1 /* 2 * Kernel Probes (KProbes) 3 * arch/ia64/kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * Copyright (C) Intel Corporation, 2005 21 * 22 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy 23 * <anil.s.keshavamurthy@intel.com> adapted from i386 24 */ 25 26 #include <linux/kprobes.h> 27 #include <linux/ptrace.h> 28 #include <linux/string.h> 29 #include <linux/slab.h> 30 #include <linux/preempt.h> 31 #include <linux/moduleloader.h> 32 #include <linux/kdebug.h> 33 34 #include <asm/pgtable.h> 35 #include <asm/sections.h> 36 #include <asm/uaccess.h> 37 38 extern void jprobe_inst_return(void); 39 40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 42 43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; 44 45 enum instruction_type {A, I, M, F, B, L, X, u}; 46 static enum instruction_type bundle_encoding[32][3] = { 47 { M, I, I }, /* 00 */ 48 { M, I, I }, /* 01 */ 49 { M, I, I }, /* 02 */ 50 { M, I, I }, /* 03 */ 51 { M, L, X }, /* 04 */ 52 { M, L, X }, /* 05 */ 53 { u, u, u }, /* 06 */ 54 { u, u, u }, /* 07 */ 55 { M, M, I }, /* 08 */ 56 { M, M, I }, /* 09 */ 57 { M, M, I }, /* 0A */ 58 { M, M, I }, /* 0B */ 59 { M, F, I }, /* 0C */ 60 { M, F, I }, /* 0D */ 61 { M, M, F }, /* 0E */ 62 { M, M, F }, /* 0F */ 63 { M, I, B }, /* 10 */ 64 { M, I, B }, /* 11 */ 65 { M, B, B }, /* 12 */ 66 { M, B, B }, /* 13 */ 67 { u, u, u }, /* 14 */ 68 { u, u, u }, /* 15 */ 69 { B, B, B }, /* 16 */ 70 { B, B, B }, /* 17 */ 71 { M, M, B }, /* 18 */ 72 { M, M, B }, /* 19 */ 73 { u, u, u }, /* 1A */ 74 { u, u, u }, /* 1B */ 75 { M, F, B }, /* 1C */ 76 { M, F, B }, /* 1D */ 77 { u, u, u }, /* 1E */ 78 { u, u, u }, /* 1F */ 79 }; 80 81 /* Insert a long branch code */ 82 static void __kprobes set_brl_inst(void *from, void *to) 83 { 84 s64 rel = ((s64) to - (s64) from) >> 4; 85 bundle_t *brl; 86 brl = (bundle_t *) ((u64) from & ~0xf); 87 brl->quad0.template = 0x05; /* [MLX](stop) */ 88 brl->quad0.slot0 = NOP_M_INST; /* nop.m 0x0 */ 89 brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2; 90 brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46); 91 /* brl.cond.sptk.many.clr rel<<4 (qp=0) */ 92 brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff); 93 } 94 95 /* 96 * In this function we check to see if the instruction 97 * is IP relative instruction and update the kprobe 98 * inst flag accordingly 99 */ 100 static void __kprobes update_kprobe_inst_flag(uint template, uint slot, 101 uint major_opcode, 102 unsigned long kprobe_inst, 103 struct kprobe *p) 104 { 105 p->ainsn.inst_flag = 0; 106 p->ainsn.target_br_reg = 0; 107 p->ainsn.slot = slot; 108 109 /* Check for Break instruction 110 * Bits 37:40 Major opcode to be zero 111 * Bits 27:32 X6 to be zero 112 * Bits 32:35 X3 to be zero 113 */ 114 if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) { 115 /* is a break instruction */ 116 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST; 117 return; 118 } 119 120 if (bundle_encoding[template][slot] == B) { 121 switch (major_opcode) { 122 case INDIRECT_CALL_OPCODE: 123 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; 124 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); 125 break; 126 case IP_RELATIVE_PREDICT_OPCODE: 127 case IP_RELATIVE_BRANCH_OPCODE: 128 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR; 129 break; 130 case IP_RELATIVE_CALL_OPCODE: 131 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR; 132 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; 133 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); 134 break; 135 } 136 } else if (bundle_encoding[template][slot] == X) { 137 switch (major_opcode) { 138 case LONG_CALL_OPCODE: 139 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; 140 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); 141 break; 142 } 143 } 144 return; 145 } 146 147 /* 148 * In this function we check to see if the instruction 149 * (qp) cmpx.crel.ctype p1,p2=r2,r3 150 * on which we are inserting kprobe is cmp instruction 151 * with ctype as unc. 152 */ 153 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot, 154 uint major_opcode, 155 unsigned long kprobe_inst) 156 { 157 cmp_inst_t cmp_inst; 158 uint ctype_unc = 0; 159 160 if (!