1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
52 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54 
55 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
56 #define POWERNV_IOMMU_MAX_LEVELS	5
57 
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59 
60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61 			    const char *fmt, ...)
62 {
63 	struct va_format vaf;
64 	va_list args;
65 	char pfix[32];
66 
67 	va_start(args, fmt);
68 
69 	vaf.fmt = fmt;
70 	vaf.va = &args;
71 
72 	if (pe->flags & PNV_IODA_PE_DEV)
73 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75 		sprintf(pfix, "%04x:%02x     ",
76 			pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78 	else if (pe->flags & PNV_IODA_PE_VF)
79 		sprintf(pfix, "%04x:%02x:%2x.%d",
80 			pci_domain_nr(pe->parent_dev->bus),
81 			(pe->rid & 0xff00) >> 8,
82 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84 
85 	printk("%spci %s: [PE# %.3d] %pV",
86 	       level, pfix, pe->pe_number, &vaf);
87 
88 	va_end(args);
89 }
90 
91 static bool pnv_iommu_bypass_disabled __read_mostly;
92 
93 static int __init iommu_setup(char *str)
94 {
95 	if (!str)
96 		return -EINVAL;
97 
98 	while (*str) {
99 		if (!strncmp(str, "nobypass", 8)) {
100 			pnv_iommu_bypass_disabled = true;
101 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
102 			break;
103 		}
104 		str += strcspn(str, ",");
105 		if (*str == ',')
106 			str++;
107 	}
108 
109 	return 0;
110 }
111 early_param("iommu", iommu_setup);
112 
113 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
114 {
115 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
116 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
117 }
118 
119 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
120 {
121 	phb->ioda.pe_array[pe_no].phb = phb;
122 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
123 
124 	return &phb->ioda.pe_array[pe_no];
125 }
126 
127 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
128 {
129 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
130 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
131 			__func__, pe_no, phb->hose->global_number);
132 		return;
133 	}
134 
135 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
136 		pr_debug("%s: PE %d was reserved on PHB#%x\n",
137 			 __func__, pe_no, phb->hose->global_number);
138 
139 	pnv_ioda_init_pe(phb, pe_no);
140 }
141 
142 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
143 {
144 	unsigned long pe;
145 
146 	do {
147 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
148 					phb->ioda.total_pe_num, 0);
149 		if (pe >= phb->ioda.total_pe_num)
150 			return NULL;
151 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
152 
153 	return pnv_ioda_init_pe(phb, pe);
154 }
155 
156 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
157 {
158 	struct pnv_phb *phb = pe->phb;
159 
160 	WARN_ON(pe->pdev);
161 
162 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
163 	clear_bit(pe->pe_number, phb->ioda.pe_alloc);
164 }
165 
166 /* The default M64 BAR is shared by all PEs */
167 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
168 {
169 	const char *desc;
170 	struct resource *r;
171 	s64 rc;
172 
173 	/* Configure the default M64 BAR */
174 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
175 					 OPAL_M64_WINDOW_TYPE,
176 					 phb->ioda.m64_bar_idx,
177 					 phb->ioda.m64_base,
178 					 0, /* unused */
179 					 phb->ioda.m64_size);
180 	if (rc != OPAL_SUCCESS) {
181 		desc = "configuring";
182 		goto fail;
183 	}
184 
185 	/* Enable the default M64 BAR */
186 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
187 				      OPAL_M64_WINDOW_TYPE,
188 				      phb->ioda.m64_bar_idx,
189 				      OPAL_ENABLE_M64_SPLIT);
190 	if (rc != OPAL_SUCCESS) {
191 		desc = "enabling";
192 		goto fail;
193 	}
194 
195 	/* Mark the M64 BAR assigned */
196 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
197 
198 	/*
199 	 * Strip off the segment used by the reserved PE, which is
200 	 * expected to be 0 or last one of PE capability.
201 	 */
202 	r = &phb->hose->mem_resources[1];
203 	if (phb->ioda.reserved_pe_idx == 0)
204 		r->start += phb->ioda.m64_segsize;
205 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
206 		r->end -= phb->ioda.m64_segsize;
207 	else
208 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
209 			phb->ioda.reserved_pe_idx);
210 
211 	return 0;
212 
213 fail:
214 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
215 		rc, desc, phb->ioda.m64_bar_idx);
216 	opal_pci_phb_mmio_enable(phb->opal_id,
217 				 OPAL_M64_WINDOW_TYPE,
218 				 phb->ioda.m64_bar_idx,
219 				 OPAL_DISABLE_M64);
220 	return -EIO;
221 }
222 
223 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
224 					 unsigned long *pe_bitmap)
225 {
226 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
227 	struct pnv_phb *phb = hose->private_data;
228 	struct resource *r;
229 	resource_size_t base, sgsz, start, end;
230 	int segno, i;
231 
232 	base = phb->ioda.m64_base;
233 	sgsz = phb->ioda.m64_segsize;
234 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
235 		r = &pdev->resource[i];
236 		if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
237 			continue;
238 
239 		start = _ALIGN_DOWN(r->start - base, sgsz);
240 		end = _ALIGN_UP(r->end - base, sgsz);
241 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
242 			if (pe_bitmap)
243 				set_bit(segno, pe_bitmap);
244 			else
245 				pnv_ioda_reserve_pe(phb, segno);
246 		}
247 	}
248 }
249 
250 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
251 {
252 	struct resource *r;
253 	int index;
254 
255 	/*
256 	 * There are 16 M64 BARs, each of which has 8 segments. So
257 	 * there are as many M64 segments as the maximum number of
258 	 * PEs, which is 128.
259 	 */
260 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
261 		unsigned long base, segsz = phb->ioda.m64_segsize;
262 		int64_t rc;
263 
264 		base = phb->ioda.m64_base +
265 		       index * PNV_IODA1_M64_SEGS * segsz;
266 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
267 				OPAL_M64_WINDOW_TYPE, index, base, 0,
268 				PNV_IODA1_M64_SEGS * segsz);
269 		if (rc != OPAL_SUCCESS) {
270 			pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
271 				rc, phb->hose->global_number, index);
272 			goto fail;
273 		}
274 
275 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
276 				OPAL_M64_WINDOW_TYPE, index,
277 				OPAL_ENABLE_M64_SPLIT);
278 		if (rc != OPAL_SUCCESS) {
279 			pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
280 				rc, phb->hose->global_number, index);
281 			goto fail;
282 		}
283 	}
284 
285 	/*
286 	 * Exclude the segment used by the reserved PE, which
287 	 * is expected to be 0 or last supported PE#.
288 	 */
289 	r = &phb->hose->mem_resources[1];
290 	if (phb->ioda.reserved_pe_idx == 0)
291 		r->start += phb->ioda.m64_segsize;
292 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
293 		r->end -= phb->ioda.m64_segsize;
294 	else
295 		WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
296 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
297 
298 	return 0;
299 
300 fail:
301 	for ( ; index >= 0; index--)
302 		opal_pci_phb_mmio_enable(phb->opal_id,
303 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
304 
305 	return -EIO;
306 }
307 
308 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
309 				    unsigned long *pe_bitmap,
310 				    bool all)
311 {
312 	struct pci_dev *pdev;
313 
314 	list_for_each_entry(pdev, &bus->devices, bus_list) {
315 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
316 
317 		if (all && pdev->subordinate)
318 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
319 						pe_bitmap, all);
320 	}
321 }
322 
323 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
324 {
325 	struct pci_controller *hose = pci_bus_to_host(bus);
326 	struct pnv_phb *phb = hose->private_data;
327 	struct pnv_ioda_pe *master_pe, *pe;
328 	unsigned long size, *pe_alloc;
329 	int i;
330 
331 	/* Root bus shouldn't use M64 */
332 	if (pci_is_root_bus(bus))
333 		return NULL;
334 
335 	/* Allocate bitmap */
336 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
337 	pe_alloc = kzalloc(size, GFP_KERNEL);
338 	if (!pe_alloc) {
339 		pr_warn("%s: Out of memory !\n",
340 			__func__);
341 		return NULL;
342 	}
343 
344 	/* Figure out reserved PE numbers by the PE */
345 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
346 
347 	/*
348 	 * the current bus might not own M64 window and that's all
349 	 * contributed by its child buses. For the case, we needn't
350 	 * pick M64 dependent PE#.
351 	 */
352 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
353 		kfree(pe_alloc);
354 		return NULL;
355 	}
356 
357 	/*
358 	 * Figure out the master PE and put all slave PEs to master
359 	 * PE's list to form compound PE.
360 	 */
361 	master_pe = NULL;
362 	i = -1;
363 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
364 		phb->ioda.total_pe_num) {
365 		pe = &phb->ioda.pe_array[i];
366 
367 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
368 		if (!master_pe) {
369 			pe->flags |= PNV_IODA_PE_MASTER;
370 			INIT_LIST_HEAD(&pe->slaves);
371 			master_pe = pe;
372 		} else {
373 			pe->flags |= PNV_IODA_PE_SLAVE;
374 			pe->master = master_pe;
375 			list_add_tail(&pe->list, &master_pe->slaves);
376 		}
377 
378 		/*
379 		 * P7IOC supports M64DT, which helps mapping M64 segment
380 		 * to one particular PE#. However, PHB3 has fixed mapping
381 		 * between M64 segment and PE#. In order to have same logic
382 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
383 		 * segment and PE# on P7IOC.
384 		 */
385 		if (phb->type == PNV_PHB_IODA1) {
386 			int64_t rc;
387 
388 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
389 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
390 					pe->pe_number / PNV_IODA1_M64_SEGS,
391 					pe->pe_number % PNV_IODA1_M64_SEGS);
392 			if (rc != OPAL_SUCCESS)
393 				pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
394 					__func__, rc, phb->hose->global_number,
395 					pe->pe_number);
396 		}
397 	}
398 
399 	kfree(pe_alloc);
400 	return master_pe;
401 }
402 
403 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
404 {
405 	struct pci_controller *hose = phb->hose;
406 	struct device_node *dn = hose->dn;
407 	struct resource *res;
408 	const u32 *r;
409 	u64 pci_addr;
410 
411 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
412 		pr_info("  Not support M64 window\n");
413 		return;
414 	}
415 
416 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
417 		pr_info("  Firmware too old to support M64 window\n");
418 		return;
419 	}
420 
421 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
422 	if (!r) {
423 		pr_info("  No <ibm,opal-m64-window> on %s\n",
424 			dn->full_name);
425 		return;
426 	}
427 
428 	res = &hose->mem_resources[1];
429 	res->name = dn->full_name;
430 	res->start = of_translate_address(dn, r + 2);
431 	res->end = res->start + of_read_number(r + 4, 2) - 1;
432 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
433 	pci_addr = of_read_number(r, 2);
434 	hose->mem_offset[1] = res->start - pci_addr;
435 
436 	phb->ioda.m64_size = resource_size(res);
437 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
438 	phb->ioda.m64_base = pci_addr;
439 
440 	pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
441 			res->start, res->end, pci_addr);
442 
443 	/* Use last M64 BAR to cover M64 window */
444 	phb->ioda.m64_bar_idx = 15;
445 	if (phb->type == PNV_PHB_IODA1)
446 		phb->init_m64 = pnv_ioda1_init_m64;
447 	else
448 		phb->init_m64 = pnv_ioda2_init_m64;
449 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
450 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
451 }
452 
453 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
454 {
455 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
456 	struct pnv_ioda_pe *slave;
457 	s64 rc;
458 
459 	/* Fetch master PE */
460 	if (pe->flags & PNV_IODA_PE_SLAVE) {
461 		pe = pe->master;
462 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
463 			return;
464 
465 		pe_no = pe->pe_number;
466 	}
467 
468 	/* Freeze master PE */
469 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
470 				     pe_no,
471 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
472 	if (rc != OPAL_SUCCESS) {
473 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
474 			__func__, rc, phb->hose->global_number, pe_no);
475 		return;
476 	}
477 
478 	/* Freeze slave PEs */
479 	if (!(pe->flags & PNV_IODA_PE_MASTER))
480 		return;
481 
482 	list_for_each_entry(slave, &pe->slaves, list) {
483 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
484 					     slave->pe_number,
485 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
486 		if (rc != OPAL_SUCCESS)
487 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
488 				__func__, rc, phb->hose->global_number,
489 				slave->pe_number);
490 	}
491 }
492 
493 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
494 {
495 	struct pnv_ioda_pe *pe, *slave;
496 	s64 rc;
497 
498 	/* Find master PE */
499 	pe = &phb->ioda.pe_array[pe_no];
500 	if (pe->flags & PNV_IODA_PE_SLAVE) {
501 		pe = pe->master;
502 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
503 		pe_no = pe->pe_number;
504 	}
505 
506 	/* Clear frozen state for master PE */
507 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
508 	if (rc != OPAL_SUCCESS) {
509 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
510 			__func__, rc, opt, phb->hose->global_number, pe_no);
511 		return -EIO;
512 	}
513 
514 	if (!(pe->flags & PNV_IODA_PE_MASTER))
515 		return 0;
516 
517 	/* Clear frozen state for slave PEs */
518 	list_for_each_entry(slave, &pe->slaves, list) {
519 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
520 					     slave->pe_number,
521 					     opt);
522 		if (rc != OPAL_SUCCESS) {
523 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
524 				__func__, rc, opt, phb->hose->global_number,
525 				slave->pe_number);
526 			return -EIO;
527 		}
528 	}
529 
530 	return 0;
531 }
532 
533 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
534 {
535 	struct pnv_ioda_pe *slave, *pe;
536 	u8 fstate, state;
537 	__be16 pcierr;
538 	s64 rc;
539 
540 	/* Sanity check on PE number */
541 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
542 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
543 
544 	/*
545 	 * Fetch the master PE and the PE instance might be
546 	 * not initialized yet.
