xref: /openbmc/linux/arch/ia64/kernel/kprobes.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/ia64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  * Copyright (C) Intel Corporation, 2005
21  *
22  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23  *              <anil.s.keshavamurthy@intel.com> adapted from i386
24  */
25 
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/extable.h>
32 #include <linux/kdebug.h>
33 
34 #include <asm/pgtable.h>
35 #include <asm/sections.h>
36 #include <asm/exception.h>
37 
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40 
41 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
42 
43 enum instruction_type {A, I, M, F, B, L, X, u};
44 static enum instruction_type bundle_encoding[32][3] = {
45   { M, I, I },				/* 00 */
46   { M, I, I },				/* 01 */
47   { M, I, I },				/* 02 */
48   { M, I, I },				/* 03 */
49   { M, L, X },				/* 04 */
50   { M, L, X },				/* 05 */
51   { u, u, u },  			/* 06 */
52   { u, u, u },  			/* 07 */
53   { M, M, I },				/* 08 */
54   { M, M, I },				/* 09 */
55   { M, M, I },				/* 0A */
56   { M, M, I },				/* 0B */
57   { M, F, I },				/* 0C */
58   { M, F, I },				/* 0D */
59   { M, M, F },				/* 0E */
60   { M, M, F },				/* 0F */
61   { M, I, B },				/* 10 */
62   { M, I, B },				/* 11 */
63   { M, B, B },				/* 12 */
64   { M, B, B },				/* 13 */
65   { u, u, u },  			/* 14 */
66   { u, u, u },  			/* 15 */
67   { B, B, B },				/* 16 */
68   { B, B, B },				/* 17 */
69   { M, M, B },				/* 18 */
70   { M, M, B },				/* 19 */
71   { u, u, u },  			/* 1A */
72   { u, u, u },  			/* 1B */
73   { M, F, B },				/* 1C */
74   { M, F, B },				/* 1D */
75   { u, u, u },  			/* 1E */
76   { u, u, u },  			/* 1F */
77 };
78 
79 /* Insert a long branch code */
80 static void __kprobes set_brl_inst(void *from, void *to)
81 {
82 	s64 rel = ((s64) to - (s64) from) >> 4;
83 	bundle_t *brl;
84 	brl = (bundle_t *) ((u64) from & ~0xf);
85 	brl->quad0.template = 0x05;	/* [MLX](stop) */
86 	brl->quad0.slot0 = NOP_M_INST;	/* nop.m 0x0 */
87 	brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
88 	brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
89 	/* brl.cond.sptk.many.clr rel<<4 (qp=0) */
90 	brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
91 }
92 
93 /*
94  * In this function we check to see if the instruction
95  * is IP relative instruction and update the kprobe
96  * inst flag accordingly
97  */
98 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
99 					      uint major_opcode,
100 					      unsigned long kprobe_inst,
101 					      struct kprobe *p)
102 {
103 	p->ainsn.inst_flag = 0;
104 	p->ainsn.target_br_reg = 0;
105 	p->ainsn.slot = slot;
106 
107 	/* Check for Break instruction
108 	 * Bits 37:40 Major opcode to be zero
109 	 * Bits 27:32 X6 to be zero
110 	 * Bits 32:35 X3 to be zero
111 	 */
112 	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
113 		/* is a break instruction */
114 	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
115 		return;
116 	}
117 
118 	if (bundle_encoding[template][slot] == B) {
119 		switch (major_opcode) {
120 		  case INDIRECT_CALL_OPCODE:
121 	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
122 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
123 			break;
124 		  case IP_RELATIVE_PREDICT_OPCODE:
125 		  case IP_RELATIVE_BRANCH_OPCODE:
126 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
127 			break;
128 		  case IP_RELATIVE_CALL_OPCODE:
129 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
130 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
131 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
132 			break;
133 		}
134 	} else if (bundle_encoding[template][slot] == X) {
135 		switch (major_opcode) {
136 		  case LONG_CALL_OPCODE:
137 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
138 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
139 		  break;
140 		}
141 	}
142 	return;
143 }
144 
145 /*
146  * In this function we check to see if the instruction
147  * (qp) cmpx.crel.ctype p1,p2=r2,r3
148  * on which we are inserting kprobe is cmp instruction
149  * with ctype as unc.
