xref: /openbmc/linux/arch/arm/mm/mmu.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 
18 #include <asm/mach-types.h>
19 #include <asm/setup.h>
20 #include <asm/sizes.h>
21 #include <asm/tlb.h>
22 
23 #include <asm/mach/arch.h>
24 #include <asm/mach/map.h>
25 
26 #include "mm.h"
27 
28 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
29 
30 extern void _stext, _etext, __data_start, _end;
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32 
33 /*
34  * empty_zero_page is a special page that is used for
35  * zero-initialized data and COW.
36  */
37 struct page *empty_zero_page;
38 EXPORT_SYMBOL(empty_zero_page);
39 
40 /*
41  * The pmd table for the upper-most set of pages.
42  */
43 pmd_t *top_pmd;
44 
45 #define CPOLICY_UNCACHED	0
46 #define CPOLICY_BUFFERED	1
47 #define CPOLICY_WRITETHROUGH	2
48 #define CPOLICY_WRITEBACK	3
49 #define CPOLICY_WRITEALLOC	4
50 
51 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
52 static unsigned int ecc_mask __initdata = 0;
53 pgprot_t pgprot_user;
54 pgprot_t pgprot_kernel;
55 
56 EXPORT_SYMBOL(pgprot_user);
57 EXPORT_SYMBOL(pgprot_kernel);
58 
59 struct cachepolicy {
60 	const char	policy[16];
61 	unsigned int	cr_mask;
62 	unsigned int	pmd;
63 	unsigned int	pte;
64 };
65 
66 static struct cachepolicy cache_policies[] __initdata = {
67 	{
68 		.policy		= "uncached",
69 		.cr_mask	= CR_W|CR_C,
70 		.pmd		= PMD_SECT_UNCACHED,
71 		.pte		= 0,
72 	}, {
73 		.policy		= "buffered",
74 		.cr_mask	= CR_C,
75 		.pmd		= PMD_SECT_BUFFERED,
76 		.pte		= PTE_BUFFERABLE,
77 	}, {
78 		.policy		= "writethrough",
79 		.cr_mask	= 0,
80 		.pmd		= PMD_SECT_WT,
81 		.pte		= PTE_CACHEABLE,
82 	}, {
83 		.policy		= "writeback",
84 		.cr_mask	= 0,
85 		.pmd		= PMD_SECT_WB,
86 		.pte		= PTE_BUFFERABLE|PTE_CACHEABLE,
87 	}, {
88 		.policy		= "writealloc",
89 		.cr_mask	= 0,
90 		.pmd		= PMD_SECT_WBWA,
91 		.pte		= PTE_BUFFERABLE|PTE_CACHEABLE,
92 	}
93 };
94 
95 /*
96  * These are useful for identifying cache coherency
97  * problems by allowing the cache or the cache and
98  * writebuffer to be turned off.  (Note: the write
99  * buffer should not be on and the cache off).
