1/* 2 * Calculate a CRC T10DIF with vpmsum acceleration 3 * 4 * Constants generated by crc32-vpmsum, available at 5 * https://github.com/antonblanchard/crc32-vpmsum 6 * 7 * crc32-vpmsum is 8 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM 9 * and is available under the GPL v2 or later. 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 .section .rodata 17.balign 16 18 19.byteswap_constant: 20 /* byte reverse permute constant */ 21 .octa 0x0F0E0D0C0B0A09080706050403020100 22 23.constants: 24 25 /* Reduce 262144 kbits to 1024 bits */ 26 /* x^261184 mod p(x), x^261120 mod p(x) */ 27 .octa 0x0000000056d300000000000052550000 28 29 /* x^260160 mod p(x), x^260096 mod p(x) */ 30 .octa 0x00000000ee67000000000000a1e40000 31 32 /* x^259136 mod p(x), x^259072 mod p(x) */ 33 .octa 0x0000000060830000000000004ad10000 34 35 /* x^258112 mod p(x), x^258048 mod p(x) */ 36 .octa 0x000000008cfe0000000000009ab40000 37 38 /* x^257088 mod p(x), x^257024 mod p(x) */ 39 .octa 0x000000003e93000000000000fdb50000 40 41 /* x^256064 mod p(x), x^256000 mod p(x) */ 42 .octa 0x000000003c2000000000000045480000 43 44 /* x^255040 mod p(x), x^254976 mod p(x) */ 45 .octa 0x00000000b1fc0000000000008d690000 46 47 /* x^254016 mod p(x), x^253952 mod p(x) */ 48 .octa 0x00000000f82b00000000000024ad0000 49 50 /* x^252992 mod p(x), x^252928 mod p(x) */ 51 .octa 0x0000000044420000000000009f1a0000 52 53 /* x^251968 mod p(x), x^251904 mod p(x) */ 54 .octa 0x00000000e88c00000000000066ec0000 55 56 /* x^250944 mod p(x), x^250880 mod p(x) */ 57 .octa 0x00000000385c000000000000c87d0000 58 59 /* x^249920 mod p(x), x^249856 mod p(x) */ 60 .octa 0x000000003227000000000000c8ff0000 61 62 /* x^248896 mod p(x), x^248832 mod p(x) */ 63 .octa 0x00000000a9a900000000000033440000 64 65 /* x^247872 mod p(x), x^247808 mod p(x) */ 66 .octa 0x00000000abaa00000000000066eb0000 67 68 /* x^246848 mod p(x), x^246784 mod p(x) */ 69 .octa 0x000000001ac3000000000000c4ef0000 70 71 /* x^245824 mod p(x), x^245760 mod p(x) */ 72 .octa 0x0000000063f000000000000056f30000 73 74 /* x^244800 mod p(x), x^244736 mod p(x) */ 75 .octa 0x0000000032cc00000000000002050000 76 77 /* x^243776 mod p(x), x^243712 mod p(x) */ 78 .octa 0x00000000f8b5000000000000568e0000 79 80 /* x^242752 mod p(x), x^242688 mod p(x) */ 81 .octa 0x000000008db100000000000064290000 82 83 /* x^241728 mod p(x), x^241664 mod p(x) */ 84 .octa 0x0000000059ca0000000000006b660000 85 86 /* x^240704 mod p(x), x^240640 mod p(x) */ 87 .octa 0x000000005f5c00000000000018f80000 88 89 /* x^239680 mod p(x), x^239616 mod p(x) */ 90 .octa 0x0000000061af000000000000b6090000 91 92 /* x^238656 mod p(x), x^238592 mod p(x) */ 93 .octa 0x00000000e29e000000000000099a0000 94 95 /* x^237632 mod p(x), x^237568 mod p(x) */ 96 .octa 0x000000000975000000000000a8360000 97 98 /* x^236608 mod p(x), x^236544 mod p(x) */ 99 .octa 0x0000000043900000000000004f570000 100 101 /* x^235584 mod p(x), x^235520 mod p(x) */ 102 .octa 0x00000000f9cd000000000000134c0000 103 104 /* x^234560 mod p(x), x^234496 mod p(x) */ 105 .octa 0x000000007c29000000000000ec380000 106 107 /* x^233536 mod p(x), x^233472 mod p(x) */ 108 .octa 0x000000004c6a000000000000b0d10000 109 110 /* x^232512 mod p(x), x^232448 mod p(x) */ 111 .octa 0x00000000e7290000000000007d3e0000 112 113 /* x^231488 mod p(x), x^231424 mod p(x) */ 114 .octa 0x00000000f1ab000000000000f0b20000 115 116 /* x^230464 mod p(x), x^230400 