1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Just-In-Time compiler for eBPF filters on 32bit ARM 4 * 5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com> 6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> 7 */ 8 9 #include <linux/bpf.h> 10 #include <linux/bitops.h> 11 #include <linux/compiler.h> 12 #include <linux/errno.h> 13 #include <linux/filter.h> 14 #include <linux/netdevice.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/if_vlan.h> 18 19 #include <asm/cacheflush.h> 20 #include <asm/hwcap.h> 21 #include <asm/opcodes.h> 22 #include <asm/system_info.h> 23 24 #include "bpf_jit_32.h" 25 26 /* 27 * eBPF prog stack layout: 28 * 29 * high 30 * original ARM_SP => +-----+ 31 * | | callee saved registers 32 * +-----+ <= (BPF_FP + SCRATCH_SIZE) 33 * | ... | eBPF JIT scratch space 34 * eBPF fp register => +-----+ 35 * (BPF_FP) | ... | eBPF prog stack 36 * +-----+ 37 * |RSVD | JIT scratchpad 38 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE) 39 * | | 40 * | ... | Function call stack 41 * | | 42 * +-----+ 43 * low 44 * 45 * The callee saved registers depends on whether frame pointers are enabled. 46 * With frame pointers (to be compliant with the ABI): 47 * 48 * high 49 * original ARM_SP => +--------------+ \ 50 * | pc | | 51 * current ARM_FP => +--------------+ } callee saved registers 52 * |r4-r9,fp,ip,lr| | 53 * +--------------+ / 54 * low 55 * 56 * Without frame pointers: 57 * 58 * high 59 * original ARM_SP => +--------------+ 60 * | r4-r9,fp,lr | callee saved registers 61 * current ARM_FP => +--------------+ 62 * low 63 * 64 * When popping registers off the stack at the end of a BPF function, we 65 * reference them via the current ARM_FP register. 66 */ 67 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \ 68 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \ 69 1 << ARM_FP) 70 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR) 71 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC) 72 73 enum { 74 /* Stack layout - these are offsets from (top of stack - 4) */ 75 BPF_R2_HI, 76 BPF_R2_LO, 77 BPF_R3_HI, 78 BPF_R3_LO, 79 BPF_R4_HI, 80 BPF_R4_LO, 81 BPF_R5_HI, 82 BPF_R5_LO, 83 BPF_R7_HI, 84 BPF_R7_LO, 85 BPF_R8_HI, 86 BPF_R8_LO, 87 BPF_R9_HI, 88 BPF_R9_LO, 89 BPF_FP_HI, 90 BPF_FP_LO, 91 BPF_TC_HI, 92 BPF_TC_LO, 93 BPF_AX_HI, 94 BPF_AX_LO, 95 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4, 96 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9, 97 * BPF_REG_FP and Tail call counts. 98 */ 99 BPF_JIT_SCRATCH_REGS, 100 }; 101 102 /* 103 * Negative "register" values indicate the register is stored on the stack 104 * and are the offset from the top of the eBPF JIT scratch space. 105 */ 106 #define STACK_OFFSET(k) (-4 - (k) * 4) 107 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4) 108 109 #ifdef CONFIG_FRAME_POINTER 110 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4) 111 #else 112 #define EBPF_SCRATCH_TO_ARM_FP(x) (x) 113 #endif 114 115 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */ 116 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */ 117 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */ 118 119 #define FLAG_IMM_OVERFLOW (1 << 0) 120 121 /* 122 * Map eBPF registers to ARM 32bit registers or stack scratch space. 123 * 124 * 1. First argument is passed using the arm 32bit registers and rest of the 125 * arguments are passed on stack scratch space. 126 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest 127 * arguments are mapped to scratch space on stack. 128 * 3. We need two 64 bit temp registers to do complex operations on eBPF 129 * registers. 130 * 131 * As the eBPF registers are all 64 bit registers and arm has only 32 bit 132 * registers, we have to map each eBPF registers with two arm 32 bit regs or 133 * scratch memory space and we have to build eBPF 64 bit register from those. 134 * 135 */ 136 static const s8 bpf2a32[][2] = { 137 /* return value from in-kernel function, and exit value from eBPF */ 138 [BPF_REG_0] = {ARM_R1, ARM_R0}, 139 /* arguments from eBPF program to in-kernel function */ 140 [BPF_REG_1] = {ARM_R3, ARM_R2}, 141 /* Stored on stack scratch space */ 142 [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)}, 143 [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)}, 144 [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)}, 145 [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)}, 146 /* callee saved registers that in-kernel function will preserve */ 147 [BPF_REG_6] = {ARM_R5, ARM_R4}, 148 /* Stored on stack scratch space */ 149 [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)}, 150 [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)}, 151 [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)}, 152 /* Read only Frame Pointer to access Stack */ 153 [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)}, 154 /* Temporary Register for internal BPF JIT, can be used 155 * for constant blindings and others. 156 */ 157 [TMP_REG_1] = {ARM_R7, ARM_R6}, 158 [TMP_REG_2] = {ARM_R9, ARM_R8}, 159 /* Tail call count. Stored on stack scratch space. */ 160 [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)}, 161 /* temporary register for blinding constants. 162 * Stored on stack scratch space. 163 */ 164 [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)}, 165 }; 166 167 #define dst_lo dst[1] 168 #define dst_hi dst[0] 169 #define src_lo src[1] 170 #define src_hi src[0] 171 172 /* 173 * JIT Context: 174 * 175 * prog : bpf_prog 176 * idx : index of current last JITed instruction. 177 * prologue_bytes : bytes used in prologue. 178 * epilogue_offset : offset of epilogue starting. 179 * offsets : array of eBPF instruction offsets in 180 * JITed code. 181 * target : final JITed code. 182 * epilogue_bytes : no of bytes used in epilogue. 183 * imm_count : no of immediate counts used for global 184 * variables. 185 * imms : array of global variable addresses. 186 */ 187 188 struct jit_ctx { 189 const struct bpf_prog *prog; 190 unsigned int idx; 191 unsigned int prologue_bytes; 192 unsigned int epilogue_offset; 193 unsigned int cpu_architecture; 194 u32 flags; 195 u32 *offsets; 196 u32 *target; 197 u32 stack_size; 198 #if __LINUX_ARM_ARCH__ < 7 199 u16 epilogue_bytes; 200 u16 imm_count; 201 u32 *imms; 202 #endif 203 }; 204 205 /* 206 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking 207 * (where the assembly routines like __aeabi_uidiv could cause problems). 208 */ 209 static u32 jit_udiv32(u32 dividend, u32 divisor) 210 { 211 return dividend / divisor; 212 } 213 214 static u32 jit_mod32(u32 dividend, u32 divisor) 215 { 216 return dividend % divisor; 217 } 218 219 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx) 220 { 221 inst |= (cond << 28); 222 inst = __opcode_to_mem_arm(inst); 223 224 if (ctx->target != NULL) 225 ctx->target[ctx->idx] = inst; 226 227 ctx->idx++; 228 } 229 230 /* 231 * Emit an instruction that will be executed unconditionally. 232 */ 233 static inline void emit(u32 inst, struct jit_ctx *ctx) 234 { 235 _emit(ARM_COND_AL, inst, ctx); 236 } 237 238 /* 239 * This is rather horrid, but necessary to convert an integer constant 240 * to an immediate operand for the opcodes, and be able to detect at 241 * build time whether the constant can't be converted (iow, usable in 242 * BUILD_BUG_ON()). 243 */ 244 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7) 245 #define const_imm8m(x) \ 246 ({ int r; \ 247 u32 v = (x); \ 248 if (!(v & ~0x000000ff)) \ 249 r = imm12val(v, 0); \ 250 else if (!(v & ~0xc000003f)) \ 251 r = imm12val(v, 2); \ 252 else if (!(v & ~0xf000000f)) \ 253 r = imm12val(v, 4); \ 254 else if (!