1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Calculate a CRC T10DIF  with vpmsum acceleration
4 *
5 * Constants generated by crc32-vpmsum, available at
6 * https://github.com/antonblanchard/crc32-vpmsum
7 *
8 * crc32-vpmsum is
9 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
10 */
11	.section	.rodata
12.balign 16
13
14.byteswap_constant:
15	/* byte reverse permute constant */
16	.octa 0x0F0E0D0C0B0A09080706050403020100
17
18.constants:
19
20	/* Reduce 262144 kbits to 1024 bits */
21	/* x^261184 mod p(x), x^261120 mod p(x) */
22	.octa 0x0000000056d300000000000052550000
23
24	/* x^260160 mod p(x), x^260096 mod p(x) */
25	.octa 0x00000000ee67000000000000a1e40000
26
27	/* x^259136 mod p(x), x^259072 mod p(x) */
28	.octa 0x0000000060830000000000004ad10000
29
30	/* x^258112 mod p(x), x^258048 mod p(x) */
31	.octa 0x000000008cfe0000000000009ab40000
32
33	/* x^257088 mod p(x), x^257024 mod p(x) */
34	.octa 0x000000003e93000000000000fdb50000
35
36	/* x^256064 mod p(x), x^256000 mod p(x) */
37	.octa 0x000000003c2000000000000045480000
38
39	/* x^255040 mod p(x), x^254976 mod p(x) */
40	.octa 0x00000000b1fc0000000000008d690000
41
42	/* x^254016 mod p(x), x^253952 mod p(x) */
43	.octa 0x00000000f82b00000000000024ad0000
44
45	/* x^252992 mod p(x), x^252928 mod p(x) */
46	.octa 0x0000000044420000000000009f1a0000
47
48	/* x^251968 mod p(x), x^251904 mod p(x) */
49	.octa 0x00000000e88c00000000000066ec0000
50
51	/* x^250944 mod p(x), x^250880 mod p(x) */
52	.octa 0x00000000385c000000000000c87d0000
53
54	/* x^249920 mod p(x), x^249856 mod p(x) */
55	.octa 0x000000003227000000000000c8ff0000
56
57	/* x^248896 mod p(x), x^248832 mod p(x) */
58	.octa 0x00000000a9a900000000000033440000
59
60	/* x^247872 mod p(x), x^247808 mod p(x) */
61	.octa 0x00000000abaa00000000000066eb0000
62
63	/* x^246848 mod p(x), x^246784 mod p(x) */
64	.octa 0x000000001ac3000000000000c4ef0000
65
66	/* x^245824 mod p(x), x^245760 mod p(x) */
67	.octa 0x0000000063f000000000000056f30000
68
69	/* x^244800 mod p(x), x^244736 mod p(x) */
70	.octa 0x0000000032cc00000000000002050000
71
72	/* x^243776 mod p(x), x^243712 mod p(x) */
73	.octa 0x00000000f8b5000000000000568e0000
74
75	/* x^242752 mod p(x), x^242688 mod p(x) */
76	.octa 0x000000008db100000000000064290000
77
78	/* x^241728 mod p(x), x^241664 mod p(x) */
79	.octa 0x0000000059ca0000000000006b660000
80
81	/* x^240704 mod p(x), x^240640 mod p(x) */
82	.octa 0x000000005f5c00000000000018f80000
83
84	/* x^239680 mod p(x), x^239616 mod p(x) */
85	.octa 0x0000000061af000000000000b6090000
86
87	/* x^238656 mod p(x), x^238592 mod p(x) */
88	.octa 0x00000000e29e000000000000099a0000
89
90	/* x^237632 mod p(x), x^237568 mod p(x) */
91	.octa 0x000000000975000000000000a8360000
92
93	/* x^236608 mod p(x), x^236544 mod p(x) */
94	.octa 0x0000000043900000000000004f570000
95
96	/* x^235584 mod p(x), x^235520 mod p(x) */
97	.octa 0x00000000f9cd000000000000134c0000
98
99	/* x^234560 mod p(x), x^234496 mod p(x) */
100	.octa 0x000000007c29000000000000ec380000
101
102	/* x^233536 mod p(x), x^233472 mod p(x) */
103	.octa 0x000000004c6a000000000000b0d10000
104
105	/* x^232512 mod p(x), x^232448 mod p(x) */
106	.octa 0x00000000e7290000000000007d3e0000
107
108	/* x^231488 mod p(x), x^231424 mod p(x) */
109	.octa 0x00000000f1ab000000000000f0b20000
110
111	/* x^230464 mod p(x), x^230400 mod p(x) */
112	.octa 0x0000000039db0000000000009c270000
