xref: /openbmc/linux/arch/ia64/kernel/kprobes.c (revision a1e58bbd)
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/ia64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  * Copyright (C) Intel Corporation, 2005
21  *
22  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23  *              <anil.s.keshavamurthy@intel.com> adapted from i386
24  */
25 
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
32 #include <linux/kdebug.h>
33 
34 #include <asm/pgtable.h>
35 #include <asm/sections.h>
36 #include <asm/uaccess.h>
37 
38 extern void jprobe_inst_return(void);
39 
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42 
43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
44 
45 enum instruction_type {A, I, M, F, B, L, X, u};
46 static enum instruction_type bundle_encoding[32][3] = {
47   { M, I, I },				/* 00 */
48   { M, I, I },				/* 01 */
49   { M, I, I },				/* 02 */
50   { M, I, I },				/* 03 */
51   { M, L, X },				/* 04 */
52   { M, L, X },				/* 05 */
53   { u, u, u },  			/* 06 */
54   { u, u, u },  			/* 07 */
55   { M, M, I },				/* 08 */
56   { M, M, I },				/* 09 */
57   { M, M, I },				/* 0A */
58   { M, M, I },				/* 0B */
59   { M, F, I },				/* 0C */
60   { M, F, I },				/* 0D */
61   { M, M, F },				/* 0E */
62   { M, M, F },				/* 0F */
63   { M, I, B },				/* 10 */
64   { M, I, B },				/* 11 */
65   { M, B, B },				/* 12 */
66   { M, B, B },				/* 13 */
67   { u, u, u },  			/* 14 */
68   { u, u, u },  			/* 15 */
69   { B, B, B },				/* 16 */
70   { B, B, B },				/* 17 */
71   { M, M, B },				/* 18 */
72   { M, M, B },				/* 19 */
73   { u, u, u },  			/* 1A */
74   { u, u, u },  			/* 1B */
75   { M, F, B },				/* 1C */
76   { M, F, B },				/* 1D */
77   { u, u, u },  			/* 1E */
78   { u, u, u },  			/* 1F */
79 };
80 
81 /*
82  * In this function we check to see if the instruction
83  * is IP relative instruction and update the kprobe
84  * inst flag accordingly
85  */
86 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
87 					      uint major_opcode,
88 					      unsigned long kprobe_inst,
89 					      struct kprobe *p)
90 {
91 	p->ainsn.inst_flag = 0;
92 	p->ainsn.target_br_reg = 0;
93 	p->ainsn.slot = slot;
94 
95 	/* Check for Break instruction
96 	 * Bits 37:40 Major opcode to be zero
97 	 * Bits 27:32 X6 to be zero
98 	 * Bits 32:35 X3 to be zero
99 	 */
100 	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
101 		/* is a break instruction */
102 	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
103 		return;
104 	}
105 
106 	if (bundle_encoding[template][slot] == B) {
107 		switch (major_opcode) {
108 		  case INDIRECT_CALL_OPCODE:
109 	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
110 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
111 			break;
112 		  case IP_RELATIVE_PREDICT_OPCODE:
113 		  case IP_RELATIVE_BRANCH_OPCODE:
114 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
115 			break;
116 		  case IP_RELATIVE_CALL_OPCODE:
117 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
118 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
119 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
120 			break;
121 		}
122 	} else if (bundle_encoding[template][slot] == X) {
123 		switch (major_opcode) {
124 		  case LONG_CALL_OPCODE:
125 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
126 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
127 		  break;
128 		}
129 	}
130 	return;
131 }
132 
133 /*
134  * In this function we check to see if the instruction
135  * (qp) cmpx.crel.ctype p1,p2=r2,r3
136  * on which we are inserting kprobe is cmp instruction
137  * with ctype as unc.