(v & ~0xfc000003)) \ 255 r = imm12val(v, 6); \ 256 else if (!(v & ~0xff000000)) \ 257 r = imm12val(v, 8); \ 258 else if (!(v & ~0x3fc00000)) \ 259 r = imm12val(v, 10); \ 260 else if (!(v & ~0x0ff00000)) \ 261 r = imm12val(v, 12); \ 262 else if (!(v & ~0x03fc0000)) \ 263 r = imm12val(v, 14); \ 264 else if (!(v & ~0x00ff0000)) \ 265 r = imm12val(v, 16); \ 266 else if (!(v & ~0x003fc000)) \ 267 r = imm12val(v, 18); \ 268 else if (!(v & ~0x000ff000)) \ 269 r = imm12val(v, 20); \ 270 else if (!(v & ~0x0003fc00)) \ 271 r = imm12val(v, 22); \ 272 else if (!(v & ~0x0000ff00)) \ 273 r = imm12val(v, 24); \ 274 else if (!(v & ~0x00003fc0)) \ 275 r = imm12val(v, 26); \ 276 else if (!(v & ~0x00000ff0)) \ 277 r = imm12val(v, 28); \ 278 else if (!(v & ~0x000003fc)) \ 279 r = imm12val(v, 30); \ 280 else \ 281 r = -1; \ 282 r; }) 283 284 /* 285 * Checks if immediate value can be converted to imm12(12 bits) value. 286 */ 287 static int imm8m(u32 x) 288 { 289 u32 rot; 290 291 for (rot = 0; rot < 16; rot++) 292 if ((x & ~ror32(0xff, 2 * rot)) == 0) 293 return rol32(x, 2 * rot) | (rot << 8); 294 return -1; 295 } 296 297 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x)) 298 299 static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12) 300 { 301 op |= rt << 12 | rn << 16; 302 if (imm12 >= 0) 303 op |= ARM_INST_LDST__U; 304 else 305 imm12 = -imm12; 306 return op | (imm12 & ARM_INST_LDST__IMM12); 307 } 308 309 static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8) 310 { 311 op |= rt << 12 | rn << 16; 312 if (imm8 >= 0) 313 op |= ARM_INST_LDST__U; 314 else 315 imm8 = -imm8; 316 return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f); 317 } 318 319 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off) 320 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off) 321 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off) 322 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off) 323 324 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off) 325 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off) 326 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off) 327 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off) 328 329 /* 330 * Initializes the JIT space with undefined instructions. 331 */ 332 static void jit_fill_hole(void *area, unsigned int size) 333 { 334 u32 *ptr; 335 /* We are guaranteed to have aligned memory. */ 336 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) 337 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF); 338 } 339 340 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) 341 /* EABI requires the stack to be aligned to 64-bit boundaries */ 342 #define STACK_ALIGNMENT 8 343 #else 344 /* Stack must be aligned to 32-bit boundaries */ 345 #define STACK_ALIGNMENT 4 346 #endif 347 348 /* total stack size used in JITed code */ 349 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE) 350 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT) 351 352 #if __LINUX_ARM_ARCH__ < 7 353 354 static u16 imm_offset(u32 k, struct jit_ctx *ctx) 355 { 356 unsigned int i = 0, offset; 357 u16 imm; 358 359 /* on the "fake" run we just count them (duplicates included) */ 360 if (ctx->target == NULL) { 361 ctx->imm_count++; 362 return 0; 363 } 364 365 while ((i < ctx->imm_count) && ctx->imms[i]) { 366 if (ctx->imms[i] == k) 367 break; 368 i++; 369 } 370 371 if (ctx->imms[i] == 0) 372 ctx->imms[i] = k; 373 374 /* constants go just after the epilogue */ 375 offset = ctx->offsets[ctx->prog->len - 1] * 4; 376 offset += ctx->prologue_bytes; 377 offset += ctx->epilogue_bytes; 378 offset += i * 4; 379 380 ctx->target[offset / 4] = k; 381 382 /* PC in ARM mode == address of the instruction + 8 */ 383 imm = offset - (8 + ctx->idx * 4); 384 385 if (imm & ~0xfff) { 386 /* 387 * literal pool is too far, signal it into flags. we 388 * can only detect it on the second pass unfortunately. 389 */ 390 ctx->flags |= FLAG_IMM_OVERFLOW; 391 return 0; 392 } 393 394 return imm; 395 } 396 397 #endif /* __LINUX_ARM_ARCH__ */ 398 399 static inline int bpf2a32_offset(int bpf_to, int bpf_from, 400 const struct jit_ctx *ctx) { 401 int to, from; 402 403 if (ctx->target == NULL) 404 return 0; 405 to = ctx->offsets[bpf_to]; 406 from = ctx->offsets[bpf_from]; 407 408 return to - from - 1; 409 } 410 411 /* 412 * Move an immediate that's not an imm8m to a core register. 413 */ 414 static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx) 415 { 416 #if __LINUX_ARM_ARCH__ < 7 417 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx); 418 #else 419 emit(ARM_MOVW(rd, val & 0xffff), ctx); 420 if (val > 0xffff) 421 emit(ARM_MOVT(rd, val >> 16), ctx); 422 #endif 423 } 424 425 static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx) 426 { 427 int imm12 = imm8m(val); 428 429 if (imm12 >= 0) 430 emit(ARM_MOV_I(rd, imm12), ctx); 431 else 432 emit_mov_i_no8m(rd, val, ctx); 433 } 434 435 static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx) 436 { 437 if (elf_hwcap & HWCAP_THUMB) 438 emit(ARM_BX(tgt_reg), ctx); 439 else 440 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx); 441 } 442 443 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx) 444 { 445 #if __LINUX_ARM_ARCH__ < 5 446 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx); 447 emit_bx_r(tgt_reg, ctx); 448 #else 449 emit(ARM_BLX_R(tgt_reg), ctx); 450 #endif 451 } 452 453 static inline int epilogue_offset(const struct jit_ctx *ctx) 454 { 455 int to, from; 456 /* No need for 1st dummy run */ 457 if (ctx->target == NULL) 458 return 0; 459 to = ctx->epilogue_offset; 460 from = ctx->idx; 461 462 return to - from - 2; 463 } 464 465 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op) 466 { 467 const s8 *tmp = bpf2a32[TMP_REG_1]; 468 469 #if __LINUX_ARM_ARCH__ == 7 470 if (elf_hwcap & HWCAP_IDIVA) { 471 if (op == BPF_DIV) 472 emit(ARM_UDIV(rd, rm, rn), ctx); 473 else { 474 emit(ARM_UDIV(ARM_IP, rm, rn), ctx); 475 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx); 476 } 477 return; 478 } 479 #endif 480 481 /* 482 * For BPF_ALU | BPF_DIV | BPF_K instructions 483 * As ARM_R1 and ARM_R0 contains 1st argument of bpf 484 * function, we need to save it on caller side to save 485 * it from getting destroyed within callee. 486 * After the return from the callee, we restore ARM_R0 487 * ARM_R1. 488 */ 489 if (rn != ARM_R1) { 490 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx); 491 emit(ARM_MOV_R(ARM_R1, rn), ctx); 492 } 493 if (rm != ARM_R0) { 494 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx); 495 emit(ARM_MOV_R(ARM_R0, rm), ctx); 496 } 497 498 /* Call appropriate function */ 499 emit_mov_i(ARM_IP, op == BPF_DIV ? 500 (u32)jit_udiv32 : (u32)jit_mod32, ctx); 501 emit_blx_r(ARM_IP, ctx); 502 503 /* Save return value */ 504 if (rd != ARM_R0) 505 emit(ARM_MOV_R(rd, ARM_R0), ctx); 506 507 /* Restore ARM_R0 and ARM_R1 */ 508 if (rn != ARM_R1) 509 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx); 510 if (rm != ARM_R0) 511 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx); 512 } 513 514 /* Is the translated BPF register on stack? */ 515 static bool is_stacked(s8 reg) 516 { 517 return reg < 0; 518 } 519 520 /* If a BPF register is on the stack (stk is true), load it to the 521 * supplied temporary register and return the temporary register 522 * for subsequent operations, otherwise just use the CPU register. 