xref: /openbmc/linux/arch/ia64/kernel/kprobes.c (revision 8730046c)
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/ia64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  * Copyright (C) Intel Corporation, 2005
21  *
22  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23  *              <anil.s.keshavamurthy@intel.com> adapted from i386
24  */
25 
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
32 #include <linux/kdebug.h>
33 
34 #include <asm/pgtable.h>
35 #include <asm/sections.h>
36 #include <linux/uaccess.h>
37 
38 extern void jprobe_inst_return(void);
39 
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42 
43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
44 
45 enum instruction_type {A, I, M, F, B, L, X, u};
46 static enum instruction_type bundle_encoding[32][3] = {
47   { M, I, I },				/* 00 */
48   { M, I, I },				/* 01 */
49   { M, I, I },				/* 02 */
50   { M, I, I },				/* 03 */
51   { M, L, X },				/* 04 */
52   { M, L, X },				/* 05 */
53   { u, u, u },  			/* 06 */
54   { u, u, u },  			/* 07 */
55   { M, M, I },				/* 08 */
56   { M, M, I },				/* 09 */
57   { M, M, I },				/* 0A */
58   { M, M, I },				/* 0B */
59   { M, F, I },				/* 0C */
60   { M, F, I },				/* 0D */
61   { M, M, F },				/* 0E */
62   { M, M, F },				/* 0F */
63   { M, I, B },				/* 10 */
64   { M, I, B },				/* 11 */
65   { M, B, B },				/* 12 */
66   { M, B, B },				/* 13 */
67   { u, u, u },  			/* 14 */
68   { u, u, u },  			/* 15 */
69   { B, B, B },				/* 16 */
70   { B, B, B },				/* 17 */
71   { M, M, B },				/* 18 */
72   { M, M, B },				/* 19 */
73   { u, u, u },  			/* 1A */
74   { u, u, u },  			/* 1B */
75   { M, F, B },				/* 1C */
76   { M, F, B },				/* 1D */
77   { u, u, u },  			/* 1E */
78   { u, u, u },  			/* 1F */
79 };
80 
81 /* Insert a long branch code */
82 static void __kprobes set_brl_inst(void *from, void *to)
83 {
84 	s64 rel = ((s64) to - (s64) from) >> 4;
85 	bundle_t *brl;
86 	brl = (bundle_t *) ((u64) from & ~0xf);
87 	brl->quad0.template = 0x05;	/* [MLX](stop) */
88 	brl->quad0.slot0 = NOP_M_INST;	/* nop.m 0x0 */
89 	brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
90 	brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
91 	/* brl.cond.sptk.many.clr rel<<4 (qp=0) */
92 	brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
93 }
94 
95 /*
96  * In this function we check to see if the instruction
97  * is IP relative instruction and update the kprobe
98  * inst flag accordingly
99  */
100 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
101 					      uint major_opcode,
102 					      unsigned long kprobe_inst,
103 					      struct kprobe *p)
104 {
105 	p->ainsn.inst_flag = 0;
106 	p->ainsn.target_br_reg = 0;
107 	p->ainsn.slot = slot;
108 
109 	/* Check for Break instruction
110 	 * Bits 37:40 Major opcode to be zero
111 	 * Bits 27:32 X6 to be zero
112 	 * Bits 32:35 X3 to be zero
113 	 */
114 	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
115 		/* is a break instruction */
116 	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
117 		return;
118 	}
119 
120 	if (bundle_encoding[template][slot] == B) {
121 		switch (major_opcode) {
122 		  case INDIRECT_CALL_OPCODE:
123 	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
124 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
125 			break;
126 		  case IP_RELATIVE_PREDICT_OPCODE:
127 		  case IP_RELATIVE_BRANCH_OPCODE:
128 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
129 			break;
130 		  case IP_RELATIVE_CALL_OPCODE:
131 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
132 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
133 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
134 			break;
135 		}
136 	} else if (bundle_encoding[template][slot] == X) {
137 		switch (major_opcode) {
138 		  case LONG_CALL_OPCODE:
139 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
140 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
141 		  break;
142 		}
143 	}
144 	return;
145 }
146 
147 /*
148  * In this function we check to see if the instruction
149  * (qp) cmpx.crel.ctype p1,p2=r2,r3
150  * on which we are inserting kprobe is cmp instruction
151  * with ctype as unc.
