1 /*
2  * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
3  * Copyright (C) 2008-2009 PetaLogix
4  * Copyright (C) 2006 Atmark Techno, Inc.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License. See the file "COPYING" in the main directory of this archive
8  * for more details.
9  */
10 
11 #ifndef _ASM_MICROBLAZE_PGTABLE_H
12 #define _ASM_MICROBLAZE_PGTABLE_H
13 
14 #include <asm/setup.h>
15 
16 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
17 		remap_pfn_range(vma, vaddr, pfn, size, prot)
18 
19 #ifndef CONFIG_MMU
20 
21 #define pgd_present(pgd)	(1) /* pages are always present on non MMU */
22 #define pgd_none(pgd)		(0)
23 #define pgd_bad(pgd)		(0)
24 #define pgd_clear(pgdp)
25 #define kern_addr_valid(addr)	(1)
26 #define	pmd_offset(a, b)	((void *) 0)
27 
28 #define PAGE_NONE		__pgprot(0) /* these mean nothing to non MMU */
29 #define PAGE_SHARED		__pgprot(0) /* these mean nothing to non MMU */
30 #define PAGE_COPY		__pgprot(0) /* these mean nothing to non MMU */
31 #define PAGE_READONLY		__pgprot(0) /* these mean nothing to non MMU */
32 #define PAGE_KERNEL		__pgprot(0) /* these mean nothing to non MMU */
33 
34 #define pgprot_noncached(x)	(x)
35 
36 #define __swp_type(x)		(0)
37 #define __swp_offset(x)		(0)
38 #define __swp_entry(typ, off)	((swp_entry_t) { ((typ) | ((off) << 7)) })
39 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
40 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
41 
42 #ifndef __ASSEMBLY__
43 static inline int pte_file(pte_t pte) { return 0; }
44 #endif /* __ASSEMBLY__ */
45 
46 #define ZERO_PAGE(vaddr)	({ BUG(); NULL; })
47 
48 #define swapper_pg_dir ((pgd_t *) NULL)
49 
50 #define pgtable_cache_init()	do {} while (0)
51 
52 #define arch_enter_lazy_cpu_mode()	do {} while (0)
53 
54 #else /* CONFIG_MMU */
55 
56 #include <asm-generic/4level-fixup.h>
57 
58 #ifdef __KERNEL__
59 #ifndef __ASSEMBLY__
60 
61 #include <linux/sched.h>
62 #include <linux/threads.h>
63 #include <asm/processor.h>		/* For TASK_SIZE */
64 #include <asm/mmu.h>
65 #include <asm/page.h>
66 
67 #define FIRST_USER_ADDRESS	0
68 
69 extern unsigned long va_to_phys(unsigned long address);
70 extern pte_t *va_to_pte(unsigned long address);
71 extern unsigned long ioremap_bot, ioremap_base;
72 
73 /*
74  * The following only work if pte_present() is true.
75  * Undefined behaviour if not..
76  */
77 
78 static inline int pte_special(pte_t pte)	{ return 0; }
79 
80 static inline pte_t pte_mkspecial(pte_t pte)	{ return pte; }
81 
82 /* Start and end of the vmalloc area. */
83 /* Make sure to map the vmalloc area above the pinned kernel memory area
84    of 32Mb.  */
85 #define VMALLOC_START	(CONFIG_KERNEL_START + \
86 				max(32 * 1024 * 1024UL, memory_size))
87 #define VMALLOC_END	ioremap_bot
88 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
89 
90 #endif /* __ASSEMBLY__ */
91 
92 /*
93  * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
94  * table containing PTEs, together with a set of 16 segment registers, to
95  * define the virtual to physical address mapping.
96  *
97  * We use the hash table as an extended TLB, i.e. a cache of currently
98  * active mappings.  We maintain a two-level page table tree, much
99  * like that used by the i386, for the sake of the Linux memory
100  * management code.  Low-level assembler code in hashtable.S
101  * (procedure hash_page) is responsible for extracting ptes from the
102  * tree and putting them into the hash table when necessary, and
103  * updating the accessed and modified bits in the page table tree.