((bundle_encoding[template][slot] == I) || 161 (bundle_encoding[template][slot] == M))) 162 goto out; 163 164 if (!((major_opcode == 0xC) || (major_opcode == 0xD) || 165 (major_opcode == 0xE))) 166 goto out; 167 168 cmp_inst.l = kprobe_inst; 169 if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) { 170 /* Integer compare - Register Register (A6 type)*/ 171 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0) 172 &&(cmp_inst.f.c == 1)) 173 ctype_unc = 1; 174 } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) { 175 /* Integer compare - Immediate Register (A8 type)*/ 176 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1)) 177 ctype_unc = 1; 178 } 179 out: 180 return ctype_unc; 181 } 182 183 /* 184 * In this function we check to see if the instruction 185 * on which we are inserting kprobe is supported. 186 * Returns qp value if supported 187 * Returns -EINVAL if unsupported 188 */ 189 static int __kprobes unsupported_inst(uint template, uint slot, 190 uint major_opcode, 191 unsigned long kprobe_inst, 192 unsigned long addr) 193 { 194 int qp; 195 196 qp = kprobe_inst & 0x3f; 197 if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) { 198 if (slot == 1 && qp) { 199 printk(KERN_WARNING "Kprobes on cmp unc " 200 "instruction on slot 1 at <0x%lx> " 201 "is not supported\n", addr); 202 return -EINVAL; 203 204 } 205 qp = 0; 206 } 207 else if (bundle_encoding[template][slot] == I) { 208 if (major_opcode == 0) { 209 /* 210 * Check for Integer speculation instruction 211 * - Bit 33-35 to be equal to 0x1 212 */ 213 if (((kprobe_inst >> 33) & 0x7) == 1) { 214 printk(KERN_WARNING 215 "Kprobes on speculation inst at <0x%lx> not supported\n", 216 addr); 217 return -EINVAL; 218 } 219 /* 220 * IP relative mov instruction 221 * - Bit 27-35 to be equal to 0x30 222 */ 223 if (((kprobe_inst >> 27) & 0x1FF) == 0x30) { 224 printk(KERN_WARNING 225 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n", 226 addr); 227 return -EINVAL; 228 229 } 230 } 231 else if ((major_opcode == 5) && !(kprobe_inst & (0xFUl << 33)) && 232 (kprobe_inst & (0x1UL << 12))) { 233 /* test bit instructions, tbit,tnat,tf 234 * bit 33-36 to be equal to 0 235 * bit 12 to be equal to 1 236 */ 237 if (slot == 1 && qp) { 238 printk(KERN_WARNING "Kprobes on test bit " 239 "instruction on slot at <0x%lx> " 240 "is not supported\n", addr); 241 return -EINVAL; 242 } 243 qp = 0; 244 } 245 } 246 else if (bundle_encoding[template][slot] == B) { 247 if (major_opcode == 7) { 248 /* IP-Relative Predict major code is 7 */ 249 printk(KERN_WARNING "Kprobes on IP-Relative" 250 "Predict is not supported\n"); 251 return -EINVAL; 252 } 253 else if (major_opcode == 2) { 254 /* Indirect Predict, major code is 2 255 * bit 27-32 to be equal to 10 or 11 256 */ 257 int x6=(kprobe_inst >> 27) & 0x3F; 258 if ((x6 == 0x10) || (x6 == 0x11)) { 259 printk(KERN_WARNING "Kprobes on " 260 "Indirect Predict is not supported\n"); 261 return -EINVAL; 262 } 263 } 264 } 265 /* kernel does not use float instruction, here for safety kprobe 266 * will judge whether it is fcmp/flass/float approximation instruction 267 */ 268 else if (unlikely(bundle_encoding[template][slot] == F)) { 269 if ((major_opcode == 4 || major_opcode == 5) && 270 (kprobe_inst & (0x1 << 12))) { 271 /* fcmp/fclass unc instruction */ 272 if (slot == 1 && qp) { 273 printk(KERN_WARNING "Kprobes on fcmp/fclass " 274 "instruction on slot at <0x%lx> " 275 "is not supported\n", addr); 276 return -EINVAL; 277 278 } 279 qp = 0; 280 } 281 if ((major_opcode == 0 || major_opcode == 1) && 282 (kprobe_inst & (0x1UL << 33))) { 283 /* float Approximation instruction */ 284 if (slot == 1 && qp) { 285 printk(KERN_WARNING "Kprobes on float Approx " 286 "instr at <0x%lx> is not supported\n", 