523 */ 524 static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx) 525 { 526 if (is_stacked(reg)) { 527 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx); 528 reg = tmp; 529 } 530 return reg; 531 } 532 533 static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp, 534 struct jit_ctx *ctx) 535 { 536 if (is_stacked(reg[1])) { 537 if (__LINUX_ARM_ARCH__ >= 6 || 538 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) { 539 emit(ARM_LDRD_I(tmp[1], ARM_FP, 540 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); 541 } else { 542 emit(ARM_LDR_I(tmp[1], ARM_FP, 543 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); 544 emit(ARM_LDR_I(tmp[0], ARM_FP, 545 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx); 546 } 547 reg = tmp; 548 } 549 return reg; 550 } 551 552 /* If a BPF register is on the stack (stk is true), save the register 553 * back to the stack. If the source register is not the same, then 554 * move it into the correct register. 555 */ 556 static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx) 557 { 558 if (is_stacked(reg)) 559 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx); 560 else if (reg != src) 561 emit(ARM_MOV_R(reg, src), ctx); 562 } 563 564 static void arm_bpf_put_reg64(const s8 *reg, const s8 *src, 565 struct jit_ctx *ctx) 566 { 567 if (is_stacked(reg[1])) { 568 if (__LINUX_ARM_ARCH__ >= 6 || 569 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) { 570 emit(ARM_STRD_I(src[1], ARM_FP, 571 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); 572 } else { 573 emit(ARM_STR_I(src[1], ARM_FP, 574 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); 575 emit(ARM_STR_I(src[0], ARM_FP, 576 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx); 577 } 578 } else { 579 if (reg[1] != src[1]) 580 emit(ARM_MOV_R(reg[1], src[1]), ctx); 581 if (reg[0] != src[0]) 582 emit(ARM_MOV_R(reg[0], src[0]), ctx); 583 } 584 } 585 586 static inline void emit_a32_mov_i(const s8 dst, const u32 val, 587 struct jit_ctx *ctx) 588 { 589 const s8 *tmp = bpf2a32[TMP_REG_1]; 590 591 if (is_stacked(dst)) { 592 emit_mov_i(tmp[1], val, ctx); 593 arm_bpf_put_reg32(dst, tmp[1], ctx); 594 } else { 595 emit_mov_i(dst, val, ctx); 596 } 597 } 598 599 static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx) 600 { 601 const s8 *tmp = bpf2a32[TMP_REG_1]; 602 const s8 *rd = is_stacked(dst_lo) ? tmp : dst; 603 604 emit_mov_i(rd[1], (u32)val, ctx); 605 emit_mov_i(rd[0], val >> 32, ctx); 606 607 arm_bpf_put_reg64(dst, rd, ctx); 608 } 609 610 /* Sign extended move */ 611 static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[], 612 const u32 val, struct jit_ctx *ctx) { 613 u64 val64 = val; 614 615 if (is64 && (val & (1<<31))) 616 val64 |= 0xffffffff00000000ULL; 617 emit_a32_mov_i64(dst, val64, ctx); 618 } 619 620 static inline void emit_a32_add_r(const u8 dst, const u8 src, 621 const bool is64, const bool hi, 622 struct jit_ctx *ctx) { 623 /* 64 bit : 624 * adds dst_lo, dst_lo, src_lo 625 * adc dst_hi, dst_hi, src_hi 626 * 32 bit : 627 * add dst_lo, dst_lo, src_lo 628 */ 629 if (!hi && is64) 630 emit(ARM_ADDS_R(dst, dst, src), ctx); 631 else if (hi && is64) 632 emit(ARM_ADC_R(dst, dst, src), ctx); 633 else 634 emit(ARM_ADD_R(dst, dst, src), ctx); 635 } 636 637 static inline void emit_a32_sub_r(const u8 dst, const u8 src, 638 const bool is64, const bool hi, 639 struct jit_ctx *ctx) { 640 /* 64 bit : 641 * subs dst_lo, dst_lo, src_lo 642 * sbc dst_hi, dst_hi, src_hi 643 * 32 bit : 644 * sub dst_lo, dst_lo, src_lo 645 */ 646 if (!hi && is64) 647 emit(ARM_SUBS_R(dst, dst, src), ctx); 648 else if (hi && is64) 649 emit(ARM_SBC_R(dst, dst, src), ctx); 650 else 651 emit(ARM_SUB_R(dst, dst, src), ctx); 652 } 653 654 static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64, 655 const bool hi, const u8 op, struct jit_ctx *ctx){ 656 switch (BPF_OP(op)) { 657 /* dst = dst + src */ 658 case BPF_ADD: 659 emit_a32_add_r(dst, src, is64, hi, ctx); 660 break; 661 /* dst = dst - src */ 662 case BPF_SUB: 663 emit_a32_sub_r(dst, src, is64, hi, ctx); 664 break; 665 /* dst = dst | src */ 666 case BPF_OR: 667 emit(ARM_ORR_R(dst, dst, src), ctx); 668 break; 669 /* dst = dst & src */ 670 case BPF_AND: 671 emit(ARM_AND_R(dst, dst, src), ctx); 672 break; 673 /* dst = dst ^ src */ 674 case BPF_XOR: 675 emit(ARM_EOR_R(dst, dst, src), ctx); 676 break; 677 /* dst = dst * src */ 678 case BPF_MUL: 679 emit(ARM_MUL(dst, dst, src), ctx); 680 break; 681 /* dst = dst << src */ 682 case BPF_LSH: 683 emit(ARM_LSL_R(dst, dst, src), ctx); 684 break; 685 /* dst = dst >> src */ 686 case BPF_RSH: 687 emit(ARM_LSR_R(dst, dst, src), ctx); 688 break; 689 /* dst = dst >> src (signed)*/ 690 case BPF_ARSH: 691 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx); 692 break; 693 } 694 } 695 696 /* ALU operation (32 bit) 697 * dst = dst (op) src 698 */ 699 static inline void emit_a32_alu_r(const s8 dst, const s8 src, 700 struct jit_ctx *ctx, const bool is64, 701 const bool hi, const u8 op) { 702 const s8 *tmp = bpf2a32[TMP_REG_1]; 703 s8 rn, rd; 704 705 rn = arm_bpf_get_reg32(src, tmp[1], ctx); 706 rd = arm_bpf_get_reg32(dst, tmp[0], ctx); 707 /* ALU operation */ 708 emit_alu_r(rd, rn, is64, hi, op, ctx); 709 arm_bpf_put_reg32(dst, rd, ctx); 710 } 711 712 /* ALU operation (64 bit) */ 713 static inline void emit_a32_alu_r64(const bool is64, const s8 dst[], 714 const s8 src[], struct jit_ctx *ctx, 715 const u8 op) { 716 const s8 *tmp = bpf2a32[TMP_REG_1]; 717 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 718 const s8 *rd; 719 720 rd = arm_bpf_get_reg64(dst, tmp, ctx); 721 if (is64) { 722 const s8 *rs; 723 724 rs = arm_bpf_get_reg64(src, tmp2, ctx); 725 726 /* ALU operation */ 727 emit_alu_r(rd[1], rs[1], true, false, op, ctx); 728 emit_alu_r(rd[0], rs[0], true, true, op, ctx); 729 } else { 730 s8 rs; 731 732 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 733 734 /* ALU operation */ 735 emit_alu_r(rd[1], rs, true, false, op, ctx); 736 if (!ctx->prog->aux->verifier_zext) 737 emit_a32_mov_i(rd[0], 0, ctx); 738 } 739 740 arm_bpf_put_reg64(dst, rd, ctx); 741 } 742 743 /* dst = src (4 bytes)*/ 744 static inline void emit_a32_mov_r(const s8 dst, const s8 src, 745 struct jit_ctx *ctx) { 746 const s8 *tmp = bpf2a32[TMP_REG_1]; 747 s8 rt; 748 749 rt = arm_bpf_get_reg32(src, tmp[0], ctx); 750 arm_bpf_put_reg32(dst, rt, ctx); 751 } 752 753 /* dst = src */ 754 static inline void emit_a32_mov_r64(const bool is64, const s8 dst[], 755 const s8 src[], 756 struct jit_ctx *ctx) { 757 if (!is64) { 758 emit_a32_mov_r(dst_lo, src_lo, ctx); 759 if (!ctx->prog->aux->verifier_zext) 760 /* Zero out high 4 bytes */ 761 emit_a32_mov_i(dst_hi, 0, ctx); 762 } else if (__LINUX_ARM_ARCH__ < 6 && 763 ctx->cpu_architecture < CPU_ARCH_ARMv5TE) { 764 /* complete 8 byte move */ 765 emit_a32_mov_r(dst_lo, src_lo, ctx); 766 emit_a32_mov_r(dst_hi, src_hi, ctx); 767 } else if (is_stacked(src_lo) && is_stacked(dst_lo)) { 768 const u8 *tmp = bpf2a32[TMP_REG_1]; 769 770 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx); 771 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx); 772 } else if (is_stacked(src_lo)) { 773 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx); 774 } else if (is_stacked(dst_lo)) { 775 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx); 776 } else { 777 emit(ARM_MOV_R(dst[0], src[0]), ctx); 778 emit(ARM_MOV_R(dst[1], src[1]), ctx); 779 } 780 } 781 782 /* Shift operations */ 783 static inline void emit_a32_alu_i(const s8 dst, const u32 val, 784 struct jit_ctx *ctx, const u8 op) { 785 const s8 *tmp = bpf2a32[TMP_REG_1]; 786 s8 rd; 787 788 rd = arm_bpf_get_reg32(dst, tmp[0], ctx); 789 790 /* Do shift operation */ 791 switch (op) { 792 case BPF_LSH: 793 emit(ARM_LSL_I(rd, rd, val), ctx); 794 break; 795 case BPF_RSH: 796 emit(ARM_LSR_I(rd, rd, val), ctx); 797 break; 798 case BPF_NEG: 799 emit(ARM_RSB_I(rd, rd, val), ctx); 800 break; 801 } 802 803 arm_bpf_put_reg32(dst, rd, ctx); 