xref: /openbmc/linux/arch/arm/mm/mmu.c (revision f7777dcc)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20 
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31 
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35 
36 #include "mm.h"
37 #include "tcm.h"
38 
39 /*
40  * empty_zero_page is a special page that is used for
41  * zero-initialized data and COW.
42  */
43 struct page *empty_zero_page;
44 EXPORT_SYMBOL(empty_zero_page);
45 
46 /*
47  * The pmd table for the upper-most set of pages.
48  */
49 pmd_t *top_pmd;
50 
51 #define CPOLICY_UNCACHED	0
52 #define CPOLICY_BUFFERED	1
53 #define CPOLICY_WRITETHROUGH	2
54 #define CPOLICY_WRITEBACK	3
55 #define CPOLICY_WRITEALLOC	4
56 
57 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
58 static unsigned int ecc_mask __initdata = 0;
59 pgprot_t pgprot_user;
60 pgprot_t pgprot_kernel;
61 pgprot_t pgprot_hyp_device;
62 pgprot_t pgprot_s2;
63 pgprot_t pgprot_s2_device;
64 
65 EXPORT_SYMBOL(pgprot_user);
66 EXPORT_SYMBOL(pgprot_kernel);
67 
68 struct cachepolicy {
69 	const char	policy[16];
70 	unsigned int	cr_mask;
71 	pmdval_t	pmd;
72 	pteval_t	pte;
73 	pteval_t	pte_s2;
74 };
75 
76 #ifdef CONFIG_ARM_LPAE
77 #define s2_policy(policy)	policy
78 #else
79 #define s2_policy(policy)	0
80 #endif
81 
82 static struct cachepolicy cache_policies[] __initdata = {
83 	{
84 		.policy		= "uncached",
85 		.cr_mask	= CR_W|CR_C,
86 		.pmd		= PMD_SECT_UNCACHED,
87 		.pte		= L_PTE_MT_UNCACHED,
88 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
89 	}, {
90 		.policy		= "buffered",
91 		.cr_mask	= CR_C,
92 		.pmd		= PMD_SECT_BUFFERED,
93 		.pte		= L_PTE_MT_BUFFERABLE,
94 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
95 	}, {
96 		.policy		= "writethrough",
97 		.cr_mask	= 0,
98 		.pmd		= PMD_SECT_WT,
99 		.pte		= L_PTE_MT_WRITETHROUGH,
100 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
101 	}, {
102 		.policy		= "writeback",
103 		.cr_mask	= 0,
104 		.pmd		= PMD_SECT_WB,
105 		.pte		= L_PTE_MT_WRITEBACK,
106 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
107 	}, {
108 		.policy		= "writealloc",
109 		.cr_mask	= 0,
110 		.pmd		= PMD_SECT_WBWA,
111 		.pte		= L_PTE_MT_WRITEALLOC,
112 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
113 	}
114 };
115 
116 #ifdef CONFIG_CPU_CP15
117 /*
118  * These are useful for identifying cache coherency
119  * problems by allowing the cache or the cache and
120  * writebuffer to be turned off.  (Note: the write
121  * buffer should not be on and the cache off).
122  */
123 static int __init early_cachepolicy(char *p)
124 {
125 	int i;
126 
127 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
128 		int len = strlen(cache_policies[i].policy);
129 
130 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
131 			cachepolicy = i;
132 			cr_alignment &= ~cache_policies[i].cr_mask;
133 			cr_no_alignment &= ~cache_policies[i].cr_mask;
134 			break;
135 		}
136 	}
137 	if (i == ARRAY_SIZE(cache_policies))
138 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
139 	/*
140 	 * This restriction is partly to do with the way we boot; it is
141 	 * unpredictable to have memory mapped using two different sets of
142 	 * memory attributes (shared, type, and cache attribs).  We can not
143 	 * change these attributes once the initial assembly has setup the
144 	 * page tables.
