZ_16M | SZ_256M; 2697 return mask; 2698 } 2699 2700 for (i = 0; i < count; i++) { 2701 rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes", 2702 i, &val); 2703 if (rc == 0) 2704 mask |= 1ULL << val; 2705 } 2706 2707 return mask; 2708 } 2709 2710 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 2711 struct pnv_ioda_pe *pe) 2712 { 2713 int64_t rc; 2714 2715 if (!pnv_pci_ioda_pe_dma_weight(pe)) 2716 return; 2717 2718 /* TVE #1 is selected by PCI address bit 59 */ 2719 pe->tce_bypass_base = 1ull << 59; 2720 2721 /* The PE will reserve all possible 32-bits space */ 2722 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", 2723 phb->ioda.m32_pci_base); 2724 2725 /* Setup linux iommu table */ 2726 pe->table_group.tce32_start = 0; 2727 pe->table_group.tce32_size = phb->ioda.m32_pci_base; 2728 pe->table_group.max_dynamic_windows_supported = 2729 IOMMU_TABLE_GROUP_MAX_TABLES; 2730 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; 2731 pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb); 2732 #ifdef CONFIG_IOMMU_API 2733 pe->table_group.ops = &pnv_pci_ioda2_ops; 2734 #endif 2735 2736 rc = pnv_pci_ioda2_setup_default_config(pe); 2737 if (rc) 2738 return; 2739 2740 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2741 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2742 } 2743 2744 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq) 2745 { 2746 struct pnv_phb *phb = container_of(chip, struct pnv_phb, 2747 ioda.irq_chip); 2748 2749 return opal_pci_msi_eoi(phb->opal_id, hw_irq); 2750 } 2751 2752 static void pnv_ioda2_msi_eoi(struct irq_data *d) 2753 { 2754 int64_t rc; 2755 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 2756 struct irq_chip *chip = irq_data_get_irq_chip(d); 2757 2758 rc = pnv_opal_pci_msi_eoi(chip, hw_irq); 2759 WARN_ON_ONCE(rc); 2760 2761 icp_native_eoi(d); 2762 } 2763 2764 2765 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) 2766 { 2767 struct irq_data *idata; 2768 struct irq_chip *ichip; 2769 2770 /* The MSI EOI OPAL call is only needed on PHB3 */ 2771 if (phb->model != PNV_PHB_MODEL_PHB3) 2772 return; 2773 2774 if (!phb->ioda.irq_chip_init) { 2775 /* 2776 * First time we setup an MSI IRQ, we need to setup the 2777 * corresponding IRQ chip to route correctly. 2778 */ 2779 idata = irq_get_irq_data(virq); 2780 ichip = irq_data_get_irq_chip(idata); 2781 phb->ioda.irq_chip_init = 1; 2782 phb->ioda.irq_chip = *ichip; 2783 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; 2784 } 2785 irq_set_chip(virq, &phb->ioda.irq_chip); 2786 } 2787 2788 /* 2789 * Returns true iff chip is something that we could call 2790 * pnv_opal_pci_msi_eoi for. 2791 */ 2792 bool is_pnv_opal_msi(struct irq_chip *chip) 2793 { 2794 return chip->irq_eoi == pnv_ioda2_msi_eoi; 2795 } 2796 EXPORT_SYMBOL_GPL(is_pnv_opal_msi); 2797 2798 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, 2799 unsigned int hwirq, unsigned int virq, 2800 unsigned int is_64, struct msi_msg *msg) 2801 { 2802 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); 2803 unsigned int xive_num = hwirq - phb->msi_base; 2804 __be32 data; 2805 int rc; 2806 2807 /* No PE assigned ? bail out ... no MSI for you ! */ 2808 if (pe == NULL) 2809 return -ENXIO; 2810 2811 /* Check if we have an MVE */ 2812 if (pe->mve_number < 0) 2813 return -ENXIO; 2814 2815 /* Force 32-bit MSI on some broken devices */ 2816 if (dev->no_64bit_msi) 2817 is_64 = 0; 2818 2819 /* Assign XIVE to PE */ 2820 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); 2821 if (rc) { 2822 pr_warn("%s: OPAL error %d setting XIVE %d PE\n", 2823 pci_name(dev), rc, xive_num); 2824 return -EIO; 2825 } 2826 2827 if (is_64) { 2828 __be64 addr64; 2829 2830 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, 2831 &addr64, &data); 2832 if (rc) { 2833 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", 2834 pci_name(dev), rc); 2835 return -EIO; 2836 } 2837 msg->address_hi = be64_to_cpu(addr64) >> 32; 2838 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; 2839 } else { 2840 __be32 addr32; 2841 2842 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, 2843 &addr32, &data); 2844 if (rc) { 2845 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", 2846 pci_name(dev), rc); 2847 return -EIO; 2848 } 2849 msg->address_hi = 0; 2850 msg->address_lo = be32_to_cpu(addr32); 2851 } 2852 msg->data = be32_to_cpu(data); 2853 2854 pnv_set_msi_irq_chip(phb, virq); 2855 2856 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," 2857 " address=%x_%08x data=%x PE# %x\n", 2858 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, 2859 msg->address_hi, msg->address_lo, data, pe->pe_number); 2860 2861 return 0; 2862 } 2863 2864 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) 2865 { 2866 unsigned int count; 2867 const __be32 *prop = of_get_property(phb->hose->dn, 2868 "ibm,opal-msi-ranges", NULL); 2869 if (!prop) { 2870 /* BML Fallback */ 2871 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); 2872 } 2873 if (!prop) 2874 return; 2875 2876 phb->msi_base = be32_to_cpup(prop); 2877 count = be32_to_cpup(prop + 1); 2878 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { 2879 pr_err("PCI %d: Failed to allocate MSI bitmap !