113
114	/* x^229440 mod p(x), x^229376 mod p(x) */
115	.octa 0x000000005e2800000000000092890000
116
117	/* x^228416 mod p(x), x^228352 mod p(x) */
118	.octa 0x00000000d44e000000000000d5ee0000
119
120	/* x^227392 mod p(x), x^227328 mod p(x) */
121	.octa 0x00000000cd0a00000000000041f50000
122
123	/* x^226368 mod p(x), x^226304 mod p(x) */
124	.octa 0x00000000c5b400000000000010520000
125
126	/* x^225344 mod p(x), x^225280 mod p(x) */
127	.octa 0x00000000fd2100000000000042170000
128
129	/* x^224320 mod p(x), x^224256 mod p(x) */
130	.octa 0x000000002f2500000000000095c20000
131
132	/* x^223296 mod p(x), x^223232 mod p(x) */
133	.octa 0x000000001b0100000000000001ce0000
134
135	/* x^222272 mod p(x), x^222208 mod p(x) */
136	.octa 0x000000000d430000000000002aca0000
137
138	/* x^221248 mod p(x), x^221184 mod p(x) */
139	.octa 0x0000000030a6000000000000385e0000
140
141	/* x^220224 mod p(x), x^220160 mod p(x) */
142	.octa 0x00000000e37b0000000000006f7a0000
143
144	/* x^219200 mod p(x), x^219136 mod p(x) */
145	.octa 0x00000000873600000000000024320000
146
147	/* x^218176 mod p(x), x^218112 mod p(x) */
148	.octa 0x00000000e9fb000000000000bd9c0000
149
150	/* x^217152 mod p(x), x^217088 mod p(x) */
151	.octa 0x000000003b9500000000000054bc0000
152
153	/* x^216128 mod p(x), x^216064 mod p(x) */
154	.octa 0x00000000133e000000000000a4660000
155
156	/* x^215104 mod p(x), x^215040 mod p(x) */
157	.octa 0x00000000784500000000000079930000
158
159	/* x^214080 mod p(x), x^214016 mod p(x) */
160	.octa 0x00000000b9800000000000001bb80000
161
162	/* x^213056 mod p(x), x^212992 mod p(x) */
163	.octa 0x00000000687600000000000024400000
164
165	/* x^212032 mod p(x), x^211968 mod p(x) */
166	.octa 0x00000000aff300000000000029e10000
167
168	/* x^211008 mod p(x), x^210944 mod p(x) */
169	.octa 0x0000000024b50000000000005ded0000
170
171	/* x^209984 mod p(x), x^209920 mod p(x) */
172	.octa 0x0000000017e8000000000000b12e0000
173
174	/* x^208960 mod p(x), x^208896 mod p(x) */
175	.octa 0x00000000128400000000000026d20000
176
177	/* x^207936 mod p(x), x^207872 mod p(x) */
178	.octa 0x000000002115000000000000a32a0000
179
180	/* x^206912 mod p(x), x^206848 mod p(x) */
181	.octa 0x000000009595000000000000a1210000
182
183	/* x^205888 mod p(x), x^205824 mod p(x) */
184	.octa 0x00000000281e000000000000ee8b0000
185
186	/* x^204864 mod p(x), x^204800 mod p(x) */
187	.octa 0x0000000006010000000000003d0d0000
188
189	/* x^203840 mod p(x), x^203776 mod p(x) */
190	.octa 0x00000000e2b600000000000034e90000
191
192	/* x^202816 mod p(x), x^202752 mod p(x) */
193	.octa 0x000000001bd40000000000004cdb0000
194
195	/* x^201792 mod p(x), x^201728 mod p(x) */
196	.octa 0x00000000df2800000000000030e90000
197
198	/* x^200768 mod p(x), x^200704 mod p(x) */
199	.octa 0x0000000049c200000000000042590000
200
201	/* x^199744 mod p(x), x^199680 mod p(x) */
202	.octa 0x000000009b97000000000000df950000
203
204	/* x^198720 mod p(x), x^198656 mod p(x) */
205	.octa 0x000000006184000000000000da7b0000
206
207	/* x^197696 mod p(x), x^197632 mod p(x) */
208	.octa 0x00000000461700000000000012510000
209
210	/* x^196672 mod p(x), x^196608 mod p(x) */
211	.octa 0x000000009b40000000000000f37e0000
212
213	/* x^195648 mod p(x), x^195584 mod p(x) */
214	.octa 0x00000000eeb2000000000000ecf10000
215
216	/* x^194624 mod p(x), x^194560 mod p(x) */
217	.octa 0x00000000b2e800000000000050f20000
218