138  */
139 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
140 					    uint major_opcode,
141 					    unsigned long kprobe_inst)
142 {
143 	cmp_inst_t cmp_inst;
144 	uint ctype_unc = 0;
145 
146 	if (!((bundle_encoding[template][slot] == I) ||
147 		(bundle_encoding[template][slot] == M)))
148 		goto out;
149 
150 	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
151 		(major_opcode == 0xE)))
152 		goto out;
153 
154 	cmp_inst.l = kprobe_inst;
155 	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
156 		/* Integer compare - Register Register (A6 type)*/
157 		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
158 				&&(cmp_inst.f.c == 1))
159 			ctype_unc = 1;
160 	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
161 		/* Integer compare - Immediate Register (A8 type)*/
162 		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
163 			ctype_unc = 1;
164 	}
165 out:
166 	return ctype_unc;
167 }
168 
169 /*
170  * In this function we check to see if the instruction
171  * on which we are inserting kprobe is supported.
172  * Returns qp value if supported
173  * Returns -EINVAL if unsupported
174  */
175 static int __kprobes unsupported_inst(uint template, uint  slot,
176 				      uint major_opcode,
177 				      unsigned long kprobe_inst,
178 				      unsigned long addr)
179 {
180 	int qp;
181 
182 	qp = kprobe_inst & 0x3f;
183 	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
184 		if (slot == 1 && qp)  {
185 			printk(KERN_WARNING "Kprobes on cmp unc "
186 					"instruction on slot 1 at <0x%lx> "
187 					"is not supported\n", addr);
188 			return -EINVAL;
189 
190 		}
191 		qp = 0;
192 	}
193 	else if (bundle_encoding[template][slot] == I) {
194 		if (major_opcode == 0) {
195 			/*
196 			 * Check for Integer speculation instruction
197 			 * - Bit 33-35 to be equal to 0x1
198 			 */
199 			if (((kprobe_inst >> 33) & 0x7) == 1) {
200 				printk(KERN_WARNING
201 					"Kprobes on speculation inst at <0x%lx> not supported\n",
202 						addr);
203 				return -EINVAL;
204 			}
205 			/*
206 			 * IP relative mov instruction
207 			 *  - Bit 27-35 to be equal to 0x30
208 			 */
209 			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
210 				printk(KERN_WARNING
211 					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
212 						addr);
213 				return -EINVAL;
214 
215 			}
216 		}
217 		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
218 				(kprobe_inst & (0x1UL << 12))) {
219 			/* test bit instructions, tbit,tnat,tf
220 			 * bit 33-36 to be equal to 0
221 			 * bit 12 to be equal to 1
222 			 */
223 			if (slot == 1 && qp) {
224 				printk(KERN_WARNING "Kprobes on test bit "
225 						"instruction on slot at <0x%lx> "
226 						"is not supported\n", addr);
227 				return -EINVAL;
228 			}
229 			qp = 0;
230 		}
231 	}
232 	else if (bundle_encoding[template][slot] == B) {
233 		if (major_opcode == 7) {
234 			/* IP-Relative Predict major code is 7 */
235 			printk(KERN_WARNING "Kprobes on IP-Relative"
236 					"Predict is not supported\n");
237 			return -EINVAL;
238 		}
239 		else if (major_opcode == 2) {
240 			/* Indirect Predict, major code is 2
241 			 * bit 27-32 to be equal to 10 or 11
242 			 */
243 			int x6=(kprobe_inst >> 27) & 0x3F;
244 			if ((x6 == 0x10) || (x6 == 0x11)) {
245 				printk(KERN_WARNING "Kprobes on "
246 					"Indirect Predict is not supported\n");
247 				return -EINVAL;
248 			}
249 		}
250 	}
251 	/* kernel does not use float instruction, here for safety kprobe
252 	 * will judge whether it is fcmp/flass/float approximation instruction
253 	 */
254 	else if (unlikely(bundle_encoding[template][slot] == F)) {
255 		if ((major_opcode == 4 || major_opcode == 5) &&
256 				(kprobe_inst  & (0x1 << 12))) {
257 			/* fcmp/fclass unc instruction */
258 			if (slot == 1 && qp) {
259 				printk(KERN_WARNING "Kprobes on fcmp/fclass "
260 					"instruction on slot at <0x%lx> "
261 					"is not supported\n", addr);
262 				return -EINVAL;
263 
264 			}
265 			qp = 0;
266 		}
267 		if ((major_opcode == 0 || major_opcode == 1) &&
268 			(kprobe_inst & (0x1UL << 33))) {
269 			/* float Approximation instruction */
270 			if (slot == 1 && qp) {
271 				printk(KERN_WARNING "Kprobes on float Approx "
272 					"instr at <0x%lx> is not supported\n",
273 						addr);
274 				return -EINVAL;
275 			}
276 			qp = 0;
277 		}
278 	}
279 	return qp;
280 }
281 
282 /*
283  * In this function we override the bundle with
284  * the break instruction at the given slot.
