xref: /openbmc/linux/arch/microblaze/include/asm/pgtable.h (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
3  * Copyright (C) 2008-2009 PetaLogix
4  * Copyright (C) 2006 Atmark Techno, Inc.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License. See the file "COPYING" in the main directory of this archive
8  * for more details.
9  */
10 
11 #ifndef _ASM_MICROBLAZE_PGTABLE_H
12 #define _ASM_MICROBLAZE_PGTABLE_H
13 
14 #include <asm/setup.h>
15 
16 #ifndef __ASSEMBLY__
17 extern int mem_init_done;
18 #endif
19 
20 #ifndef CONFIG_MMU
21 
22 #define pgd_present(pgd)	(1) /* pages are always present on non MMU */
23 #define pgd_none(pgd)		(0)
24 #define pgd_bad(pgd)		(0)
25 #define pgd_clear(pgdp)
26 #define kern_addr_valid(addr)	(1)
27 #define	pmd_offset(a, b)	((void *) 0)
28 
29 #define PAGE_NONE		__pgprot(0) /* these mean nothing to non MMU */
30 #define PAGE_SHARED		__pgprot(0) /* these mean nothing to non MMU */
31 #define PAGE_COPY		__pgprot(0) /* these mean nothing to non MMU */
32 #define PAGE_READONLY		__pgprot(0) /* these mean nothing to non MMU */
33 #define PAGE_KERNEL		__pgprot(0) /* these mean nothing to non MMU */
34 
35 #define pgprot_noncached(x)	(x)
36 #define pgprot_writecombine	pgprot_noncached
37 #define pgprot_device		pgprot_noncached
38 
39 #define __swp_type(x)		(0)
40 #define __swp_offset(x)		(0)
41 #define __swp_entry(typ, off)	((swp_entry_t) { ((typ) | ((off) << 7)) })
42 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
43 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
44 
45 #define ZERO_PAGE(vaddr)	({ BUG(); NULL; })
46 
47 #define swapper_pg_dir ((pgd_t *) NULL)
48 
49 #define pgtable_cache_init()	do {} while (0)
50 
51 #define arch_enter_lazy_cpu_mode()	do {} while (0)
52 
53 #define pgprot_noncached_wc(prot)	prot
54 
55 /*
56  * All 32bit addresses are effectively valid for vmalloc...
57  * Sort of meaningless for non-VM targets.
58  */
59 #define	VMALLOC_START	0
60 #define	VMALLOC_END	0xffffffff
61 
62 #else /* CONFIG_MMU */
63 
64 #include <asm-generic/4level-fixup.h>
65 
66 #define __PAGETABLE_PMD_FOLDED 1
67 
68 #ifdef __KERNEL__
69 #ifndef __ASSEMBLY__
70 
71 #include <linux/sched.h>
72 #include <linux/threads.h>
73 #include <asm/processor.h>		/* For TASK_SIZE */
74 #include <asm/mmu.h>
75 #include <asm/page.h>
76 
77 #define FIRST_USER_ADDRESS	0UL
78 
79 extern unsigned long va_to_phys(unsigned long address);
80 extern pte_t *va_to_pte(unsigned long address);
81 
82 /*
83  * The following only work if pte_present() is true.
84  * Undefined behaviour if not..
85  */
86 
87 static inline int pte_special(pte_t pte)	{ return 0; }
88 
89 static inline pte_t pte_mkspecial(pte_t pte)	{ return pte; }
90 
91 /* Start and end of the vmalloc area. */
92 /* Make sure to map the vmalloc area above the pinned kernel memory area
93    of 32Mb.  */
94 #define VMALLOC_START	(CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
95 #define VMALLOC_END	ioremap_bot
96 
97 #endif /* __ASSEMBLY__ */
98 
99 /*
100  * Macro to mark a page protection value as "uncacheable".