547 	 */
548 	pe = &phb->ioda.pe_array[pe_no];
549 	if (pe->flags & PNV_IODA_PE_SLAVE) {
550 		pe = pe->master;
551 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
552 		pe_no = pe->pe_number;
553 	}
554 
555 	/* Check the master PE */
556 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
557 					&state, &pcierr, NULL);
558 	if (rc != OPAL_SUCCESS) {
559 		pr_warn("%s: Failure %lld getting "
560 			"PHB#%x-PE#%x state\n",
561 			__func__, rc,
562 			phb->hose->global_number, pe_no);
563 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
564 	}
565 
566 	/* Check the slave PE */
567 	if (!(pe->flags & PNV_IODA_PE_MASTER))
568 		return state;
569 
570 	list_for_each_entry(slave, &pe->slaves, list) {
571 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
572 						slave->pe_number,
573 						&fstate,
574 						&pcierr,
575 						NULL);
576 		if (rc != OPAL_SUCCESS) {
577 			pr_warn("%s: Failure %lld getting "
578 				"PHB#%x-PE#%x state\n",
579 				__func__, rc,
580 				phb->hose->global_number, slave->pe_number);
581 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
582 		}
583 
584 		/*
585 		 * Override the result based on the ascending
586 		 * priority.
587 		 */
588 		if (fstate > state)
589 			state = fstate;
590 	}
591 
592 	return state;
593 }
594 
595 /* Currently those 2 are only used when MSIs are enabled, this will change
596  * but in the meantime, we need to protect them to avoid warnings
597  */
598 #ifdef CONFIG_PCI_MSI
599 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
600 {
601 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
602 	struct pnv_phb *phb = hose->private_data;
603 	struct pci_dn *pdn = pci_get_pdn(dev);
604 
605 	if (!pdn)
606 		return NULL;
607 	if (pdn->pe_number == IODA_INVALID_PE)
608 		return NULL;
609 	return &phb->ioda.pe_array[pdn->pe_number];
610 }
611 #endif /* CONFIG_PCI_MSI */
612 
613 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
614 				  struct pnv_ioda_pe *parent,
615 				  struct pnv_ioda_pe *child,
616 				  bool is_add)
617 {
618 	const char *desc = is_add ? "adding" : "removing";
619 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
620 			      OPAL_REMOVE_PE_FROM_DOMAIN;
621 	struct pnv_ioda_pe *slave;
622 	long rc;
623 
624 	/* Parent PE affects child PE */
625 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
626 				child->pe_number, op);
627 	if (rc != OPAL_SUCCESS) {
628 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
629 			rc, desc);
630 		return -ENXIO;
631 	}
632 
633 	if (!(child->flags & PNV_IODA_PE_MASTER))
634 		return 0;
635 
636 	/* Compound case: parent PE affects slave PEs */
637 	list_for_each_entry(slave, &child->slaves, list) {
638 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
639 					slave->pe_number, op);
640 		if (rc != OPAL_SUCCESS) {
641 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
642 				rc, desc);
643 			return -ENXIO;
644 		}
645 	}
646 
647 	return 0;
648 }
649 
650 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
651 			      struct pnv_ioda_pe *pe,
652 			      bool is_add)
653 {
654 	struct pnv_ioda_pe *slave;
655 	struct pci_dev *pdev = NULL;
656 	int ret;
657 
658 	/*
659 	 * Clear PE frozen state. If it's master PE, we need
660 	 * clear slave PE frozen state as well.
661 	 */
662 	if (is_add) {
663 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
664 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
665 		if (pe->flags & PNV_IODA_PE_MASTER) {
666 			list_for_each_entry(slave, &pe->slaves, list)
667 				opal_pci_eeh_freeze_clear(phb->opal_id,
668 							  slave->pe_number,
669 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
670 		}
671 	}
672 
673 	/*
674 	 * Associate PE in PELT. We need add the PE into the
675 	 * corresponding PELT-V as well. Otherwise, the error
676 	 * originated from the PE might contribute to other
677 	 * PEs.
678 	 */
679 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
680 	if (ret)
681 		return ret;
682 
683 	/* For compound PEs, any one affects all of them */
684 	if (pe->flags & PNV_IODA_PE_MASTER) {
685 		list_for_each_entry(slave, &pe->slaves, list) {
686 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
687 			if (ret)
688 				return ret;
689 		}
690 	}
691 
692 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
693 		pdev = pe->pbus->self;
694 	else if (pe->flags & PNV_IODA_PE_DEV)
695 		pdev = pe->pdev->bus->self;
696 #ifdef CONFIG_PCI_IOV
697 	else if (pe->flags & PNV_IODA_PE_VF)
698 		pdev = pe->parent_dev;
699 #endif /* CONFIG_PCI_IOV */
700 	while (pdev) {
701 		struct pci_dn *pdn = pci_get_pdn(pdev);
702 		struct pnv_ioda_pe *parent;
703 
704 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
705 			parent = &phb->ioda.pe_array[pdn->pe_number];
706 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
707 			if (ret)
708 				return ret;
709 		}
710 
711 		pdev = pdev->bus->self;
712 	}
713 
714 	return 0;
715 }
716 
717 #ifdef CONFIG_PCI_IOV
718 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
719 {
720 	struct pci_dev *parent;
721 	uint8_t bcomp, dcomp, fcomp;
722 	int64_t rc;
723 	long rid_end, rid;
724 
725 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
726 	if (pe->pbus) {
727 		int count;
728 
729 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
730 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
731 		parent = pe->pbus->self;
732 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
733 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
734 		else
735 			count = 1;
736 
737 		switch(count) {
738 		case  1: bcomp = OpalPciBusAll;         break;
739 		case  2: bcomp = OpalPciBus7Bits;       break;
740 		case  4: bcomp = OpalPciBus6Bits;       break;
741 		case  8: bcomp = OpalPciBus5Bits;       break;
742 		case 16: bcomp = OpalPciBus4Bits;       break;
743 		case 32: bcomp = OpalPciBus3Bits;       break;
744 		default:
745 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
746 			        count);
747 			/* Do an exact match only */
748 			bcomp = OpalPciBusAll;
749 		}
750 		rid_end = pe->rid + (count << 8);
751 	} else {
752 		if (pe->flags & PNV_IODA_PE_VF)
753 			parent = pe->parent_dev;
754 		else
755 			parent = pe->pdev->bus->self;
756 		bcomp = OpalPciBusAll;
757 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
758 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
759 		rid_end = pe->rid + 1;
760 	}
761 
762 	/* Clear the reverse map */
763 	for (rid = pe->rid; rid < rid_end; rid++)
764 		phb->ioda.pe_rmap[rid] = 0;
765 
766 	/* Release from all parents PELT-V */
767 	while (parent) {
768 		struct pci_dn *pdn = pci_get_pdn(parent);
769 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
771 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
772 			/* XXX What to do in case of error ? */
773 		}
774 		parent = parent->bus->self;
775 	}
776 
777 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
778 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
779 
780 	/* Disassociate PE in PELT */
781 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
782 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
783 	if (rc)
784 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
785 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
786 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
787 	if (rc)
788 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
789 
790 	pe->pbus = NULL;
791 	pe->pdev = NULL;
792 	pe->parent_dev = NULL;
793 
794 	return 0;
795 }
796 #endif /* CONFIG_PCI_IOV */
797 
798 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
799 {
800 	struct pci_dev *parent;
801 	uint8_t bcomp, dcomp, fcomp;
802 	long rc, rid_end, rid;
803 
804 	/* Bus validation ? */
805 	if (pe->pbus) {
806 		int count;
807 
808 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
809 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
810 		parent = pe->pbus->self;
811 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
812 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
813 		else
814 			count = 1;
815 
816 		switch(count) {
817 		case  1: bcomp = OpalPciBusAll;		break;
818 		case  2: bcomp = OpalPciBus7Bits;	break;
819 		case  4: bcomp = OpalPciBus6Bits;	break;
820 		case  8: bcomp = OpalPciBus5Bits;	break;
821 		case 16: bcomp = OpalPciBus4Bits;	break;
822 		case 32: bcomp = OpalPciBus3Bits;	break;
823 		default:
824 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
825 			        count);
826 			/* Do an exact match only */
827 			bcomp = OpalPciBusAll;
828 		}
829 		rid_end = pe->rid + (count << 8);
830 	} else {
831 #ifdef CONFIG_PCI_IOV
832 		if (pe->flags & PNV_IODA_PE_VF)
833 			parent = pe->parent_dev;
834 		else
835 #endif /* CONFIG_PCI_IOV */
836 			parent = pe->pdev->bus->self;
837 		bcomp = OpalPciBusAll;
838 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
839 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
840 		rid_end = pe->rid + 1;
841 	}
842 
843 	/*
844 	 * Associate PE in PELT. We need add the PE into the
845 	 * corresponding PELT-V as well. Otherwise, the error
846 	 * originated from the PE might contribute to other
847 	 * PEs.
848 	 */
849 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
850 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
851 	if (rc) {
852 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
853 		return -ENXIO;
854 	}
855 
856 	/*
857 	 * Configure PELTV. NPUs don't have a PELTV table so skip
858 	 * configuration on them.
859 	 */
860 	if (phb->type != PNV_PHB_NPU)
861 		pnv_ioda_set_peltv(phb, pe, true);
862 
863 	/* Setup reverse map */
864 	for (rid = pe->rid; rid < rid_end; rid++)
865 		phb->ioda.pe_rmap[rid] = pe->pe_number;
866 
867 	/* Setup one MVTs on IODA1 */
868 	if (phb->type != PNV_PHB_IODA1) {
869 		pe->mve_number = 0;
870 		goto out;
871 	}
872 
873 	pe->mve_number = pe->pe_number;
874 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
875 	if (rc != OPAL_SUCCESS) {
876 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
877 		       rc, pe->mve_number);
878 		pe->mve_number = -1;
879 	} else {
880 		rc = opal_pci_set_mve_enable(phb->opal_id,
881 					     pe->mve_number, OPAL_ENABLE_MVE);
882 		if (rc) {
883 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
884 			       rc, pe->mve_number);
885 			pe->mve_number = -1;
886 		}
887 	}
888 
889 out:
890 	return 0;
891 }
892 
893 #ifdef CONFIG_PCI_IOV
894 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
895 {
896 	struct pci_dn *pdn = pci_get_pdn(dev);
897 	int i;
898 	struct resource *res, res2;
899 	resource_size_t size;
900 	u16 num_vfs;
901 
902 	if (!dev->is_physfn)
903 		return -EINVAL;
904 
905 	/*
906 	 * "offset" is in VFs.  The M64 windows are sized so that when they
907 	 * are segmented, each segment is the same size as the IOV BAR.
908 	 * Each segment is in a separate PE, and the high order bits of the
909 	 * address are the PE number.  Therefore, each VF's BAR is in a
910 	 * separate PE, and changing the IOV BAR start address changes the
911 	 * range of PEs the VFs are in.
912 	 */
913 	num_vfs = pdn->num_vfs;
914 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
915 		res = &dev->resource[i + PCI_IOV_RESOURCES];
916 		if (!res->flags || !res->parent)
917 			continue;
918 
919 		/*
920 		 * The actual IOV BAR range is determined by the start address
921 		 * and the actual size for num_vfs VFs BAR.  This check is to
922 		 * make sure that after shifting, the range will not overlap
923 		 * with another device.
924 		 */
925 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
926 		res2.flags = res->flags;
927 		res2.start = res->start + (size * offset);
928 		res2.end = res2.start + (size * num_vfs) - 1;
929 
930 		if (res2.end > res->end) {
931 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
932 				i, &res2, res, num_vfs, offset);
933 			return -EBUSY;
934 		}
935 	}
936 
937 	/*
938 	 * After doing so, there would be a "hole" in the /proc/iomem when
939 	 * offset is a positive value. It looks like the device return some
940 	 * mmio back to the system, which actually no one could use it.