804 } 805 806 /* dst = ~dst (64 bit) */ 807 static inline void emit_a32_neg64(const s8 dst[], 808 struct jit_ctx *ctx){ 809 const s8 *tmp = bpf2a32[TMP_REG_1]; 810 const s8 *rd; 811 812 /* Setup Operand */ 813 rd = arm_bpf_get_reg64(dst, tmp, ctx); 814 815 /* Do Negate Operation */ 816 emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx); 817 emit(ARM_RSC_I(rd[0], rd[0], 0), ctx); 818 819 arm_bpf_put_reg64(dst, rd, ctx); 820 } 821 822 /* dst = dst << src */ 823 static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[], 824 struct jit_ctx *ctx) { 825 const s8 *tmp = bpf2a32[TMP_REG_1]; 826 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 827 const s8 *rd; 828 s8 rt; 829 830 /* Setup Operands */ 831 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 832 rd = arm_bpf_get_reg64(dst, tmp, ctx); 833 834 /* Do LSH operation */ 835 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx); 836 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx); 837 emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx); 838 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx); 839 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx); 840 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx); 841 842 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); 843 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); 844 } 845 846 /* dst = dst >> src (signed)*/ 847 static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[], 848 struct jit_ctx *ctx) { 849 const s8 *tmp = bpf2a32[TMP_REG_1]; 850 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 851 const s8 *rd; 852 s8 rt; 853 854 /* Setup Operands */ 855 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 856 rd = arm_bpf_get_reg64(dst, tmp, ctx); 857 858 /* Do the ARSH operation */ 859 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx); 860 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx); 861 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx); 862 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx); 863 _emit(ARM_COND_MI, ARM_B(0), ctx); 864 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx); 865 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx); 866 867 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); 868 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); 869 } 870 871 /* dst = dst >> src */ 872 static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[], 873 struct jit_ctx *ctx) { 874 const s8 *tmp = bpf2a32[TMP_REG_1]; 875 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 876 const s8 *rd; 877 s8 rt; 878 879 /* Setup Operands */ 880 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 881 rd = arm_bpf_get_reg64(dst, tmp, ctx); 882 883 /* Do RSH operation */ 884 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx); 885 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx); 886 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx); 887 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx); 888 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx); 889 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx); 890 891 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); 892 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); 893 } 894 895 /* dst = dst << val */ 896 static inline void emit_a32_lsh_i64(const s8 dst[], 897 const u32 val, struct jit_ctx *ctx){ 898 const s8 *tmp = bpf2a32[TMP_REG_1]; 899 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 900 const s8 *rd; 901 902 /* Setup operands */ 903 rd = arm_bpf_get_reg64(dst, tmp, ctx); 904 905 /* Do LSH operation */ 906 if (val < 32) { 907 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx); 908 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx); 909 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx); 910 } else { 911 if (val == 32) 912 emit(ARM_MOV_R(rd[0], rd[1]), ctx); 913 else 914 emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx); 915 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx); 916 } 917 918 arm_bpf_put_reg64(dst, rd, ctx); 919 } 920 921 /* dst = dst >> val */ 922 static inline void emit_a32_rsh_i64(const s8 dst[], 923 const u32 val, struct jit_ctx *ctx) { 924 const s8 *tmp = bpf2a32[TMP_REG_1]; 925 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 926 const s8 *rd; 927 928 /* Setup operands */ 929 rd = arm_bpf_get_reg64(dst, tmp, ctx); 930 931 /* Do LSR operation */ 932 if (val == 0) { 933 /* An immediate value of 0 encodes a shift amount of 32 934 * for LSR. To shift by 0, don't do anything. 935 */ 936 } else if (val < 32) { 937 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx); 938 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx); 939 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx); 940 } else if (val == 32) { 941 emit(ARM_MOV_R(rd[1], rd[0]), ctx); 942 emit(ARM_MOV_I(rd[0], 0), ctx); 943 } else { 944 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx); 945 emit(ARM_MOV_I(rd[0], 0), ctx); 946 } 947 948 arm_bpf_put_reg64(dst, rd, ctx); 949 } 950 951 /* dst = dst >> val (signed) */ 952 static inline void emit_a32_arsh_i64(const s8 dst[], 953 const u32 val, struct jit_ctx *ctx){ 954 const s8 *tmp = bpf2a32[TMP_REG_1]; 955 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 956 const s8 *rd; 957 958 /* Setup operands */ 959 rd = arm_bpf_get_reg64(dst, tmp, ctx); 960 961 /* Do ARSH operation */ 962 if (val == 0) { 963 /* An immediate value of 0 encodes a shift amount of 32 964 * for ASR. To shift by 0, don't do anything. 965 */ 966 } else if (val < 32) { 967 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx); 968 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx); 969 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx); 970 } else if (val == 32) { 971 emit(ARM_MOV_R(rd[1], rd[0]), ctx); 972 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx); 973 } else { 974 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx); 975 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx); 976 } 977 978 arm_bpf_put_reg64(dst, rd, ctx); 979 } 980 981 static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[], 982 struct jit_ctx *ctx) { 983 const s8 *tmp = bpf2a32[TMP_REG_1]; 984 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 985 const s8 *rd, *rt; 986 987 /* Setup operands for multiplication */ 988 rd = arm_bpf_get_reg64(dst, tmp, ctx); 989 rt = arm_bpf_get_reg64(src, tmp2, ctx); 990 991 /* Do Multiplication */ 992 emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx); 993 emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx); 994 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx); 995 996 emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx); 997 emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx); 998 999 arm_bpf_put_reg32(dst_lo, ARM_IP, ctx); 1000 arm_bpf_put_reg32(dst_hi, rd[0], ctx); 1001 } 1002 1003 static bool is_ldst_imm(s16 off, const u8 size) 1004 { 1005 s16 off_max = 0; 1006 1007 switch (size) { 1008 case BPF_B: 1009 case BPF_W: 1010 off_max = 0xfff; 1011 break; 1012 case BPF_H: 1013 off_max = 0xff; 1014 break; 1015 case BPF_DW: 1016 /* Need to make sure off+4 does not overflow. */ 1017 off_max = 0xfff - 4; 1018 break; 1019 } 1020 return -off_max <= off && off <= off_max; 1021 } 1022 1023 /* *(size *)(dst + off) = src */ 1024 static inline void emit_str_r(const s8 dst, const s8 src[], 1025 s16 off, struct jit_ctx *ctx, const u8 sz){ 1026 const s8 *tmp = bpf2a32[TMP_REG_1]; 1027 s8 rd; 1028 1029 rd = arm_bpf_get_reg32(dst, tmp[1], ctx); 1030 1031 if (!is_ldst_imm(off, sz)) { 1032 emit_a32_mov_i(tmp[0], off, ctx); 1033 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx); 