285  */
286 static void __kprobes prepare_break_inst(uint template, uint  slot,
287 					 uint major_opcode,
288 					 unsigned long kprobe_inst,
289 					 struct kprobe *p,
290 					 int qp)
291 {
292 	unsigned long break_inst = BREAK_INST;
293 	bundle_t *bundle = &p->opcode.bundle;
294 
295 	/*
296 	 * Copy the original kprobe_inst qualifying predicate(qp)
297 	 * to the break instruction
298 	 */
299 	break_inst |= qp;
300 
301 	switch (slot) {
302 	  case 0:
303 		bundle->quad0.slot0 = break_inst;
304 		break;
305 	  case 1:
306 		bundle->quad0.slot1_p0 = break_inst;
307 		bundle->quad1.slot1_p1 = break_inst >> (64-46);
308 		break;
309 	  case 2:
310 		bundle->quad1.slot2 = break_inst;
311 		break;
312 	}
313 
314 	/*
315 	 * Update the instruction flag, so that we can
316 	 * emulate the instruction properly after we
317 	 * single step on original instruction
318 	 */
319 	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
320 }
321 
322 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
323 	       	unsigned long *kprobe_inst, uint *major_opcode)
324 {
325 	unsigned long kprobe_inst_p0, kprobe_inst_p1;
326 	unsigned int template;
327 
328 	template = bundle->quad0.template;
329 
330 	switch (slot) {
331 	  case 0:
332 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
333 		*kprobe_inst = bundle->quad0.slot0;
334 		  break;
335 	  case 1:
336 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
337 		kprobe_inst_p0 = bundle->quad0.slot1_p0;
338 		kprobe_inst_p1 = bundle->quad1.slot1_p1;
339 		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
340 		break;
341 	  case 2:
342 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
343 		*kprobe_inst = bundle->quad1.slot2;
344 		break;
345 	}
346 }
347 
348 /* Returns non-zero if the addr is in the Interrupt Vector Table */
349 static int __kprobes in_ivt_functions(unsigned long addr)
350 {
351 	return (addr >= (unsigned long)__start_ivt_text
352 		&& addr < (unsigned long)__end_ivt_text);
353 }
354 
355 static int __kprobes valid_kprobe_addr(int template, int slot,
356 				       unsigned long addr)
357 {
358 	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
359 		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
360 				"at 0x%lx\n", addr);
361 		return -EINVAL;
362 	}
363 
364 	if (in_ivt_functions(addr)) {
365 		printk(KERN_WARNING "Kprobes can't be inserted inside "
366 				"IVT functions at 0x%lx\n", addr);
367 		return -EINVAL;
368 	}
369 
370 	return 0;
371 }
372 
373 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
374 {
375 	unsigned int i;
376 	i = atomic_add_return(1, &kcb->prev_kprobe_index);
377 	kcb->prev_kprobe[i-1].kp = kprobe_running();
378 	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
379 }
380 
381 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
382 {
383 	unsigned int i;
384 	i = atomic_read(&kcb->prev_kprobe_index);
385 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe[i-1].kp;
386 	kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
387 	atomic_sub(1, &kcb->prev_kprobe_index);
388 }
389 
390 static void __kprobes set_current_kprobe(struct kprobe *p,
391 			struct kprobe_ctlblk *kcb)
392 {
393 	__get_cpu_var(current_kprobe) = p;
394 }
395 
396 static void kretprobe_trampoline(void)
397 {
398 }
399 
400 /*
401  * At this point the target function has been tricked into
402  * returning into our trampoline.  Lookup the associated instance
403  * and then:
404  *    - call the handler function
405  *    - cleanup by marking the instance as unused
406  *    - long jump back to the original return address
407  */
408 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
409 {
410 	struct kretprobe_instance *ri = NULL;
411 	struct hlist_head *head, empty_rp;
412 	struct hlist_node *node, *tmp;
413 	unsigned long flags, orig_ret_address = 0;