\n", 2880 phb->hose->global_number); 2881 return; 2882 } 2883 2884 phb->msi_setup = pnv_pci_ioda_msi_setup; 2885 phb->msi32_support = 1; 2886 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", 2887 count, phb->msi_base); 2888 } 2889 2890 #ifdef CONFIG_PCI_IOV 2891 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) 2892 { 2893 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 2894 struct pnv_phb *phb = hose->private_data; 2895 const resource_size_t gate = phb->ioda.m64_segsize >> 2; 2896 struct resource *res; 2897 int i; 2898 resource_size_t size, total_vf_bar_sz; 2899 struct pci_dn *pdn; 2900 int mul, total_vfs; 2901 2902 if (!pdev->is_physfn || pci_dev_is_added(pdev)) 2903 return; 2904 2905 pdn = pci_get_pdn(pdev); 2906 pdn->vfs_expanded = 0; 2907 pdn->m64_single_mode = false; 2908 2909 total_vfs = pci_sriov_get_totalvfs(pdev); 2910 mul = phb->ioda.total_pe_num; 2911 total_vf_bar_sz = 0; 2912 2913 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2914 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2915 if (!res->flags || res->parent) 2916 continue; 2917 if (!pnv_pci_is_m64_flags(res->flags)) { 2918 dev_warn(&pdev->dev, "Don't support SR-IOV with" 2919 " non M64 VF BAR%d: %pR. \n", 2920 i, res); 2921 goto truncate_iov; 2922 } 2923 2924 total_vf_bar_sz += pci_iov_resource_size(pdev, 2925 i + PCI_IOV_RESOURCES); 2926 2927 /* 2928 * If bigger than quarter of M64 segment size, just round up 2929 * power of two. 2930 * 2931 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict 2932 * with other devices, IOV BAR size is expanded to be 2933 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64 2934 * segment size , the expanded size would equal to half of the 2935 * whole M64 space size, which will exhaust the M64 Space and 2936 * limit the system flexibility. This is a design decision to 2937 * set the boundary to quarter of the M64 segment size. 2938 */ 2939 if (total_vf_bar_sz > gate) { 2940 mul = roundup_pow_of_two(total_vfs); 2941 dev_info(&pdev->dev, 2942 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n", 2943 total_vf_bar_sz, gate, mul); 2944 pdn->m64_single_mode = true; 2945 break; 2946 } 2947 } 2948 2949 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2950 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2951 if (!res->flags || res->parent) 2952 continue; 2953 2954 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); 2955 /* 2956 * On PHB3, the minimum size alignment of M64 BAR in single 2957 * mode is 32MB. 2958 */ 2959 if (pdn->m64_single_mode && (size < SZ_32M)) 2960 goto truncate_iov; 2961 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res); 2962 res->end = res->start + size * mul - 1; 2963 dev_dbg(&pdev->dev, " %pR\n", res); 2964 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", 2965 i, res, mul); 2966 } 2967 pdn->vfs_expanded = mul; 2968 2969 return; 2970 2971 truncate_iov: 2972 /* To save MMIO space, IOV BAR is truncated. */ 2973 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2974 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2975 res->flags = 0; 2976 res->end = res->start - 1; 2977 } 2978 } 2979 #endif /* CONFIG_PCI_IOV */ 2980 2981 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, 2982 struct resource *res) 2983 { 2984 struct pnv_phb *phb = pe->phb; 2985 struct pci_bus_region region; 2986 int index; 2987 int64_t rc; 2988 2989 if (!res || !res->flags || res->start > res->end) 2990 return; 2991 2992 if (res->flags & IORESOURCE_IO) { 2993 region.start = res->start - phb->ioda.io_pci_base; 2994 region.end = res->end - phb->ioda.io_pci_base; 2995 index = region.start / phb->ioda.io_segsize; 2996 2997 while (index < phb->ioda.total_pe_num && 2998 region.start <= region.end) { 2999 phb->ioda.io_segmap[index] = pe->pe_number; 3000 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3001 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); 3002 if (rc != OPAL_SUCCESS) { 3003 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n", 3004 __func__, rc, index, pe->pe_number); 3005 break; 3006 } 3007 3008 region.start += phb->ioda.io_segsize; 3009 index++; 3010 } 3011 } else if ((res->flags & IORESOURCE_MEM) && 3012 !pnv_pci_is_m64(phb, res)) { 3013 region.start = res->start - 3014 phb->hose->mem_offset[0] - 3015 phb->ioda.m32_pci_base; 3016 region.end = res->end - 3017 phb->hose->mem_offset[0] - 3018 phb->ioda.m32_pci_base; 3019 index = region.start / phb->ioda.m32_segsize; 3020 3021 while (index < phb->ioda.total_pe_num && 3022 region.start <= region.end) { 3023 phb->ioda.m32_segmap[index] = pe->pe_number; 3024 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3025 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); 3026 if (rc != OPAL_SUCCESS) { 3027 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x", 3028 __func__, rc, index, pe->pe_number); 3029 break; 3030 } 3031 3032 region.start += phb->ioda.m32_segsize; 3033 index++; 3034 } 3035 } 3036 } 3037 3038 /* 3039 * This function is supposed to be called on basis of PE from top 3040 * to bottom style. So the the I/O or MMIO segment assigned to 3041 * parent PE could be overridden by its child PEs if necessary. 