xref: /openbmc/linux/arch/ia64/kernel/kprobes.c (revision 64c70b1c)
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/ia64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  * Copyright (C) Intel Corporation, 2005
21  *
22  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23  *              <anil.s.keshavamurthy@intel.com> adapted from i386
24  */
25 
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
32 #include <linux/kdebug.h>
33 
34 #include <asm/pgtable.h>
35 #include <asm/sections.h>
36 #include <asm/uaccess.h>
37 
38 extern void jprobe_inst_return(void);
39 
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42 
43 enum instruction_type {A, I, M, F, B, L, X, u};
44 static enum instruction_type bundle_encoding[32][3] = {
45   { M, I, I },				/* 00 */
46   { M, I, I },				/* 01 */
47   { M, I, I },				/* 02 */
48   { M, I, I },				/* 03 */
49   { M, L, X },				/* 04 */
50   { M, L, X },				/* 05 */
51   { u, u, u },  			/* 06 */
52   { u, u, u },  			/* 07 */
53   { M, M, I },				/* 08 */
54   { M, M, I },				/* 09 */
55   { M, M, I },				/* 0A */
56   { M, M, I },				/* 0B */
57   { M, F, I },				/* 0C */
58   { M, F, I },				/* 0D */
59   { M, M, F },				/* 0E */
60   { M, M, F },				/* 0F */
61   { M, I, B },				/* 10 */
62   { M, I, B },				/* 11 */
63   { M, B, B },				/* 12 */
64   { M, B, B },				/* 13 */
65   { u, u, u },  			/* 14 */
66   { u, u, u },  			/* 15 */
67   { B, B, B },				/* 16 */
68   { B, B, B },				/* 17 */
69   { M, M, B },				/* 18 */
70   { M, M, B },				/* 19 */
71   { u, u, u },  			/* 1A */
72   { u, u, u },  			/* 1B */
73   { M, F, B },				/* 1C */
74   { M, F, B },				/* 1D */
75   { u, u, u },  			/* 1E */
76   { u, u, u },  			/* 1F */
77 };
78 
79 /*
80  * In this function we check to see if the instruction
81  * is IP relative instruction and update the kprobe
82  * inst flag accordingly
83  */
84 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
85 					      uint major_opcode,
86 					      unsigned long kprobe_inst,
87 					      struct kprobe *p)
88 {
89 	p->ainsn.inst_flag = 0;
90 	p->ainsn.target_br_reg = 0;
91 	p->ainsn.slot = slot;
92 
93 	/* Check for Break instruction
94 	 * Bits 37:40 Major opcode to be zero
95 	 * Bits 27:32 X6 to be zero
96 	 * Bits 32:35 X3 to be zero
97 	 */
98 	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
99 		/* is a break instruction */
100 	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
101 		return;
102 	}
103 
104 	if (bundle_encoding[template][slot] == B) {
105 		switch (major_opcode) {
106 		  case INDIRECT_CALL_OPCODE:
107 	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
108 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
109 			break;
110 		  case IP_RELATIVE_PREDICT_OPCODE:
111 		  case IP_RELATIVE_BRANCH_OPCODE:
112 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
113 			break;
114 		  case IP_RELATIVE_CALL_OPCODE:
115 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
116 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
117 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
118 			break;
119 		}
120 	} else if (bundle_encoding[template][slot] == X) {
121 		switch (major_opcode) {
122 		  case LONG_CALL_OPCODE:
123 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
124 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
125 		  break;
126 		}
127 	}
128 	return;
129 }
130 
131 /*
132  * In this function we check to see if the instruction
133  * (qp) cmpx.crel.ctype p1,p2=r2,r3
134  * on which we are inserting kprobe is cmp instruction
135  * with ctype as unc.
136  */
137 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
138 					    uint major_opcode,
139 					    unsigned long kprobe_inst)
140 {
141 	cmp_inst_t cmp_inst;
142 	uint ctype_unc = 0;
143 
144 	if (!((bundle_encoding[template][slot] == I) ||
145 		(bundle_encoding[template][slot] == M)))
146 		goto out;
147 
148 	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
149 		(major_opcode == 0xE)))
150 		goto out;
151 
152 	cmp_inst.l = kprobe_inst;
153 	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
154 		/* Integer compare - Register Register (A6 type)*/
155 		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
156 				&&(cmp_inst.f.c == 1))
157 			ctype_unc = 1;
158 	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
159 		/* Integer compare - Immediate Register (A8 type)*/
160 		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
161 			ctype_unc = 1;
162 	}
163 out:
164 	return ctype_unc;
165 }
166 
167 /*
168  * In this function we check to see if the instruction
169  * on which we are inserting kprobe is supported.