101  */
102 
103 #define _PAGE_CACHE_CTL	(_PAGE_GUARDED | _PAGE_NO_CACHE | \
104 							_PAGE_WRITETHRU)
105 
106 #define pgprot_noncached(prot) \
107 			(__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
108 					_PAGE_NO_CACHE | _PAGE_GUARDED))
109 
110 #define pgprot_noncached_wc(prot) \
111 			 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
112 							_PAGE_NO_CACHE))
113 
114 /*
115  * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
116  * table containing PTEs, together with a set of 16 segment registers, to
117  * define the virtual to physical address mapping.
118  *
119  * We use the hash table as an extended TLB, i.e. a cache of currently
120  * active mappings.  We maintain a two-level page table tree, much
121  * like that used by the i386, for the sake of the Linux memory
122  * management code.  Low-level assembler code in hashtable.S
123  * (procedure hash_page) is responsible for extracting ptes from the
124  * tree and putting them into the hash table when necessary, and
125  * updating the accessed and modified bits in the page table tree.
126  */
127 
128 /*
129  * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
130  * instruction and data sides share a unified, 64-entry, semi-associative
131  * TLB which is maintained totally under software control. In addition, the
132  * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
133  * TLB which serves as a first level to the shared TLB. These two TLBs are
134  * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
135  */
136 
137 /*
138  * The normal case is that PTEs are 32-bits and we have a 1-page
139  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
140  *
141  */
142 
143 /* PMD_SHIFT determines the size of the area mapped by the PTE pages */
144 #define PMD_SHIFT	(PAGE_SHIFT + PTE_SHIFT)
145 #define PMD_SIZE	(1UL << PMD_SHIFT)
146 #define PMD_MASK	(~(PMD_SIZE-1))
147 
148 /* PGDIR_SHIFT determines what a top-level page table entry can map */
149 #define PGDIR_SHIFT	PMD_SHIFT
150 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
151 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
152 
153 /*
154  * entries per page directory level: our page-table tree is two-level, so
155  * we don't really have any PMD directory.
156  */
157 #define PTRS_PER_PTE	(1 << PTE_SHIFT)
158 #define PTRS_PER_PMD	1
159 #define PTRS_PER_PGD	(1 << (32 - PGDIR_SHIFT))
160 
161 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
162 #define FIRST_USER_PGD_NR	0
163 
164 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
165 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
166 
167 #define pte_ERROR(e) \
168 	printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
169 		__FILE__, __LINE__, pte_val(e))
170 #define pmd_ERROR(e) \
171 	printk(KERN_ERR "%s:%d: bad pmd %08lx.\n", \
172 		__FILE__, __LINE__, pmd_val(e))
173 #define pgd_ERROR(e) \
174 	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
175 		__FILE__, __LINE__, pgd_val(e))
176 
177 /*
178  * Bits in a linux-style PTE.  These match the bits in the
179  * (hardware-defined) PTE as closely as possible.
180  */
181 
182 /* There are several potential gotchas here.  The hardware TLBLO
183  * field looks like this:
184  *
185  * 0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
186  * RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
187  *
188  * Where possible we make the Linux PTE bits match up with this
189  *
190  * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
191  * support down to 1k pages), this is done in the TLBMiss exception
192  * handler.
193  * - We use only zones 0 (for kernel pages) and 1 (for user pages)
194  * of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
195  * miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
196  * zone.
197  * - PRESENT *must* be in the bottom two bits because swap cache
198  * entries use the top 30 bits.  Because 4xx doesn't support SMP
199  * anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
200  * is cleared in the TLB miss handler before the TLB entry is loaded.
201  * - All other bits of the PTE are loaded into TLBLO without
202  *  * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
203  * software PTE bits.  We actually use bits 21, 24, 25, and
204  * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
205  * PRESENT.
