xref: /openbmc/linux/arch/arm/net/bpf_jit_32.c (revision efe4a1ac)
1 /*
2  * Just-In-Time compiler for BPF filters on 32bit ARM
3  *
4  * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; version 2 of the License.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/compiler.h>
13 #include <linux/errno.h>
14 #include <linux/filter.h>
15 #include <linux/netdevice.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/if_vlan.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/set_memory.h>
22 #include <asm/hwcap.h>
23 #include <asm/opcodes.h>
24 
25 #include "bpf_jit_32.h"
26 
27 /*
28  * ABI:
29  *
30  * r0	scratch register
31  * r4	BPF register A
32  * r5	BPF register X
33  * r6	pointer to the skb
34  * r7	skb->data
35  * r8	skb_headlen(skb)
36  */
37 
38 #define r_scratch	ARM_R0
39 /* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */
40 #define r_off		ARM_R1
41 #define r_A		ARM_R4
42 #define r_X		ARM_R5
43 #define r_skb		ARM_R6
44 #define r_skb_data	ARM_R7
45 #define r_skb_hl	ARM_R8
46 
47 #define SCRATCH_SP_OFFSET	0
48 #define SCRATCH_OFF(k)		(SCRATCH_SP_OFFSET + 4 * (k))
49 
50 #define SEEN_MEM		((1 << BPF_MEMWORDS) - 1)
51 #define SEEN_MEM_WORD(k)	(1 << (k))
52 #define SEEN_X			(1 << BPF_MEMWORDS)
53 #define SEEN_CALL		(1 << (BPF_MEMWORDS + 1))
54 #define SEEN_SKB		(1 << (BPF_MEMWORDS + 2))
55 #define SEEN_DATA		(1 << (BPF_MEMWORDS + 3))
56 
57 #define FLAG_NEED_X_RESET	(1 << 0)
58 #define FLAG_IMM_OVERFLOW	(1 << 1)
59 
60 struct jit_ctx {
61 	const struct bpf_prog *skf;
62 	unsigned idx;
63 	unsigned prologue_bytes;
64 	int ret0_fp_idx;
65 	u32 seen;
66 	u32 flags;
67 	u32 *offsets;
68 	u32 *target;
69 #if __LINUX_ARM_ARCH__ < 7
70 	u16 epilogue_bytes;
71 	u16 imm_count;
72 	u32 *imms;
73 #endif
74 };
75 
76 int bpf_jit_enable __read_mostly;
77 
78 static inline int call_neg_helper(struct sk_buff *skb, int offset, void *ret,
79 		      unsigned int size)
80 {
81 	void *ptr = bpf_internal_load_pointer_neg_helper(skb, offset, size);
82 
83 	if (!ptr)
84 		return -EFAULT;
85 	memcpy(ret, ptr, size);
86 	return 0;
87 }
88 
89 static u64 jit_get_skb_b(struct sk_buff *skb, int offset)
90 {
91 	u8 ret;
92 	int err;
93 
94 	if (offset < 0)
95 		err = call_neg_helper(skb, offset, &ret, 1);
96 	else
97 		err = skb_copy_bits(skb, offset, &ret, 1);
98 
99 	return (u64)err << 32 | ret;
100 }
101 
102 static u64 jit_get_skb_h(struct sk_buff *skb, int offset)
103 {
104 	u16 ret;
105 	int err;
106 
107 	if (offset < 0)
108 		err = call_neg_helper(skb, offset, &ret, 2);
109 	else
110 		err = skb_copy_bits(skb, offset, &ret, 2);
111 
112 	return (u64)err << 32 | ntohs(ret);
113 }
114 
115 static u64 jit_get_skb_w(struct sk_buff *skb, int offset)
116 {
117 	u32 ret;
118 	int err;
119 
120 	if (offset < 0)
121 		err = call_neg_helper(skb, offset, &ret, 4);
122 	else
123 		err = skb_copy_bits(skb, offset, &ret, 4);
124 
125 	return (u64)err << 32 | ntohl(ret);
126 }
127 
128 /*
129  * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
130  * (where the assembly routines like __aeabi_uidiv could cause problems).
131  */
132 static u32 jit_udiv(u32 dividend, u32 divisor)
133 {
134 	return dividend / divisor;
135 }
136 
137 static u32 jit_mod(u32 dividend, u32 divisor)
138 {
139 	return dividend % divisor;
140 }
141 
142 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
143 {
144 	inst |= (cond << 28);
145 	inst = __opcode_to_mem_arm(inst);
146 
147 	if (ctx->target != NULL)
148 		ctx->target[ctx->idx] = inst;
149 
150 	ctx->idx++;
151 }
152 
153 /*
154  * Emit an instruction that will be executed unconditionally.
