xref: /openbmc/linux/arch/arm/net/bpf_jit_32.c (revision 0edbfea5)
1 /*
2  * Just-In-Time compiler for BPF filters on 32bit ARM
3  *
4  * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; version 2 of the License.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/compiler.h>
13 #include <linux/errno.h>
14 #include <linux/filter.h>
15 #include <linux/netdevice.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/if_vlan.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/hwcap.h>
22 #include <asm/opcodes.h>
23 
24 #include "bpf_jit_32.h"
25 
26 /*
27  * ABI:
28  *
29  * r0	scratch register
30  * r4	BPF register A
31  * r5	BPF register X
32  * r6	pointer to the skb
33  * r7	skb->data
34  * r8	skb_headlen(skb)
35  */
36 
37 #define r_scratch	ARM_R0
38 /* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */
39 #define r_off		ARM_R1
40 #define r_A		ARM_R4
41 #define r_X		ARM_R5
42 #define r_skb		ARM_R6
43 #define r_skb_data	ARM_R7
44 #define r_skb_hl	ARM_R8
45 
46 #define SCRATCH_SP_OFFSET	0
47 #define SCRATCH_OFF(k)		(SCRATCH_SP_OFFSET + 4 * (k))
48 
49 #define SEEN_MEM		((1 << BPF_MEMWORDS) - 1)
50 #define SEEN_MEM_WORD(k)	(1 << (k))
51 #define SEEN_X			(1 << BPF_MEMWORDS)
52 #define SEEN_CALL		(1 << (BPF_MEMWORDS + 1))
53 #define SEEN_SKB		(1 << (BPF_MEMWORDS + 2))
54 #define SEEN_DATA		(1 << (BPF_MEMWORDS + 3))
55 
56 #define FLAG_NEED_X_RESET	(1 << 0)
57 #define FLAG_IMM_OVERFLOW	(1 << 1)
58 
59 struct jit_ctx {
60 	const struct bpf_prog *skf;
61 	unsigned idx;
62 	unsigned prologue_bytes;
63 	int ret0_fp_idx;
64 	u32 seen;
65 	u32 flags;
66 	u32 *offsets;
67 	u32 *target;
68 #if __LINUX_ARM_ARCH__ < 7
69 	u16 epilogue_bytes;
70 	u16 imm_count;
71 	u32 *imms;
72 #endif
73 };
74 
75 int bpf_jit_enable __read_mostly;
76 
77 static inline int call_neg_helper(struct sk_buff *skb, int offset, void *ret,
78 		      unsigned int size)
79 {
80 	void *ptr = bpf_internal_load_pointer_neg_helper(skb, offset, size);
81 
82 	if (!ptr)
83 		return -EFAULT;
84 	memcpy(ret, ptr, size);
85 	return 0;
86 }
87 
88 static u64 jit_get_skb_b(struct sk_buff *skb, int offset)
89 {
90 	u8 ret;
91 	int err;
92 
93 	if (offset < 0)
94 		err = call_neg_helper(skb, offset, &ret, 1);
95 	else
96 		err = skb_copy_bits(skb, offset, &ret, 1);
97 
98 	return (u64)err << 32 | ret;
99 }
100 
101 static u64 jit_get_skb_h(struct sk_buff *skb, int offset)
102 {
103 	u16 ret;
104 	int err;
105 
106 	if (offset < 0)
107 		err = call_neg_helper(skb, offset, &ret, 2);
108 	else
109 		err = skb_copy_bits(skb, offset, &ret, 2);
110 
111 	return (u64)err << 32 | ntohs(ret);
112 }
113 
114 static u64 jit_get_skb_w(struct sk_buff *skb, int offset)
115 {
116 	u32 ret;
117 	int err;
118 
119 	if (offset < 0)
120 		err = call_neg_helper(skb, offset, &ret, 4);
121 	else
122 		err = skb_copy_bits(skb, offset, &ret, 4);
123 
124 	return (u64)err << 32 | ntohl(ret);
125 }
126 
127 /*
128  * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
129  * (where the assembly routines like __aeabi_uidiv could cause problems).
130  */
131 static u32 jit_udiv(u32 dividend, u32 divisor)
132 {
133 	return dividend / divisor;
134 }
135 
136 static u32 jit_mod(u32 dividend, u32 divisor)
137 {
138 	return dividend % divisor;
139 }
140 
141 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
142 {
143 	inst |= (cond << 28);
144 	inst = __opcode_to_mem_arm(inst);
145 
146 	if (ctx->target != NULL)
147 		ctx->target[ctx->idx] = inst;
148 
149 	ctx->idx++;
150 }
151 
152 /*
153  * Emit an instruction that will be executed unconditionally.
