1/*
2 * Calculate a CRC T10DIF  with vpmsum acceleration
3 *
4 * Constants generated by crc32-vpmsum, available at
5 * https://github.com/antonblanchard/crc32-vpmsum
6 *
7 * crc32-vpmsum is
8 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
9 * and is available under the GPL v2 or later.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16	.section	.rodata
17.balign 16
18
19.byteswap_constant:
20	/* byte reverse permute constant */
21	.octa 0x0F0E0D0C0B0A09080706050403020100
22
23.constants:
24
25	/* Reduce 262144 kbits to 1024 bits */
26	/* x^261184 mod p(x), x^261120 mod p(x) */
27	.octa 0x0000000056d300000000000052550000
28
29	/* x^260160 mod p(x), x^260096 mod p(x) */
30	.octa 0x00000000ee67000000000000a1e40000
31
32	/* x^259136 mod p(x), x^259072 mod p(x) */
33	.octa 0x0000000060830000000000004ad10000
34
35	/* x^258112 mod p(x), x^258048 mod p(x) */
36	.octa 0x000000008cfe0000000000009ab40000
37
38	/* x^257088 mod p(x), x^257024 mod p(x) */
39	.octa 0x000000003e93000000000000fdb50000
40
41	/* x^256064 mod p(x), x^256000 mod p(x) */
42	.octa 0x000000003c2000000000000045480000
43
44	/* x^255040 mod p(x), x^254976 mod p(x) */
45	.octa 0x00000000b1fc0000000000008d690000
46
47	/* x^254016 mod p(x), x^253952 mod p(x) */
48	.octa 0x00000000f82b00000000000024ad0000
49
50	/* x^252992 mod p(x), x^252928 mod p(x) */
51	.octa 0x0000000044420000000000009f1a0000
52
53	/* x^251968 mod p(x), x^251904 mod p(x) */
54	.octa 0x00000000e88c00000000000066ec0000
55
56	/* x^250944 mod p(x), x^250880 mod p(x) */
57	.octa 0x00000000385c000000000000c87d0000
58
59	/* x^249920 mod p(x), x^249856 mod p(x) */
60	.octa 0x000000003227000000000000c8ff0000
61
62	/* x^248896 mod p(x), x^248832 mod p(x) */
63	.octa 0x00000000a9a900000000000033440000
64
65	/* x^247872 mod p(x), x^247808 mod p(x) */
66	.octa 0x00000000abaa00000000000066eb0000
67
68	/* x^246848 mod p(x), x^246784 mod p(x) */
69	.octa 0x000000001ac3000000000000c4ef0000
70
71	/* x^245824 mod p(x), x^245760 mod p(x) */
72	.octa 0x0000000063f000000000000056f30000
73
74	/* x^244800 mod p(x), x^244736 mod p(x) */
75	.octa 0x0000000032cc00000000000002050000
76
77	/* x^243776 mod p(x), x^243712 mod p(x) */
78	.octa 0x00000000f8b5000000000000568e0000
79
80	/* x^242752 mod p(x), x^242688 mod p(x) */
81	.octa 0x000000008db100000000000064290000
82
83	/* x^241728 mod p(x), x^241664 mod p(x) */
84	.octa 0x0000000059ca0000000000006b660000
85
86	/* x^240704 mod p(x), x^240640 mod p(x) */
87	.octa 0x000000005f5c00000000000018f80000
88
89	/* x^239680 mod p(x), x^239616 mod p(x) */
90	.octa 0x0000000061af000000000000b6090000
91
92	/* x^238656 mod p(x), x^238592 mod p(x) */
93	.octa 0x00000000e29e000000000000099a0000
94
95	/* x^237632 mod p(x), x^237568 mod p(x) */
96	.octa 0x000000000975000000000000a8360000
97
98	/* x^236608 mod p(x), x^236544 mod p(x) */
99	.octa 0x0000000043900000000000004f570000
100
101	/* x^235584 mod p(x), x^235520 mod p(x) */
102	.octa 0x00000000f9cd000000000000134c0000
103
104	/* x^234560 mod p(x), x^234496 mod p(x) */
105	.octa 0x000000007c29000000000000ec380000
106
107	/* x^233536 mod p(x), x^233472 mod p(x) */
108	.octa 0x000000004c6a000000000000b0d10000
109
110	/* x^232512 mod p(x), x^232448 mod p(x) */
111	.octa 0x00000000e7290000000000007d3e0000
112
113	/* x^231488 mod p(x), x^231424 mod p(x) */
114	.octa 0x00000000f1ab000000000000f0b20000
115
116	/* x^230464 mod p(x), x^230400 mod p(x) */