1034 rd = tmp[0]; 1035 off = 0; 1036 } 1037 switch (sz) { 1038 case BPF_B: 1039 /* Store a Byte */ 1040 emit(ARM_STRB_I(src_lo, rd, off), ctx); 1041 break; 1042 case BPF_H: 1043 /* Store a HalfWord */ 1044 emit(ARM_STRH_I(src_lo, rd, off), ctx); 1045 break; 1046 case BPF_W: 1047 /* Store a Word */ 1048 emit(ARM_STR_I(src_lo, rd, off), ctx); 1049 break; 1050 case BPF_DW: 1051 /* Store a Double Word */ 1052 emit(ARM_STR_I(src_lo, rd, off), ctx); 1053 emit(ARM_STR_I(src_hi, rd, off + 4), ctx); 1054 break; 1055 } 1056 } 1057 1058 /* dst = *(size*)(src + off) */ 1059 static inline void emit_ldx_r(const s8 dst[], const s8 src, 1060 s16 off, struct jit_ctx *ctx, const u8 sz){ 1061 const s8 *tmp = bpf2a32[TMP_REG_1]; 1062 const s8 *rd = is_stacked(dst_lo) ? tmp : dst; 1063 s8 rm = src; 1064 1065 if (!is_ldst_imm(off, sz)) { 1066 emit_a32_mov_i(tmp[0], off, ctx); 1067 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx); 1068 rm = tmp[0]; 1069 off = 0; 1070 } else if (rd[1] == rm) { 1071 emit(ARM_MOV_R(tmp[0], rm), ctx); 1072 rm = tmp[0]; 1073 } 1074 switch (sz) { 1075 case BPF_B: 1076 /* Load a Byte */ 1077 emit(ARM_LDRB_I(rd[1], rm, off), ctx); 1078 if (!ctx->prog->aux->verifier_zext) 1079 emit_a32_mov_i(rd[0], 0, ctx); 1080 break; 1081 case BPF_H: 1082 /* Load a HalfWord */ 1083 emit(ARM_LDRH_I(rd[1], rm, off), ctx); 1084 if (!ctx->prog->aux->verifier_zext) 1085 emit_a32_mov_i(rd[0], 0, ctx); 1086 break; 1087 case BPF_W: 1088 /* Load a Word */ 1089 emit(ARM_LDR_I(rd[1], rm, off), ctx); 1090 if (!ctx->prog->aux->verifier_zext) 1091 emit_a32_mov_i(rd[0], 0, ctx); 1092 break; 1093 case BPF_DW: 1094 /* Load a Double Word */ 1095 emit(ARM_LDR_I(rd[1], rm, off), ctx); 1096 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx); 1097 break; 1098 } 1099 arm_bpf_put_reg64(dst, rd, ctx); 1100 } 1101 1102 /* Arithmatic Operation */ 1103 static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm, 1104 const u8 rn, struct jit_ctx *ctx, u8 op, 1105 bool is_jmp64) { 1106 switch (op) { 1107 case BPF_JSET: 1108 if (is_jmp64) { 1109 emit(ARM_AND_R(ARM_IP, rt, rn), ctx); 1110 emit(ARM_AND_R(ARM_LR, rd, rm), ctx); 1111 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx); 1112 } else { 1113 emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx); 1114 } 1115 break; 1116 case BPF_JEQ: 1117 case BPF_JNE: 1118 case BPF_JGT: 1119 case BPF_JGE: 1120 case BPF_JLE: 1121 case BPF_JLT: 1122 if (is_jmp64) { 1123 emit(ARM_CMP_R(rd, rm), ctx); 1124 /* Only compare low halve if high halve are equal. */ 1125 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx); 1126 } else { 1127 emit(ARM_CMP_R(rt, rn), ctx); 1128 } 1129 break; 1130 case BPF_JSLE: 1131 case BPF_JSGT: 1132 emit(ARM_CMP_R(rn, rt), ctx); 1133 if (is_jmp64) 1134 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx); 1135 break; 1136 case BPF_JSLT: 1137 case BPF_JSGE: 1138 emit(ARM_CMP_R(rt, rn), ctx); 1139 if (is_jmp64) 1140 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx); 1141 break; 1142 } 1143 } 1144 1145 static int out_offset = -1; /* initialized on the first pass of build_body() */ 1146 static int emit_bpf_tail_call(struct jit_ctx *ctx) 1147 { 1148 1149 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */ 1150 const s8 *r2 = bpf2a32[BPF_REG_2]; 1151 const s8 *r3 = bpf2a32[BPF_REG_3]; 1152 const s8 *tmp = bpf2a32[TMP_REG_1]; 1153 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1154 const s8 *tcc = bpf2a32[TCALL_CNT]; 1155 const s8 *tc; 1156 const int idx0 = ctx->idx; 1157 #define cur_offset (ctx->idx - idx0) 1158 #define jmp_offset (out_offset - (cur_offset) - 2) 1159 u32 lo, hi; 1160 s8 r_array, r_index; 1161 int off; 1162 1163 /* if (index >= array->map.max_entries) 1164 * goto out; 1165 */ 1166 BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) > 1167 ARM_INST_LDST__IMM12); 1168 off = offsetof(struct bpf_array, map.max_entries); 1169 r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx); 1170 /* index is 32-bit for arrays */ 1171 r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx); 1172 /* array->map.max_entries */ 1173 emit(ARM_LDR_I(tmp[1], r_array, off), ctx); 1174 /* index >= array->map.max_entries */ 1175 emit(ARM_CMP_R(r_index, tmp[1]), ctx); 1176 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx); 1177 1178 /* tmp2[0] = array, tmp2[1] = index */ 1179 1180 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT) 1181 * goto out; 1182 * tail_call_cnt++; 1183 */ 1184 lo = (u32)MAX_TAIL_CALL_CNT; 1185 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32); 1186 tc = arm_bpf_get_reg64(tcc, tmp, ctx); 1187 emit(ARM_CMP_I(tc[0], hi), ctx); 1188 _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx); 1189 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx); 1190 emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx); 1191 emit(ARM_ADC_I(tc[0], tc[0], 0), ctx); 1192 arm_bpf_put_reg64(tcc, tmp, ctx); 1193 1194 /* prog = array->ptrs[index] 1195 * if (prog == NULL) 1196 * goto out; 1197 */ 1198 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0); 1199 off = imm8m(offsetof(struct bpf_array, ptrs)); 1200 emit(ARM_ADD_I(tmp[1], r_array, off), ctx); 1201 emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx); 1202 emit(ARM_CMP_I(tmp[1], 0), ctx); 1203 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx); 1204 1205 /* goto *(prog->bpf_func + prologue_size); */ 1206 BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) > 1207 ARM_INST_LDST__IMM12); 1208 off = offsetof(struct bpf_prog, bpf_func); 1209 emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx); 1210 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx); 1211 emit_bx_r(tmp[1], ctx); 1212 1213 /* out: */ 1214 if (out_offset == -1) 1215 out_offset = cur_offset; 1216 if (cur_offset != out_offset) { 1217 pr_err_once("tail_call out_offset = %d, expected %d!\n", 1218 cur_offset, out_offset); 1219 return -1; 1220 } 1221 return 0; 1222 #undef cur_offset 1223 #undef jmp_offset 1224 } 1225 1226 /* 0xabcd => 0xcdab */ 1227 static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx) 1228 { 1229 #if __LINUX_ARM_ARCH__ < 6 1230 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1231 1232 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx); 1233 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx); 1234 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx); 1235 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx); 1236 #else /* ARMv6+ */ 1237 emit(ARM_REV16(rd, rn), ctx); 1238 #endif 1239 } 1240 1241 /* 0xabcdefgh => 0xghefcdab */ 1242 static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx) 1243 { 1244 #if __LINUX_ARM_ARCH__ < 6 1245 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1246 1247 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx); 1248 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx); 1249 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx); 1250 1251 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx); 1252 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx); 1253 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx); 1254 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx); 1255 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx); 1256 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx); 1257 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx); 1258 1259 #else /* ARMv6+ */ 1260 emit(ARM_REV(rd, rn), ctx); 1261 #endif 1262 } 1263 1264 // push the scratch stack register on top of the stack 1265 static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx) 1266 { 1267 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1268 const s8 *rt; 