941 	 */
942 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
943 		res = &dev->resource[i + PCI_IOV_RESOURCES];
944 		if (!res->flags || !res->parent)
945 			continue;
946 
947 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
948 		res2 = *res;
949 		res->start += size * offset;
950 
951 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
952 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
953 			 num_vfs, offset);
954 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
955 	}
956 	return 0;
957 }
958 #endif /* CONFIG_PCI_IOV */
959 
960 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
961 {
962 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
963 	struct pnv_phb *phb = hose->private_data;
964 	struct pci_dn *pdn = pci_get_pdn(dev);
965 	struct pnv_ioda_pe *pe;
966 
967 	if (!pdn) {
968 		pr_err("%s: Device tree node not associated properly\n",
969 			   pci_name(dev));
970 		return NULL;
971 	}
972 	if (pdn->pe_number != IODA_INVALID_PE)
973 		return NULL;
974 
975 	pe = pnv_ioda_alloc_pe(phb);
976 	if (!pe) {
977 		pr_warning("%s: Not enough PE# available, disabling device\n",
978 			   pci_name(dev));
979 		return NULL;
980 	}
981 
982 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
983 	 * pointer in the PE data structure, both should be destroyed at the
984 	 * same time. However, this needs to be looked at more closely again
985 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
986 	 *
987 	 * At some point we want to remove the PDN completely anyways
988 	 */
989 	pci_dev_get(dev);
990 	pdn->pcidev = dev;
991 	pdn->pe_number = pe->pe_number;
992 	pe->flags = PNV_IODA_PE_DEV;
993 	pe->pdev = dev;
994 	pe->pbus = NULL;
995 	pe->mve_number = -1;
996 	pe->rid = dev->bus->number << 8 | pdn->devfn;
997 
998 	pe_info(pe, "Associated device to PE\n");
999 
1000 	if (pnv_ioda_configure_pe(phb, pe)) {
1001 		/* XXX What do we do here ? */
1002 		pnv_ioda_free_pe(pe);
1003 		pdn->pe_number = IODA_INVALID_PE;
1004 		pe->pdev = NULL;
1005 		pci_dev_put(dev);
1006 		return NULL;
1007 	}
1008 
1009 	/* Put PE to the list */
1010 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1011 
1012 	return pe;
1013 }
1014 
1015 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1016 {
1017 	struct pci_dev *dev;
1018 
1019 	list_for_each_entry(dev, &bus->devices, bus_list) {
1020 		struct pci_dn *pdn = pci_get_pdn(dev);
1021 
1022 		if (pdn == NULL) {
1023 			pr_warn("%s: No device node associated with device !\n",
1024 				pci_name(dev));
1025 			continue;
1026 		}
1027 		pdn->pcidev = dev;
1028 		pdn->pe_number = pe->pe_number;
1029 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1030 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1031 	}
1032 }
1033 
1034 /*
1035  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1036  * single PCI bus. Another one that contains the primary PCI bus and its
1037  * subordinate PCI devices and buses. The second type of PE is normally
1038  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1039  */
1040 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1041 {
1042 	struct pci_controller *hose = pci_bus_to_host(bus);
1043 	struct pnv_phb *phb = hose->private_data;
1044 	struct pnv_ioda_pe *pe = NULL;
1045 
1046 	/* Check if PE is determined by M64 */
1047 	if (phb->pick_m64_pe)
1048 		pe = phb->pick_m64_pe(bus, all);
1049 
1050 	/* The PE number isn't pinned by M64 */
1051 	if (!pe)
1052 		pe = pnv_ioda_alloc_pe(phb);
1053 
1054 	if (!pe) {
1055 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1056 			__func__, pci_domain_nr(bus), bus->number);
1057 		return NULL;
1058 	}
1059 
1060 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1061 	pe->pbus = bus;
1062 	pe->pdev = NULL;
1063 	pe->mve_number = -1;
1064 	pe->rid = bus->busn_res.start << 8;
1065 
1066 	if (all)
1067 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1068 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1069 	else
1070 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1071 			bus->busn_res.start, pe->pe_number);
1072 
1073 	if (pnv_ioda_configure_pe(phb, pe)) {
1074 		/* XXX What do we do here ? */
1075 		pnv_ioda_free_pe(pe);
1076 		pe->pbus = NULL;
1077 		return NULL;
1078 	}
1079 
1080 	/* Associate it with all child devices */
1081 	pnv_ioda_setup_same_PE(bus, pe);
1082 
1083 	/* Put PE to the list */
1084 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1085 
1086 	return pe;
1087 }
1088 
1089 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1090 {
1091 	int pe_num, found_pe = false, rc;
1092 	long rid;
1093 	struct pnv_ioda_pe *pe;
1094 	struct pci_dev *gpu_pdev;
1095 	struct pci_dn *npu_pdn;
1096 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1097 	struct pnv_phb *phb = hose->private_data;
1098 
1099 	/*
1100 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1101 	 * error handling. This means we only have three PEs remaining
1102 	 * which need to be assigned to four links, implying some
1103 	 * links must share PEs.
1104 	 *
1105 	 * To achieve this we assign PEs such that NPUs linking the
1106 	 * same GPU get assigned the same PE.
1107 	 */
1108 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1109 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1110 		pe = &phb->ioda.pe_array[pe_num];
1111 		if (!pe->pdev)
1112 			continue;
1113 
1114 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1115 			/*
1116 			 * This device has the same peer GPU so should
1117 			 * be assigned the same PE as the existing
1118 			 * peer NPU.
1119 			 */
1120 			dev_info(&npu_pdev->dev,
1121 				"Associating to existing PE %d\n", pe_num);
1122 			pci_dev_get(npu_pdev);
1123 			npu_pdn = pci_get_pdn(npu_pdev);
1124 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1125 			npu_pdn->pcidev = npu_pdev;
1126 			npu_pdn->pe_number = pe_num;
1127 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1128 
1129 			/* Map the PE to this link */
1130 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1131 					OpalPciBusAll,
1132 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1133 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1134 					OPAL_MAP_PE);
1135 			WARN_ON(rc != OPAL_SUCCESS);
1136 			found_pe = true;
1137 			break;
1138 		}
1139 	}
1140 
1141 	if (!found_pe)
1142 		/*
1143 		 * Could not find an existing PE so allocate a new
1144 		 * one.
1145 		 */
1146 		return pnv_ioda_setup_dev_PE(npu_pdev);
1147 	else
1148 		return pe;
1149 }
1150 
1151 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1152 {
1153 	struct pci_dev *pdev;
1154 
1155 	list_for_each_entry(pdev, &bus->devices, bus_list)
1156 		pnv_ioda_setup_npu_PE(pdev);
1157 }
1158 
1159 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1160 {
1161 	struct pci_dev *dev;
1162 
1163 	pnv_ioda_setup_bus_PE(bus, false);
1164 
1165 	list_for_each_entry(dev, &bus->devices, bus_list) {
1166 		if (dev->subordinate) {
1167 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1168 				pnv_ioda_setup_bus_PE(dev->subordinate, true);
1169 			else
1170 				pnv_ioda_setup_PEs(dev->subordinate);
1171 		}
1172 	}
1173 }
1174 
1175 /*
1176  * Configure PEs so that the downstream PCI buses and devices
1177  * could have their associated PE#. Unfortunately, we didn't
1178  * figure out the way to identify the PLX bridge yet. So we
1179  * simply put the PCI bus and the subordinate behind the root
1180  * port to PE# here. The game rule here is expected to be changed
1181  * as soon as we can detected PLX bridge correctly.
1182  */
1183 static void pnv_pci_ioda_setup_PEs(void)
1184 {
1185 	struct pci_controller *hose, *tmp;
1186 	struct pnv_phb *phb;
1187 
1188 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1189 		phb = hose->private_data;
1190 
1191 		/* M64 layout might affect PE allocation */
1192 		if (phb->reserve_m64_pe)
1193 			phb->reserve_m64_pe(hose->bus, NULL, true);
1194 
1195 		/*
1196 		 * On NPU PHB, we expect separate PEs for individual PCI
1197 		 * functions. PCI bus dependent PEs are required for the
1198 		 * remaining types of PHBs.
1199 		 */
1200 		if (phb->type == PNV_PHB_NPU) {
1201 			/* PE#0 is needed for error reporting */
1202 			pnv_ioda_reserve_pe(phb, 0);
1203 			pnv_ioda_setup_npu_PEs(hose->bus);
1204 		} else
1205 			pnv_ioda_setup_PEs(hose->bus);
1206 	}
1207 }
1208 
1209 #ifdef CONFIG_PCI_IOV
1210 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1211 {
1212 	struct pci_bus        *bus;
1213 	struct pci_controller *hose;
1214 	struct pnv_phb        *phb;
1215 	struct pci_dn         *pdn;
1216 	int                    i, j;
1217 	int                    m64_bars;
1218 
1219 	bus = pdev->bus;
1220 	hose = pci_bus_to_host(bus);
1221 	phb = hose->private_data;
1222 	pdn = pci_get_pdn(pdev);
1223 
1224 	if (pdn->m64_single_mode)
1225 		m64_bars = num_vfs;
1226 	else
1227 		m64_bars = 1;
1228 
1229 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1230 		for (j = 0; j < m64_bars; j++) {
1231 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1232 				continue;
1233 			opal_pci_phb_mmio_enable(phb->opal_id,
1234 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1235 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1236 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1237 		}
1238 
1239 	kfree(pdn->m64_map);
1240 	return 0;
1241 }
1242 
1243 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1244 {
1245 	struct pci_bus        *bus;
1246 	struct pci_controller *hose;
1247 	struct pnv_phb        *phb;
1248 	struct pci_dn         *pdn;
1249 	unsigned int           win;
1250 	struct resource       *res;
1251 	int                    i, j;
1252 	int64_t                rc;
1253 	int                    total_vfs;
1254 	resource_size_t        size, start;
1255 	int                    pe_num;
1256 	int                    m64_bars;
1257 
1258 	bus = pdev->bus;
1259 	hose = pci_bus_to_host(bus);
1260 	phb = hose->private_data;
1261 	pdn = pci_get_pdn(pdev);
1262 	total_vfs = pci_sriov_get_totalvfs(pdev);
1263 
1264 	if (pdn->m64_single_mode)
1265 		m64_bars = num_vfs;
1266 	else
1267 		m64_bars = 1;
1268 
1269 	pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1270 	if (!pdn->m64_map)
1271 		return -ENOMEM;
1272 	/* Initialize the m64_map to IODA_INVALID_M64 */
1273 	for (i = 0; i < m64_bars ; i++)
1274 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1275 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1276 
1277 
1278 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1279 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1280 		if (!res->flags || !res->parent)
1281 			continue;
1282 
1283 		for (j = 0; j < m64_bars; j++) {
1284 			do {
1285 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1286 						phb->ioda.m64_bar_idx + 1, 0);
1287 
1288 				if (win >= phb->ioda.m64_bar_idx + 1)
1289 					goto m64_failed;
1290 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1291 
1292 			pdn->m64_map[j][i] = win;
1293 
1294 			if (pdn->m64_single_mode) {
1295 				size = pci_iov_resource_size(pdev,
1296 							PCI_IOV_RESOURCES + i);
1297 				start = res->start + size * j;
1298 			} else {
1299 				size = resource_size(res);
1300 				start = res->start;
1301 			}
1302 
1303 			/* Map the M64 here */
1304 			if (pdn->m64_single_mode) {
1305 				pe_num = pdn->pe_num_map[j];
1306 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1307 						pe_num, OPAL_M64_WINDOW_TYPE,
1308 						pdn->m64_map[j][i], 0);
1309 			}
1310 
1311 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1312 						 OPAL_M64_WINDOW_TYPE,
1313 						 pdn->m64_map[j][i],
1314 						 start,
1315 						 0, /* unused */
1316 						 size);
1317 
1318 
1319 			if (rc != OPAL_SUCCESS) {
1320 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1321 					win, rc);
1322 				goto m64_failed;
1323 			}
1324 
1325 			if (pdn->m64_single_mode)
1326 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1327 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1328 			else
1329 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1330 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1331 
1332 			if (rc != OPAL_SUCCESS) {
1333 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1334 					win, rc);
1335 				goto m64_failed;
1336 			}
1337 		}
1338 	}
1339 	return 0;
1340 
1341 m64_failed:
1342 	pnv_pci_vf_release_m64(pdev, num_vfs);
1343 	return -EBUSY;
1344 }
1345 
1346 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1347 		int num);
1348 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1349 
1350 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1351 {
1352 	struct iommu_table    *tbl;
1353 	int64_t               rc;
1354 
1355 	tbl = pe->table_group.tables[0];
1356 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1357 	if (rc)
1358 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1359 
1360 	pnv_pci_ioda2_set_bypass(pe, false);
1361 	if (pe->table_group.group) {
1362 		iommu_group_put(pe->table_group.group);
1363 		BUG_ON(pe->table_group.group);
1364 	}
1365 	pnv_pci_ioda2_table_free_pages(tbl);
1366 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1367 }
1368 
1369 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1370 {
1371 	struct pci_bus        *bus;
1372 	struct pci_controller *hose;
1373 	struct pnv_phb        *phb;
1374 	struct pnv_ioda_pe    *pe, *pe_n;
1375 	struct pci_dn         *pdn;
1376 
1377 	bus = pdev->bus;
1378 	hose = pci_bus_to_host(bus);
1379 	phb = hose->private_data;
1380 	pdn = pci_get_pdn(pdev);
1381 
1382 	if (!pdev->is_physfn)
1383 		return;
1384 
1385 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1386 		if (pe->parent_dev != pdev)
1387 			continue;
1388 
1389 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1390 
1391 		/* Remove from list */
1392 		mutex_lock(&phb->ioda.pe_list_mutex);
1393 		list_del(&pe->list);
1394 		mutex_unlock(&phb->ioda.pe_list_mutex);
1395 
1396 		pnv_ioda_deconfigure_pe(phb, pe);
1397 
1398 		pnv_ioda_free_pe(pe);
1399 	}
1400 }
1401 
1402 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1403 {
1404 	struct pci_bus        *bus;
1405 	struct pci_controller *hose;
1406 	struct pnv_phb        *phb;
1407 	struct pnv_ioda_pe    *pe;
1408 	struct pci_dn         *pdn;
1409 	struct pci_sriov      *iov;
1410 	u16                    num_vfs, i;
1411 
1412 	bus = pdev->bus;
1413 	hose = pci_bus_to_host(bus);
1414 	phb = hose->private_data;
1415 	pdn = pci_get_pdn(pdev);
1416 	iov = pdev->sriov;
1417 	num_vfs = pdn->num_vfs;
1418 
1419 	/* Release VF PEs */
1420 	pnv_ioda_release_vf_PE(pdev);
1421 
1422 	if (phb->type == PNV_PHB_IODA2) {