117	.octa 0x0000000039db0000000000009c270000
118
119	/* x^229440 mod p(x), x^229376 mod p(x) */
120	.octa 0x000000005e2800000000000092890000
121
122	/* x^228416 mod p(x), x^228352 mod p(x) */
123	.octa 0x00000000d44e000000000000d5ee0000
124
125	/* x^227392 mod p(x), x^227328 mod p(x) */
126	.octa 0x00000000cd0a00000000000041f50000
127
128	/* x^226368 mod p(x), x^226304 mod p(x) */
129	.octa 0x00000000c5b400000000000010520000
130
131	/* x^225344 mod p(x), x^225280 mod p(x) */
132	.octa 0x00000000fd2100000000000042170000
133
134	/* x^224320 mod p(x), x^224256 mod p(x) */
135	.octa 0x000000002f2500000000000095c20000
136
137	/* x^223296 mod p(x), x^223232 mod p(x) */
138	.octa 0x000000001b0100000000000001ce0000
139
140	/* x^222272 mod p(x), x^222208 mod p(x) */
141	.octa 0x000000000d430000000000002aca0000
142
143	/* x^221248 mod p(x), x^221184 mod p(x) */
144	.octa 0x0000000030a6000000000000385e0000
145
146	/* x^220224 mod p(x), x^220160 mod p(x) */
147	.octa 0x00000000e37b0000000000006f7a0000
148
149	/* x^219200 mod p(x), x^219136 mod p(x) */
150	.octa 0x00000000873600000000000024320000
151
152	/* x^218176 mod p(x), x^218112 mod p(x) */
153	.octa 0x00000000e9fb000000000000bd9c0000
154
155	/* x^217152 mod p(x), x^217088 mod p(x) */
156	.octa 0x000000003b9500000000000054bc0000
157
158	/* x^216128 mod p(x), x^216064 mod p(x) */
159	.octa 0x00000000133e000000000000a4660000
160
161	/* x^215104 mod p(x), x^215040 mod p(x) */
162	.octa 0x00000000784500000000000079930000
163
164	/* x^214080 mod p(x), x^214016 mod p(x) */
165	.octa 0x00000000b9800000000000001bb80000
166
167	/* x^213056 mod p(x), x^212992 mod p(x) */
168	.octa 0x00000000687600000000000024400000
169
170	/* x^212032 mod p(x), x^211968 mod p(x) */
171	.octa 0x00000000aff300000000000029e10000
172
173	/* x^211008 mod p(x), x^210944 mod p(x) */
174	.octa 0x0000000024b50000000000005ded0000
175
176	/* x^209984 mod p(x), x^209920 mod p(x) */
177	.octa 0x0000000017e8000000000000b12e0000
178
179	/* x^208960 mod p(x), x^208896 mod p(x) */
180	.octa 0x00000000128400000000000026d20000
181
182	/* x^207936 mod p(x), x^207872 mod p(x) */
183	.octa 0x000000002115000000000000a32a0000
184
185	/* x^206912 mod p(x), x^206848 mod p(x) */
186	.octa 0x000000009595000000000000a1210000
187
188	/* x^205888 mod p(x), x^205824 mod p(x) */
189	.octa 0x00000000281e000000000000ee8b0000
190
191	/* x^204864 mod p(x), x^204800 mod p(x) */
192	.octa 0x0000000006010000000000003d0d0000
193
194	/* x^203840 mod p(x), x^203776 mod p(x) */
195	.octa 0x00000000e2b600000000000034e90000
196
197	/* x^202816 mod p(x), x^202752 mod p(x) */
198	.octa 0x000000001bd40000000000004cdb0000
199
200	/* x^201792 mod p(x), x^201728 mod p(x) */
201	.octa 0x00000000df2800000000000030e90000
202
203	/* x^200768 mod p(x), x^200704 mod p(x) */
204	.octa 0x0000000049c200000000000042590000
205
206	/* x^199744 mod p(x), x^199680 mod p(x) */
207	.octa 0x000000009b97000000000000df950000
208
209	/* x^198720 mod p(x), x^198656 mod p(x) */
210	.octa 0x000000006184000000000000da7b0000
211
212	/* x^197696 mod p(x), x^197632 mod p(x) */
213	.octa 0x00000000461700000000000012510000
214
215	/* x^196672 mod p(x), x^196608 mod p(x) */
216	.octa 0x000000009b40000000000000f37e0000
217
218	/* x^195648 mod p(x), x^195584 mod p(x) */
219	.octa 0x00000000eeb2000000000000ecf10000
220
221	/* x^194624 mod p(x), x^194560 mod p(x) */