mod p(x) */ 117 .octa 0x0000000039db0000000000009c270000 118 119 /* x^229440 mod p(x), x^229376 mod p(x) */ 120 .octa 0x000000005e2800000000000092890000 121 122 /* x^228416 mod p(x), x^228352 mod p(x) */ 123 .octa 0x00000000d44e000000000000d5ee0000 124 125 /* x^227392 mod p(x), x^227328 mod p(x) */ 126 .octa 0x00000000cd0a00000000000041f50000 127 128 /* x^226368 mod p(x), x^226304 mod p(x) */ 129 .octa 0x00000000c5b400000000000010520000 130 131 /* x^225344 mod p(x), x^225280 mod p(x) */ 132 .octa 0x00000000fd2100000000000042170000 133 134 /* x^224320 mod p(x), x^224256 mod p(x) */ 135 .octa 0x000000002f2500000000000095c20000 136 137 /* x^223296 mod p(x), x^223232 mod p(x) */ 138 .octa 0x000000001b0100000000000001ce0000 139 140 /* x^222272 mod p(x), x^222208 mod p(x) */ 141 .octa 0x000000000d430000000000002aca0000 142 143 /* x^221248 mod p(x), x^221184 mod p(x) */ 144 .octa 0x0000000030a6000000000000385e0000 145 146 /* x^220224 mod p(x), x^220160 mod p(x) */ 147 .octa 0x00000000e37b0000000000006f7a0000 148 149 /* x^219200 mod p(x), x^219136 mod p(x) */ 150 .octa 0x00000000873600000000000024320000 151 152 /* x^218176 mod p(x), x^218112 mod p(x) */ 153 .octa 0x00000000e9fb000000000000bd9c0000 154 155 /* x^217152 mod p(x), x^217088 mod p(x) */ 156 .octa 0x000000003b9500000000000054bc0000 157 158 /* x^216128 mod p(x), x^216064 mod p(x) */ 159 .octa 0x00000000133e000000000000a4660000 160 161 /* x^215104 mod p(x), x^215040 mod p(x) */ 162 .octa 0x00000000784500000000000079930000 163 164 /* x^214080 mod p(x), x^214016 mod p(x) */ 165 .octa 0x00000000b9800000000000001bb80000 166 167 /* x^213056 mod p(x), x^212992 mod p(x) */ 168 .octa 0x00000000687600000000000024400000 169 170 /* x^212032 mod p(x), x^211968 mod p(x) */ 171 .octa 0x00000000aff300000000000029e10000 172 173 /* x^211008 mod p(x), x^210944 mod p(x) */ 174 .octa 0x0000000024b50000000000005ded0000 175 176 /* x^209984 mod p(x), x^209920 mod p(x) */ 177 .octa 0x0000000017e8000000000000b12e0000 178 179 /* x^208960 mod p(x), x^208896 mod p(x) */ 180 .octa 0x00000000128400000000000026d20000 181 182 /* x^207936 mod p(x), x^207872 mod p(x) */ 183 .octa 0x000000002115000000000000a32a0000 184 185 /* x^206912 mod p(x), x^206848 mod p(x) */ 186 .octa 0x000000009595000000000000a1210000 187 188 /* x^205888 mod p(x), x^205824 mod p(x) */ 189 .octa 0x00000000281e000000000000ee8b0000 190 191 /* x^204864 mod p(x), x^204800 mod p(x) */ 192 .octa 0x0000000006010000000000003d0d0000 193 194 /* x^203840 mod p(x), x^203776 mod p(x) */ 195 .octa 0x00000000e2b600000000000034e90000 196 197 /* x^202816 mod p(x), x^202752 mod p(x) */ 198 .octa 0x000000001bd40000000000004cdb0000 199 200 /* x^201792 mod p(x), x^201728 mod p(x) */ 201 .octa 0x00000000df2800000000000030e90000 202 203 /* x^200768 mod p(x), x^200704 mod p(x) */ 204 .octa 0x0000000049c200000000000042590000 205 206 /* x^199744 mod p(x), x^199680 mod p(x) */ 207 .octa 0x000000009b97000000000000df950000 208 209 /* x^198720 mod p(x), x^198656 mod p(x) */ 210 .octa 0x000000006184000000000000da7b0000 211 212 /* x^197696 mod p(x), x^197632 mod p(x) */ 213 .octa 0x00000000461700000000000012510000 214 215 /* x^196672 mod p(x), x^196608 mod p(x) */ 216 .octa 0x000000009b40000000000000f37e0000 217 218 /* x^195648 mod p(x), x^195584 mod p(x) */ 219 .octa 0x00000000eeb2000000000000ecf10000 220 221 /* x^194624 mod p(x), x^194560 mod p(x) */ 222 .octa 