170  * Returns qp value if supported
171  * Returns -EINVAL if unsupported
172  */
173 static int __kprobes unsupported_inst(uint template, uint  slot,
174 				      uint major_opcode,
175 				      unsigned long kprobe_inst,
176 				      unsigned long addr)
177 {
178 	int qp;
179 
180 	qp = kprobe_inst & 0x3f;
181 	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
182 		if (slot == 1 && qp)  {
183 			printk(KERN_WARNING "Kprobes on cmp unc"
184 					"instruction on slot 1 at <0x%lx>"
185 					"is not supported\n", addr);
186 			return -EINVAL;
187 
188 		}
189 		qp = 0;
190 	}
191 	else if (bundle_encoding[template][slot] == I) {
192 		if (major_opcode == 0) {
193 			/*
194 			 * Check for Integer speculation instruction
195 			 * - Bit 33-35 to be equal to 0x1
196 			 */
197 			if (((kprobe_inst >> 33) & 0x7) == 1) {
198 				printk(KERN_WARNING
199 					"Kprobes on speculation inst at <0x%lx> not supported\n",
200 						addr);
201 				return -EINVAL;
202 			}
203 			/*
204 			 * IP relative mov instruction
205 			 *  - Bit 27-35 to be equal to 0x30
206 			 */
207 			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
208 				printk(KERN_WARNING
209 					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
210 						addr);
211 				return -EINVAL;
212 
213 			}
214 		}
215 		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
216 				(kprobe_inst & (0x1UL << 12))) {
217 			/* test bit instructions, tbit,tnat,tf
218 			 * bit 33-36 to be equal to 0
219 			 * bit 12 to be equal to 1
220 			 */
221 			if (slot == 1 && qp) {
222 				printk(KERN_WARNING "Kprobes on test bit"
223 						"instruction on slot at <0x%lx>"
224 						"is not supported\n", addr);
225 				return -EINVAL;
226 			}
227 			qp = 0;
228 		}
229 	}
230 	else if (bundle_encoding[template][slot] == B) {
231 		if (major_opcode == 7) {
232 			/* IP-Relative Predict major code is 7 */
233 			printk(KERN_WARNING "Kprobes on IP-Relative"
234 					"Predict is not supported\n");
235 			return -EINVAL;
236 		}
237 		else if (major_opcode == 2) {
238 			/* Indirect Predict, major code is 2
239 			 * bit 27-32 to be equal to 10 or 11
240 			 */
241 			int x6=(kprobe_inst >> 27) & 0x3F;
242 			if ((x6 == 0x10) || (x6 == 0x11)) {
243 				printk(KERN_WARNING "Kprobes on"
244 					"Indirect Predict is not supported\n");
245 				return -EINVAL;
246 			}
247 		}
248 	}
249 	/* kernel does not use float instruction, here for safety kprobe
250 	 * will judge whether it is fcmp/flass/float approximation instruction
251 	 */
252 	else if (unlikely(bundle_encoding[template][slot] == F)) {
253 		if ((major_opcode == 4 || major_opcode == 5) &&
254 				(kprobe_inst  & (0x1 << 12))) {
255 			/* fcmp/fclass unc instruction */
256 			if (slot == 1 && qp) {
257 				printk(KERN_WARNING "Kprobes on fcmp/fclass "
258 					"instruction on slot at <0x%lx> "
259 					"is not supported\n", addr);
260 				return -EINVAL;
261 
262 			}
263 			qp = 0;
264 		}
265 		if ((major_opcode == 0 || major_opcode == 1) &&
266 			(kprobe_inst & (0x1UL << 33))) {
267 			/* float Approximation instruction */
268 			if (slot == 1 && qp) {
269 				printk(KERN_WARNING "Kprobes on float Approx "
270 					"instr at <0x%lx> is not supported\n",
271 						addr);
272 				return -EINVAL;
273 			}
274 			qp = 0;
275 		}
276 	}
277 	return qp;
278 }
279 
280 /*
281  * In this function we override the bundle with
282  * the break instruction at the given slot.