414 	unsigned long trampoline_address =
415 		((struct fnptr *)kretprobe_trampoline)->ip;
416 
417 	INIT_HLIST_HEAD(&empty_rp);
418 	spin_lock_irqsave(&kretprobe_lock, flags);
419 	head = kretprobe_inst_table_head(current);
420 
421 	/*
422 	 * It is possible to have multiple instances associated with a given
423 	 * task either because an multiple functions in the call path
424 	 * have a return probe installed on them, and/or more then one return
425 	 * return probe was registered for a target function.
426 	 *
427 	 * We can handle this because:
428 	 *     - instances are always inserted at the head of the list
429 	 *     - when multiple return probes are registered for the same
430 	 *       function, the first instance's ret_addr will point to the
431 	 *       real return address, and all the rest will point to
432 	 *       kretprobe_trampoline
433 	 */
434 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
435 		if (ri->task != current)
436 			/* another task is sharing our hash bucket */
437 			continue;
438 
439 		orig_ret_address = (unsigned long)ri->ret_addr;
440 		if (orig_ret_address != trampoline_address)
441 			/*
442 			 * This is the real return address. Any other
443 			 * instances associated with this task are for
444 			 * other calls deeper on the call stack
445 			 */
446 			break;
447 	}
448 
449 	regs->cr_iip = orig_ret_address;
450 
451 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
452 		if (ri->task != current)
453 			/* another task is sharing our hash bucket */
454 			continue;
455 
456 		if (ri->rp && ri->rp->handler)
457 			ri->rp->handler(ri, regs);
458 
459 		orig_ret_address = (unsigned long)ri->ret_addr;
460 		recycle_rp_inst(ri, &empty_rp);
461 
462 		if (orig_ret_address != trampoline_address)
463 			/*
464 			 * This is the real return address. Any other
465 			 * instances associated with this task are for
466 			 * other calls deeper on the call stack
467 			 */
468 			break;
469 	}
470 
471 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
472 
473 	reset_current_kprobe();
474 	spin_unlock_irqrestore(&kretprobe_lock, flags);
475 	preempt_enable_no_resched();
476 
477 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
478 		hlist_del(&ri->hlist);
479 		kfree(ri);
480 	}
481 	/*
482 	 * By returning a non-zero value, we are telling
483 	 * kprobe_handler() that we don't want the post_handler
484 	 * to run (and have re-enabled preemption)
485 	 */
486 	return 1;
487 }
488 
489 /* Called with kretprobe_lock held */
490 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
491 				      struct pt_regs *regs)
492 {
493 	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
494 
495 	/* Replace the return addr with trampoline addr */
496 	regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
497 }
498 
499 int __kprobes arch_prepare_kprobe(struct kprobe *p)
500 {
501 	unsigned long addr = (unsigned long) p->addr;
502 	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
503 	unsigned long kprobe_inst=0;
504 	unsigned int slot = addr & 0xf, template, major_opcode = 0;
505 	bundle_t *bundle;
506 	int qp;
507 
508 	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
509 	template = bundle->quad0.template;
510 
511 	if(valid_kprobe_addr(template, slot, addr))
512 		return -EINVAL;
513 
514 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
515 	if (slot == 1 && bundle_encoding[template][1] == L)
516 		slot++;
517 
518 	/* Get kprobe_inst and major_opcode from the bundle */
519 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
520 
521 	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
522 	if (qp < 0)
523 		return -EINVAL;
524 
525 	p->ainsn.insn = get_insn_slot();
526 	if (!p->ainsn.insn)
527 		return -ENOMEM;
528 	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
529 	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