154  */
155 static inline void emit(u32 inst, struct jit_ctx *ctx)
156 {
157 	_emit(ARM_COND_AL, inst, ctx);
158 }
159 
160 static u16 saved_regs(struct jit_ctx *ctx)
161 {
162 	u16 ret = 0;
163 
164 	if ((ctx->skf->len > 1) ||
165 	    (ctx->skf->insns[0].code == (BPF_RET | BPF_A)))
166 		ret |= 1 << r_A;
167 
168 #ifdef CONFIG_FRAME_POINTER
169 	ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC);
170 #else
171 	if (ctx->seen & SEEN_CALL)
172 		ret |= 1 << ARM_LR;
173 #endif
174 	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
175 		ret |= 1 << r_skb;
176 	if (ctx->seen & SEEN_DATA)
177 		ret |= (1 << r_skb_data) | (1 << r_skb_hl);
178 	if (ctx->seen & SEEN_X)
179 		ret |= 1 << r_X;
180 
181 	return ret;
182 }
183 
184 static inline int mem_words_used(struct jit_ctx *ctx)
185 {
186 	/* yes, we do waste some stack space IF there are "holes" in the set" */
187 	return fls(ctx->seen & SEEN_MEM);
188 }
189 
190 static void jit_fill_hole(void *area, unsigned int size)
191 {
192 	u32 *ptr;
193 	/* We are guaranteed to have aligned memory. */
194 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
195 		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
196 }
197 
198 static void build_prologue(struct jit_ctx *ctx)
199 {
200 	u16 reg_set = saved_regs(ctx);
201 	u16 off;
202 
203 #ifdef CONFIG_FRAME_POINTER
204 	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
205 	emit(ARM_PUSH(reg_set), ctx);
206 	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
207 #else
208 	if (reg_set)
209 		emit(ARM_PUSH(reg_set), ctx);
210 #endif
211 
212 	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
213 		emit(ARM_MOV_R(r_skb, ARM_R0), ctx);
214 
215 	if (ctx->seen & SEEN_DATA) {
216 		off = offsetof(struct sk_buff, data);
217 		emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx);
218 		/* headlen = len - data_len */
219 		off = offsetof(struct sk_buff, len);
220 		emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx);
221 		off = offsetof(struct sk_buff, data_len);
222 		emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
223 		emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx);
224 	}
225 
226 	if (ctx->flags & FLAG_NEED_X_RESET)
227 		emit(ARM_MOV_I(r_X, 0), ctx);
228 
229 	/* do not leak kernel data to userspace */
230 	if (bpf_needs_clear_a(&ctx->skf->insns[0]))
231 		emit(ARM_MOV_I(r_A, 0), ctx);
232 
233 	/* stack space for the BPF_MEM words */
234 	if (ctx->seen & SEEN_MEM)
235 		emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
236 }
237 
238 static void build_epilogue(struct jit_ctx *ctx)
239 {
240 	u16 reg_set = saved_regs(ctx);
241 
242 	if (ctx->seen & SEEN_MEM)
243 		emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
244 
245 	reg_set &= ~(1 << ARM_LR);
246 
247 #ifdef CONFIG_FRAME_POINTER
248 	/* the first instruction of the prologue was: mov ip, sp */
249 	reg_set &= ~(1 << ARM_IP);
250 	reg_set |= (1 << ARM_SP);
251 	emit(ARM_LDM(ARM_SP, reg_set), ctx);
252 #else
253 	if (reg_set) {
254 		if (ctx->seen & SEEN_CALL)
255 			reg_set |= 1 << ARM_PC;
256 		emit(ARM_POP(reg_set), ctx);
257 	}
258 
259 	if (!(ctx->seen & SEEN_CALL))
260 		emit(ARM_BX(ARM_LR), ctx);
261 #endif
262 }
263 
264 static int16_t imm8m(u32 x)
265 {
266 	u32 rot;
267 
268 	for (rot = 0; rot < 16; rot++)
269 		if ((x & ~ror32(0xff, 2 * rot)) == 0)
270 			return rol32(x, 2 * rot) | (rot << 8);
271 
272 	return -1;
273 }
274 
275 #if __LINUX_ARM_ARCH__ < 7
276 
277 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
278 {
279 	unsigned i = 0, offset;
280 	u16 imm;
281 
282 	/* on the "fake" run we just count them (duplicates included) */
283 	if (ctx->target == NULL) {
284 		ctx->imm_count++;
285 		return 0;
286 	}
287 
288 	while ((i < ctx->imm_count) && ctx->imms[i]) {
289 		if (ctx->imms[i] == k)
290 			break;
291 		i++;
292 	}
293 
294 	if (ctx->imms[i] == 0)
295 		ctx->imms[i] = k;
296 
297 	/* constants go just after the epilogue */
298 	offset =  ctx->offsets[ctx->skf->len];
299 	offset += ctx->prologue_bytes;
300 	offset += ctx->epilogue_bytes;
301 	offset += i * 4;
302 
303 	ctx->target[offset / 4] = k;
304 
305 	/* PC in ARM mode == address of the instruction + 8 */
306 	imm = offset - (8 + ctx->idx * 4);
307 
308 	if (imm & ~0xfff) {
309 		/*
310 		 * literal pool is too far, signal it into flags. we
311 		 * can only detect it on the second pass unfortunately.
