xref: /openbmc/linux/arch/ia64/kernel/kprobes.c (revision aa1d19f1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  arch/ia64/kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  * Copyright (C) Intel Corporation, 2005
8  *
9  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
10  *              <anil.s.keshavamurthy@intel.com> adapted from i386
11  */
12 
13 #include <linux/kprobes.h>
14 #include <linux/ptrace.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/preempt.h>
18 #include <linux/extable.h>
19 #include <linux/kdebug.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/sections.h>
23 #include <asm/exception.h>
24 
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27 
28 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
29 
30 enum instruction_type {A, I, M, F, B, L, X, u};
31 static enum instruction_type bundle_encoding[32][3] = {
32   { M, I, I },				/* 00 */
33   { M, I, I },				/* 01 */
34   { M, I, I },				/* 02 */
35   { M, I, I },				/* 03 */
36   { M, L, X },				/* 04 */
37   { M, L, X },				/* 05 */
38   { u, u, u },  			/* 06 */
39   { u, u, u },  			/* 07 */
40   { M, M, I },				/* 08 */
41   { M, M, I },				/* 09 */
42   { M, M, I },				/* 0A */
43   { M, M, I },				/* 0B */
44   { M, F, I },				/* 0C */
45   { M, F, I },				/* 0D */
46   { M, M, F },				/* 0E */
47   { M, M, F },				/* 0F */
48   { M, I, B },				/* 10 */
49   { M, I, B },				/* 11 */
50   { M, B, B },				/* 12 */
51   { M, B, B },				/* 13 */
52   { u, u, u },  			/* 14 */
53   { u, u, u },  			/* 15 */
54   { B, B, B },				/* 16 */
55   { B, B, B },				/* 17 */
56   { M, M, B },				/* 18 */
57   { M, M, B },				/* 19 */
58   { u, u, u },  			/* 1A */
59   { u, u, u },  			/* 1B */
60   { M, F, B },				/* 1C */
61   { M, F, B },				/* 1D */
62   { u, u, u },  			/* 1E */
63   { u, u, u },  			/* 1F */
64 };
65 
66 /* Insert a long branch code */
67 static void __kprobes set_brl_inst(void *from, void *to)
68 {
69 	s64 rel = ((s64) to - (s64) from) >> 4;
70 	bundle_t *brl;
71 	brl = (bundle_t *) ((u64) from & ~0xf);
72 	brl->quad0.template = 0x05;	/* [MLX](stop) */
73 	brl->quad0.slot0 = NOP_M_INST;	/* nop.m 0x0 */
74 	brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
75 	brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
76 	/* brl.cond.sptk.many.clr rel<<4 (qp=0) */
77 	brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
78 }
79 
80 /*
81  * In this function we check to see if the instruction
82  * is IP relative instruction and update the kprobe
83  * inst flag accordingly
84  */
85 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
86 					      uint major_opcode,
87 					      unsigned long kprobe_inst,
88 					      struct kprobe *p)
89 {
90 	p->ainsn.inst_flag = 0;
91 	p->ainsn.target_br_reg = 0;
92 	p->ainsn.slot = slot;
93 
94 	/* Check for Break instruction
95 	 * Bits 37:40 Major opcode to be zero
96 	 * Bits 27:32 X6 to be zero
97 	 * Bits 32:35 X3 to be zero
98 	 */
99 	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
100 		/* is a break instruction */
101 	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
102 		return;
103 	}
104 
105 	if (bundle_encoding[template][slot] == B) {
106 		switch (major_opcode) {
107 		  case INDIRECT_CALL_OPCODE:
108 	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
109 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
110 			break;
111 		  case IP_RELATIVE_PREDICT_OPCODE:
112 		  case IP_RELATIVE_BRANCH_OPCODE:
113 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
114 			break;
115 		  case IP_RELATIVE_CALL_OPCODE:
116 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
117 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
118 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
119 			break;
120 		}
121 	} else if (bundle_encoding[template][slot] == X) {
122 		switch (major_opcode) {
123 		  case LONG_CALL_OPCODE:
124 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
125 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
126 		  break;
127 		}
128 	}
129 	return;
130 }
131 
132 /*
133  * In this function we check to see if the instruction
134  * (qp) cmpx.crel.ctype p1,p2=r2,r3
135  * on which we are inserting kprobe is cmp instruction
136  * with ctype as unc.