0x00000000b2e800000000000050f20000 223 224 /* x^193600 mod p(x), x^193536 mod p(x) */ 225 .octa 0x00000000f59a000000000000e0b30000 226 227 /* x^192576 mod p(x), x^192512 mod p(x) */ 228 .octa 0x00000000467f0000000000004d5a0000 229 230 /* x^191552 mod p(x), x^191488 mod p(x) */ 231 .octa 0x00000000da92000000000000bb010000 232 233 /* x^190528 mod p(x), x^190464 mod p(x) */ 234 .octa 0x000000001e1000000000000022a40000 235 236 /* x^189504 mod p(x), x^189440 mod p(x) */ 237 .octa 0x0000000058fe000000000000836f0000 238 239 /* x^188480 mod p(x), x^188416 mod p(x) */ 240 .octa 0x00000000b9ce000000000000d78d0000 241 242 /* x^187456 mod p(x), x^187392 mod p(x) */ 243 .octa 0x0000000022210000000000004f8d0000 244 245 /* x^186432 mod p(x), x^186368 mod p(x) */ 246 .octa 0x00000000744600000000000033760000 247 248 /* x^185408 mod p(x), x^185344 mod p(x) */ 249 .octa 0x000000001c2e000000000000a1e50000 250 251 /* x^184384 mod p(x), x^184320 mod p(x) */ 252 .octa 0x00000000dcc8000000000000a1a40000 253 254 /* x^183360 mod p(x), x^183296 mod p(x) */ 255 .octa 0x00000000910f00000000000019a20000 256 257 /* x^182336 mod p(x), x^182272 mod p(x) */ 258 .octa 0x0000000055d5000000000000f6ae0000 259 260 /* x^181312 mod p(x), x^181248 mod p(x) */ 261 .octa 0x00000000c8ba000000000000a7ac0000 262 263 /* x^180288 mod p(x), x^180224 mod p(x) */ 264 .octa 0x0000000031f8000000000000eea20000 265 266 /* x^179264 mod p(x), x^179200 mod p(x) */ 267 .octa 0x000000001966000000000000c4d90000 268 269 /* x^178240 mod p(x), x^178176 mod p(x) */ 270 .octa 0x00000000b9810000000000002b470000 271 272 /* x^177216 mod p(x), x^177152 mod p(x) */ 273 .octa 0x000000008303000000000000f7cf0000 274 275 /* x^176192 mod p(x), x^176128 mod p(x) */ 276 .octa 0x000000002ce500000000000035b30000 277 278 /* x^175168 mod p(x), x^175104 mod p(x) */ 279 .octa 0x000000002fae0000000000000c7c0000 280 281 /* x^174144 mod p(x), x^174080 mod p(x) */ 282 .octa 0x00000000f50c0000000000009edf0000 283 284 /* x^173120 mod p(x), x^173056 mod p(x) */ 285 .octa 0x00000000714f00000000000004cd0000 286 287 /* x^172096 mod p(x), x^172032 mod p(x) */ 288 .octa 0x00000000c161000000000000541b0000 289 290 /* x^171072 mod p(x), x^171008 mod p(x) */ 291 .octa 0x0000000021c8000000000000e2700000 292 293 /* x^170048 mod p(x), x^169984 mod p(x) */ 294 .octa 0x00000000b93d00000000000009a60000 295 296 /* x^169024 mod p(x), x^168960 mod p(x) */ 297 .octa 0x00000000fbcf000000000000761c0000 298 299 /* x^168000 mod p(x), x^167936 mod p(x) */ 300 .octa 0x0000000026350000000000009db30000 301 302 /* x^166976 mod p(x), x^166912 mod p(x) */ 303 .octa 0x00000000b64f0000000000003e9f0000 304 305 /* x^165952 mod p(x), x^165888 mod p(x) */ 306 .octa 0x00000000bd0e00000000000078590000 307 308 /* x^164928 mod p(x), x^164864 mod p(x) */ 309 .octa 0x00000000d9360000000000008bc80000 310 311 /* x^163904 mod p(x), x^163840 mod p(x) */ 312 .octa 0x000000002f140000000000008c9f0000 313 314 /* x^162880 mod p(x), x^162816 mod p(x) */ 315 .octa 0x000000006a270000000000006af70000 316 317 /* x^161856 mod p(x), x^161792 mod p(x) */ 318 .octa 0x000000006685000000000000e5210000 319 320 /* x^160832 mod p(x), x^160768 mod p(x) */ 321 .octa 0x0000000062da00000000000008290000 322 323 /* x^159808 mod p(x), x^159744 mod p(x) */ 324 .octa 0x00000000bb4b000000000000e4d00000 325 326 /* x^158784 mod p(x), x^158720 mod p(x) */ 327 .octa 0x00000000d2490000000000004ae10000 