1423 		if (!pdn->m64_single_mode)
1424 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1425 
1426 		/* Release M64 windows */
1427 		pnv_pci_vf_release_m64(pdev, num_vfs);
1428 
1429 		/* Release PE numbers */
1430 		if (pdn->m64_single_mode) {
1431 			for (i = 0; i < num_vfs; i++) {
1432 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1433 					continue;
1434 
1435 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1436 				pnv_ioda_free_pe(pe);
1437 			}
1438 		} else
1439 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1440 		/* Releasing pe_num_map */
1441 		kfree(pdn->pe_num_map);
1442 	}
1443 }
1444 
1445 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1446 				       struct pnv_ioda_pe *pe);
1447 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1448 {
1449 	struct pci_bus        *bus;
1450 	struct pci_controller *hose;
1451 	struct pnv_phb        *phb;
1452 	struct pnv_ioda_pe    *pe;
1453 	int                    pe_num;
1454 	u16                    vf_index;
1455 	struct pci_dn         *pdn;
1456 
1457 	bus = pdev->bus;
1458 	hose = pci_bus_to_host(bus);
1459 	phb = hose->private_data;
1460 	pdn = pci_get_pdn(pdev);
1461 
1462 	if (!pdev->is_physfn)
1463 		return;
1464 
1465 	/* Reserve PE for each VF */
1466 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1467 		if (pdn->m64_single_mode)
1468 			pe_num = pdn->pe_num_map[vf_index];
1469 		else
1470 			pe_num = *pdn->pe_num_map + vf_index;
1471 
1472 		pe = &phb->ioda.pe_array[pe_num];
1473 		pe->pe_number = pe_num;
1474 		pe->phb = phb;
1475 		pe->flags = PNV_IODA_PE_VF;
1476 		pe->pbus = NULL;
1477 		pe->parent_dev = pdev;
1478 		pe->mve_number = -1;
1479 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1480 			   pci_iov_virtfn_devfn(pdev, vf_index);
1481 
1482 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1483 			hose->global_number, pdev->bus->number,
1484 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1485 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1486 
1487 		if (pnv_ioda_configure_pe(phb, pe)) {
1488 			/* XXX What do we do here ? */
1489 			pnv_ioda_free_pe(pe);
1490 			pe->pdev = NULL;
1491 			continue;
1492 		}
1493 
1494 		/* Put PE to the list */
1495 		mutex_lock(&phb->ioda.pe_list_mutex);
1496 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1497 		mutex_unlock(&phb->ioda.pe_list_mutex);
1498 
1499 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1500 	}
1501 }
1502 
1503 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1504 {
1505 	struct pci_bus        *bus;
1506 	struct pci_controller *hose;
1507 	struct pnv_phb        *phb;
1508 	struct pnv_ioda_pe    *pe;
1509 	struct pci_dn         *pdn;
1510 	int                    ret;
1511 	u16                    i;
1512 
1513 	bus = pdev->bus;
1514 	hose = pci_bus_to_host(bus);
1515 	phb = hose->private_data;
1516 	pdn = pci_get_pdn(pdev);
1517 
1518 	if (phb->type == PNV_PHB_IODA2) {
1519 		if (!pdn->vfs_expanded) {
1520 			dev_info(&pdev->dev, "don't support this SRIOV device"
1521 				" with non 64bit-prefetchable IOV BAR\n");
1522 			return -ENOSPC;
1523 		}
1524 
1525 		/*
1526 		 * When M64 BARs functions in Single PE mode, the number of VFs
1527 		 * could be enabled must be less than the number of M64 BARs.
1528 		 */
1529 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1530 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1531 			return -EBUSY;
1532 		}
1533 
1534 		/* Allocating pe_num_map */
1535 		if (pdn->m64_single_mode)
1536 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1537 					GFP_KERNEL);
1538 		else
1539 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1540 
1541 		if (!pdn->pe_num_map)
1542 			return -ENOMEM;
1543 
1544 		if (pdn->m64_single_mode)
1545 			for (i = 0; i < num_vfs; i++)
1546 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1547 
1548 		/* Calculate available PE for required VFs */
1549 		if (pdn->m64_single_mode) {
1550 			for (i = 0; i < num_vfs; i++) {
1551 				pe = pnv_ioda_alloc_pe(phb);
1552 				if (!pe) {
1553 					ret = -EBUSY;
1554 					goto m64_failed;
1555 				}
1556 
1557 				pdn->pe_num_map[i] = pe->pe_number;
1558 			}
1559 		} else {
1560 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1561 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1562 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1563 				0, num_vfs, 0);
1564 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1565 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1566 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1567 				kfree(pdn->pe_num_map);
1568 				return -EBUSY;
1569 			}
1570 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1571 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1572 		}
1573 		pdn->num_vfs = num_vfs;
1574 
1575 		/* Assign M64 window accordingly */
1576 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1577 		if (ret) {
1578 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1579 			goto m64_failed;
1580 		}
1581 
1582 		/*
1583 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1584 		 * the IOV BAR according to the PE# allocated to the VFs.
1585 		 * Otherwise, the PE# for the VF will conflict with others.
1586 		 */
1587 		if (!pdn->m64_single_mode) {
1588 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1589 			if (ret)
1590 				goto m64_failed;
1591 		}
1592 	}
1593 
1594 	/* Setup VF PEs */
1595 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1596 
1597 	return 0;
1598 
1599 m64_failed:
1600 	if (pdn->m64_single_mode) {
1601 		for (i = 0; i < num_vfs; i++) {
1602 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1603 				continue;
1604 
1605 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1606 			pnv_ioda_free_pe(pe);
1607 		}
1608 	} else
1609 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1610 
1611 	/* Releasing pe_num_map */
1612 	kfree(pdn->pe_num_map);
1613 
1614 	return ret;
1615 }
1616 
1617 int pcibios_sriov_disable(struct pci_dev *pdev)
1618 {
1619 	pnv_pci_sriov_disable(pdev);
1620 
1621 	/* Release PCI data */
1622 	remove_dev_pci_data(pdev);
1623 	return 0;
1624 }
1625 
1626 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1627 {
1628 	/* Allocate PCI data */
1629 	add_dev_pci_data(pdev);
1630 
1631 	return pnv_pci_sriov_enable(pdev, num_vfs);
1632 }
1633 #endif /* CONFIG_PCI_IOV */
1634 
1635 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1636 {
1637 	struct pci_dn *pdn = pci_get_pdn(pdev);
1638 	struct pnv_ioda_pe *pe;
1639 
1640 	/*
1641 	 * The function can be called while the PE#
1642 	 * hasn't been assigned. Do nothing for the
1643 	 * case.
1644 	 */
1645 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1646 		return;
1647 
1648 	pe = &phb->ioda.pe_array[pdn->pe_number];
1649 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1650 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1651 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1652 	/*
1653 	 * Note: iommu_add_device() will fail here as
1654 	 * for physical PE: the device is already added by now;
1655 	 * for virtual PE: sysfs entries are not ready yet and
1656 	 * tce_iommu_bus_notifier will add the device to a group later.
1657 	 */
1658 }
1659 
1660 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1661 {
1662 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1663 	struct pnv_phb *phb = hose->private_data;
1664 	struct pci_dn *pdn = pci_get_pdn(pdev);
1665 	struct pnv_ioda_pe *pe;
1666 	uint64_t top;
1667 	bool bypass = false;
1668 
1669 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1670 		return -ENODEV;;
1671 
1672 	pe = &phb->ioda.pe_array[pdn->pe_number];
1673 	if (pe->tce_bypass_enabled) {
1674 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1675 		bypass = (dma_mask >= top);
1676 	}
1677 
1678 	if (bypass) {
1679 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1680 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1681 	} else {
1682 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1683 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1684 	}
1685 	*pdev->dev.dma_mask = dma_mask;
1686 
1687 	/* Update peer npu devices */
1688 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1689 
1690 	return 0;
1691 }
1692 
1693 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1694 {
1695 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1696 	struct pnv_phb *phb = hose->private_data;
1697 	struct pci_dn *pdn = pci_get_pdn(pdev);
1698 	struct pnv_ioda_pe *pe;
1699 	u64 end, mask;
1700 
1701 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1702 		return 0;
1703 
1704 	pe = &phb->ioda.pe_array[pdn->pe_number];
1705 	if (!pe->tce_bypass_enabled)
1706 		return __dma_get_required_mask(&pdev->dev);
1707 
1708 
1709 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1710 	mask = 1ULL << (fls64(end) - 1);
1711 	mask += mask - 1;
1712 
1713 	return mask;
1714 }
1715 
1716 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1717 				   struct pci_bus *bus)
1718 {
1719 	struct pci_dev *dev;
1720 
1721 	list_for_each_entry(dev, &bus->devices, bus_list) {
1722 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1723 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1724 		iommu_add_device(&dev->dev);
1725 
1726 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1727 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1728 	}
1729 }
1730 
1731 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1732 		unsigned long index, unsigned long npages, bool rm)
1733 {
1734 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1735 			&tbl->it_group_list, struct iommu_table_group_link,
1736 			next);
1737 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1738 			struct pnv_ioda_pe, table_group);
1739 	__be64 __iomem *invalidate = rm ?
1740 		(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1741 		pe->phb->ioda.tce_inval_reg;
1742 	unsigned long start, end, inc;
1743 	const unsigned shift = tbl->it_page_shift;
1744 
1745 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1746 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1747 			npages - 1);
1748 
1749 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1750 	if (tbl->it_busno) {
1751 		start <<= shift;
1752 		end <<= shift;
1753 		inc = 128ull << shift;
1754 		start |= tbl->it_busno;
1755 		end |= tbl->it_busno;
1756 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1757 		/* p7ioc-style invalidation, 2 TCEs per write */
1758 		start |= (1ull << 63);
1759 		end |= (1ull << 63);
1760 		inc = 16;
1761         } else {
1762 		/* Default (older HW) */
1763                 inc = 128;
1764 	}
1765 
1766         end |= inc - 1;	/* round up end to be different than start */
1767 
1768         mb(); /* Ensure above stores are visible */
1769         while (start <= end) {
1770 		if (rm)
1771 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1772 		else
1773 			__raw_writeq(cpu_to_be64(start), invalidate);
1774                 start += inc;
1775         }
1776 
1777 	/*
1778 	 * The iommu layer will do another mb() for us on build()
1779 	 * and we don't care on free()
1780 	 */
1781 }
1782 
1783 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1784 		long npages, unsigned long uaddr,
1785 		enum dma_data_direction direction,
1786 		struct dma_attrs *attrs)
1787 {
1788 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1789 			attrs);
1790 
1791 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1792 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1793 
1794 	return ret;
1795 }
1796 
1797 #ifdef CONFIG_IOMMU_API
1798 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1799 		unsigned long *hpa, enum dma_data_direction *direction)
1800 {
1801 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1802 
1803 	if (!ret && (tbl->it_type &
1804 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1805 		pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1806 
1807 	return ret;
1808 }
1809 #endif
1810 
1811 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1812 		long npages)
1813 {
1814 	pnv_tce_free(tbl, index, npages);
1815 
1816 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1817 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1818 }
1819 
1820 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1821 	.set = pnv_ioda1_tce_build,
1822 #ifdef CONFIG_IOMMU_API
1823 	.exchange = pnv_ioda1_tce_xchg,
1824 #endif
1825 	.clear = pnv_ioda1_tce_free,
1826 	.get = pnv_tce_get,
1827 };
1828 
1829 #define TCE_KILL_INVAL_ALL  PPC_BIT(0)
1830 #define TCE_KILL_INVAL_PE   PPC_BIT(1)
1831 #define TCE_KILL_INVAL_TCE  PPC_BIT(2)
1832 
1833 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1834 {
1835 	const unsigned long val = TCE_KILL_INVAL_ALL;
1836 
1837 	mb(); /* Ensure previous TCE table stores are visible */
1838 	if (rm)
1839 		__raw_rm_writeq(cpu_to_be64(val),
1840 				(__be64 __iomem *)
1841 				phb->ioda.tce_inval_reg_phys);
1842 	else
1843 		__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1844 }
1845 
1846 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1847 {
1848 	/* 01xb - invalidate TCEs that match the specified PE# */
1849 	unsigned long val = TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1850 	struct pnv_phb *phb = pe->phb;
1851 
1852 	if (!phb->ioda.tce_inval_reg)
1853 		return;
1854 
1855 	mb(); /* Ensure above stores are visible */
1856 	__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1857 }
1858 
1859 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1860 		__be64 __iomem *invalidate, unsigned shift,
1861 		unsigned long index, unsigned long npages)
1862 {
1863 	unsigned long start, end, inc;
1864 
1865 	/* We'll invalidate DMA address in PE scope */
1866 	start = TCE_KILL_INVAL_TCE;
1867 	start |= (pe_number & 0xFF);
1868 	end = start;
1869 
1870 	/* Figure out the start, end and step */
1871 	start |= (index << shift);
1872 	end |= ((index + npages - 1) << shift);
1873 	inc = (0x1ull << shift);
1874 	mb();
1875 
1876 	while (start <= end) {
1877 		if (rm)
1878 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1879 		else
1880 			__raw_writeq(cpu_to_be64(start), invalidate);
1881 		start += inc;
1882 	}
1883 }
1884 
1885 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1886 		unsigned long index, unsigned long npages, bool rm)
1887 {
1888 	struct iommu_table_group_link *tgl;
1889 
1890 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1891 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1892 				struct pnv_ioda_pe, table_group);
1893 		__be64 __iomem *invalidate = rm ?