3042 */ 3043 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) 3044 { 3045 struct pci_dev *pdev; 3046 int i; 3047 3048 /* 3049 * NOTE: We only care PCI bus based PE for now. For PCI 3050 * device based PE, for example SRIOV sensitive VF should 3051 * be figured out later. 3052 */ 3053 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); 3054 3055 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 3056 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 3057 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); 3058 3059 /* 3060 * If the PE contains all subordinate PCI buses, the 3061 * windows of the child bridges should be mapped to 3062 * the PE as well. 3063 */ 3064 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) 3065 continue; 3066 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) 3067 pnv_ioda_setup_pe_res(pe, 3068 &pdev->resource[PCI_BRIDGE_RESOURCES + i]); 3069 } 3070 } 3071 3072 #ifdef CONFIG_DEBUG_FS 3073 static int pnv_pci_diag_data_set(void *data, u64 val) 3074 { 3075 struct pci_controller *hose; 3076 struct pnv_phb *phb; 3077 s64 ret; 3078 3079 if (val != 1ULL) 3080 return -EINVAL; 3081 3082 hose = (struct pci_controller *)data; 3083 if (!hose || !hose->private_data) 3084 return -ENODEV; 3085 3086 phb = hose->private_data; 3087 3088 /* Retrieve the diag data from firmware */ 3089 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data, 3090 phb->diag_data_size); 3091 if (ret != OPAL_SUCCESS) 3092 return -EIO; 3093 3094 /* Print the diag data to the kernel log */ 3095 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data); 3096 return 0; 3097 } 3098 3099 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, 3100 pnv_pci_diag_data_set, "%llu\n"); 3101 3102 #endif /* CONFIG_DEBUG_FS */ 3103 3104 static void pnv_pci_ioda_create_dbgfs(void) 3105 { 3106 #ifdef CONFIG_DEBUG_FS 3107 struct pci_controller *hose, *tmp; 3108 struct pnv_phb *phb; 3109 char name[16]; 3110 3111 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 3112 phb = hose->private_data; 3113 3114 /* Notify initialization of PHB done */ 3115 phb->initialized = 1; 3116 3117 sprintf(name, "PCI%04x", hose->global_number); 3118 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); 3119 if (!phb->dbgfs) { 3120 pr_warn("%s: Error on creating debugfs on PHB#%x\n", 3121 __func__, hose->global_number); 3122 continue; 3123 } 3124 3125 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose, 3126 &pnv_pci_diag_data_fops); 3127 } 3128 #endif /* CONFIG_DEBUG_FS */ 3129 } 3130 3131 static void pnv_pci_enable_bridge(struct pci_bus *bus) 3132 { 3133 struct pci_dev *dev = bus->self; 3134 struct pci_bus *child; 3135 3136 /* Empty bus ? bail */ 3137 if (list_empty(&bus->devices)) 3138 return; 3139 3140 /* 3141 * If there's a bridge associated with that bus enable it. This works 3142 * around races in the generic code if the enabling is done during 3143 * parallel probing. This can be removed once those races have been 3144 * fixed. 3145 */ 3146 if (dev) { 3147 int rc = pci_enable_device(dev); 3148 if (rc) 3149 pci_err(dev, "Error enabling bridge (%d)\n", rc); 3150 pci_set_master(dev); 3151 } 3152 3153 /* Perform the same to child busses */ 3154 list_for_each_entry(child, &bus->children, node) 3155 pnv_pci_enable_bridge(child); 3156 } 3157 3158 static void pnv_pci_enable_bridges(void) 3159 { 3160 struct pci_controller *hose; 3161 3162 list_for_each_entry(hose, &hose_list, list_node) 3163 pnv_pci_enable_bridge(hose->bus); 3164 } 3165 3166 static void pnv_pci_ioda_fixup(void) 3167 { 3168 pnv_pci_ioda_setup_PEs(); 3169 pnv_pci_ioda_setup_iommu_api(); 3170 pnv_pci_ioda_create_dbgfs(); 3171 3172 pnv_pci_enable_bridges(); 3173 3174 #ifdef CONFIG_EEH 3175 pnv_eeh_post_init(); 3176 #endif 3177 } 3178 3179 /* 3180 * Returns the alignment for I/O or memory windows for P2P 3181 * bridges. That actually depends on how PEs are segmented. 3182 * For now, we return I/O or M32 segment size for PE sensitive 3183 * P2P bridges. Otherwise, the default values (4KiB for I/O, 3184 * 1MiB for memory) will be returned. 3185 * 3186 * The current PCI bus might be put into one PE, which was 3187 * create against the parent PCI bridge. For that case, we 3188 * needn't enlarge the alignment so that we can save some 3189 * resources. 3190 */ 3191 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, 3192 unsigned long type) 3193 { 3194 struct pci_dev *bridge; 3195 struct pci_controller *hose = pci_bus_to_host(bus); 3196 struct pnv_phb *phb = hose->private_data; 3197 int num_pci_bridges = 0; 3198 3199 bridge = bus->self; 3200 while (bridge) { 3201 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { 3202 num_pci_bridges++; 3203 if (num_pci_bridges >= 2) 3204 return 1; 3205 } 3206 3207 bridge = bridge->bus->self; 3208 } 3209 3210 /* 3211 * We fall back to M32 if M64 isn't supported. We enforce the M64 3212 * alignment for any 64-bit resource, PCIe doesn't care and 3213 * bridges only do 64-bit prefetchable anyway. 