328 329 /* x^157760 mod p(x), x^157696 mod p(x) */ 330 .octa 0x00000000c85b00000000000000e70000 331 332 /* x^156736 mod p(x), x^156672 mod p(x) */ 333 .octa 0x00000000c37a00000000000015650000 334 335 /* x^155712 mod p(x), x^155648 mod p(x) */ 336 .octa 0x0000000018530000000000001c2f0000 337 338 /* x^154688 mod p(x), x^154624 mod p(x) */ 339 .octa 0x00000000b46600000000000037bd0000 340 341 /* x^153664 mod p(x), x^153600 mod p(x) */ 342 .octa 0x00000000439b00000000000012190000 343 344 /* x^152640 mod p(x), x^152576 mod p(x) */ 345 .octa 0x00000000b1260000000000005ece0000 346 347 /* x^151616 mod p(x), x^151552 mod p(x) */ 348 .octa 0x00000000d8110000000000002a5e0000 349 350 /* x^150592 mod p(x), x^150528 mod p(x) */ 351 .octa 0x00000000099f00000000000052330000 352 353 /* x^149568 mod p(x), x^149504 mod p(x) */ 354 .octa 0x00000000f9f9000000000000f9120000 355 356 /* x^148544 mod p(x), x^148480 mod p(x) */ 357 .octa 0x000000005cc00000000000000ddc0000 358 359 /* x^147520 mod p(x), x^147456 mod p(x) */ 360 .octa 0x00000000343b00000000000012200000 361 362 /* x^146496 mod p(x), x^146432 mod p(x) */ 363 .octa 0x000000009222000000000000d12b0000 364 365 /* x^145472 mod p(x), x^145408 mod p(x) */ 366 .octa 0x00000000d781000000000000eb2d0000 367 368 /* x^144448 mod p(x), x^144384 mod p(x) */ 369 .octa 0x000000000bf400000000000058970000 370 371 /* x^143424 mod p(x), x^143360 mod p(x) */ 372 .octa 0x00000000094200000000000013690000 373 374 /* x^142400 mod p(x), x^142336 mod p(x) */ 375 .octa 0x00000000d55100000000000051950000 376 377 /* x^141376 mod p(x), x^141312 mod p(x) */ 378 .octa 0x000000008f11000000000000954b0000 379 380 /* x^140352 mod p(x), x^140288 mod p(x) */ 381 .octa 0x00000000140f000000000000b29e0000 382 383 /* x^139328 mod p(x), x^139264 mod p(x) */ 384 .octa 0x00000000c6db000000000000db5d0000 385 386 /* x^138304 mod p(x), x^138240 mod p(x) */ 387 .octa 0x00000000715b000000000000dfaf0000 388 389 /* x^137280 mod p(x), x^137216 mod p(x) */ 390 .octa 0x000000000dea000000000000e3b60000 391 392 /* x^136256 mod p(x), x^136192 mod p(x) */ 393 .octa 0x000000006f94000000000000ddaf0000 394 395 /* x^135232 mod p(x), x^135168 mod p(x) */ 396 .octa 0x0000000024e1000000000000e4f70000 397 398 /* x^134208 mod p(x), x^134144 mod p(x) */ 399 .octa 0x000000008810000000000000aa110000 400 401 /* x^133184 mod p(x), x^133120 mod p(x) */ 402 .octa 0x0000000030c2000000000000a8e60000 403 404 /* x^132160 mod p(x), x^132096 mod p(x) */ 405 .octa 0x00000000e6d0000000000000ccf30000 406 407 /* x^131136 mod p(x), x^131072 mod p(x) */ 408 .octa 0x000000004da000000000000079bf0000 409 410 /* x^130112 mod p(x), x^130048 mod p(x) */ 411 .octa 0x000000007759000000000000b3a30000 412 413 /* x^129088 mod p(x), x^129024 mod p(x) */ 414 .octa 0x00000000597400000000000028790000 415 416 /* x^128064 mod p(x), x^128000 mod p(x) */ 417 .octa 0x000000007acd000000000000b5820000 418 419 /* x^127040 mod p(x), x^126976 mod p(x) */ 420 .octa 0x00000000e6e400000000000026ad0000 421 422 /* x^126016 mod p(x), x^125952 mod p(x) */ 423 .octa 0x000000006d49000000000000985b0000 424 425 /* x^124992 mod p(x), x^124928 mod p(x) */ 426 .octa 0x000000000f0800000000000011520000 427 428 /* x^123968 mod p(x), x^123904 mod p(x) */ 429 .octa 0x000000002c7f000000000000846c0000 430 431 /* x^122944 mod p(x), x^122880 mod p(x) */ 432 .octa 0x000000005ce7000000000000ae1d0000 433 434 /* x^121920 mod