150  */
151 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
152 					    uint major_opcode,
153 					    unsigned long kprobe_inst)
154 {
155 	cmp_inst_t cmp_inst;
156 	uint ctype_unc = 0;
157 
158 	if (!((bundle_encoding[template][slot] == I) ||
159 		(bundle_encoding[template][slot] == M)))
160 		goto out;
161 
162 	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
163 		(major_opcode == 0xE)))
164 		goto out;
165 
166 	cmp_inst.l = kprobe_inst;
167 	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
168 		/* Integer compare - Register Register (A6 type)*/
169 		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
170 				&&(cmp_inst.f.c == 1))
171 			ctype_unc = 1;
172 	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
173 		/* Integer compare - Immediate Register (A8 type)*/
174 		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
175 			ctype_unc = 1;
176 	}
177 out:
178 	return ctype_unc;
179 }
180 
181 /*
182  * In this function we check to see if the instruction
183  * on which we are inserting kprobe is supported.
184  * Returns qp value if supported
185  * Returns -EINVAL if unsupported
186  */
187 static int __kprobes unsupported_inst(uint template, uint  slot,
188 				      uint major_opcode,
189 				      unsigned long kprobe_inst,
190 				      unsigned long addr)
191 {
192 	int qp;
193 
194 	qp = kprobe_inst & 0x3f;
195 	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
196 		if (slot == 1 && qp)  {
197 			printk(KERN_WARNING "Kprobes on cmp unc "
198 					"instruction on slot 1 at <0x%lx> "
199 					"is not supported\n", addr);
200 			return -EINVAL;
201 
202 		}
203 		qp = 0;
204 	}
205 	else if (bundle_encoding[template][slot] == I) {
206 		if (major_opcode == 0) {
207 			/*
208 			 * Check for Integer speculation instruction
209 			 * - Bit 33-35 to be equal to 0x1
210 			 */
211 			if (((kprobe_inst >> 33) & 0x7) == 1) {
212 				printk(KERN_WARNING
213 					"Kprobes on speculation inst at <0x%lx> not supported\n",
214 						addr);
215 				return -EINVAL;
216 			}
217 			/*
218 			 * IP relative mov instruction
219 			 *  - Bit 27-35 to be equal to 0x30
220 			 */
221 			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
222 				printk(KERN_WARNING
223 					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
224 						addr);
225 				return -EINVAL;
226 
227 			}
228 		}
229 		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
230 				(kprobe_inst & (0x1UL << 12))) {
231 			/* test bit instructions, tbit,tnat,tf
232 			 * bit 33-36 to be equal to 0
233 			 * bit 12 to be equal to 1
234 			 */
235 			if (slot == 1 && qp) {
236 				printk(KERN_WARNING "Kprobes on test bit "
237 						"instruction on slot at <0x%lx> "
238 						"is not supported\n", addr);
239 				return -EINVAL;
240 			}
241 			qp = 0;
242 		}
243 	}
244 	else if (bundle_encoding[template][slot] == B) {
245 		if (major_opcode == 7) {
246 			/* IP-Relative Predict major code is 7 */
247 			printk(KERN_WARNING "Kprobes on IP-Relative"
248 					"Predict is not supported\n");
249 			return -EINVAL;
250 		}
251 		else if (major_opcode == 2) {
252 			/* Indirect Predict, major code is 2
253 			 * bit 27-32 to be equal to 10 or 11
254 			 */
255 			int x6=(kprobe_inst >> 27) & 0x3F;
256 			if ((x6 == 0x10) || (x6 == 0x11)) {
257 				printk(KERN_WARNING "Kprobes on "
258 					"Indirect Predict is not supported\n");
259 				return -EINVAL;
260 			}
261 		}
262 	}
263 	/* kernel does not use float instruction, here for safety kprobe
264 	 * will judge whether it is fcmp/flass/float approximation instruction
265 	 */
266 	else if (unlikely(bundle_encoding[template][slot] == F)) {
267 		if ((major_opcode == 4 || major_opcode == 5) &&
268 				(kprobe_inst  & (0x1 << 12))) {
269 			/* fcmp/fclass unc instruction */
270 			if (slot == 1 && qp) {
271 				printk(KERN_WARNING "Kprobes on fcmp/fclass "
272 					"instruction on slot at <0x%lx> "
273 					"is not supported\n", addr);
274 				return -EINVAL;
275 