219	/* x^193600 mod p(x), x^193536 mod p(x) */
220	.octa 0x00000000f59a000000000000e0b30000
221
222	/* x^192576 mod p(x), x^192512 mod p(x) */
223	.octa 0x00000000467f0000000000004d5a0000
224
225	/* x^191552 mod p(x), x^191488 mod p(x) */
226	.octa 0x00000000da92000000000000bb010000
227
228	/* x^190528 mod p(x), x^190464 mod p(x) */
229	.octa 0x000000001e1000000000000022a40000
230
231	/* x^189504 mod p(x), x^189440 mod p(x) */
232	.octa 0x0000000058fe000000000000836f0000
233
234	/* x^188480 mod p(x), x^188416 mod p(x) */
235	.octa 0x00000000b9ce000000000000d78d0000
236
237	/* x^187456 mod p(x), x^187392 mod p(x) */
238	.octa 0x0000000022210000000000004f8d0000
239
240	/* x^186432 mod p(x), x^186368 mod p(x) */
241	.octa 0x00000000744600000000000033760000
242
243	/* x^185408 mod p(x), x^185344 mod p(x) */
244	.octa 0x000000001c2e000000000000a1e50000
245
246	/* x^184384 mod p(x), x^184320 mod p(x) */
247	.octa 0x00000000dcc8000000000000a1a40000
248
249	/* x^183360 mod p(x), x^183296 mod p(x) */
250	.octa 0x00000000910f00000000000019a20000
251
252	/* x^182336 mod p(x), x^182272 mod p(x) */
253	.octa 0x0000000055d5000000000000f6ae0000
254
255	/* x^181312 mod p(x), x^181248 mod p(x) */
256	.octa 0x00000000c8ba000000000000a7ac0000
257
258	/* x^180288 mod p(x), x^180224 mod p(x) */
259	.octa 0x0000000031f8000000000000eea20000
260
261	/* x^179264 mod p(x), x^179200 mod p(x) */
262	.octa 0x000000001966000000000000c4d90000
263
264	/* x^178240 mod p(x), x^178176 mod p(x) */
265	.octa 0x00000000b9810000000000002b470000
266
267	/* x^177216 mod p(x), x^177152 mod p(x) */
268	.octa 0x000000008303000000000000f7cf0000
269
270	/* x^176192 mod p(x), x^176128 mod p(x) */
271	.octa 0x000000002ce500000000000035b30000
272
273	/* x^175168 mod p(x), x^175104 mod p(x) */
274	.octa 0x000000002fae0000000000000c7c0000
275
276	/* x^174144 mod p(x), x^174080 mod p(x) */
277	.octa 0x00000000f50c0000000000009edf0000
278
279	/* x^173120 mod p(x), x^173056 mod p(x) */
280	.octa 0x00000000714f00000000000004cd0000
281
282	/* x^172096 mod p(x), x^172032 mod p(x) */
283	.octa 0x00000000c161000000000000541b0000
284
285	/* x^171072 mod p(x), x^171008 mod p(x) */
286	.octa 0x0000000021c8000000000000e2700000
287
288	/* x^170048 mod p(x), x^169984 mod p(x) */
289	.octa 0x00000000b93d00000000000009a60000
290
291	/* x^169024 mod p(x), x^168960 mod p(x) */
292	.octa 0x00000000fbcf000000000000761c0000
293
294	/* x^168000 mod p(x), x^167936 mod p(x) */
295	.octa 0x0000000026350000000000009db30000
296
297	/* x^166976 mod p(x), x^166912 mod p(x) */
298	.octa 0x00000000b64f0000000000003e9f0000
299
300	/* x^165952 mod p(x), x^165888 mod p(x) */
301	.octa 0x00000000bd0e00000000000078590000
302
303	/* x^164928 mod p(x), x^164864 mod p(x) */
304	.octa 0x00000000d9360000000000008bc80000
305
306	/* x^163904 mod p(x), x^163840 mod p(x) */
307	.octa 0x000000002f140000000000008c9f0000
308
309	/* x^162880 mod p(x), x^162816 mod p(x) */
310	.octa 0x000000006a270000000000006af70000
311
312	/* x^161856 mod p(x), x^161792 mod p(x) */
313	.octa 0x000000006685000000000000e5210000
314
315	/* x^160832 mod p(x), x^160768 mod p(x) */
316	.octa 0x0000000062da00000000000008290000
317
318	/* x^159808 mod p(x), x^159744 mod p(x) */
319	.octa 0x00000000bb4b000000000000e4d00000
320
321	/* x^158784 mod p(x), x^158720 mod p(x) */
322	.octa 0x00000000d2490000000000004ae10000
323
324	/* x^157760 mod p(x), x^157696 mod p(x) */