222	.octa 0x00000000b2e800000000000050f20000
223
224	/* x^193600 mod p(x), x^193536 mod p(x) */
225	.octa 0x00000000f59a000000000000e0b30000
226
227	/* x^192576 mod p(x), x^192512 mod p(x) */
228	.octa 0x00000000467f0000000000004d5a0000
229
230	/* x^191552 mod p(x), x^191488 mod p(x) */
231	.octa 0x00000000da92000000000000bb010000
232
233	/* x^190528 mod p(x), x^190464 mod p(x) */
234	.octa 0x000000001e1000000000000022a40000
235
236	/* x^189504 mod p(x), x^189440 mod p(x) */
237	.octa 0x0000000058fe000000000000836f0000
238
239	/* x^188480 mod p(x), x^188416 mod p(x) */
240	.octa 0x00000000b9ce000000000000d78d0000
241
242	/* x^187456 mod p(x), x^187392 mod p(x) */
243	.octa 0x0000000022210000000000004f8d0000
244
245	/* x^186432 mod p(x), x^186368 mod p(x) */
246	.octa 0x00000000744600000000000033760000
247
248	/* x^185408 mod p(x), x^185344 mod p(x) */
249	.octa 0x000000001c2e000000000000a1e50000
250
251	/* x^184384 mod p(x), x^184320 mod p(x) */
252	.octa 0x00000000dcc8000000000000a1a40000
253
254	/* x^183360 mod p(x), x^183296 mod p(x) */
255	.octa 0x00000000910f00000000000019a20000
256
257	/* x^182336 mod p(x), x^182272 mod p(x) */
258	.octa 0x0000000055d5000000000000f6ae0000
259
260	/* x^181312 mod p(x), x^181248 mod p(x) */
261	.octa 0x00000000c8ba000000000000a7ac0000
262
263	/* x^180288 mod p(x), x^180224 mod p(x) */
264	.octa 0x0000000031f8000000000000eea20000
265
266	/* x^179264 mod p(x), x^179200 mod p(x) */
267	.octa 0x000000001966000000000000c4d90000
268
269	/* x^178240 mod p(x), x^178176 mod p(x) */
270	.octa 0x00000000b9810000000000002b470000
271
272	/* x^177216 mod p(x), x^177152 mod p(x) */
273	.octa 0x000000008303000000000000f7cf0000
274
275	/* x^176192 mod p(x), x^176128 mod p(x) */
276	.octa 0x000000002ce500000000000035b30000
277
278	/* x^175168 mod p(x), x^175104 mod p(x) */
279	.octa 0x000000002fae0000000000000c7c0000
280
281	/* x^174144 mod p(x), x^174080 mod p(x) */
282	.octa 0x00000000f50c0000000000009edf0000
283
284	/* x^173120 mod p(x), x^173056 mod p(x) */
285	.octa 0x00000000714f00000000000004cd0000
286
287	/* x^172096 mod p(x), x^172032 mod p(x) */
288	.octa 0x00000000c161000000000000541b0000
289
290	/* x^171072 mod p(x), x^171008 mod p(x) */
291	.octa 0x0000000021c8000000000000e2700000
292
293	/* x^170048 mod p(x), x^169984 mod p(x) */
294	.octa 0x00000000b93d00000000000009a60000
295
296	/* x^169024 mod p(x), x^168960 mod p(x) */
297	.octa 0x00000000fbcf000000000000761c0000
298
299	/* x^168000 mod p(x), x^167936 mod p(x) */
300	.octa 0x0000000026350000000000009db30000
301
302	/* x^166976 mod p(x), x^166912 mod p(x) */
303	.octa 0x00000000b64f0000000000003e9f0000
304
305	/* x^165952 mod p(x), x^165888 mod p(x) */
306	.octa 0x00000000bd0e00000000000078590000
307
308	/* x^164928 mod p(x), x^164864 mod p(x) */
309	.octa 0x00000000d9360000000000008bc80000
310
311	/* x^163904 mod p(x), x^163840 mod p(x) */
312	.octa 0x000000002f140000000000008c9f0000
313
314	/* x^162880 mod p(x), x^162816 mod p(x) */
315	.octa 0x000000006a270000000000006af70000
316
317	/* x^161856 mod p(x), x^161792 mod p(x) */
318	.octa 0x000000006685000000000000e5210000
319
320	/* x^160832 mod p(x), x^160768 mod p(x) */
321	.octa 0x0000000062da00000000000008290000
322
323	/* x^159808 mod p(x), x^159744 mod p(x) */
324	.octa 0x00000000bb4b000000000000e4d00000
325
326	/* x^158784 mod p(x), x^158720 mod p(x) */
327	.octa 0x00000000d2490000000000004ae10000