276 			}
277 			qp = 0;
278 		}
279 		if ((major_opcode == 0 || major_opcode == 1) &&
280 			(kprobe_inst & (0x1UL << 33))) {
281 			/* float Approximation instruction */
282 			if (slot == 1 && qp) {
283 				printk(KERN_WARNING "Kprobes on float Approx "
284 					"instr at <0x%lx> is not supported\n",
285 						addr);
286 				return -EINVAL;
287 			}
288 			qp = 0;
289 		}
290 	}
291 	return qp;
292 }
293 
294 /*
295  * In this function we override the bundle with
296  * the break instruction at the given slot.
297  */
298 static void __kprobes prepare_break_inst(uint template, uint  slot,
299 					 uint major_opcode,
300 					 unsigned long kprobe_inst,
301 					 struct kprobe *p,
302 					 int qp)
303 {
304 	unsigned long break_inst = BREAK_INST;
305 	bundle_t *bundle = &p->opcode.bundle;
306 
307 	/*
308 	 * Copy the original kprobe_inst qualifying predicate(qp)
309 	 * to the break instruction
310 	 */
311 	break_inst |= qp;
312 
313 	switch (slot) {
314 	  case 0:
315 		bundle->quad0.slot0 = break_inst;
316 		break;
317 	  case 1:
318 		bundle->quad0.slot1_p0 = break_inst;
319 		bundle->quad1.slot1_p1 = break_inst >> (64-46);
320 		break;
321 	  case 2:
322 		bundle->quad1.slot2 = break_inst;
323 		break;
324 	}
325 
326 	/*
327 	 * Update the instruction flag, so that we can
328 	 * emulate the instruction properly after we
329 	 * single step on original instruction
330 	 */
331 	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
332 }
333 
334 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
335 	       	unsigned long *kprobe_inst, uint *major_opcode)
336 {
337 	unsigned long kprobe_inst_p0, kprobe_inst_p1;
338 	unsigned int template;
339 
340 	template = bundle->quad0.template;
341 
342 	switch (slot) {
343 	  case 0:
344 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
345 		*kprobe_inst = bundle->quad0.slot0;
346 		  break;
347 	  case 1:
348 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
349 		kprobe_inst_p0 = bundle->quad0.slot1_p0;
350 		kprobe_inst_p1 = bundle->quad1.slot1_p1;
351 		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
352 		break;
353 	  case 2:
354 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
355 		*kprobe_inst = bundle->quad1.slot2;
356 		break;
357 	}
358 }
359 
360 /* Returns non-zero if the addr is in the Interrupt Vector Table */
361 static int __kprobes in_ivt_functions(unsigned long addr)
362 {
363 	return (addr >= (unsigned long)__start_ivt_text
364 		&& addr < (unsigned long)__end_ivt_text);
365 }
366 
367 static int __kprobes valid_kprobe_addr(int template, int slot,
368 				       unsigned long addr)
369 {
370 	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
371 		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
372 				"at 0x%lx\n", addr);
373 		return -EINVAL;
374 	}
375 
376 	if (in_ivt_functions(addr)) {
377 		printk(KERN_WARNING "Kprobes can't be inserted inside "
378 				"IVT functions at 0x%lx\n", addr);
379 		return -EINVAL;
380 	}
381 
382 	return 0;
383 }
384 
385 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
386 {
387 	unsigned int i;
388 	i = atomic_add_return(1, &kcb->prev_kprobe_index);
389 	kcb->prev_kprobe[i-1].kp = kprobe_running();
390 	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
391 }
392 
393 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
394 {
395 	unsigned int i;
396 	i = atomic_read(&kcb->prev_kprobe_index);
397 	__this_cpu_write(current_kprobe, kcb->prev_kprobe[i-1].kp);
398 	kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
399 	atomic_sub(1, &kcb->prev_kprobe_index);
400 }
401 
402 static void __kprobes set_current_kprobe(struct kprobe *p,
403 			struct kprobe_ctlblk *kcb)
404 {
405 	__this_cpu_write(current_kprobe, p);
406 }
407 
408 static void kretprobe_trampoline(void)
409 {
410 }
411 
412 /*
413  * At this point the target function has been tricked into
414  * returning into our trampoline.  Lookup the associated instance
415  * and then:
416  *    - call the handler function
