1 /* 2 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu> 3 * Copyright (C) 2008-2009 PetaLogix 4 * Copyright (C) 2006 Atmark Techno, Inc. 5 * 6 * This file is subject to the terms and conditions of the GNU General Public 7 * License. See the file "COPYING" in the main directory of this archive 8 * for more details. 9 */ 10 11 #ifndef _ASM_MICROBLAZE_PGTABLE_H 12 #define _ASM_MICROBLAZE_PGTABLE_H 13 14 #include <asm/setup.h> 15 16 #ifndef __ASSEMBLY__ 17 extern int mem_init_done; 18 #endif 19 20 #ifndef CONFIG_MMU 21 22 #define pgd_present(pgd) (1) /* pages are always present on non MMU */ 23 #define pgd_none(pgd) (0) 24 #define pgd_bad(pgd) (0) 25 #define pgd_clear(pgdp) 26 #define kern_addr_valid(addr) (1) 27 #define pmd_offset(a, b) ((void *) 0) 28 29 #define PAGE_NONE __pgprot(0) /* these mean nothing to non MMU */ 30 #define PAGE_SHARED __pgprot(0) /* these mean nothing to non MMU */ 31 #define PAGE_COPY __pgprot(0) /* these mean nothing to non MMU */ 32 #define PAGE_READONLY __pgprot(0) /* these mean nothing to non MMU */ 33 #define PAGE_KERNEL __pgprot(0) /* these mean nothing to non MMU */ 34 35 #define pgprot_noncached(x) (x) 36 #define pgprot_writecombine pgprot_noncached 37 #define pgprot_device pgprot_noncached 38 39 #define __swp_type(x) (0) 40 #define __swp_offset(x) (0) 41 #define __swp_entry(typ, off) ((swp_entry_t) { ((typ) | ((off) << 7)) }) 42 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 43 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 44 45 #define ZERO_PAGE(vaddr) ({ BUG(); NULL; }) 46 47 #define swapper_pg_dir ((pgd_t *) NULL) 48 49 #define pgtable_cache_init() do {} while (0) 50 51 #define arch_enter_lazy_cpu_mode() do {} while (0) 52 53 #define pgprot_noncached_wc(prot) prot 54 55 /* 56 * All 32bit addresses are effectively valid for vmalloc... 57 * Sort of meaningless for non-VM targets. 58 */ 59 #define VMALLOC_START 0 60 #define VMALLOC_END 0xffffffff 61 62 #else /* CONFIG_MMU */ 63 64 #include <asm-generic/4level-fixup.h> 65 66 #define __PAGETABLE_PMD_FOLDED 67 68 #ifdef __KERNEL__ 69 #ifndef __ASSEMBLY__ 70 71 #include <linux/sched.h> 72 #include <linux/threads.h> 73 #include <asm/processor.h> /* For TASK_SIZE */ 74 #include <asm/mmu.h> 75 #include <asm/page.h> 76 77 #define FIRST_USER_ADDRESS 0UL 78 79 extern unsigned long va_to_phys(unsigned long address); 80 extern pte_t *va_to_pte(unsigned long address); 81 82 /* 83 * The following only work if pte_present() is true. 84 * Undefined behaviour if not.. 85 */ 86 87 static inline int pte_special(pte_t pte) { return 0; } 88 89 static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 90 91 /* Start and end of the vmalloc area. */ 92 /* Make sure to map the vmalloc area above the pinned kernel memory area 93 of 32Mb. */ 94 #define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE) 95 #define VMALLOC_END ioremap_bot 96 97 #endif /* __ASSEMBLY__ */ 98 99 /* 100 * Macro to mark a page protection value as "uncacheable". 101 */ 102 103 #define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \ 104 _PAGE_WRITETHRU) 105 106 #define pgprot_noncached(prot) \ 107 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 108 _PAGE_NO_CACHE | _PAGE_GUARDED)) 109 110 #define pgprot_noncached_wc(prot) \ 111 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 112 _PAGE_NO_CACHE)) 113 114 /* 115 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash 116 * table containing PTEs, together with a set of 16 segment registers, to 117 * define the virtual to physical address mapping. 118 * 119 * We use the hash table as an extended TLB, i.e. a cache of currently 120 * active mappings. We maintain a two-level page table tree, much 121 * like that used by the i386, for the sake of the Linux memory 122 * management code. Low-level assembler code in hashtable.S 123 * (procedure hash_page) is responsible for extracting ptes from the 124 * tree and putting them into the hash table when necessary, and 125 * updating the accessed and modified bits in the page table tree. 126 */ 127 128 /* 129 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The 130 * instruction and data sides share a unified, 64-entry, semi-associative 131 * TLB which is maintained totally under software control. In addition, the 132 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative 133 * TLB which serves as a first level to the shared TLB. These two TLBs are 134 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions). 135 */ 136 137 /* 138 * The normal case is that PTEs are 32-bits and we have a 1-page 139 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 140 * 141 */ 142 143 /* PMD_SHIFT determines the size of the area mapped by the PTE pages */ 144 #define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) 145 #define PMD_SIZE (1UL << PMD_SHIFT) 146 #define PMD_MASK (~(PMD_SIZE-1)) 147 148 /* PGDIR_SHIFT determines what a top-level page table entry can map */ 149 #define PGDIR_SHIFT PMD_SHIFT 150 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 151 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 152 153 /* 154 * entries per page directory level: our page-table tree is two-level, so 155 * we don't really have any PMD directory. 