283  */
284 static void __kprobes prepare_break_inst(uint template, uint  slot,
285 					 uint major_opcode,
286 					 unsigned long kprobe_inst,
287 					 struct kprobe *p,
288 					 int qp)
289 {
290 	unsigned long break_inst = BREAK_INST;
291 	bundle_t *bundle = &p->opcode.bundle;
292 
293 	/*
294 	 * Copy the original kprobe_inst qualifying predicate(qp)
295 	 * to the break instruction
296 	 */
297 	break_inst |= qp;
298 
299 	switch (slot) {
300 	  case 0:
301 		bundle->quad0.slot0 = break_inst;
302 		break;
303 	  case 1:
304 		bundle->quad0.slot1_p0 = break_inst;
305 		bundle->quad1.slot1_p1 = break_inst >> (64-46);
306 		break;
307 	  case 2:
308 		bundle->quad1.slot2 = break_inst;
309 		break;
310 	}
311 
312 	/*
313 	 * Update the instruction flag, so that we can
314 	 * emulate the instruction properly after we
315 	 * single step on original instruction
316 	 */
317 	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
318 }
319 
320 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
321 	       	unsigned long *kprobe_inst, uint *major_opcode)
322 {
323 	unsigned long kprobe_inst_p0, kprobe_inst_p1;
324 	unsigned int template;
325 
326 	template = bundle->quad0.template;
327 
328 	switch (slot) {
329 	  case 0:
330 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
331 		*kprobe_inst = bundle->quad0.slot0;
332 		  break;
333 	  case 1:
334 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
335 		kprobe_inst_p0 = bundle->quad0.slot1_p0;
336 		kprobe_inst_p1 = bundle->quad1.slot1_p1;
337 		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
338 		break;
339 	  case 2:
340 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
341 		*kprobe_inst = bundle->quad1.slot2;
342 		break;
343 	}
344 }
345 
346 /* Returns non-zero if the addr is in the Interrupt Vector Table */
347 static int __kprobes in_ivt_functions(unsigned long addr)
348 {
349 	return (addr >= (unsigned long)__start_ivt_text
350 		&& addr < (unsigned long)__end_ivt_text);
351 }
352 
353 static int __kprobes valid_kprobe_addr(int template, int slot,
354 				       unsigned long addr)
355 {
356 	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
357 		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
358 				"at 0x%lx\n", addr);
359 		return -EINVAL;
360 	}
361 
362 	if (in_ivt_functions(addr)) {
363 		printk(KERN_WARNING "Kprobes can't be inserted inside "
364 				"IVT functions at 0x%lx\n", addr);
365 		return -EINVAL;
366 	}
367 
368 	return 0;
369 }
370 
371 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
372 {
373 	unsigned int i;
374 	i = atomic_add_return(1, &kcb->prev_kprobe_index);
375 	kcb->prev_kprobe[i-1].kp = kprobe_running();
376 	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
377 }
378 
379 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
380 {
381 	unsigned int i;
382 	i = atomic_sub_return(1, &kcb->prev_kprobe_index);
383 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe[i].kp;
384 	kcb->kprobe_status = kcb->prev_kprobe[i].status;
385 }
386 
387 static void __kprobes set_current_kprobe(struct kprobe *p,
388 			struct kprobe_ctlblk *kcb)
389 {
390 	__get_cpu_var(current_kprobe) = p;
391 }
392 
393 static void kretprobe_trampoline(void)
394 {
395 }
396 
397 /*
398  * At this point the target function has been tricked into
399  * returning into our trampoline.  Lookup the associated instance
400  * and then:
401  *    - call the handler function
402  *    - cleanup by marking the instance as unused
403  *    - long jump back to the original return address
404  */
405 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
406 {
407 	struct kretprobe_instance *ri = NULL;
408 	struct hlist_head *head, empty_rp;
409 	struct hlist_node *node, *tmp;
410 	unsigned long flags, orig_ret_address = 0;
411 	unsigned long trampoline_address =
412 		((struct fnptr *)kretprobe_trampoline)->ip;
413 
414 	INIT_HLIST_HEAD(&empty_rp);
415 	spin_lock_irqsave(&kretprobe_lock, flags);
416 	head = kretprobe_inst_table_head(current);
417 
418 	/*
419 	 * It is possible to have multiple instances associated with a given
420 	 * task either because an multiple functions in the call path
421 	 * have a return probe installed on them, and/or more then one return
422 	 * return probe was registered for a target function.
