1 /* 2 * linux/arch/arm/mm/mmu.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/init.h> 14 #include <linux/bootmem.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 18 #include <asm/mach-types.h> 19 #include <asm/setup.h> 20 #include <asm/sizes.h> 21 #include <asm/tlb.h> 22 23 #include <asm/mach/arch.h> 24 #include <asm/mach/map.h> 25 26 #include "mm.h" 27 28 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 29 30 extern void _stext, _etext, __data_start, _end; 31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 32 33 /* 34 * empty_zero_page is a special page that is used for 35 * zero-initialized data and COW. 36 */ 37 struct page *empty_zero_page; 38 EXPORT_SYMBOL(empty_zero_page); 39 40 /* 41 * The pmd table for the upper-most set of pages. 42 */ 43 pmd_t *top_pmd; 44 45 #define CPOLICY_UNCACHED 0 46 #define CPOLICY_BUFFERED 1 47 #define CPOLICY_WRITETHROUGH 2 48 #define CPOLICY_WRITEBACK 3 49 #define CPOLICY_WRITEALLOC 4 50 51 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; 52 static unsigned int ecc_mask __initdata = 0; 53 pgprot_t pgprot_user; 54 pgprot_t pgprot_kernel; 55 56 EXPORT_SYMBOL(pgprot_user); 57 EXPORT_SYMBOL(pgprot_kernel); 58 59 struct cachepolicy { 60 const char policy[16]; 61 unsigned int cr_mask; 62 unsigned int pmd; 63 unsigned int pte; 64 }; 65 66 static struct cachepolicy cache_policies[] __initdata = { 67 { 68 .policy = "uncached", 69 .cr_mask = CR_W|CR_C, 70 .pmd = PMD_SECT_UNCACHED, 71 .pte = 0, 72 }, { 73 .policy = "buffered", 74 .cr_mask = CR_C, 75 .pmd = PMD_SECT_BUFFERED, 76 .pte = PTE_BUFFERABLE, 77 }, { 78 .policy = "writethrough", 79 .cr_mask = 0, 80 .pmd = PMD_SECT_WT, 81 .pte = PTE_CACHEABLE, 82 }, { 83 .policy = "writeback", 84 .cr_mask = 0, 85 .pmd = PMD_SECT_WB, 86 .pte = PTE_BUFFERABLE|PTE_CACHEABLE, 87 }, { 88 .policy = "writealloc", 89 .cr_mask = 0, 90 .pmd = PMD_SECT_WBWA, 91 .pte = PTE_BUFFERABLE|PTE_CACHEABLE, 92 } 93 }; 94 95 /* 96 * These are useful for identifying cache coherency 97 * problems by allowing the cache or the cache and 98 * writebuffer to be turned off. (Note: the write 99 * buffer should not be on and the cache off). 100 */ 101 static void __init early_cachepolicy(char **p) 102 { 103 int i; 104 105 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { 106 int len = strlen(cache_policies[i].policy); 107 108 if (memcmp(*p, cache_policies[i].policy, len) == 0) { 109 cachepolicy = i; 110 cr_alignment &= ~cache_policies[i].cr_mask; 111 cr_no_alignment &= ~cache_policies[i].cr_mask; 112 *p += len; 113 break; 114 } 115 } 116 if (i == ARRAY_SIZE(cache_policies)) 117 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); 118 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 119 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n"); 120 cachepolicy = CPOLICY_WRITEBACK; 121 } 122 flush_cache_all(); 123 set_cr(cr_alignment); 124 } 125 __early_param("cachepolicy=", early_cachepolicy); 126 127 static void __init early_nocache(char **__unused) 128 { 129 char *p = "buffered"; 130 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); 131 early_cachepolicy(&p); 132 } 133 __early_param("nocache", early_nocache); 134 135 static void __init early_nowrite(char **__unused) 136 { 137 char *p = "uncached"; 138 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); 139 early_cachepolicy(&p); 140 } 141 __early_param("nowb", early_nowrite); 142 143 static void __init early_ecc(char **p) 144 { 145 if (memcmp(*p, "on", 2) == 0) { 146 ecc_mask = PMD_PROTECTION; 147 *p += 2; 148 } else if (memcmp(*p, "off", 3) == 0) { 149 ecc_mask = 0; 150 *p += 3; 151 } 152 } 153 __early_param("ecc=", early_ecc); 154 155 static int __init noalign_setup(char *__unused) 156 { 157 cr_alignment &= ~CR_A; 158 cr_no_alignment &= ~CR_A; 159 set_cr(cr_alignment); 