156 */ 157 #define PTRS_PER_PTE (1 << PTE_SHIFT) 158 #define PTRS_PER_PMD 1 159 #define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) 160 161 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 162 #define FIRST_USER_PGD_NR 0 163 164 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 165 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) 166 167 #define pte_ERROR(e) \ 168 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \ 169 __FILE__, __LINE__, pte_val(e)) 170 #define pmd_ERROR(e) \ 171 printk(KERN_ERR "%s:%d: bad pmd %08lx.\n", \ 172 __FILE__, __LINE__, pmd_val(e)) 173 #define pgd_ERROR(e) \ 174 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ 175 __FILE__, __LINE__, pgd_val(e)) 176 177 /* 178 * Bits in a linux-style PTE. These match the bits in the 179 * (hardware-defined) PTE as closely as possible. 180 */ 181 182 /* There are several potential gotchas here. The hardware TLBLO 183 * field looks like this: 184 * 185 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 186 * RPN..................... 0 0 EX WR ZSEL....... W I M G 187 * 188 * Where possible we make the Linux PTE bits match up with this 189 * 190 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can 191 * support down to 1k pages), this is done in the TLBMiss exception 192 * handler. 193 * - We use only zones 0 (for kernel pages) and 1 (for user pages) 194 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB 195 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct 196 * zone. 197 * - PRESENT *must* be in the bottom two bits because swap cache 198 * entries use the top 30 bits. Because 4xx doesn't support SMP 199 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 200 * is cleared in the TLB miss handler before the TLB entry is loaded. 201 * - All other bits of the PTE are loaded into TLBLO without 202 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for 203 * software PTE bits. We actually use use bits 21, 24, 25, and 204 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and 205 * PRESENT. 206 */ 207 208 /* Definitions for MicroBlaze. */ 209 #define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ 210 #define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ 211 #define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ 212 #define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ 213 #define _PAGE_USER 0x010 /* matches one of the zone permission bits */ 214 #define _PAGE_RW 0x040 /* software: Writes permitted */ 215 #define _PAGE_DIRTY 0x080 /* software: dirty page */ 216 #define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ 217 #define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ 218 #define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ 219 #define _PMD_PRESENT PAGE_MASK 220 221 /* 222 * Some bits are unused... 223 */ 224 #ifndef _PAGE_HASHPTE 225 #define _PAGE_HASHPTE 0 226 #endif 227 #ifndef _PTE_NONE_MASK 228 #define _PTE_NONE_MASK 0 229 #endif 230 #ifndef _PAGE_SHARED 231 #define _PAGE_SHARED 0 232 #endif 233 #ifndef _PAGE_EXEC 234 #define _PAGE_EXEC 0 235 #endif 236 237 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 238 239 /* 240 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware 241 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need 242 * to have it in the Linux PTE, and in fact the bit could be reused for 243 * another purpose. -- paulus. 244 */ 245 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 246 #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) 247 248 #define _PAGE_KERNEL \ 249 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC) 250 251 #define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) 252 253 #define PAGE_NONE __pgprot(_PAGE_BASE) 254 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 255 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 256 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 257 #define PAGE_SHARED_X \ 258 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 259 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 260 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 261 262 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 263 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED) 264 #define PAGE_KERNEL_CI __pgprot(_PAGE_IO) 265 266 /* 267 * We consider execute permission the same as read. 268 * Also, write permissions imply read permissions. 