xref: /openbmc/linux/arch/arm/net/bpf_jit_32.c (revision 63dc02bd)
1 /*
2  * Just-In-Time compiler for BPF filters on 32bit ARM
3  *
4  * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; version 2 of the License.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/compiler.h>
13 #include <linux/errno.h>
14 #include <linux/filter.h>
15 #include <linux/moduleloader.h>
16 #include <linux/netdevice.h>
17 #include <linux/string.h>
18 #include <linux/slab.h>
19 #include <asm/cacheflush.h>
20 #include <asm/hwcap.h>
21 
22 #include "bpf_jit_32.h"
23 
24 /*
25  * ABI:
26  *
27  * r0	scratch register
28  * r4	BPF register A
29  * r5	BPF register X
30  * r6	pointer to the skb
31  * r7	skb->data
32  * r8	skb_headlen(skb)
33  */
34 
35 #define r_scratch	ARM_R0
36 /* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */
37 #define r_off		ARM_R1
38 #define r_A		ARM_R4
39 #define r_X		ARM_R5
40 #define r_skb		ARM_R6
41 #define r_skb_data	ARM_R7
42 #define r_skb_hl	ARM_R8
43 
44 #define SCRATCH_SP_OFFSET	0
45 #define SCRATCH_OFF(k)		(SCRATCH_SP_OFFSET + (k))
46 
47 #define SEEN_MEM		((1 << BPF_MEMWORDS) - 1)
48 #define SEEN_MEM_WORD(k)	(1 << (k))
49 #define SEEN_X			(1 << BPF_MEMWORDS)
50 #define SEEN_CALL		(1 << (BPF_MEMWORDS + 1))
51 #define SEEN_SKB		(1 << (BPF_MEMWORDS + 2))
52 #define SEEN_DATA		(1 << (BPF_MEMWORDS + 3))
53 
54 #define FLAG_NEED_X_RESET	(1 << 0)
55 
56 struct jit_ctx {
57 	const struct sk_filter *skf;
58 	unsigned idx;
59 	unsigned prologue_bytes;
60 	int ret0_fp_idx;
61 	u32 seen;
62 	u32 flags;
63 	u32 *offsets;
64 	u32 *target;
65 #if __LINUX_ARM_ARCH__ < 7
66 	u16 epilogue_bytes;
67 	u16 imm_count;
68 	u32 *imms;
69 #endif
70 };
71 
72 int bpf_jit_enable __read_mostly;
73 
74 static u64 jit_get_skb_b(struct sk_buff *skb, unsigned offset)
75 {
76 	u8 ret;
77 	int err;
78 
79 	err = skb_copy_bits(skb, offset, &ret, 1);
80 
81 	return (u64)err << 32 | ret;
82 }
83 
84 static u64 jit_get_skb_h(struct sk_buff *skb, unsigned offset)
85 {
86 	u16 ret;
87 	int err;
88 
89 	err = skb_copy_bits(skb, offset, &ret, 2);
90 
91 	return (u64)err << 32 | ntohs(ret);
92 }
93 
94 static u64 jit_get_skb_w(struct sk_buff *skb, unsigned offset)
95 {
96 	u32 ret;
97 	int err;
98 
99 	err = skb_copy_bits(skb, offset, &ret, 4);
100 
101 	return (u64)err << 32 | ntohl(ret);
102 }
103 
104 /*
105  * Wrapper that handles both OABI and EABI and assures Thumb2 interworking
106  * (where the assembly routines like __aeabi_uidiv could cause problems).
107  */
108 static u32 jit_udiv(u32 dividend, u32 divisor)
109 {
110 	return dividend / divisor;
111 }
112 
113 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
114 {
115 	if (ctx->target != NULL)
116 		ctx->target[ctx->idx] = inst | (cond << 28);
117 
118 	ctx->idx++;
119 }
120 
121 /*
122  * Emit an instruction that will be executed unconditionally.