328
329	/* x^157760 mod p(x), x^157696 mod p(x) */
330	.octa 0x00000000c85b00000000000000e70000
331
332	/* x^156736 mod p(x), x^156672 mod p(x) */
333	.octa 0x00000000c37a00000000000015650000
334
335	/* x^155712 mod p(x), x^155648 mod p(x) */
336	.octa 0x0000000018530000000000001c2f0000
337
338	/* x^154688 mod p(x), x^154624 mod p(x) */
339	.octa 0x00000000b46600000000000037bd0000
340
341	/* x^153664 mod p(x), x^153600 mod p(x) */
342	.octa 0x00000000439b00000000000012190000
343
344	/* x^152640 mod p(x), x^152576 mod p(x) */
345	.octa 0x00000000b1260000000000005ece0000
346
347	/* x^151616 mod p(x), x^151552 mod p(x) */
348	.octa 0x00000000d8110000000000002a5e0000
349
350	/* x^150592 mod p(x), x^150528 mod p(x) */
351	.octa 0x00000000099f00000000000052330000
352
353	/* x^149568 mod p(x), x^149504 mod p(x) */
354	.octa 0x00000000f9f9000000000000f9120000
355
356	/* x^148544 mod p(x), x^148480 mod p(x) */
357	.octa 0x000000005cc00000000000000ddc0000
358
359	/* x^147520 mod p(x), x^147456 mod p(x) */
360	.octa 0x00000000343b00000000000012200000
361
362	/* x^146496 mod p(x), x^146432 mod p(x) */
363	.octa 0x000000009222000000000000d12b0000
364
365	/* x^145472 mod p(x), x^145408 mod p(x) */
366	.octa 0x00000000d781000000000000eb2d0000
367
368	/* x^144448 mod p(x), x^144384 mod p(x) */
369	.octa 0x000000000bf400000000000058970000
370
371	/* x^143424 mod p(x), x^143360 mod p(x) */
372	.octa 0x00000000094200000000000013690000
373
374	/* x^142400 mod p(x), x^142336 mod p(x) */
375	.octa 0x00000000d55100000000000051950000
376
377	/* x^141376 mod p(x), x^141312 mod p(x) */
378	.octa 0x000000008f11000000000000954b0000
379
380	/* x^140352 mod p(x), x^140288 mod p(x) */
381	.octa 0x00000000140f000000000000b29e0000
382
383	/* x^139328 mod p(x), x^139264 mod p(x) */
384	.octa 0x00000000c6db000000000000db5d0000
385
386	/* x^138304 mod p(x), x^138240 mod p(x) */
387	.octa 0x00000000715b000000000000dfaf0000
388
389	/* x^137280 mod p(x), x^137216 mod p(x) */
390	.octa 0x000000000dea000000000000e3b60000
391
392	/* x^136256 mod p(x), x^136192 mod p(x) */
393	.octa 0x000000006f94000000000000ddaf0000
394
395	/* x^135232 mod p(x), x^135168 mod p(x) */
396	.octa 0x0000000024e1000000000000e4f70000
397
398	/* x^134208 mod p(x), x^134144 mod p(x) */
399	.octa 0x000000008810000000000000aa110000
400
401	/* x^133184 mod p(x), x^133120 mod p(x) */
402	.octa 0x0000000030c2000000000000a8e60000
403
404	/* x^132160 mod p(x), x^132096 mod p(x) */
405	.octa 0x00000000e6d0000000000000ccf30000
406
407	/* x^131136 mod p(x), x^131072 mod p(x) */
408	.octa 0x000000004da000000000000079bf0000
409
410	/* x^130112 mod p(x), x^130048 mod p(x) */
411	.octa 0x000000007759000000000000b3a30000
412
413	/* x^129088 mod p(x), x^129024 mod p(x) */
414	.octa 0x00000000597400000000000028790000
415
416	/* x^128064 mod p(x), x^128000 mod p(x) */
417	.octa 0x000000007acd000000000000b5820000
418
419	/* x^127040 mod p(x), x^126976 mod p(x) */
420	.octa 0x00000000e6e400000000000026ad0000
421
422	/* x^126016 mod p(x), x^125952 mod p(x) */
423	.octa 0x000000006d49000000000000985b0000
424
425	/* x^124992 mod p(x), x^124928 mod p(x) */
426	.octa 0x000000000f0800000000000011520000
427
428	/* x^123968 mod p(x), x^123904 mod p(x) */
429	.octa 0x000000002c7f000000000000846c0000
430
431	/* x^122944 mod p(x), x^122880 mod p(x) */
432	.octa 0x000000005ce7000000000000ae1d0000
433