155  */
156 static inline void emit(u32 inst, struct jit_ctx *ctx)
157 {
158 	_emit(ARM_COND_AL, inst, ctx);
159 }
160 
161 static u16 saved_regs(struct jit_ctx *ctx)
162 {
163 	u16 ret = 0;
164 
165 	if ((ctx->skf->len > 1) ||
166 	    (ctx->skf->insns[0].code == (BPF_RET | BPF_A)))
167 		ret |= 1 << r_A;
168 
169 #ifdef CONFIG_FRAME_POINTER
170 	ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC);
171 #else
172 	if (ctx->seen & SEEN_CALL)
173 		ret |= 1 << ARM_LR;
174 #endif
175 	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
176 		ret |= 1 << r_skb;
177 	if (ctx->seen & SEEN_DATA)
178 		ret |= (1 << r_skb_data) | (1 << r_skb_hl);
179 	if (ctx->seen & SEEN_X)
180 		ret |= 1 << r_X;
181 
182 	return ret;
183 }
184 
185 static inline int mem_words_used(struct jit_ctx *ctx)
186 {
187 	/* yes, we do waste some stack space IF there are "holes" in the set" */
188 	return fls(ctx->seen & SEEN_MEM);
189 }
190 
191 static void jit_fill_hole(void *area, unsigned int size)
192 {
193 	u32 *ptr;
194 	/* We are guaranteed to have aligned memory. */
195 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
196 		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
197 }
198 
199 static void build_prologue(struct jit_ctx *ctx)
200 {
201 	u16 reg_set = saved_regs(ctx);
202 	u16 off;
203 
204 #ifdef CONFIG_FRAME_POINTER
205 	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
206 	emit(ARM_PUSH(reg_set), ctx);
207 	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
208 #else
209 	if (reg_set)
210 		emit(ARM_PUSH(reg_set), ctx);
211 #endif
212 
213 	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
214 		emit(ARM_MOV_R(r_skb, ARM_R0), ctx);
215 
216 	if (ctx->seen & SEEN_DATA) {
217 		off = offsetof(struct sk_buff, data);
218 		emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx);
219 		/* headlen = len - data_len */
220 		off = offsetof(struct sk_buff, len);
221 		emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx);
222 		off = offsetof(struct sk_buff, data_len);
223 		emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
224 		emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx);
225 	}
226 
227 	if (ctx->flags & FLAG_NEED_X_RESET)
228 		emit(ARM_MOV_I(r_X, 0), ctx);
229 
230 	/* do not leak kernel data to userspace */
231 	if (bpf_needs_clear_a(&ctx->skf->insns[0]))
232 		emit(ARM_MOV_I(r_A, 0), ctx);
233 
234 	/* stack space for the BPF_MEM words */
235 	if (ctx->seen & SEEN_MEM)
236 		emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
237 }
238 
239 static void build_epilogue(struct jit_ctx *ctx)
240 {
241 	u16 reg_set = saved_regs(ctx);
242 
243 	if (ctx->seen & SEEN_MEM)
244 		emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
245 
246 	reg_set &= ~(1 << ARM_LR);
247 
248 #ifdef CONFIG_FRAME_POINTER
249 	/* the first instruction of the prologue was: mov ip, sp */
250 	reg_set &= ~(1 << ARM_IP);
251 	reg_set |= (1 << ARM_SP);
252 	emit(ARM_LDM(ARM_SP, reg_set), ctx);
253 #else
254 	if (reg_set) {
255 		if (ctx->seen & SEEN_CALL)
256 			reg_set |= 1 << ARM_PC;
257 		emit(ARM_POP(reg_set), ctx);
258 	}
259 
260 	if (!(ctx->seen & SEEN_CALL))
261 		emit(ARM_BX(ARM_LR), ctx);
262 #endif
263 }
264 
265 static int16_t imm8m(u32 x)
266 {
267 	u32 rot;
268 
269 	for (rot = 0; rot < 16; rot++)
270 		if ((x & ~ror32(0xff, 2 * rot)) == 0)
271 			return rol32(x, 2 * rot) | (rot << 8);
272 
273 	return -1;
274 }
275 
276 #if __LINUX_ARM_ARCH__ < 7
277 
278 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
279 {
280 	unsigned i = 0, offset;
281 	u16 imm;
282 
283 	/* on the "fake" run we just count them (duplicates included) */
284 	if (ctx->target == NULL) {
285 		ctx->imm_count++;
286 		return 0;
287 	}
288 
289 	while ((i < ctx->imm_count) && ctx->imms[i]) {
290 		if (ctx->imms[i] == k)
291 			break;
292 		i++;
293 	}
294 
295 	if (ctx->imms[i] == 0)
296 		ctx->imms[i] = k;
297 
298 	/* constants go just after the epilogue */
299 	offset =  ctx->offsets[ctx->skf->len];
300 	offset += ctx->prologue_bytes;
301 	offset += ctx->epilogue_bytes;
302 	offset += i * 4;
303 
304 	ctx->target[offset / 4] = k;
305 
306 	/* PC in ARM mode == address of the instruction + 8 */
307 	imm = offset - (8 + ctx->idx * 4);
308 
309 	if (imm & ~0xfff) {
310 		/*
311 		 * literal pool is too far, signal it into flags. we
312 		 * can only detect it on the second pass unfortunately.