287 addr); 288 return -EINVAL; 289 } 290 qp = 0; 291 } 292 } 293 return qp; 294 } 295 296 /* 297 * In this function we override the bundle with 298 * the break instruction at the given slot. 299 */ 300 static void __kprobes prepare_break_inst(uint template, uint slot, 301 uint major_opcode, 302 unsigned long kprobe_inst, 303 struct kprobe *p, 304 int qp) 305 { 306 unsigned long break_inst = BREAK_INST; 307 bundle_t *bundle = &p->opcode.bundle; 308 309 /* 310 * Copy the original kprobe_inst qualifying predicate(qp) 311 * to the break instruction 312 */ 313 break_inst |= qp; 314 315 switch (slot) { 316 case 0: 317 bundle->quad0.slot0 = break_inst; 318 break; 319 case 1: 320 bundle->quad0.slot1_p0 = break_inst; 321 bundle->quad1.slot1_p1 = break_inst >> (64-46); 322 break; 323 case 2: 324 bundle->quad1.slot2 = break_inst; 325 break; 326 } 327 328 /* 329 * Update the instruction flag, so that we can 330 * emulate the instruction properly after we 331 * single step on original instruction 332 */ 333 update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p); 334 } 335 336 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot, 337 unsigned long *kprobe_inst, uint *major_opcode) 338 { 339 unsigned long kprobe_inst_p0, kprobe_inst_p1; 340 unsigned int template; 341 342 template = bundle->quad0.template; 343 344 switch (slot) { 345 case 0: 346 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT); 347 *kprobe_inst = bundle->quad0.slot0; 348 break; 349 case 1: 350 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT); 351 kprobe_inst_p0 = bundle->quad0.slot1_p0; 352 kprobe_inst_p1 = bundle->quad1.slot1_p1; 353 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46)); 354 break; 355 case 2: 356 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT); 357 *kprobe_inst = bundle->quad1.slot2; 358 break; 359 } 360 } 361 362 /* Returns non-zero if the addr is in the Interrupt Vector Table */ 363 static int __kprobes in_ivt_functions(unsigned long addr) 364 { 365 return (addr >= (unsigned long)__start_ivt_text 366 && addr < (unsigned long)__end_ivt_text); 367 } 368 369 static int __kprobes valid_kprobe_addr(int template, int slot, 370 unsigned long addr) 371 { 372 if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) { 373 printk(KERN_WARNING "Attempting to insert unaligned kprobe " 374 "at 0x%lx\n", addr); 375 return -EINVAL; 376 } 377 378 if (in_ivt_functions(addr)) { 379 printk(KERN_WARNING "Kprobes can't be inserted inside " 380 "IVT functions at 0x%lx\n", addr); 381 return -EINVAL; 382 } 383 384 return 0; 385 } 386 387 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 388 { 389 unsigned int i; 390 i = atomic_add_return(1, &kcb->prev_kprobe_index); 391 kcb->prev_kprobe[i-1].kp = kprobe_running(); 392 kcb->prev_kprobe[i-1].status = kcb->kprobe_status; 393 } 394 395 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 396 { 397 unsigned int i; 398 i = atomic_read(&kcb->prev_kprobe_index); 399 __get_cpu_var(current_kprobe) = kcb->prev_kprobe[i-1].kp; 400 kcb->kprobe_status = kcb->prev_kprobe[i-1].status; 401 atomic_sub(1, &kcb->prev_kprobe_index); 402 } 403 404 static void __kprobes set_current_kprobe(struct kprobe *p, 405 struct kprobe_ctlblk *kcb) 406 { 407 __get_cpu_var(current_kprobe) = p; 408 } 409 410 static void kretprobe_trampoline(void) 411 { 412 } 413 414 /* 415 * At this point the target function has been tricked into 416 * returning into our trampoline. Lookup the associated instance 417 * and then: 418 * - call the handler function 419 * - cleanup by marking the instance as unused 420 * - long jump back to the original return address 421 */ 422 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 423 { 424 struct kretprobe_instance *ri = NULL; 425 struct hlist_head *head, empty_rp; 426 struct hlist_node *node, *tmp; 427 unsigned long flags, orig_ret_address = 0; 428 unsigned long trampoline_address = 429 ((struct fnptr *)kretprobe_trampoline)->ip; 430 431 INIT_HLIST_HEAD(&empty_rp); 432 kretprobe_hash_lock(current, &head, &flags); 433 434 /* 435 * It is possible to have multiple instances associated with a given 436 * task either because an multiple functions in the call path 437 * have a return probe installed on them, and/or more then one return 438 * return probe was registered for a target function. 