312 		 */
313 		ctx->flags |= FLAG_IMM_OVERFLOW;
314 		return 0;
315 	}
316 
317 	return imm;
318 }
319 
320 #endif /* __LINUX_ARM_ARCH__ */
321 
322 /*
323  * Move an immediate that's not an imm8m to a core register.
324  */
325 static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx)
326 {
327 #if __LINUX_ARM_ARCH__ < 7
328 	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
329 #else
330 	emit(ARM_MOVW(rd, val & 0xffff), ctx);
331 	if (val > 0xffff)
332 		emit(ARM_MOVT(rd, val >> 16), ctx);
333 #endif
334 }
335 
336 static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx)
337 {
338 	int imm12 = imm8m(val);
339 
340 	if (imm12 >= 0)
341 		emit(ARM_MOV_I(rd, imm12), ctx);
342 	else
343 		emit_mov_i_no8m(rd, val, ctx);
344 }
345 
346 #if __LINUX_ARM_ARCH__ < 6
347 
348 static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
349 {
350 	_emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx);
351 	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
352 	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx);
353 	_emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx);
354 	_emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx);
355 	_emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx);
356 	_emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx);
357 	_emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx);
358 }
359 
360 static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
361 {
362 	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
363 	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx);
364 	_emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx);
365 }
366 
367 static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx)
368 {
369 	/* r_dst = (r_src << 8) | (r_src >> 8) */
370 	emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx);
371 	emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx);
372 
373 	/*
374 	 * we need to mask out the bits set in r_dst[23:16] due to
375 	 * the first shift instruction.
376 	 *
377 	 * note that 0x8ff is the encoded immediate 0x00ff0000.
378 	 */
379 	emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx);
380 }
381 
382 #else  /* ARMv6+ */
383 
384 static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
385 {
386 	_emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx);
387 #ifdef __LITTLE_ENDIAN
388 	_emit(cond, ARM_REV(r_res, r_res), ctx);
389 #endif
390 }
391 
392 static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
393 {
394 	_emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx);
395 #ifdef __LITTLE_ENDIAN
396 	_emit(cond, ARM_REV16(r_res, r_res), ctx);
397 #endif
398 }
399 
400 static inline void emit_swap16(u8 r_dst __maybe_unused,
401 			       u8 r_src __maybe_unused,
402 			       struct jit_ctx *ctx __maybe_unused)
403 {
404 #ifdef __LITTLE_ENDIAN
405 	emit(ARM_REV16(r_dst, r_src), ctx);
406 #endif
407 }
408 
409 #endif /* __LINUX_ARM_ARCH__ < 6 */
410 
411 
412 /* Compute the immediate value for a PC-relative branch. */
413 static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx)
414 {
415 	u32 imm;
416 
417 	if (ctx->target == NULL)
418 		return 0;
419 	/*
420 	 * BPF allows only forward jumps and the offset of the target is
421 	 * still the one computed during the first pass.
422 	 */
423 	imm  = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8);
424 
425 	return imm >> 2;
426 }
427 
428 #define OP_IMM3(op, r1, r2, imm_val, ctx)				\
429 	do {								\
430 		imm12 = imm8m(imm_val);					\
431 		if (imm12 < 0) {					\
432 			emit_mov_i_no8m(r_scratch, imm_val, ctx);	\
433 			emit(op ## _R((r1), (r2), r_scratch), ctx);	\
434 		} else {						\
435 			emit(op ## _I((r1), (r2), imm12), ctx);		\
436 		}							\
437 	} while (0)
438 
439 static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx)
440 {
441 	if (ctx->ret0_fp_idx >= 0) {
442 		_emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx);
443 		/* NOP to keep the size constant between passes */
444 		emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx);
445 	} else {
446 		_emit(cond, ARM_MOV_I(ARM_R0, 0), ctx);
447 		_emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx);
448 	}
449 }
450 
451 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
452 {
453 #if __LINUX_ARM_ARCH__ < 5
454 	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
455 
456 	if (elf_hwcap & HWCAP_THUMB)
457 		emit(ARM_BX(tgt_reg), ctx);
458 	else
459 		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
460 #else
461 	emit(ARM_BLX_R(tgt_reg), ctx);
462 #endif
463 }
464 
465 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx,
466 				int bpf_op)
467 {
468 #if __LINUX_ARM_ARCH__ == 7
469 	if (elf_hwcap & HWCAP_IDIVA) {
470 		if (bpf_op == BPF_DIV)
471 			emit(ARM_UDIV(rd, rm, rn), ctx);
472 		else {
473 			emit(ARM_UDIV(ARM_R3, rm, rn), ctx);
474 			emit(ARM_MLS(rd, rn, ARM_R3, rm), ctx);
475 		}
476 		return;
477 	}
478 #endif
479 
480 	/*
481 	 * For BPF_ALU | BPF_DIV | BPF_K instructions, rm is ARM_R4
482 	 * (r_A) and rn is ARM_R0 (r_scratch) so load rn first into
483 	 * ARM_R1 to avoid accidentally overwriting ARM_R0 with rm
484 	 * before using it as a source for ARM_R1.