145 	 */
146 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
147 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
148 		cachepolicy = CPOLICY_WRITEBACK;
149 	}
150 	flush_cache_all();
151 	set_cr(cr_alignment);
152 	return 0;
153 }
154 early_param("cachepolicy", early_cachepolicy);
155 
156 static int __init early_nocache(char *__unused)
157 {
158 	char *p = "buffered";
159 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
160 	early_cachepolicy(p);
161 	return 0;
162 }
163 early_param("nocache", early_nocache);
164 
165 static int __init early_nowrite(char *__unused)
166 {
167 	char *p = "uncached";
168 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
169 	early_cachepolicy(p);
170 	return 0;
171 }
172 early_param("nowb", early_nowrite);
173 
174 #ifndef CONFIG_ARM_LPAE
175 static int __init early_ecc(char *p)
176 {
177 	if (memcmp(p, "on", 2) == 0)
178 		ecc_mask = PMD_PROTECTION;
179 	else if (memcmp(p, "off", 3) == 0)
180 		ecc_mask = 0;
181 	return 0;
182 }
183 early_param("ecc", early_ecc);
184 #endif
185 
186 static int __init noalign_setup(char *__unused)
187 {
188 	cr_alignment &= ~CR_A;
189 	cr_no_alignment &= ~CR_A;
190 	set_cr(cr_alignment);
191 	return 1;
192 }
193 __setup("noalign", noalign_setup);
194 
195 #ifndef CONFIG_SMP
196 void adjust_cr(unsigned long mask, unsigned long set)
197 {
198 	unsigned long flags;
199 
200 	mask &= ~CR_A;
201 
202 	set &= mask;
203 
204 	local_irq_save(flags);
205 
206 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
207 	cr_alignment = (cr_alignment & ~mask) | set;
208 
209 	set_cr((get_cr() & ~mask) | set);
210 
211 	local_irq_restore(flags);
212 }
213 #endif
214 
215 #else /* ifdef CONFIG_CPU_CP15 */
216 
217 static int __init early_cachepolicy(char *p)
218 {
219 	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
220 }
221 early_param("cachepolicy", early_cachepolicy);
222 
223 static int __init noalign_setup(char *__unused)
224 {
225 	pr_warning("noalign kernel parameter not supported without cp15\n");
226 }
227 __setup("noalign", noalign_setup);
228 
229 #endif /* ifdef CONFIG_CPU_CP15 / else */
230 
231 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
232 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
233 
234 static struct mem_type mem_types[] = {
235 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
236 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
237 				  L_PTE_SHARED,
238 		.prot_l1	= PMD_TYPE_TABLE,
239 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
240 		.domain		= DOMAIN_IO,
241 	},
242 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
243 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
244 		.prot_l1	= PMD_TYPE_TABLE,
245 		.prot_sect	= PROT_SECT_DEVICE,
246 		.domain		= DOMAIN_IO,
247 	},
248 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
249 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
250 		.prot_l1	= PMD_TYPE_TABLE,
251 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
252 		.domain		= DOMAIN_IO,
253 	},
254 	[MT_DEVICE_WC] = {	/* ioremap_wc */
255 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
256 		.prot_l1	= PMD_TYPE_TABLE,
257 		.prot_sect	= PROT_SECT_DEVICE,
258 		.domain		= DOMAIN_IO,
259 	},
260 	[MT_UNCACHED] = {
261 		.prot_pte	= PROT_PTE_DEVICE,
262 		.prot_l1	= PMD_TYPE_TABLE,
263 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
264 		.domain		= DOMAIN_IO,
265 	},
266 	[MT_CACHECLEAN] = {
267 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
268 		.domain    = DOMAIN_KERNEL,
269 	},
270 #ifndef CONFIG_ARM_LPAE
271 	[MT_MINICLEAN] = {
272 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
273 		.domain    = DOMAIN_KERNEL,
274 	},
275 #endif
276 	[MT_LOW_VECTORS] = {
277 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
278 				L_PTE_RDONLY,
279 		.prot_l1   = PMD_TYPE_TABLE,
280 		.domain    = DOMAIN_USER,
281 	},
282 	[MT_HIGH_VECTORS] = {
283 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
284 				L_PTE_USER | L_PTE_RDONLY,
285 		.prot_l1   = PMD_TYPE_TABLE,
286 		.domain    = DOMAIN_USER,
287 	},
288 	[MT_MEMORY] = {
289 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
290 		.prot_l1   = PMD_TYPE_TABLE,
291 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
292 		.domain    = DOMAIN_KERNEL,
293 	},
294 	[MT_ROM] = {
295 		.prot_sect = PMD_TYPE_SECT,
296 		.domain    = DOMAIN_KERNEL,
297 	},
298 	[MT_MEMORY_NONCACHED] = {
299 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
300 				L_PTE_MT_BUFFERABLE,
301 		.prot_l1   = PMD_TYPE_TABLE,
302 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
303 		.domain    = DOMAIN_KERNEL,
304 	},
305 	[MT_MEMORY_DTCM] = {
306 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
307 				L_PTE_XN,
308 		.prot_l1   = PMD_TYPE_TABLE,
309 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
310 		.domain    = DOMAIN_KERNEL,
311 	},
312 	[MT_MEMORY_ITCM] = {
313 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
314 		.prot_l1   = PMD_TYPE_TABLE,
315 		.domain    = DOMAIN_KERNEL,
316 	},
317 	[MT_MEMORY_SO] = {
318 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319 				L_PTE_MT_UNCACHED | L_PTE_XN,
320 		.prot_l1   = PMD_TYPE_TABLE,
321 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
322 				PMD_SECT_UNCACHED | PMD_SECT_XN,
323 		.domain    = DOMAIN_KERNEL,
324 	},
325 	[MT_MEMORY_DMA_READY] = {
326 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
327 		.prot_l1   = PMD_TYPE_TABLE,
328 		.domain    = DOMAIN_KERNEL,
329 	},
330 };
331 
332 const struct mem_type *get_mem_type(unsigned int type)
333 {
334 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
335 }
336 EXPORT_SYMBOL(get_mem_type);
337 
338 /*
339  * Adjust the PMD section entries according to the CPU in use.