123  */
124 static inline void emit(u32 inst, struct jit_ctx *ctx)
125 {
126 	_emit(ARM_COND_AL, inst, ctx);
127 }
128 
129 static u16 saved_regs(struct jit_ctx *ctx)
130 {
131 	u16 ret = 0;
132 
133 	if ((ctx->skf->len > 1) ||
134 	    (ctx->skf->insns[0].code == BPF_S_RET_A))
135 		ret |= 1 << r_A;
136 
137 #ifdef CONFIG_FRAME_POINTER
138 	ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC);
139 #else
140 	if (ctx->seen & SEEN_CALL)
141 		ret |= 1 << ARM_LR;
142 #endif
143 	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
144 		ret |= 1 << r_skb;
145 	if (ctx->seen & SEEN_DATA)
146 		ret |= (1 << r_skb_data) | (1 << r_skb_hl);
147 	if (ctx->seen & SEEN_X)
148 		ret |= 1 << r_X;
149 
150 	return ret;
151 }
152 
153 static inline int mem_words_used(struct jit_ctx *ctx)
154 {
155 	/* yes, we do waste some stack space IF there are "holes" in the set" */
156 	return fls(ctx->seen & SEEN_MEM);
157 }
158 
159 static inline bool is_load_to_a(u16 inst)
160 {
161 	switch (inst) {
162 	case BPF_S_LD_W_LEN:
163 	case BPF_S_LD_W_ABS:
164 	case BPF_S_LD_H_ABS:
165 	case BPF_S_LD_B_ABS:
166 	case BPF_S_ANC_CPU:
167 	case BPF_S_ANC_IFINDEX:
168 	case BPF_S_ANC_MARK:
169 	case BPF_S_ANC_PROTOCOL:
170 	case BPF_S_ANC_RXHASH:
171 	case BPF_S_ANC_QUEUE:
172 		return true;
173 	default:
174 		return false;
175 	}
176 }
177 
178 static void build_prologue(struct jit_ctx *ctx)
179 {
180 	u16 reg_set = saved_regs(ctx);
181 	u16 first_inst = ctx->skf->insns[0].code;
182 	u16 off;
183 
184 #ifdef CONFIG_FRAME_POINTER
185 	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
186 	emit(ARM_PUSH(reg_set), ctx);
187 	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
188 #else
189 	if (reg_set)
190 		emit(ARM_PUSH(reg_set), ctx);
191 #endif
192 
193 	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
194 		emit(ARM_MOV_R(r_skb, ARM_R0), ctx);
195 
196 	if (ctx->seen & SEEN_DATA) {
197 		off = offsetof(struct sk_buff, data);
198 		emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx);
199 		/* headlen = len - data_len */
200 		off = offsetof(struct sk_buff, len);
201 		emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx);
202 		off = offsetof(struct sk_buff, data_len);
203 		emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
204 		emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx);
205 	}
206 
207 	if (ctx->flags & FLAG_NEED_X_RESET)
208 		emit(ARM_MOV_I(r_X, 0), ctx);
209 
210 	/* do not leak kernel data to userspace */
211 	if ((first_inst != BPF_S_RET_K) && !(is_load_to_a(first_inst)))
212 		emit(ARM_MOV_I(r_A, 0), ctx);
213 
214 	/* stack space for the BPF_MEM words */
215 	if (ctx->seen & SEEN_MEM)
216 		emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
217 }
218 
219 static void build_epilogue(struct jit_ctx *ctx)
220 {
221 	u16 reg_set = saved_regs(ctx);
222 
223 	if (ctx->seen & SEEN_MEM)
224 		emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
225 
226 	reg_set &= ~(1 << ARM_LR);
227 
228 #ifdef CONFIG_FRAME_POINTER
229 	/* the first instruction of the prologue was: mov ip, sp */
230 	reg_set &= ~(1 << ARM_IP);
231 	reg_set |= (1 << ARM_SP);
232 	emit(ARM_LDM(ARM_SP, reg_set), ctx);
233 #else
234 	if (reg_set) {
235 		if (ctx->seen & SEEN_CALL)
236 			reg_set |= 1 << ARM_PC;
237 		emit(ARM_POP(reg_set), ctx);
238 	}
239 
240 	if (!(ctx->seen & SEEN_CALL))
241 		emit(ARM_BX(ARM_LR), ctx);
242 #endif
243 }
244 
245 static int16_t imm8m(u32 x)
246 {
247 	u32 rot;
248 
249 	for (rot = 0; rot < 16; rot++)
250 		if ((x & ~ror32(0xff, 2 * rot)) == 0)
251 			return rol32(x, 2 * rot) | (rot << 8);
252 
253 	return -1;
254 }
255 
256 #if __LINUX_ARM_ARCH__ < 7
257 
258 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