269 */ 270 #define __P000 PAGE_NONE 271 #define __P001 PAGE_READONLY_X 272 #define __P010 PAGE_COPY 273 #define __P011 PAGE_COPY_X 274 #define __P100 PAGE_READONLY 275 #define __P101 PAGE_READONLY_X 276 #define __P110 PAGE_COPY 277 #define __P111 PAGE_COPY_X 278 279 #define __S000 PAGE_NONE 280 #define __S001 PAGE_READONLY_X 281 #define __S010 PAGE_SHARED 282 #define __S011 PAGE_SHARED_X 283 #define __S100 PAGE_READONLY 284 #define __S101 PAGE_READONLY_X 285 #define __S110 PAGE_SHARED 286 #define __S111 PAGE_SHARED_X 287 288 #ifndef __ASSEMBLY__ 289 /* 290 * ZERO_PAGE is a global shared page that is always zero: used 291 * for zero-mapped memory areas etc.. 292 */ 293 extern unsigned long empty_zero_page[1024]; 294 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 295 296 #endif /* __ASSEMBLY__ */ 297 298 #define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) 299 #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 300 #define pte_clear(mm, addr, ptep) \ 301 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) 302 303 #define pmd_none(pmd) (!pmd_val(pmd)) 304 #define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0) 305 #define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0) 306 #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) 307 308 #define pte_page(x) (mem_map + (unsigned long) \ 309 ((pte_val(x) - memory_start) >> PAGE_SHIFT)) 310 #define PFN_SHIFT_OFFSET (PAGE_SHIFT) 311 312 #define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) 313 314 #define pfn_pte(pfn, prot) \ 315 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot)) 316 317 #ifndef __ASSEMBLY__ 318 /* 319 * The "pgd_xxx()" functions here are trivial for a folded two-level 320 * setup: the pgd is never bad, and a pmd always exists (as it's folded 321 * into the pgd entry) 322 */ 323 static inline int pgd_none(pgd_t pgd) { return 0; } 324 static inline int pgd_bad(pgd_t pgd) { return 0; } 325 static inline int pgd_present(pgd_t pgd) { return 1; } 326 #define pgd_clear(xp) do { } while (0) 327 #define pgd_page(pgd) \ 328 ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) 329 330 /* 331 * The following only work if pte_present() is true. 332 * Undefined behaviour if not.. 333 */ 334 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } 335 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 336 static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 337 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 338 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 339 340 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 341 static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 342 343 static inline pte_t pte_rdprotect(pte_t pte) \ 344 { pte_val(pte) &= ~_PAGE_USER; return pte; } 345 static inline pte_t pte_wrprotect(pte_t pte) \ 346 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 347 static inline pte_t pte_exprotect(pte_t pte) \ 348 { pte_val(pte) &= ~_PAGE_EXEC; return pte; } 349 static inline pte_t pte_mkclean(pte_t pte) \ 350 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 351 static inline pte_t pte_mkold(pte_t pte) \ 352 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 353 354 static inline pte_t pte_mkread(pte_t pte) \ 355 { pte_val(pte) |= _PAGE_USER; return pte; } 356 static inline pte_t pte_mkexec(pte_t pte) \ 357 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } 358 static inline pte_t pte_mkwrite(pte_t pte) \ 359 { pte_val(pte) |= _PAGE_RW; return pte; } 360 static inline pte_t pte_mkdirty(pte_t pte) \ 361 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 362 static inline pte_t pte_mkyoung(pte_t pte) \ 363 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 364 365 /* 366 * Conversion functions: convert a page and protection to a page entry, 367 * and a page entry and page directory to the page they refer to. 368 */ 369 370 static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot) 371 { 372 pte_t pte; 373 pte_val(pte) = physpage | pgprot_val(pgprot); 374 return pte; 375 } 376 377 #define mk_pte(page, pgprot) \ 378 ({ \ 379 pte_t pte; \ 380 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \ 381 pgprot_val(pgprot); \ 382 pte; \ 383 }) 384 385 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 386 { 387 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 388 return pte; 389 } 390 391 /* 392 * Atomic PTE updates. 393 * 394 * pte_update clears and sets bit atomically, and returns 395 * the old pte value. 396 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant 397 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits. 398 */ 399 static inline unsigned long pte_update(pte_t *p, unsigned long clr, 400 unsigned long set) 401 { 402 unsigned long flags, old, tmp; 403 404 raw_local_irq_save(flags); 405 406 __asm__ __volatile__( "lw %0, %2, r0 \n" 407 "andn %1, %0, %3 \n" 408 "or %1, %1, %4 \n" 409 "sw %1, %2, r0 \n" 410 : "=&r" (old), "=&r" (tmp) 411 : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set) 412 : "cc"); 413 414 raw_local_irq_restore(flags); 415 416 return old; 417 } 418 419 /* 420 * set_pte stores a linux PTE into the linux page table. 