1894 			(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1895 			pe->phb->ioda.tce_inval_reg;
1896 
1897 		if (pe->phb->type == PNV_PHB_NPU) {
1898 			/*
1899 			 * The NVLink hardware does not support TCE kill
1900 			 * per TCE entry so we have to invalidate
1901 			 * the entire cache for it.
1902 			 */
1903 			pnv_pci_ioda2_tce_invalidate_entire(pe->phb, rm);
1904 			continue;
1905 		}
1906 		pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1907 			invalidate, tbl->it_page_shift,
1908 			index, npages);
1909 	}
1910 }
1911 
1912 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1913 		long npages, unsigned long uaddr,
1914 		enum dma_data_direction direction,
1915 		struct dma_attrs *attrs)
1916 {
1917 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1918 			attrs);
1919 
1920 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1921 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1922 
1923 	return ret;
1924 }
1925 
1926 #ifdef CONFIG_IOMMU_API
1927 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1928 		unsigned long *hpa, enum dma_data_direction *direction)
1929 {
1930 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1931 
1932 	if (!ret && (tbl->it_type &
1933 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1934 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1935 
1936 	return ret;
1937 }
1938 #endif
1939 
1940 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1941 		long npages)
1942 {
1943 	pnv_tce_free(tbl, index, npages);
1944 
1945 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1946 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1947 }
1948 
1949 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1950 {
1951 	pnv_pci_ioda2_table_free_pages(tbl);
1952 	iommu_free_table(tbl, "pnv");
1953 }
1954 
1955 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1956 	.set = pnv_ioda2_tce_build,
1957 #ifdef CONFIG_IOMMU_API
1958 	.exchange = pnv_ioda2_tce_xchg,
1959 #endif
1960 	.clear = pnv_ioda2_tce_free,
1961 	.get = pnv_tce_get,
1962 	.free = pnv_ioda2_table_free,
1963 };
1964 
1965 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1966 {
1967 	unsigned int *weight = (unsigned int *)data;
1968 
1969 	/* This is quite simplistic. The "base" weight of a device
1970 	 * is 10. 0 means no DMA is to be accounted for it.
1971 	 */
1972 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1973 		return 0;
1974 
1975 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1976 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1977 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1978 		*weight += 3;
1979 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1980 		*weight += 15;
1981 	else
1982 		*weight += 10;
1983 
1984 	return 0;
1985 }
1986 
1987 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1988 {
1989 	unsigned int weight = 0;
1990 
1991 	/* SRIOV VF has same DMA32 weight as its PF */
1992 #ifdef CONFIG_PCI_IOV
1993 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1994 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1995 		return weight;
1996 	}
1997 #endif
1998 
1999 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2000 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2001 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2002 		struct pci_dev *pdev;
2003 
2004 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2005 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2006 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2007 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2008 	}
2009 
2010 	return weight;
2011 }
2012 
2013 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2014 				       struct pnv_ioda_pe *pe)
2015 {
2016 
2017 	struct page *tce_mem = NULL;
2018 	struct iommu_table *tbl;
2019 	unsigned int weight, total_weight = 0;
2020 	unsigned int tce32_segsz, base, segs, avail, i;
2021 	int64_t rc;
2022 	void *addr;
2023 
2024 	/* XXX FIXME: Handle 64-bit only DMA devices */
2025 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2026 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2027 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2028 	if (!weight)
2029 		return;
2030 
2031 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2032 		     &total_weight);
2033 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2034 	if (!segs)
2035 		segs = 1;
2036 
2037 	/*
2038 	 * Allocate contiguous DMA32 segments. We begin with the expected
2039 	 * number of segments. With one more attempt, the number of DMA32
2040 	 * segments to be allocated is decreased by one until one segment
2041 	 * is allocated successfully.
2042 	 */
2043 	do {
2044 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2045 			for (avail = 0, i = base; i < base + segs; i++) {
2046 				if (phb->ioda.dma32_segmap[i] ==
2047 				    IODA_INVALID_PE)
2048 					avail++;
2049 			}
2050 
2051 			if (avail == segs)
2052 				goto found;
2053 		}
2054 	} while (--segs);
2055 
2056 	if (!segs) {
2057 		pe_warn(pe, "No available DMA32 segments\n");
2058 		return;
2059 	}
2060 
2061 found:
2062 	tbl = pnv_pci_table_alloc(phb->hose->node);
2063 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2064 			pe->pe_number);
2065 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2066 
2067 	/* Grab a 32-bit TCE table */
2068 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2069 		weight, total_weight, base, segs);
2070 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2071 		base * PNV_IODA1_DMA32_SEGSIZE,
2072 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2073 
2074 	/* XXX Currently, we allocate one big contiguous table for the
2075 	 * TCEs. We only really need one chunk per 256M of TCE space
2076 	 * (ie per segment) but that's an optimization for later, it
2077 	 * requires some added smarts with our get/put_tce implementation
2078 	 *
2079 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2080 	 * bytes
2081 	 */
2082 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2083 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2084 				   get_order(tce32_segsz * segs));
2085 	if (!tce_mem) {
2086 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2087 		goto fail;
2088 	}
2089 	addr = page_address(tce_mem);
2090 	memset(addr, 0, tce32_segsz * segs);
2091 
2092 	/* Configure HW */
2093 	for (i = 0; i < segs; i++) {
2094 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2095 					      pe->pe_number,
2096 					      base + i, 1,
2097 					      __pa(addr) + tce32_segsz * i,
2098 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2099 		if (rc) {
2100 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2101 			       " err %ld\n", rc);
2102 			goto fail;
2103 		}
2104 	}
2105 
2106 	/* Setup DMA32 segment mapping */
2107 	for (i = base; i < base + segs; i++)
2108 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2109 
2110 	/* Setup linux iommu table */
2111 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2112 				  base * PNV_IODA1_DMA32_SEGSIZE,
2113 				  IOMMU_PAGE_SHIFT_4K);
2114 
2115 	/* OPAL variant of P7IOC SW invalidated TCEs */
2116 	if (phb->ioda.tce_inval_reg)
2117 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2118 				 TCE_PCI_SWINV_FREE   |
2119 				 TCE_PCI_SWINV_PAIR);
2120 
2121 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2122 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2123 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2124 	iommu_init_table(tbl, phb->hose->node);
2125 
2126 	if (pe->flags & PNV_IODA_PE_DEV) {
2127 		/*
2128 		 * Setting table base here only for carrying iommu_group
2129 		 * further down to let iommu_add_device() do the job.
2130 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2131 		 */
2132 		set_iommu_table_base(&pe->pdev->dev, tbl);
2133 		iommu_add_device(&pe->pdev->dev);
2134 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2135 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2136 
2137 	return;
2138  fail:
2139 	/* XXX Failure: Try to fallback to 64-bit only ? */
2140 	if (tce_mem)
2141 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2142 	if (tbl) {
2143 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2144 		iommu_free_table(tbl, "pnv");
2145 	}
2146 }
2147 
2148 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2149 		int num, struct iommu_table *tbl)
2150 {
2151 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2152 			table_group);
2153 	struct pnv_phb *phb = pe->phb;
2154 	int64_t rc;
2155 	const unsigned long size = tbl->it_indirect_levels ?
2156 			tbl->it_level_size : tbl->it_size;
2157 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2158 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2159 
2160 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2161 			start_addr, start_addr + win_size - 1,
2162 			IOMMU_PAGE_SIZE(tbl));
2163 
2164 	/*
2165 	 * Map TCE table through TVT. The TVE index is the PE number
2166 	 * shifted by 1 bit for 32-bits DMA space.
2167 	 */
2168 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2169 			pe->pe_number,
2170 			(pe->pe_number << 1) + num,
2171 			tbl->it_indirect_levels + 1,
2172 			__pa(tbl->it_base),
2173 			size << 3,
2174 			IOMMU_PAGE_SIZE(tbl));
2175 	if (rc) {
2176 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2177 		return rc;
2178 	}
2179 
2180 	pnv_pci_link_table_and_group(phb->hose->node, num,
2181 			tbl, &pe->table_group);
2182 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2183 
2184 	return 0;
2185 }
2186 
2187 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2188 {
2189 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2190 	int64_t rc;
2191 
2192 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2193 	if (enable) {
2194 		phys_addr_t top = memblock_end_of_DRAM();
2195 
2196 		top = roundup_pow_of_two(top);
2197 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2198 						     pe->pe_number,
2199 						     window_id,
2200 						     pe->tce_bypass_base,
2201 						     top);
2202 	} else {
2203 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2204 						     pe->pe_number,
2205 						     window_id,
2206 						     pe->tce_bypass_base,
2207 						     0);
2208 	}
2209 	if (rc)
2210 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2211 	else
2212 		pe->tce_bypass_enabled = enable;
2213 }
2214 
2215 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2216 		__u32 page_shift, __u64 window_size, __u32 levels,
2217 		struct iommu_table *tbl);
2218 
2219 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2220 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2221 		struct iommu_table **ptbl)
2222 {
2223 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2224 			table_group);
2225 	int nid = pe->phb->hose->node;
2226 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2227 	long ret;
2228 	struct iommu_table *tbl;
2229 
2230 	tbl = pnv_pci_table_alloc(nid);
2231 	if (!tbl)
2232 		return -ENOMEM;
2233 
2234 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2235 			bus_offset, page_shift, window_size,
2236 			levels, tbl);
2237 	if (ret) {
2238 		iommu_free_table(tbl, "pnv");
2239 		return ret;
2240 	}
2241 
2242 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2243 	if (pe->phb->ioda.tce_inval_reg)
2244 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2245 
2246 	*ptbl = tbl;
2247 
2248 	return 0;
2249 }
2250 
2251 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2252 {
2253 	struct iommu_table *tbl = NULL;
2254 	long rc;
2255 
2256 	/*
2257 	 * crashkernel= specifies the kdump kernel's maximum memory at
2258 	 * some offset and there is no guaranteed the result is a power
2259 	 * of 2, which will cause errors later.
2260 	 */
2261 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2262 
2263 	/*
2264 	 * In memory constrained environments, e.g. kdump kernel, the
2265 	 * DMA window can be larger than available memory, which will
2266 	 * cause errors later.
2267 	 */
2268 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2269 
2270 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2271 			IOMMU_PAGE_SHIFT_4K,
2272 			window_size,
2273 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2274 	if (rc) {
2275 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2276 				rc);
2277 		return rc;
2278 	}
2279 
2280 	iommu_init_table(tbl, pe->phb->hose->node);
2281 
2282 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2283 	if (rc) {
2284 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2285 				rc);
2286 		pnv_ioda2_table_free(tbl);
2287 		return rc;
2288 	}
2289 
2290 	if (!pnv_iommu_bypass_disabled)
2291 		pnv_pci_ioda2_set_bypass(pe, true);
2292 
2293 	/* OPAL variant of PHB3 invalidated TCEs */
2294 	if (pe->phb->ioda.tce_inval_reg)
2295 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2296 
2297 	/*
2298 	 * Setting table base here only for carrying iommu_group
2299 	 * further down to let iommu_add_device() do the job.