530 
531 	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
532 
533 	return 0;
534 }
535 
536 void __kprobes arch_arm_kprobe(struct kprobe *p)
537 {
538 	unsigned long arm_addr;
539 	bundle_t *src, *dest;
540 
541 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
542 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
543 	src = &p->opcode.bundle;
544 
545 	flush_icache_range((unsigned long)p->ainsn.insn,
546 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
547 	switch (p->ainsn.slot) {
548 		case 0:
549 			dest->quad0.slot0 = src->quad0.slot0;
550 			break;
551 		case 1:
552 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
553 			break;
554 		case 2:
555 			dest->quad1.slot2 = src->quad1.slot2;
556 			break;
557 	}
558 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
559 }
560 
561 void __kprobes arch_disarm_kprobe(struct kprobe *p)
562 {
563 	unsigned long arm_addr;
564 	bundle_t *src, *dest;
565 
566 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
567 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
568 	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
569 	src = &p->ainsn.insn->bundle;
570 	switch (p->ainsn.slot) {
571 		case 0:
572 			dest->quad0.slot0 = src->quad0.slot0;
573 			break;
574 		case 1:
575 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
576 			break;
577 		case 2:
578 			dest->quad1.slot2 = src->quad1.slot2;
579 			break;
580 	}
581 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
582 }
583 
584 void __kprobes arch_remove_kprobe(struct kprobe *p)
585 {
586 	mutex_lock(&kprobe_mutex);
587 	free_insn_slot(p->ainsn.insn, 0);
588 	mutex_unlock(&kprobe_mutex);
589 }
590 /*
591  * We are resuming execution after a single step fault, so the pt_regs
592  * structure reflects the register state after we executed the instruction
593  * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
594  * the ip to point back to the original stack address. To set the IP address
595  * to original stack address, handle the case where we need to fixup the
596  * relative IP address and/or fixup branch register.
597  */
598 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
599 {
600 	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
601 	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
602 	unsigned long template;
603 	int slot = ((unsigned long)p->addr & 0xf);
604 
605 	template = p->ainsn.insn->bundle.quad0.template;
606 
607 	if (slot == 1 && bundle_encoding[template][1] == L)
608 		slot = 2;
609 
610 	if (p->ainsn.inst_flag) {
611 
612 		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
613 			/* Fix relative IP address */
614 			regs->cr_iip = (regs->cr_iip - bundle_addr) +
615 					resume_addr;
616 		}
617 
618 		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
619 		/*
620 		 * Fix target branch register, software convention is
621 		 * to use either b0 or b6 or b7, so just checking
622 		 * only those registers
623 		 */
624 			switch (p->ainsn.target_br_reg) {
625 			case 0:
626 				if ((regs->b0 == bundle_addr) ||
627 					(regs->b0 == bundle_addr + 0x10)) {
628 					regs->b0 = (regs->b0 - bundle_addr) +
629 						resume_addr;
630 				}
631 				break;
632 			case 6:
633 				if ((regs->b6 == bundle_addr) ||
634 					(regs->b6 == bundle_addr + 0x10)) {
635 					regs->b6 = (regs->b6 - bundle_addr) +
636 						resume_addr;
637 				}
638 				break;
639 			case 7:
640 				if ((regs->b7 == bundle_addr) ||
641 					(regs->b7 == bundle_addr + 0x10)) {
642 					regs->b7 = (regs->b7 - bundle_addr) +
643 						resume_addr;
644 				}
645 				break;
646 			} /* end switch */
647 		}
648 		goto turn_ss_off;
649 	}
650 
651 	if (slot == 2) {
652 		if (regs->cr_iip == bundle_addr + 0x10) {
653 			regs->cr_iip = resume_addr + 0x10;
654 		}
655 	} else {
656 		if (regs->cr_iip == bundle_addr) {