100  */
101 static void __init early_cachepolicy(char **p)
102 {
103 	int i;
104 
105 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
106 		int len = strlen(cache_policies[i].policy);
107 
108 		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
109 			cachepolicy = i;
110 			cr_alignment &= ~cache_policies[i].cr_mask;
111 			cr_no_alignment &= ~cache_policies[i].cr_mask;
112 			*p += len;
113 			break;
114 		}
115 	}
116 	if (i == ARRAY_SIZE(cache_policies))
117 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
118 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
119 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
120 		cachepolicy = CPOLICY_WRITEBACK;
121 	}
122 	flush_cache_all();
123 	set_cr(cr_alignment);
124 }
125 __early_param("cachepolicy=", early_cachepolicy);
126 
127 static void __init early_nocache(char **__unused)
128 {
129 	char *p = "buffered";
130 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
131 	early_cachepolicy(&p);
132 }
133 __early_param("nocache", early_nocache);
134 
135 static void __init early_nowrite(char **__unused)
136 {
137 	char *p = "uncached";
138 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
139 	early_cachepolicy(&p);
140 }
141 __early_param("nowb", early_nowrite);
142 
143 static void __init early_ecc(char **p)
144 {
145 	if (memcmp(*p, "on", 2) == 0) {
146 		ecc_mask = PMD_PROTECTION;
147 		*p += 2;
148 	} else if (memcmp(*p, "off", 3) == 0) {
149 		ecc_mask = 0;
150 		*p += 3;
151 	}
152 }
153 __early_param("ecc=", early_ecc);
154 
155 static int __init noalign_setup(char *__unused)
156 {
157 	cr_alignment &= ~CR_A;
158 	cr_no_alignment &= ~CR_A;
159 	set_cr(cr_alignment);
160 	return 1;
161 }
162 __setup("noalign", noalign_setup);
163 
164 #ifndef CONFIG_SMP
165 void adjust_cr(unsigned long mask, unsigned long set)
166 {
167 	unsigned long flags;
168 
169 	mask &= ~CR_A;
170 
171 	set &= mask;
172 
173 	local_irq_save(flags);
174 
175 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
176 	cr_alignment = (cr_alignment & ~mask) | set;
177 
178 	set_cr((get_cr() & ~mask) | set);
179 
180 	local_irq_restore(flags);
181 }
182 #endif
183 
184 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
185 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
186 
187 static struct mem_type mem_types[] = {
188 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
189 		.prot_pte	= PROT_PTE_DEVICE,
190 		.prot_l1	= PMD_TYPE_TABLE,
191 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
192 		.domain		= DOMAIN_IO,
193 	},
194 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
195 		.prot_pte	= PROT_PTE_DEVICE,
196 		.prot_pte_ext	= PTE_EXT_TEX(2),
197 		.prot_l1	= PMD_TYPE_TABLE,
198 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_TEX(2),
199 		.domain		= DOMAIN_IO,
200 	},
201 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
202 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_CACHEABLE | L_PTE_BUFFERABLE,
203 		.prot_l1	= PMD_TYPE_TABLE,
204 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
205 		.domain		= DOMAIN_IO,
206 	},
207 	[MT_DEVICE_IXP2000] = {	  /* IXP2400 requires XCB=101 for on-chip I/O */
208 		.prot_pte	= PROT_PTE_DEVICE,
209 		.prot_l1	= PMD_TYPE_TABLE,
210 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE |
211 				  PMD_SECT_TEX(1),
212 		.domain		= DOMAIN_IO,
213 	},
214 	[MT_CACHECLEAN] = {
215 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
216 		.domain    = DOMAIN_KERNEL,
217 	},
218 	[MT_MINICLEAN] = {
219 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
220 		.domain    = DOMAIN_KERNEL,
221 	},
222 	[MT_LOW_VECTORS] = {
223 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
224 				L_PTE_EXEC,
225 		.prot_l1   = PMD_TYPE_TABLE,
226 		.domain    = DOMAIN_USER,
227 	},
228 	[MT_HIGH_VECTORS] = {
229 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
230 				L_PTE_USER | L_PTE_EXEC,
231 		.prot_l1   = PMD_TYPE_TABLE,
232 		.domain    = DOMAIN_USER,
233 	},
234 	[MT_MEMORY] = {
235 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
236 		.domain    = DOMAIN_KERNEL,
237 	},
238 	[MT_ROM] = {
239 		.prot_sect = PMD_TYPE_SECT,
240 		.domain    = DOMAIN_KERNEL,
241 	},
242 };
243 
244 const struct mem_type *get_mem_type(unsigned int type)
245 {
246 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
247 }
248 
249 /*
250  * Adjust the PMD section entries according to the CPU in use.
251  */
252 static void __init build_mem_type_table(void)
253 {
254 	struct cachepolicy *cp;
255 	unsigned int cr = get_cr();
256 	unsigned int user_pgprot, kern_pgprot;
257 	int cpu_arch = cpu_architecture();
258 	int i;
259 
260 	if (cpu_arch < CPU_ARCH_ARMv6) {
261 #if defined(CONFIG_CPU_DCACHE_DISABLE)
262 		if (cachepolicy > CPOLICY_BUFFERED)
263 			cachepolicy = CPOLICY_BUFFERED;
264 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
265 		if (cachepolicy > CPOLICY_WRITETHROUGH)
266 			cachepolicy = CPOLICY_WRITETHROUGH;
267 #endif
268 	}
269 	if (cpu_arch < CPU_ARCH_ARMv5) {
270 		if (cachepolicy >= CPOLICY_WRITEALLOC)
271 			cachepolicy = CPOLICY_WRITEBACK;
272 		ecc_mask = 0;
273 	}
274 
275 	/*
276 	 * ARMv5 and lower, bit 4 must be set for page tables.
