1 /* 2 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu> 3 * Copyright (C) 2008-2009 PetaLogix 4 * Copyright (C) 2006 Atmark Techno, Inc. 5 * 6 * This file is subject to the terms and conditions of the GNU General Public 7 * License. See the file "COPYING" in the main directory of this archive 8 * for more details. 9 */ 10 11 #ifndef _ASM_MICROBLAZE_PGTABLE_H 12 #define _ASM_MICROBLAZE_PGTABLE_H 13 14 #include <asm/setup.h> 15 16 #ifndef __ASSEMBLY__ 17 extern int mem_init_done; 18 #endif 19 20 #ifndef CONFIG_MMU 21 22 #define pgd_present(pgd) (1) /* pages are always present on non MMU */ 23 #define pgd_none(pgd) (0) 24 #define pgd_bad(pgd) (0) 25 #define pgd_clear(pgdp) 26 #define kern_addr_valid(addr) (1) 27 #define pmd_offset(a, b) ((void *) 0) 28 29 #define PAGE_NONE __pgprot(0) /* these mean nothing to non MMU */ 30 #define PAGE_SHARED __pgprot(0) /* these mean nothing to non MMU */ 31 #define PAGE_COPY __pgprot(0) /* these mean nothing to non MMU */ 32 #define PAGE_READONLY __pgprot(0) /* these mean nothing to non MMU */ 33 #define PAGE_KERNEL __pgprot(0) /* these mean nothing to non MMU */ 34 35 #define pgprot_noncached(x) (x) 36 37 #define __swp_type(x) (0) 38 #define __swp_offset(x) (0) 39 #define __swp_entry(typ, off) ((swp_entry_t) { ((typ) | ((off) << 7)) }) 40 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 41 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 42 43 #define ZERO_PAGE(vaddr) ({ BUG(); NULL; }) 44 45 #define swapper_pg_dir ((pgd_t *) NULL) 46 47 #define pgtable_cache_init() do {} while (0) 48 49 #define arch_enter_lazy_cpu_mode() do {} while (0) 50 51 #define pgprot_noncached_wc(prot) prot 52 53 /* 54 * All 32bit addresses are effectively valid for vmalloc... 55 * Sort of meaningless for non-VM targets. 56 */ 57 #define VMALLOC_START 0 58 #define VMALLOC_END 0xffffffff 59 60 #else /* CONFIG_MMU */ 61 62 #include <asm-generic/4level-fixup.h> 63 64 #define __PAGETABLE_PMD_FOLDED 65 66 #ifdef __KERNEL__ 67 #ifndef __ASSEMBLY__ 68 69 #include <linux/sched.h> 70 #include <linux/threads.h> 71 #include <asm/processor.h> /* For TASK_SIZE */ 72 #include <asm/mmu.h> 73 #include <asm/page.h> 74 75 #define FIRST_USER_ADDRESS 0UL 76 77 extern unsigned long va_to_phys(unsigned long address); 78 extern pte_t *va_to_pte(unsigned long address); 79 80 /* 81 * The following only work if pte_present() is true. 82 * Undefined behaviour if not.. 83 */ 84 85 static inline int pte_special(pte_t pte) { return 0; } 86 87 static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 88 89 /* Start and end of the vmalloc area. */ 90 /* Make sure to map the vmalloc area above the pinned kernel memory area 91 of 32Mb. */ 92 #define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE) 93 #define VMALLOC_END ioremap_bot 94 95 #endif /* __ASSEMBLY__ */ 96 97 /* 98 * Macro to mark a page protection value as "uncacheable". 99 */ 100 101 #define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \ 102 _PAGE_WRITETHRU) 103 104 #define pgprot_noncached(prot) \ 105 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 106 _PAGE_NO_CACHE | _PAGE_GUARDED)) 107 108 #define pgprot_noncached_wc(prot) \ 109 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 110 _PAGE_NO_CACHE)) 111 112 /* 113 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash 114 * table containing PTEs, together with a set of 16 segment registers, to 115 * define the virtual to physical address mapping. 116 * 117 * We use the hash table as an extended TLB, i.e. a cache of currently 118 * active mappings. We maintain a two-level page table tree, much 119 * like that used by the i386, for the sake of the Linux memory 120 * management code. Low-level assembler code in hashtable.S 121 * (procedure hash_page) is responsible for extracting ptes from the 122 * tree and putting them into the hash table when necessary, and 123 * updating the accessed and modified bits in the page table tree. 124 */ 125 126 /* 127 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The 128 * instruction and data sides share a unified, 64-entry, semi-associative 129 * TLB which is maintained totally under software control. In addition, the 130 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative 131 * TLB which serves as a first level to the shared TLB. These two TLBs are 132 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions). 133 */ 134 135 /* 136 * The normal case is that PTEs are 32-bits and we have a 1-page 137 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 138 * 139 */ 140 141 /* PMD_SHIFT determines the size of the area mapped by the PTE pages */ 142 #define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) 143 #define PMD_SIZE (1UL << PMD_SHIFT) 144 #define PMD_MASK (~(PMD_SIZE-1)) 145 146 /* PGDIR_SHIFT determines what a top-level page table entry can map */ 147 #define PGDIR_SHIFT PMD_SHIFT 148 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 149 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 150 151 /* 152 * entries per page directory level: our page-table tree is two-level, so 153 * we don't really have any PMD directory. 