340  */
341 static void __init build_mem_type_table(void)
342 {
343 	struct cachepolicy *cp;
344 	unsigned int cr = get_cr();
345 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
346 	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
347 	int cpu_arch = cpu_architecture();
348 	int i;
349 
350 	if (cpu_arch < CPU_ARCH_ARMv6) {
351 #if defined(CONFIG_CPU_DCACHE_DISABLE)
352 		if (cachepolicy > CPOLICY_BUFFERED)
353 			cachepolicy = CPOLICY_BUFFERED;
354 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
355 		if (cachepolicy > CPOLICY_WRITETHROUGH)
356 			cachepolicy = CPOLICY_WRITETHROUGH;
357 #endif
358 	}
359 	if (cpu_arch < CPU_ARCH_ARMv5) {
360 		if (cachepolicy >= CPOLICY_WRITEALLOC)
361 			cachepolicy = CPOLICY_WRITEBACK;
362 		ecc_mask = 0;
363 	}
364 	if (is_smp())
365 		cachepolicy = CPOLICY_WRITEALLOC;
366 
367 	/*
368 	 * Strip out features not present on earlier architectures.
369 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
370 	 * without extended page tables don't have the 'Shared' bit.
371 	 */
372 	if (cpu_arch < CPU_ARCH_ARMv5)
373 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
374 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
375 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
376 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
377 			mem_types[i].prot_sect &= ~PMD_SECT_S;
378 
379 	/*
380 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
381 	 * "update-able on write" bit on ARM610).  However, Xscale and
382 	 * Xscale3 require this bit to be cleared.
383 	 */
384 	if (cpu_is_xscale() || cpu_is_xsc3()) {
385 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
386 			mem_types[i].prot_sect &= ~PMD_BIT4;
387 			mem_types[i].prot_l1 &= ~PMD_BIT4;
388 		}
389 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
390 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
391 			if (mem_types[i].prot_l1)
392 				mem_types[i].prot_l1 |= PMD_BIT4;
393 			if (mem_types[i].prot_sect)
394 				mem_types[i].prot_sect |= PMD_BIT4;
395 		}
396 	}
397 
398 	/*
399 	 * Mark the device areas according to the CPU/architecture.
400 	 */
401 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
402 		if (!cpu_is_xsc3()) {
403 			/*
404 			 * Mark device regions on ARMv6+ as execute-never
405 			 * to prevent speculative instruction fetches.
406 			 */
407 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
408 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
409 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
410 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
411 		}
412 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
413 			/*
414 			 * For ARMv7 with TEX remapping,
415 			 * - shared device is SXCB=1100
416 			 * - nonshared device is SXCB=0100
417 			 * - write combine device mem is SXCB=0001
418 			 * (Uncached Normal memory)
419 			 */
420 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
421 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
422 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
423 		} else if (cpu_is_xsc3()) {
424 			/*
425 			 * For Xscale3,
426 			 * - shared device is TEXCB=00101
427 			 * - nonshared device is TEXCB=01000
428 			 * - write combine device mem is TEXCB=00100
429 			 * (Inner/Outer Uncacheable in xsc3 parlance)
430 			 */
431 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
432 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
433 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
434 		} else {
435 			/*
436 			 * For ARMv6 and ARMv7 without TEX remapping,
437 			 * - shared device is TEXCB=00001
438 			 * - nonshared device is TEXCB=01000
439 			 * - write combine device mem is TEXCB=00100
440 			 * (Uncached Normal in ARMv6 parlance).
441 			 */
442 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
443 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
444 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
445 		}
446 	} else {
447 		/*
448 		 * On others, write combining is "Uncached/Buffered"
449 		 */
450 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
451 	}
452 
453 	/*
454 	 * Now deal with the memory-type mappings
455 	 */
456 	cp = &cache_policies[cachepolicy];
457 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
458 	s2_pgprot = cp->pte_s2;
459 	hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
460 
461 	/*
462 	 * ARMv6 and above have extended page tables.
463 	 */
464 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
465 #ifndef CONFIG_ARM_LPAE
466 		/*
467 		 * Mark cache clean areas and XIP ROM read only
468 		 * from SVC mode and no access from userspace.
469 		 */
470 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
471 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
472 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
473 #endif
474 
475 		if (is_smp()) {
476 			/*
477 			 * Mark memory with the "shared" attribute
478 			 * for SMP systems
479 			 */
480 			user_pgprot |= L_PTE_SHARED;
481 			kern_pgprot |= L_PTE_SHARED;
482 			vecs_pgprot |= L_PTE_SHARED;
483 			s2_pgprot |= L_PTE_SHARED;
484 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
485 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
486 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
487 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
488 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
489 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
490 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
491 			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
492 			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
493 		}
494 	}
495 
496 	/*
497 	 * Non-cacheable Normal - intended for memory areas that must
498 	 * not cause dirty cache line writebacks when used
499 	 */
500 	if (cpu_arch >= CPU_ARCH_ARMv6) {
501 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
502 			/* Non-cacheable Normal is XCB = 001 */
503 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
504 				PMD_SECT_BUFFERED;
505 		} else {
506 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
507 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
508 				PMD_SECT_TEX(1);
509 		}
510 	} else {
511 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
512 	}
513 
514 #ifdef CONFIG_ARM_LPAE
515 	/*
516 	 * Do not generate access flag faults for the kernel mappings.