417  *    - cleanup by marking the instance as unused
418  *    - long jump back to the original return address
419  */
420 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
421 {
422 	struct kretprobe_instance *ri = NULL;
423 	struct hlist_head *head, empty_rp;
424 	struct hlist_node *tmp;
425 	unsigned long flags, orig_ret_address = 0;
426 	unsigned long trampoline_address =
427 		((struct fnptr *)kretprobe_trampoline)->ip;
428 
429 	INIT_HLIST_HEAD(&empty_rp);
430 	kretprobe_hash_lock(current, &head, &flags);
431 
432 	/*
433 	 * It is possible to have multiple instances associated with a given
434 	 * task either because an multiple functions in the call path
435 	 * have a return probe installed on them, and/or more than one return
436 	 * return probe was registered for a target function.
437 	 *
438 	 * We can handle this because:
439 	 *     - instances are always inserted at the head of the list
440 	 *     - when multiple return probes are registered for the same
441 	 *       function, the first instance's ret_addr will point to the
442 	 *       real return address, and all the rest will point to
443 	 *       kretprobe_trampoline
444 	 */
445 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
446 		if (ri->task != current)
447 			/* another task is sharing our hash bucket */
448 			continue;
449 
450 		orig_ret_address = (unsigned long)ri->ret_addr;
451 		if (orig_ret_address != trampoline_address)
452 			/*
453 			 * This is the real return address. Any other
454 			 * instances associated with this task are for
455 			 * other calls deeper on the call stack
456 			 */
457 			break;
458 	}
459 
460 	regs->cr_iip = orig_ret_address;
461 
462 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
463 		if (ri->task != current)
464 			/* another task is sharing our hash bucket */
465 			continue;
466 
467 		if (ri->rp && ri->rp->handler)
468 			ri->rp->handler(ri, regs);
469 
470 		orig_ret_address = (unsigned long)ri->ret_addr;
471 		recycle_rp_inst(ri, &empty_rp);
472 
473 		if (orig_ret_address != trampoline_address)
474 			/*
475 			 * This is the real return address. Any other
476 			 * instances associated with this task are for
477 			 * other calls deeper on the call stack
478 			 */
479 			break;
480 	}
481 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
482 
483 	kretprobe_hash_unlock(current, &flags);
484 
485 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
486 		hlist_del(&ri->hlist);
487 		kfree(ri);
488 	}
489 	/*
490 	 * By returning a non-zero value, we are telling
491 	 * kprobe_handler() that we don't want the post_handler
492 	 * to run (and have re-enabled preemption)
493 	 */
494 	return 1;
495 }
496 
497 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
498 				      struct pt_regs *regs)
499 {
500 	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
501 
502 	/* Replace the return addr with trampoline addr */
503 	regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
504 }
505 
506 /* Check the instruction in the slot is break */
507 static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
508 {
509 	unsigned int major_opcode;
510 	unsigned int template = bundle->quad0.template;
511 	unsigned long kprobe_inst;
512 
513 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
514 	if (slot == 1 && bundle_encoding[template][1] == L)
515 		slot++;
516 
517 	/* Get Kprobe probe instruction at given slot*/
518 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
519 
520 	/* For break instruction,
521 	 * Bits 37:40 Major opcode to be zero
522 	 * Bits 27:32 X6 to be zero
523 	 * Bits 32:35 X3 to be zero
524 	 */
525 	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
526 		/* Not a break instruction */
527 		return 0;
528 	}
529 
530 	/* Is a break instruction */
531 	return 1;
532 }
533 
534 /*
535  * In this function, we check whether the target bundle modifies IP or
536  * it triggers an exception. If so, it cannot be boostable.