259 {
260 	unsigned i = 0, offset;
261 	u16 imm;
262 
263 	/* on the "fake" run we just count them (duplicates included) */
264 	if (ctx->target == NULL) {
265 		ctx->imm_count++;
266 		return 0;
267 	}
268 
269 	while ((i < ctx->imm_count) && ctx->imms[i]) {
270 		if (ctx->imms[i] == k)
271 			break;
272 		i++;
273 	}
274 
275 	if (ctx->imms[i] == 0)
276 		ctx->imms[i] = k;
277 
278 	/* constants go just after the epilogue */
279 	offset =  ctx->offsets[ctx->skf->len];
280 	offset += ctx->prologue_bytes;
281 	offset += ctx->epilogue_bytes;
282 	offset += i * 4;
283 
284 	ctx->target[offset / 4] = k;
285 
286 	/* PC in ARM mode == address of the instruction + 8 */
287 	imm = offset - (8 + ctx->idx * 4);
288 
289 	return imm;
290 }
291 
292 #endif /* __LINUX_ARM_ARCH__ */
293 
294 /*
295  * Move an immediate that's not an imm8m to a core register.
296  */
297 static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx)
298 {
299 #if __LINUX_ARM_ARCH__ < 7
300 	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
301 #else
302 	emit(ARM_MOVW(rd, val & 0xffff), ctx);
303 	if (val > 0xffff)
304 		emit(ARM_MOVT(rd, val >> 16), ctx);
305 #endif
306 }
307 
308 static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx)
309 {
310 	int imm12 = imm8m(val);
311 
312 	if (imm12 >= 0)
313 		emit(ARM_MOV_I(rd, imm12), ctx);
314 	else
315 		emit_mov_i_no8m(rd, val, ctx);
316 }
317 
318 #if __LINUX_ARM_ARCH__ < 6
319 
320 static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
321 {
322 	_emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx);
323 	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
324 	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx);
325 	_emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx);
326 	_emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx);
327 	_emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx);
328 	_emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx);
329 	_emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx);
330 }
331 
332 static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
333 {
334 	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
335 	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx);
336 	_emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx);
337 }
338 
339 static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx)
340 {
341 	emit(ARM_LSL_R(ARM_R1, r_src, 8), ctx);
342 	emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSL, 8), ctx);
343 	emit(ARM_LSL_I(r_dst, r_dst, 8), ctx);
344 	emit(ARM_LSL_R(r_dst, r_dst, 8), ctx);
345 }
346 
347 #else  /* ARMv6+ */
348 
349 static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
350 {
351 	_emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx);
352 #ifdef __LITTLE_ENDIAN
353 	_emit(cond, ARM_REV(r_res, r_res), ctx);
354 #endif
355 }
356 
357 static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
358 {
359 	_emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx);
360 #ifdef __LITTLE_ENDIAN
361 	_emit(cond, ARM_REV16(r_res, r_res), ctx);
362 #endif
363 }
364 
365 static inline void emit_swap16(u8 r_dst __maybe_unused,
366 			       u8 r_src __maybe_unused,
367 			       struct jit_ctx *ctx __maybe_unused)
368 {
369 #ifdef __LITTLE_ENDIAN
370 	emit(ARM_REV16(r_dst, r_src), ctx);
371 #endif
372 }
373 
374 #endif /* __LINUX_ARM_ARCH__ < 6 */
375 
376 
377 /* Compute the immediate value for a PC-relative branch. */
378 static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx)
379 {
380 	u32 imm;
381 
382 	if (ctx->target == NULL)
383 		return 0;
384 	/*
385 	 * BPF allows only forward jumps and the offset of the target is
386 	 * still the one computed during the first pass.