485 	 *
486 	 * For BPF_ALU | BPF_DIV | BPF_X rm is ARM_R4 (r_A) and rn is
487 	 * ARM_R5 (r_X) so there is no particular register overlap
488 	 * issues.
489 	 */
490 	if (rn != ARM_R1)
491 		emit(ARM_MOV_R(ARM_R1, rn), ctx);
492 	if (rm != ARM_R0)
493 		emit(ARM_MOV_R(ARM_R0, rm), ctx);
494 
495 	ctx->seen |= SEEN_CALL;
496 	emit_mov_i(ARM_R3, bpf_op == BPF_DIV ? (u32)jit_udiv : (u32)jit_mod,
497 		   ctx);
498 	emit_blx_r(ARM_R3, ctx);
499 
500 	if (rd != ARM_R0)
501 		emit(ARM_MOV_R(rd, ARM_R0), ctx);
502 }
503 
504 static inline void update_on_xread(struct jit_ctx *ctx)
505 {
506 	if (!(ctx->seen & SEEN_X))
507 		ctx->flags |= FLAG_NEED_X_RESET;
508 
509 	ctx->seen |= SEEN_X;
510 }
511 
512 static int build_body(struct jit_ctx *ctx)
513 {
514 	void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
515 	const struct bpf_prog *prog = ctx->skf;
516 	const struct sock_filter *inst;
517 	unsigned i, load_order, off, condt;
518 	int imm12;
519 	u32 k;
520 
521 	for (i = 0; i < prog->len; i++) {
522 		u16 code;
523 
524 		inst = &(prog->insns[i]);
525 		/* K as an immediate value operand */
526 		k = inst->k;
527 		code = bpf_anc_helper(inst);
528 
529 		/* compute offsets only in the fake pass */
530 		if (ctx->target == NULL)
531 			ctx->offsets[i] = ctx->idx * 4;
532 
533 		switch (code) {
534 		case BPF_LD | BPF_IMM:
535 			emit_mov_i(r_A, k, ctx);
536 			break;
537 		case BPF_LD | BPF_W | BPF_LEN:
538 			ctx->seen |= SEEN_SKB;
539 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
540 			emit(ARM_LDR_I(r_A, r_skb,
541 				       offsetof(struct sk_buff, len)), ctx);
542 			break;
543 		case BPF_LD | BPF_MEM:
544 			/* A = scratch[k] */
545 			ctx->seen |= SEEN_MEM_WORD(k);
546 			emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
547 			break;
548 		case BPF_LD | BPF_W | BPF_ABS:
549 			load_order = 2;
550 			goto load;
551 		case BPF_LD | BPF_H | BPF_ABS:
552 			load_order = 1;
553 			goto load;
554 		case BPF_LD | BPF_B | BPF_ABS:
555 			load_order = 0;
556 load:
557 			emit_mov_i(r_off, k, ctx);
558 load_common:
559 			ctx->seen |= SEEN_DATA | SEEN_CALL;
560 
561 			if (load_order > 0) {
562 				emit(ARM_SUB_I(r_scratch, r_skb_hl,
563 					       1 << load_order), ctx);
564 				emit(ARM_CMP_R(r_scratch, r_off), ctx);
565 				condt = ARM_COND_GE;
566 			} else {
567 				emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
568 				condt = ARM_COND_HI;
569 			}
570 
571 			/*
572 			 * test for negative offset, only if we are
573 			 * currently scheduled to take the fast
574 			 * path. this will update the flags so that
575 			 * the slowpath instruction are ignored if the
576 			 * offset is negative.
577 			 *
578 			 * for loard_order == 0 the HI condition will
579 			 * make loads at offset 0 take the slow path too.