160 return 1; 161 } 162 __setup("noalign", noalign_setup); 163 164 #ifndef CONFIG_SMP 165 void adjust_cr(unsigned long mask, unsigned long set) 166 { 167 unsigned long flags; 168 169 mask &= ~CR_A; 170 171 set &= mask; 172 173 local_irq_save(flags); 174 175 cr_no_alignment = (cr_no_alignment & ~mask) | set; 176 cr_alignment = (cr_alignment & ~mask) | set; 177 178 set_cr((get_cr() & ~mask) | set); 179 180 local_irq_restore(flags); 181 } 182 #endif 183 184 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE 185 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE 186 187 static struct mem_type mem_types[] = { 188 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ 189 .prot_pte = PROT_PTE_DEVICE, 190 .prot_l1 = PMD_TYPE_TABLE, 191 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_UNCACHED, 192 .domain = DOMAIN_IO, 193 }, 194 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ 195 .prot_pte = PROT_PTE_DEVICE, 196 .prot_pte_ext = PTE_EXT_TEX(2), 197 .prot_l1 = PMD_TYPE_TABLE, 198 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_TEX(2), 199 .domain = DOMAIN_IO, 200 }, 201 [MT_DEVICE_CACHED] = { /* ioremap_cached */ 202 .prot_pte = PROT_PTE_DEVICE | L_PTE_CACHEABLE | L_PTE_BUFFERABLE, 203 .prot_l1 = PMD_TYPE_TABLE, 204 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, 205 .domain = DOMAIN_IO, 206 }, 207 [MT_DEVICE_IXP2000] = { /* IXP2400 requires XCB=101 for on-chip I/O */ 208 .prot_pte = PROT_PTE_DEVICE, 209 .prot_l1 = PMD_TYPE_TABLE, 210 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE | 211 PMD_SECT_TEX(1), 212 .domain = DOMAIN_IO, 213 }, 214 [MT_CACHECLEAN] = { 215 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 216 .domain = DOMAIN_KERNEL, 217 }, 218 [MT_MINICLEAN] = { 219 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, 220 .domain = DOMAIN_KERNEL, 221 }, 222 [MT_LOW_VECTORS] = { 223 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 224 L_PTE_EXEC, 225 .prot_l1 = PMD_TYPE_TABLE, 226 .domain = DOMAIN_USER, 227 }, 228 [MT_HIGH_VECTORS] = { 229 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 230 L_PTE_USER | L_PTE_EXEC, 231 .prot_l1 = PMD_TYPE_TABLE, 232 .domain = DOMAIN_USER, 233 }, 234 [MT_MEMORY] = { 235 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 236 .domain = DOMAIN_KERNEL, 237 }, 238 [MT_ROM] = { 239 .prot_sect = PMD_TYPE_SECT, 240 .domain = DOMAIN_KERNEL, 241 }, 242 }; 243 244 const struct mem_type *get_mem_type(unsigned int type) 245 { 246 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; 247 } 248 249 /* 250 * Adjust the PMD section entries according to the CPU in use. 251 */ 252 static void __init build_mem_type_table(void) 253 { 254 struct cachepolicy *cp; 255 unsigned int cr = get_cr(); 256 unsigned int user_pgprot, kern_pgprot; 257 int cpu_arch = cpu_architecture(); 258 int i; 259 260 if (cpu_arch < CPU_ARCH_ARMv6) { 261 #if defined(CONFIG_CPU_DCACHE_DISABLE) 262 if (cachepolicy > CPOLICY_BUFFERED) 263 cachepolicy = CPOLICY_BUFFERED; 264 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) 265 if (cachepolicy > CPOLICY_WRITETHROUGH) 266 cachepolicy = CPOLICY_WRITETHROUGH; 267 #endif 268 } 269 if (cpu_arch < CPU_ARCH_ARMv5) { 270 if (cachepolicy >= CPOLICY_WRITEALLOC) 271 cachepolicy = CPOLICY_WRITEBACK; 272 ecc_mask = 0; 273 } 274 275 /* 276 * ARMv5 and lower, bit 4 must be set for page tables. 277 * (was: cache "update-able on write" bit on ARM610) 278 * However, Xscale cores require this bit to be cleared. 279 */ 280 if (cpu_is_xscale()) { 281 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 282 mem_types[i].prot_sect &= ~PMD_BIT4; 283 mem_types[i].prot_l1 &= ~PMD_BIT4; 284 } 285 } else if (cpu_arch < CPU_ARCH_ARMv6) { 286 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 287 if (mem_types[i].prot_l1) 288 mem_types[i].prot_l1 |= PMD_BIT4; 289 if (mem_types[i].prot_sect) 290 mem_types[i].prot_sect |= PMD_BIT4; 291 } 292 } 293 294 cp = &cache_policies[cachepolicy]; 295 kern_pgprot = user_pgprot = cp->pte; 296 297 /* 298 * Enable CPU-specific coherency if supported. 