537  */
538 static int __kprobes can_boost(bundle_t *bundle, uint slot,
539 			       unsigned long bundle_addr)
540 {
541 	unsigned int template = bundle->quad0.template;
542 
543 	do {
544 		if (search_exception_tables(bundle_addr + slot) ||
545 		    __is_ia64_break_inst(bundle, slot))
546 			return 0;	/* exception may occur in this bundle*/
547 	} while ((++slot) < 3);
548 	template &= 0x1e;
549 	if (template >= 0x10 /* including B unit */ ||
550 	    template == 0x04 /* including X unit */ ||
551 	    template == 0x06) /* undefined */
552 		return 0;
553 
554 	return 1;
555 }
556 
557 /* Prepare long jump bundle and disables other boosters if need */
558 static void __kprobes prepare_booster(struct kprobe *p)
559 {
560 	unsigned long addr = (unsigned long)p->addr & ~0xFULL;
561 	unsigned int slot = (unsigned long)p->addr & 0xf;
562 	struct kprobe *other_kp;
563 
564 	if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
565 		set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
566 		p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
567 	}
568 
569 	/* disables boosters in previous slots */
570 	for (; addr < (unsigned long)p->addr; addr++) {
571 		other_kp = get_kprobe((void *)addr);
572 		if (other_kp)
573 			other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
574 	}
575 }
576 
577 int __kprobes arch_prepare_kprobe(struct kprobe *p)
578 {
579 	unsigned long addr = (unsigned long) p->addr;
580 	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
581 	unsigned long kprobe_inst=0;
582 	unsigned int slot = addr & 0xf, template, major_opcode = 0;
583 	bundle_t *bundle;
584 	int qp;
585 
586 	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
587 	template = bundle->quad0.template;
588 
589 	if(valid_kprobe_addr(template, slot, addr))
590 		return -EINVAL;
591 
592 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
593 	if (slot == 1 && bundle_encoding[template][1] == L)
594 		slot++;
595 
596 	/* Get kprobe_inst and major_opcode from the bundle */
597 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
598 
599 	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
600 	if (qp < 0)
601 		return -EINVAL;
602 
603 	p->ainsn.insn = get_insn_slot();
604 	if (!p->ainsn.insn)
605 		return -ENOMEM;
606 	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
607 	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
608 
609 	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
610 
611 	prepare_booster(p);
612 
613 	return 0;
614 }
615 
616 void __kprobes arch_arm_kprobe(struct kprobe *p)
617 {
618 	unsigned long arm_addr;
619 	bundle_t *src, *dest;
620 
621 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
622 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
623 	src = &p->opcode.bundle;
624 
625 	flush_icache_range((unsigned long)p->ainsn.insn,
626 			   (unsigned long)p->ainsn.insn +
627 			   sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
628 
629 	switch (p->ainsn.slot) {
630 		case 0:
631 			dest->quad0.slot0 = src->quad0.slot0;
632 			break;
633 		case 1:
634 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
635 			break;
636 		case 2:
637 			dest->quad1.slot2 = src->quad1.slot2;
638 			break;
639 	}
640 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
641 }
642 
643 void __kprobes arch_disarm_kprobe(struct kprobe *p)
644 {
645 	unsigned long arm_addr;
646 	bundle_t *src, *dest;
647 
648 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
649 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
650 	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
651 	src = &p->ainsn.insn->bundle;
652 	switch (p->ainsn.slot) {
653 		case 0:
654 			dest->quad0.slot0 = src->quad0.slot0;
655 			break;
656 		case 1:
657 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
658 			break;
659 		case 2:
660 			dest->quad1.slot2 = src->quad1.slot2;
661 			break;
662 	}
663 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
664 }
665 
666 void __kprobes arch_remove_kprobe(struct kprobe *p)
667 {
668 	if (p->ainsn.insn) {
669 		free_insn_slot(p->ainsn.insn,
670 			       p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
671 		p->ainsn.insn = NULL;
672 	}
673 }
674 /*
675  * We are resuming execution after a single step fault, so the pt_regs
676  * structure reflects the register state after we executed the instruction
677  * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
678  * the ip to point back to the original stack address. To set the IP address
679  * to original stack address, handle the case where we need to fixup the
680  * relative IP address and/or fixup branch register.