387 	 */
388 	imm  = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8);
389 
390 	return imm >> 2;
391 }
392 
393 #define OP_IMM3(op, r1, r2, imm_val, ctx)				\
394 	do {								\
395 		imm12 = imm8m(imm_val);					\
396 		if (imm12 < 0) {					\
397 			emit_mov_i_no8m(r_scratch, imm_val, ctx);	\
398 			emit(op ## _R((r1), (r2), r_scratch), ctx);	\
399 		} else {						\
400 			emit(op ## _I((r1), (r2), imm12), ctx);		\
401 		}							\
402 	} while (0)
403 
404 static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx)
405 {
406 	if (ctx->ret0_fp_idx >= 0) {
407 		_emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx);
408 		/* NOP to keep the size constant between passes */
409 		emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx);
410 	} else {
411 		_emit(cond, ARM_MOV_I(ARM_R0, 0), ctx);
412 		_emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx);
413 	}
414 }
415 
416 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
417 {
418 #if __LINUX_ARM_ARCH__ < 5
419 	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
420 
421 	if (elf_hwcap & HWCAP_THUMB)
422 		emit(ARM_BX(tgt_reg), ctx);
423 	else
424 		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
425 #else
426 	emit(ARM_BLX_R(tgt_reg), ctx);
427 #endif
428 }
429 
430 static inline void emit_udiv(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx)
431 {
432 #if __LINUX_ARM_ARCH__ == 7
433 	if (elf_hwcap & HWCAP_IDIVA) {
434 		emit(ARM_UDIV(rd, rm, rn), ctx);
435 		return;
436 	}
437 #endif
438 	if (rm != ARM_R0)
439 		emit(ARM_MOV_R(ARM_R0, rm), ctx);
440 	if (rn != ARM_R1)
441 		emit(ARM_MOV_R(ARM_R1, rn), ctx);
442 
443 	ctx->seen |= SEEN_CALL;
444 	emit_mov_i(ARM_R3, (u32)jit_udiv, ctx);
445 	emit_blx_r(ARM_R3, ctx);
446 
447 	if (rd != ARM_R0)
448 		emit(ARM_MOV_R(rd, ARM_R0), ctx);
449 }
450 
451 static inline void update_on_xread(struct jit_ctx *ctx)
452 {
453 	if (!(ctx->seen & SEEN_X))
454 		ctx->flags |= FLAG_NEED_X_RESET;
455 
456 	ctx->seen |= SEEN_X;
457 }
458 
459 static int build_body(struct jit_ctx *ctx)
460 {
461 	void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
462 	const struct sk_filter *prog = ctx->skf;
463 	const struct sock_filter *inst;
464 	unsigned i, load_order, off, condt;
465 	int imm12;
466 	u32 k;
467 
468 	for (i = 0; i < prog->len; i++) {
469 		inst = &(prog->insns[i]);
470 		/* K as an immediate value operand */
471 		k = inst->k;
472 
473 		/* compute offsets only in the fake pass */
474 		if (ctx->target == NULL)
475 			ctx->offsets[i] = ctx->idx * 4;
476 
477 		switch (inst->code) {
478 		case BPF_S_LD_IMM:
479 			emit_mov_i(r_A, k, ctx);
480 			break;
481 		case BPF_S_LD_W_LEN:
482 			ctx->seen |= SEEN_SKB;
483 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
484 			emit(ARM_LDR_I(r_A, r_skb,
485 				       offsetof(struct sk_buff, len)), ctx);
486 			break;
487 		case BPF_S_LD_MEM:
488 			/* A = scratch[k] */
489 			ctx->seen |= SEEN_MEM_WORD(k);
490 			emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
491 			break;
492 		case BPF_S_LD_W_ABS:
493 			load_order = 2;
494 			goto load;
495 		case BPF_S_LD_H_ABS:
496 			load_order = 1;
497 			goto load;
498 		case BPF_S_LD_B_ABS:
499 			load_order = 0;
500 load:
501 			/* the interpreter will deal with the negative K */
502 			if ((int)k < 0)
503 				return -ENOTSUPP;
504 			emit_mov_i(r_off, k, ctx);
505 load_common:
506 			ctx->seen |= SEEN_DATA | SEEN_CALL;
507 
508 			if (load_order > 0) {
509 				emit(ARM_SUB_I(r_scratch, r_skb_hl,
510 					       1 << load_order), ctx);
511 				emit(ARM_CMP_R(r_scratch, r_off), ctx);
512 				condt = ARM_COND_HS;
513 			} else {
514 				emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
515 				condt = ARM_COND_HI;
516 			}
517 
518 			_emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data),
519 			      ctx);
520 
521 			if (load_order == 0)
522 				_emit(condt, ARM_LDRB_I(r_A, r_scratch, 0),
523 				      ctx);
524 			else if (load_order == 1)
525 				emit_load_be16(condt, r_A, r_scratch, ctx);
526 			else if (load_order == 2)
527 				emit_load_be32(condt, r_A, r_scratch, ctx);
528 
529 			_emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx);
530 
531 			/* the slowpath */
532 			emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx);
533 			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
534 			/* the offset is already in R1 */
535 			emit_blx_r(ARM_R3, ctx);
536 			/* check the result of skb_copy_bits */
537 			emit(ARM_CMP_I(ARM_R1, 0), ctx);
538 			emit_err_ret(ARM_COND_NE, ctx);
539 			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
540 			break;
541 		case BPF_S_LD_W_IND:
542 			load_order = 2;
543 			goto load_ind;
544 		case BPF_S_LD_H_IND:
545 			load_order = 1;
546 			goto load_ind;
547 		case BPF_S_LD_B_IND:
548 			load_order = 0;
549 load_ind:
550 			OP_IMM3(ARM_ADD, r_off, r_X, k, ctx);
551 			goto load_common;
552 		case BPF_S_LDX_IMM:
553 			ctx->seen |= SEEN_X;
554 			emit_mov_i(r_X, k, ctx);
555 			break;
556 		case BPF_S_LDX_W_LEN:
557 			ctx->seen |= SEEN_X | SEEN_SKB;
558 			emit(ARM_LDR_I(r_X, r_skb,
559 				       offsetof(struct sk_buff, len)), ctx);
560 			break;
561 		case BPF_S_LDX_MEM:
562 			ctx->seen |= SEEN_X | SEEN_MEM_WORD(k);
563 			emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
564 			break;
565 		case BPF_S_LDX_B_MSH:
566 			/* x = ((*(frame + k)) & 0xf) << 2; */
567 			ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL;
568 			/* the interpreter should deal with the negative K */
569 			if (k < 0)
570 				return -1;
571 			/* offset in r1: we might have to take the slow path */
572 			emit_mov_i(r_off, k, ctx);
573 			emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
574 
575 			/* load in r0: common with the slowpath */
576 			_emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data,
577 						      ARM_R1), ctx);
578 			/*
579 			 * emit_mov_i() might generate one or two instructions,
580 			 * the same holds for emit_blx_r()
581 			 */
582 			_emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx);
583 
584 			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
585 			/* r_off is r1 */
586 			emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx);
587 			emit_blx_r(ARM_R3, ctx);
588 			/* check the return value of skb_copy_bits */
589 			emit(ARM_CMP_I(ARM_R1, 0), ctx);
590 			emit_err_ret(ARM_COND_NE, ctx);