313 		 */
314 		ctx->flags |= FLAG_IMM_OVERFLOW;
315 		return 0;
316 	}
317 
318 	return imm;
319 }
320 
321 #endif /* __LINUX_ARM_ARCH__ */
322 
323 /*
324  * Move an immediate that's not an imm8m to a core register.
325  */
326 static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx)
327 {
328 #if __LINUX_ARM_ARCH__ < 7
329 	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
330 #else
331 	emit(ARM_MOVW(rd, val & 0xffff), ctx);
332 	if (val > 0xffff)
333 		emit(ARM_MOVT(rd, val >> 16), ctx);
334 #endif
335 }
336 
337 static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx)
338 {
339 	int imm12 = imm8m(val);
340 
341 	if (imm12 >= 0)
342 		emit(ARM_MOV_I(rd, imm12), ctx);
343 	else
344 		emit_mov_i_no8m(rd, val, ctx);
345 }
346 
347 #if __LINUX_ARM_ARCH__ < 6
348 
349 static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
350 {
351 	_emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx);
352 	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
353 	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx);
354 	_emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx);
355 	_emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx);
356 	_emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx);
357 	_emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx);
358 	_emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx);
359 }
360 
361 static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
362 {
363 	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
364 	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx);
365 	_emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx);
366 }
367 
368 static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx)
369 {
370 	/* r_dst = (r_src << 8) | (r_src >> 8) */
371 	emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx);
372 	emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx);
373 
374 	/*
375 	 * we need to mask out the bits set in r_dst[23:16] due to
376 	 * the first shift instruction.
377 	 *
378 	 * note that 0x8ff is the encoded immediate 0x00ff0000.
379 	 */
380 	emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx);
381 }
382 
383 #else  /* ARMv6+ */
384 
385 static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
386 {
387 	_emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx);
388 #ifdef __LITTLE_ENDIAN
389 	_emit(cond, ARM_REV(r_res, r_res), ctx);
390 #endif
391 }
392 
393 static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
394 {
395 	_emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx);
396 #ifdef __LITTLE_ENDIAN
397 	_emit(cond, ARM_REV16(r_res, r_res), ctx);
398 #endif
399 }
400 
401 static inline void emit_swap16(u8 r_dst __maybe_unused,
402 			       u8 r_src __maybe_unused,
403 			       struct jit_ctx *ctx __maybe_unused)
404 {
405 #ifdef __LITTLE_ENDIAN
406 	emit(ARM_REV16(r_dst, r_src), ctx);
407 #endif
408 }
409 
410 #endif /* __LINUX_ARM_ARCH__ < 6 */
411 
412 
413 /* Compute the immediate value for a PC-relative branch. */
414 static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx)
415 {
416 	u32 imm;
417 
418 	if (ctx->target == NULL)
419 		return 0;
420 	/*
421 	 * BPF allows only forward jumps and the offset of the target is
422 	 * still the one computed during the first pass.
423 	 */
424 	imm  = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8);
425 
426 	return imm >> 2;
427 }
428 
429 #define OP_IMM3(op, r1, r2, imm_val, ctx)				\
430 	do {								\
431 		imm12 = imm8m(imm_val);					\
432 		if (imm12 < 0) {					\
433 			emit_mov_i_no8m(r_scratch, imm_val, ctx);	\
434 			emit(op ## _R((r1), (r2), r_scratch), ctx);	\
435 		} else {						\
436 			emit(op ## _I((r1), (r2), imm12), ctx);		\
437 		}							\
438 	} while (0)
439 
440 static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx)
441 {
442 	if (ctx->ret0_fp_idx >= 0) {
443 		_emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx);
444 		/* NOP to keep the size constant between passes */
445 		emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx);
446 	} else {
447 		_emit(cond, ARM_MOV_I(ARM_R0, 0), ctx);
448 		_emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx);
449 	}
450 }
451 
452 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
453 {
454 #if __LINUX_ARM_ARCH__ < 5
455 	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
456 
457 	if (elf_hwcap & HWCAP_THUMB)
458 		emit(ARM_BX(tgt_reg), ctx);
459 	else
460 		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
461 #else
462 	emit(ARM_BLX_R(tgt_reg), ctx);
463 #endif
464 }
465 
466 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx,
467 				int bpf_op)
468 {
469 #if __LINUX_ARM_ARCH__ == 7
470 	if (elf_hwcap & HWCAP_IDIVA) {
471 		if (bpf_op == BPF_DIV)
472 			emit(ARM_UDIV(rd, rm, rn), ctx);
473 		else {
474 			emit(ARM_UDIV(ARM_R3, rm, rn), ctx);
475 			emit(ARM_MLS(rd, rn, ARM_R3, rm), ctx);
476 		}
477 		return;
478 	}
479 #endif
480 
481 	/*
482 	 * For BPF_ALU | BPF_DIV | BPF_K instructions, rm is ARM_R4
483 	 * (r_A) and rn is ARM_R0 (r_scratch) so load rn first into
484 	 * ARM_R1 to avoid accidentally overwriting ARM_R0 with rm
485 	 * before using it as a source for ARM_R1.