152  */
153 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
154 					    uint major_opcode,
155 					    unsigned long kprobe_inst)
156 {
157 	cmp_inst_t cmp_inst;
158 	uint ctype_unc = 0;
159 
160 	if (!((bundle_encoding[template][slot] == I) ||
161 		(bundle_encoding[template][slot] == M)))
162 		goto out;
163 
164 	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
165 		(major_opcode == 0xE)))
166 		goto out;
167 
168 	cmp_inst.l = kprobe_inst;
169 	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
170 		/* Integer compare - Register Register (A6 type)*/
171 		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
172 				&&(cmp_inst.f.c == 1))
173 			ctype_unc = 1;
174 	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
175 		/* Integer compare - Immediate Register (A8 type)*/
176 		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
177 			ctype_unc = 1;
178 	}
179 out:
180 	return ctype_unc;
181 }
182 
183 /*
184  * In this function we check to see if the instruction
185  * on which we are inserting kprobe is supported.
186  * Returns qp value if supported
187  * Returns -EINVAL if unsupported
188  */
189 static int __kprobes unsupported_inst(uint template, uint  slot,
190 				      uint major_opcode,
191 				      unsigned long kprobe_inst,
192 				      unsigned long addr)
193 {
194 	int qp;
195 
196 	qp = kprobe_inst & 0x3f;
197 	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
198 		if (slot == 1 && qp)  {
199 			printk(KERN_WARNING "Kprobes on cmp unc "
200 					"instruction on slot 1 at <0x%lx> "
201 					"is not supported\n", addr);
202 			return -EINVAL;
203 
204 		}
205 		qp = 0;
206 	}
207 	else if (bundle_encoding[template][slot] == I) {
208 		if (major_opcode == 0) {
209 			/*
210 			 * Check for Integer speculation instruction
211 			 * - Bit 33-35 to be equal to 0x1
212 			 */
213 			if (((kprobe_inst >> 33) & 0x7) == 1) {
214 				printk(KERN_WARNING
215 					"Kprobes on speculation inst at <0x%lx> not supported\n",
216 						addr);
217 				return -EINVAL;
218 			}
219 			/*
220 			 * IP relative mov instruction
221 			 *  - Bit 27-35 to be equal to 0x30
222 			 */
223 			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
224 				printk(KERN_WARNING
225 					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
226 						addr);
227 				return -EINVAL;
228 
229 			}
230 		}
231 		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
232 				(kprobe_inst & (0x1UL << 12))) {
233 			/* test bit instructions, tbit,tnat,tf
234 			 * bit 33-36 to be equal to 0
235 			 * bit 12 to be equal to 1
236 			 */
237 			if (slot == 1 && qp) {
238 				printk(KERN_WARNING "Kprobes on test bit "
239 						"instruction on slot at <0x%lx> "
240 						"is not supported\n", addr);
241 				return -EINVAL;
242 			}
243 			qp = 0;
244 		}
245 	}
246 	else if (bundle_encoding[template][slot] == B) {
247 		if (major_opcode == 7) {
248 			/* IP-Relative Predict major code is 7 */
249 			printk(KERN_WARNING "Kprobes on IP-Relative"
250 					"Predict is not supported\n");
251 			return -EINVAL;
252 		}
253 		else if (major_opcode == 2) {
254 			/* Indirect Predict, major code is 2
255 			 * bit 27-32 to be equal to 10 or 11
256 			 */
257 			int x6=(kprobe_inst >> 27) & 0x3F;
258 			if ((x6 == 0x10) || (x6 == 0x11)) {
259 				printk(KERN_WARNING "Kprobes on "
260 					"Indirect Predict is not supported\n");
261 				return -EINVAL;
262 			}
263 		}
264 	}
265 	/* kernel does not use float instruction, here for safety kprobe
266 	 * will judge whether it is fcmp/flass/float approximation instruction
267 	 */
268 	else if (unlikely(bundle_encoding[template][slot] == F)) {
269 		if ((major_opcode == 4 || major_opcode == 5) &&
270 				(kprobe_inst  & (0x1 << 12))) {
271 			/* fcmp/fclass unc instruction */
272 			if (slot == 1 && qp) {
273 				printk(KERN_WARNING "Kprobes on fcmp/fclass "
274 					"instruction on slot at <0x%lx> "
275 					"is not supported\n", addr);
276 				return -EINVAL;
277 
278 			}
279 			qp = 0;
280 		}
281 		if ((major_opcode == 0 || major_opcode == 1) &&
282 			(kprobe_inst & (0x1UL << 33))) {
283 			/* float Approximation instruction */
284 			if (slot == 1 && qp) {
285 				printk(KERN_WARNING "Kprobes on float Approx "
286 					"instr at <0x%lx> is not supported\n",
287 						addr);
288 				return -EINVAL;
289 			}
290 			qp = 0;
291 		}
292 	}
293 	return qp;
294 }
295 
296 /*
297  * In this function we override the bundle with
298  * the break instruction at the given slot.