137  */
138 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
139 					    uint major_opcode,
140 					    unsigned long kprobe_inst)
141 {
142 	cmp_inst_t cmp_inst;
143 	uint ctype_unc = 0;
144 
145 	if (!((bundle_encoding[template][slot] == I) ||
146 		(bundle_encoding[template][slot] == M)))
147 		goto out;
148 
149 	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
150 		(major_opcode == 0xE)))
151 		goto out;
152 
153 	cmp_inst.l = kprobe_inst;
154 	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
155 		/* Integer compare - Register Register (A6 type)*/
156 		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
157 				&&(cmp_inst.f.c == 1))
158 			ctype_unc = 1;
159 	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
160 		/* Integer compare - Immediate Register (A8 type)*/
161 		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
162 			ctype_unc = 1;
163 	}
164 out:
165 	return ctype_unc;
166 }
167 
168 /*
169  * In this function we check to see if the instruction
170  * on which we are inserting kprobe is supported.
171  * Returns qp value if supported
172  * Returns -EINVAL if unsupported
173  */
174 static int __kprobes unsupported_inst(uint template, uint  slot,
175 				      uint major_opcode,
176 				      unsigned long kprobe_inst,
177 				      unsigned long addr)
178 {
179 	int qp;
180 
181 	qp = kprobe_inst & 0x3f;
182 	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
183 		if (slot == 1 && qp)  {
184 			printk(KERN_WARNING "Kprobes on cmp unc "
185 					"instruction on slot 1 at <0x%lx> "
186 					"is not supported\n", addr);
187 			return -EINVAL;
188 
189 		}
190 		qp = 0;
191 	}
192 	else if (bundle_encoding[template][slot] == I) {
193 		if (major_opcode == 0) {
194 			/*
195 			 * Check for Integer speculation instruction
196 			 * - Bit 33-35 to be equal to 0x1
197 			 */
198 			if (((kprobe_inst >> 33) & 0x7) == 1) {
199 				printk(KERN_WARNING
200 					"Kprobes on speculation inst at <0x%lx> not supported\n",
201 						addr);
202 				return -EINVAL;
203 			}
204 			/*
205 			 * IP relative mov instruction
206 			 *  - Bit 27-35 to be equal to 0x30
207 			 */
208 			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
209 				printk(KERN_WARNING
210 					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
211 						addr);
212 				return -EINVAL;
213 
214 			}
215 		}
216 		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
217 				(kprobe_inst & (0x1UL << 12))) {
218 			/* test bit instructions, tbit,tnat,tf
219 			 * bit 33-36 to be equal to 0
220 			 * bit 12 to be equal to 1
221 			 */
222 			if (slot == 1 && qp) {
223 				printk(KERN_WARNING "Kprobes on test bit "
224 						"instruction on slot at <0x%lx> "
225 						"is not supported\n", addr);
226 				return -EINVAL;
227 			}
228 			qp = 0;
229 		}
230 	}
231 	else if (bundle_encoding[template][slot] == B) {
232 		if (major_opcode == 7) {
233 			/* IP-Relative Predict major code is 7 */
234 			printk(KERN_WARNING "Kprobes on IP-Relative"
235 					"Predict is not supported\n");
236 			return -EINVAL;
237 		}
238 		else if (major_opcode == 2) {
239 			/* Indirect Predict, major code is 2
240 			 * bit 27-32 to be equal to 10 or 11
241 			 */
242 			int x6=(kprobe_inst >> 27) & 0x3F;
243 			if ((x6 == 0x10) || (x6 == 0x11)) {
244 				printk(KERN_WARNING "Kprobes on "
245 					"Indirect Predict is not supported\n");
246 				return -EINVAL;
247 			}
248 		}
249 	}
250 	/* kernel does not use float instruction, here for safety kprobe
251 	 * will judge whether it is fcmp/flass/float approximation instruction
252 	 */
253 	else if (unlikely(bundle_encoding[template][slot] == F)) {
254 		if ((major_opcode == 4 || major_opcode == 5) &&
255 				(kprobe_inst  & (0x1 << 12))) {
256 			/* fcmp/fclass unc instruction */
257 			if (slot == 1 && qp) {
258 				printk(KERN_WARNING "Kprobes on fcmp/fclass "
259 					"instruction on slot at <0x%lx> "
260 					"is not supported\n", addr);
261 				return -EINVAL;
262 