423 	 *
424 	 * We can handle this because:
425 	 *     - instances are always inserted at the head of the list
426 	 *     - when multiple return probes are registered for the same
427 	 *       function, the first instance's ret_addr will point to the
428 	 *       real return address, and all the rest will point to
429 	 *       kretprobe_trampoline
430 	 */
431 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
432 		if (ri->task != current)
433 			/* another task is sharing our hash bucket */
434 			continue;
435 
436 		if (ri->rp && ri->rp->handler)
437 			ri->rp->handler(ri, regs);
438 
439 		orig_ret_address = (unsigned long)ri->ret_addr;
440 		recycle_rp_inst(ri, &empty_rp);
441 
442 		if (orig_ret_address != trampoline_address)
443 			/*
444 			 * This is the real return address. Any other
445 			 * instances associated with this task are for
446 			 * other calls deeper on the call stack
447 			 */
448 			break;
449 	}
450 
451 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
452 
453 	regs->cr_iip = orig_ret_address;
454 
455 	reset_current_kprobe();
456 	spin_unlock_irqrestore(&kretprobe_lock, flags);
457 	preempt_enable_no_resched();
458 
459 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
460 		hlist_del(&ri->hlist);
461 		kfree(ri);
462 	}
463 	/*
464 	 * By returning a non-zero value, we are telling
465 	 * kprobe_handler() that we don't want the post_handler
466 	 * to run (and have re-enabled preemption)
467 	 */
468 	return 1;
469 }
470 
471 /* Called with kretprobe_lock held */
472 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
473 				      struct pt_regs *regs)
474 {
475 	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
476 
477 	/* Replace the return addr with trampoline addr */
478 	regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
479 }
480 
481 int __kprobes arch_prepare_kprobe(struct kprobe *p)
482 {
483 	unsigned long addr = (unsigned long) p->addr;
484 	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
485 	unsigned long kprobe_inst=0;
486 	unsigned int slot = addr & 0xf, template, major_opcode = 0;
487 	bundle_t *bundle;
488 	int qp;
489 
490 	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
491 	template = bundle->quad0.template;
492 
493 	if(valid_kprobe_addr(template, slot, addr))
494 		return -EINVAL;
495 
496 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
497 	if (slot == 1 && bundle_encoding[template][1] == L)
498 		slot++;
499 
500 	/* Get kprobe_inst and major_opcode from the bundle */
501 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
502 
503 	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
504 	if (qp < 0)
505 		return -EINVAL;
506 
507 	p->ainsn.insn = get_insn_slot();
508 	if (!p->ainsn.insn)
509 		return -ENOMEM;
510 	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
511 	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
512 
513 	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
514 
515 	return 0;
516 }
517 
518 void __kprobes arch_arm_kprobe(struct kprobe *p)
519 {
520 	unsigned long arm_addr;
521 	bundle_t *src, *dest;
522 
523 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
524 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
525 	src = &p->opcode.bundle;
526 
527 	flush_icache_range((unsigned long)p->ainsn.insn,
528 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
529 	switch (p->ainsn.slot) {
530 		case 0:
531 			dest->quad0.slot0 = src->quad0.slot0;
532 			break;
533 		case 1:
534 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
535 			break;
536 		case 2:
537 			dest->quad1.slot2 = src->quad1.slot2;
538 			break;
539 	}
540 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
541 }
542 
543 void __kprobes arch_disarm_kprobe(struct kprobe *p)
544 {
545 	unsigned long arm_addr;
546 	bundle_t *src, *dest;
547 
548 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
549 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
550 	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
551 	src = &p->ainsn.insn->bundle;
552 	switch (p->ainsn.slot) {
553 		case 0:
554 			dest->quad0.slot0 = src->quad0.slot0;
555 			break;
556 		case 1:
557 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
558 			break;
559 		case 2:
560 			dest->quad1.slot2 = src->quad1.slot2;
561 			break;
562 	}
563 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
564 }
565 
566 void __kprobes arch_remove_kprobe(struct kprobe *p)
567 {
568 	mutex_lock(&kprobe_mutex);
569 	free_insn_slot(p->ainsn.insn, 0);
570 	mutex_unlock(&kprobe_mutex);
571 }
572 /*
573  * We are resuming execution after a single step fault, so the pt_regs
574  * structure reflects the register state after we executed the instruction
575  * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
576  * the ip to point back to the original stack address. To set the IP address
577  * to original stack address, handle the case where we need to fixup the
578  * relative IP address and/or fixup branch register.