p(x), x^121856 mod p(x) */ 435 .octa 0x00000000d4cb000000000000e21d0000 436 437 /* x^120896 mod p(x), x^120832 mod p(x) */ 438 .octa 0x000000003a2300000000000019bb0000 439 440 /* x^119872 mod p(x), x^119808 mod p(x) */ 441 .octa 0x000000000e1700000000000095290000 442 443 /* x^118848 mod p(x), x^118784 mod p(x) */ 444 .octa 0x000000006e6400000000000050d20000 445 446 /* x^117824 mod p(x), x^117760 mod p(x) */ 447 .octa 0x000000008d5c0000000000000cd10000 448 449 /* x^116800 mod p(x), x^116736 mod p(x) */ 450 .octa 0x00000000ef310000000000007b570000 451 452 /* x^115776 mod p(x), x^115712 mod p(x) */ 453 .octa 0x00000000645d00000000000053d60000 454 455 /* x^114752 mod p(x), x^114688 mod p(x) */ 456 .octa 0x0000000018fc00000000000077510000 457 458 /* x^113728 mod p(x), x^113664 mod p(x) */ 459 .octa 0x000000000cb3000000000000a7b70000 460 461 /* x^112704 mod p(x), x^112640 mod p(x) */ 462 .octa 0x00000000991b000000000000d0780000 463 464 /* x^111680 mod p(x), x^111616 mod p(x) */ 465 .octa 0x00000000845a000000000000be3c0000 466 467 /* x^110656 mod p(x), x^110592 mod p(x) */ 468 .octa 0x00000000d3a9000000000000df020000 469 470 /* x^109632 mod p(x), x^109568 mod p(x) */ 471 .octa 0x0000000017d7000000000000063e0000 472 473 /* x^108608 mod p(x), x^108544 mod p(x) */ 474 .octa 0x000000007a860000000000008ab40000 475 476 /* x^107584 mod p(x), x^107520 mod p(x) */ 477 .octa 0x00000000fd7c000000000000c7bd0000 478 479 /* x^106560 mod p(x), x^106496 mod p(x) */ 480 .octa 0x00000000a56b000000000000efd60000 481 482 /* x^105536 mod p(x), x^105472 mod p(x) */ 483 .octa 0x0000000010e400000000000071380000 484 485 /* x^104512 mod p(x), x^104448 mod p(x) */ 486 .octa 0x00000000994500000000000004d30000 487 488 /* x^103488 mod p(x), x^103424 mod p(x) */ 489 .octa 0x00000000b83c0000000000003b0e0000 490 491 /* x^102464 mod p(x), x^102400 mod p(x) */ 492 .octa 0x00000000d6c10000000000008b020000 493 494 /* x^101440 mod p(x), x^101376 mod p(x) */ 495 .octa 0x000000009efc000000000000da940000 496 497 /* x^100416 mod p(x), x^100352 mod p(x) */ 498 .octa 0x000000005e87000000000000f9f70000 499 500 /* x^99392 mod p(x), x^99328 mod p(x) */ 501 .octa 0x000000006c9b00000000000045e40000 502 503 /* x^98368 mod p(x), x^98304 mod p(x) */ 504 .octa 0x00000000178a00000000000083940000 505 506 /* x^97344 mod p(x), x^97280 mod p(x) */ 507 .octa 0x00000000f0c8000000000000f0a00000 508 509 /* x^96320 mod p(x), x^96256 mod p(x) */ 510 .octa 0x00000000f699000000000000b74b0000 511 512 /* x^95296 mod p(x), x^95232 mod p(x) */ 513 .octa 0x00000000316d000000000000c1cf0000 514 515 /* x^94272 mod p(x), x^94208 mod p(x) */ 516 .octa 0x00000000987e00000000000072680000 517 518 /* x^93248 mod p(x), x^93184 mod p(x) */ 519 .octa 0x00000000acff000000000000e0ab0000 520 521 /* x^92224 mod p(x), x^92160 mod p(x) */ 522 .octa 0x00000000a1f6000000000000c5a80000 523 524 /* x^91200 mod p(x), x^91136 mod p(x) */ 525 .octa 0x0000000061bd000000000000cf690000 526 527 /* x^90176 mod p(x), x^90112 mod p(x) */ 528 .octa 0x00000000c9f2000000000000cbcc0000 529 530 /* x^89152 mod p(x), x^89088 mod p(x) */ 531 .octa 0x000000005a33000000000000de050000 532 533 /* x^88128 mod p(x), x^88064 mod p(x) */ 534 .octa 0x00000000e416000000000000ccd70000 535 536 /* x^87104 mod p(x), x^87040 mod p(x) */ 537 .octa 0x0000000058930000000000002f670000 538 539 /* x^86080 mod p(x), x^86016 mod p(x) */ 540 .octa 0x00000000a9d3000000000000152f0000 