154 */ 155 #define PTRS_PER_PTE (1 << PTE_SHIFT) 156 #define PTRS_PER_PMD 1 157 #define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) 158 159 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 160 #define FIRST_USER_PGD_NR 0 161 162 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 163 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) 164 165 #define pte_ERROR(e) \ 166 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \ 167 __FILE__, __LINE__, pte_val(e)) 168 #define pmd_ERROR(e) \ 169 printk(KERN_ERR "%s:%d: bad pmd %08lx.\n", \ 170 __FILE__, __LINE__, pmd_val(e)) 171 #define pgd_ERROR(e) \ 172 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ 173 __FILE__, __LINE__, pgd_val(e)) 174 175 /* 176 * Bits in a linux-style PTE. These match the bits in the 177 * (hardware-defined) PTE as closely as possible. 178 */ 179 180 /* There are several potential gotchas here. The hardware TLBLO 181 * field looks like this: 182 * 183 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 184 * RPN..................... 0 0 EX WR ZSEL....... W I M G 185 * 186 * Where possible we make the Linux PTE bits match up with this 187 * 188 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can 189 * support down to 1k pages), this is done in the TLBMiss exception 190 * handler. 191 * - We use only zones 0 (for kernel pages) and 1 (for user pages) 192 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB 193 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct 194 * zone. 195 * - PRESENT *must* be in the bottom two bits because swap cache 196 * entries use the top 30 bits. Because 4xx doesn't support SMP 197 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 198 * is cleared in the TLB miss handler before the TLB entry is loaded. 199 * - All other bits of the PTE are loaded into TLBLO without 200 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for 201 * software PTE bits. We actually use use bits 21, 24, 25, and 202 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and 203 * PRESENT. 204 */ 205 206 /* Definitions for MicroBlaze. */ 207 #define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ 208 #define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ 209 #define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ 210 #define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ 211 #define _PAGE_USER 0x010 /* matches one of the zone permission bits */ 212 #define _PAGE_RW 0x040 /* software: Writes permitted */ 213 #define _PAGE_DIRTY 0x080 /* software: dirty page */ 214 #define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ 215 #define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ 216 #define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ 217 #define _PMD_PRESENT PAGE_MASK 218 219 /* 220 * Some bits are unused... 221 */ 222 #ifndef _PAGE_HASHPTE 223 #define _PAGE_HASHPTE 0 224 #endif 225 #ifndef _PTE_NONE_MASK 226 #define _PTE_NONE_MASK 0 227 #endif 228 #ifndef _PAGE_SHARED 229 #define _PAGE_SHARED 0 230 #endif 231 #ifndef _PAGE_EXEC 232 #define _PAGE_EXEC 0 233 #endif 234 235 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 236 237 /* 238 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware 239 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need 240 * to have it in the Linux PTE, and in fact the bit could be reused for 241 * another purpose. -- paulus. 242 */ 243 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 244 #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) 245 246 #define _PAGE_KERNEL \ 247 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC) 248 249 #define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) 250 251 #define PAGE_NONE __pgprot(_PAGE_BASE) 252 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 253 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 254 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 255 #define PAGE_SHARED_X \ 256 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 257 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 258 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 259 260 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 261 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED) 262 #define PAGE_KERNEL_CI __pgprot(_PAGE_IO) 263 264 /* 265 * We consider execute permission the same as read. 266 * Also, write permissions imply read permissions. 