299 * (Only available on XSC3 at the moment.) 300 */ 301 if (arch_is_coherent()) { 302 if (cpu_is_xsc3()) { 303 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; 304 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED; 305 } 306 } 307 308 /* 309 * ARMv6 and above have extended page tables. 310 */ 311 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { 312 /* 313 * Mark cache clean areas and XIP ROM read only 314 * from SVC mode and no access from userspace. 315 */ 316 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 317 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 318 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 319 320 /* 321 * Mark the device area as "shared device" 322 */ 323 mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE; 324 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; 325 326 #ifdef CONFIG_SMP 327 /* 328 * Mark memory with the "shared" attribute for SMP systems 329 */ 330 user_pgprot |= L_PTE_SHARED; 331 kern_pgprot |= L_PTE_SHARED; 332 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; 333 #endif 334 } 335 336 for (i = 0; i < 16; i++) { 337 unsigned long v = pgprot_val(protection_map[i]); 338 v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot; 339 protection_map[i] = __pgprot(v); 340 } 341 342 mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot; 343 mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot; 344 345 if (cpu_arch >= CPU_ARCH_ARMv5) { 346 #ifndef CONFIG_SMP 347 /* 348 * Only use write-through for non-SMP systems 349 */ 350 mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE; 351 mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE; 352 #endif 353 } else { 354 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1); 355 } 356 357 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); 358 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | 359 L_PTE_DIRTY | L_PTE_WRITE | 360 L_PTE_EXEC | kern_pgprot); 361 362 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; 363 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; 364 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; 365 mem_types[MT_ROM].prot_sect |= cp->pmd; 366 367 switch (cp->pmd) { 368 case PMD_SECT_WT: 369 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; 370 break; 371 case PMD_SECT_WB: 372 case PMD_SECT_WBWA: 373 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; 374 break; 375 } 376 printk("Memory policy: ECC %sabled, Data cache %s\n", 377 ecc_mask ? "en" : "dis", cp->policy); 378 379 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 380 struct mem_type *t = &mem_types[i]; 381 if (t->prot_l1) 382 t->prot_l1 |= PMD_DOMAIN(t->domain); 383 if (t->prot_sect) 384 t->prot_sect |= PMD_DOMAIN(t->domain); 385 } 386 } 387 388 #define vectors_base() (vectors_high() ? 0xffff0000 : 0) 389 390 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, 391 unsigned long end, unsigned long pfn, 392 const struct mem_type *type) 393 { 394 pte_t *pte; 395 396 if (pmd_none(*pmd)) { 397 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t)); 398 __pmd_populate(pmd, __pa(pte) | type->prot_l1); 399 } 400 401 pte = pte_offset_kernel(pmd, addr); 402 do { 403 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 404 type->prot_pte_ext); 405 pfn++; 406 } while (pte++, addr += PAGE_SIZE, addr != end); 407 } 408 409 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr, 410 unsigned long end, unsigned long phys, 411 const struct mem_type *type) 412 { 413 pmd_t *pmd = pmd_offset(pgd, addr); 414 415 /* 416 * Try a section mapping - end, addr and phys must all be aligned 417 * to a section boundary. Note that PMDs refer to the individual 418 * L1 entries, whereas PGDs refer to a group of L1 entries making 419 * up one logical pointer to an L2 table. 