263 			}
264 			qp = 0;
265 		}
266 		if ((major_opcode == 0 || major_opcode == 1) &&
267 			(kprobe_inst & (0x1UL << 33))) {
268 			/* float Approximation instruction */
269 			if (slot == 1 && qp) {
270 				printk(KERN_WARNING "Kprobes on float Approx "
271 					"instr at <0x%lx> is not supported\n",
272 						addr);
273 				return -EINVAL;
274 			}
275 			qp = 0;
276 		}
277 	}
278 	return qp;
279 }
280 
281 /*
282  * In this function we override the bundle with
283  * the break instruction at the given slot.
284  */
285 static void __kprobes prepare_break_inst(uint template, uint  slot,
286 					 uint major_opcode,
287 					 unsigned long kprobe_inst,
288 					 struct kprobe *p,
289 					 int qp)
290 {
291 	unsigned long break_inst = BREAK_INST;
292 	bundle_t *bundle = &p->opcode.bundle;
293 
294 	/*
295 	 * Copy the original kprobe_inst qualifying predicate(qp)
296 	 * to the break instruction
297 	 */
298 	break_inst |= qp;
299 
300 	switch (slot) {
301 	  case 0:
302 		bundle->quad0.slot0 = break_inst;
303 		break;
304 	  case 1:
305 		bundle->quad0.slot1_p0 = break_inst;
306 		bundle->quad1.slot1_p1 = break_inst >> (64-46);
307 		break;
308 	  case 2:
309 		bundle->quad1.slot2 = break_inst;
310 		break;
311 	}
312 
313 	/*
314 	 * Update the instruction flag, so that we can
315 	 * emulate the instruction properly after we
316 	 * single step on original instruction
317 	 */
318 	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
319 }
320 
321 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
322 	       	unsigned long *kprobe_inst, uint *major_opcode)
323 {
324 	unsigned long kprobe_inst_p0, kprobe_inst_p1;
325 	unsigned int template;
326 
327 	template = bundle->quad0.template;
328 
329 	switch (slot) {
330 	  case 0:
331 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
332 		*kprobe_inst = bundle->quad0.slot0;
333 		  break;
334 	  case 1:
335 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
336 		kprobe_inst_p0 = bundle->quad0.slot1_p0;
337 		kprobe_inst_p1 = bundle->quad1.slot1_p1;
338 		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
339 		break;
340 	  case 2:
341 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
342 		*kprobe_inst = bundle->quad1.slot2;
343 		break;
344 	}
345 }
346 
347 /* Returns non-zero if the addr is in the Interrupt Vector Table */
348 static int __kprobes in_ivt_functions(unsigned long addr)
349 {
350 	return (addr >= (unsigned long)__start_ivt_text
351 		&& addr < (unsigned long)__end_ivt_text);
352 }
353 
354 static int __kprobes valid_kprobe_addr(int template, int slot,
355 				       unsigned long addr)
356 {
357 	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
358 		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
359 				"at 0x%lx\n", addr);
360 		return -EINVAL;
361 	}
362 
363 	if (in_ivt_functions(addr)) {
364 		printk(KERN_WARNING "Kprobes can't be inserted inside "
365 				"IVT functions at 0x%lx\n", addr);
366 		return -EINVAL;
367 	}
368 
369 	return 0;
370 }
371 
372 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
373 {
374 	unsigned int i;
375 	i = atomic_add_return(1, &kcb->prev_kprobe_index);
376 	kcb->prev_kprobe[i-1].kp = kprobe_running();
377 	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
378 }
379 
380 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
381 {
382 	unsigned int i;
383 	i = atomic_read(&kcb->prev_kprobe_index);
384 	__this_cpu_write(current_kprobe, kcb->prev_kprobe[i-1].kp);
385 	kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
386 	atomic_sub(1, &kcb->prev_kprobe_index);
387 }
388 
389 static void __kprobes set_current_kprobe(struct kprobe *p,
390 			struct kprobe_ctlblk *kcb)
391 {
392 	__this_cpu_write(current_kprobe, p);
393 }
394 
395 static void kretprobe_trampoline(void)
396 {
397 }
398 
399 /*
400  * At this point the target function has been tricked into
401  * returning into our trampoline.  Lookup the associated instance
402  * and then:
403  *    - call the handler function