325	.octa 0x00000000c85b00000000000000e70000
326
327	/* x^156736 mod p(x), x^156672 mod p(x) */
328	.octa 0x00000000c37a00000000000015650000
329
330	/* x^155712 mod p(x), x^155648 mod p(x) */
331	.octa 0x0000000018530000000000001c2f0000
332
333	/* x^154688 mod p(x), x^154624 mod p(x) */
334	.octa 0x00000000b46600000000000037bd0000
335
336	/* x^153664 mod p(x), x^153600 mod p(x) */
337	.octa 0x00000000439b00000000000012190000
338
339	/* x^152640 mod p(x), x^152576 mod p(x) */
340	.octa 0x00000000b1260000000000005ece0000
341
342	/* x^151616 mod p(x), x^151552 mod p(x) */
343	.octa 0x00000000d8110000000000002a5e0000
344
345	/* x^150592 mod p(x), x^150528 mod p(x) */
346	.octa 0x00000000099f00000000000052330000
347
348	/* x^149568 mod p(x), x^149504 mod p(x) */
349	.octa 0x00000000f9f9000000000000f9120000
350
351	/* x^148544 mod p(x), x^148480 mod p(x) */
352	.octa 0x000000005cc00000000000000ddc0000
353
354	/* x^147520 mod p(x), x^147456 mod p(x) */
355	.octa 0x00000000343b00000000000012200000
356
357	/* x^146496 mod p(x), x^146432 mod p(x) */
358	.octa 0x000000009222000000000000d12b0000
359
360	/* x^145472 mod p(x), x^145408 mod p(x) */
361	.octa 0x00000000d781000000000000eb2d0000
362
363	/* x^144448 mod p(x), x^144384 mod p(x) */
364	.octa 0x000000000bf400000000000058970000
365
366	/* x^143424 mod p(x), x^143360 mod p(x) */
367	.octa 0x00000000094200000000000013690000
368
369	/* x^142400 mod p(x), x^142336 mod p(x) */
370	.octa 0x00000000d55100000000000051950000
371
372	/* x^141376 mod p(x), x^141312 mod p(x) */
373	.octa 0x000000008f11000000000000954b0000
374
375	/* x^140352 mod p(x), x^140288 mod p(x) */
376	.octa 0x00000000140f000000000000b29e0000
377
378	/* x^139328 mod p(x), x^139264 mod p(x) */
379	.octa 0x00000000c6db000000000000db5d0000
380
381	/* x^138304 mod p(x), x^138240 mod p(x) */
382	.octa 0x00000000715b000000000000dfaf0000
383
384	/* x^137280 mod p(x), x^137216 mod p(x) */
385	.octa 0x000000000dea000000000000e3b60000
386
387	/* x^136256 mod p(x), x^136192 mod p(x) */
388	.octa 0x000000006f94000000000000ddaf0000
389
390	/* x^135232 mod p(x), x^135168 mod p(x) */
391	.octa 0x0000000024e1000000000000e4f70000
392
393	/* x^134208 mod p(x), x^134144 mod p(x) */
394	.octa 0x000000008810000000000000aa110000
395
396	/* x^133184 mod p(x), x^133120 mod p(x) */
397	.octa 0x0000000030c2000000000000a8e60000
398
399	/* x^132160 mod p(x), x^132096 mod p(x) */
400	.octa 0x00000000e6d0000000000000ccf30000
401
402	/* x^131136 mod p(x), x^131072 mod p(x) */
403	.octa 0x000000004da000000000000079bf0000
404
405	/* x^130112 mod p(x), x^130048 mod p(x) */
406	.octa 0x000000007759000000000000b3a30000
407
408	/* x^129088 mod p(x), x^129024 mod p(x) */
409	.octa 0x00000000597400000000000028790000
410
411	/* x^128064 mod p(x), x^128000 mod p(x) */
412	.octa 0x000000007acd000000000000b5820000
413
414	/* x^127040 mod p(x), x^126976 mod p(x) */
415	.octa 0x00000000e6e400000000000026ad0000
416
417	/* x^126016 mod p(x), x^125952 mod p(x) */
418	.octa 0x000000006d49000000000000985b0000
419
420	/* x^124992 mod p(x), x^124928 mod p(x) */
421	.octa 0x000000000f0800000000000011520000
422
423	/* x^123968 mod p(x), x^123904 mod p(x) */
424	.octa 0x000000002c7f000000000000846c0000
425
426	/* x^122944 mod p(x), x^122880 mod p(x) */
427	.octa 0x000000005ce7000000000000ae1d0000
428
429	/* x^121920 mod p(x), x^121856 mod p(x) */