3214 */ 3215 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type)) 3216 return phb->ioda.m64_segsize; 3217 if (type & IORESOURCE_MEM) 3218 return phb->ioda.m32_segsize; 3219 3220 return phb->ioda.io_segsize; 3221 } 3222 3223 /* 3224 * We are updating root port or the upstream port of the 3225 * bridge behind the root port with PHB's windows in order 3226 * to accommodate the changes on required resources during 3227 * PCI (slot) hotplug, which is connected to either root 3228 * port or the downstream ports of PCIe switch behind the 3229 * root port. 3230 */ 3231 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, 3232 unsigned long type) 3233 { 3234 struct pci_controller *hose = pci_bus_to_host(bus); 3235 struct pnv_phb *phb = hose->private_data; 3236 struct pci_dev *bridge = bus->self; 3237 struct resource *r, *w; 3238 bool msi_region = false; 3239 int i; 3240 3241 /* Check if we need apply fixup to the bridge's windows */ 3242 if (!pci_is_root_bus(bridge->bus) && 3243 !pci_is_root_bus(bridge->bus->self->bus)) 3244 return; 3245 3246 /* Fixup the resources */ 3247 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { 3248 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; 3249 if (!r->flags || !r->parent) 3250 continue; 3251 3252 w = NULL; 3253 if (r->flags & type & IORESOURCE_IO) 3254 w = &hose->io_resource; 3255 else if (pnv_pci_is_m64(phb, r) && 3256 (type & IORESOURCE_PREFETCH) && 3257 phb->ioda.m64_segsize) 3258 w = &hose->mem_resources[1]; 3259 else if (r->flags & type & IORESOURCE_MEM) { 3260 w = &hose->mem_resources[0]; 3261 msi_region = true; 3262 } 3263 3264 r->start = w->start; 3265 r->end = w->end; 3266 3267 /* The 64KB 32-bits MSI region shouldn't be included in 3268 * the 32-bits bridge window. Otherwise, we can see strange 3269 * issues. One of them is EEH error observed on Garrison. 3270 * 3271 * Exclude top 1MB region which is the minimal alignment of 3272 * 32-bits bridge window. 3273 */ 3274 if (msi_region) { 3275 r->end += 0x10000; 3276 r->end -= 0x100000; 3277 } 3278 } 3279 } 3280 3281 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type) 3282 { 3283 struct pci_controller *hose = pci_bus_to_host(bus); 3284 struct pnv_phb *phb = hose->private_data; 3285 struct pci_dev *bridge = bus->self; 3286 struct pnv_ioda_pe *pe; 3287 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); 3288 3289 /* Extend bridge's windows if necessary */ 3290 pnv_pci_fixup_bridge_resources(bus, type); 3291 3292 /* The PE for root bus should be realized before any one else */ 3293 if (!phb->ioda.root_pe_populated) { 3294 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false); 3295 if (pe) { 3296 phb->ioda.root_pe_idx = pe->pe_number; 3297 phb->ioda.root_pe_populated = true; 3298 } 3299 } 3300 3301 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ 3302 if (list_empty(&bus->devices)) 3303 return; 3304 3305 /* Reserve PEs according to used M64 resources */ 3306 pnv_ioda_reserve_m64_pe(bus, NULL, all); 3307 3308 /* 3309 * Assign PE. We might run here because of partial hotplug. 3310 * For the case, we just pick up the existing PE and should 3311 * not allocate resources again. 3312 */ 3313 pe = pnv_ioda_setup_bus_PE(bus, all); 3314 if (!pe) 3315 return; 3316 3317 pnv_ioda_setup_pe_seg(pe); 3318 switch (phb->type) { 3319 case PNV_PHB_IODA1: 3320 pnv_pci_ioda1_setup_dma_pe(phb, pe); 3321 break; 3322 case PNV_PHB_IODA2: 3323 pnv_pci_ioda2_setup_dma_pe(phb, pe); 3324 break; 3325 default: 3326 pr_warn("%s: No DMA for PHB#%x (type %d)\n", 3327 __func__, phb->hose->global_number, phb->type); 3328 } 3329 } 3330 3331 static resource_size_t pnv_pci_default_alignment(void) 3332 { 3333 return PAGE_SIZE; 3334 } 3335 3336 #ifdef CONFIG_PCI_IOV 3337 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, 3338 int resno) 3339 { 3340 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3341 struct pnv_phb *phb = hose->private_data; 3342 struct pci_dn *pdn = pci_get_pdn(pdev); 3343 resource_size_t align; 3344 3345 /* 3346 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the 3347 * SR-IOV. While from hardware perspective, the range mapped by M64 3348 * BAR should be size aligned. 3349 * 3350 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra 3351 * powernv-specific hardware restriction is gone. But if just use the 3352 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with 3353 * in one segment of M64 #15, which introduces the PE conflict between 3354 * PF and VF. Based on this, the minimum alignment of an IOV BAR is 3355 * m64_segsize. 