591 
592 			emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx);
593 			emit(ARM_LSL_I(r_X, r_X, 2), ctx);
594 			break;
595 		case BPF_S_ST:
596 			ctx->seen |= SEEN_MEM_WORD(k);
597 			emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
598 			break;
599 		case BPF_S_STX:
600 			update_on_xread(ctx);
601 			ctx->seen |= SEEN_MEM_WORD(k);
602 			emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
603 			break;
604 		case BPF_S_ALU_ADD_K:
605 			/* A += K */
606 			OP_IMM3(ARM_ADD, r_A, r_A, k, ctx);
607 			break;
608 		case BPF_S_ALU_ADD_X:
609 			update_on_xread(ctx);
610 			emit(ARM_ADD_R(r_A, r_A, r_X), ctx);
611 			break;
612 		case BPF_S_ALU_SUB_K:
613 			/* A -= K */
614 			OP_IMM3(ARM_SUB, r_A, r_A, k, ctx);
615 			break;
616 		case BPF_S_ALU_SUB_X:
617 			update_on_xread(ctx);
618 			emit(ARM_SUB_R(r_A, r_A, r_X), ctx);
619 			break;
620 		case BPF_S_ALU_MUL_K:
621 			/* A *= K */
622 			emit_mov_i(r_scratch, k, ctx);
623 			emit(ARM_MUL(r_A, r_A, r_scratch), ctx);
624 			break;
625 		case BPF_S_ALU_MUL_X:
626 			update_on_xread(ctx);
627 			emit(ARM_MUL(r_A, r_A, r_X), ctx);
628 			break;
629 		case BPF_S_ALU_DIV_K:
630 			/* current k == reciprocal_value(userspace k) */
631 			emit_mov_i(r_scratch, k, ctx);
632 			/* A = top 32 bits of the product */
633 			emit(ARM_UMULL(r_scratch, r_A, r_A, r_scratch), ctx);
634 			break;
635 		case BPF_S_ALU_DIV_X:
636 			update_on_xread(ctx);
637 			emit(ARM_CMP_I(r_X, 0), ctx);
638 			emit_err_ret(ARM_COND_EQ, ctx);
639 			emit_udiv(r_A, r_A, r_X, ctx);
640 			break;
641 		case BPF_S_ALU_OR_K:
642 			/* A |= K */
643 			OP_IMM3(ARM_ORR, r_A, r_A, k, ctx);
644 			break;
645 		case BPF_S_ALU_OR_X:
646 			update_on_xread(ctx);
647 			emit(ARM_ORR_R(r_A, r_A, r_X), ctx);
648 			break;
649 		case BPF_S_ALU_AND_K:
650 			/* A &= K */
651 			OP_IMM3(ARM_AND, r_A, r_A, k, ctx);
652 			break;
653 		case BPF_S_ALU_AND_X:
654 			update_on_xread(ctx);
655 			emit(ARM_AND_R(r_A, r_A, r_X), ctx);
656 			break;
657 		case BPF_S_ALU_LSH_K:
658 			if (unlikely(k > 31))
659 				return -1;
660 			emit(ARM_LSL_I(r_A, r_A, k), ctx);
661 			break;
662 		case BPF_S_ALU_LSH_X:
663 			update_on_xread(ctx);
664 			emit(ARM_LSL_R(r_A, r_A, r_X), ctx);
665 			break;
666 		case BPF_S_ALU_RSH_K:
667 			if (unlikely(k > 31))
668 				return -1;
669 			emit(ARM_LSR_I(r_A, r_A, k), ctx);
670 			break;
671 		case BPF_S_ALU_RSH_X:
672 			update_on_xread(ctx);
673 			emit(ARM_LSR_R(r_A, r_A, r_X), ctx);
674 			break;
675 		case BPF_S_ALU_NEG:
676 			/* A = -A */
677 			emit(ARM_RSB_I(r_A, r_A, 0), ctx);
678 			break;
679 		case BPF_S_JMP_JA:
680 			/* pc += K */
681 			emit(ARM_B(b_imm(i + k + 1, ctx)), ctx);
682 			break;
683 		case BPF_S_JMP_JEQ_K:
684 			/* pc += (A == K) ? pc->jt : pc->jf */
685 			condt  = ARM_COND_EQ;
686 			goto cmp_imm;
687 		case BPF_S_JMP_JGT_K:
688 			/* pc += (A > K) ? pc->jt : pc->jf */
689 			condt  = ARM_COND_HI;
690 			goto cmp_imm;
691 		case BPF_S_JMP_JGE_K:
692 			/* pc += (A >= K) ? pc->jt : pc->jf */
693 			condt  = ARM_COND_HS;
694 cmp_imm:
695 			imm12 = imm8m(k);
696 			if (imm12 < 0) {
697 				emit_mov_i_no8m(r_scratch, k, ctx);
698 				emit(ARM_CMP_R(r_A, r_scratch), ctx);