657 			regs->cr_iip = resume_addr;
658 		}
659 	}
660 
661 turn_ss_off:
662 	/* Turn off Single Step bit */
663 	ia64_psr(regs)->ss = 0;
664 }
665 
666 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
667 {
668 	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
669 	unsigned long slot = (unsigned long)p->addr & 0xf;
670 
671 	/* single step inline if break instruction */
672 	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
673 		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
674 	else
675 		regs->cr_iip = bundle_addr & ~0xFULL;
676 
677 	if (slot > 2)
678 		slot = 0;
679 
680 	ia64_psr(regs)->ri = slot;
681 
682 	/* turn on single stepping */
683 	ia64_psr(regs)->ss = 1;
684 }
685 
686 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
687 {
688 	unsigned int slot = ia64_psr(regs)->ri;
689 	unsigned int template, major_opcode;
690 	unsigned long kprobe_inst;
691 	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
692 	bundle_t bundle;
693 
694 	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
695 	template = bundle.quad0.template;
696 
697 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
698 	if (slot == 1 && bundle_encoding[template][1] == L)
699 		slot++;
700 
701 	/* Get Kprobe probe instruction at given slot*/
702 	get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
703 
704 	/* For break instruction,
705 	 * Bits 37:40 Major opcode to be zero
706 	 * Bits 27:32 X6 to be zero
707 	 * Bits 32:35 X3 to be zero
708 	 */
709 	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
710 		/* Not a break instruction */
711 		return 0;
712 	}
713 
714 	/* Is a break instruction */
715 	return 1;
716 }
717 
718 static int __kprobes pre_kprobes_handler(struct die_args *args)
719 {
720 	struct kprobe *p;
721 	int ret = 0;
722 	struct pt_regs *regs = args->regs;
723 	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
724 	struct kprobe_ctlblk *kcb;
725 
726 	/*
727 	 * We don't want to be preempted for the entire
728 	 * duration of kprobe processing
729 	 */
730 	preempt_disable();
731 	kcb = get_kprobe_ctlblk();
732 
733 	/* Handle recursion cases */
734 	if (kprobe_running()) {
735 		p = get_kprobe(addr);
736 		if (p) {
737 			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
738 	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
739 				ia64_psr(regs)->ss = 0;
740 				goto no_kprobe;
741 			}
742 			/* We have reentered the pre_kprobe_handler(), since
743 			 * another probe was hit while within the handler.
744 			 * We here save the original kprobes variables and
745 			 * just single step on the instruction of the new probe
746 			 * without calling any user handlers.
747 			 */
748 			save_previous_kprobe(kcb);
749 			set_current_kprobe(p, kcb);
750 			kprobes_inc_nmissed_count(p);
751 			prepare_ss(p, regs);
752 			kcb->kprobe_status = KPROBE_REENTER;
753 			return 1;
754 		} else if (args->err == __IA64_BREAK_JPROBE) {
755 			/*
756 			 * jprobe instrumented function just completed
757 			 */
758 			p = __get_cpu_var(current_kprobe);
759 			if (p->break_handler && p->break_handler(p, regs)) {
760 				goto ss_probe;
761 			}
762 		} else if (!is_ia64_break_inst(regs)) {
763 			/* The breakpoint instruction was removed by
764 			 * another cpu right after we hit, no further
765 			 * handling of this interrupt is appropriate
766 			 */
767 			ret = 1;
768 			goto no_kprobe;
769 		} else {
770 			/* Not our break */
771 			goto no_kprobe;
772 		}
773 	}
774 
775 	p = get_kprobe(addr);
776 	if (!p) {
777 		if (!is_ia64_break_inst(regs)) {
778 			/*
779 			 * The breakpoint instruction was removed right
780 			 * after we hit it.  Another cpu has removed
781 			 * either a probepoint or a debugger breakpoint
782 			 * at this address.  In either case, no further
783 			 * handling of this interrupt is appropriate.