1269 u16 reg_set = 0; 1270 1271 rt = arm_bpf_get_reg64(src, tmp2, ctx); 1272 1273 reg_set = (1 << rt[1]) | (1 << rt[0]); 1274 emit(ARM_PUSH(reg_set), ctx); 1275 } 1276 1277 static void build_prologue(struct jit_ctx *ctx) 1278 { 1279 const s8 arm_r0 = bpf2a32[BPF_REG_0][1]; 1280 const s8 *bpf_r1 = bpf2a32[BPF_REG_1]; 1281 const s8 *bpf_fp = bpf2a32[BPF_REG_FP]; 1282 const s8 *tcc = bpf2a32[TCALL_CNT]; 1283 1284 /* Save callee saved registers. */ 1285 #ifdef CONFIG_FRAME_POINTER 1286 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC; 1287 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx); 1288 emit(ARM_PUSH(reg_set), ctx); 1289 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx); 1290 #else 1291 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx); 1292 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx); 1293 #endif 1294 /* mov r3, #0 */ 1295 /* sub r2, sp, #SCRATCH_SIZE */ 1296 emit(ARM_MOV_I(bpf_r1[0], 0), ctx); 1297 emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx); 1298 1299 ctx->stack_size = imm8m(STACK_SIZE); 1300 1301 /* Set up function call stack */ 1302 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx); 1303 1304 /* Set up BPF prog stack base register */ 1305 emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx); 1306 1307 /* Initialize Tail Count */ 1308 emit(ARM_MOV_I(bpf_r1[1], 0), ctx); 1309 emit_a32_mov_r64(true, tcc, bpf_r1, ctx); 1310 1311 /* Move BPF_CTX to BPF_R1 */ 1312 emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx); 1313 1314 /* end of prologue */ 1315 } 1316 1317 /* restore callee saved registers. */ 1318 static void build_epilogue(struct jit_ctx *ctx) 1319 { 1320 #ifdef CONFIG_FRAME_POINTER 1321 /* When using frame pointers, some additional registers need to 1322 * be loaded. */ 1323 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP; 1324 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx); 1325 emit(ARM_LDM(ARM_SP, reg_set), ctx); 1326 #else 1327 /* Restore callee saved registers. */ 1328 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx); 1329 emit(ARM_POP(CALLEE_POP_MASK), ctx); 1330 #endif 1331 } 1332 1333 /* 1334 * Convert an eBPF instruction to native instruction, i.e 1335 * JITs an eBPF instruction. 1336 * Returns : 1337 * 0 - Successfully JITed an 8-byte eBPF instruction 1338 * >0 - Successfully JITed a 16-byte eBPF instruction 1339 * <0 - Failed to JIT. 1340 */ 1341 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) 1342 { 1343 const u8 code = insn->code; 1344 const s8 *dst = bpf2a32[insn->dst_reg]; 1345 const s8 *src = bpf2a32[insn->src_reg]; 1346 const s8 *tmp = bpf2a32[TMP_REG_1]; 1347 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1348 const s16 off = insn->off; 1349 const s32 imm = insn->imm; 1350 const int i = insn - ctx->prog->insnsi; 1351 const bool is64 = BPF_CLASS(code) == BPF_ALU64; 1352 const s8 *rd, *rs; 1353 s8 rd_lo, rt, rm, rn; 1354 s32 jmp_offset; 1355 1356 #define check_imm(bits, imm) do { \ 1357 if ((imm) >= (1 << ((bits) - 1)) || \ 1358 (imm) < -(1 << ((bits) - 1))) { \ 1359 pr_info("[%2d] imm=%d(0x%x) out of range\n", \ 1360 i, imm, imm); \ 1361 return -EINVAL; \ 1362 } \ 1363 } while (0) 1364 #define check_imm24(imm) check_imm(24, imm) 1365 1366 switch (code) { 1367 /* ALU operations */ 1368 1369 /* dst = src */ 1370 case BPF_ALU | BPF_MOV | BPF_K: 1371 case BPF_ALU | BPF_MOV | BPF_X: 1372 case BPF_ALU64 | BPF_MOV | BPF_K: 1373 case BPF_ALU64 | BPF_MOV | BPF_X: 1374 switch (BPF_SRC(code)) { 1375 case BPF_X: 1376 if (imm == 1) { 1377 /* Special mov32 for zext */ 1378 emit_a32_mov_i(dst_hi, 0, ctx); 1379 break; 1380 } 1381 emit_a32_mov_r64(is64, dst, src, ctx); 1382 break; 1383 case BPF_K: 1384 /* Sign-extend immediate value to destination reg */ 1385 emit_a32_mov_se_i64(is64, dst, imm, ctx); 1386 break; 1387 } 1388 break; 1389 /* dst = dst + src/imm */ 1390 /* dst = dst - src/imm */ 1391 /* dst = dst | src/imm */ 1392 /* dst = dst & src/imm */ 1393 /* dst = dst ^ src/imm */ 1394 /* dst = dst * src/imm */ 1395 /* dst = dst << src */ 1396 /* dst = dst >> src */ 1397 case BPF_ALU | BPF_ADD | BPF_K: 1398 case BPF_ALU | BPF_ADD | BPF_X: 1399 case BPF_ALU | BPF_SUB | BPF_K: 1400 case BPF_ALU | BPF_SUB | BPF_X: 1401 case BPF_ALU | BPF_OR | BPF_K: 1402 case BPF_ALU | BPF_OR | BPF_X: 1403 case BPF_ALU | BPF_AND | BPF_K: 1404 case BPF_ALU | BPF_AND | BPF_X: 1405 case BPF_ALU | BPF_XOR | BPF_K: 1406 case BPF_ALU | BPF_XOR | BPF_X: 1407 case BPF_ALU | BPF_MUL | BPF_K: 1408 case BPF_ALU | BPF_MUL | BPF_X: 1409 case BPF_ALU | BPF_LSH | BPF_X: 1410 case BPF_ALU | BPF_RSH | BPF_X: 1411 case BPF_ALU | BPF_ARSH | BPF_K: 1412 case BPF_ALU | BPF_ARSH | BPF_X: 1413 case BPF_ALU64 | BPF_ADD | BPF_K: 1414 case BPF_ALU64 | BPF_ADD | BPF_X: 1415 case BPF_ALU64 | BPF_SUB | BPF_K: 1416 case BPF_ALU64 | BPF_SUB | BPF_X: 1417 case BPF_ALU64 | BPF_OR | BPF_K: 1418 case BPF_ALU64 | BPF_OR | BPF_X: 1419 case BPF_ALU64 | BPF_AND | BPF_K: 1420 case BPF_ALU64 | BPF_AND | BPF_X: 1421 case BPF_ALU64 | BPF_XOR | BPF_K: 1422 case BPF_ALU64 | BPF_XOR | BPF_X: 1423 switch (BPF_SRC(code)) { 1424 case BPF_X: 1425 emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code)); 1426 break; 1427 case BPF_K: 1428 /* Move immediate value to the temporary register 1429 * and then do the ALU operation on the temporary 1430 * register as this will sign-extend the immediate 1431 * value into temporary reg and then it would be 1432 * safe to do the operation on it. 1433 */ 1434 emit_a32_mov_se_i64(is64, tmp2, imm, ctx); 1435 emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code)); 1436 break; 1437 } 1438 break; 1439 /* dst = dst / src(imm) */ 1440 /* dst = dst % src(imm) */ 1441 case BPF_ALU | BPF_DIV | BPF_K: 1442 case BPF_ALU | BPF_DIV | BPF_X: 1443 case BPF_ALU | BPF_MOD | BPF_K: 1444 case BPF_ALU | BPF_MOD | BPF_X: 1445 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx); 1446 switch (BPF_SRC(code)) { 1447 case BPF_X: 1448 rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx); 1449 break; 1450 case BPF_K: 1451 rt = tmp2[0]; 1452 emit_a32_mov_i(rt, imm, ctx); 1453 break; 1454 default: 1455 rt = src_lo; 1456 break; 1457 } 1458 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code)); 1459 arm_bpf_put_reg32(dst_lo, rd_lo, ctx); 1460 if (!ctx->prog->aux->verifier_zext) 1461 emit_a32_mov_i(dst_hi, 0, ctx); 1462 break; 1463 case BPF_ALU64 | BPF_DIV | BPF_K: 1464 case BPF_ALU64 | BPF_DIV | BPF_X: 1465 case BPF_ALU64 | BPF_MOD | BPF_K: 1466 case BPF_ALU64 | BPF_MOD | BPF_X: 1467 goto notyet; 1468 /* dst = dst >> imm */ 1469 /* dst = dst << imm */ 1470 case BPF_ALU | BPF_RSH | BPF_K: 1471 case BPF_ALU | BPF_LSH | BPF_K: 1472 if (unlikely(imm > 31)) 1473 return -EINVAL; 1474 if (imm) 1475 emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code)); 1476 if (!ctx->prog->aux->verifier_zext) 1477 emit_a32_mov_i(dst_hi, 0, ctx); 1478 break; 1479 /* dst = dst << imm */ 1480 case BPF_ALU64 | BPF_LSH | BPF_K: 1481 if (unlikely(imm > 63)) 1482 return -EINVAL; 1483 emit_a32_lsh_i64(dst, imm, ctx); 1484 break; 1485 /* dst = dst >> imm */ 1486 case BPF_ALU64 | BPF_RSH | BPF_K: 1487 if (unlikely(imm > 63)) 1488 return -EINVAL; 1489 emit_a32_rsh_i64(dst, imm, ctx); 1490 break; 1491 /* dst = dst << src */ 1492 case BPF_ALU64 | BPF_LSH | BPF_X: 1493 emit_a32_lsh_r64(dst, src, ctx); 1494 break; 1495 /* dst = dst >> src */ 1496 case BPF_ALU64 | BPF_RSH | BPF_X: 1497 emit_a32_rsh_r64(dst, src, ctx); 1498 break; 1499 /* dst = dst >> src (signed) */ 1500 case BPF_ALU64 | BPF_ARSH | BPF_X: 1501 emit_a32_arsh_r64(dst, src, ctx); 1502 break; 1503 /* dst = dst >> imm (signed) */ 1504 case BPF_ALU64 | BPF_ARSH | BPF_K: 1505 if (unlikely(imm > 63)) 1506 return -EINVAL; 1507 emit_a32_arsh_i64(dst, imm, ctx); 1508 break; 1509 /* dst = ~dst */ 1510 case BPF_ALU | BPF_NEG: 1511 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code)); 1512 if (!ctx->prog->aux->verifier_zext) 1513 emit_a32_mov_i(dst_hi, 0, ctx); 1514 break; 1515 /* dst = ~dst (64 bit) */ 1516 case BPF_ALU64 | BPF_NEG: 1517 emit_a32_neg64(dst, ctx); 1518 break; 1519 /* dst = dst * src/imm */ 1520 case BPF_ALU64 | BPF_MUL | BPF_X: 1521 case BPF_ALU64 | BPF_MUL | BPF_K: 1522 switch (BPF_SRC(code)) { 1523 case BPF_X: 1524 emit_a32_mul_r64(dst, src, ctx); 1525 break; 1526 case BPF_K: 1527 /* Move immediate value to the temporary register 1528 * and then do the multiplication on it as this 1529 * will sign-extend the immediate value into temp 1530 * reg then it would be safe to do the operation 1531 * on it. 1532 */ 1533 emit_a32_mov_se_i64(is64, tmp2, imm, ctx); 1534 emit_a32_mul_r64(dst, tmp2, ctx); 1535 break; 1536 } 1537 break; 1538 /* dst = htole(dst) */ 1539 /* dst = htobe(dst) */ 1540 case BPF_ALU | BPF_END | BPF_FROM_LE: 1541 case BPF_ALU | BPF_END | BPF_FROM_BE: 1542 rd = arm_bpf_get_reg64(dst, tmp, ctx); 1543 if (BPF_SRC(code) == BPF_FROM_LE) 1544 goto emit_bswap_uxt; 1545 switch (imm) { 1546 case 16: 1547 emit_rev16(rd[1], rd[1], ctx); 1548 goto emit_bswap_uxt; 1549 case 32: 1550 emit_rev32(rd[1], rd[1], ctx); 1551 goto emit_bswap_uxt; 1552 case 64: 1553 emit_rev32(ARM_LR, rd[1], ctx); 1554 emit_rev32(rd[1], rd[0], ctx); 1555 emit(ARM_MOV_R(rd[0], ARM_LR), ctx); 1556 break; 1557 } 1558 goto exit; 1559 emit_bswap_uxt: 1560 switch (imm) { 1561 case 16: 1562 /* zero-extend 16 bits into 64 bits */ 1563 #if __LINUX_ARM_ARCH__ < 6 1564 emit_a32_mov_i(tmp2[1], 0xffff, ctx); 1565 emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx); 1566 #else /* ARMv6+ */ 1567 emit(ARM_UXTH(rd[1], rd[1]), ctx); 1568 #endif 1569 if (!ctx->prog->aux->verifier_zext) 1570 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx); 1571 break; 1572 case 32: 1573 /* zero-extend 32 bits into 64 bits */ 1574 if (!ctx->prog->aux->verifier_zext) 1575 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx); 1576 break; 1577 case 64: 1578 /* nop */ 1579 break; 1580 } 1581 exit: 1582 arm_bpf_put_reg64(dst, rd, ctx); 1583 break; 1584 /* dst = imm64 */ 1585 case BPF_LD | BPF_IMM | BPF_DW: 1586 { 1587 u64 val = (u32)imm | (u64)insn[1].imm << 32; 1588 1589 emit_a32_mov_i64(dst, val, ctx); 1590 1591 return 1; 1592 } 1593 /* LDX: dst = *(size *)(src + off) */ 1594 case BPF_LDX | BPF_MEM | BPF_W: 1595 case BPF_LDX | BPF_MEM | BPF_H: 1596 case BPF_LDX | BPF_MEM | BPF_B: 1597 case BPF_LDX | BPF_MEM | BPF_DW: 1598 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 1599 emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code)); 1600 break; 1601 /* ST: *(size *)(dst + off) = imm */ 1602 case BPF_ST | BPF_MEM | BPF_W: 1603 case BPF_ST | BPF_MEM | BPF_H: 1604 case BPF_ST | BPF_MEM | BPF_B: 1605 case BPF_ST | BPF_MEM | BPF_DW: 1606 switch (BPF_SIZE(code)) { 1607 case BPF_DW: 1608 /* Sign-extend immediate value into temp reg */ 1609 emit_a32_mov_se_i64(true, tmp2, imm, ctx); 1610 break; 1611 case BPF_W: 1612 case BPF_H: 1613 case BPF_B: 1614 emit_a32_mov_i(tmp2[1], imm, ctx); 1615 break; 1616 } 1617 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code)); 1618 break; 1619 /* STX XADD: lock *(u32 *)(dst + off) += src */ 1620 case BPF_STX | BPF_XADD | BPF_W: 1621 /* STX XADD: lock *(u64 *)(dst + off) += src */ 1622 case BPF_STX | BPF_XADD | BPF_DW: 1623 goto notyet; 1624 /* STX: *(size *)(dst + off) = src */ 1625 case BPF_STX | BPF_MEM | BPF_W: 1626 case BPF_STX | BPF_MEM | BPF_H: 1627 case BPF_STX | BPF_MEM | BPF_B: 1628 case BPF_STX | BPF_MEM | BPF_DW: 1629 rs = arm_bpf_get_reg64(src, tmp2, ctx); 1630 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code)); 1631 break; 1632 /* PC += off if dst == src */ 1633 /* PC += off if dst > src */ 1634 /* PC += off if dst >= src */ 1635 /* PC += off if dst < src */ 1636 /* PC += off if dst <= src */ 1637 /* PC += off if dst != src */ 1638 /* PC += off if dst > src (signed) */ 1639 /* PC += off if dst >= src (signed) */ 1640 /* PC += off if dst < src (signed) */ 1641 /* PC += off if dst <= src (signed) */ 1642 /* PC += off if dst & src */ 1643 case BPF_JMP | BPF_JEQ | BPF_X: 1644 case BPF_JMP | BPF_JGT | BPF_X: 1645 case BPF_JMP | BPF_JGE | BPF_X: 1646 case BPF_JMP | BPF_JNE | BPF_X: 1647 case BPF_JMP | BPF_JSGT | BPF_X: 1648 case BPF_JMP | BPF_JSGE | BPF_X: 1649 case BPF_JMP | BPF_JSET | BPF_X: 1650 case BPF_JMP | BPF_JLE | BPF_X: 1651 case BPF_JMP | BPF_JLT | BPF_X: 1652 case BPF_JMP | BPF_JSLT | BPF_X: 1653 case BPF_JMP | BPF_JSLE | BPF_X: 1654 case BPF_JMP32 | BPF_JEQ | BPF_X: 1655 case BPF_JMP32 | BPF_JGT | BPF_X: 1656 case BPF_JMP32 | BPF_JGE | BPF_X: 1657 case BPF_JMP32 | BPF_JNE | BPF_X: 1658 case BPF_JMP32 | BPF_JSGT | BPF_X: 1659 case BPF_JMP32 | BPF_JSGE | BPF_X: 1660 case BPF_JMP32 | BPF_JSET | BPF_X: 1661 case BPF_JMP32 | BPF_JLE | BPF_X: 1662 case BPF_JMP32 | BPF_JLT | BPF_X: 1663 case BPF_JMP32 | BPF_JSLT | BPF_X: 1664 case BPF_JMP32 | BPF_JSLE | BPF_X: 1665 /* Setup source registers */ 1666 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx); 1667 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 1668 goto go_jmp; 1669 /* PC += off if dst == imm */ 1670 /* PC += off if dst > imm */ 1671 /* PC += off if dst >= imm */ 1672 /* PC += off if dst < imm */ 1673 /* PC += off if dst <= imm */ 1674 /* PC += off if dst != imm */ 1675 /* PC += off if dst > imm (signed) */ 1676 /* PC += off if dst >= imm (signed) */ 1677 /* PC += off if dst < imm (signed) */ 1678 /* PC += off if dst <= imm (signed) */ 1679 /* PC += off if dst & imm */ 1680 case BPF_JMP | BPF_JEQ | BPF_K: 1681 case BPF_JMP | BPF_JGT | BPF_K: 1682 case BPF_JMP | BPF_JGE | BPF_K: 1683 case BPF_JMP | BPF_JNE | BPF_K: 1684 case BPF_JMP | BPF_JSGT | BPF_K: 1685 case BPF_JMP | BPF_JSGE | BPF_K: 1686 case BPF_JMP | BPF_JSET | BPF_K: 1687 case BPF_JMP | BPF_JLT | BPF_K: 1688 case BPF_JMP | BPF_JLE | BPF_K: 1689 case BPF_JMP | BPF_JSLT | BPF_K: 1690 case BPF_JMP | BPF_JSLE | BPF_K: 1691 case BPF_JMP32 | BPF_JEQ | BPF_K: 1692 case BPF_JMP32 | BPF_JGT | BPF_K: 1693 case BPF_JMP32 | BPF_JGE | BPF_K: 1694 case BPF_JMP32 | BPF_JNE | BPF_K: 1695 case BPF_JMP32 | BPF_JSGT | BPF_K: 1696 case BPF_JMP32 | BPF_JSGE | BPF_K: 1697 case BPF_JMP32 | BPF_JSET | BPF_K: 1698 case BPF_JMP32 | BPF_JLT | BPF_K: 1699 case BPF_JMP32 | BPF_JLE | BPF_K: 1700 case BPF_JMP32 | BPF_JSLT | BPF_K: 1701 case BPF_JMP32 | BPF_JSLE | BPF_K: 1702 if (off == 0) 1703 break; 1704 rm = tmp2[0]; 1705 rn = tmp2[1]; 1706 /* Sign-extend immediate value */ 1707 emit_a32_mov_se_i64(true, tmp2, imm, ctx); 1708 go_jmp: 1709 /* Setup destination register */ 1710 rd = arm_bpf_get_reg64(dst, tmp, ctx); 1711 1712 /* Check for the condition */ 1713 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code), 1714 BPF_CLASS(code) == BPF_JMP); 1715 1716 /* Setup JUMP instruction */ 1717 jmp_offset = bpf2a32_offset(i+off, i, ctx); 1718 switch (BPF_OP(code)) { 1719 case BPF_JNE: 1720 case BPF_JSET: 1721 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx); 1722 break; 1723 case BPF_JEQ: 1724 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx); 1725 break; 1726 case BPF_JGT: 1727 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx); 1728 break; 1729 case BPF_JGE: 1730 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx); 1731 break; 1732 case BPF_JSGT: 1733 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx); 1734 break; 1735 case BPF_JSGE: 1736 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx); 