541 542 /* x^85056 mod p(x), x^84992 mod p(x) */ 543 .octa 0x00000000c114000000000000ecc20000 544 545 /* x^84032 mod p(x), x^83968 mod p(x) */ 546 .octa 0x00000000b9270000000000007c890000 547 548 /* x^83008 mod p(x), x^82944 mod p(x) */ 549 .octa 0x000000002e6000000000000006ee0000 550 551 /* x^81984 mod p(x), x^81920 mod p(x) */ 552 .octa 0x00000000dfc600000000000009100000 553 554 /* x^80960 mod p(x), x^80896 mod p(x) */ 555 .octa 0x000000004911000000000000ad4e0000 556 557 /* x^79936 mod p(x), x^79872 mod p(x) */ 558 .octa 0x00000000ae1b000000000000b04d0000 559 560 /* x^78912 mod p(x), x^78848 mod p(x) */ 561 .octa 0x0000000005fa000000000000e9900000 562 563 /* x^77888 mod p(x), x^77824 mod p(x) */ 564 .octa 0x0000000004a1000000000000cc6f0000 565 566 /* x^76864 mod p(x), x^76800 mod p(x) */ 567 .octa 0x00000000af73000000000000ed110000 568 569 /* x^75840 mod p(x), x^75776 mod p(x) */ 570 .octa 0x0000000082530000000000008f7e0000 571 572 /* x^74816 mod p(x), x^74752 mod p(x) */ 573 .octa 0x00000000cfdc000000000000594f0000 574 575 /* x^73792 mod p(x), x^73728 mod p(x) */ 576 .octa 0x00000000a6b6000000000000a8750000 577 578 /* x^72768 mod p(x), x^72704 mod p(x) */ 579 .octa 0x00000000fd76000000000000aa0c0000 580 581 /* x^71744 mod p(x), x^71680 mod p(x) */ 582 .octa 0x0000000006f500000000000071db0000 583 584 /* x^70720 mod p(x), x^70656 mod p(x) */ 585 .octa 0x0000000037ca000000000000ab0c0000 586 587 /* x^69696 mod p(x), x^69632 mod p(x) */ 588 .octa 0x00000000d7ab000000000000b7a00000 589 590 /* x^68672 mod p(x), x^68608 mod p(x) */ 591 .octa 0x00000000440800000000000090d30000 592 593 /* x^67648 mod p(x), x^67584 mod p(x) */ 594 .octa 0x00000000186100000000000054730000 595 596 /* x^66624 mod p(x), x^66560 mod p(x) */ 597 .octa 0x000000007368000000000000a3a20000 598 599 /* x^65600 mod p(x), x^65536 mod p(x) */ 600 .octa 0x0000000026d0000000000000f9040000 601 602 /* x^64576 mod p(x), x^64512 mod p(x) */ 603 .octa 0x00000000fe770000000000009c0a0000 604 605 /* x^63552 mod p(x), x^63488 mod p(x) */ 606 .octa 0x000000002cba000000000000d1e70000 607 608 /* x^62528 mod p(x), x^62464 mod p(x) */ 609 .octa 0x00000000f8bd0000000000005ac10000 610 611 /* x^61504 mod p(x), x^61440 mod p(x) */ 612 .octa 0x000000007372000000000000d68d0000 613 614 /* x^60480 mod p(x), x^60416 mod p(x) */ 615 .octa 0x00000000f37f00000000000089f60000 616 617 /* x^59456 mod p(x), x^59392 mod p(x) */ 618 .octa 0x00000000078400000000000008a90000 619 620 /* x^58432 mod p(x), x^58368 mod p(x) */ 621 .octa 0x00000000d3e400000000000042360000 622 623 /* x^57408 mod p(x), x^57344 mod p(x) */ 624 .octa 0x00000000eba800000000000092d50000 625 626 /* x^56384 mod p(x), x^56320 mod p(x) */ 627 .octa 0x00000000afbe000000000000b4d50000 628 629 /* x^55360 mod p(x), x^55296 mod p(x) */ 630 .octa 0x00000000d8ca000000000000c9060000 631 632 /* x^54336 mod p(x), x^54272 mod p(x) */ 633 .octa 0x00000000c2d00000000000008f4f0000 634 635 /* x^53312 mod p(x), x^53248 mod p(x) */ 636 .octa 0x00000000373200000000000028690000 637 638 /* x^52288 mod p(x), x^52224 mod p(x) */ 639 .octa 0x0000000046ae000000000000c3b30000 640 641 /* x^51264 mod p(x), x^51200 mod p(x) */ 642 .octa 0x00000000b243000000000000f8700000 643 644 /* x^50240 mod p(x), x^50176 mod p(x) */ 645 .octa 0x00000000f7f500000000000029eb0000 646 647 /* x^49216 mod p(x), x^49152 mod p(x) */ 648 .octa 0x000000000c7e000000000000fe730000 