517 	 */
518 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
519 		mem_types[i].prot_pte |= PTE_EXT_AF;
520 		if (mem_types[i].prot_sect)
521 			mem_types[i].prot_sect |= PMD_SECT_AF;
522 	}
523 	kern_pgprot |= PTE_EXT_AF;
524 	vecs_pgprot |= PTE_EXT_AF;
525 #endif
526 
527 	for (i = 0; i < 16; i++) {
528 		pteval_t v = pgprot_val(protection_map[i]);
529 		protection_map[i] = __pgprot(v | user_pgprot);
530 	}
531 
532 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
533 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
534 
535 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
536 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
537 				 L_PTE_DIRTY | kern_pgprot);
538 	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
539 	pgprot_s2_device  = __pgprot(s2_device_pgprot);
540 	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
541 
542 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
543 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
544 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
545 	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
546 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
547 	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
548 	mem_types[MT_ROM].prot_sect |= cp->pmd;
549 
550 	switch (cp->pmd) {
551 	case PMD_SECT_WT:
552 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
553 		break;
554 	case PMD_SECT_WB:
555 	case PMD_SECT_WBWA:
556 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
557 		break;
558 	}
559 	printk("Memory policy: ECC %sabled, Data cache %s\n",
560 		ecc_mask ? "en" : "dis", cp->policy);
561 
562 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
563 		struct mem_type *t = &mem_types[i];
564 		if (t->prot_l1)
565 			t->prot_l1 |= PMD_DOMAIN(t->domain);
566 		if (t->prot_sect)
567 			t->prot_sect |= PMD_DOMAIN(t->domain);
568 	}
569 }
570 
571 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
572 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
573 			      unsigned long size, pgprot_t vma_prot)
574 {
575 	if (!pfn_valid(pfn))
576 		return pgprot_noncached(vma_prot);
577 	else if (file->f_flags & O_SYNC)
578 		return pgprot_writecombine(vma_prot);
579 	return vma_prot;
580 }
581 EXPORT_SYMBOL(phys_mem_access_prot);
582 #endif
583 
584 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
585 
586 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
587 {
588 	void *ptr = __va(memblock_alloc(sz, align));
589 	memset(ptr, 0, sz);
590 	return ptr;
591 }
592 
593 static void __init *early_alloc(unsigned long sz)
594 {
595 	return early_alloc_aligned(sz, sz);
596 }
597 
598 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
599 {
600 	if (pmd_none(*pmd)) {
601 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
602 		__pmd_populate(pmd, __pa(pte), prot);
603 	}
604 	BUG_ON(pmd_bad(*pmd));
605 	return pte_offset_kernel(pmd, addr);
606 }
607 
608 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
609 				  unsigned long end, unsigned long pfn,
610 				  const struct mem_type *type)
611 {
612 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
613 	do {
614 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
615 		pfn++;
616 	} while (pte++, addr += PAGE_SIZE, addr != end);
617 }
618 
619 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
620 			unsigned long end, phys_addr_t phys,
621 			const struct mem_type *type)
622 {
623 	pmd_t *p = pmd;
624 
625 #ifndef CONFIG_ARM_LPAE
626 	/*
627 	 * In classic MMU format, puds and pmds are folded in to
628 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
629 	 * group of L1 entries making up one logical pointer to
630 	 * an L2 table (2MB), where as PMDs refer to the individual
631 	 * L1 entries (1MB). Hence increment to get the correct
632 	 * offset for odd 1MB sections.
633 	 * (See arch/arm/include/asm/pgtable-2level.h)
634 	 */
635 	if (addr & SECTION_SIZE)
636 		pmd++;
637 #endif
638 	do {
639 		*pmd = __pmd(phys | type->prot_sect);
640 		phys += SECTION_SIZE;
641 	} while (pmd++, addr += SECTION_SIZE, addr != end);
642 
643 	flush_pmd_entry(p);
644 }
645 
646 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
647 				      unsigned long end, phys_addr_t phys,
648 				      const struct mem_type *type)
649 {
650 	pmd_t *pmd = pmd_offset(pud, addr);
651 	unsigned long next;
652 
653 	do {
654 		/*
655 		 * With LPAE, we must loop over to map
656 		 * all the pmds for the given range.
657 		 */
658 		next = pmd_addr_end(addr, end);
659 
660 		/*
661 		 * Try a section mapping - addr, next and phys must all be
662 		 * aligned to a section boundary.
663 		 */
664 		if (type->prot_sect &&
665 				((addr | next | phys) & ~SECTION_MASK) == 0) {
666 			__map_init_section(pmd, addr, next, phys, type);
667 		} else {
668 			alloc_init_pte(pmd, addr, next,
669 						__phys_to_pfn(phys), type);
670 		}
671 
672 		phys += next - addr;
673 
674 	} while (pmd++, addr = next, addr != end);
675 }
676 
677 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
678 				  unsigned long end, phys_addr_t phys,
679 				  const struct mem_type *type)
680 {
681 	pud_t *pud = pud_offset(pgd, addr);
682 	unsigned long next;
683 
684 	do {
685 		next = pud_addr_end(addr, end);
686 		alloc_init_pmd(pud, addr, next, phys, type);
687 		phys += next - addr;
688 	} while (pud++, addr = next, addr != end);
689 }
690 
691 #ifndef CONFIG_ARM_LPAE
692 static void __init create_36bit_mapping(struct map_desc *md,
693 					const struct mem_type *type)
694 {
695 	unsigned long addr, length, end;
696 	phys_addr_t phys;
697 	pgd_t *pgd;
698 
699 	addr = md->virtual;
700 	phys = __pfn_to_phys(md->pfn);
701 	length = PAGE_ALIGN(md->length);
702 
703 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
704 		printk(KERN_ERR "MM: CPU does not support supersection "
705 		       "mapping for 0x%08llx at 0x%08lx\n",
706 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
707 		return;
708 	}
709 
710 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
711 	 *	Since domain assignments can in fact be arbitrary, the
712 	 *	'domain == 0' check below is required to insure that ARMv6
713 	 *	supersections are only allocated for domain 0 regardless
714 	 *	of the actual domain assignments in use.