580 			 */
581 			_emit(condt, ARM_CMP_I(r_off, 0), ctx);
582 
583 			_emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data),
584 			      ctx);
585 
586 			if (load_order == 0)
587 				_emit(condt, ARM_LDRB_I(r_A, r_scratch, 0),
588 				      ctx);
589 			else if (load_order == 1)
590 				emit_load_be16(condt, r_A, r_scratch, ctx);
591 			else if (load_order == 2)
592 				emit_load_be32(condt, r_A, r_scratch, ctx);
593 
594 			_emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx);
595 
596 			/* the slowpath */
597 			emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx);
598 			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
599 			/* the offset is already in R1 */
600 			emit_blx_r(ARM_R3, ctx);
601 			/* check the result of skb_copy_bits */
602 			emit(ARM_CMP_I(ARM_R1, 0), ctx);
603 			emit_err_ret(ARM_COND_NE, ctx);
604 			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
605 			break;
606 		case BPF_LD | BPF_W | BPF_IND:
607 			load_order = 2;
608 			goto load_ind;
609 		case BPF_LD | BPF_H | BPF_IND:
610 			load_order = 1;
611 			goto load_ind;
612 		case BPF_LD | BPF_B | BPF_IND:
613 			load_order = 0;
614 load_ind:
615 			update_on_xread(ctx);
616 			OP_IMM3(ARM_ADD, r_off, r_X, k, ctx);
617 			goto load_common;
618 		case BPF_LDX | BPF_IMM:
619 			ctx->seen |= SEEN_X;
620 			emit_mov_i(r_X, k, ctx);
621 			break;
622 		case BPF_LDX | BPF_W | BPF_LEN:
623 			ctx->seen |= SEEN_X | SEEN_SKB;
624 			emit(ARM_LDR_I(r_X, r_skb,
625 				       offsetof(struct sk_buff, len)), ctx);
626 			break;
627 		case BPF_LDX | BPF_MEM:
628 			ctx->seen |= SEEN_X | SEEN_MEM_WORD(k);
629 			emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
630 			break;
631 		case BPF_LDX | BPF_B | BPF_MSH:
632 			/* x = ((*(frame + k)) & 0xf) << 2; */
633 			ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL;
634 			/* the interpreter should deal with the negative K */
635 			if ((int)k < 0)
636 				return -1;
637 			/* offset in r1: we might have to take the slow path */
638 			emit_mov_i(r_off, k, ctx);
639 			emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
640 
641 			/* load in r0: common with the slowpath */
642 			_emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data,
643 						      ARM_R1), ctx);
644 			/*
645 			 * emit_mov_i() might generate one or two instructions,
646 			 * the same holds for emit_blx_r()
647 			 */
648 			_emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx);
649 
650 			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
651 			/* r_off is r1 */
652 			emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx);
653 			emit_blx_r(ARM_R3, ctx);
654 			/* check the return value of skb_copy_bits */
655 			emit(ARM_CMP_I(ARM_R1, 0), ctx);
656 			emit_err_ret(ARM_COND_NE, ctx);
657 
658 			emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx);
659 			emit(ARM_LSL_I(r_X, r_X, 2), ctx);
660 			break;
661 		case BPF_ST:
662 			ctx->seen |= SEEN_MEM_WORD(k);
663 			emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
664 			break;
665 		case BPF_STX:
666 			update_on_xread(ctx);
667 			ctx->seen |= SEEN_MEM_WORD(k);
668 			emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
669 			break;
670 		case BPF_ALU | BPF_ADD | BPF_K:
671 			/* A += K */
672 			OP_IMM3(ARM_ADD, r_A, r_A, k, ctx);
673 			break;
674 		case BPF_ALU | BPF_ADD | BPF_X:
675 			update_on_xread(ctx);
676 			emit(ARM_ADD_R(r_A, r_A, r_X), ctx);
677 			break;
678 		case BPF_ALU | BPF_SUB | BPF_K:
679 			/* A -= K */
680 			OP_IMM3(ARM_SUB, r_A, r_A, k, ctx);
681 			break;
682 		case BPF_ALU | BPF_SUB | BPF_X:
683 			update_on_xread(ctx);
684 			emit(ARM_SUB_R(r_A, r_A, r_X), ctx);
685 			break;
686 		case BPF_ALU | BPF_MUL | BPF_K:
687 			/* A *= K */
688 			emit_mov_i(r_scratch, k, ctx);
689 			emit(ARM_MUL(r_A, r_A, r_scratch), ctx);
690 			break;
691 		case BPF_ALU | BPF_MUL | BPF_X:
692 			update_on_xread(ctx);
693 			emit(ARM_MUL(r_A, r_A, r_X), ctx);
694 			break;
695 		case BPF_ALU | BPF_DIV | BPF_K:
696 			if (k == 1)
697 				break;
698 			emit_mov_i(r_scratch, k, ctx);
699 			emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_DIV);
700 			break;
701 		case BPF_ALU | BPF_DIV | BPF_X:
702 			update_on_xread(ctx);
703 			emit(ARM_CMP_I(r_X, 0), ctx);
704 			emit_err_ret(ARM_COND_EQ, ctx);
705 			emit_udivmod(r_A, r_A, r_X, ctx, BPF_DIV);