784 			 */
785 			ret = 1;
786 
787 		}
788 
789 		/* Not one of our break, let kernel handle it */
790 		goto no_kprobe;
791 	}
792 
793 	set_current_kprobe(p, kcb);
794 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
795 
796 	if (p->pre_handler && p->pre_handler(p, regs))
797 		/*
798 		 * Our pre-handler is specifically requesting that we just
799 		 * do a return.  This is used for both the jprobe pre-handler
800 		 * and the kretprobe trampoline
801 		 */
802 		return 1;
803 
804 ss_probe:
805 	prepare_ss(p, regs);
806 	kcb->kprobe_status = KPROBE_HIT_SS;
807 	return 1;
808 
809 no_kprobe:
810 	preempt_enable_no_resched();
811 	return ret;
812 }
813 
814 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
815 {
816 	struct kprobe *cur = kprobe_running();
817 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
818 
819 	if (!cur)
820 		return 0;
821 
822 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
823 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
824 		cur->post_handler(cur, regs, 0);
825 	}
826 
827 	resume_execution(cur, regs);
828 
829 	/*Restore back the original saved kprobes variables and continue. */
830 	if (kcb->kprobe_status == KPROBE_REENTER) {
831 		restore_previous_kprobe(kcb);
832 		goto out;
833 	}
834 	reset_current_kprobe();
835 
836 out:
837 	preempt_enable_no_resched();
838 	return 1;
839 }
840 
841 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
842 {
843 	struct kprobe *cur = kprobe_running();
844 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
845 
846 
847 	switch(kcb->kprobe_status) {
848 	case KPROBE_HIT_SS:
849 	case KPROBE_REENTER:
850 		/*
851 		 * We are here because the instruction being single
852 		 * stepped caused a page fault. We reset the current
853 		 * kprobe and the instruction pointer points back to
854 		 * the probe address and allow the page fault handler
855 		 * to continue as a normal page fault.
856 		 */
857 		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
858 		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
859 		if (kcb->kprobe_status == KPROBE_REENTER)
860 			restore_previous_kprobe(kcb);
861 		else
862 			reset_current_kprobe();
863 		preempt_enable_no_resched();
864 		break;
865 	case KPROBE_HIT_ACTIVE:
866 	case KPROBE_HIT_SSDONE:
867 		/*
868 		 * We increment the nmissed count for accounting,
869 		 * we can also use npre/npostfault count for accouting
870 		 * these specific fault cases.
871 		 */
872 		kprobes_inc_nmissed_count(cur);
873 
874 		/*
875 		 * We come here because instructions in the pre/post
876 		 * handler caused the page_fault, this could happen
877 		 * if handler tries to access user space by
878 		 * copy_from_user(), get_user() etc. Let the
879 		 * user-specified handler try to fix it first.
880 		 */
881 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
882 			return 1;
883 		/*
884 		 * In case the user-specified fault handler returned
885 		 * zero, try to fix up.
886 		 */
887 		if (ia64_done_with_exception(regs))
888 			return 1;
889 
890 		/*
891 		 * Let ia64_do_page_fault() fix it.