439 * 440 * We can handle this because: 441 * - instances are always inserted at the head of the list 442 * - when multiple return probes are registered for the same 443 * function, the first instance's ret_addr will point to the 444 * real return address, and all the rest will point to 445 * kretprobe_trampoline 446 */ 447 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 448 if (ri->task != current) 449 /* another task is sharing our hash bucket */ 450 continue; 451 452 orig_ret_address = (unsigned long)ri->ret_addr; 453 if (orig_ret_address != trampoline_address) 454 /* 455 * This is the real return address. Any other 456 * instances associated with this task are for 457 * other calls deeper on the call stack 458 */ 459 break; 460 } 461 462 regs->cr_iip = orig_ret_address; 463 464 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 465 if (ri->task != current) 466 /* another task is sharing our hash bucket */ 467 continue; 468 469 if (ri->rp && ri->rp->handler) 470 ri->rp->handler(ri, regs); 471 472 orig_ret_address = (unsigned long)ri->ret_addr; 473 recycle_rp_inst(ri, &empty_rp); 474 475 if (orig_ret_address != trampoline_address) 476 /* 477 * This is the real return address. Any other 478 * instances associated with this task are for 479 * other calls deeper on the call stack 480 */ 481 break; 482 } 483 484 kretprobe_assert(ri, orig_ret_address, trampoline_address); 485 486 reset_current_kprobe(); 487 kretprobe_hash_unlock(current, &flags); 488 preempt_enable_no_resched(); 489 490 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 491 hlist_del(&ri->hlist); 492 kfree(ri); 493 } 494 /* 495 * By returning a non-zero value, we are telling 496 * kprobe_handler() that we don't want the post_handler 497 * to run (and have re-enabled preemption) 498 */ 499 return 1; 500 } 501 502 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 503 struct pt_regs *regs) 504 { 505 ri->ret_addr = (kprobe_opcode_t *)regs->b0; 506 507 /* Replace the return addr with trampoline addr */ 508 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip; 509 } 510 511 /* Check the instruction in the slot is break */ 512 static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot) 513 { 514 unsigned int major_opcode; 515 unsigned int template = bundle->quad0.template; 516 unsigned long kprobe_inst; 517 518 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */ 519 if (slot == 1 && bundle_encoding[template][1] == L) 520 slot++; 521 522 /* Get Kprobe probe instruction at given slot*/ 523 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode); 524 525 /* For break instruction, 526 * Bits 37:40 Major opcode to be zero 527 * Bits 27:32 X6 to be zero 528 * Bits 32:35 X3 to be zero 529 */ 530 if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) { 531 /* Not a break instruction */ 532 return 0; 533 } 534 535 /* Is a break instruction */ 536 return 1; 537 } 538 539 /* 540 * In this function, we check whether the target bundle modifies IP or 541 * it triggers an exception. If so, it cannot be boostable. 