206  */
207 
208 /* Definitions for MicroBlaze. */
209 #define	_PAGE_GUARDED	0x001	/* G: page is guarded from prefetch */
210 #define _PAGE_PRESENT	0x002	/* software: PTE contains a translation */
211 #define	_PAGE_NO_CACHE	0x004	/* I: caching is inhibited */
212 #define	_PAGE_WRITETHRU	0x008	/* W: caching is write-through */
213 #define	_PAGE_USER	0x010	/* matches one of the zone permission bits */
214 #define	_PAGE_RW	0x040	/* software: Writes permitted */
215 #define	_PAGE_DIRTY	0x080	/* software: dirty page */
216 #define _PAGE_HWWRITE	0x100	/* hardware: Dirty & RW, set in exception */
217 #define _PAGE_HWEXEC	0x200	/* hardware: EX permission */
218 #define _PAGE_ACCESSED	0x400	/* software: R: page referenced */
219 #define _PMD_PRESENT	PAGE_MASK
220 
221 /*
222  * Some bits are unused...
223  */
224 #ifndef _PAGE_HASHPTE
225 #define _PAGE_HASHPTE	0
226 #endif
227 #ifndef _PTE_NONE_MASK
228 #define _PTE_NONE_MASK	0
229 #endif
230 #ifndef _PAGE_SHARED
231 #define _PAGE_SHARED	0
232 #endif
233 #ifndef _PAGE_EXEC
234 #define _PAGE_EXEC	0
235 #endif
236 
237 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
238 
239 /*
240  * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
241  * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
242  * to have it in the Linux PTE, and in fact the bit could be reused for
243  * another purpose.  -- paulus.
244  */
245 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED)
246 #define _PAGE_WRENABLE	(_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
247 
248 #define _PAGE_KERNEL \
249 	(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
250 
251 #define _PAGE_IO	(_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
252 
253 #define PAGE_NONE	__pgprot(_PAGE_BASE)
254 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
255 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
256 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
257 #define PAGE_SHARED_X \
258 		__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
259 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
260 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
261 
262 #define PAGE_KERNEL	__pgprot(_PAGE_KERNEL)
263 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_SHARED)
264 #define PAGE_KERNEL_CI	__pgprot(_PAGE_IO)
265 
266 /*
267  * We consider execute permission the same as read.
268  * Also, write permissions imply read permissions.
269  */
270 #define __P000	PAGE_NONE
271 #define __P001	PAGE_READONLY_X
272 #define __P010	PAGE_COPY
273 #define __P011	PAGE_COPY_X
274 #define __P100	PAGE_READONLY
275 #define __P101	PAGE_READONLY_X
276 #define __P110	PAGE_COPY
277 #define __P111	PAGE_COPY_X
278 
279 #define __S000	PAGE_NONE
280 #define __S001	PAGE_READONLY_X
281 #define __S010	PAGE_SHARED
282 #define __S011	PAGE_SHARED_X
283 #define __S100	PAGE_READONLY
284 #define __S101	PAGE_READONLY_X
285 #define __S110	PAGE_SHARED
286 #define __S111	PAGE_SHARED_X
287 
288 #ifndef __ASSEMBLY__
289 /*
290  * ZERO_PAGE is a global shared page that is always zero: used
291  * for zero-mapped memory areas etc..
292  */
293 extern unsigned long empty_zero_page[1024];
294 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
295 
296 #endif /* __ASSEMBLY__ */
297 
298 #define pte_none(pte)		((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
299 #define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
300 #define pte_clear(mm, addr, ptep) \
301 	do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
302 
303 #define pmd_none(pmd)		(!pmd_val(pmd))
304 #define	pmd_bad(pmd)		((pmd_val(pmd) & _PMD_PRESENT) == 0)
305 #define	pmd_present(pmd)	((pmd_val(pmd) & _PMD_PRESENT) != 0)
306 #define	pmd_clear(pmdp)		do { pmd_val(*(pmdp)) = 0; } while (0)
307 
308 #define pte_page(x)		(mem_map + (unsigned long) \
309 				((pte_val(x) - memory_start) >> PAGE_SHIFT))
310 #define PFN_SHIFT_OFFSET	(PAGE_SHIFT)
311 
312 #define pte_pfn(x)		(pte_val(x) >> PFN_SHIFT_OFFSET)
313 
314 #define pfn_pte(pfn, prot) \
315 	__pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
316 
317 #ifndef __ASSEMBLY__
318 /*
319  * The "pgd_xxx()" functions here are trivial for a folded two-level
320  * setup: the pgd is never bad, and a pmd always exists (as it's folded
321  * into the pgd entry)
322  */
323 static inline int pgd_none(pgd_t pgd)		{ return 0; }
324 static inline int pgd_bad(pgd_t pgd)		{ return 0; }
325 static inline int pgd_present(pgd_t pgd)	{ return 1; }
326 #define pgd_clear(xp)				do { } while (0)
327 #define pgd_page(pgd) \
328 	((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
329 
330 /*
331  * The following only work if pte_present() is true.