715 	 */
716 	if (type->domain) {
717 		printk(KERN_ERR "MM: invalid domain in supersection "
718 		       "mapping for 0x%08llx at 0x%08lx\n",
719 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
720 		return;
721 	}
722 
723 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
724 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
725 		       " at 0x%08lx invalid alignment\n",
726 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
727 		return;
728 	}
729 
730 	/*
731 	 * Shift bits [35:32] of address into bits [23:20] of PMD
732 	 * (See ARMv6 spec).
733 	 */
734 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
735 
736 	pgd = pgd_offset_k(addr);
737 	end = addr + length;
738 	do {
739 		pud_t *pud = pud_offset(pgd, addr);
740 		pmd_t *pmd = pmd_offset(pud, addr);
741 		int i;
742 
743 		for (i = 0; i < 16; i++)
744 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
745 
746 		addr += SUPERSECTION_SIZE;
747 		phys += SUPERSECTION_SIZE;
748 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
749 	} while (addr != end);
750 }
751 #endif	/* !CONFIG_ARM_LPAE */
752 
753 /*
754  * Create the page directory entries and any necessary
755  * page tables for the mapping specified by `md'.  We
756  * are able to cope here with varying sizes and address
757  * offsets, and we take full advantage of sections and
758  * supersections.
759  */
760 static void __init create_mapping(struct map_desc *md)
761 {
762 	unsigned long addr, length, end;
763 	phys_addr_t phys;
764 	const struct mem_type *type;
765 	pgd_t *pgd;
766 
767 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
768 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
769 		       " at 0x%08lx in user region\n",
770 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
771 		return;
772 	}
773 
774 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
775 	    md->virtual >= PAGE_OFFSET &&
776 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
777 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
778 		       " at 0x%08lx out of vmalloc space\n",
779 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
780 	}
781 
782 	type = &mem_types[md->type];
783 
784 #ifndef CONFIG_ARM_LPAE
785 	/*
786 	 * Catch 36-bit addresses
787 	 */
788 	if (md->pfn >= 0x100000) {
789 		create_36bit_mapping(md, type);
790 		return;
791 	}
792 #endif
793 
794 	addr = md->virtual & PAGE_MASK;
795 	phys = __pfn_to_phys(md->pfn);
796 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
797 
798 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
799 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
800 		       "be mapped using pages, ignoring.\n",
801 		       (long long)__pfn_to_phys(md->pfn), addr);
802 		return;
803 	}
804 
805 	pgd = pgd_offset_k(addr);
806 	end = addr + length;
807 	do {
808 		unsigned long next = pgd_addr_end(addr, end);
809 
810 		alloc_init_pud(pgd, addr, next, phys, type);
811 
812 		phys += next - addr;
813 		addr = next;
814 	} while (pgd++, addr != end);
815 }
816 
817 /*
818  * Create the architecture specific mappings
819  */
820 void __init iotable_init(struct map_desc *io_desc, int nr)
821 {
822 	struct map_desc *md;
823 	struct vm_struct *vm;
824 	struct static_vm *svm;
825 
826 	if (!nr)
827 		return;
828 
829 	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
830 
831 	for (md = io_desc; nr; md++, nr--) {
832 		create_mapping(md);
833 
834 		vm = &svm->vm;
835 		vm->addr = (void *)(md->virtual & PAGE_MASK);
836 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
837 		vm->phys_addr = __pfn_to_phys(md->pfn);
838 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
839 		vm->flags |= VM_ARM_MTYPE(md->type);
840 		vm->caller = iotable_init;
841 		add_static_vm_early(svm++);
842 	}
843 }
844 
845 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
846 				  void *caller)
847 {
848 	struct vm_struct *vm;
849 	struct static_vm *svm;
850 
851 	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
852 
853 	vm = &svm->vm;
854 	vm->addr = (void *)addr;
855 	vm->size = size;
856 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
857 	vm->caller = caller;
858 	add_static_vm_early(svm);
859 }
860 
861 #ifndef CONFIG_ARM_LPAE
862 
863 /*
864  * The Linux PMD is made of two consecutive section entries covering 2MB
865  * (see definition in include/asm/pgtable-2level.h).  However a call to
866  * create_mapping() may optimize static mappings by using individual
867  * 1MB section mappings.  This leaves the actual PMD potentially half
868  * initialized if the top or bottom section entry isn't used, leaving it
869  * open to problems if a subsequent ioremap() or vmalloc() tries to use
870  * the virtual space left free by that unused section entry.