542 */ 543 static int __kprobes can_boost(bundle_t *bundle, uint slot, 544 unsigned long bundle_addr) 545 { 546 unsigned int template = bundle->quad0.template; 547 548 do { 549 if (search_exception_tables(bundle_addr + slot) || 550 __is_ia64_break_inst(bundle, slot)) 551 return 0; /* exception may occur in this bundle*/ 552 } while ((++slot) < 3); 553 template &= 0x1e; 554 if (template >= 0x10 /* including B unit */ || 555 template == 0x04 /* including X unit */ || 556 template == 0x06) /* undefined */ 557 return 0; 558 559 return 1; 560 } 561 562 /* Prepare long jump bundle and disables other boosters if need */ 563 static void __kprobes prepare_booster(struct kprobe *p) 564 { 565 unsigned long addr = (unsigned long)p->addr & ~0xFULL; 566 unsigned int slot = (unsigned long)p->addr & 0xf; 567 struct kprobe *other_kp; 568 569 if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) { 570 set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1); 571 p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE; 572 } 573 574 /* disables boosters in previous slots */ 575 for (; addr < (unsigned long)p->addr; addr++) { 576 other_kp = get_kprobe((void *)addr); 577 if (other_kp) 578 other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE; 579 } 580 } 581 582 int __kprobes arch_prepare_kprobe(struct kprobe *p) 583 { 584 unsigned long addr = (unsigned long) p->addr; 585 unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL); 586 unsigned long kprobe_inst=0; 587 unsigned int slot = addr & 0xf, template, major_opcode = 0; 588 bundle_t *bundle; 589 int qp; 590 591 bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle; 592 template = bundle->quad0.template; 593 594 if(valid_kprobe_addr(template, slot, addr)) 595 return -EINVAL; 596 597 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */ 598 if (slot == 1 && bundle_encoding[template][1] == L) 599 slot++; 600 601 /* Get kprobe_inst and major_opcode from the bundle */ 602 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode); 603 604 qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr); 605 if (qp < 0) 606 return -EINVAL; 607 608 p->ainsn.insn = get_insn_slot(); 609 if (!p->ainsn.insn) 610 return -ENOMEM; 611 memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t)); 612 memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t)); 613 614 prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp); 615 616 prepare_booster(p); 617 618 return 0; 619 } 620 621 void __kprobes arch_arm_kprobe(struct kprobe *p) 622 { 623 unsigned long arm_addr; 624 bundle_t *src, *dest; 625 626 arm_addr = ((unsigned long)p->addr) & ~0xFUL; 627 dest = &((kprobe_opcode_t *)arm_addr)->bundle; 628 src = &p->opcode.bundle; 629 630 flush_icache_range((unsigned long)p->ainsn.insn, 631 (unsigned long)p->ainsn.insn + 632 sizeof(kprobe_opcode_t) * MAX_INSN_SIZE); 633 634 switch (p->ainsn.slot) { 635 case 0: 636 dest->quad0.slot0 = src->quad0.slot0; 637 break; 638 case 1: 639 dest->quad1.slot1_p1 = src->quad1.slot1_p1; 640 break; 641 case 2: 642 dest->quad1.slot2 = src->quad1.slot2; 643 break; 644 } 645 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t)); 646 } 647 648 void __kprobes arch_disarm_kprobe(struct kprobe *p) 649 { 650 unsigned long arm_addr; 651 bundle_t *src, *dest; 652 653 arm_addr = ((unsigned long)p->addr) & ~0xFUL; 654 dest = &((kprobe_opcode_t *)arm_addr)->bundle; 655 /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */ 656 src = &p->ainsn.insn->bundle; 657 switch (p->ainsn.slot) { 658 case 0: 659 dest->quad0.slot0 = src->quad0.slot0; 660 break; 661 case 1: 662 dest->quad1.slot1_p1 = src->quad1.slot1_p1; 663 break; 664 case 2: 665 dest->quad1.slot2 = src->quad1.slot2; 666 break; 667 } 668 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t)); 669 } 670 671 void __kprobes arch_remove_kprobe(struct kprobe *p) 672 { 673 mutex_lock(&kprobe_mutex); 674 free_insn_slot(p->ainsn.insn, p->ainsn.inst_flag & INST_FLAG_BOOSTABLE); 675 mutex_unlock(&kprobe_mutex); 676 } 677 /* 678 * We are resuming execution after a single step fault, so the pt_regs 679 * structure reflects the register state after we executed the instruction 680 * located in the kprobe (p->ainsn.insn->bundle). We still need to adjust 681 * the ip to point back to the original stack address. To set the IP address 682 * to original stack address, handle the case where we need to fixup the 683 * relative IP address and/or fixup branch register. 