434	/* x^121920 mod p(x), x^121856 mod p(x) */
435	.octa 0x00000000d4cb000000000000e21d0000
436
437	/* x^120896 mod p(x), x^120832 mod p(x) */
438	.octa 0x000000003a2300000000000019bb0000
439
440	/* x^119872 mod p(x), x^119808 mod p(x) */
441	.octa 0x000000000e1700000000000095290000
442
443	/* x^118848 mod p(x), x^118784 mod p(x) */
444	.octa 0x000000006e6400000000000050d20000
445
446	/* x^117824 mod p(x), x^117760 mod p(x) */
447	.octa 0x000000008d5c0000000000000cd10000
448
449	/* x^116800 mod p(x), x^116736 mod p(x) */
450	.octa 0x00000000ef310000000000007b570000
451
452	/* x^115776 mod p(x), x^115712 mod p(x) */
453	.octa 0x00000000645d00000000000053d60000
454
455	/* x^114752 mod p(x), x^114688 mod p(x) */
456	.octa 0x0000000018fc00000000000077510000
457
458	/* x^113728 mod p(x), x^113664 mod p(x) */
459	.octa 0x000000000cb3000000000000a7b70000
460
461	/* x^112704 mod p(x), x^112640 mod p(x) */
462	.octa 0x00000000991b000000000000d0780000
463
464	/* x^111680 mod p(x), x^111616 mod p(x) */
465	.octa 0x00000000845a000000000000be3c0000
466
467	/* x^110656 mod p(x), x^110592 mod p(x) */
468	.octa 0x00000000d3a9000000000000df020000
469
470	/* x^109632 mod p(x), x^109568 mod p(x) */
471	.octa 0x0000000017d7000000000000063e0000
472
473	/* x^108608 mod p(x), x^108544 mod p(x) */
474	.octa 0x000000007a860000000000008ab40000
475
476	/* x^107584 mod p(x), x^107520 mod p(x) */
477	.octa 0x00000000fd7c000000000000c7bd0000
478
479	/* x^106560 mod p(x), x^106496 mod p(x) */
480	.octa 0x00000000a56b000000000000efd60000
481
482	/* x^105536 mod p(x), x^105472 mod p(x) */
483	.octa 0x0000000010e400000000000071380000
484
485	/* x^104512 mod p(x), x^104448 mod p(x) */
486	.octa 0x00000000994500000000000004d30000
487
488	/* x^103488 mod p(x), x^103424 mod p(x) */
489	.octa 0x00000000b83c0000000000003b0e0000
490
491	/* x^102464 mod p(x), x^102400 mod p(x) */
492	.octa 0x00000000d6c10000000000008b020000
493
494	/* x^101440 mod p(x), x^101376 mod p(x) */
495	.octa 0x000000009efc000000000000da940000
496
497	/* x^100416 mod p(x), x^100352 mod p(x) */
498	.octa 0x000000005e87000000000000f9f70000
499
500	/* x^99392 mod p(x), x^99328 mod p(x) */
501	.octa 0x000000006c9b00000000000045e40000
502
503	/* x^98368 mod p(x), x^98304 mod p(x) */
504	.octa 0x00000000178a00000000000083940000
505
506	/* x^97344 mod p(x), x^97280 mod p(x) */
507	.octa 0x00000000f0c8000000000000f0a00000
508
509	/* x^96320 mod p(x), x^96256 mod p(x) */
510	.octa 0x00000000f699000000000000b74b0000
511
512	/* x^95296 mod p(x), x^95232 mod p(x) */
513	.octa 0x00000000316d000000000000c1cf0000
514
515	/* x^94272 mod p(x), x^94208 mod p(x) */
516	.octa 0x00000000987e00000000000072680000
517
518	/* x^93248 mod p(x), x^93184 mod p(x) */
519	.octa 0x00000000acff000000000000e0ab0000
520
521	/* x^92224 mod p(x), x^92160 mod p(x) */
522	.octa 0x00000000a1f6000000000000c5a80000
523
524	/* x^91200 mod p(x), x^91136 mod p(x) */
525	.octa 0x0000000061bd000000000000cf690000
526
527	/* x^90176 mod p(x), x^90112 mod p(x) */
528	.octa 0x00000000c9f2000000000000cbcc0000
529
530	/* x^89152 mod p(x), x^89088 mod p(x) */
531	.octa 0x000000005a33000000000000de050000
532
533	/* x^88128 mod p(x), x^88064 mod p(x) */
534	.octa 0x00000000e416000000000000ccd70000
535
536	/* x^87104 mod p(x), x^87040 mod p(x) */
537	.octa 0x0000000058930000000000002f670000
538
539	/* x^86080 mod p(x), x^86016 mod p(x) */
540	.octa 0x00000000a9d3000000000000152f0000