871  *
872  * Let's avoid the issue by inserting dummy vm entries covering the unused
873  * PMD halves once the static mappings are in place.
874  */
875 
876 static void __init pmd_empty_section_gap(unsigned long addr)
877 {
878 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
879 }
880 
881 static void __init fill_pmd_gaps(void)
882 {
883 	struct static_vm *svm;
884 	struct vm_struct *vm;
885 	unsigned long addr, next = 0;
886 	pmd_t *pmd;
887 
888 	list_for_each_entry(svm, &static_vmlist, list) {
889 		vm = &svm->vm;
890 		addr = (unsigned long)vm->addr;
891 		if (addr < next)
892 			continue;
893 
894 		/*
895 		 * Check if this vm starts on an odd section boundary.
896 		 * If so and the first section entry for this PMD is free
897 		 * then we block the corresponding virtual address.
898 		 */
899 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
900 			pmd = pmd_off_k(addr);
901 			if (pmd_none(*pmd))
902 				pmd_empty_section_gap(addr & PMD_MASK);
903 		}
904 
905 		/*
906 		 * Then check if this vm ends on an odd section boundary.
907 		 * If so and the second section entry for this PMD is empty
908 		 * then we block the corresponding virtual address.
909 		 */
910 		addr += vm->size;
911 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
912 			pmd = pmd_off_k(addr) + 1;
913 			if (pmd_none(*pmd))
914 				pmd_empty_section_gap(addr);
915 		}
916 
917 		/* no need to look at any vm entry until we hit the next PMD */
918 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
919 	}
920 }
921 
922 #else
923 #define fill_pmd_gaps() do { } while (0)
924 #endif
925 
926 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
927 static void __init pci_reserve_io(void)
928 {
929 	struct static_vm *svm;
930 
931 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
932 	if (svm)
933 		return;
934 
935 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
936 }
937 #else
938 #define pci_reserve_io() do { } while (0)
939 #endif
940 
941 #ifdef CONFIG_DEBUG_LL
942 void __init debug_ll_io_init(void)
943 {
944 	struct map_desc map;
945 
946 	debug_ll_addr(&map.pfn, &map.virtual);
947 	if (!map.pfn || !map.virtual)
948 		return;
949 	map.pfn = __phys_to_pfn(map.pfn);
950 	map.virtual &= PAGE_MASK;
951 	map.length = PAGE_SIZE;
952 	map.type = MT_DEVICE;
953 	iotable_init(&map, 1);
954 }
955 #endif
956 
957 static void * __initdata vmalloc_min =
958 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
959 
960 /*
961  * vmalloc=size forces the vmalloc area to be exactly 'size'
962  * bytes. This can be used to increase (or decrease) the vmalloc
963  * area - the default is 240m.
964  */
965 static int __init early_vmalloc(char *arg)
966 {
967 	unsigned long vmalloc_reserve = memparse(arg, NULL);
968 
969 	if (vmalloc_reserve < SZ_16M) {
970 		vmalloc_reserve = SZ_16M;
971 		printk(KERN_WARNING
972 			"vmalloc area too small, limiting to %luMB\n",
973 			vmalloc_reserve >> 20);
974 	}
975 
976 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
977 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
978 		printk(KERN_WARNING
979 			"vmalloc area is too big, limiting to %luMB\n",
980 			vmalloc_reserve >> 20);
981 	}
982 
983 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
984 	return 0;
985 }
986 early_param("vmalloc", early_vmalloc);
987 
988 phys_addr_t arm_lowmem_limit __initdata = 0;
989 
990 void __init sanity_check_meminfo(void)
991 {
992 	phys_addr_t memblock_limit = 0;
993 	int i, j, highmem = 0;
994 	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
995 
996 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
997 		struct membank *bank = &meminfo.bank[j];
998 		phys_addr_t size_limit;
999 
1000 		*bank = meminfo.bank[i];
1001 		size_limit = bank->size;
1002 
1003 		if (bank->start >= vmalloc_limit)
1004 			highmem = 1;
1005 		else
1006 			size_limit = vmalloc_limit - bank->start;
1007 
1008 		bank->highmem = highmem;
1009 
1010 #ifdef CONFIG_HIGHMEM
1011 		/*
1012 		 * Split those memory banks which are partially overlapping
1013 		 * the vmalloc area greatly simplifying things later.
1014 		 */
1015 		if (!highmem && bank->size > size_limit) {
1016 			if (meminfo.nr_banks >= NR_BANKS) {
1017 				printk(KERN_CRIT "NR_BANKS too low, "
1018 						 "ignoring high memory\n");
1019 			} else {
1020 				memmove(bank + 1, bank,
1021 					(meminfo.nr_banks - i) * sizeof(*bank));
1022 				meminfo.nr_banks++;
1023 				i++;
1024 				bank[1].size -= size_limit;
1025 				bank[1].start = vmalloc_limit;
1026 				bank[1].highmem = highmem = 1;
1027 				j++;
1028 			}
1029 			bank->size = size_limit;
1030 		}
1031 #else
1032 		/*
1033 		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1034 		 */
1035 		if (highmem) {
1036 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1037 			       "(!CONFIG_HIGHMEM).\n",
1038 			       (unsigned long long)bank->start,
1039 			       (unsigned long long)bank->start + bank->size - 1);
1040 			continue;
1041 		}
1042 
1043 		/*
1044 		 * Check whether this memory bank would partially overlap
1045 		 * the vmalloc area.