699 			} else {
700 				emit(ARM_CMP_I(r_A, imm12), ctx);
701 			}
702 cond_jump:
703 			if (inst->jt)
704 				_emit(condt, ARM_B(b_imm(i + inst->jt + 1,
705 						   ctx)), ctx);
706 			if (inst->jf)
707 				_emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1,
708 							     ctx)), ctx);
709 			break;
710 		case BPF_S_JMP_JEQ_X:
711 			/* pc += (A == X) ? pc->jt : pc->jf */
712 			condt   = ARM_COND_EQ;
713 			goto cmp_x;
714 		case BPF_S_JMP_JGT_X:
715 			/* pc += (A > X) ? pc->jt : pc->jf */
716 			condt   = ARM_COND_HI;
717 			goto cmp_x;
718 		case BPF_S_JMP_JGE_X:
719 			/* pc += (A >= X) ? pc->jt : pc->jf */
720 			condt   = ARM_COND_CS;
721 cmp_x:
722 			update_on_xread(ctx);
723 			emit(ARM_CMP_R(r_A, r_X), ctx);
724 			goto cond_jump;
725 		case BPF_S_JMP_JSET_K:
726 			/* pc += (A & K) ? pc->jt : pc->jf */
727 			condt  = ARM_COND_NE;
728 			/* not set iff all zeroes iff Z==1 iff EQ */
729 
730 			imm12 = imm8m(k);
731 			if (imm12 < 0) {
732 				emit_mov_i_no8m(r_scratch, k, ctx);
733 				emit(ARM_TST_R(r_A, r_scratch), ctx);
734 			} else {
735 				emit(ARM_TST_I(r_A, imm12), ctx);
736 			}
737 			goto cond_jump;
738 		case BPF_S_JMP_JSET_X:
739 			/* pc += (A & X) ? pc->jt : pc->jf */
740 			update_on_xread(ctx);
741 			condt  = ARM_COND_NE;
742 			emit(ARM_TST_R(r_A, r_X), ctx);
743 			goto cond_jump;
744 		case BPF_S_RET_A:
745 			emit(ARM_MOV_R(ARM_R0, r_A), ctx);
746 			goto b_epilogue;
747 		case BPF_S_RET_K:
748 			if ((k == 0) && (ctx->ret0_fp_idx < 0))
749 				ctx->ret0_fp_idx = i;
750 			emit_mov_i(ARM_R0, k, ctx);
751 b_epilogue:
752 			if (i != ctx->skf->len - 1)
753 				emit(ARM_B(b_imm(prog->len, ctx)), ctx);
754 			break;
755 		case BPF_S_MISC_TAX:
756 			/* X = A */
757 			ctx->seen |= SEEN_X;
758 			emit(ARM_MOV_R(r_X, r_A), ctx);
759 			break;
760 		case BPF_S_MISC_TXA:
761 			/* A = X */
762 			update_on_xread(ctx);
763 			emit(ARM_MOV_R(r_A, r_X), ctx);
764 			break;
765 		case BPF_S_ANC_PROTOCOL:
766 			/* A = ntohs(skb->protocol) */
767 			ctx->seen |= SEEN_SKB;
768 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
769 						  protocol) != 2);
770 			off = offsetof(struct sk_buff, protocol);
771 			emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx);
772 			emit_swap16(r_A, r_scratch, ctx);
773 			break;
774 		case BPF_S_ANC_CPU:
775 			/* r_scratch = current_thread_info() */
776 			OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx);
777 			/* A = current_thread_info()->cpu */
778 			BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4);
779 			off = offsetof(struct thread_info, cpu);
780 			emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
781 			break;
782 		case BPF_S_ANC_IFINDEX:
783 			/* A = skb->dev->ifindex */
784 			ctx->seen |= SEEN_SKB;
785 			off = offsetof(struct sk_buff, dev);
786 			emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
787 
788 			emit(ARM_CMP_I(r_scratch, 0), ctx);
789 			emit_err_ret(ARM_COND_EQ, ctx);
790 
791 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
792 						  ifindex) != 4);
793 			off = offsetof(struct net_device, ifindex);
794 			emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