649 650 /* x^48192 mod p(x), x^48128 mod p(x) */ 651 .octa 0x00000000c38200000000000096000000 652 653 /* x^47168 mod p(x), x^47104 mod p(x) */ 654 .octa 0x000000008956000000000000683c0000 655 656 /* x^46144 mod p(x), x^46080 mod p(x) */ 657 .octa 0x00000000422d0000000000005f1e0000 658 659 /* x^45120 mod p(x), x^45056 mod p(x) */ 660 .octa 0x00000000ac0f0000000000006f810000 661 662 /* x^44096 mod p(x), x^44032 mod p(x) */ 663 .octa 0x00000000ce30000000000000031f0000 664 665 /* x^43072 mod p(x), x^43008 mod p(x) */ 666 .octa 0x000000003d43000000000000455a0000 667 668 /* x^42048 mod p(x), x^41984 mod p(x) */ 669 .octa 0x000000007ebe000000000000a6050000 670 671 /* x^41024 mod p(x), x^40960 mod p(x) */ 672 .octa 0x00000000976e00000000000077eb0000 673 674 /* x^40000 mod p(x), x^39936 mod p(x) */ 675 .octa 0x000000000872000000000000389c0000 676 677 /* x^38976 mod p(x), x^38912 mod p(x) */ 678 .octa 0x000000008979000000000000c7b20000 679 680 /* x^37952 mod p(x), x^37888 mod p(x) */ 681 .octa 0x000000005c1e0000000000001d870000 682 683 /* x^36928 mod p(x), x^36864 mod p(x) */ 684 .octa 0x00000000aebb00000000000045810000 685 686 /* x^35904 mod p(x), x^35840 mod p(x) */ 687 .octa 0x000000004f7e0000000000006d4a0000 688 689 /* x^34880 mod p(x), x^34816 mod p(x) */ 690 .octa 0x00000000ea98000000000000b9200000 691 692 /* x^33856 mod p(x), x^33792 mod p(x) */ 693 .octa 0x00000000f39600000000000022f20000 694 695 /* x^32832 mod p(x), x^32768 mod p(x) */ 696 .octa 0x000000000bc500000000000041ca0000 697 698 /* x^31808 mod p(x), x^31744 mod p(x) */ 699 .octa 0x00000000786400000000000078500000 700 701 /* x^30784 mod p(x), x^30720 mod p(x) */ 702 .octa 0x00000000be970000000000009e7e0000 703 704 /* x^29760 mod p(x), x^29696 mod p(x) */ 705 .octa 0x00000000dd6d000000000000a53c0000 706 707 /* x^28736 mod p(x), x^28672 mod p(x) */ 708 .octa 0x000000004c3f00000000000039340000 709 710 /* x^27712 mod p(x), x^27648 mod p(x) */ 711 .octa 0x0000000093a4000000000000b58e0000 712 713 /* x^26688 mod p(x), x^26624 mod p(x) */ 714 .octa 0x0000000050fb00000000000062d40000 715 716 /* x^25664 mod p(x), x^25600 mod p(x) */ 717 .octa 0x00000000f505000000000000a26f0000 718 719 /* x^24640 mod p(x), x^24576 mod p(x) */ 720 .octa 0x0000000064f900000000000065e60000 721 722 /* x^23616 mod p(x), x^23552 mod p(x) */ 723 .octa 0x00000000e8c2000000000000aad90000 724 725 /* x^22592 mod p(x), x^22528 mod p(x) */ 726 .octa 0x00000000720b000000000000a3b00000 727 728 /* x^21568 mod p(x), x^21504 mod p(x) */ 729 .octa 0x00000000e992000000000000d2680000 730 731 /* x^20544 mod p(x), x^20480 mod p(x) */ 732 .octa 0x000000009132000000000000cf4c0000 733 734 /* x^19520 mod p(x), x^19456 mod p(x) */ 735 .octa 0x00000000608a00000000000076610000 736 737 /* x^18496 mod p(x), x^18432 mod p(x) */ 738 .octa 0x000000009948000000000000fb9f0000 739 740 /* x^17472 mod p(x), x^17408 mod p(x) */ 741 .octa 0x00000000173000000000000003770000 742 743 /* x^16448 mod p(x), x^16384 mod p(x) */ 744 .octa 0x000000006fe300000000000004880000 745 746 /* x^15424 mod p(x), x^15360 mod p(x) */ 747 .octa 0x00000000e15300000000000056a70000 748 749 /* x^14400 mod p(x), x^14336 mod p(x) */ 750 .octa 0x0000000092d60000000000009dfd0000 751 752 /* x^13376 mod p(x), x^13312 mod p(x) */ 753 .octa 0x0000000002fd00000000000074c80000 754 755 /* x^12352 mod p(x), x^12288 mod p(x) */ 756 .octa 0x00000000c78b000000000000a3ec0000 