430	.octa 0x00000000d4cb000000000000e21d0000
431
432	/* x^120896 mod p(x), x^120832 mod p(x) */
433	.octa 0x000000003a2300000000000019bb0000
434
435	/* x^119872 mod p(x), x^119808 mod p(x) */
436	.octa 0x000000000e1700000000000095290000
437
438	/* x^118848 mod p(x), x^118784 mod p(x) */
439	.octa 0x000000006e6400000000000050d20000
440
441	/* x^117824 mod p(x), x^117760 mod p(x) */
442	.octa 0x000000008d5c0000000000000cd10000
443
444	/* x^116800 mod p(x), x^116736 mod p(x) */
445	.octa 0x00000000ef310000000000007b570000
446
447	/* x^115776 mod p(x), x^115712 mod p(x) */
448	.octa 0x00000000645d00000000000053d60000
449
450	/* x^114752 mod p(x), x^114688 mod p(x) */
451	.octa 0x0000000018fc00000000000077510000
452
453	/* x^113728 mod p(x), x^113664 mod p(x) */
454	.octa 0x000000000cb3000000000000a7b70000
455
456	/* x^112704 mod p(x), x^112640 mod p(x) */
457	.octa 0x00000000991b000000000000d0780000
458
459	/* x^111680 mod p(x), x^111616 mod p(x) */
460	.octa 0x00000000845a000000000000be3c0000
461
462	/* x^110656 mod p(x), x^110592 mod p(x) */
463	.octa 0x00000000d3a9000000000000df020000
464
465	/* x^109632 mod p(x), x^109568 mod p(x) */
466	.octa 0x0000000017d7000000000000063e0000
467
468	/* x^108608 mod p(x), x^108544 mod p(x) */
469	.octa 0x000000007a860000000000008ab40000
470
471	/* x^107584 mod p(x), x^107520 mod p(x) */
472	.octa 0x00000000fd7c000000000000c7bd0000
473
474	/* x^106560 mod p(x), x^106496 mod p(x) */
475	.octa 0x00000000a56b000000000000efd60000
476
477	/* x^105536 mod p(x), x^105472 mod p(x) */
478	.octa 0x0000000010e400000000000071380000
479
480	/* x^104512 mod p(x), x^104448 mod p(x) */
481	.octa 0x00000000994500000000000004d30000
482
483	/* x^103488 mod p(x), x^103424 mod p(x) */
484	.octa 0x00000000b83c0000000000003b0e0000
485
486	/* x^102464 mod p(x), x^102400 mod p(x) */
487	.octa 0x00000000d6c10000000000008b020000
488
489	/* x^101440 mod p(x), x^101376 mod p(x) */
490	.octa 0x000000009efc000000000000da940000
491
492	/* x^100416 mod p(x), x^100352 mod p(x) */
493	.octa 0x000000005e87000000000000f9f70000
494
495	/* x^99392 mod p(x), x^99328 mod p(x) */
496	.octa 0x000000006c9b00000000000045e40000
497
498	/* x^98368 mod p(x), x^98304 mod p(x) */
499	.octa 0x00000000178a00000000000083940000
500
501	/* x^97344 mod p(x), x^97280 mod p(x) */
502	.octa 0x00000000f0c8000000000000f0a00000
503
504	/* x^96320 mod p(x), x^96256 mod p(x) */
505	.octa 0x00000000f699000000000000b74b0000
506
507	/* x^95296 mod p(x), x^95232 mod p(x) */
508	.octa 0x00000000316d000000000000c1cf0000
509
510	/* x^94272 mod p(x), x^94208 mod p(x) */
511	.octa 0x00000000987e00000000000072680000
512
513	/* x^93248 mod p(x), x^93184 mod p(x) */
514	.octa 0x00000000acff000000000000e0ab0000
515
516	/* x^92224 mod p(x), x^92160 mod p(x) */
517	.octa 0x00000000a1f6000000000000c5a80000
518
519	/* x^91200 mod p(x), x^91136 mod p(x) */
520	.octa 0x0000000061bd000000000000cf690000
521
522	/* x^90176 mod p(x), x^90112 mod p(x) */
523	.octa 0x00000000c9f2000000000000cbcc0000
524
525	/* x^89152 mod p(x), x^89088 mod p(x) */
526	.octa 0x000000005a33000000000000de050000
527
528	/* x^88128 mod p(x), x^88064 mod p(x) */
529	.octa 0x00000000e416000000000000ccd70000
530
531	/* x^87104 mod p(x), x^87040 mod p(x) */
532	.octa 0x0000000058930000000000002f670000
533
534	/* x^86080 mod p(x), x^86016 mod p(x) */
535	.octa 0x00000000a9d3000000000000152f0000
536