486 	 *
487 	 * For BPF_ALU | BPF_DIV | BPF_X rm is ARM_R4 (r_A) and rn is
488 	 * ARM_R5 (r_X) so there is no particular register overlap
489 	 * issues.
490 	 */
491 	if (rn != ARM_R1)
492 		emit(ARM_MOV_R(ARM_R1, rn), ctx);
493 	if (rm != ARM_R0)
494 		emit(ARM_MOV_R(ARM_R0, rm), ctx);
495 
496 	ctx->seen |= SEEN_CALL;
497 	emit_mov_i(ARM_R3, bpf_op == BPF_DIV ? (u32)jit_udiv : (u32)jit_mod,
498 		   ctx);
499 	emit_blx_r(ARM_R3, ctx);
500 
501 	if (rd != ARM_R0)
502 		emit(ARM_MOV_R(rd, ARM_R0), ctx);
503 }
504 
505 static inline void update_on_xread(struct jit_ctx *ctx)
506 {
507 	if (!(ctx->seen & SEEN_X))
508 		ctx->flags |= FLAG_NEED_X_RESET;
509 
510 	ctx->seen |= SEEN_X;
511 }
512 
513 static int build_body(struct jit_ctx *ctx)
514 {
515 	void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
516 	const struct bpf_prog *prog = ctx->skf;
517 	const struct sock_filter *inst;
518 	unsigned i, load_order, off, condt;
519 	int imm12;
520 	u32 k;
521 
522 	for (i = 0; i < prog->len; i++) {
523 		u16 code;
524 
525 		inst = &(prog->insns[i]);
526 		/* K as an immediate value operand */
527 		k = inst->k;
528 		code = bpf_anc_helper(inst);
529 
530 		/* compute offsets only in the fake pass */
531 		if (ctx->target == NULL)
532 			ctx->offsets[i] = ctx->idx * 4;
533 
534 		switch (code) {
535 		case BPF_LD | BPF_IMM:
536 			emit_mov_i(r_A, k, ctx);
537 			break;
538 		case BPF_LD | BPF_W | BPF_LEN:
539 			ctx->seen |= SEEN_SKB;
540 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
541 			emit(ARM_LDR_I(r_A, r_skb,
542 				       offsetof(struct sk_buff, len)), ctx);
543 			break;
544 		case BPF_LD | BPF_MEM:
545 			/* A = scratch[k] */
546 			ctx->seen |= SEEN_MEM_WORD(k);
547 			emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
548 			break;
549 		case BPF_LD | BPF_W | BPF_ABS:
550 			load_order = 2;
551 			goto load;
552 		case BPF_LD | BPF_H | BPF_ABS:
553 			load_order = 1;
554 			goto load;
555 		case BPF_LD | BPF_B | BPF_ABS:
556 			load_order = 0;
557 load:
558 			emit_mov_i(r_off, k, ctx);
559 load_common:
560 			ctx->seen |= SEEN_DATA | SEEN_CALL;
561 
562 			if (load_order > 0) {
563 				emit(ARM_SUB_I(r_scratch, r_skb_hl,
564 					       1 << load_order), ctx);
565 				emit(ARM_CMP_R(r_scratch, r_off), ctx);
566 				condt = ARM_COND_GE;
567 			} else {
568 				emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
569 				condt = ARM_COND_HI;
570 			}
571 
572 			/*
573 			 * test for negative offset, only if we are
574 			 * currently scheduled to take the fast
575 			 * path. this will update the flags so that
576 			 * the slowpath instruction are ignored if the
577 			 * offset is negative.
578 			 *
579 			 * for loard_order == 0 the HI condition will
580 			 * make loads at offset 0 take the slow path too.