404  *    - cleanup by marking the instance as unused
405  *    - long jump back to the original return address
406  */
407 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
408 {
409 	struct kretprobe_instance *ri = NULL;
410 	struct hlist_head *head, empty_rp;
411 	struct hlist_node *tmp;
412 	unsigned long flags, orig_ret_address = 0;
413 	unsigned long trampoline_address =
414 		((struct fnptr *)kretprobe_trampoline)->ip;
415 
416 	INIT_HLIST_HEAD(&empty_rp);
417 	kretprobe_hash_lock(current, &head, &flags);
418 
419 	/*
420 	 * It is possible to have multiple instances associated with a given
421 	 * task either because an multiple functions in the call path
422 	 * have a return probe installed on them, and/or more than one return
423 	 * return probe was registered for a target function.
424 	 *
425 	 * We can handle this because:
426 	 *     - instances are always inserted at the head of the list
427 	 *     - when multiple return probes are registered for the same
428 	 *       function, the first instance's ret_addr will point to the
429 	 *       real return address, and all the rest will point to
430 	 *       kretprobe_trampoline
431 	 */
432 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
433 		if (ri->task != current)
434 			/* another task is sharing our hash bucket */
435 			continue;
436 
437 		orig_ret_address = (unsigned long)ri->ret_addr;
438 		if (orig_ret_address != trampoline_address)
439 			/*
440 			 * This is the real return address. Any other
441 			 * instances associated with this task are for
442 			 * other calls deeper on the call stack
443 			 */
444 			break;
445 	}
446 
447 	regs->cr_iip = orig_ret_address;
448 
449 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
450 		if (ri->task != current)
451 			/* another task is sharing our hash bucket */
452 			continue;
453 
454 		if (ri->rp && ri->rp->handler)
455 			ri->rp->handler(ri, regs);
456 
457 		orig_ret_address = (unsigned long)ri->ret_addr;
458 		recycle_rp_inst(ri, &empty_rp);
459 
460 		if (orig_ret_address != trampoline_address)
461 			/*
462 			 * This is the real return address. Any other
463 			 * instances associated with this task are for
464 			 * other calls deeper on the call stack
465 			 */
466 			break;
467 	}
468 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
469 
470 	kretprobe_hash_unlock(current, &flags);
471 
472 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
473 		hlist_del(&ri->hlist);
474 		kfree(ri);
475 	}
476 	/*
477 	 * By returning a non-zero value, we are telling
478 	 * kprobe_handler() that we don't want the post_handler
479 	 * to run (and have re-enabled preemption)
480 	 */
481 	return 1;
482 }
483 
484 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
485 				      struct pt_regs *regs)
486 {
487 	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
488 
489 	/* Replace the return addr with trampoline addr */
490 	regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
491 }
492 
493 /* Check the instruction in the slot is break */
494 static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
495 {
496 	unsigned int major_opcode;
497 	unsigned int template = bundle->quad0.template;
498 	unsigned long kprobe_inst;
499 
500 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
501 	if (slot == 1 && bundle_encoding[template][1] == L)
502 		slot++;
503 
504 	/* Get Kprobe probe instruction at given slot*/
505 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
506 
507 	/* For break instruction,
508 	 * Bits 37:40 Major opcode to be zero
509 	 * Bits 27:32 X6 to be zero
510 	 * Bits 32:35 X3 to be zero
511 	 */
512 	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
513 		/* Not a break instruction */
514 		return 0;
515 	}
516 
517 	/* Is a break instruction */
518 	return 1;
519 }
520 
521 /*
522  * In this function, we check whether the target bundle modifies IP or
523  * it triggers an exception. If so, it cannot be boostable.