1046 		 */
1047 		if (bank->size > size_limit) {
1048 			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1049 			       "to -%.8llx (vmalloc region overlap).\n",
1050 			       (unsigned long long)bank->start,
1051 			       (unsigned long long)bank->start + bank->size - 1,
1052 			       (unsigned long long)bank->start + size_limit - 1);
1053 			bank->size = size_limit;
1054 		}
1055 #endif
1056 		if (!bank->highmem) {
1057 			phys_addr_t bank_end = bank->start + bank->size;
1058 
1059 			if (bank_end > arm_lowmem_limit)
1060 				arm_lowmem_limit = bank_end;
1061 
1062 			/*
1063 			 * Find the first non-section-aligned page, and point
1064 			 * memblock_limit at it. This relies on rounding the
1065 			 * limit down to be section-aligned, which happens at
1066 			 * the end of this function.
1067 			 *
1068 			 * With this algorithm, the start or end of almost any
1069 			 * bank can be non-section-aligned. The only exception
1070 			 * is that the start of the bank 0 must be section-
1071 			 * aligned, since otherwise memory would need to be
1072 			 * allocated when mapping the start of bank 0, which
1073 			 * occurs before any free memory is mapped.
1074 			 */
1075 			if (!memblock_limit) {
1076 				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1077 					memblock_limit = bank->start;
1078 				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1079 					memblock_limit = bank_end;
1080 			}
1081 		}
1082 		j++;
1083 	}
1084 #ifdef CONFIG_HIGHMEM
1085 	if (highmem) {
1086 		const char *reason = NULL;
1087 
1088 		if (cache_is_vipt_aliasing()) {
1089 			/*
1090 			 * Interactions between kmap and other mappings
1091 			 * make highmem support with aliasing VIPT caches
1092 			 * rather difficult.
1093 			 */
1094 			reason = "with VIPT aliasing cache";
1095 		}
1096 		if (reason) {
1097 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1098 				reason);
1099 			while (j > 0 && meminfo.bank[j - 1].highmem)
1100 				j--;
1101 		}
1102 	}
1103 #endif
1104 	meminfo.nr_banks = j;
1105 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1106 
1107 	/*
1108 	 * Round the memblock limit down to a section size.  This
1109 	 * helps to ensure that we will allocate memory from the
1110 	 * last full section, which should be mapped.
1111 	 */
1112 	if (memblock_limit)
1113 		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1114 	if (!memblock_limit)
1115 		memblock_limit = arm_lowmem_limit;
1116 
1117 	memblock_set_current_limit(memblock_limit);
1118 }
1119 
1120 static inline void prepare_page_table(void)
1121 {
1122 	unsigned long addr;
1123 	phys_addr_t end;
1124 
1125 	/*
1126 	 * Clear out all the mappings below the kernel image.
1127 	 */
1128 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1129 		pmd_clear(pmd_off_k(addr));
1130 
1131 #ifdef CONFIG_XIP_KERNEL
1132 	/* The XIP kernel is mapped in the module area -- skip over it */
1133 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1134 #endif
1135 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1136 		pmd_clear(pmd_off_k(addr));
1137 
1138 	/*
1139 	 * Find the end of the first block of lowmem.
1140 	 */
1141 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1142 	if (end >= arm_lowmem_limit)
1143 		end = arm_lowmem_limit;
1144 
1145 	/*
1146 	 * Clear out all the kernel space mappings, except for the first
1147 	 * memory bank, up to the vmalloc region.
1148 	 */
1149 	for (addr = __phys_to_virt(end);
1150 	     addr < VMALLOC_START; addr += PMD_SIZE)
1151 		pmd_clear(pmd_off_k(addr));
1152 }
1153 
1154 #ifdef CONFIG_ARM_LPAE
1155 /* the first page is reserved for pgd */
1156 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1157 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1158 #else
1159 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1160 #endif
1161 
1162 /*
1163  * Reserve the special regions of memory
1164  */
1165 void __init arm_mm_memblock_reserve(void)
1166 {
1167 	/*
1168 	 * Reserve the page tables.  These are already in use,
1169 	 * and can only be in node 0.
1170 	 */
1171 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1172 
1173 #ifdef CONFIG_SA1111
1174 	/*
1175 	 * Because of the SA1111 DMA bug, we want to preserve our
1176 	 * precious DMA-able memory...
1177 	 */
1178 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1179 #endif
1180 }
1181 
1182 /*
1183  * Set up the device mappings.  Since we clear out the page tables for all
1184  * mappings above VMALLOC_START, we will remove any debug device mappings.
1185  * This means you have to be careful how you debug this function, or any
1186  * called function.  This means you can't use any function or debugging
1187  * method which may touch any device, otherwise the kernel _will_ crash.