681  */
682 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
683 {
684 	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
685 	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
686 	unsigned long template;
687 	int slot = ((unsigned long)p->addr & 0xf);
688 
689 	template = p->ainsn.insn->bundle.quad0.template;
690 
691 	if (slot == 1 && bundle_encoding[template][1] == L)
692 		slot = 2;
693 
694 	if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
695 
696 		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
697 			/* Fix relative IP address */
698 			regs->cr_iip = (regs->cr_iip - bundle_addr) +
699 					resume_addr;
700 		}
701 
702 		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
703 		/*
704 		 * Fix target branch register, software convention is
705 		 * to use either b0 or b6 or b7, so just checking
706 		 * only those registers
707 		 */
708 			switch (p->ainsn.target_br_reg) {
709 			case 0:
710 				if ((regs->b0 == bundle_addr) ||
711 					(regs->b0 == bundle_addr + 0x10)) {
712 					regs->b0 = (regs->b0 - bundle_addr) +
713 						resume_addr;
714 				}
715 				break;
716 			case 6:
717 				if ((regs->b6 == bundle_addr) ||
718 					(regs->b6 == bundle_addr + 0x10)) {
719 					regs->b6 = (regs->b6 - bundle_addr) +
720 						resume_addr;
721 				}
722 				break;
723 			case 7:
724 				if ((regs->b7 == bundle_addr) ||
725 					(regs->b7 == bundle_addr + 0x10)) {
726 					regs->b7 = (regs->b7 - bundle_addr) +
727 						resume_addr;
728 				}
729 				break;
730 			} /* end switch */
731 		}
732 		goto turn_ss_off;
733 	}
734 
735 	if (slot == 2) {
736 		if (regs->cr_iip == bundle_addr + 0x10) {
737 			regs->cr_iip = resume_addr + 0x10;
738 		}
739 	} else {
740 		if (regs->cr_iip == bundle_addr) {
741 			regs->cr_iip = resume_addr;
742 		}
743 	}
744 
745 turn_ss_off:
746 	/* Turn off Single Step bit */
747 	ia64_psr(regs)->ss = 0;
748 }
749 
750 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
751 {
752 	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
753 	unsigned long slot = (unsigned long)p->addr & 0xf;
754 
755 	/* single step inline if break instruction */
756 	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
757 		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
758 	else
759 		regs->cr_iip = bundle_addr & ~0xFULL;
760 
761 	if (slot > 2)
762 		slot = 0;
763 
764 	ia64_psr(regs)->ri = slot;
765 
766 	/* turn on single stepping */
767 	ia64_psr(regs)->ss = 1;
768 }
769 
770 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
771 {
772 	unsigned int slot = ia64_psr(regs)->ri;
773 	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
774 	bundle_t bundle;
775 
776 	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
777 
778 	return __is_ia64_break_inst(&bundle, slot);
779 }
780 
781 static int __kprobes pre_kprobes_handler(struct die_args *args)
782 {
783 	struct kprobe *p;
784 	int ret = 0;
785 	struct pt_regs *regs = args->regs;
786 	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
787 	struct kprobe_ctlblk *kcb;
788 
789 	/*
790 	 * We don't want to be preempted for the entire
791 	 * duration of kprobe processing
792 	 */
793 	preempt_disable();
794 	kcb = get_kprobe_ctlblk();
795 
796 	/* Handle recursion cases */
797 	if (kprobe_running()) {
798 		p = get_kprobe(addr);
799 		if (p) {
800 			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
801 	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
802 				ia64_psr(regs)->ss = 0;
803 				goto no_kprobe;
804 			}
805 			/* We have reentered the pre_kprobe_handler(), since
806 			 * another probe was hit while within the handler.