524  */
525 static int __kprobes can_boost(bundle_t *bundle, uint slot,
526 			       unsigned long bundle_addr)
527 {
528 	unsigned int template = bundle->quad0.template;
529 
530 	do {
531 		if (search_exception_tables(bundle_addr + slot) ||
532 		    __is_ia64_break_inst(bundle, slot))
533 			return 0;	/* exception may occur in this bundle*/
534 	} while ((++slot) < 3);
535 	template &= 0x1e;
536 	if (template >= 0x10 /* including B unit */ ||
537 	    template == 0x04 /* including X unit */ ||
538 	    template == 0x06) /* undefined */
539 		return 0;
540 
541 	return 1;
542 }
543 
544 /* Prepare long jump bundle and disables other boosters if need */
545 static void __kprobes prepare_booster(struct kprobe *p)
546 {
547 	unsigned long addr = (unsigned long)p->addr & ~0xFULL;
548 	unsigned int slot = (unsigned long)p->addr & 0xf;
549 	struct kprobe *other_kp;
550 
551 	if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
552 		set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
553 		p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
554 	}
555 
556 	/* disables boosters in previous slots */
557 	for (; addr < (unsigned long)p->addr; addr++) {
558 		other_kp = get_kprobe((void *)addr);
559 		if (other_kp)
560 			other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
561 	}
562 }
563 
564 int __kprobes arch_prepare_kprobe(struct kprobe *p)
565 {
566 	unsigned long addr = (unsigned long) p->addr;
567 	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
568 	unsigned long kprobe_inst=0;
569 	unsigned int slot = addr & 0xf, template, major_opcode = 0;
570 	bundle_t *bundle;
571 	int qp;
572 
573 	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
574 	template = bundle->quad0.template;
575 
576 	if(valid_kprobe_addr(template, slot, addr))
577 		return -EINVAL;
578 
579 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
580 	if (slot == 1 && bundle_encoding[template][1] == L)
581 		slot++;
582 
583 	/* Get kprobe_inst and major_opcode from the bundle */
584 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
585 
586 	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
587 	if (qp < 0)
588 		return -EINVAL;
589 
590 	p->ainsn.insn = get_insn_slot();
591 	if (!p->ainsn.insn)
592 		return -ENOMEM;
593 	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
594 	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
595 
596 	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
597 
598 	prepare_booster(p);
599 
600 	return 0;
601 }
602 
603 void __kprobes arch_arm_kprobe(struct kprobe *p)
604 {
605 	unsigned long arm_addr;
606 	bundle_t *src, *dest;
607 
608 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
609 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
610 	src = &p->opcode.bundle;
611 
612 	flush_icache_range((unsigned long)p->ainsn.insn,
613 			   (unsigned long)p->ainsn.insn +
614 			   sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
615 
616 	switch (p->ainsn.slot) {
617 		case 0:
618 			dest->quad0.slot0 = src->quad0.slot0;
619 			break;
620 		case 1:
621 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
622 			break;
623 		case 2:
624 			dest->quad1.slot2 = src->quad1.slot2;
625 			break;
626 	}
627 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
628 }
629 
630 void __kprobes arch_disarm_kprobe(struct kprobe *p)
631 {
632 	unsigned long arm_addr;
633 	bundle_t *src, *dest;
634 
635 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
636 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
637 	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
638 	src = &p->ainsn.insn->bundle;
639 	switch (p->ainsn.slot) {
640 		case 0:
641 			dest->quad0.slot0 = src->quad0.slot0;
642 			break;
643 		case 1:
644 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
645 			break;
646 		case 2:
647 			dest->quad1.slot2 = src->quad1.slot2;
648 			break;
649 	}
650 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
651 }
652 
653 void __kprobes arch_remove_kprobe(struct kprobe *p)
654 {
655 	if (p->ainsn.insn) {
656 		free_insn_slot(p->ainsn.insn,
657 			       p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