104  */
105 
106 /*
107  * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
108  * instruction and data sides share a unified, 64-entry, semi-associative
109  * TLB which is maintained totally under software control. In addition, the
110  * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
111  * TLB which serves as a first level to the shared TLB. These two TLBs are
112  * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
113  */
114 
115 /*
116  * The normal case is that PTEs are 32-bits and we have a 1-page
117  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
118  *
119  */
120 
121 /* PMD_SHIFT determines the size of the area mapped by the PTE pages */
122 #define PMD_SHIFT	(PAGE_SHIFT + PTE_SHIFT)
123 #define PMD_SIZE	(1UL << PMD_SHIFT)
124 #define PMD_MASK	(~(PMD_SIZE-1))
125 
126 /* PGDIR_SHIFT determines what a top-level page table entry can map */
127 #define PGDIR_SHIFT	PMD_SHIFT
128 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
129 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
130 
131 /*
132  * entries per page directory level: our page-table tree is two-level, so
133  * we don't really have any PMD directory.
134  */
135 #define PTRS_PER_PTE	(1 << PTE_SHIFT)
136 #define PTRS_PER_PMD	1
137 #define PTRS_PER_PGD	(1 << (32 - PGDIR_SHIFT))
138 
139 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
140 #define FIRST_USER_PGD_NR	0
141 
142 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
143 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
144 
145 #define pte_ERROR(e) \
146 	printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
147 		__FILE__, __LINE__, pte_val(e))
148 #define pmd_ERROR(e) \
149 	printk(KERN_ERR "%s:%d: bad pmd %08lx.\n", \
150 		__FILE__, __LINE__, pmd_val(e))
151 #define pgd_ERROR(e) \
152 	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
153 		__FILE__, __LINE__, pgd_val(e))
154 
155 /*
156  * Bits in a linux-style PTE.  These match the bits in the
157  * (hardware-defined) PTE as closely as possible.
158  */
159 
160 /* There are several potential gotchas here.  The hardware TLBLO
161  * field looks like this:
162  *
163  * 0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
164  * RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
165  *
166  * Where possible we make the Linux PTE bits match up with this
167  *
168  * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
169  * support down to 1k pages), this is done in the TLBMiss exception
170  * handler.
171  * - We use only zones 0 (for kernel pages) and 1 (for user pages)
172  * of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
173  * miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
174  * zone.
175  * - PRESENT *must* be in the bottom two bits because swap cache
176  * entries use the top 30 bits.  Because 4xx doesn't support SMP
177  * anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
178  * is cleared in the TLB miss handler before the TLB entry is loaded.
179  * - All other bits of the PTE are loaded into TLBLO without
180  *  * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
181  * software PTE bits.  We actually use use bits 21, 24, 25, and
182  * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
183  * PRESENT.
184  */
185 
186 /* Definitions for MicroBlaze. */
187 #define	_PAGE_GUARDED	0x001	/* G: page is guarded from prefetch */
188 #define _PAGE_FILE	0x001	/* when !present: nonlinear file mapping */
189 #define _PAGE_PRESENT	0x002	/* software: PTE contains a translation */
190 #define	_PAGE_NO_CACHE	0x004	/* I: caching is inhibited */
191 #define	_PAGE_WRITETHRU	0x008	/* W: caching is write-through */
192 #define	_PAGE_USER	0x010	/* matches one of the zone permission bits */
193 #define	_PAGE_RW	0x040	/* software: Writes permitted */
194 #define	_PAGE_DIRTY	0x080	/* software: dirty page */
195 #define _PAGE_HWWRITE	0x100	/* hardware: Dirty & RW, set in exception */
196 #define _PAGE_HWEXEC	0x200	/* hardware: EX permission */
197 #define _PAGE_ACCESSED	0x400	/* software: R: page referenced */
198 #define _PMD_PRESENT	PAGE_MASK
199 
200 /*
201  * Some bits are unused...
202  */
203 #ifndef _PAGE_HASHPTE
204 #define _PAGE_HASHPTE	0
205 #endif
206 #ifndef _PTE_NONE_MASK
207 #define _PTE_NONE_MASK	0
208 #endif
209 #ifndef _PAGE_SHARED
210 #define _PAGE_SHARED	0
211 #endif
212 #ifndef _PAGE_HWWRITE
213 #define _PAGE_HWWRITE	0
214 #endif
215 #ifndef _PAGE_HWEXEC
216 #define _PAGE_HWEXEC	0
217 #endif
218 #ifndef _PAGE_EXEC
219 #define _PAGE_EXEC	0
220 #endif
221 
222 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
223 
224 /*
225  * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
226  * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
227  * to have it in the Linux PTE, and in fact the bit could be reused for
228  * another purpose.  -- paulus.