807 			 * We here save the original kprobes variables and
808 			 * just single step on the instruction of the new probe
809 			 * without calling any user handlers.
810 			 */
811 			save_previous_kprobe(kcb);
812 			set_current_kprobe(p, kcb);
813 			kprobes_inc_nmissed_count(p);
814 			prepare_ss(p, regs);
815 			kcb->kprobe_status = KPROBE_REENTER;
816 			return 1;
817 		} else if (!is_ia64_break_inst(regs)) {
818 			/* The breakpoint instruction was removed by
819 			 * another cpu right after we hit, no further
820 			 * handling of this interrupt is appropriate
821 			 */
822 			ret = 1;
823 			goto no_kprobe;
824 		} else {
825 			/* Not our break */
826 			goto no_kprobe;
827 		}
828 	}
829 
830 	p = get_kprobe(addr);
831 	if (!p) {
832 		if (!is_ia64_break_inst(regs)) {
833 			/*
834 			 * The breakpoint instruction was removed right
835 			 * after we hit it.  Another cpu has removed
836 			 * either a probepoint or a debugger breakpoint
837 			 * at this address.  In either case, no further
838 			 * handling of this interrupt is appropriate.
839 			 */
840 			ret = 1;
841 
842 		}
843 
844 		/* Not one of our break, let kernel handle it */
845 		goto no_kprobe;
846 	}
847 
848 	set_current_kprobe(p, kcb);
849 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
850 
851 	if (p->pre_handler && p->pre_handler(p, regs)) {
852 		reset_current_kprobe();
853 		preempt_enable_no_resched();
854 		return 1;
855 	}
856 
857 #if !defined(CONFIG_PREEMPT)
858 	if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
859 		/* Boost up -- we can execute copied instructions directly */
860 		ia64_psr(regs)->ri = p->ainsn.slot;
861 		regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
862 		/* turn single stepping off */
863 		ia64_psr(regs)->ss = 0;
864 
865 		reset_current_kprobe();
866 		preempt_enable_no_resched();
867 		return 1;
868 	}
869 #endif
870 	prepare_ss(p, regs);
871 	kcb->kprobe_status = KPROBE_HIT_SS;
872 	return 1;
873 
874 no_kprobe:
875 	preempt_enable_no_resched();
876 	return ret;
877 }
878 
879 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
880 {
881 	struct kprobe *cur = kprobe_running();
882 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
883 
884 	if (!cur)
885 		return 0;
886 
887 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
888 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
889 		cur->post_handler(cur, regs, 0);
890 	}
891 
892 	resume_execution(cur, regs);
893 
894 	/*Restore back the original saved kprobes variables and continue. */
895 	if (kcb->kprobe_status == KPROBE_REENTER) {
896 		restore_previous_kprobe(kcb);
897 		goto out;
898 	}
899 	reset_current_kprobe();
900 
901 out:
902 	preempt_enable_no_resched();
903 	return 1;
904 }
905 
906 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
907 {
908 	struct kprobe *cur = kprobe_running();
909 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
910 
911 
912 	switch(kcb->kprobe_status) {
913 	case KPROBE_HIT_SS:
914 	case KPROBE_REENTER:
915 		/*
916 		 * We are here because the instruction being single
917 		 * stepped caused a page fault. We reset the current
918 		 * kprobe and the instruction pointer points back to
919 		 * the probe address and allow the page fault handler
920 		 * to continue as a normal page fault.