658 		p->ainsn.insn = NULL;
659 	}
660 }
661 /*
662  * We are resuming execution after a single step fault, so the pt_regs
663  * structure reflects the register state after we executed the instruction
664  * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
665  * the ip to point back to the original stack address. To set the IP address
666  * to original stack address, handle the case where we need to fixup the
667  * relative IP address and/or fixup branch register.
668  */
669 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
670 {
671 	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
672 	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
673 	unsigned long template;
674 	int slot = ((unsigned long)p->addr & 0xf);
675 
676 	template = p->ainsn.insn->bundle.quad0.template;
677 
678 	if (slot == 1 && bundle_encoding[template][1] == L)
679 		slot = 2;
680 
681 	if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
682 
683 		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
684 			/* Fix relative IP address */
685 			regs->cr_iip = (regs->cr_iip - bundle_addr) +
686 					resume_addr;
687 		}
688 
689 		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
690 		/*
691 		 * Fix target branch register, software convention is
692 		 * to use either b0 or b6 or b7, so just checking
693 		 * only those registers
694 		 */
695 			switch (p->ainsn.target_br_reg) {
696 			case 0:
697 				if ((regs->b0 == bundle_addr) ||
698 					(regs->b0 == bundle_addr + 0x10)) {
699 					regs->b0 = (regs->b0 - bundle_addr) +
700 						resume_addr;
701 				}
702 				break;
703 			case 6:
704 				if ((regs->b6 == bundle_addr) ||
705 					(regs->b6 == bundle_addr + 0x10)) {
706 					regs->b6 = (regs->b6 - bundle_addr) +
707 						resume_addr;
708 				}
709 				break;
710 			case 7:
711 				if ((regs->b7 == bundle_addr) ||
712 					(regs->b7 == bundle_addr + 0x10)) {
713 					regs->b7 = (regs->b7 - bundle_addr) +
714 						resume_addr;
715 				}
716 				break;
717 			} /* end switch */
718 		}
719 		goto turn_ss_off;
720 	}
721 
722 	if (slot == 2) {
723 		if (regs->cr_iip == bundle_addr + 0x10) {
724 			regs->cr_iip = resume_addr + 0x10;
725 		}
726 	} else {
727 		if (regs->cr_iip == bundle_addr) {
728 			regs->cr_iip = resume_addr;
729 		}
730 	}
731 
732 turn_ss_off:
733 	/* Turn off Single Step bit */
734 	ia64_psr(regs)->ss = 0;
735 }
736 
737 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
738 {
739 	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
740 	unsigned long slot = (unsigned long)p->addr & 0xf;
741 
742 	/* single step inline if break instruction */
743 	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
744 		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
745 	else
746 		regs->cr_iip = bundle_addr & ~0xFULL;
747 
748 	if (slot > 2)
749 		slot = 0;
750 
751 	ia64_psr(regs)->ri = slot;
752 
753 	/* turn on single stepping */
754 	ia64_psr(regs)->ss = 1;
755 }
756 
757 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
758 {
759 	unsigned int slot = ia64_psr(regs)->ri;
760 	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
761 	bundle_t bundle;
762 
763 	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
764 
765 	return __is_ia64_break_inst(&bundle, slot);
766 }
767 
768 static int __kprobes pre_kprobes_handler(struct die_args *args)
769 {
770 	struct kprobe *p;
771 	int ret = 0;
772 	struct pt_regs *regs = args->regs;
773 	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
774 	struct kprobe_ctlblk *kcb;
775 
776 	/*
777 	 * We don't want to be preempted for the entire
778 	 * duration of kprobe processing
779 	 */
780 	preempt_disable();
781 	kcb = get_kprobe_ctlblk();
782 
783 	/* Handle recursion cases */
784 	if (kprobe_running()) {
785 		p = get_kprobe(addr);
786 		if (p) {
787 			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
788 	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
789 				ia64_psr(regs)->ss = 0;
790 				goto no_kprobe;
791 			}
792 			/* We have reentered the pre_kprobe_handler(), since
793 			 * another probe was hit while within the handler.