579  */
580 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
581 {
582 	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
583 	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
584 	unsigned long template;
585 	int slot = ((unsigned long)p->addr & 0xf);
586 
587 	template = p->ainsn.insn->bundle.quad0.template;
588 
589 	if (slot == 1 && bundle_encoding[template][1] == L)
590 		slot = 2;
591 
592 	if (p->ainsn.inst_flag) {
593 
594 		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
595 			/* Fix relative IP address */
596 			regs->cr_iip = (regs->cr_iip - bundle_addr) +
597 					resume_addr;
598 		}
599 
600 		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
601 		/*
602 		 * Fix target branch register, software convention is
603 		 * to use either b0 or b6 or b7, so just checking
604 		 * only those registers
605 		 */
606 			switch (p->ainsn.target_br_reg) {
607 			case 0:
608 				if ((regs->b0 == bundle_addr) ||
609 					(regs->b0 == bundle_addr + 0x10)) {
610 					regs->b0 = (regs->b0 - bundle_addr) +
611 						resume_addr;
612 				}
613 				break;
614 			case 6:
615 				if ((regs->b6 == bundle_addr) ||
616 					(regs->b6 == bundle_addr + 0x10)) {
617 					regs->b6 = (regs->b6 - bundle_addr) +
618 						resume_addr;
619 				}
620 				break;
621 			case 7:
622 				if ((regs->b7 == bundle_addr) ||
623 					(regs->b7 == bundle_addr + 0x10)) {
624 					regs->b7 = (regs->b7 - bundle_addr) +
625 						resume_addr;
626 				}
627 				break;
628 			} /* end switch */
629 		}
630 		goto turn_ss_off;
631 	}
632 
633 	if (slot == 2) {
634 		if (regs->cr_iip == bundle_addr + 0x10) {
635 			regs->cr_iip = resume_addr + 0x10;
636 		}
637 	} else {
638 		if (regs->cr_iip == bundle_addr) {
639 			regs->cr_iip = resume_addr;
640 		}
641 	}
642 
643 turn_ss_off:
644 	/* Turn off Single Step bit */
645 	ia64_psr(regs)->ss = 0;
646 }
647 
648 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
649 {
650 	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
651 	unsigned long slot = (unsigned long)p->addr & 0xf;
652 
653 	/* single step inline if break instruction */
654 	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
655 		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
656 	else
657 		regs->cr_iip = bundle_addr & ~0xFULL;
658 
659 	if (slot > 2)
660 		slot = 0;
661 
662 	ia64_psr(regs)->ri = slot;
663 
664 	/* turn on single stepping */
665 	ia64_psr(regs)->ss = 1;
666 }
667 
668 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
669 {
670 	unsigned int slot = ia64_psr(regs)->ri;
671 	unsigned int template, major_opcode;
672 	unsigned long kprobe_inst;
673 	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
674 	bundle_t bundle;
675 
676 	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
677 	template = bundle.quad0.template;
678 
679 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
680 	if (slot == 1 && bundle_encoding[template][1] == L)
681 		slot++;
682 
683 	/* Get Kprobe probe instruction at given slot*/
684 	get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
685 
686 	/* For break instruction,
687 	 * Bits 37:40 Major opcode to be zero
688 	 * Bits 27:32 X6 to be zero
689 	 * Bits 32:35 X3 to be zero
690 	 */
691 	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
692 		/* Not a break instruction */
693 		return 0;
694 	}
695 
696 	/* Is a break instruction */
697 	return 1;
698 }
699 
700 static int __kprobes pre_kprobes_handler(struct die_args *args)
701 {
702 	struct kprobe *p;
703 	int ret = 0;
704 	struct pt_regs *regs = args->regs;
705 	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
706 	struct kprobe_ctlblk *kcb;
707 
708 	/*
709 	 * We don't want to be preempted for the entire
710 	 * duration of kprobe processing
711 	 */
712 	preempt_disable();
713 	kcb = get_kprobe_ctlblk();
714 
715 	/* Handle recursion cases */
716 	if (kprobe_running()) {
717 		p = get_kprobe(addr);
718 		if (p) {
719 			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
720 	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
721 				ia64_psr(regs)->ss = 0;
722 				goto no_kprobe;
723 			}
724 			/* We have reentered the pre_kprobe_handler(), since
725 			 * another probe was hit while within the handler.