299  */
300 static void __kprobes prepare_break_inst(uint template, uint  slot,
301 					 uint major_opcode,
302 					 unsigned long kprobe_inst,
303 					 struct kprobe *p,
304 					 int qp)
305 {
306 	unsigned long break_inst = BREAK_INST;
307 	bundle_t *bundle = &p->opcode.bundle;
308 
309 	/*
310 	 * Copy the original kprobe_inst qualifying predicate(qp)
311 	 * to the break instruction
312 	 */
313 	break_inst |= qp;
314 
315 	switch (slot) {
316 	  case 0:
317 		bundle->quad0.slot0 = break_inst;
318 		break;
319 	  case 1:
320 		bundle->quad0.slot1_p0 = break_inst;
321 		bundle->quad1.slot1_p1 = break_inst >> (64-46);
322 		break;
323 	  case 2:
324 		bundle->quad1.slot2 = break_inst;
325 		break;
326 	}
327 
328 	/*
329 	 * Update the instruction flag, so that we can
330 	 * emulate the instruction properly after we
331 	 * single step on original instruction
332 	 */
333 	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
334 }
335 
336 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
337 	       	unsigned long *kprobe_inst, uint *major_opcode)
338 {
339 	unsigned long kprobe_inst_p0, kprobe_inst_p1;
340 	unsigned int template;
341 
342 	template = bundle->quad0.template;
343 
344 	switch (slot) {
345 	  case 0:
346 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
347 		*kprobe_inst = bundle->quad0.slot0;
348 		  break;
349 	  case 1:
350 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
351 		kprobe_inst_p0 = bundle->quad0.slot1_p0;
352 		kprobe_inst_p1 = bundle->quad1.slot1_p1;
353 		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
354 		break;
355 	  case 2:
356 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
357 		*kprobe_inst = bundle->quad1.slot2;
358 		break;
359 	}
360 }
361 
362 /* Returns non-zero if the addr is in the Interrupt Vector Table */
363 static int __kprobes in_ivt_functions(unsigned long addr)
364 {
365 	return (addr >= (unsigned long)__start_ivt_text
366 		&& addr < (unsigned long)__end_ivt_text);
367 }
368 
369 static int __kprobes valid_kprobe_addr(int template, int slot,
370 				       unsigned long addr)
371 {
372 	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
373 		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
374 				"at 0x%lx\n", addr);
375 		return -EINVAL;
376 	}
377 
378 	if (in_ivt_functions(addr)) {
379 		printk(KERN_WARNING "Kprobes can't be inserted inside "
380 				"IVT functions at 0x%lx\n", addr);
381 		return -EINVAL;
382 	}
383 
384 	return 0;
385 }
386 
387 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
388 {
389 	unsigned int i;
390 	i = atomic_add_return(1, &kcb->prev_kprobe_index);
391 	kcb->prev_kprobe[i-1].kp = kprobe_running();
392 	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
393 }
394 
395 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
396 {
397 	unsigned int i;
398 	i = atomic_read(&kcb->prev_kprobe_index);
399 	__this_cpu_write(current_kprobe, kcb->prev_kprobe[i-1].kp);
400 	kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
401 	atomic_sub(1, &kcb->prev_kprobe_index);
402 }
403 
404 static void __kprobes set_current_kprobe(struct kprobe *p,
405 			struct kprobe_ctlblk *kcb)
406 {
407 	__this_cpu_write(current_kprobe, p);
408 }
409 
410 static void kretprobe_trampoline(void)
411 {
412 }
413 
414 /*
415  * At this point the target function has been tricked into
416  * returning into our trampoline.  Lookup the associated instance
417  * and then:
418  *    - call the handler function
419  *    - cleanup by marking the instance as unused
420  *    - long jump back to the original return address
421  */
422 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424 	struct kretprobe_instance *ri = NULL;
425 	struct hlist_head *head, empty_rp;
426 	struct hlist_node *tmp;
427 	unsigned long flags, orig_ret_address = 0;
428 	unsigned long trampoline_address =
429 		((struct fnptr *)kretprobe_trampoline)->ip;
430 
431 	INIT_HLIST_HEAD(&empty_rp);
432 	kretprobe_hash_lock(current, &head, &flags);
433 
434 	/*
435 	 * It is possible to have multiple instances associated with a given
436 	 * task either because an multiple functions in the call path
437 	 * have a return probe installed on them, and/or more than one return
438 	 * return probe was registered for a target function.