581 			 */
582 			_emit(condt, ARM_CMP_I(r_off, 0), ctx);
583 
584 			_emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data),
585 			      ctx);
586 
587 			if (load_order == 0)
588 				_emit(condt, ARM_LDRB_I(r_A, r_scratch, 0),
589 				      ctx);
590 			else if (load_order == 1)
591 				emit_load_be16(condt, r_A, r_scratch, ctx);
592 			else if (load_order == 2)
593 				emit_load_be32(condt, r_A, r_scratch, ctx);
594 
595 			_emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx);
596 
597 			/* the slowpath */
598 			emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx);
599 			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
600 			/* the offset is already in R1 */
601 			emit_blx_r(ARM_R3, ctx);
602 			/* check the result of skb_copy_bits */
603 			emit(ARM_CMP_I(ARM_R1, 0), ctx);
604 			emit_err_ret(ARM_COND_NE, ctx);
605 			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
606 			break;
607 		case BPF_LD | BPF_W | BPF_IND:
608 			load_order = 2;
609 			goto load_ind;
610 		case BPF_LD | BPF_H | BPF_IND:
611 			load_order = 1;
612 			goto load_ind;
613 		case BPF_LD | BPF_B | BPF_IND:
614 			load_order = 0;
615 load_ind:
616 			update_on_xread(ctx);
617 			OP_IMM3(ARM_ADD, r_off, r_X, k, ctx);
618 			goto load_common;
619 		case BPF_LDX | BPF_IMM:
620 			ctx->seen |= SEEN_X;
621 			emit_mov_i(r_X, k, ctx);
622 			break;
623 		case BPF_LDX | BPF_W | BPF_LEN:
624 			ctx->seen |= SEEN_X | SEEN_SKB;
625 			emit(ARM_LDR_I(r_X, r_skb,
626 				       offsetof(struct sk_buff, len)), ctx);
627 			break;
628 		case BPF_LDX | BPF_MEM:
629 			ctx->seen |= SEEN_X | SEEN_MEM_WORD(k);
630 			emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
631 			break;
632 		case BPF_LDX | BPF_B | BPF_MSH:
633 			/* x = ((*(frame + k)) & 0xf) << 2; */
634 			ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL;
635 			/* the interpreter should deal with the negative K */
636 			if ((int)k < 0)
637 				return -1;
638 			/* offset in r1: we might have to take the slow path */
639 			emit_mov_i(r_off, k, ctx);
640 			emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
641 
642 			/* load in r0: common with the slowpath */
643 			_emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data,
644 						      ARM_R1), ctx);
645 			/*
646 			 * emit_mov_i() might generate one or two instructions,
647 			 * the same holds for emit_blx_r()
648 			 */
649 			_emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx);
650 
651 			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
652 			/* r_off is r1 */
653 			emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx);
654 			emit_blx_r(ARM_R3, ctx);
655 			/* check the return value of skb_copy_bits */
656 			emit(ARM_CMP_I(ARM_R1, 0), ctx);
657 			emit_err_ret(ARM_COND_NE, ctx);
658 
659 			emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx);
660 			emit(ARM_LSL_I(r_X, r_X, 2), ctx);
661 			break;
662 		case BPF_ST:
663 			ctx->seen |= SEEN_MEM_WORD(k);
664 			emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
665 			break;
666 		case BPF_STX:
667 			update_on_xread(ctx);
668 			ctx->seen |= SEEN_MEM_WORD(k);
669 			emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
670 			break;
671 		case BPF_ALU | BPF_ADD | BPF_K:
672 			/* A += K */
673 			OP_IMM3(ARM_ADD, r_A, r_A, k, ctx);
674 			break;
675 		case BPF_ALU | BPF_ADD | BPF_X:
676 			update_on_xread(ctx);
677 			emit(ARM_ADD_R(r_A, r_A, r_X), ctx);
678 			break;
679 		case BPF_ALU | BPF_SUB | BPF_K:
680 			/* A -= K */
681 			OP_IMM3(ARM_SUB, r_A, r_A, k, ctx);
682 			break;
683 		case BPF_ALU | BPF_SUB | BPF_X:
684 			update_on_xread(ctx);
685 			emit(ARM_SUB_R(r_A, r_A, r_X), ctx);
686 			break;
687 		case BPF_ALU | BPF_MUL | BPF_K:
688 			/* A *= K */
689 			emit_mov_i(r_scratch, k, ctx);
690 			emit(ARM_MUL(r_A, r_A, r_scratch), ctx);
691 			break;
692 		case BPF_ALU | BPF_MUL | BPF_X:
693 			update_on_xread(ctx);
694 			emit(ARM_MUL(r_A, r_A, r_X), ctx);
695 			break;
696 		case BPF_ALU | BPF_DIV | BPF_K:
697 			if (k == 1)
698 				break;
699 			emit_mov_i(r_scratch, k, ctx);
700 			emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_DIV);
701 			break;
702 		case BPF_ALU | BPF_DIV | BPF_X:
703 			update_on_xread(ctx);
704 			emit(ARM_CMP_I(r_X, 0), ctx);
705 			emit_err_ret(ARM_COND_EQ, ctx);
706 			emit_udivmod(r_A, r_A, r_X, ctx, BPF_DIV);