684 */ 685 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 686 { 687 unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle); 688 unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL; 689 unsigned long template; 690 int slot = ((unsigned long)p->addr & 0xf); 691 692 template = p->ainsn.insn->bundle.quad0.template; 693 694 if (slot == 1 && bundle_encoding[template][1] == L) 695 slot = 2; 696 697 if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) { 698 699 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) { 700 /* Fix relative IP address */ 701 regs->cr_iip = (regs->cr_iip - bundle_addr) + 702 resume_addr; 703 } 704 705 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) { 706 /* 707 * Fix target branch register, software convention is 708 * to use either b0 or b6 or b7, so just checking 709 * only those registers 710 */ 711 switch (p->ainsn.target_br_reg) { 712 case 0: 713 if ((regs->b0 == bundle_addr) || 714 (regs->b0 == bundle_addr + 0x10)) { 715 regs->b0 = (regs->b0 - bundle_addr) + 716 resume_addr; 717 } 718 break; 719 case 6: 720 if ((regs->b6 == bundle_addr) || 721 (regs->b6 == bundle_addr + 0x10)) { 722 regs->b6 = (regs->b6 - bundle_addr) + 723 resume_addr; 724 } 725 break; 726 case 7: 727 if ((regs->b7 == bundle_addr) || 728 (regs->b7 == bundle_addr + 0x10)) { 729 regs->b7 = (regs->b7 - bundle_addr) + 730 resume_addr; 731 } 732 break; 733 } /* end switch */ 734 } 735 goto turn_ss_off; 736 } 737 738 if (slot == 2) { 739 if (regs->cr_iip == bundle_addr + 0x10) { 740 regs->cr_iip = resume_addr + 0x10; 741 } 742 } else { 743 if (regs->cr_iip == bundle_addr) { 744 regs->cr_iip = resume_addr; 745 } 746 } 747 748 turn_ss_off: 749 /* Turn off Single Step bit */ 750 ia64_psr(regs)->ss = 0; 751 } 752 753 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs) 754 { 755 unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle; 756 unsigned long slot = (unsigned long)p->addr & 0xf; 757 758 /* single step inline if break instruction */ 759 if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST) 760 regs->cr_iip = (unsigned long)p->addr & ~0xFULL; 761 else 762 regs->cr_iip = bundle_addr & ~0xFULL; 763 764 if (slot > 2) 765 slot = 0; 766 767 ia64_psr(regs)->ri = slot; 768 769 /* turn on single stepping */ 770 ia64_psr(regs)->ss = 1; 771 } 772 773 static int __kprobes is_ia64_break_inst(struct pt_regs *regs) 774 { 775 unsigned int slot = ia64_psr(regs)->ri; 776 unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip; 777 bundle_t bundle; 778 779 memcpy(&bundle, kprobe_addr, sizeof(bundle_t)); 780 781 return __is_ia64_break_inst(&bundle, slot); 782 } 783 784 static int __kprobes pre_kprobes_handler(struct die_args *args) 785 { 786 struct kprobe *p; 787 int ret = 0; 788 struct pt_regs *regs = args->regs; 789 kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs); 790 struct kprobe_ctlblk *kcb; 791 792 /* 793 * We don't want to be preempted for the entire 794 * duration of kprobe processing 795 */ 796 preempt_disable(); 797 kcb = get_kprobe_ctlblk(); 798 799 /* Handle recursion cases */ 800 if (kprobe_running()) { 801 p = get_kprobe(addr); 802 if (p) { 803 if ((kcb->kprobe_status == KPROBE_HIT_SS) && 804 (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) { 805 ia64_psr(regs)->ss = 0; 806 goto no_kprobe; 807 } 808 /* We have reentered the pre_kprobe_handler(), since 809 * another probe was hit while within the handler. 810 * We here save the original kprobes variables and 811 * just single step on the instruction of the new probe 812 * without calling any user handlers. 