3356 * 3357 * This function returns the total IOV BAR size if M64 BAR is in 3358 * Shared PE mode or just VF BAR size if not. 3359 * If the M64 BAR is in Single PE mode, return the VF BAR size or 3360 * M64 segment size if IOV BAR size is less. 3361 */ 3362 align = pci_iov_resource_size(pdev, resno); 3363 if (!pdn->vfs_expanded) 3364 return align; 3365 if (pdn->m64_single_mode) 3366 return max(align, (resource_size_t)phb->ioda.m64_segsize); 3367 3368 return pdn->vfs_expanded * align; 3369 } 3370 #endif /* CONFIG_PCI_IOV */ 3371 3372 /* Prevent enabling devices for which we couldn't properly 3373 * assign a PE 3374 */ 3375 static bool pnv_pci_enable_device_hook(struct pci_dev *dev) 3376 { 3377 struct pci_controller *hose = pci_bus_to_host(dev->bus); 3378 struct pnv_phb *phb = hose->private_data; 3379 struct pci_dn *pdn; 3380 3381 /* The function is probably called while the PEs have 3382 * not be created yet. For example, resource reassignment 3383 * during PCI probe period. We just skip the check if 3384 * PEs isn't ready. 3385 */ 3386 if (!phb->initialized) 3387 return true; 3388 3389 pdn = pci_get_pdn(dev); 3390 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3391 return false; 3392 3393 return true; 3394 } 3395 3396 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, 3397 int num) 3398 { 3399 struct pnv_ioda_pe *pe = container_of(table_group, 3400 struct pnv_ioda_pe, table_group); 3401 struct pnv_phb *phb = pe->phb; 3402 unsigned int idx; 3403 long rc; 3404 3405 pe_info(pe, "Removing DMA window #%d\n", num); 3406 for (idx = 0; idx < phb->ioda.dma32_count; idx++) { 3407 if (phb->ioda.dma32_segmap[idx] != pe->pe_number) 3408 continue; 3409 3410 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 3411 idx, 0, 0ul, 0ul, 0ul); 3412 if (rc != OPAL_SUCCESS) { 3413 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", 3414 rc, idx); 3415 return rc; 3416 } 3417 3418 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; 3419 } 3420 3421 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 3422 return OPAL_SUCCESS; 3423 } 3424 3425 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) 3426 { 3427 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3428 struct iommu_table *tbl = pe->table_group.tables[0]; 3429 int64_t rc; 3430 3431 if (!weight) 3432 return; 3433 3434 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); 3435 if (rc != OPAL_SUCCESS) 3436 return; 3437 3438 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); 3439 if (pe->table_group.group) { 3440 iommu_group_put(pe->table_group.group); 3441 WARN_ON(pe->table_group.group); 3442 } 3443 3444 free_pages(tbl->it_base, get_order(tbl->it_size << 3)); 3445 iommu_tce_table_put(tbl); 3446 } 3447 3448 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) 3449 { 3450 struct iommu_table *tbl = pe->table_group.tables[0]; 3451 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3452 #ifdef CONFIG_IOMMU_API 3453 int64_t rc; 3454 #endif 3455 3456 if (!weight) 3457 return; 3458 3459 #ifdef CONFIG_IOMMU_API 3460 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 3461 if (rc) 3462 pe_warn(pe, "OPAL error %lld release DMA window\n", rc); 3463 #endif 3464 3465 pnv_pci_ioda2_set_bypass(pe, false); 3466 if (pe->table_group.group) { 3467 iommu_group_put(pe->table_group.group); 3468 WARN_ON(pe->table_group.group); 3469 } 3470 3471 iommu_tce_table_put(tbl); 3472 } 3473 3474 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, 3475 unsigned short win, 3476 unsigned int *map) 3477 { 3478 struct pnv_phb *phb = pe->phb; 3479 int idx; 3480 int64_t rc; 3481 3482 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { 3483 if (map[idx] != pe->pe_number) 3484 continue; 3485 3486 if (win == OPAL_M64_WINDOW_TYPE) 3487 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3488 phb->ioda.reserved_pe_idx, win, 3489 idx / PNV_IODA1_M64_SEGS, 3490 idx % PNV_IODA1_M64_SEGS); 3491 else 3492 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3493 phb->ioda.reserved_pe_idx, win, 0, idx); 3494 3495 if (rc != OPAL_SUCCESS) 3496 pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n", 3497 rc, win, idx); 3498 3499 map[idx] = IODA_INVALID_PE; 3500 } 3501 } 3502 3503 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) 3504 { 3505 struct pnv_phb *phb = pe->phb; 3506 3507 if (phb->type == PNV_PHB_IODA1) { 3508 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, 3509 phb->ioda.io_segmap); 3510 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3511 phb->ioda.m32_segmap); 3512 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE, 3513 phb->ioda.m64_segmap); 3514 } else if (phb->type == PNV_PHB_IODA2) { 3515 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3516 phb->ioda.m32_segmap); 3517 } 3518 } 3519 3520 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) 3521 { 3522 struct pnv_phb *phb = pe->phb; 3523 struct pnv_ioda_pe *slave, *tmp; 3524 3525 list_del(&pe->list); 3526 switch (phb->type) { 3527 case PNV_PHB_IODA1: 3528 pnv_pci_ioda1_release_pe_dma(pe); 3529 break; 3530 case PNV_PHB_IODA2: 3531 pnv_pci_ioda2_release_pe_dma(pe); 3532 break; 3533 default: 3534 WARN_ON(1); 3535 } 3536 3537 pnv_ioda_release_pe_seg(pe); 3538 pnv_ioda_deconfigure_pe(pe->phb, pe); 3539 3540 /* Release slave PEs in the compound PE */ 3541 if (pe->flags & PNV_IODA_PE_MASTER) { 3542 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { 3543 list_del(&slave->list); 3544 pnv_ioda_free_pe(slave); 3545 } 3546 } 3547 3548 /* 3549 * The PE for root bus can be removed because of hotplug in EEH 3550 * recovery for fenced PHB error. We need to mark the PE dead so 3551 * that it can be populated again in PCI hot add path. The PE 3552 * shouldn't be destroyed as it's the global reserved resource. 