541
542	/* x^85056 mod p(x), x^84992 mod p(x) */
543	.octa 0x00000000c114000000000000ecc20000
544
545	/* x^84032 mod p(x), x^83968 mod p(x) */
546	.octa 0x00000000b9270000000000007c890000
547
548	/* x^83008 mod p(x), x^82944 mod p(x) */
549	.octa 0x000000002e6000000000000006ee0000
550
551	/* x^81984 mod p(x), x^81920 mod p(x) */
552	.octa 0x00000000dfc600000000000009100000
553
554	/* x^80960 mod p(x), x^80896 mod p(x) */
555	.octa 0x000000004911000000000000ad4e0000
556
557	/* x^79936 mod p(x), x^79872 mod p(x) */
558	.octa 0x00000000ae1b000000000000b04d0000
559
560	/* x^78912 mod p(x), x^78848 mod p(x) */
561	.octa 0x0000000005fa000000000000e9900000
562
563	/* x^77888 mod p(x), x^77824 mod p(x) */
564	.octa 0x0000000004a1000000000000cc6f0000
565
566	/* x^76864 mod p(x), x^76800 mod p(x) */
567	.octa 0x00000000af73000000000000ed110000
568
569	/* x^75840 mod p(x), x^75776 mod p(x) */
570	.octa 0x0000000082530000000000008f7e0000
571
572	/* x^74816 mod p(x), x^74752 mod p(x) */
573	.octa 0x00000000cfdc000000000000594f0000
574
575	/* x^73792 mod p(x), x^73728 mod p(x) */
576	.octa 0x00000000a6b6000000000000a8750000
577
578	/* x^72768 mod p(x), x^72704 mod p(x) */
579	.octa 0x00000000fd76000000000000aa0c0000
580
581	/* x^71744 mod p(x), x^71680 mod p(x) */
582	.octa 0x0000000006f500000000000071db0000
583
584	/* x^70720 mod p(x), x^70656 mod p(x) */
585	.octa 0x0000000037ca000000000000ab0c0000
586
587	/* x^69696 mod p(x), x^69632 mod p(x) */
588	.octa 0x00000000d7ab000000000000b7a00000
589
590	/* x^68672 mod p(x), x^68608 mod p(x) */
591	.octa 0x00000000440800000000000090d30000
592
593	/* x^67648 mod p(x), x^67584 mod p(x) */
594	.octa 0x00000000186100000000000054730000
595
596	/* x^66624 mod p(x), x^66560 mod p(x) */
597	.octa 0x000000007368000000000000a3a20000
598
599	/* x^65600 mod p(x), x^65536 mod p(x) */
600	.octa 0x0000000026d0000000000000f9040000
601
602	/* x^64576 mod p(x), x^64512 mod p(x) */
603	.octa 0x00000000fe770000000000009c0a0000
604
605	/* x^63552 mod p(x), x^63488 mod p(x) */
606	.octa 0x000000002cba000000000000d1e70000
607
608	/* x^62528 mod p(x), x^62464 mod p(x) */
609	.octa 0x00000000f8bd0000000000005ac10000
610
611	/* x^61504 mod p(x), x^61440 mod p(x) */
612	.octa 0x000000007372000000000000d68d0000
613
614	/* x^60480 mod p(x), x^60416 mod p(x) */
615	.octa 0x00000000f37f00000000000089f60000
616
617	/* x^59456 mod p(x), x^59392 mod p(x) */
618	.octa 0x00000000078400000000000008a90000
619
620	/* x^58432 mod p(x), x^58368 mod p(x) */
621	.octa 0x00000000d3e400000000000042360000
622
623	/* x^57408 mod p(x), x^57344 mod p(x) */
624	.octa 0x00000000eba800000000000092d50000
625
626	/* x^56384 mod p(x), x^56320 mod p(x) */
627	.octa 0x00000000afbe000000000000b4d50000
628
629	/* x^55360 mod p(x), x^55296 mod p(x) */
630	.octa 0x00000000d8ca000000000000c9060000
631
632	/* x^54336 mod p(x), x^54272 mod p(x) */
633	.octa 0x00000000c2d00000000000008f4f0000
634
635	/* x^53312 mod p(x), x^53248 mod p(x) */
636	.octa 0x00000000373200000000000028690000
637
638	/* x^52288 mod p(x), x^52224 mod p(x) */
639	.octa 0x0000000046ae000000000000c3b30000
640
641	/* x^51264 mod p(x), x^51200 mod p(x) */
642	.octa 0x00000000b243000000000000f8700000
643
644	/* x^50240 mod p(x), x^50176 mod p(x) */
645	.octa 0x00000000f7f500000000000029eb0000
646
647	/* x^49216 mod p(x), x^49152 mod p(x) */
648	.octa 0x000000000c7e000000000000fe730000