439 	 *
440 	 * We can handle this because:
441 	 *     - instances are always inserted at the head of the list
442 	 *     - when multiple return probes are registered for the same
443 	 *       function, the first instance's ret_addr will point to the
444 	 *       real return address, and all the rest will point to
445 	 *       kretprobe_trampoline
446 	 */
447 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
448 		if (ri->task != current)
449 			/* another task is sharing our hash bucket */
450 			continue;
451 
452 		orig_ret_address = (unsigned long)ri->ret_addr;
453 		if (orig_ret_address != trampoline_address)
454 			/*
455 			 * This is the real return address. Any other
456 			 * instances associated with this task are for
457 			 * other calls deeper on the call stack
458 			 */
459 			break;
460 	}
461 
462 	regs->cr_iip = orig_ret_address;
463 
464 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
465 		if (ri->task != current)
466 			/* another task is sharing our hash bucket */
467 			continue;
468 
469 		if (ri->rp && ri->rp->handler)
470 			ri->rp->handler(ri, regs);
471 
472 		orig_ret_address = (unsigned long)ri->ret_addr;
473 		recycle_rp_inst(ri, &empty_rp);
474 
475 		if (orig_ret_address != trampoline_address)
476 			/*
477 			 * This is the real return address. Any other
478 			 * instances associated with this task are for
479 			 * other calls deeper on the call stack
480 			 */
481 			break;
482 	}
483 
484 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
485 
486 	reset_current_kprobe();
487 	kretprobe_hash_unlock(current, &flags);
488 	preempt_enable_no_resched();
489 
490 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
491 		hlist_del(&ri->hlist);
492 		kfree(ri);
493 	}
494 	/*
495 	 * By returning a non-zero value, we are telling
496 	 * kprobe_handler() that we don't want the post_handler
497 	 * to run (and have re-enabled preemption)
498 	 */
499 	return 1;
500 }
501 
502 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
503 				      struct pt_regs *regs)
504 {
505 	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
506 
507 	/* Replace the return addr with trampoline addr */
508 	regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
509 }
510 
511 /* Check the instruction in the slot is break */
512 static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
513 {
514 	unsigned int major_opcode;
515 	unsigned int template = bundle->quad0.template;
516 	unsigned long kprobe_inst;
517 
518 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
519 	if (slot == 1 && bundle_encoding[template][1] == L)
520 		slot++;
521 
522 	/* Get Kprobe probe instruction at given slot*/
523 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
524 
525 	/* For break instruction,
526 	 * Bits 37:40 Major opcode to be zero
527 	 * Bits 27:32 X6 to be zero
528 	 * Bits 32:35 X3 to be zero
529 	 */
530 	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
531 		/* Not a break instruction */
532 		return 0;
533 	}
534 
535 	/* Is a break instruction */
536 	return 1;
537 }
538 
539 /*
540  * In this function, we check whether the target bundle modifies IP or
541  * it triggers an exception. If so, it cannot be boostable.