420 */ 421 if (((addr | end | phys) & ~SECTION_MASK) == 0) { 422 pmd_t *p = pmd; 423 424 if (addr & SECTION_SIZE) 425 pmd++; 426 427 do { 428 *pmd = __pmd(phys | type->prot_sect); 429 phys += SECTION_SIZE; 430 } while (pmd++, addr += SECTION_SIZE, addr != end); 431 432 flush_pmd_entry(p); 433 } else { 434 /* 435 * No need to loop; pte's aren't interested in the 436 * individual L1 entries. 437 */ 438 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type); 439 } 440 } 441 442 static void __init create_36bit_mapping(struct map_desc *md, 443 const struct mem_type *type) 444 { 445 unsigned long phys, addr, length, end; 446 pgd_t *pgd; 447 448 addr = md->virtual; 449 phys = (unsigned long)__pfn_to_phys(md->pfn); 450 length = PAGE_ALIGN(md->length); 451 452 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { 453 printk(KERN_ERR "MM: CPU does not support supersection " 454 "mapping for 0x%08llx at 0x%08lx\n", 455 __pfn_to_phys((u64)md->pfn), addr); 456 return; 457 } 458 459 /* N.B. ARMv6 supersections are only defined to work with domain 0. 460 * Since domain assignments can in fact be arbitrary, the 461 * 'domain == 0' check below is required to insure that ARMv6 462 * supersections are only allocated for domain 0 regardless 463 * of the actual domain assignments in use. 464 */ 465 if (type->domain) { 466 printk(KERN_ERR "MM: invalid domain in supersection " 467 "mapping for 0x%08llx at 0x%08lx\n", 468 __pfn_to_phys((u64)md->pfn), addr); 469 return; 470 } 471 472 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { 473 printk(KERN_ERR "MM: cannot create mapping for " 474 "0x%08llx at 0x%08lx invalid alignment\n", 475 __pfn_to_phys((u64)md->pfn), addr); 476 return; 477 } 478 479 /* 480 * Shift bits [35:32] of address into bits [23:20] of PMD 481 * (See ARMv6 spec). 482 */ 483 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); 484 485 pgd = pgd_offset_k(addr); 486 end = addr + length; 487 do { 488 pmd_t *pmd = pmd_offset(pgd, addr); 489 int i; 490 491 for (i = 0; i < 16; i++) 492 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER); 493 494 addr += SUPERSECTION_SIZE; 495 phys += SUPERSECTION_SIZE; 496 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; 497 } while (addr != end); 498 } 499 500 /* 501 * Create the page directory entries and any necessary 502 * page tables for the mapping specified by `md'. We 503 * are able to cope here with varying sizes and address 504 * offsets, and we take full advantage of sections and 505 * supersections. 506 */ 507 void __init create_mapping(struct map_desc *md) 508 { 509 unsigned long phys, addr, length, end; 510 const struct mem_type *type; 511 pgd_t *pgd; 512 513 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { 514 printk(KERN_WARNING "BUG: not creating mapping for " 515 "0x%08llx at 0x%08lx in user region\n", 516 __pfn_to_phys((u64)md->pfn), md->virtual); 517 return; 518 } 519 520 if ((md->type == MT_DEVICE || md->type == MT_ROM) && 521 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { 522 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx " 523 "overlaps vmalloc space\n", 524 __pfn_to_phys((u64)md->pfn), md->virtual); 525 } 526 527 type = &mem_types[md->type]; 528 529 /* 530 * Catch 36-bit addresses 531 */ 532 if (md->pfn >= 0x100000) { 533 create_36bit_mapping(md, type); 534 return; 535 } 536 537 addr = md->virtual & PAGE_MASK; 538 phys = (unsigned long)__pfn_to_phys(md->pfn); 539 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 540 541 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { 542 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " 543 "be mapped using pages, ignoring.