229  */
230 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED)
231 #define _PAGE_WRENABLE	(_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
232 
233 #define _PAGE_KERNEL \
234 	(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
235 
236 #define _PAGE_IO	(_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
237 
238 #define PAGE_NONE	__pgprot(_PAGE_BASE)
239 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
240 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
241 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
242 #define PAGE_SHARED_X \
243 		__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
244 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
245 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
246 
247 #define PAGE_KERNEL	__pgprot(_PAGE_KERNEL)
248 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_SHARED)
249 #define PAGE_KERNEL_CI	__pgprot(_PAGE_IO)
250 
251 /*
252  * We consider execute permission the same as read.
253  * Also, write permissions imply read permissions.
254  */
255 #define __P000	PAGE_NONE
256 #define __P001	PAGE_READONLY_X
257 #define __P010	PAGE_COPY
258 #define __P011	PAGE_COPY_X
259 #define __P100	PAGE_READONLY
260 #define __P101	PAGE_READONLY_X
261 #define __P110	PAGE_COPY
262 #define __P111	PAGE_COPY_X
263 
264 #define __S000	PAGE_NONE
265 #define __S001	PAGE_READONLY_X
266 #define __S010	PAGE_SHARED
267 #define __S011	PAGE_SHARED_X
268 #define __S100	PAGE_READONLY
269 #define __S101	PAGE_READONLY_X
270 #define __S110	PAGE_SHARED
271 #define __S111	PAGE_SHARED_X
272 
273 #ifndef __ASSEMBLY__
274 /*
275  * ZERO_PAGE is a global shared page that is always zero: used
276  * for zero-mapped memory areas etc..
277  */
278 extern unsigned long empty_zero_page[1024];
279 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
280 
281 #endif /* __ASSEMBLY__ */
282 
283 #define pte_none(pte)		((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
284 #define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
285 #define pte_clear(mm, addr, ptep) \
286 	do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
287 
288 #define pmd_none(pmd)		(!pmd_val(pmd))
289 #define	pmd_bad(pmd)		((pmd_val(pmd) & _PMD_PRESENT) == 0)
290 #define	pmd_present(pmd)	((pmd_val(pmd) & _PMD_PRESENT) != 0)
291 #define	pmd_clear(pmdp)		do { pmd_val(*(pmdp)) = 0; } while (0)
292 
293 #define pte_page(x)		(mem_map + (unsigned long) \
294 				((pte_val(x) - memory_start) >> PAGE_SHIFT))
295 #define PFN_SHIFT_OFFSET	(PAGE_SHIFT)
296 
297 #define pte_pfn(x)		(pte_val(x) >> PFN_SHIFT_OFFSET)
298 
299 #define pfn_pte(pfn, prot) \
300 	__pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
301 
302 #ifndef __ASSEMBLY__
303 /*
304  * The "pgd_xxx()" functions here are trivial for a folded two-level
305  * setup: the pgd is never bad, and a pmd always exists (as it's folded
306  * into the pgd entry)
307  */
308 static inline int pgd_none(pgd_t pgd)		{ return 0; }
309 static inline int pgd_bad(pgd_t pgd)		{ return 0; }
310 static inline int pgd_present(pgd_t pgd)	{ return 1; }
311 #define pgd_clear(xp)				do { } while (0)
312 #define pgd_page(pgd) \
313 	((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
314 
315 /*
316  * The following only work if pte_present() is true.
317  * Undefined behaviour if not..
318  */
319 static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER; }
320 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
321 static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
322 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
323 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
324 static inline int pte_file(pte_t pte)  { return pte_val(pte) & _PAGE_FILE; }
325 
326 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
327 static inline void pte_cache(pte_t pte)   { pte_val(pte) &= ~_PAGE_NO_CACHE; }
328 
329 static inline pte_t pte_rdprotect(pte_t pte) \
330 		{ pte_val(pte) &= ~_PAGE_USER; return pte; }
331 static inline pte_t pte_wrprotect(pte_t pte) \
332 	{ pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
333 static inline pte_t pte_exprotect(pte_t pte) \
334 	{ pte_val(pte) &= ~_PAGE_EXEC; return pte; }
335 static inline pte_t pte_mkclean(pte_t pte) \
336 	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
337 static inline pte_t pte_mkold(pte_t pte) \
338 	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
339 
340 static inline pte_t pte_mkread(pte_t pte) \
341 	{ pte_val(pte) |= _PAGE_USER; return pte; }
342 static inline pte_t pte_mkexec(pte_t pte) \
343 	{ pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
344 static inline pte_t pte_mkwrite(pte_t pte) \
345 	{ pte_val(pte) |= _PAGE_RW; return pte; }
346 static inline pte_t pte_mkdirty(pte_t pte) \
347 	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
348 static inline pte_t pte_mkyoung(pte_t pte) \
349 	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
350 
351 /*
352  * Conversion functions: convert a page and protection to a page entry,
353  * and a page entry and page directory to the page they refer to.