542  */
543 static int __kprobes can_boost(bundle_t *bundle, uint slot,
544 			       unsigned long bundle_addr)
545 {
546 	unsigned int template = bundle->quad0.template;
547 
548 	do {
549 		if (search_exception_tables(bundle_addr + slot) ||
550 		    __is_ia64_break_inst(bundle, slot))
551 			return 0;	/* exception may occur in this bundle*/
552 	} while ((++slot) < 3);
553 	template &= 0x1e;
554 	if (template >= 0x10 /* including B unit */ ||
555 	    template == 0x04 /* including X unit */ ||
556 	    template == 0x06) /* undefined */
557 		return 0;
558 
559 	return 1;
560 }
561 
562 /* Prepare long jump bundle and disables other boosters if need */
563 static void __kprobes prepare_booster(struct kprobe *p)
564 {
565 	unsigned long addr = (unsigned long)p->addr & ~0xFULL;
566 	unsigned int slot = (unsigned long)p->addr & 0xf;
567 	struct kprobe *other_kp;
568 
569 	if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
570 		set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
571 		p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
572 	}
573 
574 	/* disables boosters in previous slots */
575 	for (; addr < (unsigned long)p->addr; addr++) {
576 		other_kp = get_kprobe((void *)addr);
577 		if (other_kp)
578 			other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
579 	}
580 }
581 
582 int __kprobes arch_prepare_kprobe(struct kprobe *p)
583 {
584 	unsigned long addr = (unsigned long) p->addr;
585 	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
586 	unsigned long kprobe_inst=0;
587 	unsigned int slot = addr & 0xf, template, major_opcode = 0;
588 	bundle_t *bundle;
589 	int qp;
590 
591 	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
592 	template = bundle->quad0.template;
593 
594 	if(valid_kprobe_addr(template, slot, addr))
595 		return -EINVAL;
596 
597 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
598 	if (slot == 1 && bundle_encoding[template][1] == L)
599 		slot++;
600 
601 	/* Get kprobe_inst and major_opcode from the bundle */
602 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
603 
604 	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
605 	if (qp < 0)
606 		return -EINVAL;
607 
608 	p->ainsn.insn = get_insn_slot();
609 	if (!p->ainsn.insn)
610 		return -ENOMEM;
611 	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
612 	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
613 
614 	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
615 
616 	prepare_booster(p);
617 
618 	return 0;
619 }
620 
621 void __kprobes arch_arm_kprobe(struct kprobe *p)
622 {
623 	unsigned long arm_addr;
624 	bundle_t *src, *dest;
625 
626 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
627 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
628 	src = &p->opcode.bundle;
629 
630 	flush_icache_range((unsigned long)p->ainsn.insn,
631 			   (unsigned long)p->ainsn.insn +
632 			   sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
633 
634 	switch (p->ainsn.slot) {
635 		case 0:
636 			dest->quad0.slot0 = src->quad0.slot0;
637 			break;
638 		case 1:
639 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
640 			break;
641 		case 2:
642 			dest->quad1.slot2 = src->quad1.slot2;
643 			break;
644 	}
645 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
646 }
647 
648 void __kprobes arch_disarm_kprobe(struct kprobe *p)
649 {
650 	unsigned long arm_addr;
651 	bundle_t *src, *dest;
652 
653 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
654 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
655 	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
656 	src = &p->ainsn.insn->bundle;
657 	switch (p->ainsn.slot) {
658 		case 0:
659 			dest->quad0.slot0 = src->quad0.slot0;
660 			break;
661 		case 1:
662 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
663 			break;
664 		case 2:
665 			dest->quad1.slot2 = src->quad1.slot2;
666 			break;
667 	}
668 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
669 }
670 
671 void __kprobes arch_remove_kprobe(struct kprobe *p)
672 {
673 	if (p->ainsn.insn) {
674 		free_insn_slot(p->ainsn.insn,
675 			       p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
676 		p->ainsn.insn = NULL;
677 	}
678 }
679 /*
680  * We are resuming execution after a single step fault, so the pt_regs
681  * structure reflects the register state after we executed the instruction
682  * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
683  * the ip to point back to the original stack address. To set the IP address
684  * to original stack address, handle the case where we need to fixup the
685  * relative IP address and/or fixup branch register.