\n", 544 __pfn_to_phys(md->pfn), addr); 545 return; 546 } 547 548 pgd = pgd_offset_k(addr); 549 end = addr + length; 550 do { 551 unsigned long next = pgd_addr_end(addr, end); 552 553 alloc_init_section(pgd, addr, next, phys, type); 554 555 phys += next - addr; 556 addr = next; 557 } while (pgd++, addr != end); 558 } 559 560 /* 561 * Create the architecture specific mappings 562 */ 563 void __init iotable_init(struct map_desc *io_desc, int nr) 564 { 565 int i; 566 567 for (i = 0; i < nr; i++) 568 create_mapping(io_desc + i); 569 } 570 571 static inline void prepare_page_table(struct meminfo *mi) 572 { 573 unsigned long addr; 574 575 /* 576 * Clear out all the mappings below the kernel image. 577 */ 578 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE) 579 pmd_clear(pmd_off_k(addr)); 580 581 #ifdef CONFIG_XIP_KERNEL 582 /* The XIP kernel is mapped in the module area -- skip over it */ 583 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK; 584 #endif 585 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) 586 pmd_clear(pmd_off_k(addr)); 587 588 /* 589 * Clear out all the kernel space mappings, except for the first 590 * memory bank, up to the end of the vmalloc region. 591 */ 592 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size); 593 addr < VMALLOC_END; addr += PGDIR_SIZE) 594 pmd_clear(pmd_off_k(addr)); 595 } 596 597 /* 598 * Reserve the various regions of node 0 599 */ 600 void __init reserve_node_zero(pg_data_t *pgdat) 601 { 602 unsigned long res_size = 0; 603 604 /* 605 * Register the kernel text and data with bootmem. 606 * Note that this can only be in node 0. 607 */ 608 #ifdef CONFIG_XIP_KERNEL 609 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start, 610 BOOTMEM_DEFAULT); 611 #else 612 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext, 613 BOOTMEM_DEFAULT); 614 #endif 615 616 /* 617 * Reserve the page tables. These are already in use, 618 * and can only be in node 0. 619 */ 620 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), 621 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT); 622 623 /* 624 * Hmm... This should go elsewhere, but we really really need to 625 * stop things allocating the low memory; ideally we need a better 626 * implementation of GFP_DMA which does not assume that DMA-able 627 * memory starts at zero. 628 */ 629 if (machine_is_integrator() || machine_is_cintegrator()) 630 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 631 632 /* 633 * These should likewise go elsewhere. They pre-reserve the 634 * screen memory region at the start of main system memory. 635 */ 636 if (machine_is_edb7211()) 637 res_size = 0x00020000; 638 if (machine_is_p720t()) 639 res_size = 0x00014000; 640 641 /* H1940 and RX3715 need to reserve this for suspend */ 642 643 if (machine_is_h1940() || machine_is_rx3715()) { 644 reserve_bootmem_node(pgdat, 0x30003000, 0x1000, 645 BOOTMEM_DEFAULT); 646 reserve_bootmem_node(pgdat, 0x30081000, 0x1000, 647 BOOTMEM_DEFAULT); 648 } 649 650 #ifdef CONFIG_SA1111 651 /* 652 * Because of the SA1111 DMA bug, we want to preserve our 653 * precious DMA-able memory... 654 */ 655 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 656 #endif 657 if (res_size) 658 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size, 659 BOOTMEM_DEFAULT); 660 } 661 662 /* 663 * Set up device the mappings. Since we clear out the page tables for all 664 * mappings above VMALLOC_END, we will remove any debug device mappings. 665 * This means you have to be careful how you debug this function, or any 666 * called function. This means you can't use any function or debugging 667 * method which may touch any device, otherwise the kernel _will_ crash. 