813 */ 814 save_previous_kprobe(kcb); 815 set_current_kprobe(p, kcb); 816 kprobes_inc_nmissed_count(p); 817 prepare_ss(p, regs); 818 kcb->kprobe_status = KPROBE_REENTER; 819 return 1; 820 } else if (args->err == __IA64_BREAK_JPROBE) { 821 /* 822 * jprobe instrumented function just completed 823 */ 824 p = __get_cpu_var(current_kprobe); 825 if (p->break_handler && p->break_handler(p, regs)) { 826 goto ss_probe; 827 } 828 } else if (!is_ia64_break_inst(regs)) { 829 /* The breakpoint instruction was removed by 830 * another cpu right after we hit, no further 831 * handling of this interrupt is appropriate 832 */ 833 ret = 1; 834 goto no_kprobe; 835 } else { 836 /* Not our break */ 837 goto no_kprobe; 838 } 839 } 840 841 p = get_kprobe(addr); 842 if (!p) { 843 if (!is_ia64_break_inst(regs)) { 844 /* 845 * The breakpoint instruction was removed right 846 * after we hit it. Another cpu has removed 847 * either a probepoint or a debugger breakpoint 848 * at this address. In either case, no further 849 * handling of this interrupt is appropriate. 850 */ 851 ret = 1; 852 853 } 854 855 /* Not one of our break, let kernel handle it */ 856 goto no_kprobe; 857 } 858 859 set_current_kprobe(p, kcb); 860 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 861 862 if (p->pre_handler && p->pre_handler(p, regs)) 863 /* 864 * Our pre-handler is specifically requesting that we just 865 * do a return. This is used for both the jprobe pre-handler 866 * and the kretprobe trampoline 867 */ 868 return 1; 869 870 ss_probe: 871 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM) 872 if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) { 873 /* Boost up -- we can execute copied instructions directly */ 874 ia64_psr(regs)->ri = p->ainsn.slot; 875 regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL; 876 /* turn single stepping off */ 877 ia64_psr(regs)->ss = 0; 878 879 reset_current_kprobe(); 880 preempt_enable_no_resched(); 881 return 1; 882 } 883 #endif 884 prepare_ss(p, regs); 885 kcb->kprobe_status = KPROBE_HIT_SS; 886 return 1; 887 888 no_kprobe: 889 preempt_enable_no_resched(); 890 return ret; 891 } 892 893 static int __kprobes post_kprobes_handler(struct pt_regs *regs) 894 { 895 struct kprobe *cur = kprobe_running(); 896 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 897 898 if (!cur) 899 return 0; 900 901 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 902 kcb->kprobe_status = KPROBE_HIT_SSDONE; 903 cur->post_handler(cur, regs, 0); 904 } 905 906 resume_execution(cur, regs); 907 908 /*Restore back the original saved kprobes variables and continue. */ 909 if (kcb->kprobe_status == KPROBE_REENTER) { 910 restore_previous_kprobe(kcb); 911 goto out; 912 } 913 reset_current_kprobe(); 914 915 out: 916 preempt_enable_no_resched(); 917 return 1; 918 } 919 920 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 921 { 922 struct kprobe *cur = kprobe_running(); 923 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 924 925 926 switch(kcb->kprobe_status) { 927 case KPROBE_HIT_SS: 928 case KPROBE_REENTER: 929 /* 930 * We are here because the instruction being single 931 * stepped caused a page fault. We reset the current 932 * kprobe and the instruction pointer points back to 933 * the probe address and allow the page fault handler 934 * to continue as a normal page fault. 935 */ 936 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL; 937 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf; 938 if (kcb->kprobe_status == KPROBE_REENTER) 939 restore_previous_kprobe(kcb); 940 else 941 reset_current_kprobe(); 942 preempt_enable_no_resched(); 943 break; 944 case KPROBE_HIT_ACTIVE: 945 case KPROBE_HIT_SSDONE: 946 /* 947 * We increment the nmissed count for accounting, 948 * we can also use npre/npostfault count for accouting 949 * these specific fault cases. 950 */ 951 kprobes_inc_nmissed_count(cur); 952 953 /* 954 * We come here because instructions in the pre/post 955 * handler caused the page_fault, this could happen 956 * if handler tries to access user space by 957 * copy_from_user(), get_user() etc. Let the 958 * user-specified handler try to fix it first. 