537	/* x^85056 mod p(x), x^84992 mod p(x) */
538	.octa 0x00000000c114000000000000ecc20000
539
540	/* x^84032 mod p(x), x^83968 mod p(x) */
541	.octa 0x00000000b9270000000000007c890000
542
543	/* x^83008 mod p(x), x^82944 mod p(x) */
544	.octa 0x000000002e6000000000000006ee0000
545
546	/* x^81984 mod p(x), x^81920 mod p(x) */
547	.octa 0x00000000dfc600000000000009100000
548
549	/* x^80960 mod p(x), x^80896 mod p(x) */
550	.octa 0x000000004911000000000000ad4e0000
551
552	/* x^79936 mod p(x), x^79872 mod p(x) */
553	.octa 0x00000000ae1b000000000000b04d0000
554
555	/* x^78912 mod p(x), x^78848 mod p(x) */
556	.octa 0x0000000005fa000000000000e9900000
557
558	/* x^77888 mod p(x), x^77824 mod p(x) */
559	.octa 0x0000000004a1000000000000cc6f0000
560
561	/* x^76864 mod p(x), x^76800 mod p(x) */
562	.octa 0x00000000af73000000000000ed110000
563
564	/* x^75840 mod p(x), x^75776 mod p(x) */
565	.octa 0x0000000082530000000000008f7e0000
566
567	/* x^74816 mod p(x), x^74752 mod p(x) */
568	.octa 0x00000000cfdc000000000000594f0000
569
570	/* x^73792 mod p(x), x^73728 mod p(x) */
571	.octa 0x00000000a6b6000000000000a8750000
572
573	/* x^72768 mod p(x), x^72704 mod p(x) */
574	.octa 0x00000000fd76000000000000aa0c0000
575
576	/* x^71744 mod p(x), x^71680 mod p(x) */
577	.octa 0x0000000006f500000000000071db0000
578
579	/* x^70720 mod p(x), x^70656 mod p(x) */
580	.octa 0x0000000037ca000000000000ab0c0000
581
582	/* x^69696 mod p(x), x^69632 mod p(x) */
583	.octa 0x00000000d7ab000000000000b7a00000
584
585	/* x^68672 mod p(x), x^68608 mod p(x) */
586	.octa 0x00000000440800000000000090d30000
587
588	/* x^67648 mod p(x), x^67584 mod p(x) */
589	.octa 0x00000000186100000000000054730000
590
591	/* x^66624 mod p(x), x^66560 mod p(x) */
592	.octa 0x000000007368000000000000a3a20000
593
594	/* x^65600 mod p(x), x^65536 mod p(x) */
595	.octa 0x0000000026d0000000000000f9040000
596
597	/* x^64576 mod p(x), x^64512 mod p(x) */
598	.octa 0x00000000fe770000000000009c0a0000
599
600	/* x^63552 mod p(x), x^63488 mod p(x) */
601	.octa 0x000000002cba000000000000d1e70000
602
603	/* x^62528 mod p(x), x^62464 mod p(x) */
604	.octa 0x00000000f8bd0000000000005ac10000
605
606	/* x^61504 mod p(x), x^61440 mod p(x) */
607	.octa 0x000000007372000000000000d68d0000
608
609	/* x^60480 mod p(x), x^60416 mod p(x) */
610	.octa 0x00000000f37f00000000000089f60000
611
612	/* x^59456 mod p(x), x^59392 mod p(x) */
613	.octa 0x00000000078400000000000008a90000
614
615	/* x^58432 mod p(x), x^58368 mod p(x) */
616	.octa 0x00000000d3e400000000000042360000
617
618	/* x^57408 mod p(x), x^57344 mod p(x) */
619	.octa 0x00000000eba800000000000092d50000
620
621	/* x^56384 mod p(x), x^56320 mod p(x) */
622	.octa 0x00000000afbe000000000000b4d50000
623
624	/* x^55360 mod p(x), x^55296 mod p(x) */
625	.octa 0x00000000d8ca000000000000c9060000
626
627	/* x^54336 mod p(x), x^54272 mod p(x) */
628	.octa 0x00000000c2d00000000000008f4f0000
629
630	/* x^53312 mod p(x), x^53248 mod p(x) */
631	.octa 0x00000000373200000000000028690000
632
633	/* x^52288 mod p(x), x^52224 mod p(x) */
634	.octa 0x0000000046ae000000000000c3b30000
635
636	/* x^51264 mod p(x), x^51200 mod p(x) */
637	.octa 0x00000000b243000000000000f8700000
638
639	/* x^50240 mod p(x), x^50176 mod p(x) */
640	.octa 0x00000000f7f500000000000029eb0000
641
642	/* x^49216 mod p(x), x^49152 mod p(x) */
643	.octa 0x000000000c7e000000000000fe730000
644