668 */ 669 static void __init devicemaps_init(struct machine_desc *mdesc) 670 { 671 struct map_desc map; 672 unsigned long addr; 673 void *vectors; 674 675 /* 676 * Allocate the vector page early. 677 */ 678 vectors = alloc_bootmem_low_pages(PAGE_SIZE); 679 BUG_ON(!vectors); 680 681 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) 682 pmd_clear(pmd_off_k(addr)); 683 684 /* 685 * Map the kernel if it is XIP. 686 * It is always first in the modulearea. 687 */ 688 #ifdef CONFIG_XIP_KERNEL 689 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); 690 map.virtual = MODULE_START; 691 map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; 692 map.type = MT_ROM; 693 create_mapping(&map); 694 #endif 695 696 /* 697 * Map the cache flushing regions. 698 */ 699 #ifdef FLUSH_BASE 700 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 701 map.virtual = FLUSH_BASE; 702 map.length = SZ_1M; 703 map.type = MT_CACHECLEAN; 704 create_mapping(&map); 705 #endif 706 #ifdef FLUSH_BASE_MINICACHE 707 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 708 map.virtual = FLUSH_BASE_MINICACHE; 709 map.length = SZ_1M; 710 map.type = MT_MINICLEAN; 711 create_mapping(&map); 712 #endif 713 714 /* 715 * Create a mapping for the machine vectors at the high-vectors 716 * location (0xffff0000). If we aren't using high-vectors, also 717 * create a mapping at the low-vectors virtual address. 718 */ 719 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 720 map.virtual = 0xffff0000; 721 map.length = PAGE_SIZE; 722 map.type = MT_HIGH_VECTORS; 723 create_mapping(&map); 724 725 if (!vectors_high()) { 726 map.virtual = 0; 727 map.type = MT_LOW_VECTORS; 728 create_mapping(&map); 729 } 730 731 /* 732 * Ask the machine support to map in the statically mapped devices. 733 */ 734 if (mdesc->map_io) 735 mdesc->map_io(); 736 737 /* 738 * Finally flush the caches and tlb to ensure that we're in a 739 * consistent state wrt the writebuffer. This also ensures that 740 * any write-allocated cache lines in the vector page are written 741 * back. After this point, we can start to touch devices again. 742 */ 743 local_flush_tlb_all(); 744 flush_cache_all(); 745 } 746 747 /* 748 * paging_init() sets up the page tables, initialises the zone memory 749 * maps, and sets up the zero page, bad page and bad page tables. 750 */ 751 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc) 752 { 753 void *zero_page; 754 755 build_mem_type_table(); 756 prepare_page_table(mi); 757 bootmem_init(mi); 758 devicemaps_init(mdesc); 759 760 top_pmd = pmd_off_k(0xffff0000); 761 762 /* 763 * allocate the zero page. Note that we count on this going ok. 764 */ 765 zero_page = alloc_bootmem_low_pages(PAGE_SIZE); 766 memzero(zero_page, PAGE_SIZE); 767 empty_zero_page = virt_to_page(zero_page); 768 flush_dcache_page(empty_zero_page); 769 } 770 771 /* 772 * In order to soft-boot, we need to insert a 1:1 mapping in place of 773 * the user-mode pages. This will then ensure that we have predictable 774 * results when turning the mmu off 775 */ 776 void setup_mm_for_reboot(char mode) 777 { 778 unsigned long base_pmdval; 779 pgd_t *pgd; 780 int i; 781 782 if (current->mm && current->mm->pgd) 783 pgd = current->mm->pgd; 784 else 785 pgd = init_mm.pgd; 786 787 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT; 788 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale()) 789 base_pmdval |= PMD_BIT4; 790 791 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) { 792 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval; 793 pmd_t *pmd; 794 795 pmd = pmd_off(pgd, i << PGDIR_SHIFT); 796 pmd[0] = __pmd(pmdval); 797 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); 798 flush_pmd_entry(pmd); 799 } 800 } 801