959 */ 960 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 961 return 1; 962 /* 963 * In case the user-specified fault handler returned 964 * zero, try to fix up. 965 */ 966 if (ia64_done_with_exception(regs)) 967 return 1; 968 969 /* 970 * Let ia64_do_page_fault() fix it. 971 */ 972 break; 973 default: 974 break; 975 } 976 977 return 0; 978 } 979 980 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 981 unsigned long val, void *data) 982 { 983 struct die_args *args = (struct die_args *)data; 984 int ret = NOTIFY_DONE; 985 986 if (args->regs && user_mode(args->regs)) 987 return ret; 988 989 switch(val) { 990 case DIE_BREAK: 991 /* err is break number from ia64_bad_break() */ 992 if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12) 993 || args->err == __IA64_BREAK_JPROBE 994 || args->err == 0) 995 if (pre_kprobes_handler(args)) 996 ret = NOTIFY_STOP; 997 break; 998 case DIE_FAULT: 999 /* err is vector number from ia64_fault() */ 1000 if (args->err == 36) 1001 if (post_kprobes_handler(args->regs)) 1002 ret = NOTIFY_STOP; 1003 break; 1004 default: 1005 break; 1006 } 1007 return ret; 1008 } 1009 1010 struct param_bsp_cfm { 1011 unsigned long ip; 1012 unsigned long *bsp; 1013 unsigned long cfm; 1014 }; 1015 1016 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg) 1017 { 1018 unsigned long ip; 1019 struct param_bsp_cfm *lp = arg; 1020 1021 do { 1022 unw_get_ip(info, &ip); 1023 if (ip == 0) 1024 break; 1025 if (ip == lp->ip) { 1026 unw_get_bsp(info, (unsigned long*)&lp->bsp); 1027 unw_get_cfm(info, (unsigned long*)&lp->cfm); 1028 return; 1029 } 1030 } while (unw_unwind(info) >= 0); 1031 lp->bsp = NULL; 1032 lp->cfm = 0; 1033 return; 1034 } 1035 1036 unsigned long arch_deref_entry_point(void *entry) 1037 { 1038 return ((struct fnptr *)entry)->ip; 1039 } 1040 1041 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1042 { 1043 struct jprobe *jp = container_of(p, struct jprobe, kp); 1044 unsigned long addr = arch_deref_entry_point(jp->entry); 1045 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1046 struct param_bsp_cfm pa; 1047 int bytes; 1048 1049 /* 1050 * Callee owns the argument space and could overwrite it, eg 1051 * tail call optimization. So to be absolutely safe 1052 * we save the argument space before transferring the control 1053 * to instrumented jprobe function which runs in 1054 * the process context 1055 */ 1056 pa.ip = regs->cr_iip; 1057 unw_init_running(ia64_get_bsp_cfm, &pa); 1058 bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f) 1059 - (char *)pa.bsp; 1060 memcpy( kcb->jprobes_saved_stacked_regs, 1061 pa.bsp, 1062 bytes ); 1063 kcb->bsp = pa.bsp; 1064 kcb->cfm = pa.cfm; 1065 1066 /* save architectural state */ 1067 kcb->jprobe_saved_regs = *regs; 1068 1069 /* after rfi, execute the jprobe instrumented function */ 1070 regs->cr_iip = addr & ~0xFULL; 1071 ia64_psr(regs)->ri = addr & 0xf; 1072 regs->r1 = ((struct fnptr *)(jp->entry))->gp; 1073 1074 /* 1075 * fix the return address to our jprobe_inst_return() function 1076 * in the jprobes.S file 1077 */ 1078 regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip; 1079 1080 return 1; 1081 } 1082 1083 /* ia64 does not need this */ 1084 void __kprobes jprobe_return(void) 1085 { 1086 } 1087 1088 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1089 { 1090 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1091 int bytes; 1092 1093 /* restoring architectural state */ 1094 *regs = kcb->jprobe_saved_regs; 1095 1096 /* restoring the original argument space */ 1097 flush_register_stack(); 1098 bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f) 1099 - (char *)kcb->bsp; 1100 memcpy( kcb->bsp, 1101 kcb->jprobes_saved_stacked_regs, 1102 bytes ); 1103 invalidate_stacked_regs(); 1104 1105 preempt_enable_no_resched(); 1106 return 1; 1107 } 1108 1109 static struct kprobe trampoline_p = { 1110 .pre_handler = trampoline_probe_handler 1111 }; 1112 1113 int __init arch_init_kprobes(void) 1114 { 1115 trampoline_p.addr = 1116 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip; 1117 return register_kprobe(&trampoline_p); 1118 } 1119 1120 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 1121 { 1122 if (p->addr == 1123 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip) 1124 return 1; 1125 1126 return 0; 1127 } 1128