1188  */
1189 static void __init devicemaps_init(const struct machine_desc *mdesc)
1190 {
1191 	struct map_desc map;
1192 	unsigned long addr;
1193 	void *vectors;
1194 
1195 	/*
1196 	 * Allocate the vector page early.
1197 	 */
1198 	vectors = early_alloc(PAGE_SIZE * 2);
1199 
1200 	early_trap_init(vectors);
1201 
1202 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1203 		pmd_clear(pmd_off_k(addr));
1204 
1205 	/*
1206 	 * Map the kernel if it is XIP.
1207 	 * It is always first in the modulearea.
1208 	 */
1209 #ifdef CONFIG_XIP_KERNEL
1210 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1211 	map.virtual = MODULES_VADDR;
1212 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1213 	map.type = MT_ROM;
1214 	create_mapping(&map);
1215 #endif
1216 
1217 	/*
1218 	 * Map the cache flushing regions.
1219 	 */
1220 #ifdef FLUSH_BASE
1221 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1222 	map.virtual = FLUSH_BASE;
1223 	map.length = SZ_1M;
1224 	map.type = MT_CACHECLEAN;
1225 	create_mapping(&map);
1226 #endif
1227 #ifdef FLUSH_BASE_MINICACHE
1228 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1229 	map.virtual = FLUSH_BASE_MINICACHE;
1230 	map.length = SZ_1M;
1231 	map.type = MT_MINICLEAN;
1232 	create_mapping(&map);
1233 #endif
1234 
1235 	/*
1236 	 * Create a mapping for the machine vectors at the high-vectors
1237 	 * location (0xffff0000).  If we aren't using high-vectors, also
1238 	 * create a mapping at the low-vectors virtual address.
1239 	 */
1240 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1241 	map.virtual = 0xffff0000;
1242 	map.length = PAGE_SIZE;
1243 #ifdef CONFIG_KUSER_HELPERS
1244 	map.type = MT_HIGH_VECTORS;
1245 #else
1246 	map.type = MT_LOW_VECTORS;
1247 #endif
1248 	create_mapping(&map);
1249 
1250 	if (!vectors_high()) {
1251 		map.virtual = 0;
1252 		map.length = PAGE_SIZE * 2;
1253 		map.type = MT_LOW_VECTORS;
1254 		create_mapping(&map);
1255 	}
1256 
1257 	/* Now create a kernel read-only mapping */
1258 	map.pfn += 1;
1259 	map.virtual = 0xffff0000 + PAGE_SIZE;
1260 	map.length = PAGE_SIZE;
1261 	map.type = MT_LOW_VECTORS;
1262 	create_mapping(&map);
1263 
1264 	/*
1265 	 * Ask the machine support to map in the statically mapped devices.
1266 	 */
1267 	if (mdesc->map_io)
1268 		mdesc->map_io();
1269 	else
1270 		debug_ll_io_init();
1271 	fill_pmd_gaps();
1272 
1273 	/* Reserve fixed i/o space in VMALLOC region */
1274 	pci_reserve_io();
1275 
1276 	/*
1277 	 * Finally flush the caches and tlb to ensure that we're in a
1278 	 * consistent state wrt the writebuffer.  This also ensures that
1279 	 * any write-allocated cache lines in the vector page are written
1280 	 * back.  After this point, we can start to touch devices again.
1281 	 */
1282 	local_flush_tlb_all();
1283 	flush_cache_all();
1284 }
1285 
1286 static void __init kmap_init(void)
1287 {
1288 #ifdef CONFIG_HIGHMEM
1289 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1290 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1291 #endif
1292 }
1293 
1294 static void __init map_lowmem(void)
1295 {
1296 	struct memblock_region *reg;
1297 
1298 	/* Map all the lowmem memory banks. */
1299 	for_each_memblock(memory, reg) {
1300 		phys_addr_t start = reg->base;
1301 		phys_addr_t end = start + reg->size;
1302 		struct map_desc map;
1303 
1304 		if (end > arm_lowmem_limit)
1305 			end = arm_lowmem_limit;
1306 		if (start >= end)
1307 			break;
1308 
1309 		map.pfn = __phys_to_pfn(start);
1310 		map.virtual = __phys_to_virt(start);
1311 		map.length = end - start;
1312 		map.type = MT_MEMORY;
1313 
1314 		create_mapping(&map);
1315 	}
1316 }
1317 
1318 /*
1319  * paging_init() sets up the page tables, initialises the zone memory
1320  * maps, and sets up the zero page, bad page and bad page tables.
1321  */
1322 void __init paging_init(const struct machine_desc *mdesc)
1323 {
1324 	void *zero_page;
1325 
1326 	build_mem_type_table();
1327 	prepare_page_table();
1328 	map_lowmem();
1329 	dma_contiguous_remap();
1330 	devicemaps_init(mdesc);
1331 	kmap_init();
1332 	tcm_init();
1333 
1334 	top_pmd = pmd_off_k(0xffff0000);
1335 
1336 	/* allocate the zero page. */
1337 	zero_page = early_alloc(PAGE_SIZE);
1338 
1339 	bootmem_init();
1340 
1341 	empty_zero_page = virt_to_page(zero_page);
1342 	__flush_dcache_page(NULL, empty_zero_page);
1343 }
1344