706 			break;
707 		case BPF_ALU | BPF_MOD | BPF_K:
708 			if (k == 1) {
709 				emit_mov_i(r_A, 0, ctx);
710 				break;
711 			}
712 			emit_mov_i(r_scratch, k, ctx);
713 			emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_MOD);
714 			break;
715 		case BPF_ALU | BPF_MOD | BPF_X:
716 			update_on_xread(ctx);
717 			emit(ARM_CMP_I(r_X, 0), ctx);
718 			emit_err_ret(ARM_COND_EQ, ctx);
719 			emit_udivmod(r_A, r_A, r_X, ctx, BPF_MOD);
720 			break;
721 		case BPF_ALU | BPF_OR | BPF_K:
722 			/* A |= K */
723 			OP_IMM3(ARM_ORR, r_A, r_A, k, ctx);
724 			break;
725 		case BPF_ALU | BPF_OR | BPF_X:
726 			update_on_xread(ctx);
727 			emit(ARM_ORR_R(r_A, r_A, r_X), ctx);
728 			break;
729 		case BPF_ALU | BPF_XOR | BPF_K:
730 			/* A ^= K; */
731 			OP_IMM3(ARM_EOR, r_A, r_A, k, ctx);
732 			break;
733 		case BPF_ANC | SKF_AD_ALU_XOR_X:
734 		case BPF_ALU | BPF_XOR | BPF_X:
735 			/* A ^= X */
736 			update_on_xread(ctx);
737 			emit(ARM_EOR_R(r_A, r_A, r_X), ctx);
738 			break;
739 		case BPF_ALU | BPF_AND | BPF_K:
740 			/* A &= K */
741 			OP_IMM3(ARM_AND, r_A, r_A, k, ctx);
742 			break;
743 		case BPF_ALU | BPF_AND | BPF_X:
744 			update_on_xread(ctx);
745 			emit(ARM_AND_R(r_A, r_A, r_X), ctx);
746 			break;
747 		case BPF_ALU | BPF_LSH | BPF_K:
748 			if (unlikely(k > 31))
749 				return -1;
750 			emit(ARM_LSL_I(r_A, r_A, k), ctx);
751 			break;
752 		case BPF_ALU | BPF_LSH | BPF_X:
753 			update_on_xread(ctx);
754 			emit(ARM_LSL_R(r_A, r_A, r_X), ctx);
755 			break;
756 		case BPF_ALU | BPF_RSH | BPF_K:
757 			if (unlikely(k > 31))
758 				return -1;
759 			if (k)
760 				emit(ARM_LSR_I(r_A, r_A, k), ctx);
761 			break;
762 		case BPF_ALU | BPF_RSH | BPF_X:
763 			update_on_xread(ctx);
764 			emit(ARM_LSR_R(r_A, r_A, r_X), ctx);
765 			break;
766 		case BPF_ALU | BPF_NEG:
767 			/* A = -A */
768 			emit(ARM_RSB_I(r_A, r_A, 0), ctx);
769 			break;
770 		case BPF_JMP | BPF_JA:
771 			/* pc += K */
772 			emit(ARM_B(b_imm(i + k + 1, ctx)), ctx);
773 			break;
774 		case BPF_JMP | BPF_JEQ | BPF_K:
775 			/* pc += (A == K) ? pc->jt : pc->jf */
776 			condt  = ARM_COND_EQ;
777 			goto cmp_imm;
778 		case BPF_JMP | BPF_JGT | BPF_K:
779 			/* pc += (A > K) ? pc->jt : pc->jf */
780 			condt  = ARM_COND_HI;
781 			goto cmp_imm;
782 		case BPF_JMP | BPF_JGE | BPF_K:
783 			/* pc += (A >= K) ? pc->jt : pc->jf */
784 			condt  = ARM_COND_HS;
785 cmp_imm:
786 			imm12 = imm8m(k);
787 			if (imm12 < 0) {
788 				emit_mov_i_no8m(r_scratch, k, ctx);
789 				emit(ARM_CMP_R(r_A, r_scratch), ctx);
790 			} else {
791 				emit(ARM_CMP_I(r_A, imm12), ctx);
792 			}
793 cond_jump:
794 			if (inst->jt)
795 				_emit(condt, ARM_B(b_imm(i + inst->jt + 1,
796 						   ctx)), ctx);
797 			if (inst->jf)
798 				_emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1,
799 							     ctx)), ctx);
800 			break;
801 		case BPF_JMP | BPF_JEQ | BPF_X:
802 			/* pc += (A == X) ? pc->jt : pc->jf */
803 			condt   = ARM_COND_EQ;
804 			goto cmp_x;
805 		case BPF_JMP | BPF_JGT | BPF_X:
806 			/* pc += (A > X) ? pc->jt : pc->jf */
807 			condt   = ARM_COND_HI;
808 			goto cmp_x;
809 		case BPF_JMP | BPF_JGE | BPF_X:
810 			/* pc += (A >= X) ? pc->jt : pc->jf */
811 			condt   = ARM_COND_CS;
812 cmp_x:
813 			update_on_xread(ctx);
814 			emit(ARM_CMP_R(r_A, r_X), ctx);
815 			goto cond_jump;
816 		case BPF_JMP | BPF_JSET | BPF_K:
817 			/* pc += (A & K) ? pc->jt : pc->jf */
818 			condt  = ARM_COND_NE;
819 			/* not set iff all zeroes iff Z==1 iff EQ */
820 
821 			imm12 = imm8m(k);
822 			if (imm12 < 0) {
823 				emit_mov_i_no8m(r_scratch, k, ctx);
824 				emit(ARM_TST_R(r_A, r_scratch), ctx);
825 			} else {
826 				emit(ARM_TST_I(r_A, imm12), ctx);
827 			}
828 			goto cond_jump;
829 		case BPF_JMP | BPF_JSET | BPF_X:
830 			/* pc += (A & X) ? pc->jt : pc->jf */
831 			update_on_xread(ctx);
832 			condt  = ARM_COND_NE;
833 			emit(ARM_TST_R(r_A, r_X), ctx);
834 			goto cond_jump;
835 		case BPF_RET | BPF_A:
836 			emit(ARM_MOV_R(ARM_R0, r_A), ctx);
837 			goto b_epilogue;
838 		case BPF_RET | BPF_K:
839 			if ((k == 0) && (ctx->ret0_fp_idx < 0))
840 				ctx->ret0_fp_idx = i;
841 			emit_mov_i(ARM_R0, k, ctx);
842 b_epilogue:
843 			if (i != ctx->skf->len - 1)
844 				emit(ARM_B(b_imm(prog->len, ctx)), ctx);
845 			break;
846 		case BPF_MISC | BPF_TAX:
847 			/* X = A */
848 			ctx->seen |= SEEN_X;
849 			emit(ARM_MOV_R(r_X, r_A), ctx);
850 			break;
851 		case BPF_MISC | BPF_TXA:
852 			/* A = X */
853 			update_on_xread(ctx);
854 			emit(ARM_MOV_R(r_A, r_X), ctx);
855 			break;
856 		case BPF_ANC | SKF_AD_PROTOCOL:
857 			/* A = ntohs(skb->protocol) */
858 			ctx->seen |= SEEN_SKB;
859 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
860 						  protocol) != 2);
861 			off = offsetof(struct sk_buff, protocol);
862 			emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx);
863 			emit_swap16(r_A, r_scratch, ctx);
864 			break;
865 		case BPF_ANC | SKF_AD_CPU:
866 			/* r_scratch = current_thread_info() */
867 			OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx);
868 			/* A = current_thread_info()->cpu */
869 			BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4);
870 			off = offsetof(struct thread_info, cpu);
871 			emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
872 			break;
873 		case BPF_ANC | SKF_AD_IFINDEX:
874 		case BPF_ANC | SKF_AD_HATYPE:
875 			/* A = skb->dev->ifindex */
876 			/* A = skb->dev->type */
877 			ctx->seen |= SEEN_SKB;
878 			off = offsetof(struct sk_buff, dev);
879 			emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
880 
881 			emit(ARM_CMP_I(r_scratch, 0), ctx);
882 			emit_err_ret(ARM_COND_EQ, ctx);
883 
884 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
885 						  ifindex) != 4);
886 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
887 						  type) != 2);
888 
889 			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
890 				off = offsetof(struct net_device, ifindex);
891 				emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
892 			} else {
893 				/*
894 				 * offset of field "type" in "struct
895 				 * net_device" is above what can be
896 				 * used in the ldrh rd, [rn, #imm]
897 				 * instruction, so load the offset in
898 				 * a register and use ldrh rd, [rn, rm]
899 				 */
900 				off = offsetof(struct net_device, type);
901 				emit_mov_i(ARM_R3, off, ctx);
902 				emit(ARM_LDRH_R(r_A, r_scratch, ARM_R3), ctx);
903 			}
904 			break;
905 		case BPF_ANC | SKF_AD_MARK:
906 			ctx->seen |= SEEN_SKB;
907 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
908 			off = offsetof(struct sk_buff, mark);
909 			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
910 			break;
911 		case BPF_ANC | SKF_AD_RXHASH:
912 			ctx->seen |= SEEN_SKB;
913 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
914 			off = offsetof(struct sk_buff, hash);
915 			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
916 			break;
917 		case BPF_ANC | SKF_AD_VLAN_TAG:
918 		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
919 			ctx->seen |= SEEN_SKB;
920 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
921 			off = offsetof(struct sk_buff, vlan_tci);
922 			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
923 			if (code == (BPF_ANC | SKF_AD_VLAN_TAG))
924 				OP_IMM3(ARM_AND, r_A, r_A, ~VLAN_TAG_PRESENT, ctx);
925 			else {
926 				OP_IMM3(ARM_LSR, r_A, r_A, 12, ctx);
927 				OP_IMM3(ARM_AND, r_A, r_A, 0x1, ctx);
928 			}
929 			break;
930 		case BPF_ANC | SKF_AD_PKTTYPE:
931 			ctx->seen |= SEEN_SKB;
932 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
933 						  __pkt_type_offset[0]) != 1);
934 			off = PKT_TYPE_OFFSET();
935 			emit(ARM_LDRB_I(r_A, r_skb, off), ctx);
936 			emit(ARM_AND_I(r_A, r_A, PKT_TYPE_MAX), ctx);
937 #ifdef __BIG_ENDIAN_BITFIELD
938 			emit(ARM_LSR_I(r_A, r_A, 5), ctx);
939 #endif
940 			break;
941 		case BPF_ANC | SKF_AD_QUEUE:
942 			ctx->seen |= SEEN_SKB;
943 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
944 						  queue_mapping) != 2);
945 			BUILD_BUG_ON(offsetof(struct sk_buff,
946 					      queue_mapping) > 0xff);
947 			off = offsetof(struct sk_buff, queue_mapping);
948 			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
949 			break;
950 		case BPF_ANC | SKF_AD_PAY_OFFSET:
951 			ctx->seen |= SEEN_SKB | SEEN_CALL;
952 
953 			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
954 			emit_mov_i(ARM_R3, (unsigned int)skb_get_poff, ctx);
955 			emit_blx_r(ARM_R3, ctx);
956 			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
957 			break;
958 		case BPF_LDX | BPF_W | BPF_ABS:
959 			/*
960 			 * load a 32bit word from struct seccomp_data.