645	/* x^48192 mod p(x), x^48128 mod p(x) */
646	.octa 0x00000000c38200000000000096000000
647
648	/* x^47168 mod p(x), x^47104 mod p(x) */
649	.octa 0x000000008956000000000000683c0000
650
651	/* x^46144 mod p(x), x^46080 mod p(x) */
652	.octa 0x00000000422d0000000000005f1e0000
653
654	/* x^45120 mod p(x), x^45056 mod p(x) */
655	.octa 0x00000000ac0f0000000000006f810000
656
657	/* x^44096 mod p(x), x^44032 mod p(x) */
658	.octa 0x00000000ce30000000000000031f0000
659
660	/* x^43072 mod p(x), x^43008 mod p(x) */
661	.octa 0x000000003d43000000000000455a0000
662
663	/* x^42048 mod p(x), x^41984 mod p(x) */
664	.octa 0x000000007ebe000000000000a6050000
665
666	/* x^41024 mod p(x), x^40960 mod p(x) */
667	.octa 0x00000000976e00000000000077eb0000
668
669	/* x^40000 mod p(x), x^39936 mod p(x) */
670	.octa 0x000000000872000000000000389c0000
671
672	/* x^38976 mod p(x), x^38912 mod p(x) */
673	.octa 0x000000008979000000000000c7b20000
674
675	/* x^37952 mod p(x), x^37888 mod p(x) */
676	.octa 0x000000005c1e0000000000001d870000
677
678	/* x^36928 mod p(x), x^36864 mod p(x) */
679	.octa 0x00000000aebb00000000000045810000
680
681	/* x^35904 mod p(x), x^35840 mod p(x) */
682	.octa 0x000000004f7e0000000000006d4a0000
683
684	/* x^34880 mod p(x), x^34816 mod p(x) */
685	.octa 0x00000000ea98000000000000b9200000
686
687	/* x^33856 mod p(x), x^33792 mod p(x) */
688	.octa 0x00000000f39600000000000022f20000
689
690	/* x^32832 mod p(x), x^32768 mod p(x) */
691	.octa 0x000000000bc500000000000041ca0000
692
693	/* x^31808 mod p(x), x^31744 mod p(x) */
694	.octa 0x00000000786400000000000078500000
695
696	/* x^30784 mod p(x), x^30720 mod p(x) */
697	.octa 0x00000000be970000000000009e7e0000
698
699	/* x^29760 mod p(x), x^29696 mod p(x) */
700	.octa 0x00000000dd6d000000000000a53c0000
701
702	/* x^28736 mod p(x), x^28672 mod p(x) */
703	.octa 0x000000004c3f00000000000039340000
704
705	/* x^27712 mod p(x), x^27648 mod p(x) */
706	.octa 0x0000000093a4000000000000b58e0000
707
708	/* x^26688 mod p(x), x^26624 mod p(x) */
709	.octa 0x0000000050fb00000000000062d40000
710
711	/* x^25664 mod p(x), x^25600 mod p(x) */
712	.octa 0x00000000f505000000000000a26f0000
713
714	/* x^24640 mod p(x), x^24576 mod p(x) */
715	.octa 0x0000000064f900000000000065e60000
716
717	/* x^23616 mod p(x), x^23552 mod p(x) */
718	.octa 0x00000000e8c2000000000000aad90000
719
720	/* x^22592 mod p(x), x^22528 mod p(x) */
721	.octa 0x00000000720b000000000000a3b00000
722
723	/* x^21568 mod p(x), x^21504 mod p(x) */
724	.octa 0x00000000e992000000000000d2680000
725
726	/* x^20544 mod p(x), x^20480 mod p(x) */
727	.octa 0x000000009132000000000000cf4c0000
728
729	/* x^19520 mod p(x), x^19456 mod p(x) */
730	.octa 0x00000000608a00000000000076610000
731
732	/* x^18496 mod p(x), x^18432 mod p(x) */
733	.octa 0x000000009948000000000000fb9f0000
734
735	/* x^17472 mod p(x), x^17408 mod p(x) */
736	.octa 0x00000000173000000000000003770000
737
738	/* x^16448 mod p(x), x^16384 mod p(x) */
739	.octa 0x000000006fe300000000000004880000
740
741	/* x^15424 mod p(x), x^15360 mod p(x) */
742	.octa 0x00000000e15300000000000056a70000
743
744	/* x^14400 mod p(x), x^14336 mod p(x) */
745	.octa 0x0000000092d60000000000009dfd0000
746
747	/* x^13376 mod p(x), x^13312 mod p(x) */
748	.octa 0x0000000002fd00000000000074c80000
749
750	/* x^12352 mod p(x), x^12288 mod p(x) */
751	.octa 0x00000000c78b000000000000a3ec0000