707 			break;
708 		case BPF_ALU | BPF_MOD | BPF_K:
709 			if (k == 1) {
710 				emit_mov_i(r_A, 0, ctx);
711 				break;
712 			}
713 			emit_mov_i(r_scratch, k, ctx);
714 			emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_MOD);
715 			break;
716 		case BPF_ALU | BPF_MOD | BPF_X:
717 			update_on_xread(ctx);
718 			emit(ARM_CMP_I(r_X, 0), ctx);
719 			emit_err_ret(ARM_COND_EQ, ctx);
720 			emit_udivmod(r_A, r_A, r_X, ctx, BPF_MOD);
721 			break;
722 		case BPF_ALU | BPF_OR | BPF_K:
723 			/* A |= K */
724 			OP_IMM3(ARM_ORR, r_A, r_A, k, ctx);
725 			break;
726 		case BPF_ALU | BPF_OR | BPF_X:
727 			update_on_xread(ctx);
728 			emit(ARM_ORR_R(r_A, r_A, r_X), ctx);
729 			break;
730 		case BPF_ALU | BPF_XOR | BPF_K:
731 			/* A ^= K; */
732 			OP_IMM3(ARM_EOR, r_A, r_A, k, ctx);
733 			break;
734 		case BPF_ANC | SKF_AD_ALU_XOR_X:
735 		case BPF_ALU | BPF_XOR | BPF_X:
736 			/* A ^= X */
737 			update_on_xread(ctx);
738 			emit(ARM_EOR_R(r_A, r_A, r_X), ctx);
739 			break;
740 		case BPF_ALU | BPF_AND | BPF_K:
741 			/* A &= K */
742 			OP_IMM3(ARM_AND, r_A, r_A, k, ctx);
743 			break;
744 		case BPF_ALU | BPF_AND | BPF_X:
745 			update_on_xread(ctx);
746 			emit(ARM_AND_R(r_A, r_A, r_X), ctx);
747 			break;
748 		case BPF_ALU | BPF_LSH | BPF_K:
749 			if (unlikely(k > 31))
750 				return -1;
751 			emit(ARM_LSL_I(r_A, r_A, k), ctx);
752 			break;
753 		case BPF_ALU | BPF_LSH | BPF_X:
754 			update_on_xread(ctx);
755 			emit(ARM_LSL_R(r_A, r_A, r_X), ctx);
756 			break;
757 		case BPF_ALU | BPF_RSH | BPF_K:
758 			if (unlikely(k > 31))
759 				return -1;
760 			if (k)
761 				emit(ARM_LSR_I(r_A, r_A, k), ctx);
762 			break;
763 		case BPF_ALU | BPF_RSH | BPF_X:
764 			update_on_xread(ctx);
765 			emit(ARM_LSR_R(r_A, r_A, r_X), ctx);
766 			break;
767 		case BPF_ALU | BPF_NEG:
768 			/* A = -A */
769 			emit(ARM_RSB_I(r_A, r_A, 0), ctx);
770 			break;
771 		case BPF_JMP | BPF_JA:
772 			/* pc += K */
773 			emit(ARM_B(b_imm(i + k + 1, ctx)), ctx);
774 			break;
775 		case BPF_JMP | BPF_JEQ | BPF_K:
776 			/* pc += (A == K) ? pc->jt : pc->jf */
777 			condt  = ARM_COND_EQ;
778 			goto cmp_imm;
779 		case BPF_JMP | BPF_JGT | BPF_K:
780 			/* pc += (A > K) ? pc->jt : pc->jf */
781 			condt  = ARM_COND_HI;
782 			goto cmp_imm;
783 		case BPF_JMP | BPF_JGE | BPF_K:
784 			/* pc += (A >= K) ? pc->jt : pc->jf */
785 			condt  = ARM_COND_HS;
786 cmp_imm:
787 			imm12 = imm8m(k);
788 			if (imm12 < 0) {
789 				emit_mov_i_no8m(r_scratch, k, ctx);
790 				emit(ARM_CMP_R(r_A, r_scratch), ctx);
791 			} else {
792 				emit(ARM_CMP_I(r_A, imm12), ctx);
793 			}
794 cond_jump:
795 			if (inst->jt)
796 				_emit(condt, ARM_B(b_imm(i + inst->jt + 1,
797 						   ctx)), ctx);
798 			if (inst->jf)
799 				_emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1,
800 							     ctx)), ctx);
801 			break;
802 		case BPF_JMP | BPF_JEQ | BPF_X:
803 			/* pc += (A == X) ? pc->jt : pc->jf */
804 			condt   = ARM_COND_EQ;
805 			goto cmp_x;
806 		case BPF_JMP | BPF_JGT | BPF_X:
807 			/* pc += (A > X) ? pc->jt : pc->jf */
808 			condt   = ARM_COND_HI;
809 			goto cmp_x;
810 		case BPF_JMP | BPF_JGE | BPF_X:
811 			/* pc += (A >= X) ? pc->jt : pc->jf */
812 			condt   = ARM_COND_CS;
813 cmp_x:
814 			update_on_xread(ctx);
815 			emit(ARM_CMP_R(r_A, r_X), ctx);
816 			goto cond_jump;
817 		case BPF_JMP | BPF_JSET | BPF_K:
818 			/* pc += (A & K) ? pc->jt : pc->jf */
819 			condt  = ARM_COND_NE;
820 			/* not set iff all zeroes iff Z==1 iff EQ */
821 
822 			imm12 = imm8m(k);
823 			if (imm12 < 0) {
824 				emit_mov_i_no8m(r_scratch, k, ctx);
825 				emit(ARM_TST_R(r_A, r_scratch), ctx);
826 			} else {
827 				emit(ARM_TST_I(r_A, imm12), ctx);
828 			}
829 			goto cond_jump;
830 		case BPF_JMP | BPF_JSET | BPF_X:
831 			/* pc += (A & X) ? pc->jt : pc->jf */
832 			update_on_xread(ctx);
833 			condt  = ARM_COND_NE;
834 			emit(ARM_TST_R(r_A, r_X), ctx);
835 			goto cond_jump;
836 		case BPF_RET | BPF_A:
837 			emit(ARM_MOV_R(ARM_R0, r_A), ctx);
838 			goto b_epilogue;
839 		case BPF_RET | BPF_K:
840 			if ((k == 0) && (ctx->ret0_fp_idx < 0))
841 				ctx->ret0_fp_idx = i;
842 			emit_mov_i(ARM_R0, k, ctx);
843 b_epilogue:
844 			if (i != ctx->skf->len - 1)
845 				emit(ARM_B(b_imm(prog->len, ctx)), ctx);
846 			break;
847 		case BPF_MISC | BPF_TAX:
848 			/* X = A */
849 			ctx->seen |= SEEN_X;
850 			emit(ARM_MOV_R(r_X, r_A), ctx);
851 			break;
852 		case BPF_MISC | BPF_TXA:
853 			/* A = X */
854 			update_on_xread(ctx);
855 			emit(ARM_MOV_R(r_A, r_X), ctx);
856 			break;
857 		case BPF_ANC | SKF_AD_PROTOCOL:
858 			/* A = ntohs(skb->protocol) */
859 			ctx->seen |= SEEN_SKB;
860 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
861 						  protocol) != 2);
862 			off = offsetof(struct sk_buff, protocol);
863 			emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx);
864 			emit_swap16(r_A, r_scratch, ctx);
865 			break;
866 		case BPF_ANC | SKF_AD_CPU:
867 			/* r_scratch = current_thread_info() */
868 			OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx);
869 			/* A = current_thread_info()->cpu */
870 			BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4);
871 			off = offsetof(struct thread_info, cpu);
872 			emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
873 			break;
874 		case BPF_ANC | SKF_AD_IFINDEX:
875 		case BPF_ANC | SKF_AD_HATYPE:
876 			/* A = skb->dev->ifindex */
877 			/* A = skb->dev->type */
878 			ctx->seen |= SEEN_SKB;
879 			off = offsetof(struct sk_buff, dev);
880 			emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
881 
882 			emit(ARM_CMP_I(r_scratch, 0), ctx);
883 			emit_err_ret(ARM_COND_EQ, ctx);
884 
885 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
886 						  ifindex) != 4);
887 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
888 						  type) != 2);
889 
890 			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
891 				off = offsetof(struct net_device, ifindex);
892 				emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
893 			} else {
894 				/*
895 				 * offset of field "type" in "struct
896 				 * net_device" is above what can be
897 				 * used in the ldrh rd, [rn, #imm]
898 				 * instruction, so load the offset in
899 				 * a register and use ldrh rd, [rn, rm]
900 				 */
901 				off = offsetof(struct net_device, type);
902 				emit_mov_i(ARM_R3, off, ctx);
903 				emit(ARM_LDRH_R(r_A, r_scratch, ARM_R3), ctx);
904 			}
905 			break;
906 		case BPF_ANC | SKF_AD_MARK:
907 			ctx->seen |= SEEN_SKB;
908 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
909 			off = offsetof(struct sk_buff, mark);
910 			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
911 			break;
912 		case BPF_ANC | SKF_AD_RXHASH:
913 			ctx->seen |= SEEN_SKB;
914 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
915 			off = offsetof(struct sk_buff, hash);
916 			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
917 			break;
918 		case BPF_ANC | SKF_AD_VLAN_TAG:
919 		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
920 			ctx->seen |= SEEN_SKB;
921 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
922 			off = offsetof(struct sk_buff, vlan_tci);
923 			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
924 			if (code == (BPF_ANC | SKF_AD_VLAN_TAG))
925 				OP_IMM3(ARM_AND, r_A, r_A, ~VLAN_TAG_PRESENT, ctx);
926 			else {
927 				OP_IMM3(ARM_LSR, r_A, r_A, 12, ctx);
928 				OP_IMM3(ARM_AND, r_A, r_A, 0x1, ctx);
929 			}
930 			break;
931 		case BPF_ANC | SKF_AD_PKTTYPE:
932 			ctx->seen |= SEEN_SKB;
933 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
934 						  __pkt_type_offset[0]) != 1);
935 			off = PKT_TYPE_OFFSET();
936 			emit(ARM_LDRB_I(r_A, r_skb, off), ctx);
937 			emit(ARM_AND_I(r_A, r_A, PKT_TYPE_MAX), ctx);
938 #ifdef __BIG_ENDIAN_BITFIELD
939 			emit(ARM_LSR_I(r_A, r_A, 5), ctx);
940 #endif
941 			break;
942 		case BPF_ANC | SKF_AD_QUEUE:
943 			ctx->seen |= SEEN_SKB;
944 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
945 						  queue_mapping) != 2);
946 			BUILD_BUG_ON(offsetof(struct sk_buff,
947 					      queue_mapping) > 0xff);
948 			off = offsetof(struct sk_buff, queue_mapping);
949 			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
950 			break;
951 		case BPF_ANC | SKF_AD_PAY_OFFSET:
952 			ctx->seen |= SEEN_SKB | SEEN_CALL;
953 
954 			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
955 			emit_mov_i(ARM_R3, (unsigned int)skb_get_poff, ctx);
956 			emit_blx_r(ARM_R3, ctx);
957 			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
958 			break;
959 		case BPF_LDX | BPF_W | BPF_ABS:
960 			/*
961 			 * load a 32bit word from struct seccomp_data.