3553 */ 3554 if (phb->ioda.root_pe_populated && 3555 phb->ioda.root_pe_idx == pe->pe_number) 3556 phb->ioda.root_pe_populated = false; 3557 else 3558 pnv_ioda_free_pe(pe); 3559 } 3560 3561 static void pnv_pci_release_device(struct pci_dev *pdev) 3562 { 3563 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3564 struct pnv_phb *phb = hose->private_data; 3565 struct pci_dn *pdn = pci_get_pdn(pdev); 3566 struct pnv_ioda_pe *pe; 3567 3568 if (pdev->is_virtfn) 3569 return; 3570 3571 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3572 return; 3573 3574 /* 3575 * PCI hotplug can happen as part of EEH error recovery. The @pdn 3576 * isn't removed and added afterwards in this scenario. We should 3577 * set the PE number in @pdn to an invalid one. Otherwise, the PE's 3578 * device count is decreased on removing devices while failing to 3579 * be increased on adding devices. It leads to unbalanced PE's device 3580 * count and eventually make normal PCI hotplug path broken. 3581 */ 3582 pe = &phb->ioda.pe_array[pdn->pe_number]; 3583 pdn->pe_number = IODA_INVALID_PE; 3584 3585 WARN_ON(--pe->device_count < 0); 3586 if (pe->device_count == 0) 3587 pnv_ioda_release_pe(pe); 3588 } 3589 3590 static void pnv_npu_disable_device(struct pci_dev *pdev) 3591 { 3592 struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev); 3593 struct eeh_pe *eehpe = edev ? edev->pe : NULL; 3594 3595 if (eehpe && eeh_ops && eeh_ops->reset) 3596 eeh_ops->reset(eehpe, EEH_RESET_HOT); 3597 } 3598 3599 static void pnv_pci_ioda_shutdown(struct pci_controller *hose) 3600 { 3601 struct pnv_phb *phb = hose->private_data; 3602 3603 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, 3604 OPAL_ASSERT_RESET); 3605 } 3606 3607 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { 3608 .dma_dev_setup = pnv_pci_dma_dev_setup, 3609 .dma_bus_setup = pnv_pci_dma_bus_setup, 3610 .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported, 3611 .setup_msi_irqs = pnv_setup_msi_irqs, 3612 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3613 .enable_device_hook = pnv_pci_enable_device_hook, 3614 .release_device = pnv_pci_release_device, 3615 .window_alignment = pnv_pci_window_alignment, 3616 .setup_bridge = pnv_pci_setup_bridge, 3617 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3618 .shutdown = pnv_pci_ioda_shutdown, 3619 }; 3620 3621 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = { 3622 .dma_dev_setup = pnv_pci_dma_dev_setup, 3623 .setup_msi_irqs = pnv_setup_msi_irqs, 3624 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3625 .enable_device_hook = pnv_pci_enable_device_hook, 3626 .window_alignment = pnv_pci_window_alignment, 3627 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3628 .shutdown = pnv_pci_ioda_shutdown, 3629 .disable_device = pnv_npu_disable_device, 3630 }; 3631 3632 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = { 3633 .enable_device_hook = pnv_pci_enable_device_hook, 3634 .window_alignment = pnv_pci_window_alignment, 3635 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3636 .shutdown = pnv_pci_ioda_shutdown, 3637 }; 3638 3639 static void __init pnv_pci_init_ioda_phb(struct device_node *np, 3640 u64 hub_id, int ioda_type) 3641 { 3642 struct pci_controller *hose; 3643 struct pnv_phb *phb; 3644 unsigned long size, m64map_off, m32map_off, pemap_off; 3645 unsigned long iomap_off = 0, dma32map_off = 0; 3646 struct resource r; 3647 const __be64 *prop64; 3648 const __be32 *prop32; 3649 int len; 3650 unsigned int segno; 3651 u64 phb_id; 3652 void *aux; 3653 long rc; 3654 3655 if (!of_device_is_available(np)) 3656 return; 3657 3658 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np); 3659 3660 prop64 = of_get_property(np, "ibm,opal-phbid", NULL); 3661 if (!prop64) { 3662 pr_err(" Missing \"ibm,opal-phbid\" property !