354  */
355 
356 static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
357 {
358 	pte_t pte;
359 	pte_val(pte) = physpage | pgprot_val(pgprot);
360 	return pte;
361 }
362 
363 #define mk_pte(page, pgprot) \
364 ({									   \
365 	pte_t pte;							   \
366 	pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) |  \
367 			pgprot_val(pgprot);				   \
368 	pte;								   \
369 })
370 
371 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
372 {
373 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
374 	return pte;
375 }
376 
377 /*
378  * Atomic PTE updates.
379  *
380  * pte_update clears and sets bit atomically, and returns
381  * the old pte value.
382  * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
383  * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
384  */
385 static inline unsigned long pte_update(pte_t *p, unsigned long clr,
386 				unsigned long set)
387 {
388 	unsigned long old, tmp, msr;
389 
390 	__asm__ __volatile__("\
391 	msrclr	%2, 0x2\n\
392 	nop\n\
393 	lw	%0, %4, r0\n\
394 	andn	%1, %0, %5\n\
395 	or	%1, %1, %6\n\
396 	sw	%1, %4, r0\n\
397 	mts     rmsr, %2\n\
398 	nop"
399 	: "=&r" (old), "=&r" (tmp), "=&r" (msr), "=m" (*p)
400 	: "r" ((unsigned long)(p+1) - 4), "r" (clr), "r" (set), "m" (*p)
401 	: "cc");
402 
403 	return old;
404 }
405 
406 /*
407  * set_pte stores a linux PTE into the linux page table.
408  */
409 static inline void set_pte(struct mm_struct *mm, unsigned long addr,
410 		pte_t *ptep, pte_t pte)
411 {
412 	*ptep = pte;
413 }
414 
415 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
416 		pte_t *ptep, pte_t pte)
417 {
418 	*ptep = pte;
419 }
420 
421 static inline int ptep_test_and_clear_young(struct mm_struct *mm,
422 		unsigned long addr, pte_t *ptep)
423 {
424 	return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
425 }
426 
427 static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
428 		unsigned long addr, pte_t *ptep)
429 {
430 	return (pte_update(ptep, \
431 		(_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
432 }
433 
434 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
435 		unsigned long addr, pte_t *ptep)
436 {
437 	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
438 }
439 
440 /*static inline void ptep_set_wrprotect(struct mm_struct *mm,
441 		unsigned long addr, pte_t *ptep)
442 {
443 	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
444 }*/
445 
446 static inline void ptep_mkdirty(struct mm_struct *mm,
447 		unsigned long addr, pte_t *ptep)
448 {
449 	pte_update(ptep, 0, _PAGE_DIRTY);
450 }
451 
452 /*#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
453 
454 /* Convert pmd entry to page */
455 /* our pmd entry is an effective address of pte table*/
456 /* returns effective address of the pmd entry*/
457 #define pmd_page_kernel(pmd)	((unsigned long) (pmd_val(pmd) & PAGE_MASK))
458 
459 /* returns struct *page of the pmd entry*/
460 #define pmd_page(pmd)	(pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
461 
462 /* to find an entry in a kernel page-table-directory */
463 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
464 
465 /* to find an entry in a page-table-directory */
466 #define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
467 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
468 
469 /* Find an entry in the second-level page table.. */
470 static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address)
471 {
472 	return (pmd_t *) dir;
473 }
474 
475 /* Find an entry in the third-level page table.. */
476 #define pte_index(address)		\
477 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
478 #define pte_offset_kernel(dir, addr)	\
479 	((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr))
480 #define pte_offset_map(dir, addr)		\
481 	((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
482 #define pte_offset_map_nested(dir, addr)	\
483 	((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
484 
485 #define pte_unmap(pte)		kunmap_atomic(pte, KM_PTE0)
486 #define pte_unmap_nested(pte)	kunmap_atomic(pte, KM_PTE1)
487 
488 /* Encode and decode a nonlinear file mapping entry */
489 #define PTE_FILE_MAX_BITS	29
490 #define pte_to_pgoff(pte)	(pte_val(pte) >> 3)
491 #define pgoff_to_pte(off)	((pte_t) { ((off) << 3) | _PAGE_FILE })
492 
493 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
494 
495 /*
496  * When flushing the tlb entry for a page, we also need to flush the hash
497  * table entry.  flush_hash_page is assembler (for speed) in hashtable.S.