962 			 * seccomp_check_filter() will already have checked
963 			 * that k is 32bit aligned and lies within the
964 			 * struct seccomp_data.
965 			 */
966 			ctx->seen |= SEEN_SKB;
967 			emit(ARM_LDR_I(r_A, r_skb, k), ctx);
968 			break;
969 		default:
970 			return -1;
971 		}
972 
973 		if (ctx->flags & FLAG_IMM_OVERFLOW)
974 			/*
975 			 * this instruction generated an overflow when
976 			 * trying to access the literal pool, so
977 			 * delegate this filter to the kernel interpreter.
978 			 */
979 			return -1;
980 	}
981 
982 	/* compute offsets only during the first pass */
983 	if (ctx->target == NULL)
984 		ctx->offsets[i] = ctx->idx * 4;
985 
986 	return 0;
987 }
988 
989 
990 void bpf_jit_compile(struct bpf_prog *fp)
991 {
992 	struct bpf_binary_header *header;
993 	struct jit_ctx ctx;
994 	unsigned tmp_idx;
995 	unsigned alloc_size;
996 	u8 *target_ptr;
997 
998 	if (!bpf_jit_enable)
999 		return;
1000 
1001 	memset(&ctx, 0, sizeof(ctx));
1002 	ctx.skf		= fp;
1003 	ctx.ret0_fp_idx = -1;
1004 
1005 	ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL);
1006 	if (ctx.offsets == NULL)
1007 		return;
1008 
1009 	/* fake pass to fill in the ctx->seen */
1010 	if (unlikely(build_body(&ctx)))
1011 		goto out;
1012 
1013 	tmp_idx = ctx.idx;
1014 	build_prologue(&ctx);
1015 	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1016 
1017 #if __LINUX_ARM_ARCH__ < 7
1018 	tmp_idx = ctx.idx;
1019 	build_epilogue(&ctx);
1020 	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1021 
1022 	ctx.idx += ctx.imm_count;
1023 	if (ctx.imm_count) {
1024 		ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL);
1025 		if (ctx.imms == NULL)
1026 			goto out;
1027 	}
1028 #else
1029 	/* there's nothing after the epilogue on ARMv7 */
1030 	build_epilogue(&ctx);
1031 #endif
1032 	alloc_size = 4 * ctx.idx;
1033 	header = bpf_jit_binary_alloc(alloc_size, &target_ptr,
1034 				      4, jit_fill_hole);
1035 	if (header == NULL)
1036 		goto out;
1037 
1038 	ctx.target = (u32 *) target_ptr;
1039 	ctx.idx = 0;
1040 
1041 	build_prologue(&ctx);
1042 	if (build_body(&ctx) < 0) {
1043 #if __LINUX_ARM_ARCH__ < 7
1044 		if (ctx.imm_count)
1045 			kfree(ctx.imms);
1046 #endif
1047 		bpf_jit_binary_free(header);
1048 		goto out;
1049 	}
1050 	build_epilogue(&ctx);
1051 
1052 	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1053 
1054 #if __LINUX_ARM_ARCH__ < 7
1055 	if (ctx.imm_count)
1056 		kfree(ctx.imms);
1057 #endif
1058 
1059 	if (bpf_jit_enable > 1)
1060 		/* there are 2 passes here */
1061 		bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1062 
1063 	set_memory_ro((unsigned long)header, header->pages);
1064 	fp->bpf_func = (void *)ctx.target;
1065 	fp->jited = 1;
1066 out:
1067 	kfree(ctx.offsets);
1068 	return;
1069 }
1070 
1071 void bpf_jit_free(struct bpf_prog *fp)
1072 {
1073 	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1074 	struct bpf_binary_header *header = (void *)addr;
1075 
1076 	if (!fp->jited)
1077 		goto free_filter;
1078 
1079 	set_memory_rw(addr, header->pages);
1080 	bpf_jit_binary_free(header);
1081 
1082 free_filter:
1083 	bpf_prog_unlock_free(fp);
1084 }
1085