649
650	/* x^48192 mod p(x), x^48128 mod p(x) */
651	.octa 0x00000000c38200000000000096000000
652
653	/* x^47168 mod p(x), x^47104 mod p(x) */
654	.octa 0x000000008956000000000000683c0000
655
656	/* x^46144 mod p(x), x^46080 mod p(x) */
657	.octa 0x00000000422d0000000000005f1e0000
658
659	/* x^45120 mod p(x), x^45056 mod p(x) */
660	.octa 0x00000000ac0f0000000000006f810000
661
662	/* x^44096 mod p(x), x^44032 mod p(x) */
663	.octa 0x00000000ce30000000000000031f0000
664
665	/* x^43072 mod p(x), x^43008 mod p(x) */
666	.octa 0x000000003d43000000000000455a0000
667
668	/* x^42048 mod p(x), x^41984 mod p(x) */
669	.octa 0x000000007ebe000000000000a6050000
670
671	/* x^41024 mod p(x), x^40960 mod p(x) */
672	.octa 0x00000000976e00000000000077eb0000
673
674	/* x^40000 mod p(x), x^39936 mod p(x) */
675	.octa 0x000000000872000000000000389c0000
676
677	/* x^38976 mod p(x), x^38912 mod p(x) */
678	.octa 0x000000008979000000000000c7b20000
679
680	/* x^37952 mod p(x), x^37888 mod p(x) */
681	.octa 0x000000005c1e0000000000001d870000
682
683	/* x^36928 mod p(x), x^36864 mod p(x) */
684	.octa 0x00000000aebb00000000000045810000
685
686	/* x^35904 mod p(x), x^35840 mod p(x) */
687	.octa 0x000000004f7e0000000000006d4a0000
688
689	/* x^34880 mod p(x), x^34816 mod p(x) */
690	.octa 0x00000000ea98000000000000b9200000
691
692	/* x^33856 mod p(x), x^33792 mod p(x) */
693	.octa 0x00000000f39600000000000022f20000
694
695	/* x^32832 mod p(x), x^32768 mod p(x) */
696	.octa 0x000000000bc500000000000041ca0000
697
698	/* x^31808 mod p(x), x^31744 mod p(x) */
699	.octa 0x00000000786400000000000078500000
700
701	/* x^30784 mod p(x), x^30720 mod p(x) */
702	.octa 0x00000000be970000000000009e7e0000
703
704	/* x^29760 mod p(x), x^29696 mod p(x) */
705	.octa 0x00000000dd6d000000000000a53c0000
706
707	/* x^28736 mod p(x), x^28672 mod p(x) */
708	.octa 0x000000004c3f00000000000039340000
709
710	/* x^27712 mod p(x), x^27648 mod p(x) */
711	.octa 0x0000000093a4000000000000b58e0000
712
713	/* x^26688 mod p(x), x^26624 mod p(x) */
714	.octa 0x0000000050fb00000000000062d40000
715
716	/* x^25664 mod p(x), x^25600 mod p(x) */
717	.octa 0x00000000f505000000000000a26f0000
718
719	/* x^24640 mod p(x), x^24576 mod p(x) */
720	.octa 0x0000000064f900000000000065e60000
721
722	/* x^23616 mod p(x), x^23552 mod p(x) */
723	.octa 0x00000000e8c2000000000000aad90000
724
725	/* x^22592 mod p(x), x^22528 mod p(x) */
726	.octa 0x00000000720b000000000000a3b00000
727
728	/* x^21568 mod p(x), x^21504 mod p(x) */
729	.octa 0x00000000e992000000000000d2680000
730
731	/* x^20544 mod p(x), x^20480 mod p(x) */
732	.octa 0x000000009132000000000000cf4c0000
733
734	/* x^19520 mod p(x), x^19456 mod p(x) */
735	.octa 0x00000000608a00000000000076610000
736
737	/* x^18496 mod p(x), x^18432 mod p(x) */
738	.octa 0x000000009948000000000000fb9f0000
739
740	/* x^17472 mod p(x), x^17408 mod p(x) */
741	.octa 0x00000000173000000000000003770000
742
743	/* x^16448 mod p(x), x^16384 mod p(x) */
744	.octa 0x000000006fe300000000000004880000
745
746	/* x^15424 mod p(x), x^15360 mod p(x) */
747	.octa 0x00000000e15300000000000056a70000
748
749	/* x^14400 mod p(x), x^14336 mod p(x) */
750	.octa 0x0000000092d60000000000009dfd0000
751
752	/* x^13376 mod p(x), x^13312 mod p(x) */
753	.octa 0x0000000002fd00000000000074c80000
754
755	/* x^12352 mod p(x), x^12288 mod p(x) */
756	.octa 0x00000000c78b000000000000a3ec0000