795 			break;
796 		case BPF_S_ANC_MARK:
797 			ctx->seen |= SEEN_SKB;
798 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
799 			off = offsetof(struct sk_buff, mark);
800 			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
801 			break;
802 		case BPF_S_ANC_RXHASH:
803 			ctx->seen |= SEEN_SKB;
804 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
805 			off = offsetof(struct sk_buff, rxhash);
806 			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
807 			break;
808 		case BPF_S_ANC_QUEUE:
809 			ctx->seen |= SEEN_SKB;
810 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
811 						  queue_mapping) != 2);
812 			BUILD_BUG_ON(offsetof(struct sk_buff,
813 					      queue_mapping) > 0xff);
814 			off = offsetof(struct sk_buff, queue_mapping);
815 			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
816 			break;
817 		default:
818 			return -1;
819 		}
820 	}
821 
822 	/* compute offsets only during the first pass */
823 	if (ctx->target == NULL)
824 		ctx->offsets[i] = ctx->idx * 4;
825 
826 	return 0;
827 }
828 
829 
830 void bpf_jit_compile(struct sk_filter *fp)
831 {
832 	struct jit_ctx ctx;
833 	unsigned tmp_idx;
834 	unsigned alloc_size;
835 
836 	if (!bpf_jit_enable)
837 		return;
838 
839 	memset(&ctx, 0, sizeof(ctx));
840 	ctx.skf		= fp;
841 	ctx.ret0_fp_idx = -1;
842 
843 	ctx.offsets = kzalloc(GFP_KERNEL, 4 * (ctx.skf->len + 1));
844 	if (ctx.offsets == NULL)
845 		return;
846 
847 	/* fake pass to fill in the ctx->seen */
848 	if (unlikely(build_body(&ctx)))
849 		goto out;
850 
851 	tmp_idx = ctx.idx;
852 	build_prologue(&ctx);
853 	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
854 
855 #if __LINUX_ARM_ARCH__ < 7
856 	tmp_idx = ctx.idx;
857 	build_epilogue(&ctx);
858 	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
859 
860 	ctx.idx += ctx.imm_count;
861 	if (ctx.imm_count) {
862 		ctx.imms = kzalloc(GFP_KERNEL, 4 * ctx.imm_count);
863 		if (ctx.imms == NULL)
864 			goto out;
865 	}
866 #else
867 	/* there's nothing after the epilogue on ARMv7 */
868 	build_epilogue(&ctx);
869 #endif
870 
871 	alloc_size = 4 * ctx.idx;
872 	ctx.target = module_alloc(max(sizeof(struct work_struct),
873 				      alloc_size));
874 	if (unlikely(ctx.target == NULL))
875 		goto out;
876 
877 	ctx.idx = 0;
878 	build_prologue(&ctx);
879 	build_body(&ctx);
880 	build_epilogue(&ctx);
881 
882 	flush_icache_range((u32)ctx.target, (u32)(ctx.target + ctx.idx));
883 
884 #if __LINUX_ARM_ARCH__ < 7
885 	if (ctx.imm_count)
886 		kfree(ctx.imms);
887 #endif
888 
889 	if (bpf_jit_enable > 1)
890 		print_hex_dump(KERN_INFO, "BPF JIT code: ",
891 			       DUMP_PREFIX_ADDRESS, 16, 4, ctx.target,
892 			       alloc_size, false);
893 
894 	fp->bpf_func = (void *)ctx.target;
895 out:
896 	kfree(ctx.offsets);
897 	return;
898 }
899 
900 static void bpf_jit_free_worker(struct work_struct *work)
901 {
902 	module_free(NULL, work);
903 }
904 
905 void bpf_jit_free(struct sk_filter *fp)
906 {
907 	struct work_struct *work;
908 
909 	if (fp->bpf_func != sk_run_filter) {
910 		work = (struct work_struct *)fp->bpf_func;
911 
912 		INIT_WORK(work, bpf_jit_free_worker);
913 		schedule_work(work);
914 	}
915 }
916