757 758 /* x^11328 mod p(x), x^11264 mod p(x) */ 759 .octa 0x000000009262000000000000b3530000 760 761 /* x^10304 mod p(x), x^10240 mod p(x) */ 762 .octa 0x0000000084f200000000000047bf0000 763 764 /* x^9280 mod p(x), x^9216 mod p(x) */ 765 .octa 0x0000000067ee000000000000e97c0000 766 767 /* x^8256 mod p(x), x^8192 mod p(x) */ 768 .octa 0x00000000535b00000000000091e10000 769 770 /* x^7232 mod p(x), x^7168 mod p(x) */ 771 .octa 0x000000007ebb00000000000055060000 772 773 /* x^6208 mod p(x), x^6144 mod p(x) */ 774 .octa 0x00000000c6a1000000000000fd360000 775 776 /* x^5184 mod p(x), x^5120 mod p(x) */ 777 .octa 0x000000001be500000000000055860000 778 779 /* x^4160 mod p(x), x^4096 mod p(x) */ 780 .octa 0x00000000ae0e0000000000005bd00000 781 782 /* x^3136 mod p(x), x^3072 mod p(x) */ 783 .octa 0x0000000022040000000000008db20000 784 785 /* x^2112 mod p(x), x^2048 mod p(x) */ 786 .octa 0x00000000c9eb000000000000efe20000 787 788 /* x^1088 mod p(x), x^1024 mod p(x) */ 789 .octa 0x0000000039b400000000000051d10000 790 791.short_constants: 792 793 /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */ 794 /* x^2048 mod p(x), x^2016 mod p(x), x^1984 mod p(x), x^1952 mod p(x) */ 795 .octa 0xefe20000dccf00009440000033590000 796 797 /* x^1920 mod p(x), x^1888 mod p(x), x^1856 mod p(x), x^1824 mod p(x) */ 798 .octa 0xee6300002f3f000062180000e0ed0000 799 800 /* x^1792 mod p(x), x^1760 mod p(x), x^1728 mod p(x), x^1696 mod p(x) */ 801 .octa 0xcf5f000017ef0000ccbe000023d30000 802 803 /* x^1664 mod p(x), x^1632 mod p(x), x^1600 mod p(x), x^1568 mod p(x) */ 804 .octa 0x6d0c0000a30e00000920000042630000 805 806 /* x^1536 mod p(x), x^1504 mod p(x), x^1472 mod p(x), x^1440 mod p(x) */ 807 .octa 0x21d30000932b0000a7a00000efcc0000 808 809 /* x^1408 mod p(x), x^1376 mod p(x), x^1344 mod p(x), x^1312 mod p(x) */ 810 .octa 0x10be00000b310000666f00000d1c0000 811 812 /* x^1280 mod p(x), x^1248 mod p(x), x^1216 mod p(x), x^1184 mod p(x) */ 813 .octa 0x1f240000ce9e0000caad0000589e0000 814 815 /* x^1152 mod p(x), x^1120 mod p(x), x^1088 mod p(x), x^1056 mod p(x) */ 816 .octa 0x29610000d02b000039b400007cf50000 817 818 /* x^1024 mod p(x), x^992 mod p(x), x^960 mod p(x), x^928 mod p(x) */ 819 .octa 0x51d100009d9d00003c0e0000bfd60000 820 821 /* x^896 mod p(x), x^864 mod p(x), x^832 mod p(x), x^800 mod p(x) */ 822 .octa 0xda390000ceae000013830000713c0000 823 824 /* x^768 mod p(x), x^736 mod p(x), x^704 mod p(x), x^672 mod p(x) */ 825 .octa 0xb67800001e16000085c0000080a60000 826 827 /* x^640 mod p(x), x^608 mod p(x), x^576 mod p(x), x^544 mod p(x) */ 828 .octa 0x0db40000f7f90000371d0000e6580000 829 830 /* x^512 mod p(x), x^480 mod p(x), x^448 mod p(x), x^416 mod p(x) */ 831 .octa 0x87e70000044c0000aadb0000a4970000 832 833 /* x^384 mod p(x), x^352 mod p(x), x^320 mod p(x), x^288 mod p(x) */ 834 .octa 0x1f990000ad180000d8b30000e7b50000 835 836 /* x^256 mod p(x), x^224 mod p(x), x^192 mod p(x), x^160 mod p(x) */ 837 .octa 0xbe6c00006ee300004c1a000006df0000 838 839 /* x^128 mod p(x), x^96 mod p(x), x^64 mod p(x), x^32 mod p(x) */ 840 .octa 0xfb0b00002d560000136800008bb70000 841 842 843.barrett_constants: 844 /* Barrett constant m - (4^32)/n */ 845 .octa 0x000000000000000000000001f65a57f8 /* x^64 div p(x) */ 846 /* Barrett constant n */ 847 .octa 0x0000000000000000000000018bb70000 848 849#define CRC_FUNCTION_NAME __crct10dif_vpmsum 850#include "crc32-vpmsum_core.S" 851