757
758	/* x^11328 mod p(x), x^11264 mod p(x) */
759	.octa 0x000000009262000000000000b3530000
760
761	/* x^10304 mod p(x), x^10240 mod p(x) */
762	.octa 0x0000000084f200000000000047bf0000
763
764	/* x^9280 mod p(x), x^9216 mod p(x) */
765	.octa 0x0000000067ee000000000000e97c0000
766
767	/* x^8256 mod p(x), x^8192 mod p(x) */
768	.octa 0x00000000535b00000000000091e10000
769
770	/* x^7232 mod p(x), x^7168 mod p(x) */
771	.octa 0x000000007ebb00000000000055060000
772
773	/* x^6208 mod p(x), x^6144 mod p(x) */
774	.octa 0x00000000c6a1000000000000fd360000
775
776	/* x^5184 mod p(x), x^5120 mod p(x) */
777	.octa 0x000000001be500000000000055860000
778
779	/* x^4160 mod p(x), x^4096 mod p(x) */
780	.octa 0x00000000ae0e0000000000005bd00000
781
782	/* x^3136 mod p(x), x^3072 mod p(x) */
783	.octa 0x0000000022040000000000008db20000
784
785	/* x^2112 mod p(x), x^2048 mod p(x) */
786	.octa 0x00000000c9eb000000000000efe20000
787
788	/* x^1088 mod p(x), x^1024 mod p(x) */
789	.octa 0x0000000039b400000000000051d10000
790
791.short_constants:
792
793	/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
794	/* x^2048 mod p(x), x^2016 mod p(x), x^1984 mod p(x), x^1952 mod p(x) */
795	.octa 0xefe20000dccf00009440000033590000
796
797	/* x^1920 mod p(x), x^1888 mod p(x), x^1856 mod p(x), x^1824 mod p(x) */
798	.octa 0xee6300002f3f000062180000e0ed0000
799
800	/* x^1792 mod p(x), x^1760 mod p(x), x^1728 mod p(x), x^1696 mod p(x) */
801	.octa 0xcf5f000017ef0000ccbe000023d30000
802
803	/* x^1664 mod p(x), x^1632 mod p(x), x^1600 mod p(x), x^1568 mod p(x) */
804	.octa 0x6d0c0000a30e00000920000042630000
805
806	/* x^1536 mod p(x), x^1504 mod p(x), x^1472 mod p(x), x^1440 mod p(x) */
807	.octa 0x21d30000932b0000a7a00000efcc0000
808
809	/* x^1408 mod p(x), x^1376 mod p(x), x^1344 mod p(x), x^1312 mod p(x) */
810	.octa 0x10be00000b310000666f00000d1c0000
811
812	/* x^1280 mod p(x), x^1248 mod p(x), x^1216 mod p(x), x^1184 mod p(x) */
813	.octa 0x1f240000ce9e0000caad0000589e0000
814
815	/* x^1152 mod p(x), x^1120 mod p(x), x^1088 mod p(x), x^1056 mod p(x) */
816	.octa 0x29610000d02b000039b400007cf50000
817
818	/* x^1024 mod p(x), x^992 mod p(x), x^960 mod p(x), x^928 mod p(x) */
819	.octa 0x51d100009d9d00003c0e0000bfd60000
820
821	/* x^896 mod p(x), x^864 mod p(x), x^832 mod p(x), x^800 mod p(x) */
822	.octa 0xda390000ceae000013830000713c0000
823
824	/* x^768 mod p(x), x^736 mod p(x), x^704 mod p(x), x^672 mod p(x) */
825	.octa 0xb67800001e16000085c0000080a60000
826
827	/* x^640 mod p(x), x^608 mod p(x), x^576 mod p(x), x^544 mod p(x) */
828	.octa 0x0db40000f7f90000371d0000e6580000
829
830	/* x^512 mod p(x), x^480 mod p(x), x^448 mod p(x), x^416 mod p(x) */
831	.octa 0x87e70000044c0000aadb0000a4970000
832
833	/* x^384 mod p(x), x^352 mod p(x), x^320 mod p(x), x^288 mod p(x) */
834	.octa 0x1f990000ad180000d8b30000e7b50000
835
836	/* x^256 mod p(x), x^224 mod p(x), x^192 mod p(x), x^160 mod p(x) */
837	.octa 0xbe6c00006ee300004c1a000006df0000
838
839	/* x^128 mod p(x), x^96 mod p(x), x^64 mod p(x), x^32 mod p(x) */
840	.octa 0xfb0b00002d560000136800008bb70000
841
842
843.barrett_constants:
844	/* Barrett constant m - (4^32)/n */
845	.octa 0x000000000000000000000001f65a57f8	/* x^64 div p(x) */
846	/* Barrett constant n */
847	.octa 0x0000000000000000000000018bb70000
848
849#define CRC_FUNCTION_NAME __crct10dif_vpmsum
850#include "crc32-vpmsum_core.S"
851