277 	 * (was: cache "update-able on write" bit on ARM610)
278 	 * However, Xscale cores require this bit to be cleared.
279 	 */
280 	if (cpu_is_xscale()) {
281 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
282 			mem_types[i].prot_sect &= ~PMD_BIT4;
283 			mem_types[i].prot_l1 &= ~PMD_BIT4;
284 		}
285 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
286 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
287 			if (mem_types[i].prot_l1)
288 				mem_types[i].prot_l1 |= PMD_BIT4;
289 			if (mem_types[i].prot_sect)
290 				mem_types[i].prot_sect |= PMD_BIT4;
291 		}
292 	}
293 
294 	cp = &cache_policies[cachepolicy];
295 	kern_pgprot = user_pgprot = cp->pte;
296 
297 	/*
298 	 * Enable CPU-specific coherency if supported.
299 	 * (Only available on XSC3 at the moment.)
300 	 */
301 	if (arch_is_coherent()) {
302 		if (cpu_is_xsc3()) {
303 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
304 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
305 		}
306 	}
307 
308 	/*
309 	 * ARMv6 and above have extended page tables.
310 	 */
311 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
312 		/*
313 		 * Mark cache clean areas and XIP ROM read only
314 		 * from SVC mode and no access from userspace.
315 		 */
316 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
317 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
318 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
319 
320 		/*
321 		 * Mark the device area as "shared device"
322 		 */
323 		mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
324 		mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
325 
326 #ifdef CONFIG_SMP
327 		/*
328 		 * Mark memory with the "shared" attribute for SMP systems
329 		 */
330 		user_pgprot |= L_PTE_SHARED;
331 		kern_pgprot |= L_PTE_SHARED;
332 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
333 #endif
334 	}
335 
336 	for (i = 0; i < 16; i++) {
337 		unsigned long v = pgprot_val(protection_map[i]);
338 		v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot;
339 		protection_map[i] = __pgprot(v);
340 	}
341 
342 	mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot;
343 	mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot;
344 
345 	if (cpu_arch >= CPU_ARCH_ARMv5) {
346 #ifndef CONFIG_SMP
347 		/*
348 		 * Only use write-through for non-SMP systems
349 		 */
350 		mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
351 		mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
352 #endif
353 	} else {
354 		mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
355 	}
356 
357 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
358 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
359 				 L_PTE_DIRTY | L_PTE_WRITE |
360 				 L_PTE_EXEC | kern_pgprot);
361 
362 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
363 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
364 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
365 	mem_types[MT_ROM].prot_sect |= cp->pmd;
366 
367 	switch (cp->pmd) {
368 	case PMD_SECT_WT:
369 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
370 		break;
371 	case PMD_SECT_WB:
372 	case PMD_SECT_WBWA:
373 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
374 		break;
375 	}
376 	printk("Memory policy: ECC %sabled, Data cache %s\n",
377 		ecc_mask ? "en" : "dis", cp->policy);
378 
379 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
380 		struct mem_type *t = &mem_types[i];
381 		if (t->prot_l1)
382 			t->prot_l1 |= PMD_DOMAIN(t->domain);
383 		if (t->prot_sect)
384 			t->prot_sect |= PMD_DOMAIN(t->domain);
385 	}
386 }
387 
388 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
389 
390 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
391 				  unsigned long end, unsigned long pfn,
392 				  const struct mem_type *type)
393 {
394 	pte_t *pte;
395 
396 	if (pmd_none(*pmd)) {
397 		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
398 		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
399 	}
400 
401 	pte = pte_offset_kernel(pmd, addr);
402 	do {
403 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
404 			    type->prot_pte_ext);
405 		pfn++;
406 	} while (pte++, addr += PAGE_SIZE, addr != end);
407 }
408 
409 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
410 				      unsigned long end, unsigned long phys,
411 				      const struct mem_type *type)
412 {
413 	pmd_t *pmd = pmd_offset(pgd, addr);
414 
415 	/*
416 	 * Try a section mapping - end, addr and phys must all be aligned
417 	 * to a section boundary.  Note that PMDs refer to the individual
418 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
419 	 * up one logical pointer to an L2 table.