\n"); 3663 return; 3664 } 3665 phb_id = be64_to_cpup(prop64); 3666 pr_debug(" PHB-ID : 0x%016llx\n", phb_id); 3667 3668 phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES); 3669 if (!phb) 3670 panic("%s: Failed to allocate %zu bytes\n", __func__, 3671 sizeof(*phb)); 3672 3673 /* Allocate PCI controller */ 3674 phb->hose = hose = pcibios_alloc_controller(np); 3675 if (!phb->hose) { 3676 pr_err(" Can't allocate PCI controller for %pOF\n", 3677 np); 3678 memblock_free(__pa(phb), sizeof(struct pnv_phb)); 3679 return; 3680 } 3681 3682 spin_lock_init(&phb->lock); 3683 prop32 = of_get_property(np, "bus-range", &len); 3684 if (prop32 && len == 8) { 3685 hose->first_busno = be32_to_cpu(prop32[0]); 3686 hose->last_busno = be32_to_cpu(prop32[1]); 3687 } else { 3688 pr_warn(" Broken <bus-range> on %pOF\n", np); 3689 hose->first_busno = 0; 3690 hose->last_busno = 0xff; 3691 } 3692 hose->private_data = phb; 3693 phb->hub_id = hub_id; 3694 phb->opal_id = phb_id; 3695 phb->type = ioda_type; 3696 mutex_init(&phb->ioda.pe_alloc_mutex); 3697 3698 /* Detect specific models for error handling */ 3699 if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) 3700 phb->model = PNV_PHB_MODEL_P7IOC; 3701 else if (of_device_is_compatible(np, "ibm,power8-pciex")) 3702 phb->model = PNV_PHB_MODEL_PHB3; 3703 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex")) 3704 phb->model = PNV_PHB_MODEL_NPU; 3705 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex")) 3706 phb->model = PNV_PHB_MODEL_NPU2; 3707 else 3708 phb->model = PNV_PHB_MODEL_UNKNOWN; 3709 3710 /* Initialize diagnostic data buffer */ 3711 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL); 3712 if (prop32) 3713 phb->diag_data_size = be32_to_cpup(prop32); 3714 else 3715 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE; 3716 3717 phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES); 3718 if (!phb->diag_data) 3719 panic("%s: Failed to allocate %u bytes\n", __func__, 3720 phb->diag_data_size); 3721 3722 /* Parse 32-bit and IO ranges (if any) */ 3723 pci_process_bridge_OF_ranges(hose, np, !hose->global_number); 3724 3725 /* Get registers */ 3726 if (!of_address_to_resource(np, 0, &r)) { 3727 phb->regs_phys = r.start; 3728 phb->regs = ioremap(r.start, resource_size(&r)); 3729 if (phb->regs == NULL) 3730 pr_err(" Failed to map registers !\n"); 3731 } 3732 3733 /* Initialize more IODA stuff */ 3734 phb->ioda.total_pe_num = 1; 3735 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); 3736 if (prop32) 3737 phb->ioda.total_pe_num = be32_to_cpup(prop32); 3738 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); 3739 if (prop32) 3740 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); 3741 3742 /* Invalidate RID to PE# mapping */ 3743 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) 3744 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; 3745 3746 /* Parse 64-bit MMIO range */ 3747 pnv_ioda_parse_m64_window(phb); 3748 3749 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); 3750 /* FW Has already off top 64k of M32 space (MSI space) */ 3751 phb->ioda.m32_size += 0x10000; 3752 3753 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; 3754 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; 3755 phb->ioda.io_size = hose->pci_io_size; 3756 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; 3757 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ 3758 3759 /* Calculate how many 32-bit TCE segments we have */ 3760 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3761 PNV_IODA1_DMA32_SEGSIZE; 3762 3763 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ 3764 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, 3765 sizeof(unsigned long)); 3766 m64map_off = size; 3767 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); 3768 m32map_off = size; 3769 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); 3770 if (phb->type == PNV_PHB_IODA1) { 3771 iomap_off = size; 3772 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); 3773 dma32map_off = size; 3774 size += phb->ioda.dma32_count * 3775 sizeof(phb->ioda.dma32_segmap[0]); 3776 } 3777 pemap_off = size; 3778 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); 3779 aux = memblock_alloc(size, SMP_CACHE_BYTES); 3780 if (!aux) 3781 panic("%s: Failed to allocate %lu bytes\n", __func__, size); 3782 phb->ioda.pe_alloc = aux; 3783 phb->ioda.m64_segmap = aux + m64map_off; 3784 phb->ioda.m32_segmap = aux + m32map_off; 3785 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { 3786 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; 3787 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; 3788 } 3789 if (phb->type == PNV_PHB_IODA1) { 3790 phb->ioda.io_segmap = aux + iomap_off; 3791 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) 3792 phb->ioda.io_segmap[segno] = IODA_INVALID_PE; 3793 3794 phb->ioda.dma32_segmap = aux + dma32map_off; 3795 for (segno = 0; segno < phb->ioda.dma32_count; segno++) 3796 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; 3797 } 3798 phb->ioda.pe_array = aux + pemap_off; 3799 3800 /* 3801 * Choose PE number for root bus, which shouldn't have 3802 * M64 resources consumed by its child devices. To pick 3803 * the PE number adjacent to the reserved one if possible. 