686  */
687 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
688 {
689 	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
690 	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
691 	unsigned long template;
692 	int slot = ((unsigned long)p->addr & 0xf);
693 
694 	template = p->ainsn.insn->bundle.quad0.template;
695 
696 	if (slot == 1 && bundle_encoding[template][1] == L)
697 		slot = 2;
698 
699 	if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
700 
701 		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
702 			/* Fix relative IP address */
703 			regs->cr_iip = (regs->cr_iip - bundle_addr) +
704 					resume_addr;
705 		}
706 
707 		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
708 		/*
709 		 * Fix target branch register, software convention is
710 		 * to use either b0 or b6 or b7, so just checking
711 		 * only those registers
712 		 */
713 			switch (p->ainsn.target_br_reg) {
714 			case 0:
715 				if ((regs->b0 == bundle_addr) ||
716 					(regs->b0 == bundle_addr + 0x10)) {
717 					regs->b0 = (regs->b0 - bundle_addr) +
718 						resume_addr;
719 				}
720 				break;
721 			case 6:
722 				if ((regs->b6 == bundle_addr) ||
723 					(regs->b6 == bundle_addr + 0x10)) {
724 					regs->b6 = (regs->b6 - bundle_addr) +
725 						resume_addr;
726 				}
727 				break;
728 			case 7:
729 				if ((regs->b7 == bundle_addr) ||
730 					(regs->b7 == bundle_addr + 0x10)) {
731 					regs->b7 = (regs->b7 - bundle_addr) +
732 						resume_addr;
733 				}
734 				break;
735 			} /* end switch */
736 		}
737 		goto turn_ss_off;
738 	}
739 
740 	if (slot == 2) {
741 		if (regs->cr_iip == bundle_addr + 0x10) {
742 			regs->cr_iip = resume_addr + 0x10;
743 		}
744 	} else {
745 		if (regs->cr_iip == bundle_addr) {
746 			regs->cr_iip = resume_addr;
747 		}
748 	}
749 
750 turn_ss_off:
751 	/* Turn off Single Step bit */
752 	ia64_psr(regs)->ss = 0;
753 }
754 
755 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
756 {
757 	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
758 	unsigned long slot = (unsigned long)p->addr & 0xf;
759 
760 	/* single step inline if break instruction */
761 	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
762 		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
763 	else
764 		regs->cr_iip = bundle_addr & ~0xFULL;
765 
766 	if (slot > 2)
767 		slot = 0;
768 
769 	ia64_psr(regs)->ri = slot;
770 
771 	/* turn on single stepping */
772 	ia64_psr(regs)->ss = 1;
773 }
774 
775 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
776 {
777 	unsigned int slot = ia64_psr(regs)->ri;
778 	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
779 	bundle_t bundle;
780 
781 	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
782 
783 	return __is_ia64_break_inst(&bundle, slot);
784 }
785 
786 static int __kprobes pre_kprobes_handler(struct die_args *args)
787 {
788 	struct kprobe *p;
789 	int ret = 0;
790 	struct pt_regs *regs = args->regs;
791 	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
792 	struct kprobe_ctlblk *kcb;
793 
794 	/*
795 	 * We don't want to be preempted for the entire
796 	 * duration of kprobe processing
797 	 */
798 	preempt_disable();
799 	kcb = get_kprobe_ctlblk();
800 
801 	/* Handle recursion cases */
802 	if (kprobe_running()) {
803 		p = get_kprobe(addr);
804 		if (p) {
805 			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
806 	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
807 				ia64_psr(regs)->ss = 0;
808 				goto no_kprobe;
809 			}
810 			/* We have reentered the pre_kprobe_handler(), since
811 			 * another probe was hit while within the handler.
812 			 * We here save the original kprobes variables and
813 			 * just single step on the instruction of the new probe
814 			 * without calling any user handlers.
815 			 */
816 			save_previous_kprobe(kcb);
817 			set_current_kprobe(p, kcb);
818 			kprobes_inc_nmissed_count(p);
819 			prepare_ss(p, regs);
820 			kcb->kprobe_status = KPROBE_REENTER;
821 			return 1;
822 		} else if (args->err == __IA64_BREAK_JPROBE) {
823 			/*
824 			 * jprobe instrumented function just completed
825 			 */
826 			p = __this_cpu_read(current_kprobe);
827 			if (p->break_handler && p->break_handler(p, regs)) {
828 				goto ss_probe;
829 			}
830 		} else if (!is_ia64_break_inst(regs)) {
831 			/* The breakpoint instruction was removed by
832 			 * another cpu right after we hit, no further
833 			 * handling of this interrupt is appropriate
834 			 */
835 			ret = 1;
836 			goto no_kprobe;
837 		} else {
838 			/* Not our break */
839 			goto no_kprobe;
840 		}
841 	}
842 
843 	p = get_kprobe(addr);
844 	if (!p) {
845 		if (!is_ia64_break_inst(regs)) {
846 			/*
847 			 * The breakpoint instruction was removed right
848 			 * after we hit it.  Another cpu has removed
849 			 * either a probepoint or a debugger breakpoint
850 			 * at this address.  In either case, no further
851 			 * handling of this interrupt is appropriate.