794 			 * We here save the original kprobes variables and
795 			 * just single step on the instruction of the new probe
796 			 * without calling any user handlers.
797 			 */
798 			save_previous_kprobe(kcb);
799 			set_current_kprobe(p, kcb);
800 			kprobes_inc_nmissed_count(p);
801 			prepare_ss(p, regs);
802 			kcb->kprobe_status = KPROBE_REENTER;
803 			return 1;
804 		} else if (!is_ia64_break_inst(regs)) {
805 			/* The breakpoint instruction was removed by
806 			 * another cpu right after we hit, no further
807 			 * handling of this interrupt is appropriate
808 			 */
809 			ret = 1;
810 			goto no_kprobe;
811 		} else {
812 			/* Not our break */
813 			goto no_kprobe;
814 		}
815 	}
816 
817 	p = get_kprobe(addr);
818 	if (!p) {
819 		if (!is_ia64_break_inst(regs)) {
820 			/*
821 			 * The breakpoint instruction was removed right
822 			 * after we hit it.  Another cpu has removed
823 			 * either a probepoint or a debugger breakpoint
824 			 * at this address.  In either case, no further
825 			 * handling of this interrupt is appropriate.
826 			 */
827 			ret = 1;
828 
829 		}
830 
831 		/* Not one of our break, let kernel handle it */
832 		goto no_kprobe;
833 	}
834 
835 	set_current_kprobe(p, kcb);
836 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
837 
838 	if (p->pre_handler && p->pre_handler(p, regs)) {
839 		reset_current_kprobe();
840 		preempt_enable_no_resched();
841 		return 1;
842 	}
843 
844 #if !defined(CONFIG_PREEMPT)
845 	if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
846 		/* Boost up -- we can execute copied instructions directly */
847 		ia64_psr(regs)->ri = p->ainsn.slot;
848 		regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
849 		/* turn single stepping off */
850 		ia64_psr(regs)->ss = 0;
851 
852 		reset_current_kprobe();
853 		preempt_enable_no_resched();
854 		return 1;
855 	}
856 #endif
857 	prepare_ss(p, regs);
858 	kcb->kprobe_status = KPROBE_HIT_SS;
859 	return 1;
860 
861 no_kprobe:
862 	preempt_enable_no_resched();
863 	return ret;
864 }
865 
866 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
867 {
868 	struct kprobe *cur = kprobe_running();
869 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
870 
871 	if (!cur)
872 		return 0;
873 
874 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
875 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
876 		cur->post_handler(cur, regs, 0);
877 	}
878 
879 	resume_execution(cur, regs);
880 
881 	/*Restore back the original saved kprobes variables and continue. */
882 	if (kcb->kprobe_status == KPROBE_REENTER) {
883 		restore_previous_kprobe(kcb);
884 		goto out;
885 	}
886 	reset_current_kprobe();
887 
888 out:
889 	preempt_enable_no_resched();
890 	return 1;
891 }
892 
893 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
894 {
895 	struct kprobe *cur = kprobe_running();
896 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
897 
898 
899 	switch(kcb->kprobe_status) {
900 	case KPROBE_HIT_SS:
901 	case KPROBE_REENTER:
902 		/*
903 		 * We are here because the instruction being single
904 		 * stepped caused a page fault. We reset the current
905 		 * kprobe and the instruction pointer points back to
906 		 * the probe address and allow the page fault handler
907 		 * to continue as a normal page fault.