498  */
499 extern int flush_hash_page(unsigned context, unsigned long va, pte_t *ptep);
500 
501 /* Add an HPTE to the hash table */
502 extern void add_hash_page(unsigned context, unsigned long va, pte_t *ptep);
503 
504 /*
505  * Encode and decode a swap entry.
506  * Note that the bits we use in a PTE for representing a swap entry
507  * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
508  * (if used).  -- paulus
509  */
510 #define __swp_type(entry)		((entry).val & 0x3f)
511 #define __swp_offset(entry)	((entry).val >> 6)
512 #define __swp_entry(type, offset) \
513 		((swp_entry_t) { (type) | ((offset) << 6) })
514 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) >> 2 })
515 #define __swp_entry_to_pte(x)	((pte_t) { (x).val << 2 })
516 
517 
518 /* CONFIG_APUS */
519 /* For virtual address to physical address conversion */
520 extern void cache_clear(__u32 addr, int length);
521 extern void cache_push(__u32 addr, int length);
522 extern int mm_end_of_chunk(unsigned long addr, int len);
523 extern unsigned long iopa(unsigned long addr);
524 /* extern unsigned long mm_ptov(unsigned long addr) \
525 	__attribute__ ((const)); TBD */
526 
527 /* Values for nocacheflag and cmode */
528 /* These are not used by the APUS kernel_map, but prevents
529  * compilation errors.
530  */
531 #define	IOMAP_FULL_CACHING	0
532 #define	IOMAP_NOCACHE_SER	1
533 #define	IOMAP_NOCACHE_NONSER	2
534 #define	IOMAP_NO_COPYBACK	3
535 
536 /*
537  * Map some physical address range into the kernel address space.
538  */
539 extern unsigned long kernel_map(unsigned long paddr, unsigned long size,
540 				int nocacheflag, unsigned long *memavailp);
541 
542 /*
543  * Set cache mode of (kernel space) address range.
544  */
545 extern void kernel_set_cachemode(unsigned long address, unsigned long size,
546 				unsigned int cmode);
547 
548 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
549 #define kern_addr_valid(addr)	(1)
550 
551 #define io_remap_page_range remap_page_range
552 
553 /*
554  * No page table caches to initialise
555  */
556 #define pgtable_cache_init()	do { } while (0)
557 
558 void do_page_fault(struct pt_regs *regs, unsigned long address,
559 		   unsigned long error_code);
560 
561 void __init io_block_mapping(unsigned long virt, phys_addr_t phys,
562 			     unsigned int size, int flags);
563 
564 void __init adjust_total_lowmem(void);
565 void mapin_ram(void);
566 int map_page(unsigned long va, phys_addr_t pa, int flags);
567 
568 extern int mem_init_done;
569 extern unsigned long ioremap_base;
570 extern unsigned long ioremap_bot;
571 
572 asmlinkage void __init mmu_init(void);
573 
574 void __init *early_get_page(void);
575 
576 void *consistent_alloc(int gfp, size_t size, dma_addr_t *dma_handle);
577 void consistent_free(void *vaddr);
578 void consistent_sync(void *vaddr, size_t size, int direction);
579 void consistent_sync_page(struct page *page, unsigned long offset,
580 	size_t size, int direction);
581 #endif /* __ASSEMBLY__ */
582 #endif /* __KERNEL__ */
583 
584 #endif /* CONFIG_MMU */
585 
586 #ifndef __ASSEMBLY__
587 #include <asm-generic/pgtable.h>
588 
589 void setup_memory(void);
590 #endif /* __ASSEMBLY__ */
591 
592 #endif /* _ASM_MICROBLAZE_PGTABLE_H */
593