2300 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2301 	 */
2302 	if (pe->flags & PNV_IODA_PE_DEV)
2303 		set_iommu_table_base(&pe->pdev->dev, tbl);
2304 
2305 	return 0;
2306 }
2307 
2308 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2309 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2310 		int num)
2311 {
2312 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2313 			table_group);
2314 	struct pnv_phb *phb = pe->phb;
2315 	long ret;
2316 
2317 	pe_info(pe, "Removing DMA window #%d\n", num);
2318 
2319 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2320 			(pe->pe_number << 1) + num,
2321 			0/* levels */, 0/* table address */,
2322 			0/* table size */, 0/* page size */);
2323 	if (ret)
2324 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2325 	else
2326 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2327 
2328 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2329 
2330 	return ret;
2331 }
2332 #endif
2333 
2334 #ifdef CONFIG_IOMMU_API
2335 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2336 		__u64 window_size, __u32 levels)
2337 {
2338 	unsigned long bytes = 0;
2339 	const unsigned window_shift = ilog2(window_size);
2340 	unsigned entries_shift = window_shift - page_shift;
2341 	unsigned table_shift = entries_shift + 3;
2342 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2343 	unsigned long direct_table_size;
2344 
2345 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2346 			(window_size > memory_hotplug_max()) ||
2347 			!is_power_of_2(window_size))
2348 		return 0;
2349 
2350 	/* Calculate a direct table size from window_size and levels */
2351 	entries_shift = (entries_shift + levels - 1) / levels;
2352 	table_shift = entries_shift + 3;
2353 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2354 	direct_table_size =  1UL << table_shift;
2355 
2356 	for ( ; levels; --levels) {
2357 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2358 
2359 		tce_table_size /= direct_table_size;
2360 		tce_table_size <<= 3;
2361 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2362 	}
2363 
2364 	return bytes;
2365 }
2366 
2367 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2368 {
2369 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2370 						table_group);
2371 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2372 	struct iommu_table *tbl = pe->table_group.tables[0];
2373 
2374 	pnv_pci_ioda2_set_bypass(pe, false);
2375 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2376 	pnv_ioda2_table_free(tbl);
2377 }
2378 
2379 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2380 {
2381 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2382 						table_group);
2383 
2384 	pnv_pci_ioda2_setup_default_config(pe);
2385 }
2386 
2387 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2388 	.get_table_size = pnv_pci_ioda2_get_table_size,
2389 	.create_table = pnv_pci_ioda2_create_table,
2390 	.set_window = pnv_pci_ioda2_set_window,
2391 	.unset_window = pnv_pci_ioda2_unset_window,
2392 	.take_ownership = pnv_ioda2_take_ownership,
2393 	.release_ownership = pnv_ioda2_release_ownership,
2394 };
2395 
2396 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2397 {
2398 	struct pci_controller *hose;
2399 	struct pnv_phb *phb;
2400 	struct pnv_ioda_pe **ptmppe = opaque;
2401 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2402 	struct pci_dn *pdn = pci_get_pdn(pdev);
2403 
2404 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2405 		return 0;
2406 
2407 	hose = pci_bus_to_host(pdev->bus);
2408 	phb = hose->private_data;
2409 	if (phb->type != PNV_PHB_NPU)
2410 		return 0;
2411 
2412 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2413 
2414 	return 1;
2415 }
2416 
2417 /*
2418  * This returns PE of associated NPU.
2419  * This assumes that NPU is in the same IOMMU group with GPU and there is
2420  * no other PEs.
2421  */
2422 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2423 		struct iommu_table_group *table_group)
2424 {
2425 	struct pnv_ioda_pe *npe = NULL;
2426 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2427 			gpe_table_group_to_npe_cb);
2428 
2429 	BUG_ON(!ret || !npe);
2430 
2431 	return npe;
2432 }
2433 
2434 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2435 		int num, struct iommu_table *tbl)
2436 {
2437 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2438 
2439 	if (ret)
2440 		return ret;
2441 
2442 	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2443 	if (ret)
2444 		pnv_pci_ioda2_unset_window(table_group, num);
2445 
2446 	return ret;
2447 }
2448 
2449 static long pnv_pci_ioda2_npu_unset_window(
2450 		struct iommu_table_group *table_group,
2451 		int num)
2452 {
2453 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2454 
2455 	if (ret)
2456 		return ret;
2457 
2458 	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2459 }
2460 
2461 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2462 {
2463 	/*
2464 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2465 	 * the iommu_table if 32bit DMA is enabled.
2466 	 */
2467 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2468 	pnv_ioda2_take_ownership(table_group);
2469 }
2470 
2471 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2472 	.get_table_size = pnv_pci_ioda2_get_table_size,
2473 	.create_table = pnv_pci_ioda2_create_table,
2474 	.set_window = pnv_pci_ioda2_npu_set_window,
2475 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2476 	.take_ownership = pnv_ioda2_npu_take_ownership,
2477 	.release_ownership = pnv_ioda2_release_ownership,
2478 };
2479 
2480 static void pnv_pci_ioda_setup_iommu_api(void)
2481 {
2482 	struct pci_controller *hose, *tmp;
2483 	struct pnv_phb *phb;
2484 	struct pnv_ioda_pe *pe, *gpe;
2485 
2486 	/*
2487 	 * Now we have all PHBs discovered, time to add NPU devices to
2488 	 * the corresponding IOMMU groups.
2489 	 */
2490 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2491 		phb = hose->private_data;
2492 
2493 		if (phb->type != PNV_PHB_NPU)
2494 			continue;
2495 
2496 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2497 			gpe = pnv_pci_npu_setup_iommu(pe);
2498 			if (gpe)
2499 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2500 		}
2501 	}
2502 }
2503 #else /* !CONFIG_IOMMU_API */
2504 static void pnv_pci_ioda_setup_iommu_api(void) { };
2505 #endif
2506 
2507 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2508 {
2509 	const __be64 *swinvp;
2510 
2511 	/* OPAL variant of PHB3 invalidated TCEs */
2512 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2513 	if (!swinvp)
2514 		return;
2515 
2516 	phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2517 	phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2518 }
2519 
2520 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2521 		unsigned levels, unsigned long limit,
2522 		unsigned long *current_offset, unsigned long *total_allocated)
2523 {
2524 	struct page *tce_mem = NULL;
2525 	__be64 *addr, *tmp;
2526 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2527 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2528 	unsigned entries = 1UL << (shift - 3);
2529 	long i;
2530 
2531 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2532 	if (!tce_mem) {
2533 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2534 		return NULL;
2535 	}
2536 	addr = page_address(tce_mem);
2537 	memset(addr, 0, allocated);
2538 	*total_allocated += allocated;
2539 
2540 	--levels;
2541 	if (!levels) {
2542 		*current_offset += allocated;
2543 		return addr;
2544 	}
2545 
2546 	for (i = 0; i < entries; ++i) {
2547 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2548 				levels, limit, current_offset, total_allocated);
2549 		if (!tmp)
2550 			break;
2551 
2552 		addr[i] = cpu_to_be64(__pa(tmp) |
2553 				TCE_PCI_READ | TCE_PCI_WRITE);
2554 
2555 		if (*current_offset >= limit)
2556 			break;
2557 	}
2558 
2559 	return addr;
2560 }
2561 
2562 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2563 		unsigned long size, unsigned level);
2564 
2565 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2566 		__u32 page_shift, __u64 window_size, __u32 levels,
2567 		struct iommu_table *tbl)
2568 {
2569 	void *addr;
2570 	unsigned long offset = 0, level_shift, total_allocated = 0;
2571 	const unsigned window_shift = ilog2(window_size);
2572 	unsigned entries_shift = window_shift - page_shift;
2573 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2574 	const unsigned long tce_table_size = 1UL << table_shift;
2575 
2576 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2577 		return -EINVAL;
2578 
2579 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2580 		return -EINVAL;
2581 
2582 	/* Adjust direct table size from window_size and levels */
2583 	entries_shift = (entries_shift + levels - 1) / levels;
2584 	level_shift = entries_shift + 3;
2585 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2586 
2587 	/* Allocate TCE table */
2588 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2589 			levels, tce_table_size, &offset, &total_allocated);
2590 
2591 	/* addr==NULL means that the first level allocation failed */
2592 	if (!addr)
2593 		return -ENOMEM;
2594 
2595 	/*
2596 	 * First level was allocated but some lower level failed as
2597 	 * we did not allocate as much as we wanted,
2598 	 * release partially allocated table.
2599 	 */
2600 	if (offset < tce_table_size) {
2601 		pnv_pci_ioda2_table_do_free_pages(addr,
2602 				1ULL << (level_shift - 3), levels - 1);
2603 		return -ENOMEM;
2604 	}
2605 
2606 	/* Setup linux iommu table */
2607 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2608 			page_shift);
2609 	tbl->it_level_size = 1ULL << (level_shift - 3);
2610 	tbl->it_indirect_levels = levels - 1;
2611 	tbl->it_allocated_size = total_allocated;
2612 
2613 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2614 			window_size, tce_table_size, bus_offset);
2615 
2616 	return 0;
2617 }
2618 
2619 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2620 		unsigned long size, unsigned level)
2621 {
2622 	const unsigned long addr_ul = (unsigned long) addr &
2623 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2624 
2625 	if (level) {
2626 		long i;
2627 		u64 *tmp = (u64 *) addr_ul;
2628 
2629 		for (i = 0; i < size; ++i) {
2630 			unsigned long hpa = be64_to_cpu(tmp[i]);
2631 
2632 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2633 				continue;
2634 
2635 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2636 					level - 1);
2637 		}
2638 	}
2639 
2640 	free_pages(addr_ul, get_order(size << 3));
2641 }
2642 
2643 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2644 {
2645 	const unsigned long size = tbl->it_indirect_levels ?
2646 			tbl->it_level_size : tbl->it_size;
2647 
2648 	if (!tbl->it_size)
2649 		return;
2650 
2651 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2652 			tbl->it_indirect_levels);
2653 }
2654 
2655 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2656 				       struct pnv_ioda_pe *pe)
2657 {
2658 	int64_t rc;
2659 
2660 	/* TVE #1 is selected by PCI address bit 59 */
2661 	pe->tce_bypass_base = 1ull << 59;
2662 
2663 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2664 			pe->pe_number);
2665 
2666 	/* The PE will reserve all possible 32-bits space */
2667 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2668 		phb->ioda.m32_pci_base);
2669 
2670 	/* Setup linux iommu table */
2671 	pe->table_group.tce32_start = 0;
2672 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2673 	pe->table_group.max_dynamic_windows_supported =
2674 			IOMMU_TABLE_GROUP_MAX_TABLES;
2675 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2676 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2677 #ifdef CONFIG_IOMMU_API
2678 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2679 #endif
2680 
2681 	rc = pnv_pci_ioda2_setup_default_config(pe);
2682 	if (rc)
2683 		return;
2684 
2685 	if (pe->flags & PNV_IODA_PE_DEV)
2686 		iommu_add_device(&pe->pdev->dev);
2687 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2688 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2689 }
2690 
2691 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2692 {
2693 	struct pci_controller *hose = phb->hose;
2694 	struct pnv_ioda_pe *pe;
2695 	unsigned int weight;
2696 
2697 	/* If we have more PE# than segments available, hand out one
2698 	 * per PE until we run out and let the rest fail. If not,
2699 	 * then we assign at least one segment per PE, plus more based
2700 	 * on the amount of devices under that PE
2701 	 */
2702 	pr_info("PCI: Domain %04x has %d available 32-bit DMA segments\n",
2703 		hose->global_number, phb->ioda.dma32_count);
2704 
2705 	pnv_pci_ioda_setup_opal_tce_kill(phb);
2706 
2707 	/* Walk our PE list and configure their DMA segments */
2708 	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2709 		weight = pnv_pci_ioda_pe_dma_weight(pe);
2710 		if (!weight)
2711 			continue;
2712 
2713 		/*
2714 		 * For IODA2 compliant PHB3, we needn't care about the weight.
2715 		 * The all available 32-bits DMA space will be assigned to
2716 		 * the specific PE.
2717 		 */
2718 		if (phb->type == PNV_PHB_IODA1) {
2719 			pnv_pci_ioda1_setup_dma_pe(phb, pe);
2720 		} else if (phb->type == PNV_PHB_IODA2) {
2721 			pe_info(pe, "Assign DMA32 space\n");
2722 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
2723 		} else if (phb->type == PNV_PHB_NPU) {
2724 			/*
2725 			 * We initialise the DMA space for an NPU PHB
2726 			 * after setup of the PHB is complete as we
2727 			 * point the NPU TVT to the the same location
2728 			 * as the PHB3 TVT.
2729 			 */
2730 		}
2731 	}
2732 }
2733 
2734 #ifdef CONFIG_PCI_MSI
2735 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2736 {
2737 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2738 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2739 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2740 					   ioda.irq_chip);
2741 	int64_t rc;
2742 
2743 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2744 	WARN_ON_ONCE(rc);
2745 
2746 	icp_native_eoi(d);
2747 }
2748 
2749 
2750 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2751 {
2752 	struct irq_data *idata;
2753 	struct irq_chip *ichip;
2754 
2755 	if (phb->type != PNV_PHB_IODA2)
2756 		return;
2757 
2758 	if (!phb->ioda.irq_chip_init) {
2759 		/*
2760 		 * First time we setup an MSI IRQ, we need to setup the
2761 		 * corresponding IRQ chip to route correctly.