726 			 * We here save the original kprobes variables and
727 			 * just single step on the instruction of the new probe
728 			 * without calling any user handlers.
729 			 */
730 			save_previous_kprobe(kcb);
731 			set_current_kprobe(p, kcb);
732 			kprobes_inc_nmissed_count(p);
733 			prepare_ss(p, regs);
734 			kcb->kprobe_status = KPROBE_REENTER;
735 			return 1;
736 		} else if (args->err == __IA64_BREAK_JPROBE) {
737 			/*
738 			 * jprobe instrumented function just completed
739 			 */
740 			p = __get_cpu_var(current_kprobe);
741 			if (p->break_handler && p->break_handler(p, regs)) {
742 				goto ss_probe;
743 			}
744 		} else if (!is_ia64_break_inst(regs)) {
745 			/* The breakpoint instruction was removed by
746 			 * another cpu right after we hit, no further
747 			 * handling of this interrupt is appropriate
748 			 */
749 			ret = 1;
750 			goto no_kprobe;
751 		} else {
752 			/* Not our break */
753 			goto no_kprobe;
754 		}
755 	}
756 
757 	p = get_kprobe(addr);
758 	if (!p) {
759 		if (!is_ia64_break_inst(regs)) {
760 			/*
761 			 * The breakpoint instruction was removed right
762 			 * after we hit it.  Another cpu has removed
763 			 * either a probepoint or a debugger breakpoint
764 			 * at this address.  In either case, no further
765 			 * handling of this interrupt is appropriate.
766 			 */
767 			ret = 1;
768 
769 		}
770 
771 		/* Not one of our break, let kernel handle it */
772 		goto no_kprobe;
773 	}
774 
775 	set_current_kprobe(p, kcb);
776 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
777 
778 	if (p->pre_handler && p->pre_handler(p, regs))
779 		/*
780 		 * Our pre-handler is specifically requesting that we just
781 		 * do a return.  This is used for both the jprobe pre-handler
782 		 * and the kretprobe trampoline
783 		 */
784 		return 1;
785 
786 ss_probe:
787 	prepare_ss(p, regs);
788 	kcb->kprobe_status = KPROBE_HIT_SS;
789 	return 1;
790 
791 no_kprobe:
792 	preempt_enable_no_resched();
793 	return ret;
794 }
795 
796 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
797 {
798 	struct kprobe *cur = kprobe_running();
799 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
800 
801 	if (!cur)
802 		return 0;
803 
804 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
805 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
806 		cur->post_handler(cur, regs, 0);
807 	}
808 
809 	resume_execution(cur, regs);
810 
811 	/*Restore back the original saved kprobes variables and continue. */
812 	if (kcb->kprobe_status == KPROBE_REENTER) {
813 		restore_previous_kprobe(kcb);
814 		goto out;
815 	}
816 	reset_current_kprobe();
817 
818 out:
819 	preempt_enable_no_resched();
820 	return 1;
821 }
822 
823 int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
824 {
825 	struct kprobe *cur = kprobe_running();
826 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
827 
828 
829 	switch(kcb->kprobe_status) {
830 	case KPROBE_HIT_SS:
831 	case KPROBE_REENTER:
832 		/*
833 		 * We are here because the instruction being single
834 		 * stepped caused a page fault. We reset the current
835 		 * kprobe and the instruction pointer points back to
836 		 * the probe address and allow the page fault handler
837 		 * to continue as a normal page fault.
838 		 */
839 		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
840 		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
841 		if (kcb->kprobe_status == KPROBE_REENTER)
842 			restore_previous_kprobe(kcb);
843 		else
844 			reset_current_kprobe();
845 		preempt_enable_no_resched();
846 		break;
847 	case KPROBE_HIT_ACTIVE:
848 	case KPROBE_HIT_SSDONE:
849 		/*
850 		 * We increment the nmissed count for accounting,
851 		 * we can also use npre/npostfault count for accouting
852 		 * these specific fault cases.
853 		 */
854 		kprobes_inc_nmissed_count(cur);
855 
856 		/*
857 		 * We come here because instructions in the pre/post
858 		 * handler caused the page_fault, this could happen
859 		 * if handler tries to access user space by
860 		 * copy_from_user(), get_user() etc. Let the
861 		 * user-specified handler try to fix it first.
862 		 */
863 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
864 			return 1;
865 		/*
866 		 * In case the user-specified fault handler returned
867 		 * zero, try to fix up.