752
753	/* x^11328 mod p(x), x^11264 mod p(x) */
754	.octa 0x000000009262000000000000b3530000
755
756	/* x^10304 mod p(x), x^10240 mod p(x) */
757	.octa 0x0000000084f200000000000047bf0000
758
759	/* x^9280 mod p(x), x^9216 mod p(x) */
760	.octa 0x0000000067ee000000000000e97c0000
761
762	/* x^8256 mod p(x), x^8192 mod p(x) */
763	.octa 0x00000000535b00000000000091e10000
764
765	/* x^7232 mod p(x), x^7168 mod p(x) */
766	.octa 0x000000007ebb00000000000055060000
767
768	/* x^6208 mod p(x), x^6144 mod p(x) */
769	.octa 0x00000000c6a1000000000000fd360000
770
771	/* x^5184 mod p(x), x^5120 mod p(x) */
772	.octa 0x000000001be500000000000055860000
773
774	/* x^4160 mod p(x), x^4096 mod p(x) */
775	.octa 0x00000000ae0e0000000000005bd00000
776
777	/* x^3136 mod p(x), x^3072 mod p(x) */
778	.octa 0x0000000022040000000000008db20000
779
780	/* x^2112 mod p(x), x^2048 mod p(x) */
781	.octa 0x00000000c9eb000000000000efe20000
782
783	/* x^1088 mod p(x), x^1024 mod p(x) */
784	.octa 0x0000000039b400000000000051d10000
785
786.short_constants:
787
788	/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
789	/* x^2048 mod p(x), x^2016 mod p(x), x^1984 mod p(x), x^1952 mod p(x) */
790	.octa 0xefe20000dccf00009440000033590000
791
792	/* x^1920 mod p(x), x^1888 mod p(x), x^1856 mod p(x), x^1824 mod p(x) */
793	.octa 0xee6300002f3f000062180000e0ed0000
794
795	/* x^1792 mod p(x), x^1760 mod p(x), x^1728 mod p(x), x^1696 mod p(x) */
796	.octa 0xcf5f000017ef0000ccbe000023d30000
797
798	/* x^1664 mod p(x), x^1632 mod p(x), x^1600 mod p(x), x^1568 mod p(x) */
799	.octa 0x6d0c0000a30e00000920000042630000
800
801	/* x^1536 mod p(x), x^1504 mod p(x), x^1472 mod p(x), x^1440 mod p(x) */
802	.octa 0x21d30000932b0000a7a00000efcc0000
803
804	/* x^1408 mod p(x), x^1376 mod p(x), x^1344 mod p(x), x^1312 mod p(x) */
805	.octa 0x10be00000b310000666f00000d1c0000
806
807	/* x^1280 mod p(x), x^1248 mod p(x), x^1216 mod p(x), x^1184 mod p(x) */
808	.octa 0x1f240000ce9e0000caad0000589e0000
809
810	/* x^1152 mod p(x), x^1120 mod p(x), x^1088 mod p(x), x^1056 mod p(x) */
811	.octa 0x29610000d02b000039b400007cf50000
812
813	/* x^1024 mod p(x), x^992 mod p(x), x^960 mod p(x), x^928 mod p(x) */
814	.octa 0x51d100009d9d00003c0e0000bfd60000
815
816	/* x^896 mod p(x), x^864 mod p(x), x^832 mod p(x), x^800 mod p(x) */
817	.octa 0xda390000ceae000013830000713c0000
818
819	/* x^768 mod p(x), x^736 mod p(x), x^704 mod p(x), x^672 mod p(x) */
820	.octa 0xb67800001e16000085c0000080a60000
821
822	/* x^640 mod p(x), x^608 mod p(x), x^576 mod p(x), x^544 mod p(x) */
823	.octa 0x0db40000f7f90000371d0000e6580000
824
825	/* x^512 mod p(x), x^480 mod p(x), x^448 mod p(x), x^416 mod p(x) */
826	.octa 0x87e70000044c0000aadb0000a4970000
827
828	/* x^384 mod p(x), x^352 mod p(x), x^320 mod p(x), x^288 mod p(x) */
829	.octa 0x1f990000ad180000d8b30000e7b50000
830
831	/* x^256 mod p(x), x^224 mod p(x), x^192 mod p(x), x^160 mod p(x) */
832	.octa 0xbe6c00006ee300004c1a000006df0000
833
834	/* x^128 mod p(x), x^96 mod p(x), x^64 mod p(x), x^32 mod p(x) */
835	.octa 0xfb0b00002d560000136800008bb70000
836
837
838.barrett_constants:
839	/* Barrett constant m - (4^32)/n */
840	.octa 0x000000000000000000000001f65a57f8	/* x^64 div p(x) */
841	/* Barrett constant n */
842	.octa 0x0000000000000000000000018bb70000
843
844#define CRC_FUNCTION_NAME __crct10dif_vpmsum
845#include "crc32-vpmsum_core.S"
846