2762 		 */
2763 		idata = irq_get_irq_data(virq);
2764 		ichip = irq_data_get_irq_chip(idata);
2765 		phb->ioda.irq_chip_init = 1;
2766 		phb->ioda.irq_chip = *ichip;
2767 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2768 	}
2769 	irq_set_chip(virq, &phb->ioda.irq_chip);
2770 }
2771 
2772 #ifdef CONFIG_CXL_BASE
2773 
2774 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2775 {
2776 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2777 
2778 	return of_node_get(hose->dn);
2779 }
2780 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2781 
2782 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2783 {
2784 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2785 	struct pnv_phb *phb = hose->private_data;
2786 	struct pnv_ioda_pe *pe;
2787 	int rc;
2788 
2789 	pe = pnv_ioda_get_pe(dev);
2790 	if (!pe)
2791 		return -ENODEV;
2792 
2793 	pe_info(pe, "Switching PHB to CXL\n");
2794 
2795 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2796 	if (rc)
2797 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2798 
2799 	return rc;
2800 }
2801 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2802 
2803 /* Find PHB for cxl dev and allocate MSI hwirqs?
2804  * Returns the absolute hardware IRQ number
2805  */
2806 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2807 {
2808 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2809 	struct pnv_phb *phb = hose->private_data;
2810 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2811 
2812 	if (hwirq < 0) {
2813 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
2814 		return -ENOSPC;
2815 	}
2816 
2817 	return phb->msi_base + hwirq;
2818 }
2819 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2820 
2821 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2822 {
2823 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2824 	struct pnv_phb *phb = hose->private_data;
2825 
2826 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2827 }
2828 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2829 
2830 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2831 				  struct pci_dev *dev)
2832 {
2833 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2834 	struct pnv_phb *phb = hose->private_data;
2835 	int i, hwirq;
2836 
2837 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
2838 		if (!irqs->range[i])
2839 			continue;
2840 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2841 			 i, irqs->offset[i],
2842 			 irqs->range[i]);
2843 		hwirq = irqs->offset[i] - phb->msi_base;
2844 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2845 				       irqs->range[i]);
2846 	}
2847 }
2848 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2849 
2850 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2851 			       struct pci_dev *dev, int num)
2852 {
2853 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2854 	struct pnv_phb *phb = hose->private_data;
2855 	int i, hwirq, try;
2856 
2857 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2858 
2859 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
2860 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2861 		try = num;
2862 		while (try) {
2863 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2864 			if (hwirq >= 0)
2865 				break;
2866 			try /= 2;
2867 		}
2868 		if (!try)
2869 			goto fail;
2870 
2871 		irqs->offset[i] = phb->msi_base + hwirq;
2872 		irqs->range[i] = try;
2873 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2874 			 i, irqs->offset[i], irqs->range[i]);
2875 		num -= try;
2876 	}
2877 	if (num)
2878 		goto fail;
2879 
2880 	return 0;
2881 fail:
2882 	pnv_cxl_release_hwirq_ranges(irqs, dev);
2883 	return -ENOSPC;
2884 }
2885 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2886 
2887 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2888 {
2889 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2890 	struct pnv_phb *phb = hose->private_data;
2891 
2892 	return phb->msi_bmp.irq_count;
2893 }
2894 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2895 
2896 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2897 			   unsigned int virq)
2898 {
2899 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2900 	struct pnv_phb *phb = hose->private_data;
2901 	unsigned int xive_num = hwirq - phb->msi_base;
2902 	struct pnv_ioda_pe *pe;
2903 	int rc;
2904 
2905 	if (!(pe = pnv_ioda_get_pe(dev)))
2906 		return -ENODEV;
2907 
2908 	/* Assign XIVE to PE */
2909 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2910 	if (rc) {
2911 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2912 			"hwirq 0x%x XIVE 0x%x PE\n",
2913 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2914 		return -EIO;
2915 	}
2916 	set_msi_irq_chip(phb, virq);
2917 
2918 	return 0;
2919 }
2920 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2921 #endif
2922 
2923 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2924 				  unsigned int hwirq, unsigned int virq,
2925 				  unsigned int is_64, struct msi_msg *msg)
2926 {
2927 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2928 	unsigned int xive_num = hwirq - phb->msi_base;
2929 	__be32 data;
2930 	int rc;
2931 
2932 	/* No PE assigned ? bail out ... no MSI for you ! */
2933 	if (pe == NULL)
2934 		return -ENXIO;
2935 
2936 	/* Check if we have an MVE */
2937 	if (pe->mve_number < 0)
2938 		return -ENXIO;
2939 
2940 	/* Force 32-bit MSI on some broken devices */
2941 	if (dev->no_64bit_msi)
2942 		is_64 = 0;
2943 
2944 	/* Assign XIVE to PE */
2945 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2946 	if (rc) {
2947 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2948 			pci_name(dev), rc, xive_num);
2949 		return -EIO;
2950 	}
2951 
2952 	if (is_64) {
2953 		__be64 addr64;
2954 
2955 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2956 				     &addr64, &data);
2957 		if (rc) {
2958 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2959 				pci_name(dev), rc);
2960 			return -EIO;
2961 		}
2962 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2963 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2964 	} else {
2965 		__be32 addr32;
2966 
2967 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2968 				     &addr32, &data);
2969 		if (rc) {
2970 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2971 				pci_name(dev), rc);
2972 			return -EIO;
2973 		}
2974 		msg->address_hi = 0;
2975 		msg->address_lo = be32_to_cpu(addr32);
2976 	}
2977 	msg->data = be32_to_cpu(data);
2978 
2979 	set_msi_irq_chip(phb, virq);
2980 
2981 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2982 		 " address=%x_%08x data=%x PE# %d\n",
2983 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2984 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2985 
2986 	return 0;
2987 }
2988 
2989 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2990 {
2991 	unsigned int count;
2992 	const __be32 *prop = of_get_property(phb->hose->dn,
2993 					     "ibm,opal-msi-ranges", NULL);
2994 	if (!prop) {
2995 		/* BML Fallback */
2996 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2997 	}
2998 	if (!prop)
2999 		return;
3000 
3001 	phb->msi_base = be32_to_cpup(prop);
3002 	count = be32_to_cpup(prop + 1);
3003 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
3004 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3005 		       phb->hose->global_number);
3006 		return;
3007 	}
3008 
3009 	phb->msi_setup = pnv_pci_ioda_msi_setup;
3010 	phb->msi32_support = 1;
3011 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3012 		count, phb->msi_base);
3013 }
3014 #else
3015 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3016 #endif /* CONFIG_PCI_MSI */
3017 
3018 #ifdef CONFIG_PCI_IOV
3019 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3020 {
3021 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3022 	struct pnv_phb *phb = hose->private_data;
3023 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3024 	struct resource *res;
3025 	int i;
3026 	resource_size_t size, total_vf_bar_sz;
3027 	struct pci_dn *pdn;
3028 	int mul, total_vfs;
3029 
3030 	if (!pdev->is_physfn || pdev->is_added)
3031 		return;
3032 
3033 	pdn = pci_get_pdn(pdev);
3034 	pdn->vfs_expanded = 0;
3035 	pdn->m64_single_mode = false;
3036 
3037 	total_vfs = pci_sriov_get_totalvfs(pdev);
3038 	mul = phb->ioda.total_pe_num;
3039 	total_vf_bar_sz = 0;
3040 
3041 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3042 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3043 		if (!res->flags || res->parent)
3044 			continue;
3045 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
3046 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
3047 					" non M64 VF BAR%d: %pR. \n",
3048 				 i, res);
3049 			goto truncate_iov;
3050 		}
3051 
3052 		total_vf_bar_sz += pci_iov_resource_size(pdev,
3053 				i + PCI_IOV_RESOURCES);
3054 
3055 		/*
3056 		 * If bigger than quarter of M64 segment size, just round up
3057 		 * power of two.
3058 		 *
3059 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3060 		 * with other devices, IOV BAR size is expanded to be
3061 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3062 		 * segment size , the expanded size would equal to half of the
3063 		 * whole M64 space size, which will exhaust the M64 Space and
3064 		 * limit the system flexibility.  This is a design decision to
3065 		 * set the boundary to quarter of the M64 segment size.
3066 		 */
3067 		if (total_vf_bar_sz > gate) {
3068 			mul = roundup_pow_of_two(total_vfs);
3069 			dev_info(&pdev->dev,
3070 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3071 				total_vf_bar_sz, gate, mul);
3072 			pdn->m64_single_mode = true;
3073 			break;
3074 		}
3075 	}
3076 
3077 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3078 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3079 		if (!res->flags || res->parent)
3080 			continue;
3081 
3082 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3083 		/*
3084 		 * On PHB3, the minimum size alignment of M64 BAR in single
3085 		 * mode is 32MB.
3086 		 */
3087 		if (pdn->m64_single_mode && (size < SZ_32M))
3088 			goto truncate_iov;
3089 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3090 		res->end = res->start + size * mul - 1;
3091 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3092 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3093 			 i, res, mul);
3094 	}
3095 	pdn->vfs_expanded = mul;
3096 
3097 	return;
3098 
3099 truncate_iov:
3100 	/* To save MMIO space, IOV BAR is truncated. */
3101 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3102 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3103 		res->flags = 0;
3104 		res->end = res->start - 1;
3105 	}
3106 }
3107 #endif /* CONFIG_PCI_IOV */
3108 
3109 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3110 				  struct resource *res)
3111 {
3112 	struct pnv_phb *phb = pe->phb;
3113 	struct pci_bus_region region;
3114 	int index;
3115 	int64_t rc;
3116 
3117 	if (!res || !res->flags || res->start > res->end)
3118 		return;
3119 
3120 	if (res->flags & IORESOURCE_IO) {
3121 		region.start = res->start - phb->ioda.io_pci_base;
3122 		region.end   = res->end - phb->ioda.io_pci_base;
3123 		index = region.start / phb->ioda.io_segsize;
3124 
3125 		while (index < phb->ioda.total_pe_num &&
3126 		       region.start <= region.end) {
3127 			phb->ioda.io_segmap[index] = pe->pe_number;
3128 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3129 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3130 			if (rc != OPAL_SUCCESS) {
3131 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
3132 				       __func__, rc, index, pe->pe_number);
3133 				break;
3134 			}
3135 
3136 			region.start += phb->ioda.io_segsize;
3137 			index++;
3138 		}
3139 	} else if ((res->flags & IORESOURCE_MEM) &&
3140 		   !pnv_pci_is_mem_pref_64(res->flags)) {
3141 		region.start = res->start -
3142 			       phb->hose->mem_offset[0] -
3143 			       phb->ioda.m32_pci_base;
3144 		region.end   = res->end -
3145 			       phb->hose->mem_offset[0] -
3146 			       phb->ioda.m32_pci_base;
3147 		index = region.start / phb->ioda.m32_segsize;
3148 
3149 		while (index < phb->ioda.total_pe_num &&
3150 		       region.start <= region.end) {
3151 			phb->ioda.m32_segmap[index] = pe->pe_number;
3152 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3153 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3154 			if (rc != OPAL_SUCCESS) {
3155 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
3156 				       __func__, rc, index, pe->pe_number);
3157 				break;
3158 			}
3159 
3160 			region.start += phb->ioda.m32_segsize;
3161 			index++;
3162 		}
3163 	}
3164 }
3165 
3166 /*
3167  * This function is supposed to be called on basis of PE from top
3168  * to bottom style. So the the I/O or MMIO segment assigned to
3169  * parent PE could be overrided by its child PEs if necessary.
3170  */
3171 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3172 {
3173 	struct pci_dev *pdev;
3174 	int i;
3175 
3176 	/*
3177 	 * NOTE: We only care PCI bus based PE for now. For PCI
3178 	 * device based PE, for example SRIOV sensitive VF should
3179 	 * be figured out later.
3180 	 */
3181 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3182 
3183 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3184 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3185 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3186 
3187 		/*
3188 		 * If the PE contains all subordinate PCI buses, the
3189 		 * windows of the child bridges should be mapped to
3190 		 * the PE as well.