332  * Undefined behaviour if not..
333  */
334 static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER; }
335 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
336 static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
337 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
338 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
339 
340 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
341 static inline void pte_cache(pte_t pte)   { pte_val(pte) &= ~_PAGE_NO_CACHE; }
342 
343 static inline pte_t pte_rdprotect(pte_t pte) \
344 		{ pte_val(pte) &= ~_PAGE_USER; return pte; }
345 static inline pte_t pte_wrprotect(pte_t pte) \
346 	{ pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
347 static inline pte_t pte_exprotect(pte_t pte) \
348 	{ pte_val(pte) &= ~_PAGE_EXEC; return pte; }
349 static inline pte_t pte_mkclean(pte_t pte) \
350 	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
351 static inline pte_t pte_mkold(pte_t pte) \
352 	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
353 
354 static inline pte_t pte_mkread(pte_t pte) \
355 	{ pte_val(pte) |= _PAGE_USER; return pte; }
356 static inline pte_t pte_mkexec(pte_t pte) \
357 	{ pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
358 static inline pte_t pte_mkwrite(pte_t pte) \
359 	{ pte_val(pte) |= _PAGE_RW; return pte; }
360 static inline pte_t pte_mkdirty(pte_t pte) \
361 	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
362 static inline pte_t pte_mkyoung(pte_t pte) \
363 	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
364 
365 /*
366  * Conversion functions: convert a page and protection to a page entry,
367  * and a page entry and page directory to the page they refer to.
368  */
369 
370 static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
371 {
372 	pte_t pte;
373 	pte_val(pte) = physpage | pgprot_val(pgprot);
374 	return pte;
375 }
376 
377 #define mk_pte(page, pgprot) \
378 ({									   \
379 	pte_t pte;							   \
380 	pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) |  \
381 			pgprot_val(pgprot);				   \
382 	pte;								   \
383 })
384 
385 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
386 {
387 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
388 	return pte;
389 }
390 
391 /*
392  * Atomic PTE updates.
393  *
394  * pte_update clears and sets bit atomically, and returns
395  * the old pte value.
396  * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
397  * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
398  */
399 static inline unsigned long pte_update(pte_t *p, unsigned long clr,
400 				unsigned long set)
401 {
402 	unsigned long flags, old, tmp;
403 
404 	raw_local_irq_save(flags);
405 
406 	__asm__ __volatile__(	"lw	%0, %2, r0	\n"
407 				"andn	%1, %0, %3	\n"
408 				"or	%1, %1, %4	\n"
409 				"sw	%1, %2, r0	\n"
410 			: "=&r" (old), "=&r" (tmp)
411 			: "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
412 			: "cc");
413 
414 	raw_local_irq_restore(flags);
415 
416 	return old;
417 }
418 
419 /*
420  * set_pte stores a linux PTE into the linux page table.