420 	 */
421 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
422 		pmd_t *p = pmd;
423 
424 		if (addr & SECTION_SIZE)
425 			pmd++;
426 
427 		do {
428 			*pmd = __pmd(phys | type->prot_sect);
429 			phys += SECTION_SIZE;
430 		} while (pmd++, addr += SECTION_SIZE, addr != end);
431 
432 		flush_pmd_entry(p);
433 	} else {
434 		/*
435 		 * No need to loop; pte's aren't interested in the
436 		 * individual L1 entries.
437 		 */
438 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
439 	}
440 }
441 
442 static void __init create_36bit_mapping(struct map_desc *md,
443 					const struct mem_type *type)
444 {
445 	unsigned long phys, addr, length, end;
446 	pgd_t *pgd;
447 
448 	addr = md->virtual;
449 	phys = (unsigned long)__pfn_to_phys(md->pfn);
450 	length = PAGE_ALIGN(md->length);
451 
452 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
453 		printk(KERN_ERR "MM: CPU does not support supersection "
454 		       "mapping for 0x%08llx at 0x%08lx\n",
455 		       __pfn_to_phys((u64)md->pfn), addr);
456 		return;
457 	}
458 
459 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
460 	 *	Since domain assignments can in fact be arbitrary, the
461 	 *	'domain == 0' check below is required to insure that ARMv6
462 	 *	supersections are only allocated for domain 0 regardless
463 	 *	of the actual domain assignments in use.
464 	 */
465 	if (type->domain) {
466 		printk(KERN_ERR "MM: invalid domain in supersection "
467 		       "mapping for 0x%08llx at 0x%08lx\n",
468 		       __pfn_to_phys((u64)md->pfn), addr);
469 		return;
470 	}
471 
472 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
473 		printk(KERN_ERR "MM: cannot create mapping for "
474 		       "0x%08llx at 0x%08lx invalid alignment\n",
475 		       __pfn_to_phys((u64)md->pfn), addr);
476 		return;
477 	}
478 
479 	/*
480 	 * Shift bits [35:32] of address into bits [23:20] of PMD
481 	 * (See ARMv6 spec).
482 	 */
483 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
484 
485 	pgd = pgd_offset_k(addr);
486 	end = addr + length;
487 	do {
488 		pmd_t *pmd = pmd_offset(pgd, addr);
489 		int i;
490 
491 		for (i = 0; i < 16; i++)
492 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
493 
494 		addr += SUPERSECTION_SIZE;
495 		phys += SUPERSECTION_SIZE;
496 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
497 	} while (addr != end);
498 }
499 
500 /*
501  * Create the page directory entries and any necessary
502  * page tables for the mapping specified by `md'.  We
503  * are able to cope here with varying sizes and address
504  * offsets, and we take full advantage of sections and
505  * supersections.