921 		 */
922 		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
923 		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
924 		if (kcb->kprobe_status == KPROBE_REENTER)
925 			restore_previous_kprobe(kcb);
926 		else
927 			reset_current_kprobe();
928 		preempt_enable_no_resched();
929 		break;
930 	case KPROBE_HIT_ACTIVE:
931 	case KPROBE_HIT_SSDONE:
932 		/*
933 		 * We increment the nmissed count for accounting,
934 		 * we can also use npre/npostfault count for accounting
935 		 * these specific fault cases.
936 		 */
937 		kprobes_inc_nmissed_count(cur);
938 
939 		/*
940 		 * We come here because instructions in the pre/post
941 		 * handler caused the page_fault, this could happen
942 		 * if handler tries to access user space by
943 		 * copy_from_user(), get_user() etc. Let the
944 		 * user-specified handler try to fix it first.
945 		 */
946 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
947 			return 1;
948 		/*
949 		 * In case the user-specified fault handler returned
950 		 * zero, try to fix up.
951 		 */
952 		if (ia64_done_with_exception(regs))
953 			return 1;
954 
955 		/*
956 		 * Let ia64_do_page_fault() fix it.
957 		 */
958 		break;
959 	default:
960 		break;
961 	}
962 
963 	return 0;
964 }
965 
966 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
967 				       unsigned long val, void *data)
968 {
969 	struct die_args *args = (struct die_args *)data;
970 	int ret = NOTIFY_DONE;
971 
972 	if (args->regs && user_mode(args->regs))
973 		return ret;
974 
975 	switch(val) {
976 	case DIE_BREAK:
977 		/* err is break number from ia64_bad_break() */
978 		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
979 			|| args->err == 0)
980 			if (pre_kprobes_handler(args))
981 				ret = NOTIFY_STOP;
982 		break;
983 	case DIE_FAULT:
984 		/* err is vector number from ia64_fault() */
985 		if (args->err == 36)
986 			if (post_kprobes_handler(args->regs))
987 				ret = NOTIFY_STOP;
988 		break;
989 	default:
990 		break;
991 	}
992 	return ret;
993 }
994 
995 struct param_bsp_cfm {
996 	unsigned long ip;
997 	unsigned long *bsp;
998 	unsigned long cfm;
999 };
1000 
1001 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
1002 {
1003 	unsigned long ip;
1004 	struct param_bsp_cfm *lp = arg;
1005 
1006 	do {
1007 		unw_get_ip(info, &ip);
1008 		if (ip == 0)
1009 			break;
1010 		if (ip == lp->ip) {
1011 			unw_get_bsp(info, (unsigned long*)&lp->bsp);
1012 			unw_get_cfm(info, (unsigned long*)&lp->cfm);
1013 			return;
1014 		}
1015 	} while (unw_unwind(info) >= 0);
1016 	lp->bsp = NULL;
1017 	lp->cfm = 0;
1018 	return;
1019 }
1020 
1021 unsigned long arch_deref_entry_point(void *entry)
1022 {
1023 	return ((struct fnptr *)entry)->ip;
1024 }
1025 
1026 static struct kprobe trampoline_p = {
1027 	.pre_handler = trampoline_probe_handler
1028 };
1029 
1030 int __init arch_init_kprobes(void)
1031 {
1032 	trampoline_p.addr =
1033 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1034 	return register_kprobe(&trampoline_p);
1035 }
1036 
1037 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1038 {
1039 	if (p->addr ==
1040 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1041 		return 1;
1042 
1043 	return 0;
1044 }
1045