852 			 */
853 			ret = 1;
854 
855 		}
856 
857 		/* Not one of our break, let kernel handle it */
858 		goto no_kprobe;
859 	}
860 
861 	set_current_kprobe(p, kcb);
862 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
863 
864 	if (p->pre_handler && p->pre_handler(p, regs))
865 		/*
866 		 * Our pre-handler is specifically requesting that we just
867 		 * do a return.  This is used for both the jprobe pre-handler
868 		 * and the kretprobe trampoline
869 		 */
870 		return 1;
871 
872 ss_probe:
873 #if !defined(CONFIG_PREEMPT)
874 	if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
875 		/* Boost up -- we can execute copied instructions directly */
876 		ia64_psr(regs)->ri = p->ainsn.slot;
877 		regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
878 		/* turn single stepping off */
879 		ia64_psr(regs)->ss = 0;
880 
881 		reset_current_kprobe();
882 		preempt_enable_no_resched();
883 		return 1;
884 	}
885 #endif
886 	prepare_ss(p, regs);
887 	kcb->kprobe_status = KPROBE_HIT_SS;
888 	return 1;
889 
890 no_kprobe:
891 	preempt_enable_no_resched();
892 	return ret;
893 }
894 
895 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
896 {
897 	struct kprobe *cur = kprobe_running();
898 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
899 
900 	if (!cur)
901 		return 0;
902 
903 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
904 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
905 		cur->post_handler(cur, regs, 0);
906 	}
907 
908 	resume_execution(cur, regs);
909 
910 	/*Restore back the original saved kprobes variables and continue. */
911 	if (kcb->kprobe_status == KPROBE_REENTER) {
912 		restore_previous_kprobe(kcb);
913 		goto out;
914 	}
915 	reset_current_kprobe();
916 
917 out:
918 	preempt_enable_no_resched();
919 	return 1;
920 }
921 
922 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
923 {
924 	struct kprobe *cur = kprobe_running();
925 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
926 
927 
928 	switch(kcb->kprobe_status) {
929 	case KPROBE_HIT_SS:
930 	case KPROBE_REENTER:
931 		/*
932 		 * We are here because the instruction being single
933 		 * stepped caused a page fault. We reset the current
934 		 * kprobe and the instruction pointer points back to
935 		 * the probe address and allow the page fault handler
936 		 * to continue as a normal page fault.
937 		 */
938 		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
939 		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
940 		if (kcb->kprobe_status == KPROBE_REENTER)
941 			restore_previous_kprobe(kcb);
942 		else
943 			reset_current_kprobe();
944 		preempt_enable_no_resched();
945 		break;
946 	case KPROBE_HIT_ACTIVE:
947 	case KPROBE_HIT_SSDONE:
948 		/*
949 		 * We increment the nmissed count for accounting,
950 		 * we can also use npre/npostfault count for accounting
951 		 * these specific fault cases.
952 		 */
953 		kprobes_inc_nmissed_count(cur);
954 
955 		/*
956 		 * We come here because instructions in the pre/post
957 		 * handler caused the page_fault, this could happen
958 		 * if handler tries to access user space by
959 		 * copy_from_user(), get_user() etc. Let the
960 		 * user-specified handler try to fix it first.
961 		 */
962 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
963 			return 1;
964 		/*
965 		 * In case the user-specified fault handler returned
966 		 * zero, try to fix up.
967 		 */
968 		if (ia64_done_with_exception(regs))
969 			return 1;
970 
971 		/*
972 		 * Let ia64_do_page_fault() fix it.