506  */
507 void __init create_mapping(struct map_desc *md)
508 {
509 	unsigned long phys, addr, length, end;
510 	const struct mem_type *type;
511 	pgd_t *pgd;
512 
513 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
514 		printk(KERN_WARNING "BUG: not creating mapping for "
515 		       "0x%08llx at 0x%08lx in user region\n",
516 		       __pfn_to_phys((u64)md->pfn), md->virtual);
517 		return;
518 	}
519 
520 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
521 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
522 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
523 		       "overlaps vmalloc space\n",
524 		       __pfn_to_phys((u64)md->pfn), md->virtual);
525 	}
526 
527 	type = &mem_types[md->type];
528 
529 	/*
530 	 * Catch 36-bit addresses
531 	 */
532 	if (md->pfn >= 0x100000) {
533 		create_36bit_mapping(md, type);
534 		return;
535 	}
536 
537 	addr = md->virtual & PAGE_MASK;
538 	phys = (unsigned long)__pfn_to_phys(md->pfn);
539 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
540 
541 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
542 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
543 		       "be mapped using pages, ignoring.\n",
544 		       __pfn_to_phys(md->pfn), addr);
545 		return;
546 	}
547 
548 	pgd = pgd_offset_k(addr);
549 	end = addr + length;
550 	do {
551 		unsigned long next = pgd_addr_end(addr, end);
552 
553 		alloc_init_section(pgd, addr, next, phys, type);
554 
555 		phys += next - addr;
556 		addr = next;
557 	} while (pgd++, addr != end);
558 }
559 
560 /*
561  * Create the architecture specific mappings
562  */
563 void __init iotable_init(struct map_desc *io_desc, int nr)
564 {
565 	int i;
566 
567 	for (i = 0; i < nr; i++)
568 		create_mapping(io_desc + i);
569 }
570 
571 static inline void prepare_page_table(struct meminfo *mi)
572 {
573 	unsigned long addr;
574 
575 	/*
576 	 * Clear out all the mappings below the kernel image.
577 	 */
578 	for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
579 		pmd_clear(pmd_off_k(addr));
580 
581 #ifdef CONFIG_XIP_KERNEL
582 	/* The XIP kernel is mapped in the module area -- skip over it */
583 	addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
584 #endif
585 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
586 		pmd_clear(pmd_off_k(addr));
587 
588 	/*
589 	 * Clear out all the kernel space mappings, except for the first
590 	 * memory bank, up to the end of the vmalloc region.
591 	 */
592 	for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
593 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
594 		pmd_clear(pmd_off_k(addr));
595 }
596 
597 /*
598  * Reserve the various regions of node 0
599  */
600 void __init reserve_node_zero(pg_data_t *pgdat)
601 {
602 	unsigned long res_size = 0;
603 
604 	/*
605 	 * Register the kernel text and data with bootmem.
606 	 * Note that this can only be in node 0.
607 	 */
608 #ifdef CONFIG_XIP_KERNEL
609 	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
610 			BOOTMEM_DEFAULT);
611 #else
612 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
613 			BOOTMEM_DEFAULT);
614 #endif
615 
616 	/*
617 	 * Reserve the page tables.  These are already in use,
618 	 * and can only be in node 0.
619 	 */
620 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
621 			     PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
622 
623 	/*
624 	 * Hmm... This should go elsewhere, but we really really need to
625 	 * stop things allocating the low memory; ideally we need a better
626 	 * implementation of GFP_DMA which does not assume that DMA-able
627 	 * memory starts at zero.
628 	 */
629 	if (machine_is_integrator() || machine_is_cintegrator())
630 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
631 
632 	/*
633 	 * These should likewise go elsewhere.  They pre-reserve the
634 	 * screen memory region at the start of main system memory.
635 	 */
636 	if (machine_is_edb7211())
637 		res_size = 0x00020000;
638 	if (machine_is_p720t())
639 		res_size = 0x00014000;
640 
641 	/* H1940 and RX3715 need to reserve this for suspend */
642 
643 	if (machine_is_h1940() || machine_is_rx3715()) {
644 		reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
645 				BOOTMEM_DEFAULT);
646 		reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
647 				BOOTMEM_DEFAULT);
648 	}
649 
650 #ifdef CONFIG_SA1111
651 	/*
652 	 * Because of the SA1111 DMA bug, we want to preserve our
653 	 * precious DMA-able memory...
654 	 */
655 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
656 #endif
657 	if (res_size)
658 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
659 				BOOTMEM_DEFAULT);
660 }
661 
662 /*
663  * Set up device the mappings.  Since we clear out the page tables for all
664  * mappings above VMALLOC_END, we will remove any debug device mappings.