1737 break; 1738 case BPF_JLE: 1739 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx); 1740 break; 1741 case BPF_JLT: 1742 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx); 1743 break; 1744 case BPF_JSLT: 1745 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx); 1746 break; 1747 case BPF_JSLE: 1748 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx); 1749 break; 1750 } 1751 break; 1752 /* JMP OFF */ 1753 case BPF_JMP | BPF_JA: 1754 { 1755 if (off == 0) 1756 break; 1757 jmp_offset = bpf2a32_offset(i+off, i, ctx); 1758 check_imm24(jmp_offset); 1759 emit(ARM_B(jmp_offset), ctx); 1760 break; 1761 } 1762 /* tail call */ 1763 case BPF_JMP | BPF_TAIL_CALL: 1764 if (emit_bpf_tail_call(ctx)) 1765 return -EFAULT; 1766 break; 1767 /* function call */ 1768 case BPF_JMP | BPF_CALL: 1769 { 1770 const s8 *r0 = bpf2a32[BPF_REG_0]; 1771 const s8 *r1 = bpf2a32[BPF_REG_1]; 1772 const s8 *r2 = bpf2a32[BPF_REG_2]; 1773 const s8 *r3 = bpf2a32[BPF_REG_3]; 1774 const s8 *r4 = bpf2a32[BPF_REG_4]; 1775 const s8 *r5 = bpf2a32[BPF_REG_5]; 1776 const u32 func = (u32)__bpf_call_base + (u32)imm; 1777 1778 emit_a32_mov_r64(true, r0, r1, ctx); 1779 emit_a32_mov_r64(true, r1, r2, ctx); 1780 emit_push_r64(r5, ctx); 1781 emit_push_r64(r4, ctx); 1782 emit_push_r64(r3, ctx); 1783 1784 emit_a32_mov_i(tmp[1], func, ctx); 1785 emit_blx_r(tmp[1], ctx); 1786 1787 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean 1788 break; 1789 } 1790 /* function return */ 1791 case BPF_JMP | BPF_EXIT: 1792 /* Optimization: when last instruction is EXIT 1793 * simply fallthrough to epilogue. 1794 */ 1795 if (i == ctx->prog->len - 1) 1796 break; 1797 jmp_offset = epilogue_offset(ctx); 1798 check_imm24(jmp_offset); 1799 emit(ARM_B(jmp_offset), ctx); 1800 break; 1801 notyet: 1802 pr_info_once("*** NOT YET: opcode %02x ***\n", code); 1803 return -EFAULT; 1804 default: 1805 pr_err_once("unknown opcode %02x\n", code); 1806 return -EINVAL; 1807 } 1808 1809 if (ctx->flags & FLAG_IMM_OVERFLOW) 1810 /* 1811 * this instruction generated an overflow when 1812 * trying to access the literal pool, so 1813 * delegate this filter to the kernel interpreter. 1814 */ 1815 return -1; 1816 return 0; 1817 } 1818 1819 static int build_body(struct jit_ctx *ctx) 1820 { 1821 const struct bpf_prog *prog = ctx->prog; 1822 unsigned int i; 1823 1824 for (i = 0; i < prog->len; i++) { 1825 const struct bpf_insn *insn = &(prog->insnsi[i]); 1826 int ret; 1827 1828 ret = build_insn(insn, ctx); 1829 1830 /* It's used with loading the 64 bit immediate value. */ 1831 if (ret > 0) { 1832 i++; 1833 if (ctx->target == NULL) 1834 ctx->offsets[i] = ctx->idx; 1835 continue; 1836 } 1837 1838 if (ctx->target == NULL) 1839 ctx->offsets[i] = ctx->idx; 1840 1841 /* If unsuccesfull, return with error code */ 1842 if (ret) 1843 return ret; 1844 } 1845 return 0; 1846 } 1847 1848 static int validate_code(struct jit_ctx *ctx) 1849 { 1850 int i; 1851 1852 for (i = 0; i < ctx->idx; i++) { 1853 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF)) 1854 return -1; 1855 } 1856 1857 return 0; 1858 } 1859 1860 void bpf_jit_compile(struct bpf_prog *prog) 1861 { 1862 /* Nothing to do here. We support Internal BPF. */ 1863 } 1864 1865 bool bpf_jit_needs_zext(void) 1866 { 1867 return true; 1868 } 1869 1870 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 1871 { 1872 struct bpf_prog *tmp, *orig_prog = prog; 1873 struct bpf_binary_header *header; 1874 bool tmp_blinded = false; 1875 struct jit_ctx ctx; 1876 unsigned int tmp_idx; 1877 unsigned int image_size; 1878 u8 *image_ptr; 1879 1880 /* If BPF JIT was not enabled then we must fall back to 1881 * the interpreter. 1882 */ 1883 if (!prog->jit_requested) 1884 return orig_prog; 1885 1886 /* If constant blinding was enabled and we failed during blinding 1887 * then we must fall back to the interpreter. Otherwise, we save 1888 * the new JITed code. 1889 */ 1890 tmp = bpf_jit_blind_constants(prog); 1891 1892 if (IS_ERR(tmp)) 1893 return orig_prog; 1894 if (tmp != prog) { 1895 tmp_blinded = true; 1896 prog = tmp; 1897 } 1898 1899 memset(&ctx, 0, sizeof(ctx)); 1900 ctx.prog = prog; 1901 ctx.cpu_architecture = cpu_architecture(); 1902 1903 /* Not able to allocate memory for offsets[] , then 1904 * we must fall back to the interpreter 1905 */ 1906 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL); 1907 if (ctx.offsets == NULL) { 1908 prog = orig_prog; 1909 goto out; 1910 } 1911 1912 /* 1) fake pass to find in the length of the JITed code, 1913 * to compute ctx->offsets and other context variables 1914 * needed to compute final JITed code. 1915 * Also, calculate random starting pointer/start of JITed code 1916 * which is prefixed by random number of fault instructions. 1917 * 1918 * If the first pass fails then there is no chance of it 1919 * being successful in the second pass, so just fall back 1920 * to the interpreter. 1921 */ 1922 if (build_body(&ctx)) { 1923 prog = orig_prog; 1924 goto out_off; 1925 } 1926 1927 tmp_idx = ctx.idx; 1928 build_prologue(&ctx); 1929 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4; 1930 1931 ctx.epilogue_offset = ctx.idx; 1932 1933 #if __LINUX_ARM_ARCH__ < 7 1934 tmp_idx = ctx.idx; 1935 build_epilogue(&ctx); 1936 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4; 1937 1938 ctx.idx += ctx.imm_count; 1939 if (ctx.imm_count) { 1940 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL); 1941 if (ctx.imms == NULL) { 1942 prog = orig_prog; 1943 goto out_off; 1944 } 1945 } 1946 #else 1947 /* there's nothing about the epilogue on ARMv7 */ 1948 build_epilogue(&ctx); 1949 #endif 1950 /* Now we can get the actual image size of the JITed arm code. 1951 * Currently, we are not considering the THUMB-2 instructions 1952 * for jit, although it can decrease the size of the image. 1953 * 1954 * As each arm instruction is of length 32bit, we are translating 1955 * number of JITed intructions into the size required to store these 1956 * JITed code. 1957 */ 1958 image_size = sizeof(u32) * ctx.idx; 1959 1960 /* Now we know the size of the structure to make */ 1961 header = bpf_jit_binary_alloc(image_size, &image_ptr, 1962 sizeof(u32), jit_fill_hole); 1963 /* Not able to allocate memory for the structure then 1964 * we must fall back to the interpretation 1965 */ 1966 if (header == NULL) { 1967 prog = orig_prog; 1968 goto out_imms; 1969 } 1970 1971 /* 2.) Actual pass to generate final JIT code */ 1972 ctx.target = (u32 *) image_ptr; 1973 ctx.idx = 0; 1974 1975 build_prologue(&ctx); 1976 1977 /* If building the body of the JITed code fails somehow, 1978 * we fall back to the interpretation. 1979 */ 1980 if (build_body(&ctx) < 0) { 1981 image_ptr = NULL; 1982 bpf_jit_binary_free(header); 1983 prog = orig_prog; 1984 goto out_imms; 1985 } 1986 build_epilogue(&ctx); 1987 1988 /* 3.) Extra pass to validate JITed Code */ 1989 if (validate_code(&ctx)) { 1990 image_ptr = NULL; 1991 bpf_jit_binary_free(header); 1992 prog = orig_prog; 1993 goto out_imms; 1994 } 1995 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx)); 1996 1997 if (bpf_jit_enable > 1) 1998 /* there are 2 passes here */ 1999 bpf_jit_dump(prog->len, image_size, 2, ctx.target); 2000 2001 bpf_jit_binary_lock_ro(header); 2002 prog->bpf_func = (void *)ctx.target; 2003 prog->jited = 1; 2004 prog->jited_len = image_size; 2005 2006 out_imms: 2007 #if __LINUX_ARM_ARCH__ < 7 2008 if (ctx.imm_count) 2009 kfree(ctx.imms); 2010 #endif 2011 out_off: 2012 kfree(ctx.offsets); 2013 out: 2014 if (tmp_blinded) 2015 bpf_jit_prog_release_other(prog, prog == orig_prog ? 2016 tmp : orig_prog); 2017 return prog; 2018 } 2019 2020