908 		 */
909 		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
910 		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
911 		if (kcb->kprobe_status == KPROBE_REENTER)
912 			restore_previous_kprobe(kcb);
913 		else
914 			reset_current_kprobe();
915 		preempt_enable_no_resched();
916 		break;
917 	case KPROBE_HIT_ACTIVE:
918 	case KPROBE_HIT_SSDONE:
919 		/*
920 		 * We increment the nmissed count for accounting,
921 		 * we can also use npre/npostfault count for accounting
922 		 * these specific fault cases.
923 		 */
924 		kprobes_inc_nmissed_count(cur);
925 
926 		/*
927 		 * We come here because instructions in the pre/post
928 		 * handler caused the page_fault, this could happen
929 		 * if handler tries to access user space by
930 		 * copy_from_user(), get_user() etc. Let the
931 		 * user-specified handler try to fix it first.
932 		 */
933 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
934 			return 1;
935 		/*
936 		 * In case the user-specified fault handler returned
937 		 * zero, try to fix up.
938 		 */
939 		if (ia64_done_with_exception(regs))
940 			return 1;
941 
942 		/*
943 		 * Let ia64_do_page_fault() fix it.
944 		 */
945 		break;
946 	default:
947 		break;
948 	}
949 
950 	return 0;
951 }
952 
953 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
954 				       unsigned long val, void *data)
955 {
956 	struct die_args *args = (struct die_args *)data;
957 	int ret = NOTIFY_DONE;
958 
959 	if (args->regs && user_mode(args->regs))
960 		return ret;
961 
962 	switch(val) {
963 	case DIE_BREAK:
964 		/* err is break number from ia64_bad_break() */
965 		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
966 			|| args->err == 0)
967 			if (pre_kprobes_handler(args))
968 				ret = NOTIFY_STOP;
969 		break;
970 	case DIE_FAULT:
971 		/* err is vector number from ia64_fault() */
972 		if (args->err == 36)
973 			if (post_kprobes_handler(args->regs))
974 				ret = NOTIFY_STOP;
975 		break;
976 	default:
977 		break;
978 	}
979 	return ret;
980 }
981 
982 struct param_bsp_cfm {
983 	unsigned long ip;
984 	unsigned long *bsp;
985 	unsigned long cfm;
986 };
987 
988 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
989 {
990 	unsigned long ip;
991 	struct param_bsp_cfm *lp = arg;
992 
993 	do {
994 		unw_get_ip(info, &ip);
995 		if (ip == 0)
996 			break;
997 		if (ip == lp->ip) {
998 			unw_get_bsp(info, (unsigned long*)&lp->bsp);
999 			unw_get_cfm(info, (unsigned long*)&lp->cfm);
1000 			return;
1001 		}
1002 	} while (unw_unwind(info) >= 0);
1003 	lp->bsp = NULL;
1004 	lp->cfm = 0;
1005 	return;
1006 }
1007 
1008 unsigned long arch_deref_entry_point(void *entry)
1009 {
1010 	return ((struct fnptr *)entry)->ip;
1011 }
1012 
1013 static struct kprobe trampoline_p = {
1014 	.pre_handler = trampoline_probe_handler
1015 };
1016 
1017 int __init arch_init_kprobes(void)
1018 {
1019 	trampoline_p.addr =
1020 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1021 	return register_kprobe(&trampoline_p);
1022 }
1023 
1024 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1025 {
1026 	if (p->addr ==
1027 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1028 		return 1;
1029 
1030 	return 0;
1031 }
1032