421 */ 422 static inline void set_pte(struct mm_struct *mm, unsigned long addr, 423 pte_t *ptep, pte_t pte) 424 { 425 *ptep = pte; 426 } 427 428 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 429 pte_t *ptep, pte_t pte) 430 { 431 *ptep = pte; 432 } 433 434 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 435 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 436 unsigned long address, pte_t *ptep) 437 { 438 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0; 439 } 440 441 static inline int ptep_test_and_clear_dirty(struct mm_struct *mm, 442 unsigned long addr, pte_t *ptep) 443 { 444 return (pte_update(ptep, \ 445 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; 446 } 447 448 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 449 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 450 unsigned long addr, pte_t *ptep) 451 { 452 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 453 } 454 455 /*static inline void ptep_set_wrprotect(struct mm_struct *mm, 456 unsigned long addr, pte_t *ptep) 457 { 458 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); 459 }*/ 460 461 static inline void ptep_mkdirty(struct mm_struct *mm, 462 unsigned long addr, pte_t *ptep) 463 { 464 pte_update(ptep, 0, _PAGE_DIRTY); 465 } 466 467 /*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/ 468 469 /* Convert pmd entry to page */ 470 /* our pmd entry is an effective address of pte table*/ 471 /* returns effective address of the pmd entry*/ 472 #define pmd_page_kernel(pmd) ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) 473 474 /* returns struct *page of the pmd entry*/ 475 #define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 476 477 /* to find an entry in a kernel page-table-directory */ 478 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 479 480 /* to find an entry in a page-table-directory */ 481 #define pgd_index(address) ((address) >> PGDIR_SHIFT) 482 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 483 484 /* Find an entry in the second-level page table.. */ 485 static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address) 486 { 487 return (pmd_t *) dir; 488 } 489 490 /* Find an entry in the third-level page table.. */ 491 #define pte_index(address) \ 492 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 493 #define pte_offset_kernel(dir, addr) \ 494 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) 495 #define pte_offset_map(dir, addr) \ 496 ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr)) 497 498 #define pte_unmap(pte) kunmap_atomic(pte) 499 500 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 501 502 /* 503 * Encode and decode a swap entry. 504 * Note that the bits we use in a PTE for representing a swap entry 505 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit 506 * (if used). -- paulus 507 */ 508 #define __swp_type(entry) ((entry).val & 0x3f) 509 #define __swp_offset(entry) ((entry).val >> 6) 510 #define __swp_entry(type, offset) \ 511 ((swp_entry_t) { (type) | ((offset) << 6) }) 512 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 }) 513 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 }) 514 515 extern unsigned long iopa(unsigned long addr); 516 517 /* Values for nocacheflag and cmode */ 518 /* These are not used by the APUS kernel_map, but prevents 519 * compilation errors. 520 */ 521 #define IOMAP_FULL_CACHING 0 522 #define IOMAP_NOCACHE_SER 1 523 #define IOMAP_NOCACHE_NONSER 2 524 #define IOMAP_NO_COPYBACK 3 525 526 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 527 #define kern_addr_valid(addr) (1) 528 529 /* 530 * No page table caches to initialise 531 */ 532 #define pgtable_cache_init() do { } while (0) 533 534 void do_page_fault(struct pt_regs *regs, unsigned long address, 535 unsigned long error_code); 536 537 void mapin_ram(void); 538 int map_page(unsigned long va, phys_addr_t pa, int flags); 539 540 extern int mem_init_done; 541 542 asmlinkage void __init mmu_init(void); 543 544 void __init *early_get_page(void); 545 546 #endif /* __ASSEMBLY__ */ 547 #endif /* __KERNEL__ */ 548 549 #endif /* CONFIG_MMU */ 550 551 #ifndef __ASSEMBLY__ 552 #include <asm-generic/pgtable.h> 553 554 extern unsigned long ioremap_bot, ioremap_base; 555 556 void *consistent_alloc(gfp_t gfp, size_t size, dma_addr_t *dma_handle); 557 void consistent_free(size_t size, void *vaddr); 558 void consistent_sync(void *vaddr, size_t size, int direction); 559 void consistent_sync_page(struct page *page, unsigned long offset, 560 size_t size, int direction); 561 unsigned long consistent_virt_to_pfn(void *vaddr); 562 563 void setup_memory(void); 564 #endif /* __ASSEMBLY__ */ 565 566 #endif /* _ASM_MICROBLAZE_PGTABLE_H */ 567