868 		 */
869 		if (ia64_done_with_exception(regs))
870 			return 1;
871 
872 		/*
873 		 * Let ia64_do_page_fault() fix it.
874 		 */
875 		break;
876 	default:
877 		break;
878 	}
879 
880 	return 0;
881 }
882 
883 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
884 				       unsigned long val, void *data)
885 {
886 	struct die_args *args = (struct die_args *)data;
887 	int ret = NOTIFY_DONE;
888 
889 	if (args->regs && user_mode(args->regs))
890 		return ret;
891 
892 	switch(val) {
893 	case DIE_BREAK:
894 		/* err is break number from ia64_bad_break() */
895 		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
896 			|| args->err == __IA64_BREAK_JPROBE
897 			|| args->err == 0)
898 			if (pre_kprobes_handler(args))
899 				ret = NOTIFY_STOP;
900 		break;
901 	case DIE_FAULT:
902 		/* err is vector number from ia64_fault() */
903 		if (args->err == 36)
904 			if (post_kprobes_handler(args->regs))
905 				ret = NOTIFY_STOP;
906 		break;
907 	default:
908 		break;
909 	}
910 	return ret;
911 }
912 
913 struct param_bsp_cfm {
914 	unsigned long ip;
915 	unsigned long *bsp;
916 	unsigned long cfm;
917 };
918 
919 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
920 {
921 	unsigned long ip;
922 	struct param_bsp_cfm *lp = arg;
923 
924 	do {
925 		unw_get_ip(info, &ip);
926 		if (ip == 0)
927 			break;
928 		if (ip == lp->ip) {
929 			unw_get_bsp(info, (unsigned long*)&lp->bsp);
930 			unw_get_cfm(info, (unsigned long*)&lp->cfm);
931 			return;
932 		}
933 	} while (unw_unwind(info) >= 0);
934 	lp->bsp = NULL;
935 	lp->cfm = 0;
936 	return;
937 }
938 
939 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
940 {
941 	struct jprobe *jp = container_of(p, struct jprobe, kp);
942 	unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
943 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
944 	struct param_bsp_cfm pa;
945 	int bytes;
946 
947 	/*
948 	 * Callee owns the argument space and could overwrite it, eg
949 	 * tail call optimization. So to be absolutely safe
950 	 * we save the argument space before transferring the control
951 	 * to instrumented jprobe function which runs in
952 	 * the process context
953 	 */
954 	pa.ip = regs->cr_iip;
955 	unw_init_running(ia64_get_bsp_cfm, &pa);
956 	bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
957 				- (char *)pa.bsp;
958 	memcpy( kcb->jprobes_saved_stacked_regs,
959 		pa.bsp,
960 		bytes );
961 	kcb->bsp = pa.bsp;
962 	kcb->cfm = pa.cfm;
963 
964 	/* save architectural state */
965 	kcb->jprobe_saved_regs = *regs;
966 
967 	/* after rfi, execute the jprobe instrumented function */
968 	regs->cr_iip = addr & ~0xFULL;
969 	ia64_psr(regs)->ri = addr & 0xf;
970 	regs->r1 = ((struct fnptr *)(jp->entry))->gp;
971 
972 	/*
973 	 * fix the return address to our jprobe_inst_return() function
974 	 * in the jprobes.S file
975 	 */
976 	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
977 
978 	return 1;
979 }
980 
981 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
982 {
983 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
984 	int bytes;
985 
986 	/* restoring architectural state */
987 	*regs = kcb->jprobe_saved_regs;
988 
989 	/* restoring the original argument space */
990 	flush_register_stack();
991 	bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
992 				- (char *)kcb->bsp;
993 	memcpy( kcb->bsp,
994 		kcb->jprobes_saved_stacked_regs,
995 		bytes );
996 	invalidate_stacked_regs();
997 
998 	preempt_enable_no_resched();
999 	return 1;
1000 }
1001 
1002 static struct kprobe trampoline_p = {
1003 	.pre_handler = trampoline_probe_handler
1004 };
1005 
1006 int __init arch_init_kprobes(void)
1007 {
1008 	trampoline_p.addr =
1009 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1010 	return register_kprobe(&trampoline_p);
1011 }
1012 
1013 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1014 {
1015 	if (p->addr ==
1016 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1017 		return 1;
1018 
1019 	return 0;
1020 }
1021