3191 		 */
3192 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3193 			continue;
3194 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3195 			pnv_ioda_setup_pe_res(pe,
3196 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3197 	}
3198 }
3199 
3200 static void pnv_pci_ioda_setup_seg(void)
3201 {
3202 	struct pci_controller *tmp, *hose;
3203 	struct pnv_phb *phb;
3204 	struct pnv_ioda_pe *pe;
3205 
3206 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3207 		phb = hose->private_data;
3208 
3209 		/* NPU PHB does not support IO or MMIO segmentation */
3210 		if (phb->type == PNV_PHB_NPU)
3211 			continue;
3212 
3213 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3214 			pnv_ioda_setup_pe_seg(pe);
3215 		}
3216 	}
3217 }
3218 
3219 static void pnv_pci_ioda_setup_DMA(void)
3220 {
3221 	struct pci_controller *hose, *tmp;
3222 	struct pnv_phb *phb;
3223 
3224 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3225 		pnv_ioda_setup_dma(hose->private_data);
3226 
3227 		/* Mark the PHB initialization done */
3228 		phb = hose->private_data;
3229 		phb->initialized = 1;
3230 	}
3231 
3232 	pnv_pci_ioda_setup_iommu_api();
3233 }
3234 
3235 static void pnv_pci_ioda_create_dbgfs(void)
3236 {
3237 #ifdef CONFIG_DEBUG_FS
3238 	struct pci_controller *hose, *tmp;
3239 	struct pnv_phb *phb;
3240 	char name[16];
3241 
3242 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3243 		phb = hose->private_data;
3244 
3245 		sprintf(name, "PCI%04x", hose->global_number);
3246 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3247 		if (!phb->dbgfs)
3248 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3249 				__func__, hose->global_number);
3250 	}
3251 #endif /* CONFIG_DEBUG_FS */
3252 }
3253 
3254 static void pnv_pci_ioda_fixup(void)
3255 {
3256 	pnv_pci_ioda_setup_PEs();
3257 	pnv_pci_ioda_setup_seg();
3258 	pnv_pci_ioda_setup_DMA();
3259 
3260 	pnv_pci_ioda_create_dbgfs();
3261 
3262 #ifdef CONFIG_EEH
3263 	eeh_init();
3264 	eeh_addr_cache_build();
3265 #endif
3266 }
3267 
3268 /*
3269  * Returns the alignment for I/O or memory windows for P2P
3270  * bridges. That actually depends on how PEs are segmented.
3271  * For now, we return I/O or M32 segment size for PE sensitive
3272  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3273  * 1MiB for memory) will be returned.
3274  *
3275  * The current PCI bus might be put into one PE, which was
3276  * create against the parent PCI bridge. For that case, we
3277  * needn't enlarge the alignment so that we can save some
3278  * resources.
3279  */
3280 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3281 						unsigned long type)
3282 {
3283 	struct pci_dev *bridge;
3284 	struct pci_controller *hose = pci_bus_to_host(bus);
3285 	struct pnv_phb *phb = hose->private_data;
3286 	int num_pci_bridges = 0;
3287 
3288 	bridge = bus->self;
3289 	while (bridge) {
3290 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3291 			num_pci_bridges++;
3292 			if (num_pci_bridges >= 2)
3293 				return 1;
3294 		}
3295 
3296 		bridge = bridge->bus->self;
3297 	}
3298 
3299 	/* We fail back to M32 if M64 isn't supported */
3300 	if (phb->ioda.m64_segsize &&
3301 	    pnv_pci_is_mem_pref_64(type))
3302 		return phb->ioda.m64_segsize;
3303 	if (type & IORESOURCE_MEM)
3304 		return phb->ioda.m32_segsize;
3305 
3306 	return phb->ioda.io_segsize;
3307 }
3308 
3309 #ifdef CONFIG_PCI_IOV
3310 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3311 						      int resno)
3312 {
3313 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3314 	struct pnv_phb *phb = hose->private_data;
3315 	struct pci_dn *pdn = pci_get_pdn(pdev);
3316 	resource_size_t align;
3317 
3318 	/*
3319 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3320 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3321 	 * BAR should be size aligned.
3322 	 *
3323 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3324 	 * powernv-specific hardware restriction is gone. But if just use the
3325 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3326 	 * in one segment of M64 #15, which introduces the PE conflict between
3327 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3328 	 * m64_segsize.
3329 	 *
3330 	 * This function returns the total IOV BAR size if M64 BAR is in
3331 	 * Shared PE mode or just VF BAR size if not.
3332 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3333 	 * M64 segment size if IOV BAR size is less.
3334 	 */
3335 	align = pci_iov_resource_size(pdev, resno);
3336 	if (!pdn->vfs_expanded)
3337 		return align;
3338 	if (pdn->m64_single_mode)
3339 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3340 
3341 	return pdn->vfs_expanded * align;
3342 }
3343 #endif /* CONFIG_PCI_IOV */
3344 
3345 /* Prevent enabling devices for which we couldn't properly
3346  * assign a PE
3347  */
3348 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3349 {
3350 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3351 	struct pnv_phb *phb = hose->private_data;
3352 	struct pci_dn *pdn;
3353 
3354 	/* The function is probably called while the PEs have
3355 	 * not be created yet. For example, resource reassignment
3356 	 * during PCI probe period. We just skip the check if
3357 	 * PEs isn't ready.
3358 	 */
3359 	if (!phb->initialized)
3360 		return true;
3361 
3362 	pdn = pci_get_pdn(dev);
3363 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3364 		return false;
3365 
3366 	return true;
3367 }
3368 
3369 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3370 {
3371 	struct pnv_phb *phb = hose->private_data;
3372 
3373 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3374 		       OPAL_ASSERT_RESET);
3375 }
3376 
3377 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3378 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3379 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3380 #ifdef CONFIG_PCI_MSI
3381 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3382 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3383 #endif
3384 	.enable_device_hook	= pnv_pci_enable_device_hook,
3385 	.window_alignment	= pnv_pci_window_alignment,
3386 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3387 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3388 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3389 	.shutdown		= pnv_pci_ioda_shutdown,
3390 };
3391 
3392 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3393 {
3394 	dev_err_once(&npdev->dev,
3395 			"%s operation unsupported for NVLink devices\n",
3396 			__func__);
3397 	return -EPERM;
3398 }
3399 
3400 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3401 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3402 #ifdef CONFIG_PCI_MSI
3403 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3404 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3405 #endif
3406 	.enable_device_hook	= pnv_pci_enable_device_hook,
3407 	.window_alignment	= pnv_pci_window_alignment,
3408 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3409 	.dma_set_mask		= pnv_npu_dma_set_mask,
3410 	.shutdown		= pnv_pci_ioda_shutdown,
3411 };
3412 
3413 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3414 					 u64 hub_id, int ioda_type)
3415 {
3416 	struct pci_controller *hose;
3417 	struct pnv_phb *phb;
3418 	unsigned long size, m64map_off, m32map_off, pemap_off;
3419 	unsigned long iomap_off = 0, dma32map_off = 0;
3420 	const __be64 *prop64;
3421 	const __be32 *prop32;
3422 	int len;
3423 	unsigned int segno;
3424 	u64 phb_id;
3425 	void *aux;
3426 	long rc;
3427 
3428 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3429 
3430 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3431 	if (!prop64) {
3432 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3433 		return;
3434 	}
3435 	phb_id = be64_to_cpup(prop64);
3436 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3437 
3438 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3439 
3440 	/* Allocate PCI controller */
3441 	phb->hose = hose = pcibios_alloc_controller(np);
3442 	if (!phb->hose) {
3443 		pr_err("  Can't allocate PCI controller for %s\n",
3444 		       np->full_name);
3445 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3446 		return;
3447 	}
3448 
3449 	spin_lock_init(&phb->lock);
3450 	prop32 = of_get_property(np, "bus-range", &len);
3451 	if (prop32 && len == 8) {
3452 		hose->first_busno = be32_to_cpu(prop32[0]);
3453 		hose->last_busno = be32_to_cpu(prop32[1]);
3454 	} else {
3455 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3456 		hose->first_busno = 0;
3457 		hose->last_busno = 0xff;
3458 	}
3459 	hose->private_data = phb;
3460 	phb->hub_id = hub_id;
3461 	phb->opal_id = phb_id;
3462 	phb->type = ioda_type;
3463 	mutex_init(&phb->ioda.pe_alloc_mutex);
3464 
3465 	/* Detect specific models for error handling */
3466 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3467 		phb->model = PNV_PHB_MODEL_P7IOC;
3468 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3469 		phb->model = PNV_PHB_MODEL_PHB3;
3470 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3471 		phb->model = PNV_PHB_MODEL_NPU;
3472 	else
3473 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3474 
3475 	/* Parse 32-bit and IO ranges (if any) */
3476 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3477 
3478 	/* Get registers */
3479 	phb->regs = of_iomap(np, 0);
3480 	if (phb->regs == NULL)
3481 		pr_err("  Failed to map registers !\n");
3482 
3483 	/* Initialize more IODA stuff */
3484 	phb->ioda.total_pe_num = 1;
3485 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3486 	if (prop32)
3487 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3488 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3489 	if (prop32)
3490 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3491 
3492 	/* Parse 64-bit MMIO range */
3493 	pnv_ioda_parse_m64_window(phb);
3494 
3495 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3496 	/* FW Has already off top 64k of M32 space (MSI space) */
3497 	phb->ioda.m32_size += 0x10000;
3498 
3499 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3500 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3501 	phb->ioda.io_size = hose->pci_io_size;
3502 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3503 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3504 
3505 	/* Calculate how many 32-bit TCE segments we have */
3506 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3507 				PNV_IODA1_DMA32_SEGSIZE;
3508 
3509 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3510 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3511 			sizeof(unsigned long));
3512 	m64map_off = size;
3513 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3514 	m32map_off = size;
3515 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3516 	if (phb->type == PNV_PHB_IODA1) {
3517 		iomap_off = size;
3518 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3519 		dma32map_off = size;
3520 		size += phb->ioda.dma32_count *
3521 			sizeof(phb->ioda.dma32_segmap[0]);
3522 	}
3523 	pemap_off = size;
3524 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3525 	aux = memblock_virt_alloc(size, 0);
3526 	phb->ioda.pe_alloc = aux;
3527 	phb->ioda.m64_segmap = aux + m64map_off;
3528 	phb->ioda.m32_segmap = aux + m32map_off;
3529 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3530 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3531 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3532 	}
3533 	if (phb->type == PNV_PHB_IODA1) {
3534 		phb->ioda.io_segmap = aux + iomap_off;
3535 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3536 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3537 
3538 		phb->ioda.dma32_segmap = aux + dma32map_off;
3539 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3540 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3541 	}
3542 	phb->ioda.pe_array = aux + pemap_off;
3543 	set_bit(phb->ioda.reserved_pe_idx, phb->ioda.pe_alloc);
3544 
3545 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3546 	mutex_init(&phb->ioda.pe_list_mutex);
3547 
3548 	/* Calculate how many 32-bit TCE segments we have */
3549 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3550 				PNV_IODA1_DMA32_SEGSIZE;
3551 
3552 #if 0 /* We should really do that ... */
3553 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3554 					 window_type,
3555 					 window_num,
3556 					 starting_real_address,
3557 					 starting_pci_address,
3558 					 segment_size);
3559 #endif
3560 
3561 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3562 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3563 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3564 	if (phb->ioda.m64_size)
3565 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3566 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3567 	if (phb->ioda.io_size)
3568 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3569 			phb->ioda.io_size, phb->ioda.io_segsize);
3570 
3571 
3572 	phb->hose->ops = &pnv_pci_ops;
3573 	phb->get_pe_state = pnv_ioda_get_pe_state;
3574 	phb->freeze_pe = pnv_ioda_freeze_pe;
3575 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3576 
3577 	/* Setup MSI support */
3578 	pnv_pci_init_ioda_msis(phb);
3579 
3580 	/*
3581 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3582 	 * to let the PCI core do resource assignment. It's supposed
3583 	 * that the PCI core will do correct I/O and MMIO alignment
3584 	 * for the P2P bridge bars so that each PCI bus (excluding
3585 	 * the child P2P bridges) can form individual PE.
3586 	 */
3587 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3588 
3589 	if (phb->type == PNV_PHB_NPU) {
3590 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3591 	} else {
3592 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3593 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3594 	}
3595 
3596 #ifdef CONFIG_PCI_IOV
3597 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3598 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3599 #endif
3600 
3601 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3602 
3603 	/* Reset IODA tables to a clean state */
3604 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3605 	if (rc)
3606 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3607 
3608 	/* If we're running in kdump kerenl, the previous kerenl never
3609 	 * shutdown PCI devices correctly. We already got IODA table
3610 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3611 	 * transactions from previous kerenl.
3612 	 */
3613 	if (is_kdump_kernel()) {
3614 		pr_info("  Issue PHB reset ...\n");
3615 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3616 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3617 	}
3618 
3619 	/* Remove M64 resource if we can't configure it successfully */
3620 	if (!phb->init_m64 || phb->init_m64(phb))
3621 		hose->mem_resources[1].flags = 0;
3622 }
3623 
3624 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3625 {
3626 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3627 }
3628 
3629 void __init pnv_pci_init_npu_phb(struct device_node *np)
3630 {
3631 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3632 }
3633 
3634 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3635 {
3636 	struct device_node *phbn;
3637 	const __be64 *prop64;
3638 	u64 hub_id;
3639 
3640 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3641 
3642 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3643 	if (!prop64) {
3644 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3645 		return;
3646 	}
3647 	hub_id = be64_to_cpup(prop64);
3648 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3649 
3650 	/* Count child PHBs */
3651 	for_each_child_of_node(np, phbn) {
3652 		/* Look for IODA1 PHBs */
3653 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3654 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3655 	}
3656 }
3657