267 */ 268 #define __P000 PAGE_NONE 269 #define __P001 PAGE_READONLY_X 270 #define __P010 PAGE_COPY 271 #define __P011 PAGE_COPY_X 272 #define __P100 PAGE_READONLY 273 #define __P101 PAGE_READONLY_X 274 #define __P110 PAGE_COPY 275 #define __P111 PAGE_COPY_X 276 277 #define __S000 PAGE_NONE 278 #define __S001 PAGE_READONLY_X 279 #define __S010 PAGE_SHARED 280 #define __S011 PAGE_SHARED_X 281 #define __S100 PAGE_READONLY 282 #define __S101 PAGE_READONLY_X 283 #define __S110 PAGE_SHARED 284 #define __S111 PAGE_SHARED_X 285 286 #ifndef __ASSEMBLY__ 287 /* 288 * ZERO_PAGE is a global shared page that is always zero: used 289 * for zero-mapped memory areas etc.. 290 */ 291 extern unsigned long empty_zero_page[1024]; 292 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 293 294 #endif /* __ASSEMBLY__ */ 295 296 #define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) 297 #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 298 #define pte_clear(mm, addr, ptep) \ 299 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) 300 301 #define pmd_none(pmd) (!pmd_val(pmd)) 302 #define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0) 303 #define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0) 304 #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) 305 306 #define pte_page(x) (mem_map + (unsigned long) \ 307 ((pte_val(x) - memory_start) >> PAGE_SHIFT)) 308 #define PFN_SHIFT_OFFSET (PAGE_SHIFT) 309 310 #define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) 311 312 #define pfn_pte(pfn, prot) \ 313 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot)) 314 315 #ifndef __ASSEMBLY__ 316 /* 317 * The "pgd_xxx()" functions here are trivial for a folded two-level 318 * setup: the pgd is never bad, and a pmd always exists (as it's folded 319 * into the pgd entry) 320 */ 321 static inline int pgd_none(pgd_t pgd) { return 0; } 322 static inline int pgd_bad(pgd_t pgd) { return 0; } 323 static inline int pgd_present(pgd_t pgd) { return 1; } 324 #define pgd_clear(xp) do { } while (0) 325 #define pgd_page(pgd) \ 326 ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) 327 328 /* 329 * The following only work if pte_present() is true. 330 * Undefined behaviour if not.. 331 */ 332 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } 333 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 334 static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 335 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 336 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 337 338 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 339 static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 340 341 static inline pte_t pte_rdprotect(pte_t pte) \ 342 { pte_val(pte) &= ~_PAGE_USER; return pte; } 343 static inline pte_t pte_wrprotect(pte_t pte) \ 344 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 345 static inline pte_t pte_exprotect(pte_t pte) \ 346 { pte_val(pte) &= ~_PAGE_EXEC; return pte; } 347 static inline pte_t pte_mkclean(pte_t pte) \ 348 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 349 static inline pte_t pte_mkold(pte_t pte) \ 350 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 351 352 static inline pte_t pte_mkread(pte_t pte) \ 353 { pte_val(pte) |= _PAGE_USER; return pte; } 354 static inline pte_t pte_mkexec(pte_t pte) \ 355 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } 356 static inline pte_t pte_mkwrite(pte_t pte) \ 357 { pte_val(pte) |= _PAGE_RW; return pte; } 358 static inline pte_t pte_mkdirty(pte_t pte) \ 359 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 360 static inline pte_t pte_mkyoung(pte_t pte) \ 361 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 362 363 /* 364 * Conversion functions: convert a page and protection to a page entry, 365 * and a page entry and page directory to the page they refer to. 366 */ 367 368 static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot) 369 { 370 pte_t pte; 371 pte_val(pte) = physpage | pgprot_val(pgprot); 372 return pte; 373 } 374 375 #define mk_pte(page, pgprot) \ 376 ({ \ 377 pte_t pte; \ 378 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \ 379 pgprot_val(pgprot); \ 380 pte; \ 381 }) 382 383 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 384 { 385 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 386 return pte; 387 } 388 389 /* 390 * Atomic PTE updates. 391 * 392 * pte_update clears and sets bit atomically, and returns 393 * the old pte value. 394 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant 395 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits. 396 */ 397 static inline unsigned long pte_update(pte_t *p, unsigned long clr, 398 unsigned long set) 399 { 400 unsigned long flags, old, tmp; 401 402 raw_local_irq_save(flags); 403 404 __asm__ __volatile__( "lw %0, %2, r0 \n" 405 "andn %1, %0, %3 \n" 406 "or %1, %1, %4 \n" 407 "sw %1, %2, r0 \n" 408 : "=&r" (old), "=&r" (tmp) 409 : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set) 410 : "cc"); 411 412 raw_local_irq_restore(flags); 413 414 return old; 415 } 416 417 /* 418 * set_pte stores a linux PTE into the linux page table. 