973 		 */
974 		break;
975 	default:
976 		break;
977 	}
978 
979 	return 0;
980 }
981 
982 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
983 				       unsigned long val, void *data)
984 {
985 	struct die_args *args = (struct die_args *)data;
986 	int ret = NOTIFY_DONE;
987 
988 	if (args->regs && user_mode(args->regs))
989 		return ret;
990 
991 	switch(val) {
992 	case DIE_BREAK:
993 		/* err is break number from ia64_bad_break() */
994 		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
995 			|| args->err == __IA64_BREAK_JPROBE
996 			|| args->err == 0)
997 			if (pre_kprobes_handler(args))
998 				ret = NOTIFY_STOP;
999 		break;
1000 	case DIE_FAULT:
1001 		/* err is vector number from ia64_fault() */
1002 		if (args->err == 36)
1003 			if (post_kprobes_handler(args->regs))
1004 				ret = NOTIFY_STOP;
1005 		break;
1006 	default:
1007 		break;
1008 	}
1009 	return ret;
1010 }
1011 
1012 struct param_bsp_cfm {
1013 	unsigned long ip;
1014 	unsigned long *bsp;
1015 	unsigned long cfm;
1016 };
1017 
1018 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
1019 {
1020 	unsigned long ip;
1021 	struct param_bsp_cfm *lp = arg;
1022 
1023 	do {
1024 		unw_get_ip(info, &ip);
1025 		if (ip == 0)
1026 			break;
1027 		if (ip == lp->ip) {
1028 			unw_get_bsp(info, (unsigned long*)&lp->bsp);
1029 			unw_get_cfm(info, (unsigned long*)&lp->cfm);
1030 			return;
1031 		}
1032 	} while (unw_unwind(info) >= 0);
1033 	lp->bsp = NULL;
1034 	lp->cfm = 0;
1035 	return;
1036 }
1037 
1038 unsigned long arch_deref_entry_point(void *entry)
1039 {
1040 	return ((struct fnptr *)entry)->ip;
1041 }
1042 
1043 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1044 {
1045 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1046 	unsigned long addr = arch_deref_entry_point(jp->entry);
1047 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1048 	struct param_bsp_cfm pa;
1049 	int bytes;
1050 
1051 	/*
1052 	 * Callee owns the argument space and could overwrite it, eg
1053 	 * tail call optimization. So to be absolutely safe
1054 	 * we save the argument space before transferring the control
1055 	 * to instrumented jprobe function which runs in
1056 	 * the process context
1057 	 */
1058 	pa.ip = regs->cr_iip;
1059 	unw_init_running(ia64_get_bsp_cfm, &pa);
1060 	bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
1061 				- (char *)pa.bsp;
1062 	memcpy( kcb->jprobes_saved_stacked_regs,
1063 		pa.bsp,
1064 		bytes );
1065 	kcb->bsp = pa.bsp;
1066 	kcb->cfm = pa.cfm;
1067 
1068 	/* save architectural state */
1069 	kcb->jprobe_saved_regs = *regs;
1070 
1071 	/* after rfi, execute the jprobe instrumented function */
1072 	regs->cr_iip = addr & ~0xFULL;
1073 	ia64_psr(regs)->ri = addr & 0xf;
1074 	regs->r1 = ((struct fnptr *)(jp->entry))->gp;
1075 
1076 	/*
1077 	 * fix the return address to our jprobe_inst_return() function
1078 	 * in the jprobes.S file
1079 	 */
1080 	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
1081 
1082 	return 1;
1083 }
1084 
1085 /* ia64 does not need this */
1086 void __kprobes jprobe_return(void)
1087 {
1088 }
1089 
1090 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1091 {
1092 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1093 	int bytes;
1094 
1095 	/* restoring architectural state */
1096 	*regs = kcb->jprobe_saved_regs;
1097 
1098 	/* restoring the original argument space */
1099 	flush_register_stack();
1100 	bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
1101 				- (char *)kcb->bsp;
1102 	memcpy( kcb->bsp,
1103 		kcb->jprobes_saved_stacked_regs,
1104 		bytes );
1105 	invalidate_stacked_regs();
1106 
1107 	preempt_enable_no_resched();
1108 	return 1;
1109 }
1110 
1111 static struct kprobe trampoline_p = {
1112 	.pre_handler = trampoline_probe_handler
1113 };
1114 
1115 int __init arch_init_kprobes(void)
1116 {
1117 	trampoline_p.addr =
1118 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1119 	return register_kprobe(&trampoline_p);
1120 }
1121 
1122 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1123 {
1124 	if (p->addr ==
1125 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1126 		return 1;
1127 
1128 	return 0;
1129 }
1130