421  */
422 static inline void set_pte(struct mm_struct *mm, unsigned long addr,
423 		pte_t *ptep, pte_t pte)
424 {
425 	*ptep = pte;
426 }
427 
428 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
429 		pte_t *ptep, pte_t pte)
430 {
431 	*ptep = pte;
432 }
433 
434 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
435 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
436 		unsigned long address, pte_t *ptep)
437 {
438 	return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
439 }
440 
441 static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
442 		unsigned long addr, pte_t *ptep)
443 {
444 	return (pte_update(ptep, \
445 		(_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
446 }
447 
448 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
449 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
450 		unsigned long addr, pte_t *ptep)
451 {
452 	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
453 }
454 
455 /*static inline void ptep_set_wrprotect(struct mm_struct *mm,
456 		unsigned long addr, pte_t *ptep)
457 {
458 	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
459 }*/
460 
461 static inline void ptep_mkdirty(struct mm_struct *mm,
462 		unsigned long addr, pte_t *ptep)
463 {
464 	pte_update(ptep, 0, _PAGE_DIRTY);
465 }
466 
467 /*#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
468 
469 /* Convert pmd entry to page */
470 /* our pmd entry is an effective address of pte table*/
471 /* returns effective address of the pmd entry*/
472 #define pmd_page_kernel(pmd)	((unsigned long) (pmd_val(pmd) & PAGE_MASK))
473 
474 /* returns struct *page of the pmd entry*/
475 #define pmd_page(pmd)	(pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
476 
477 /* to find an entry in a kernel page-table-directory */
478 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
479 
480 /* to find an entry in a page-table-directory */
481 #define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
482 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
483 
484 /* Find an entry in the second-level page table.. */
485 static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address)
486 {
487 	return (pmd_t *) dir;
488 }
489 
490 /* Find an entry in the third-level page table.. */
491 #define pte_index(address)		\
492 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
493 #define pte_offset_kernel(dir, addr)	\
494 	((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr))
495 #define pte_offset_map(dir, addr)		\
496 	((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
497 
498 #define pte_unmap(pte)		kunmap_atomic(pte)
499 
500 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
501 
502 /*
503  * Encode and decode a swap entry.
504  * Note that the bits we use in a PTE for representing a swap entry
505  * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
506  * (if used).  -- paulus
507  */
508 #define __swp_type(entry)		((entry).val & 0x3f)
509 #define __swp_offset(entry)	((entry).val >> 6)
510 #define __swp_entry(type, offset) \
511 		((swp_entry_t) { (type) | ((offset) << 6) })
512 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) >> 2 })
513 #define __swp_entry_to_pte(x)	((pte_t) { (x).val << 2 })
514 
515 extern unsigned long iopa(unsigned long addr);
516 
517 /* Values for nocacheflag and cmode */
518 /* These are not used by the APUS kernel_map, but prevents
519  * compilation errors.
520  */
521 #define	IOMAP_FULL_CACHING	0
522 #define	IOMAP_NOCACHE_SER	1
523 #define	IOMAP_NOCACHE_NONSER	2
524 #define	IOMAP_NO_COPYBACK	3
525 
526 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
527 #define kern_addr_valid(addr)	(1)
528 
529 /*
530  * No page table caches to initialise
531  */
532 #define pgtable_cache_init()	do { } while (0)
533 
534 void do_page_fault(struct pt_regs *regs, unsigned long address,
535 		   unsigned long error_code);
536 
537 void mapin_ram(void);
538 int map_page(unsigned long va, phys_addr_t pa, int flags);
539 
540 extern int mem_init_done;
541 
542 asmlinkage void __init mmu_init(void);
543 
544 void __init *early_get_page(void);
545 
546 #endif /* __ASSEMBLY__ */
547 #endif /* __KERNEL__ */
548 
549 #endif /* CONFIG_MMU */
550 
551 #ifndef __ASSEMBLY__
552 #include <asm-generic/pgtable.h>
553 
554 extern unsigned long ioremap_bot, ioremap_base;
555 
556 void setup_memory(void);
557 #endif /* __ASSEMBLY__ */
558 
559 #endif /* _ASM_MICROBLAZE_PGTABLE_H */
560