961 			 * seccomp_check_filter() will already have checked
962 			 * that k is 32bit aligned and lies within the
963 			 * struct seccomp_data.
964 			 */
965 			ctx->seen |= SEEN_SKB;
966 			emit(ARM_LDR_I(r_A, r_skb, k), ctx);
967 			break;
968 		default:
969 			return -1;
970 		}
971 
972 		if (ctx->flags & FLAG_IMM_OVERFLOW)
973 			/*
974 			 * this instruction generated an overflow when
975 			 * trying to access the literal pool, so
976 			 * delegate this filter to the kernel interpreter.
977 			 */
978 			return -1;
979 	}
980 
981 	/* compute offsets only during the first pass */
982 	if (ctx->target == NULL)
983 		ctx->offsets[i] = ctx->idx * 4;
984 
985 	return 0;
986 }
987 
988 
989 void bpf_jit_compile(struct bpf_prog *fp)
990 {
991 	struct bpf_binary_header *header;
992 	struct jit_ctx ctx;
993 	unsigned tmp_idx;
994 	unsigned alloc_size;
995 	u8 *target_ptr;
996 
997 	if (!bpf_jit_enable)
998 		return;
999 
1000 	memset(&ctx, 0, sizeof(ctx));
1001 	ctx.skf		= fp;
1002 	ctx.ret0_fp_idx = -1;
1003 
1004 	ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL);
1005 	if (ctx.offsets == NULL)
1006 		return;
1007 
1008 	/* fake pass to fill in the ctx->seen */
1009 	if (unlikely(build_body(&ctx)))
1010 		goto out;
1011 
1012 	tmp_idx = ctx.idx;
1013 	build_prologue(&ctx);
1014 	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1015 
1016 #if __LINUX_ARM_ARCH__ < 7
1017 	tmp_idx = ctx.idx;
1018 	build_epilogue(&ctx);
1019 	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1020 
1021 	ctx.idx += ctx.imm_count;
1022 	if (ctx.imm_count) {
1023 		ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL);
1024 		if (ctx.imms == NULL)
1025 			goto out;
1026 	}
1027 #else
1028 	/* there's nothing after the epilogue on ARMv7 */
1029 	build_epilogue(&ctx);
1030 #endif
1031 	alloc_size = 4 * ctx.idx;
1032 	header = bpf_jit_binary_alloc(alloc_size, &target_ptr,
1033 				      4, jit_fill_hole);
1034 	if (header == NULL)
1035 		goto out;
1036 
1037 	ctx.target = (u32 *) target_ptr;
1038 	ctx.idx = 0;
1039 
1040 	build_prologue(&ctx);
1041 	if (build_body(&ctx) < 0) {
1042 #if __LINUX_ARM_ARCH__ < 7
1043 		if (ctx.imm_count)
1044 			kfree(ctx.imms);
1045 #endif
1046 		bpf_jit_binary_free(header);
1047 		goto out;
1048 	}
1049 	build_epilogue(&ctx);
1050 
1051 	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1052 
1053 #if __LINUX_ARM_ARCH__ < 7
1054 	if (ctx.imm_count)
1055 		kfree(ctx.imms);
1056 #endif
1057 
1058 	if (bpf_jit_enable > 1)
1059 		/* there are 2 passes here */
1060 		bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1061 
1062 	set_memory_ro((unsigned long)header, header->pages);
1063 	fp->bpf_func = (void *)ctx.target;
1064 	fp->jited = 1;
1065 out:
1066 	kfree(ctx.offsets);
1067 	return;
1068 }
1069 
1070 void bpf_jit_free(struct bpf_prog *fp)
1071 {
1072 	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1073 	struct bpf_binary_header *header = (void *)addr;
1074 
1075 	if (!fp->jited)
1076 		goto free_filter;
1077 
1078 	set_memory_rw(addr, header->pages);
1079 	bpf_jit_binary_free(header);
1080 
1081 free_filter:
1082 	bpf_prog_unlock_free(fp);
1083 }
1084