665  * This means you have to be careful how you debug this function, or any
666  * called function.  This means you can't use any function or debugging
667  * method which may touch any device, otherwise the kernel _will_ crash.
668  */
669 static void __init devicemaps_init(struct machine_desc *mdesc)
670 {
671 	struct map_desc map;
672 	unsigned long addr;
673 	void *vectors;
674 
675 	/*
676 	 * Allocate the vector page early.
677 	 */
678 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
679 	BUG_ON(!vectors);
680 
681 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
682 		pmd_clear(pmd_off_k(addr));
683 
684 	/*
685 	 * Map the kernel if it is XIP.
686 	 * It is always first in the modulearea.
687 	 */
688 #ifdef CONFIG_XIP_KERNEL
689 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
690 	map.virtual = MODULE_START;
691 	map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
692 	map.type = MT_ROM;
693 	create_mapping(&map);
694 #endif
695 
696 	/*
697 	 * Map the cache flushing regions.
698 	 */
699 #ifdef FLUSH_BASE
700 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
701 	map.virtual = FLUSH_BASE;
702 	map.length = SZ_1M;
703 	map.type = MT_CACHECLEAN;
704 	create_mapping(&map);
705 #endif
706 #ifdef FLUSH_BASE_MINICACHE
707 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
708 	map.virtual = FLUSH_BASE_MINICACHE;
709 	map.length = SZ_1M;
710 	map.type = MT_MINICLEAN;
711 	create_mapping(&map);
712 #endif
713 
714 	/*
715 	 * Create a mapping for the machine vectors at the high-vectors
716 	 * location (0xffff0000).  If we aren't using high-vectors, also
717 	 * create a mapping at the low-vectors virtual address.
718 	 */
719 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
720 	map.virtual = 0xffff0000;
721 	map.length = PAGE_SIZE;
722 	map.type = MT_HIGH_VECTORS;
723 	create_mapping(&map);
724 
725 	if (!vectors_high()) {
726 		map.virtual = 0;
727 		map.type = MT_LOW_VECTORS;
728 		create_mapping(&map);
729 	}
730 
731 	/*
732 	 * Ask the machine support to map in the statically mapped devices.
733 	 */
734 	if (mdesc->map_io)
735 		mdesc->map_io();
736 
737 	/*
738 	 * Finally flush the caches and tlb to ensure that we're in a
739 	 * consistent state wrt the writebuffer.  This also ensures that
740 	 * any write-allocated cache lines in the vector page are written
741 	 * back.  After this point, we can start to touch devices again.
742 	 */
743 	local_flush_tlb_all();
744 	flush_cache_all();
745 }
746 
747 /*
748  * paging_init() sets up the page tables, initialises the zone memory
749  * maps, and sets up the zero page, bad page and bad page tables.
750  */
751 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
752 {
753 	void *zero_page;
754 
755 	build_mem_type_table();
756 	prepare_page_table(mi);
757 	bootmem_init(mi);
758 	devicemaps_init(mdesc);
759 
760 	top_pmd = pmd_off_k(0xffff0000);
761 
762 	/*
763 	 * allocate the zero page.  Note that we count on this going ok.
764 	 */
765 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
766 	memzero(zero_page, PAGE_SIZE);
767 	empty_zero_page = virt_to_page(zero_page);
768 	flush_dcache_page(empty_zero_page);
769 }
770 
771 /*
772  * In order to soft-boot, we need to insert a 1:1 mapping in place of
773  * the user-mode pages.  This will then ensure that we have predictable
774  * results when turning the mmu off
775  */
776 void setup_mm_for_reboot(char mode)
777 {
778 	unsigned long base_pmdval;
779 	pgd_t *pgd;
780 	int i;
781 
782 	if (current->mm && current->mm->pgd)
783 		pgd = current->mm->pgd;
784 	else
785 		pgd = init_mm.pgd;
786 
787 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
788 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
789 		base_pmdval |= PMD_BIT4;
790 
791 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
792 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
793 		pmd_t *pmd;
794 
795 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
796 		pmd[0] = __pmd(pmdval);
797 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
798 		flush_pmd_entry(pmd);
799 	}
800 }
801