419 */ 420 static inline void set_pte(struct mm_struct *mm, unsigned long addr, 421 pte_t *ptep, pte_t pte) 422 { 423 *ptep = pte; 424 } 425 426 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 427 pte_t *ptep, pte_t pte) 428 { 429 *ptep = pte; 430 } 431 432 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 433 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 434 unsigned long address, pte_t *ptep) 435 { 436 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0; 437 } 438 439 static inline int ptep_test_and_clear_dirty(struct mm_struct *mm, 440 unsigned long addr, pte_t *ptep) 441 { 442 return (pte_update(ptep, \ 443 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; 444 } 445 446 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 447 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 448 unsigned long addr, pte_t *ptep) 449 { 450 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 451 } 452 453 /*static inline void ptep_set_wrprotect(struct mm_struct *mm, 454 unsigned long addr, pte_t *ptep) 455 { 456 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); 457 }*/ 458 459 static inline void ptep_mkdirty(struct mm_struct *mm, 460 unsigned long addr, pte_t *ptep) 461 { 462 pte_update(ptep, 0, _PAGE_DIRTY); 463 } 464 465 /*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/ 466 467 /* Convert pmd entry to page */ 468 /* our pmd entry is an effective address of pte table*/ 469 /* returns effective address of the pmd entry*/ 470 #define pmd_page_kernel(pmd) ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) 471 472 /* returns struct *page of the pmd entry*/ 473 #define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 474 475 /* to find an entry in a kernel page-table-directory */ 476 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 477 478 /* to find an entry in a page-table-directory */ 479 #define pgd_index(address) ((address) >> PGDIR_SHIFT) 480 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 481 482 /* Find an entry in the second-level page table.. */ 483 static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address) 484 { 485 return (pmd_t *) dir; 486 } 487 488 /* Find an entry in the third-level page table.. */ 489 #define pte_index(address) \ 490 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 491 #define pte_offset_kernel(dir, addr) \ 492 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) 493 #define pte_offset_map(dir, addr) \ 494 ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr)) 495 496 #define pte_unmap(pte) kunmap_atomic(pte) 497 498 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 499 500 /* 501 * Encode and decode a swap entry. 502 * Note that the bits we use in a PTE for representing a swap entry 503 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit 504 * (if used). -- paulus 505 */ 506 #define __swp_type(entry) ((entry).val & 0x3f) 507 #define __swp_offset(entry) ((entry).val >> 6) 508 #define __swp_entry(type, offset) \ 509 ((swp_entry_t) { (type) | ((offset) << 6) }) 510 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 }) 511 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 }) 512 513 extern unsigned long iopa(unsigned long addr); 514 515 /* Values for nocacheflag and cmode */ 516 /* These are not used by the APUS kernel_map, but prevents 517 * compilation errors. 518 */ 519 #define IOMAP_FULL_CACHING 0 520 #define IOMAP_NOCACHE_SER 1 521 #define IOMAP_NOCACHE_NONSER 2 522 #define IOMAP_NO_COPYBACK 3 523 524 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 525 #define kern_addr_valid(addr) (1) 526 527 /* 528 * No page table caches to initialise 529 */ 530 #define pgtable_cache_init() do { } while (0) 531 532 void do_page_fault(struct pt_regs *regs, unsigned long address, 533 unsigned long error_code); 534 535 void mapin_ram(void); 536 int map_page(unsigned long va, phys_addr_t pa, int flags); 537 538 extern int mem_init_done; 539 540 asmlinkage void __init mmu_init(void); 541 542 void __init *early_get_page(void); 543 544 #endif /* __ASSEMBLY__ */ 545 #endif /* __KERNEL__ */ 546 547 #endif /* CONFIG_MMU */ 548 549 #ifndef __ASSEMBLY__ 550 #include <asm-generic/pgtable.h> 551 552 extern unsigned long ioremap_bot, ioremap_base; 553 554 void *consistent_alloc(gfp_t gfp, size_t size, dma_addr_t *dma_handle); 555 void consistent_free(size_t size, void *vaddr); 556 void consistent_sync(void *vaddr, size_t size, int direction); 557 void consistent_sync_page(struct page *page, unsigned long offset, 558 size_t size, int direction); 559 unsigned long consistent_virt_to_pfn(void *vaddr); 560 561 void setup_memory(void); 562 #endif /* __ASSEMBLY__ */ 563 564 #endif /* _ASM_MICROBLAZE_PGTABLE_H */ 565