3804 */ 3805 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); 3806 if (phb->ioda.reserved_pe_idx == 0) { 3807 phb->ioda.root_pe_idx = 1; 3808 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3809 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { 3810 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; 3811 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3812 } else { 3813 phb->ioda.root_pe_idx = IODA_INVALID_PE; 3814 } 3815 3816 INIT_LIST_HEAD(&phb->ioda.pe_list); 3817 mutex_init(&phb->ioda.pe_list_mutex); 3818 3819 /* Calculate how many 32-bit TCE segments we have */ 3820 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3821 PNV_IODA1_DMA32_SEGSIZE; 3822 3823 #if 0 /* We should really do that ... */ 3824 rc = opal_pci_set_phb_mem_window(opal->phb_id, 3825 window_type, 3826 window_num, 3827 starting_real_address, 3828 starting_pci_address, 3829 segment_size); 3830 #endif 3831 3832 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", 3833 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, 3834 phb->ioda.m32_size, phb->ioda.m32_segsize); 3835 if (phb->ioda.m64_size) 3836 pr_info(" M64: 0x%lx [segment=0x%lx]\n", 3837 phb->ioda.m64_size, phb->ioda.m64_segsize); 3838 if (phb->ioda.io_size) 3839 pr_info(" IO: 0x%x [segment=0x%x]\n", 3840 phb->ioda.io_size, phb->ioda.io_segsize); 3841 3842 3843 phb->hose->ops = &pnv_pci_ops; 3844 phb->get_pe_state = pnv_ioda_get_pe_state; 3845 phb->freeze_pe = pnv_ioda_freeze_pe; 3846 phb->unfreeze_pe = pnv_ioda_unfreeze_pe; 3847 3848 /* Setup MSI support */ 3849 pnv_pci_init_ioda_msis(phb); 3850 3851 /* 3852 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here 3853 * to let the PCI core do resource assignment. It's supposed 3854 * that the PCI core will do correct I/O and MMIO alignment 3855 * for the P2P bridge bars so that each PCI bus (excluding 3856 * the child P2P bridges) can form individual PE. 3857 */ 3858 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; 3859 3860 switch (phb->type) { 3861 case PNV_PHB_NPU_NVLINK: 3862 hose->controller_ops = pnv_npu_ioda_controller_ops; 3863 break; 3864 case PNV_PHB_NPU_OCAPI: 3865 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops; 3866 break; 3867 default: 3868 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup; 3869 hose->controller_ops = pnv_pci_ioda_controller_ops; 3870 } 3871 3872 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment; 3873 3874 #ifdef CONFIG_PCI_IOV 3875 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources; 3876 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; 3877 ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable; 3878 ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable; 3879 #endif 3880 3881 pci_add_flags(PCI_REASSIGN_ALL_RSRC); 3882 3883 /* Reset IODA tables to a clean state */ 3884 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); 3885 if (rc) 3886 pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc); 3887 3888 /* 3889 * If we're running in kdump kernel, the previous kernel never 3890 * shutdown PCI devices correctly. We already got IODA table 3891 * cleaned out. So we have to issue PHB reset to stop all PCI 3892 * transactions from previous kernel. The ppc_pci_reset_phbs 3893 * kernel parameter will force this reset too. Additionally, 3894 * if the IODA reset above failed then use a bigger hammer. 3895 * This can happen if we get a PHB fatal error in very early 3896 * boot. 3897 */ 3898 if (is_kdump_kernel() || pci_reset_phbs || rc) { 3899 pr_info(" Issue PHB reset ...\n"); 3900 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); 3901 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); 3902 } 3903 3904 /* Remove M64 resource if we can't configure it successfully */ 3905 if (!phb->init_m64 || phb->init_m64(phb)) 3906 hose->mem_resources[1].flags = 0; 3907 } 3908 3909 void __init pnv_pci_init_ioda2_phb(struct device_node *np) 3910 { 3911 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); 3912 } 3913 3914 void __init pnv_pci_init_npu_phb(struct device_node *np) 3915 { 3916 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK); 3917 } 3918 3919 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np) 3920 { 3921 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI); 3922 } 3923 3924 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev) 3925 { 3926 struct pci_controller *hose = pci_bus_to_host(dev->bus); 3927 struct pnv_phb *phb = hose->private_data; 3928 3929 if (!machine_is(powernv)) 3930 return; 3931 3932 if (phb->type == PNV_PHB_NPU_OCAPI) 3933 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE; 3934 } 3935 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup); 3936 3937 void __init pnv_pci_init_ioda_hub(struct device_node *np) 3938 { 3939 struct device_node *phbn; 3940 const __be64 *prop64; 3941 u64 hub_id; 3942 3943 pr_info("Probing IODA IO-Hub %pOF\n", np); 3944 3945 prop64 = of_get_property(np, "ibm,opal-hubid", NULL); 3946 if (!prop64) { 3947 pr_err(" Missing \"ibm,opal-hubid\" property !\n"); 3948 return; 3949 } 3950 hub_id = be64_to_cpup(prop64); 3951 pr_devel(" HUB-ID : 0x%016llx\n", hub_id); 3952 3953 /* Count child PHBs */ 3954 for_each_child_of_node(np, phbn) { 3955 /* Look for IODA1 PHBs */ 3956 if (of_device_is_compatible(phbn, "ibm,ioda-phb")) 3957 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); 3958 } 3959 } 3960