892 		 */
893 		break;
894 	default:
895 		break;
896 	}
897 
898 	return 0;
899 }
900 
901 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
902 				       unsigned long val, void *data)
903 {
904 	struct die_args *args = (struct die_args *)data;
905 	int ret = NOTIFY_DONE;
906 
907 	if (args->regs && user_mode(args->regs))
908 		return ret;
909 
910 	switch(val) {
911 	case DIE_BREAK:
912 		/* err is break number from ia64_bad_break() */
913 		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
914 			|| args->err == __IA64_BREAK_JPROBE
915 			|| args->err == 0)
916 			if (pre_kprobes_handler(args))
917 				ret = NOTIFY_STOP;
918 		break;
919 	case DIE_FAULT:
920 		/* err is vector number from ia64_fault() */
921 		if (args->err == 36)
922 			if (post_kprobes_handler(args->regs))
923 				ret = NOTIFY_STOP;
924 		break;
925 	default:
926 		break;
927 	}
928 	return ret;
929 }
930 
931 struct param_bsp_cfm {
932 	unsigned long ip;
933 	unsigned long *bsp;
934 	unsigned long cfm;
935 };
936 
937 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
938 {
939 	unsigned long ip;
940 	struct param_bsp_cfm *lp = arg;
941 
942 	do {
943 		unw_get_ip(info, &ip);
944 		if (ip == 0)
945 			break;
946 		if (ip == lp->ip) {
947 			unw_get_bsp(info, (unsigned long*)&lp->bsp);
948 			unw_get_cfm(info, (unsigned long*)&lp->cfm);
949 			return;
950 		}
951 	} while (unw_unwind(info) >= 0);
952 	lp->bsp = NULL;
953 	lp->cfm = 0;
954 	return;
955 }
956 
957 unsigned long arch_deref_entry_point(void *entry)
958 {
959 	return ((struct fnptr *)entry)->ip;
960 }
961 
962 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
963 {
964 	struct jprobe *jp = container_of(p, struct jprobe, kp);
965 	unsigned long addr = arch_deref_entry_point(jp->entry);
966 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
967 	struct param_bsp_cfm pa;
968 	int bytes;
969 
970 	/*
971 	 * Callee owns the argument space and could overwrite it, eg
972 	 * tail call optimization. So to be absolutely safe
973 	 * we save the argument space before transferring the control
974 	 * to instrumented jprobe function which runs in
975 	 * the process context
976 	 */
977 	pa.ip = regs->cr_iip;
978 	unw_init_running(ia64_get_bsp_cfm, &pa);
979 	bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
980 				- (char *)pa.bsp;
981 	memcpy( kcb->jprobes_saved_stacked_regs,
982 		pa.bsp,
983 		bytes );
984 	kcb->bsp = pa.bsp;
985 	kcb->cfm = pa.cfm;
986 
987 	/* save architectural state */
988 	kcb->jprobe_saved_regs = *regs;
989 
990 	/* after rfi, execute the jprobe instrumented function */
991 	regs->cr_iip = addr & ~0xFULL;
992 	ia64_psr(regs)->ri = addr & 0xf;
993 	regs->r1 = ((struct fnptr *)(jp->entry))->gp;
994 
995 	/*
996 	 * fix the return address to our jprobe_inst_return() function
997 	 * in the jprobes.S file
998 	 */
999 	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
1000 
1001 	return 1;
1002 }
1003 
1004 /* ia64 does not need this */
1005 void __kprobes jprobe_return(void)
1006 {
1007 }
1008 
1009 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1010 {
1011 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1012 	int bytes;
1013 
1014 	/* restoring architectural state */
1015 	*regs = kcb->jprobe_saved_regs;
1016 
1017 	/* restoring the original argument space */
1018 	flush_register_stack();
1019 	bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
1020 				- (char *)kcb->bsp;
1021 	memcpy( kcb->bsp,
1022 		kcb->jprobes_saved_stacked_regs,
1023 		bytes );
1024 	invalidate_stacked_regs();
1025 
1026 	preempt_enable_no_resched();
1027 	return 1;
1028 }
1029 
1030 static struct kprobe trampoline_p = {
1031 	.pre_handler = trampoline_probe_handler
1032 };
1033 
1034 int __init arch_init_kprobes(void)
1035 {
1036 	trampoline_p.addr =
1037 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1038 	return register_kprobe(&trampoline_p);
1039 }
1040 
1041 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1042 {
1043 	if (p->addr ==
1044 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1045 		return 1;
1046 
1047 	return 0;
1048 }
1049